intel_hdmi.c 65.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
/*
 * Copyright 2006 Dave Airlie <airlied@linux.ie>
 * Copyright © 2006-2009 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
 * DEALINGS IN THE SOFTWARE.
 *
 * Authors:
 *	Eric Anholt <eric@anholt.net>
 *	Jesse Barnes <jesse.barnes@intel.com>
 */

#include <linux/i2c.h>
30
#include <linux/slab.h>
31
#include <linux/delay.h>
32
#include <linux/hdmi.h>
33
#include <drm/drmP.h>
34
#include <drm/drm_atomic_helper.h>
35 36
#include <drm/drm_crtc.h>
#include <drm/drm_edid.h>
37
#include "intel_drv.h"
38
#include <drm/i915_drm.h>
39 40
#include "i915_drv.h"

41 42
static struct drm_device *intel_hdmi_to_dev(struct intel_hdmi *intel_hdmi)
{
43
	return hdmi_to_dig_port(intel_hdmi)->base.base.dev;
44 45
}

46 47 48
static void
assert_hdmi_port_disabled(struct intel_hdmi *intel_hdmi)
{
49
	struct drm_device *dev = intel_hdmi_to_dev(intel_hdmi);
50 51 52
	struct drm_i915_private *dev_priv = dev->dev_private;
	uint32_t enabled_bits;

P
Paulo Zanoni 已提交
53
	enabled_bits = HAS_DDI(dev) ? DDI_BUF_CTL_ENABLE : SDVO_ENABLE;
54

55
	WARN(I915_READ(intel_hdmi->hdmi_reg) & enabled_bits,
56 57 58
	     "HDMI port enabled, expecting disabled\n");
}

59
struct intel_hdmi *enc_to_intel_hdmi(struct drm_encoder *encoder)
C
Chris Wilson 已提交
60
{
61 62 63
	struct intel_digital_port *intel_dig_port =
		container_of(encoder, struct intel_digital_port, base.base);
	return &intel_dig_port->hdmi;
C
Chris Wilson 已提交
64 65
}

66 67
static struct intel_hdmi *intel_attached_hdmi(struct drm_connector *connector)
{
68
	return enc_to_intel_hdmi(&intel_attached_encoder(connector)->base);
69 70
}

71
static u32 g4x_infoframe_index(enum hdmi_infoframe_type type)
72
{
73 74
	switch (type) {
	case HDMI_INFOFRAME_TYPE_AVI:
75
		return VIDEO_DIP_SELECT_AVI;
76
	case HDMI_INFOFRAME_TYPE_SPD:
77
		return VIDEO_DIP_SELECT_SPD;
78 79
	case HDMI_INFOFRAME_TYPE_VENDOR:
		return VIDEO_DIP_SELECT_VENDOR;
80
	default:
81
		DRM_DEBUG_DRIVER("unknown info frame type %d\n", type);
82
		return 0;
83 84 85
	}
}

86
static u32 g4x_infoframe_enable(enum hdmi_infoframe_type type)
87
{
88 89
	switch (type) {
	case HDMI_INFOFRAME_TYPE_AVI:
90
		return VIDEO_DIP_ENABLE_AVI;
91
	case HDMI_INFOFRAME_TYPE_SPD:
92
		return VIDEO_DIP_ENABLE_SPD;
93 94
	case HDMI_INFOFRAME_TYPE_VENDOR:
		return VIDEO_DIP_ENABLE_VENDOR;
95
	default:
96
		DRM_DEBUG_DRIVER("unknown info frame type %d\n", type);
97
		return 0;
98 99 100
	}
}

101
static u32 hsw_infoframe_enable(enum hdmi_infoframe_type type)
102
{
103 104
	switch (type) {
	case HDMI_INFOFRAME_TYPE_AVI:
105
		return VIDEO_DIP_ENABLE_AVI_HSW;
106
	case HDMI_INFOFRAME_TYPE_SPD:
107
		return VIDEO_DIP_ENABLE_SPD_HSW;
108 109
	case HDMI_INFOFRAME_TYPE_VENDOR:
		return VIDEO_DIP_ENABLE_VS_HSW;
110
	default:
111
		DRM_DEBUG_DRIVER("unknown info frame type %d\n", type);
112 113 114 115
		return 0;
	}
}

116 117 118 119
static u32 hsw_dip_data_reg(struct drm_i915_private *dev_priv,
			    enum transcoder cpu_transcoder,
			    enum hdmi_infoframe_type type,
			    int i)
120
{
121 122
	switch (type) {
	case HDMI_INFOFRAME_TYPE_AVI:
123
		return HSW_TVIDEO_DIP_AVI_DATA(cpu_transcoder, i);
124
	case HDMI_INFOFRAME_TYPE_SPD:
125
		return HSW_TVIDEO_DIP_SPD_DATA(cpu_transcoder, i);
126
	case HDMI_INFOFRAME_TYPE_VENDOR:
127
		return HSW_TVIDEO_DIP_VS_DATA(cpu_transcoder, i);
128
	default:
129
		DRM_DEBUG_DRIVER("unknown info frame type %d\n", type);
130 131 132 133
		return 0;
	}
}

134
static void g4x_write_infoframe(struct drm_encoder *encoder,
135
				enum hdmi_infoframe_type type,
136
				const void *frame, ssize_t len)
137
{
138
	const uint32_t *data = frame;
139 140
	struct drm_device *dev = encoder->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
141
	u32 val = I915_READ(VIDEO_DIP_CTL);
142
	int i;
143

144 145
	WARN(!(val & VIDEO_DIP_ENABLE), "Writing DIP with CTL reg disabled\n");

146
	val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */
147
	val |= g4x_infoframe_index(type);
148

149
	val &= ~g4x_infoframe_enable(type);
150

151
	I915_WRITE(VIDEO_DIP_CTL, val);
152

153
	mmiowb();
154
	for (i = 0; i < len; i += 4) {
155 156 157
		I915_WRITE(VIDEO_DIP_DATA, *data);
		data++;
	}
158 159 160
	/* Write every possible data byte to force correct ECC calculation. */
	for (; i < VIDEO_DIP_DATA_SIZE; i += 4)
		I915_WRITE(VIDEO_DIP_DATA, 0);
161
	mmiowb();
162

163
	val |= g4x_infoframe_enable(type);
164
	val &= ~VIDEO_DIP_FREQ_MASK;
165
	val |= VIDEO_DIP_FREQ_VSYNC;
166

167
	I915_WRITE(VIDEO_DIP_CTL, val);
168
	POSTING_READ(VIDEO_DIP_CTL);
169 170
}

171 172 173 174
static bool g4x_infoframe_enabled(struct drm_encoder *encoder)
{
	struct drm_device *dev = encoder->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
175
	struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
176 177
	u32 val = I915_READ(VIDEO_DIP_CTL);

178 179
	if ((val & VIDEO_DIP_ENABLE) == 0)
		return false;
180

181 182 183 184 185
	if ((val & VIDEO_DIP_PORT_MASK) != VIDEO_DIP_PORT(intel_dig_port->port))
		return false;

	return val & (VIDEO_DIP_ENABLE_AVI |
		      VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_SPD);
186 187
}

188
static void ibx_write_infoframe(struct drm_encoder *encoder,
189
				enum hdmi_infoframe_type type,
190
				const void *frame, ssize_t len)
191
{
192
	const uint32_t *data = frame;
193 194
	struct drm_device *dev = encoder->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
195
	struct intel_crtc *intel_crtc = to_intel_crtc(encoder->crtc);
196
	int i, reg = TVIDEO_DIP_CTL(intel_crtc->pipe);
197 198
	u32 val = I915_READ(reg);

199 200
	WARN(!(val & VIDEO_DIP_ENABLE), "Writing DIP with CTL reg disabled\n");

201
	val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */
202
	val |= g4x_infoframe_index(type);
203

204
	val &= ~g4x_infoframe_enable(type);
205 206 207

	I915_WRITE(reg, val);

208
	mmiowb();
209 210 211 212
	for (i = 0; i < len; i += 4) {
		I915_WRITE(TVIDEO_DIP_DATA(intel_crtc->pipe), *data);
		data++;
	}
213 214 215
	/* Write every possible data byte to force correct ECC calculation. */
	for (; i < VIDEO_DIP_DATA_SIZE; i += 4)
		I915_WRITE(TVIDEO_DIP_DATA(intel_crtc->pipe), 0);
216
	mmiowb();
217

218
	val |= g4x_infoframe_enable(type);
219
	val &= ~VIDEO_DIP_FREQ_MASK;
220
	val |= VIDEO_DIP_FREQ_VSYNC;
221 222

	I915_WRITE(reg, val);
223
	POSTING_READ(reg);
224 225
}

226 227 228 229 230
static bool ibx_infoframe_enabled(struct drm_encoder *encoder)
{
	struct drm_device *dev = encoder->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct intel_crtc *intel_crtc = to_intel_crtc(encoder->crtc);
231
	struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
232 233 234
	int reg = TVIDEO_DIP_CTL(intel_crtc->pipe);
	u32 val = I915_READ(reg);

235 236 237 238 239
	if ((val & VIDEO_DIP_ENABLE) == 0)
		return false;

	if ((val & VIDEO_DIP_PORT_MASK) != VIDEO_DIP_PORT(intel_dig_port->port))
		return false;
240

241 242 243
	return val & (VIDEO_DIP_ENABLE_AVI |
		      VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
		      VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
244 245
}

246
static void cpt_write_infoframe(struct drm_encoder *encoder,
247
				enum hdmi_infoframe_type type,
248
				const void *frame, ssize_t len)
249
{
250
	const uint32_t *data = frame;
251 252
	struct drm_device *dev = encoder->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
253
	struct intel_crtc *intel_crtc = to_intel_crtc(encoder->crtc);
254
	int i, reg = TVIDEO_DIP_CTL(intel_crtc->pipe);
255
	u32 val = I915_READ(reg);
256

257 258
	WARN(!(val & VIDEO_DIP_ENABLE), "Writing DIP with CTL reg disabled\n");

259
	val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */
260
	val |= g4x_infoframe_index(type);
261

262 263
	/* The DIP control register spec says that we need to update the AVI
	 * infoframe without clearing its enable bit */
264 265
	if (type != HDMI_INFOFRAME_TYPE_AVI)
		val &= ~g4x_infoframe_enable(type);
266

267
	I915_WRITE(reg, val);
268

269
	mmiowb();
270
	for (i = 0; i < len; i += 4) {
271 272 273
		I915_WRITE(TVIDEO_DIP_DATA(intel_crtc->pipe), *data);
		data++;
	}
274 275 276
	/* Write every possible data byte to force correct ECC calculation. */
	for (; i < VIDEO_DIP_DATA_SIZE; i += 4)
		I915_WRITE(TVIDEO_DIP_DATA(intel_crtc->pipe), 0);
277
	mmiowb();
278

279
	val |= g4x_infoframe_enable(type);
280
	val &= ~VIDEO_DIP_FREQ_MASK;
281
	val |= VIDEO_DIP_FREQ_VSYNC;
282

283
	I915_WRITE(reg, val);
284
	POSTING_READ(reg);
285
}
286

287 288 289 290 291 292 293 294
static bool cpt_infoframe_enabled(struct drm_encoder *encoder)
{
	struct drm_device *dev = encoder->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct intel_crtc *intel_crtc = to_intel_crtc(encoder->crtc);
	int reg = TVIDEO_DIP_CTL(intel_crtc->pipe);
	u32 val = I915_READ(reg);

295 296 297 298 299 300
	if ((val & VIDEO_DIP_ENABLE) == 0)
		return false;

	return val & (VIDEO_DIP_ENABLE_AVI |
		      VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
		      VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
301 302
}

303
static void vlv_write_infoframe(struct drm_encoder *encoder,
304
				enum hdmi_infoframe_type type,
305
				const void *frame, ssize_t len)
306
{
307
	const uint32_t *data = frame;
308 309
	struct drm_device *dev = encoder->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
310
	struct intel_crtc *intel_crtc = to_intel_crtc(encoder->crtc);
311
	int i, reg = VLV_TVIDEO_DIP_CTL(intel_crtc->pipe);
312
	u32 val = I915_READ(reg);
313

314 315
	WARN(!(val & VIDEO_DIP_ENABLE), "Writing DIP with CTL reg disabled\n");

316
	val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */
317
	val |= g4x_infoframe_index(type);
318

319
	val &= ~g4x_infoframe_enable(type);
320

321
	I915_WRITE(reg, val);
322

323
	mmiowb();
324 325 326 327
	for (i = 0; i < len; i += 4) {
		I915_WRITE(VLV_TVIDEO_DIP_DATA(intel_crtc->pipe), *data);
		data++;
	}
328 329 330
	/* Write every possible data byte to force correct ECC calculation. */
	for (; i < VIDEO_DIP_DATA_SIZE; i += 4)
		I915_WRITE(VLV_TVIDEO_DIP_DATA(intel_crtc->pipe), 0);
331
	mmiowb();
332

333
	val |= g4x_infoframe_enable(type);
334
	val &= ~VIDEO_DIP_FREQ_MASK;
335
	val |= VIDEO_DIP_FREQ_VSYNC;
336

337
	I915_WRITE(reg, val);
338
	POSTING_READ(reg);
339 340
}

341 342 343 344 345
static bool vlv_infoframe_enabled(struct drm_encoder *encoder)
{
	struct drm_device *dev = encoder->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct intel_crtc *intel_crtc = to_intel_crtc(encoder->crtc);
346
	struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
347 348 349
	int reg = VLV_TVIDEO_DIP_CTL(intel_crtc->pipe);
	u32 val = I915_READ(reg);

350 351 352 353 354
	if ((val & VIDEO_DIP_ENABLE) == 0)
		return false;

	if ((val & VIDEO_DIP_PORT_MASK) != VIDEO_DIP_PORT(intel_dig_port->port))
		return false;
355

356 357 358
	return val & (VIDEO_DIP_ENABLE_AVI |
		      VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
		      VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
359 360
}

361
static void hsw_write_infoframe(struct drm_encoder *encoder,
362
				enum hdmi_infoframe_type type,
363
				const void *frame, ssize_t len)
364
{
365
	const uint32_t *data = frame;
366 367 368
	struct drm_device *dev = encoder->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct intel_crtc *intel_crtc = to_intel_crtc(encoder->crtc);
369 370
	enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
	u32 ctl_reg = HSW_TVIDEO_DIP_CTL(cpu_transcoder);
371 372
	u32 data_reg;
	int i;
373
	u32 val = I915_READ(ctl_reg);
374

375
	data_reg = hsw_dip_data_reg(dev_priv, cpu_transcoder, type, 0);
376 377 378
	if (data_reg == 0)
		return;

379
	val &= ~hsw_infoframe_enable(type);
380 381
	I915_WRITE(ctl_reg, val);

382
	mmiowb();
383
	for (i = 0; i < len; i += 4) {
384 385
		I915_WRITE(hsw_dip_data_reg(dev_priv, cpu_transcoder,
					    type, i >> 2), *data);
386 387
		data++;
	}
388 389
	/* Write every possible data byte to force correct ECC calculation. */
	for (; i < VIDEO_DIP_DATA_SIZE; i += 4)
390 391
		I915_WRITE(hsw_dip_data_reg(dev_priv, cpu_transcoder,
					    type, i >> 2), 0);
392
	mmiowb();
393

394
	val |= hsw_infoframe_enable(type);
395
	I915_WRITE(ctl_reg, val);
396
	POSTING_READ(ctl_reg);
397 398
}

399 400 401 402 403
static bool hsw_infoframe_enabled(struct drm_encoder *encoder)
{
	struct drm_device *dev = encoder->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct intel_crtc *intel_crtc = to_intel_crtc(encoder->crtc);
404
	u32 ctl_reg = HSW_TVIDEO_DIP_CTL(intel_crtc->config->cpu_transcoder);
405 406
	u32 val = I915_READ(ctl_reg);

407 408 409
	return val & (VIDEO_DIP_ENABLE_VSC_HSW | VIDEO_DIP_ENABLE_AVI_HSW |
		      VIDEO_DIP_ENABLE_GCP_HSW | VIDEO_DIP_ENABLE_VS_HSW |
		      VIDEO_DIP_ENABLE_GMP_HSW | VIDEO_DIP_ENABLE_SPD_HSW);
410 411
}

412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428
/*
 * The data we write to the DIP data buffer registers is 1 byte bigger than the
 * HDMI infoframe size because of an ECC/reserved byte at position 3 (starting
 * at 0). It's also a byte used by DisplayPort so the same DIP registers can be
 * used for both technologies.
 *
 * DW0: Reserved/ECC/DP | HB2 | HB1 | HB0
 * DW1:       DB3       | DB2 | DB1 | DB0
 * DW2:       DB7       | DB6 | DB5 | DB4
 * DW3: ...
 *
 * (HB is Header Byte, DB is Data Byte)
 *
 * The hdmi pack() functions don't know about that hardware specific hole so we
 * trick them by giving an offset into the buffer and moving back the header
 * bytes by one.
 */
429 430
static void intel_write_infoframe(struct drm_encoder *encoder,
				  union hdmi_infoframe *frame)
431 432
{
	struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder);
433 434
	uint8_t buffer[VIDEO_DIP_DATA_SIZE];
	ssize_t len;
435

436 437 438 439 440 441 442 443 444 445 446
	/* see comment above for the reason for this offset */
	len = hdmi_infoframe_pack(frame, buffer + 1, sizeof(buffer) - 1);
	if (len < 0)
		return;

	/* Insert the 'hole' (see big comment above) at position 3 */
	buffer[0] = buffer[1];
	buffer[1] = buffer[2];
	buffer[2] = buffer[3];
	buffer[3] = 0;
	len++;
447

448
	intel_hdmi->write_infoframe(encoder, frame->any.type, buffer, len);
449 450
}

451
static void intel_hdmi_set_avi_infoframe(struct drm_encoder *encoder,
452
					 const struct drm_display_mode *adjusted_mode)
453
{
454
	struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder);
455
	struct intel_crtc *intel_crtc = to_intel_crtc(encoder->crtc);
456 457
	union hdmi_infoframe frame;
	int ret;
458

459 460 461 462 463 464
	ret = drm_hdmi_avi_infoframe_from_display_mode(&frame.avi,
						       adjusted_mode);
	if (ret < 0) {
		DRM_ERROR("couldn't fill AVI infoframe\n");
		return;
	}
P
Paulo Zanoni 已提交
465

466
	if (intel_hdmi->rgb_quant_range_selectable) {
467
		if (intel_crtc->config->limited_color_range)
468 469
			frame.avi.quantization_range =
				HDMI_QUANTIZATION_RANGE_LIMITED;
470
		else
471 472
			frame.avi.quantization_range =
				HDMI_QUANTIZATION_RANGE_FULL;
473 474
	}

475
	intel_write_infoframe(encoder, &frame);
476 477
}

478
static void intel_hdmi_set_spd_infoframe(struct drm_encoder *encoder)
479
{
480 481 482 483 484 485 486 487
	union hdmi_infoframe frame;
	int ret;

	ret = hdmi_spd_infoframe_init(&frame.spd, "Intel", "Integrated gfx");
	if (ret < 0) {
		DRM_ERROR("couldn't fill SPD infoframe\n");
		return;
	}
488

489
	frame.spd.sdi = HDMI_SPD_SDI_PC;
490

491
	intel_write_infoframe(encoder, &frame);
492 493
}

494 495
static void
intel_hdmi_set_hdmi_infoframe(struct drm_encoder *encoder,
496
			      const struct drm_display_mode *adjusted_mode)
497 498 499 500 501 502 503 504 505 506 507 508
{
	union hdmi_infoframe frame;
	int ret;

	ret = drm_hdmi_vendor_infoframe_from_display_mode(&frame.vendor.hdmi,
							  adjusted_mode);
	if (ret < 0)
		return;

	intel_write_infoframe(encoder, &frame);
}

509
static void g4x_set_infoframes(struct drm_encoder *encoder,
510
			       bool enable,
511
			       const struct drm_display_mode *adjusted_mode)
512
{
513
	struct drm_i915_private *dev_priv = encoder->dev->dev_private;
514 515
	struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
	struct intel_hdmi *intel_hdmi = &intel_dig_port->hdmi;
516 517
	u32 reg = VIDEO_DIP_CTL;
	u32 val = I915_READ(reg);
518
	u32 port = VIDEO_DIP_PORT(intel_dig_port->port);
519

520 521
	assert_hdmi_port_disabled(intel_hdmi);

522 523 524 525 526 527 528 529 530 531 532
	/* If the registers were not initialized yet, they might be zeroes,
	 * which means we're selecting the AVI DIP and we're setting its
	 * frequency to once. This seems to really confuse the HW and make
	 * things stop working (the register spec says the AVI always needs to
	 * be sent every VSync). So here we avoid writing to the register more
	 * than we need and also explicitly select the AVI DIP and explicitly
	 * set its frequency to every VSync. Avoiding to write it twice seems to
	 * be enough to solve the problem, but being defensive shouldn't hurt us
	 * either. */
	val |= VIDEO_DIP_SELECT_AVI | VIDEO_DIP_FREQ_VSYNC;

533
	if (!enable) {
534 535
		if (!(val & VIDEO_DIP_ENABLE))
			return;
536 537 538 539 540 541 542
		if (port != (val & VIDEO_DIP_PORT_MASK)) {
			DRM_DEBUG_KMS("video DIP still enabled on port %c\n",
				      (val & VIDEO_DIP_PORT_MASK) >> 29);
			return;
		}
		val &= ~(VIDEO_DIP_ENABLE | VIDEO_DIP_ENABLE_AVI |
			 VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_SPD);
543
		I915_WRITE(reg, val);
544
		POSTING_READ(reg);
545 546 547
		return;
	}

548 549
	if (port != (val & VIDEO_DIP_PORT_MASK)) {
		if (val & VIDEO_DIP_ENABLE) {
550 551 552
			DRM_DEBUG_KMS("video DIP already enabled on port %c\n",
				      (val & VIDEO_DIP_PORT_MASK) >> 29);
			return;
553 554 555 556 557
		}
		val &= ~VIDEO_DIP_PORT_MASK;
		val |= port;
	}

558
	val |= VIDEO_DIP_ENABLE;
559 560
	val &= ~(VIDEO_DIP_ENABLE_AVI |
		 VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_SPD);
561

562
	I915_WRITE(reg, val);
563
	POSTING_READ(reg);
564

565 566
	intel_hdmi_set_avi_infoframe(encoder, adjusted_mode);
	intel_hdmi_set_spd_infoframe(encoder);
567
	intel_hdmi_set_hdmi_infoframe(encoder, adjusted_mode);
568 569
}

570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588
static bool hdmi_sink_is_deep_color(struct drm_encoder *encoder)
{
	struct drm_device *dev = encoder->dev;
	struct drm_connector *connector;

	WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));

	/*
	 * HDMI cloning is only supported on g4x which doesn't
	 * support deep color or GCP infoframes anyway so no
	 * need to worry about multiple HDMI sinks here.
	 */
	list_for_each_entry(connector, &dev->mode_config.connector_list, head)
		if (connector->encoder == encoder)
			return connector->display_info.bpc > 8;

	return false;
}

589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631
/*
 * Determine if default_phase=1 can be indicated in the GCP infoframe.
 *
 * From HDMI specification 1.4a:
 * - The first pixel of each Video Data Period shall always have a pixel packing phase of 0
 * - The first pixel following each Video Data Period shall have a pixel packing phase of 0
 * - The PP bits shall be constant for all GCPs and will be equal to the last packing phase
 * - The first pixel following every transition of HSYNC or VSYNC shall have a pixel packing
 *   phase of 0
 */
static bool gcp_default_phase_possible(int pipe_bpp,
				       const struct drm_display_mode *mode)
{
	unsigned int pixels_per_group;

	switch (pipe_bpp) {
	case 30:
		/* 4 pixels in 5 clocks */
		pixels_per_group = 4;
		break;
	case 36:
		/* 2 pixels in 3 clocks */
		pixels_per_group = 2;
		break;
	case 48:
		/* 1 pixel in 2 clocks */
		pixels_per_group = 1;
		break;
	default:
		/* phase information not relevant for 8bpc */
		return false;
	}

	return mode->crtc_hdisplay % pixels_per_group == 0 &&
		mode->crtc_htotal % pixels_per_group == 0 &&
		mode->crtc_hblank_start % pixels_per_group == 0 &&
		mode->crtc_hblank_end % pixels_per_group == 0 &&
		mode->crtc_hsync_start % pixels_per_group == 0 &&
		mode->crtc_hsync_end % pixels_per_group == 0 &&
		((mode->flags & DRM_MODE_FLAG_INTERLACE) == 0 ||
		 mode->crtc_htotal/2 % pixels_per_group == 0);
}

632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650
static bool intel_hdmi_set_gcp_infoframe(struct drm_encoder *encoder)
{
	struct drm_i915_private *dev_priv = encoder->dev->dev_private;
	struct intel_crtc *crtc = to_intel_crtc(encoder->crtc);
	u32 reg, val = 0;

	if (HAS_DDI(dev_priv))
		reg = HSW_TVIDEO_DIP_GCP(crtc->config->cpu_transcoder);
	else if (IS_VALLEYVIEW(dev_priv))
		reg = VLV_TVIDEO_DIP_GCP(crtc->pipe);
	else if (HAS_PCH_SPLIT(dev_priv->dev))
		reg = TVIDEO_DIP_GCP(crtc->pipe);
	else
		return false;

	/* Indicate color depth whenever the sink supports deep color */
	if (hdmi_sink_is_deep_color(encoder))
		val |= GCP_COLOR_INDICATION;

651 652 653 654 655
	/* Enable default_phase whenever the display mode is suitably aligned */
	if (gcp_default_phase_possible(crtc->config->pipe_bpp,
				       &crtc->config->base.adjusted_mode))
		val |= GCP_DEFAULT_PHASE_ENABLE;

656 657 658 659 660
	I915_WRITE(reg, val);

	return val != 0;
}

661
static void ibx_set_infoframes(struct drm_encoder *encoder,
662
			       bool enable,
663
			       const struct drm_display_mode *adjusted_mode)
664
{
665 666
	struct drm_i915_private *dev_priv = encoder->dev->dev_private;
	struct intel_crtc *intel_crtc = to_intel_crtc(encoder->crtc);
667 668
	struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
	struct intel_hdmi *intel_hdmi = &intel_dig_port->hdmi;
669 670
	u32 reg = TVIDEO_DIP_CTL(intel_crtc->pipe);
	u32 val = I915_READ(reg);
671
	u32 port = VIDEO_DIP_PORT(intel_dig_port->port);
672

673 674
	assert_hdmi_port_disabled(intel_hdmi);

675 676 677
	/* See the big comment in g4x_set_infoframes() */
	val |= VIDEO_DIP_SELECT_AVI | VIDEO_DIP_FREQ_VSYNC;

678
	if (!enable) {
679 680
		if (!(val & VIDEO_DIP_ENABLE))
			return;
681 682 683
		val &= ~(VIDEO_DIP_ENABLE | VIDEO_DIP_ENABLE_AVI |
			 VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
			 VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
684
		I915_WRITE(reg, val);
685
		POSTING_READ(reg);
686 687 688
		return;
	}

689
	if (port != (val & VIDEO_DIP_PORT_MASK)) {
690 691 692
		WARN(val & VIDEO_DIP_ENABLE,
		     "DIP already enabled on port %c\n",
		     (val & VIDEO_DIP_PORT_MASK) >> 29);
693 694 695 696
		val &= ~VIDEO_DIP_PORT_MASK;
		val |= port;
	}

697
	val |= VIDEO_DIP_ENABLE;
698 699 700
	val &= ~(VIDEO_DIP_ENABLE_AVI |
		 VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
		 VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
701

702 703 704
	if (intel_hdmi_set_gcp_infoframe(encoder))
		val |= VIDEO_DIP_ENABLE_GCP;

705
	I915_WRITE(reg, val);
706
	POSTING_READ(reg);
707

708 709
	intel_hdmi_set_avi_infoframe(encoder, adjusted_mode);
	intel_hdmi_set_spd_infoframe(encoder);
710
	intel_hdmi_set_hdmi_infoframe(encoder, adjusted_mode);
711 712 713
}

static void cpt_set_infoframes(struct drm_encoder *encoder,
714
			       bool enable,
715
			       const struct drm_display_mode *adjusted_mode)
716
{
717 718 719 720 721 722
	struct drm_i915_private *dev_priv = encoder->dev->dev_private;
	struct intel_crtc *intel_crtc = to_intel_crtc(encoder->crtc);
	struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder);
	u32 reg = TVIDEO_DIP_CTL(intel_crtc->pipe);
	u32 val = I915_READ(reg);

723 724
	assert_hdmi_port_disabled(intel_hdmi);

725 726 727
	/* See the big comment in g4x_set_infoframes() */
	val |= VIDEO_DIP_SELECT_AVI | VIDEO_DIP_FREQ_VSYNC;

728
	if (!enable) {
729 730
		if (!(val & VIDEO_DIP_ENABLE))
			return;
731 732 733
		val &= ~(VIDEO_DIP_ENABLE | VIDEO_DIP_ENABLE_AVI |
			 VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
			 VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
734
		I915_WRITE(reg, val);
735
		POSTING_READ(reg);
736 737 738
		return;
	}

739 740
	/* Set both together, unset both together: see the spec. */
	val |= VIDEO_DIP_ENABLE | VIDEO_DIP_ENABLE_AVI;
741
	val &= ~(VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
742
		 VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
743

744 745 746
	if (intel_hdmi_set_gcp_infoframe(encoder))
		val |= VIDEO_DIP_ENABLE_GCP;

747
	I915_WRITE(reg, val);
748
	POSTING_READ(reg);
749

750 751
	intel_hdmi_set_avi_infoframe(encoder, adjusted_mode);
	intel_hdmi_set_spd_infoframe(encoder);
752
	intel_hdmi_set_hdmi_infoframe(encoder, adjusted_mode);
753 754 755
}

static void vlv_set_infoframes(struct drm_encoder *encoder,
756
			       bool enable,
757
			       const struct drm_display_mode *adjusted_mode)
758
{
759
	struct drm_i915_private *dev_priv = encoder->dev->dev_private;
760
	struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
761 762 763 764
	struct intel_crtc *intel_crtc = to_intel_crtc(encoder->crtc);
	struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder);
	u32 reg = VLV_TVIDEO_DIP_CTL(intel_crtc->pipe);
	u32 val = I915_READ(reg);
765
	u32 port = VIDEO_DIP_PORT(intel_dig_port->port);
766

767 768
	assert_hdmi_port_disabled(intel_hdmi);

769 770 771
	/* See the big comment in g4x_set_infoframes() */
	val |= VIDEO_DIP_SELECT_AVI | VIDEO_DIP_FREQ_VSYNC;

772
	if (!enable) {
773 774
		if (!(val & VIDEO_DIP_ENABLE))
			return;
775 776 777
		val &= ~(VIDEO_DIP_ENABLE | VIDEO_DIP_ENABLE_AVI |
			 VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
			 VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
778
		I915_WRITE(reg, val);
779
		POSTING_READ(reg);
780 781 782
		return;
	}

783
	if (port != (val & VIDEO_DIP_PORT_MASK)) {
784 785 786
		WARN(val & VIDEO_DIP_ENABLE,
		     "DIP already enabled on port %c\n",
		     (val & VIDEO_DIP_PORT_MASK) >> 29);
787 788 789 790
		val &= ~VIDEO_DIP_PORT_MASK;
		val |= port;
	}

791
	val |= VIDEO_DIP_ENABLE;
792 793 794
	val &= ~(VIDEO_DIP_ENABLE_AVI |
		 VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
		 VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
795

796 797 798
	if (intel_hdmi_set_gcp_infoframe(encoder))
		val |= VIDEO_DIP_ENABLE_GCP;

799
	I915_WRITE(reg, val);
800
	POSTING_READ(reg);
801

802 803
	intel_hdmi_set_avi_infoframe(encoder, adjusted_mode);
	intel_hdmi_set_spd_infoframe(encoder);
804
	intel_hdmi_set_hdmi_infoframe(encoder, adjusted_mode);
805 806 807
}

static void hsw_set_infoframes(struct drm_encoder *encoder,
808
			       bool enable,
809
			       const struct drm_display_mode *adjusted_mode)
810
{
811 812 813
	struct drm_i915_private *dev_priv = encoder->dev->dev_private;
	struct intel_crtc *intel_crtc = to_intel_crtc(encoder->crtc);
	struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder);
814
	u32 reg = HSW_TVIDEO_DIP_CTL(intel_crtc->config->cpu_transcoder);
815
	u32 val = I915_READ(reg);
816

817 818
	assert_hdmi_port_disabled(intel_hdmi);

819 820 821 822
	val &= ~(VIDEO_DIP_ENABLE_VSC_HSW | VIDEO_DIP_ENABLE_AVI_HSW |
		 VIDEO_DIP_ENABLE_GCP_HSW | VIDEO_DIP_ENABLE_VS_HSW |
		 VIDEO_DIP_ENABLE_GMP_HSW | VIDEO_DIP_ENABLE_SPD_HSW);

823
	if (!enable) {
824
		I915_WRITE(reg, val);
825
		POSTING_READ(reg);
826 827 828
		return;
	}

829 830 831
	if (intel_hdmi_set_gcp_infoframe(encoder))
		val |= VIDEO_DIP_ENABLE_GCP_HSW;

832
	I915_WRITE(reg, val);
833
	POSTING_READ(reg);
834

835 836
	intel_hdmi_set_avi_infoframe(encoder, adjusted_mode);
	intel_hdmi_set_spd_infoframe(encoder);
837
	intel_hdmi_set_hdmi_infoframe(encoder, adjusted_mode);
838 839
}

840
static void intel_hdmi_prepare(struct intel_encoder *encoder)
841
{
842
	struct drm_device *dev = encoder->base.dev;
843
	struct drm_i915_private *dev_priv = dev->dev_private;
844 845
	struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
	struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&encoder->base);
846
	const struct drm_display_mode *adjusted_mode = &crtc->config->base.adjusted_mode;
847
	u32 hdmi_val;
848

849
	hdmi_val = SDVO_ENCODING_HDMI;
850 851
	if (!HAS_PCH_SPLIT(dev) && crtc->config->limited_color_range)
		hdmi_val |= HDMI_COLOR_RANGE_16_235;
852
	if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
853
		hdmi_val |= SDVO_VSYNC_ACTIVE_HIGH;
854
	if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
855
		hdmi_val |= SDVO_HSYNC_ACTIVE_HIGH;
856

857
	if (crtc->config->pipe_bpp > 24)
858
		hdmi_val |= HDMI_COLOR_FORMAT_12bpc;
859
	else
860
		hdmi_val |= SDVO_COLOR_FORMAT_8bpc;
861

862
	if (crtc->config->has_hdmi_sink)
863
		hdmi_val |= HDMI_MODE_SELECT_HDMI;
864

865
	if (HAS_PCH_CPT(dev))
866
		hdmi_val |= SDVO_PIPE_SEL_CPT(crtc->pipe);
867 868
	else if (IS_CHERRYVIEW(dev))
		hdmi_val |= SDVO_PIPE_SEL_CHV(crtc->pipe);
869
	else
870
		hdmi_val |= SDVO_PIPE_SEL(crtc->pipe);
871

872 873
	I915_WRITE(intel_hdmi->hdmi_reg, hdmi_val);
	POSTING_READ(intel_hdmi->hdmi_reg);
874 875
}

876 877
static bool intel_hdmi_get_hw_state(struct intel_encoder *encoder,
				    enum pipe *pipe)
878
{
879
	struct drm_device *dev = encoder->base.dev;
880
	struct drm_i915_private *dev_priv = dev->dev_private;
881
	struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&encoder->base);
882
	enum intel_display_power_domain power_domain;
883 884
	u32 tmp;

885
	power_domain = intel_display_port_power_domain(encoder);
886
	if (!intel_display_power_is_enabled(dev_priv, power_domain))
887 888
		return false;

889
	tmp = I915_READ(intel_hdmi->hdmi_reg);
890 891 892 893 894 895

	if (!(tmp & SDVO_ENABLE))
		return false;

	if (HAS_PCH_CPT(dev))
		*pipe = PORT_TO_PIPE_CPT(tmp);
896 897
	else if (IS_CHERRYVIEW(dev))
		*pipe = SDVO_PORT_TO_PIPE_CHV(tmp);
898 899 900 901 902 903
	else
		*pipe = PORT_TO_PIPE(tmp);

	return true;
}

904
static void intel_hdmi_get_config(struct intel_encoder *encoder,
905
				  struct intel_crtc_state *pipe_config)
906 907
{
	struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&encoder->base);
908 909
	struct drm_device *dev = encoder->base.dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
910
	u32 tmp, flags = 0;
911
	int dotclock;
912 913 914 915 916 917 918 919 920 921 922 923 924

	tmp = I915_READ(intel_hdmi->hdmi_reg);

	if (tmp & SDVO_HSYNC_ACTIVE_HIGH)
		flags |= DRM_MODE_FLAG_PHSYNC;
	else
		flags |= DRM_MODE_FLAG_NHSYNC;

	if (tmp & SDVO_VSYNC_ACTIVE_HIGH)
		flags |= DRM_MODE_FLAG_PVSYNC;
	else
		flags |= DRM_MODE_FLAG_NVSYNC;

925 926 927
	if (tmp & HDMI_MODE_SELECT_HDMI)
		pipe_config->has_hdmi_sink = true;

928 929 930
	if (intel_hdmi->infoframe_enabled(&encoder->base))
		pipe_config->has_infoframe = true;

931
	if (tmp & SDVO_AUDIO_ENABLE)
932 933
		pipe_config->has_audio = true;

934 935 936 937
	if (!HAS_PCH_SPLIT(dev) &&
	    tmp & HDMI_COLOR_RANGE_16_235)
		pipe_config->limited_color_range = true;

938
	pipe_config->base.adjusted_mode.flags |= flags;
939 940 941 942 943 944

	if ((tmp & SDVO_COLOR_FORMAT_MASK) == HDMI_COLOR_FORMAT_12bpc)
		dotclock = pipe_config->port_clock * 2 / 3;
	else
		dotclock = pipe_config->port_clock;

945 946 947
	if (pipe_config->pixel_multiplier)
		dotclock /= pipe_config->pixel_multiplier;

948 949 950
	if (HAS_PCH_SPLIT(dev_priv->dev))
		ironlake_check_encoder_dotclock(pipe_config, dotclock);

951
	pipe_config->base.adjusted_mode.crtc_clock = dotclock;
952 953
}

954 955 956 957 958 959 960 961 962 963
static void intel_enable_hdmi_audio(struct intel_encoder *encoder)
{
	struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);

	WARN_ON(!crtc->config->has_hdmi_sink);
	DRM_DEBUG_DRIVER("Enabling HDMI audio on pipe %c\n",
			 pipe_name(crtc->pipe));
	intel_audio_codec_enable(encoder);
}

964
static void g4x_enable_hdmi(struct intel_encoder *encoder)
965
{
966
	struct drm_device *dev = encoder->base.dev;
967
	struct drm_i915_private *dev_priv = dev->dev_private;
968
	struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
969
	struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&encoder->base);
970 971
	u32 temp;

972
	temp = I915_READ(intel_hdmi->hdmi_reg);
973

974 975 976
	temp |= SDVO_ENABLE;
	if (crtc->config->has_audio)
		temp |= SDVO_AUDIO_ENABLE;
977

978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993
	I915_WRITE(intel_hdmi->hdmi_reg, temp);
	POSTING_READ(intel_hdmi->hdmi_reg);

	if (crtc->config->has_audio)
		intel_enable_hdmi_audio(encoder);
}

static void ibx_enable_hdmi(struct intel_encoder *encoder)
{
	struct drm_device *dev = encoder->base.dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
	struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&encoder->base);
	u32 temp;

	temp = I915_READ(intel_hdmi->hdmi_reg);
994

995 996 997
	temp |= SDVO_ENABLE;
	if (crtc->config->has_audio)
		temp |= SDVO_AUDIO_ENABLE;
998

999 1000 1001 1002 1003 1004
	/*
	 * HW workaround, need to write this twice for issue
	 * that may result in first write getting masked.
	 */
	I915_WRITE(intel_hdmi->hdmi_reg, temp);
	POSTING_READ(intel_hdmi->hdmi_reg);
1005 1006
	I915_WRITE(intel_hdmi->hdmi_reg, temp);
	POSTING_READ(intel_hdmi->hdmi_reg);
1007

1008 1009 1010 1011 1012 1013
	/*
	 * HW workaround, need to toggle enable bit off and on
	 * for 12bpc with pixel repeat.
	 *
	 * FIXME: BSpec says this should be done at the end of
	 * of the modeset sequence, so not sure if this isn't too soon.
1014
	 */
1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025
	if (crtc->config->pipe_bpp > 24 &&
	    crtc->config->pixel_multiplier > 1) {
		I915_WRITE(intel_hdmi->hdmi_reg, temp & ~SDVO_ENABLE);
		POSTING_READ(intel_hdmi->hdmi_reg);

		/*
		 * HW workaround, need to write this twice for issue
		 * that may result in first write getting masked.
		 */
		I915_WRITE(intel_hdmi->hdmi_reg, temp);
		POSTING_READ(intel_hdmi->hdmi_reg);
1026 1027
		I915_WRITE(intel_hdmi->hdmi_reg, temp);
		POSTING_READ(intel_hdmi->hdmi_reg);
1028
	}
1029

1030
	if (crtc->config->has_audio)
1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065
		intel_enable_hdmi_audio(encoder);
}

static void cpt_enable_hdmi(struct intel_encoder *encoder)
{
	struct drm_device *dev = encoder->base.dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
	struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&encoder->base);
	enum pipe pipe = crtc->pipe;
	u32 temp;

	temp = I915_READ(intel_hdmi->hdmi_reg);

	temp |= SDVO_ENABLE;
	if (crtc->config->has_audio)
		temp |= SDVO_AUDIO_ENABLE;

	/*
	 * WaEnableHDMI8bpcBefore12bpc:snb,ivb
	 *
	 * The procedure for 12bpc is as follows:
	 * 1. disable HDMI clock gating
	 * 2. enable HDMI with 8bpc
	 * 3. enable HDMI with 12bpc
	 * 4. enable HDMI clock gating
	 */

	if (crtc->config->pipe_bpp > 24) {
		I915_WRITE(TRANS_CHICKEN1(pipe),
			   I915_READ(TRANS_CHICKEN1(pipe)) |
			   TRANS_CHICKEN1_HDMIUNIT_GC_DISABLE);

		temp &= ~SDVO_COLOR_FORMAT_MASK;
		temp |= SDVO_COLOR_FORMAT_8bpc;
1066
	}
1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084

	I915_WRITE(intel_hdmi->hdmi_reg, temp);
	POSTING_READ(intel_hdmi->hdmi_reg);

	if (crtc->config->pipe_bpp > 24) {
		temp &= ~SDVO_COLOR_FORMAT_MASK;
		temp |= HDMI_COLOR_FORMAT_12bpc;

		I915_WRITE(intel_hdmi->hdmi_reg, temp);
		POSTING_READ(intel_hdmi->hdmi_reg);

		I915_WRITE(TRANS_CHICKEN1(pipe),
			   I915_READ(TRANS_CHICKEN1(pipe)) &
			   ~TRANS_CHICKEN1_HDMIUNIT_GC_DISABLE);
	}

	if (crtc->config->has_audio)
		intel_enable_hdmi_audio(encoder);
1085
}
1086

1087 1088
static void vlv_enable_hdmi(struct intel_encoder *encoder)
{
1089 1090 1091 1092 1093 1094 1095
}

static void intel_disable_hdmi(struct intel_encoder *encoder)
{
	struct drm_device *dev = encoder->base.dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&encoder->base);
1096
	struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
1097 1098
	u32 temp;

1099
	temp = I915_READ(intel_hdmi->hdmi_reg);
1100

1101
	temp &= ~(SDVO_ENABLE | SDVO_AUDIO_ENABLE);
1102 1103
	I915_WRITE(intel_hdmi->hdmi_reg, temp);
	POSTING_READ(intel_hdmi->hdmi_reg);
1104 1105 1106 1107 1108 1109 1110

	/*
	 * HW workaround for IBX, we need to move the port
	 * to transcoder A after disabling it to allow the
	 * matching DP port to be enabled on transcoder A.
	 */
	if (HAS_PCH_IBX(dev) && crtc->pipe == PIPE_B) {
1111 1112 1113 1114 1115 1116 1117
		/*
		 * We get CPU/PCH FIFO underruns on the other pipe when
		 * doing the workaround. Sweep them under the rug.
		 */
		intel_set_cpu_fifo_underrun_reporting(dev_priv, PIPE_A, false);
		intel_set_pch_fifo_underrun_reporting(dev_priv, PIPE_A, false);

1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131
		temp &= ~SDVO_PIPE_B_SELECT;
		temp |= SDVO_ENABLE;
		/*
		 * HW workaround, need to write this twice for issue
		 * that may result in first write getting masked.
		 */
		I915_WRITE(intel_hdmi->hdmi_reg, temp);
		POSTING_READ(intel_hdmi->hdmi_reg);
		I915_WRITE(intel_hdmi->hdmi_reg, temp);
		POSTING_READ(intel_hdmi->hdmi_reg);

		temp &= ~SDVO_ENABLE;
		I915_WRITE(intel_hdmi->hdmi_reg, temp);
		POSTING_READ(intel_hdmi->hdmi_reg);
1132 1133 1134 1135

		intel_wait_for_vblank_if_active(dev_priv->dev, PIPE_A);
		intel_set_cpu_fifo_underrun_reporting(dev_priv, PIPE_A, true);
		intel_set_pch_fifo_underrun_reporting(dev_priv, PIPE_A, true);
1136
	}
1137

1138
	intel_hdmi->set_infoframes(&encoder->base, false, NULL);
1139 1140
}

1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163
static void g4x_disable_hdmi(struct intel_encoder *encoder)
{
	struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);

	if (crtc->config->has_audio)
		intel_audio_codec_disable(encoder);

	intel_disable_hdmi(encoder);
}

static void pch_disable_hdmi(struct intel_encoder *encoder)
{
	struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);

	if (crtc->config->has_audio)
		intel_audio_codec_disable(encoder);
}

static void pch_post_disable_hdmi(struct intel_encoder *encoder)
{
	intel_disable_hdmi(encoder);
}

1164
static int hdmi_port_clock_limit(struct intel_hdmi *hdmi, bool respect_dvi_limit)
1165 1166 1167
{
	struct drm_device *dev = intel_hdmi_to_dev(hdmi);

1168
	if ((respect_dvi_limit && !hdmi->has_hdmi_sink) || IS_G4X(dev))
1169
		return 165000;
1170
	else if (IS_HASWELL(dev) || INTEL_INFO(dev)->gen >= 8)
1171 1172 1173 1174 1175
		return 300000;
	else
		return 225000;
}

1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186
static enum drm_mode_status
hdmi_port_clock_valid(struct intel_hdmi *hdmi,
		      int clock, bool respect_dvi_limit)
{
	struct drm_device *dev = intel_hdmi_to_dev(hdmi);

	if (clock < 25000)
		return MODE_CLOCK_LOW;
	if (clock > hdmi_port_clock_limit(hdmi, respect_dvi_limit))
		return MODE_CLOCK_HIGH;

1187 1188 1189 1190 1191 1192
	/* BXT DPLL can't generate 223-240 MHz */
	if (IS_BROXTON(dev) && clock > 223333 && clock < 240000)
		return MODE_CLOCK_RANGE;

	/* CHV DPLL can't generate 216-240 MHz */
	if (IS_CHERRYVIEW(dev) && clock > 216000 && clock < 240000)
1193 1194 1195 1196 1197
		return MODE_CLOCK_RANGE;

	return MODE_OK;
}

1198 1199 1200
static enum drm_mode_status
intel_hdmi_mode_valid(struct drm_connector *connector,
		      struct drm_display_mode *mode)
1201
{
1202 1203 1204 1205 1206 1207 1208
	struct intel_hdmi *hdmi = intel_attached_hdmi(connector);
	struct drm_device *dev = intel_hdmi_to_dev(hdmi);
	enum drm_mode_status status;
	int clock;

	if (mode->flags & DRM_MODE_FLAG_DBLSCAN)
		return MODE_NO_DBLESCAN;
1209

1210
	clock = mode->clock;
1211 1212 1213
	if (mode->flags & DRM_MODE_FLAG_DBLCLK)
		clock *= 2;

1214 1215
	/* check if we can do 8bpc */
	status = hdmi_port_clock_valid(hdmi, clock, true);
1216

1217 1218 1219
	/* if we can't do 8bpc we may still be able to do 12bpc */
	if (!HAS_GMCH_DISPLAY(dev) && status != MODE_OK)
		status = hdmi_port_clock_valid(hdmi, clock * 3 / 2, true);
1220

1221
	return status;
1222 1223
}

1224
static bool hdmi_12bpc_possible(struct intel_crtc_state *crtc_state)
1225
{
1226 1227
	struct drm_device *dev = crtc_state->base.crtc->dev;
	struct drm_atomic_state *state;
1228
	struct intel_encoder *encoder;
1229
	struct drm_connector *connector;
1230
	struct drm_connector_state *connector_state;
1231
	int count = 0, count_hdmi = 0;
1232
	int i;
1233

1234
	if (HAS_GMCH_DISPLAY(dev))
1235 1236
		return false;

1237 1238
	state = crtc_state->base.state;

1239
	for_each_connector_in_state(state, connector, connector_state, i) {
1240 1241 1242 1243 1244
		if (connector_state->crtc != crtc_state->base.crtc)
			continue;

		encoder = to_intel_encoder(connector_state->best_encoder);

1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255
		count_hdmi += encoder->type == INTEL_OUTPUT_HDMI;
		count++;
	}

	/*
	 * HDMI 12bpc affects the clocks, so it's only possible
	 * when not cloning with other encoder types.
	 */
	return count_hdmi > 0 && count_hdmi == count;
}

1256
bool intel_hdmi_compute_config(struct intel_encoder *encoder,
1257
			       struct intel_crtc_state *pipe_config)
1258
{
1259 1260
	struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&encoder->base);
	struct drm_device *dev = encoder->base.dev;
1261
	struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
1262 1263
	int clock_8bpc = pipe_config->base.adjusted_mode.crtc_clock;
	int clock_12bpc = clock_8bpc * 3 / 2;
1264
	int desired_bpp;
1265

1266 1267
	pipe_config->has_hdmi_sink = intel_hdmi->has_hdmi_sink;

1268 1269 1270
	if (pipe_config->has_hdmi_sink)
		pipe_config->has_infoframe = true;

1271 1272
	if (intel_hdmi->color_range_auto) {
		/* See CEA-861-E - 5.1 Default Encoding Parameters */
1273 1274 1275 1276 1277 1278
		pipe_config->limited_color_range =
			pipe_config->has_hdmi_sink &&
			drm_match_cea_mode(adjusted_mode) > 1;
	} else {
		pipe_config->limited_color_range =
			intel_hdmi->limited_color_range;
1279 1280
	}

1281 1282
	if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK) {
		pipe_config->pixel_multiplier = 2;
1283
		clock_8bpc *= 2;
1284
		clock_12bpc *= 2;
1285 1286
	}

1287 1288 1289
	if (HAS_PCH_SPLIT(dev) && !HAS_DDI(dev))
		pipe_config->has_pch_encoder = true;

1290 1291 1292
	if (pipe_config->has_hdmi_sink && intel_hdmi->has_audio)
		pipe_config->has_audio = true;

1293 1294 1295
	/*
	 * HDMI is either 12 or 8, so if the display lets 10bpc sneak
	 * through, clamp it down. Note that g4x/vlv don't support 12bpc hdmi
1296 1297
	 * outputs. We also need to check that the higher clock still fits
	 * within limits.
1298
	 */
1299
	if (pipe_config->pipe_bpp > 8*3 && pipe_config->has_hdmi_sink &&
1300
	    hdmi_port_clock_valid(intel_hdmi, clock_12bpc, false) == MODE_OK &&
1301
	    hdmi_12bpc_possible(pipe_config)) {
1302 1303
		DRM_DEBUG_KMS("picking bpc to 12 for HDMI output\n");
		desired_bpp = 12*3;
1304 1305

		/* Need to adjust the port link by 1.5x for 12bpc. */
1306
		pipe_config->port_clock = clock_12bpc;
1307
	} else {
1308 1309
		DRM_DEBUG_KMS("picking bpc to 8 for HDMI output\n");
		desired_bpp = 8*3;
1310 1311

		pipe_config->port_clock = clock_8bpc;
1312 1313 1314 1315 1316
	}

	if (!pipe_config->bw_constrained) {
		DRM_DEBUG_KMS("forcing pipe bpc to %i for HDMI\n", desired_bpp);
		pipe_config->pipe_bpp = desired_bpp;
1317 1318
	}

1319 1320 1321
	if (hdmi_port_clock_valid(intel_hdmi, pipe_config->port_clock,
				  false) != MODE_OK) {
		DRM_DEBUG_KMS("unsupported HDMI clock, rejecting mode\n");
1322 1323 1324
		return false;
	}

1325 1326 1327
	/* Set user selected PAR to incoming mode's member */
	adjusted_mode->picture_aspect_ratio = intel_hdmi->aspect_ratio;

1328 1329 1330
	return true;
}

1331 1332
static void
intel_hdmi_unset_edid(struct drm_connector *connector)
1333
{
1334
	struct intel_hdmi *intel_hdmi = intel_attached_hdmi(connector);
1335

1336 1337 1338 1339 1340 1341 1342 1343 1344
	intel_hdmi->has_hdmi_sink = false;
	intel_hdmi->has_audio = false;
	intel_hdmi->rgb_quant_range_selectable = false;

	kfree(to_intel_connector(connector)->detect_edid);
	to_intel_connector(connector)->detect_edid = NULL;
}

static bool
1345
intel_hdmi_set_edid(struct drm_connector *connector, bool force)
1346 1347 1348 1349 1350 1351
{
	struct drm_i915_private *dev_priv = to_i915(connector->dev);
	struct intel_hdmi *intel_hdmi = intel_attached_hdmi(connector);
	struct intel_encoder *intel_encoder =
		&hdmi_to_dig_port(intel_hdmi)->base;
	enum intel_display_power_domain power_domain;
1352
	struct edid *edid = NULL;
1353
	bool connected = false;
1354

1355 1356 1357
	power_domain = intel_display_port_power_domain(intel_encoder);
	intel_display_power_get(dev_priv, power_domain);

1358 1359 1360 1361
	if (force)
		edid = drm_get_edid(connector,
				    intel_gmbus_get_adapter(dev_priv,
				    intel_hdmi->ddc_bus));
1362

1363
	intel_display_power_put(dev_priv, power_domain);
1364

1365 1366 1367 1368 1369 1370
	to_intel_connector(connector)->detect_edid = edid;
	if (edid && edid->input & DRM_EDID_INPUT_DIGITAL) {
		intel_hdmi->rgb_quant_range_selectable =
			drm_rgb_quant_range_selectable(edid);

		intel_hdmi->has_audio = drm_detect_monitor_audio(edid);
1371 1372
		if (intel_hdmi->force_audio != HDMI_AUDIO_AUTO)
			intel_hdmi->has_audio =
1373 1374 1375 1376 1377 1378 1379
				intel_hdmi->force_audio == HDMI_AUDIO_ON;

		if (intel_hdmi->force_audio != HDMI_AUDIO_OFF_DVI)
			intel_hdmi->has_hdmi_sink =
				drm_detect_hdmi_monitor(edid);

		connected = true;
1380 1381
	}

1382 1383 1384
	return connected;
}

1385 1386
static enum drm_connector_status
intel_hdmi_detect(struct drm_connector *connector, bool force)
1387
{
1388 1389 1390
	enum drm_connector_status status;
	struct intel_hdmi *intel_hdmi = intel_attached_hdmi(connector);
	struct drm_i915_private *dev_priv = to_i915(connector->dev);
1391 1392
	bool live_status = false;
	unsigned int retry = 3;
1393

1394 1395 1396
	DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
		      connector->base.id, connector->name);

1397 1398 1399 1400 1401 1402 1403 1404 1405
	while (!live_status && --retry) {
		live_status = intel_digital_port_connected(dev_priv,
				hdmi_to_dig_port(intel_hdmi));
		mdelay(10);
	}

	if (!live_status)
		DRM_DEBUG_KMS("Live status not up!");

1406
	intel_hdmi_unset_edid(connector);
1407

1408
	if (intel_hdmi_set_edid(connector, live_status)) {
1409 1410 1411 1412
		struct intel_hdmi *intel_hdmi = intel_attached_hdmi(connector);

		hdmi_to_dig_port(intel_hdmi)->base.type = INTEL_OUTPUT_HDMI;
		status = connector_status_connected;
1413
	} else
1414
		status = connector_status_disconnected;
1415

1416
	return status;
1417 1418
}

1419 1420
static void
intel_hdmi_force(struct drm_connector *connector)
1421
{
1422
	struct intel_hdmi *intel_hdmi = intel_attached_hdmi(connector);
1423

1424 1425
	DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
		      connector->base.id, connector->name);
1426

1427
	intel_hdmi_unset_edid(connector);
1428

1429 1430
	if (connector->status != connector_status_connected)
		return;
1431

1432
	intel_hdmi_set_edid(connector, true);
1433 1434
	hdmi_to_dig_port(intel_hdmi)->base.type = INTEL_OUTPUT_HDMI;
}
1435

1436 1437 1438 1439 1440 1441 1442
static int intel_hdmi_get_modes(struct drm_connector *connector)
{
	struct edid *edid;

	edid = to_intel_connector(connector)->detect_edid;
	if (edid == NULL)
		return 0;
1443

1444
	return intel_connector_update_modes(connector, edid);
1445 1446
}

1447 1448 1449 1450
static bool
intel_hdmi_detect_audio(struct drm_connector *connector)
{
	bool has_audio = false;
1451
	struct edid *edid;
1452

1453 1454 1455
	edid = to_intel_connector(connector)->detect_edid;
	if (edid && edid->input & DRM_EDID_INPUT_DIGITAL)
		has_audio = drm_detect_monitor_audio(edid);
1456

1457 1458 1459
	return has_audio;
}

1460 1461
static int
intel_hdmi_set_property(struct drm_connector *connector,
1462 1463
			struct drm_property *property,
			uint64_t val)
1464 1465
{
	struct intel_hdmi *intel_hdmi = intel_attached_hdmi(connector);
1466 1467
	struct intel_digital_port *intel_dig_port =
		hdmi_to_dig_port(intel_hdmi);
1468
	struct drm_i915_private *dev_priv = connector->dev->dev_private;
1469 1470
	int ret;

1471
	ret = drm_object_property_set_value(&connector->base, property, val);
1472 1473 1474
	if (ret)
		return ret;

1475
	if (property == dev_priv->force_audio_property) {
1476
		enum hdmi_force_audio i = val;
1477 1478 1479
		bool has_audio;

		if (i == intel_hdmi->force_audio)
1480 1481
			return 0;

1482
		intel_hdmi->force_audio = i;
1483

1484
		if (i == HDMI_AUDIO_AUTO)
1485 1486
			has_audio = intel_hdmi_detect_audio(connector);
		else
1487
			has_audio = (i == HDMI_AUDIO_ON);
1488

1489 1490
		if (i == HDMI_AUDIO_OFF_DVI)
			intel_hdmi->has_hdmi_sink = 0;
1491

1492
		intel_hdmi->has_audio = has_audio;
1493 1494 1495
		goto done;
	}

1496
	if (property == dev_priv->broadcast_rgb_property) {
1497
		bool old_auto = intel_hdmi->color_range_auto;
1498
		bool old_range = intel_hdmi->limited_color_range;
1499

1500 1501 1502 1503 1504 1505
		switch (val) {
		case INTEL_BROADCAST_RGB_AUTO:
			intel_hdmi->color_range_auto = true;
			break;
		case INTEL_BROADCAST_RGB_FULL:
			intel_hdmi->color_range_auto = false;
1506
			intel_hdmi->limited_color_range = false;
1507 1508 1509
			break;
		case INTEL_BROADCAST_RGB_LIMITED:
			intel_hdmi->color_range_auto = false;
1510
			intel_hdmi->limited_color_range = true;
1511 1512 1513 1514
			break;
		default:
			return -EINVAL;
		}
1515 1516

		if (old_auto == intel_hdmi->color_range_auto &&
1517
		    old_range == intel_hdmi->limited_color_range)
1518 1519
			return 0;

1520 1521 1522
		goto done;
	}

1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539
	if (property == connector->dev->mode_config.aspect_ratio_property) {
		switch (val) {
		case DRM_MODE_PICTURE_ASPECT_NONE:
			intel_hdmi->aspect_ratio = HDMI_PICTURE_ASPECT_NONE;
			break;
		case DRM_MODE_PICTURE_ASPECT_4_3:
			intel_hdmi->aspect_ratio = HDMI_PICTURE_ASPECT_4_3;
			break;
		case DRM_MODE_PICTURE_ASPECT_16_9:
			intel_hdmi->aspect_ratio = HDMI_PICTURE_ASPECT_16_9;
			break;
		default:
			return -EINVAL;
		}
		goto done;
	}

1540 1541 1542
	return -EINVAL;

done:
1543 1544
	if (intel_dig_port->base.base.crtc)
		intel_crtc_restore_mode(intel_dig_port->base.base.crtc);
1545 1546 1547 1548

	return 0;
}

1549 1550 1551 1552
static void intel_hdmi_pre_enable(struct intel_encoder *encoder)
{
	struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&encoder->base);
	struct intel_crtc *intel_crtc = to_intel_crtc(encoder->base.crtc);
1553
	const struct drm_display_mode *adjusted_mode = &intel_crtc->config->base.adjusted_mode;
1554

1555 1556
	intel_hdmi_prepare(encoder);

1557
	intel_hdmi->set_infoframes(&encoder->base,
1558
				   intel_crtc->config->has_hdmi_sink,
1559
				   adjusted_mode);
1560 1561
}

1562
static void vlv_hdmi_pre_enable(struct intel_encoder *encoder)
1563 1564
{
	struct intel_digital_port *dport = enc_to_dig_port(&encoder->base);
1565
	struct intel_hdmi *intel_hdmi = &dport->hdmi;
1566 1567 1568 1569
	struct drm_device *dev = encoder->base.dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct intel_crtc *intel_crtc =
		to_intel_crtc(encoder->base.crtc);
1570
	const struct drm_display_mode *adjusted_mode = &intel_crtc->config->base.adjusted_mode;
1571
	enum dpio_channel port = vlv_dport_to_channel(dport);
1572 1573 1574 1575
	int pipe = intel_crtc->pipe;
	u32 val;

	/* Enable clock channels for this port */
V
Ville Syrjälä 已提交
1576
	mutex_lock(&dev_priv->sb_lock);
1577
	val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW8(port));
1578 1579 1580 1581 1582 1583
	val = 0;
	if (pipe)
		val |= (1<<21);
	else
		val &= ~(1<<21);
	val |= 0x001000c4;
1584
	vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW8(port), val);
1585 1586

	/* HDMI 1.0V-2dB */
1587 1588 1589 1590 1591 1592 1593 1594
	vlv_dpio_write(dev_priv, pipe, VLV_TX_DW5(port), 0);
	vlv_dpio_write(dev_priv, pipe, VLV_TX_DW4(port), 0x2b245f5f);
	vlv_dpio_write(dev_priv, pipe, VLV_TX_DW2(port), 0x5578b83a);
	vlv_dpio_write(dev_priv, pipe, VLV_TX_DW3(port), 0x0c782040);
	vlv_dpio_write(dev_priv, pipe, VLV_TX3_DW4(port), 0x2b247878);
	vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW11(port), 0x00030000);
	vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW9(port), 0x00002000);
	vlv_dpio_write(dev_priv, pipe, VLV_TX_DW5(port), DPIO_TX_OCALINIT_EN);
1595 1596

	/* Program lane clock */
1597 1598
	vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW14(port), 0x00760018);
	vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW23(port), 0x00400888);
V
Ville Syrjälä 已提交
1599
	mutex_unlock(&dev_priv->sb_lock);
1600

1601
	intel_hdmi->set_infoframes(&encoder->base,
1602
				   intel_crtc->config->has_hdmi_sink,
1603
				   adjusted_mode);
1604

1605
	g4x_enable_hdmi(encoder);
1606

1607
	vlv_wait_port_ready(dev_priv, dport, 0x0);
1608 1609
}

1610
static void vlv_hdmi_pre_pll_enable(struct intel_encoder *encoder)
1611 1612 1613 1614
{
	struct intel_digital_port *dport = enc_to_dig_port(&encoder->base);
	struct drm_device *dev = encoder->base.dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
1615 1616
	struct intel_crtc *intel_crtc =
		to_intel_crtc(encoder->base.crtc);
1617
	enum dpio_channel port = vlv_dport_to_channel(dport);
1618
	int pipe = intel_crtc->pipe;
1619

1620 1621
	intel_hdmi_prepare(encoder);

1622
	/* Program Tx lane resets to default */
V
Ville Syrjälä 已提交
1623
	mutex_lock(&dev_priv->sb_lock);
1624
	vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW0(port),
1625 1626
			 DPIO_PCS_TX_LANE2_RESET |
			 DPIO_PCS_TX_LANE1_RESET);
1627
	vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW1(port),
1628 1629 1630 1631 1632 1633
			 DPIO_PCS_CLK_CRI_RXEB_EIOS_EN |
			 DPIO_PCS_CLK_CRI_RXDIGFILTSG_EN |
			 (1<<DPIO_PCS_CLK_DATAWIDTH_SHIFT) |
			 DPIO_PCS_CLK_SOFT_RESET);

	/* Fix up inter-pair skew failure */
1634 1635 1636 1637 1638 1639
	vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW12(port), 0x00750f00);
	vlv_dpio_write(dev_priv, pipe, VLV_TX_DW11(port), 0x00001500);
	vlv_dpio_write(dev_priv, pipe, VLV_TX_DW14(port), 0x40400000);

	vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW9(port), 0x00002000);
	vlv_dpio_write(dev_priv, pipe, VLV_TX_DW5(port), DPIO_TX_OCALINIT_EN);
V
Ville Syrjälä 已提交
1640
	mutex_unlock(&dev_priv->sb_lock);
1641 1642
}

1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686
static void chv_data_lane_soft_reset(struct intel_encoder *encoder,
				     bool reset)
{
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
	enum dpio_channel ch = vlv_dport_to_channel(enc_to_dig_port(&encoder->base));
	struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
	enum pipe pipe = crtc->pipe;
	uint32_t val;

	val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW0(ch));
	if (reset)
		val &= ~(DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET);
	else
		val |= DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET;
	vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW0(ch), val);

	if (crtc->config->lane_count > 2) {
		val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW0(ch));
		if (reset)
			val &= ~(DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET);
		else
			val |= DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET;
		vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW0(ch), val);
	}

	val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW1(ch));
	val |= CHV_PCS_REQ_SOFTRESET_EN;
	if (reset)
		val &= ~DPIO_PCS_CLK_SOFT_RESET;
	else
		val |= DPIO_PCS_CLK_SOFT_RESET;
	vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW1(ch), val);

	if (crtc->config->lane_count > 2) {
		val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW1(ch));
		val |= CHV_PCS_REQ_SOFTRESET_EN;
		if (reset)
			val &= ~DPIO_PCS_CLK_SOFT_RESET;
		else
			val |= DPIO_PCS_CLK_SOFT_RESET;
		vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW1(ch), val);
	}
}

1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697
static void chv_hdmi_pre_pll_enable(struct intel_encoder *encoder)
{
	struct intel_digital_port *dport = enc_to_dig_port(&encoder->base);
	struct drm_device *dev = encoder->base.dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct intel_crtc *intel_crtc =
		to_intel_crtc(encoder->base.crtc);
	enum dpio_channel ch = vlv_dport_to_channel(dport);
	enum pipe pipe = intel_crtc->pipe;
	u32 val;

1698 1699
	intel_hdmi_prepare(encoder);

1700 1701 1702 1703 1704 1705 1706 1707
	/*
	 * Must trick the second common lane into life.
	 * Otherwise we can't even access the PLL.
	 */
	if (ch == DPIO_CH0 && pipe == PIPE_B)
		dport->release_cl2_override =
			!chv_phy_powergate_ch(dev_priv, DPIO_PHY0, DPIO_CH1, true);

1708 1709
	chv_phy_powergate_lanes(encoder, true, 0x0);

V
Ville Syrjälä 已提交
1710
	mutex_lock(&dev_priv->sb_lock);
1711

1712 1713 1714
	/* Assert data lane reset */
	chv_data_lane_soft_reset(encoder, true);

1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733
	/* program left/right clock distribution */
	if (pipe != PIPE_B) {
		val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW5_CH0);
		val &= ~(CHV_BUFLEFTENA1_MASK | CHV_BUFRIGHTENA1_MASK);
		if (ch == DPIO_CH0)
			val |= CHV_BUFLEFTENA1_FORCE;
		if (ch == DPIO_CH1)
			val |= CHV_BUFRIGHTENA1_FORCE;
		vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW5_CH0, val);
	} else {
		val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW1_CH1);
		val &= ~(CHV_BUFLEFTENA2_MASK | CHV_BUFRIGHTENA2_MASK);
		if (ch == DPIO_CH0)
			val |= CHV_BUFLEFTENA2_FORCE;
		if (ch == DPIO_CH1)
			val |= CHV_BUFRIGHTENA2_FORCE;
		vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW1_CH1, val);
	}

1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762
	/* program clock channel usage */
	val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW8(ch));
	val |= CHV_PCS_USEDCLKCHANNEL_OVRRIDE;
	if (pipe != PIPE_B)
		val &= ~CHV_PCS_USEDCLKCHANNEL;
	else
		val |= CHV_PCS_USEDCLKCHANNEL;
	vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW8(ch), val);

	val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW8(ch));
	val |= CHV_PCS_USEDCLKCHANNEL_OVRRIDE;
	if (pipe != PIPE_B)
		val &= ~CHV_PCS_USEDCLKCHANNEL;
	else
		val |= CHV_PCS_USEDCLKCHANNEL;
	vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW8(ch), val);

	/*
	 * This a a bit weird since generally CL
	 * matches the pipe, but here we need to
	 * pick the CL based on the port.
	 */
	val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW19(ch));
	if (pipe != PIPE_B)
		val &= ~CHV_CMN_USEDCLKCHANNEL;
	else
		val |= CHV_CMN_USEDCLKCHANNEL;
	vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW19(ch), val);

V
Ville Syrjälä 已提交
1763
	mutex_unlock(&dev_priv->sb_lock);
1764 1765
}

1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785
static void chv_hdmi_post_pll_disable(struct intel_encoder *encoder)
{
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
	enum pipe pipe = to_intel_crtc(encoder->base.crtc)->pipe;
	u32 val;

	mutex_lock(&dev_priv->sb_lock);

	/* disable left/right clock distribution */
	if (pipe != PIPE_B) {
		val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW5_CH0);
		val &= ~(CHV_BUFLEFTENA1_MASK | CHV_BUFRIGHTENA1_MASK);
		vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW5_CH0, val);
	} else {
		val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW1_CH1);
		val &= ~(CHV_BUFLEFTENA2_MASK | CHV_BUFRIGHTENA2_MASK);
		vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW1_CH1, val);
	}

	mutex_unlock(&dev_priv->sb_lock);
1786

1787 1788 1789 1790 1791 1792 1793 1794 1795
	/*
	 * Leave the power down bit cleared for at least one
	 * lane so that chv_powergate_phy_ch() will power
	 * on something when the channel is otherwise unused.
	 * When the port is off and the override is removed
	 * the lanes power down anyway, so otherwise it doesn't
	 * really matter what the state of power down bits is
	 * after this.
	 */
1796
	chv_phy_powergate_lanes(encoder, false, 0x0);
1797 1798
}

1799
static void vlv_hdmi_post_disable(struct intel_encoder *encoder)
1800 1801 1802
{
	struct intel_digital_port *dport = enc_to_dig_port(&encoder->base);
	struct drm_i915_private *dev_priv = encoder->base.dev->dev_private;
1803 1804
	struct intel_crtc *intel_crtc =
		to_intel_crtc(encoder->base.crtc);
1805
	enum dpio_channel port = vlv_dport_to_channel(dport);
1806
	int pipe = intel_crtc->pipe;
1807 1808

	/* Reset lanes to avoid HDMI flicker (VLV w/a) */
V
Ville Syrjälä 已提交
1809
	mutex_lock(&dev_priv->sb_lock);
1810 1811
	vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW0(port), 0x00000000);
	vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW1(port), 0x00e00060);
V
Ville Syrjälä 已提交
1812
	mutex_unlock(&dev_priv->sb_lock);
1813 1814
}

1815 1816 1817 1818 1819
static void chv_hdmi_post_disable(struct intel_encoder *encoder)
{
	struct drm_device *dev = encoder->base.dev;
	struct drm_i915_private *dev_priv = dev->dev_private;

V
Ville Syrjälä 已提交
1820
	mutex_lock(&dev_priv->sb_lock);
1821

1822 1823
	/* Assert data lane reset */
	chv_data_lane_soft_reset(encoder, true);
1824

V
Ville Syrjälä 已提交
1825
	mutex_unlock(&dev_priv->sb_lock);
1826 1827
}

1828 1829 1830
static void chv_hdmi_pre_enable(struct intel_encoder *encoder)
{
	struct intel_digital_port *dport = enc_to_dig_port(&encoder->base);
1831
	struct intel_hdmi *intel_hdmi = &dport->hdmi;
1832 1833 1834 1835
	struct drm_device *dev = encoder->base.dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct intel_crtc *intel_crtc =
		to_intel_crtc(encoder->base.crtc);
1836
	const struct drm_display_mode *adjusted_mode = &intel_crtc->config->base.adjusted_mode;
1837 1838
	enum dpio_channel ch = vlv_dport_to_channel(dport);
	int pipe = intel_crtc->pipe;
1839
	int data, i, stagger;
1840 1841
	u32 val;

V
Ville Syrjälä 已提交
1842
	mutex_lock(&dev_priv->sb_lock);
1843

1844 1845 1846 1847 1848 1849 1850 1851 1852
	/* allow hardware to manage TX FIFO reset source */
	val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW11(ch));
	val &= ~DPIO_LANEDESKEW_STRAP_OVRD;
	vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW11(ch), val);

	val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW11(ch));
	val &= ~DPIO_LANEDESKEW_STRAP_OVRD;
	vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW11(ch), val);

1853
	/* Program Tx latency optimal setting */
1854 1855 1856 1857 1858 1859 1860 1861
	for (i = 0; i < 4; i++) {
		/* Set the upar bit */
		data = (i == 1) ? 0x0 : 0x1;
		vlv_dpio_write(dev_priv, pipe, CHV_TX_DW14(ch, i),
				data << DPIO_UPAR_SHIFT);
	}

	/* Data lane stagger programming */
1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893
	if (intel_crtc->config->port_clock > 270000)
		stagger = 0x18;
	else if (intel_crtc->config->port_clock > 135000)
		stagger = 0xd;
	else if (intel_crtc->config->port_clock > 67500)
		stagger = 0x7;
	else if (intel_crtc->config->port_clock > 33750)
		stagger = 0x4;
	else
		stagger = 0x2;

	val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW11(ch));
	val |= DPIO_TX2_STAGGER_MASK(0x1f);
	vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW11(ch), val);

	val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW11(ch));
	val |= DPIO_TX2_STAGGER_MASK(0x1f);
	vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW11(ch), val);

	vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW12(ch),
		       DPIO_LANESTAGGER_STRAP(stagger) |
		       DPIO_LANESTAGGER_STRAP_OVRD |
		       DPIO_TX1_STAGGER_MASK(0x1f) |
		       DPIO_TX1_STAGGER_MULT(6) |
		       DPIO_TX2_STAGGER_MULT(0));

	vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW12(ch),
		       DPIO_LANESTAGGER_STRAP(stagger) |
		       DPIO_LANESTAGGER_STRAP_OVRD |
		       DPIO_TX1_STAGGER_MASK(0x1f) |
		       DPIO_TX1_STAGGER_MULT(7) |
		       DPIO_TX2_STAGGER_MULT(5));
1894

1895 1896 1897
	/* Deassert data lane reset */
	chv_data_lane_soft_reset(encoder, false);

1898
	/* Clear calc init */
1899 1900
	val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW10(ch));
	val &= ~(DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3);
1901 1902
	val &= ~(DPIO_PCS_TX1DEEMP_MASK | DPIO_PCS_TX2DEEMP_MASK);
	val |= DPIO_PCS_TX1DEEMP_9P5 | DPIO_PCS_TX2DEEMP_9P5;
1903 1904 1905 1906
	vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW10(ch), val);

	val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW10(ch));
	val &= ~(DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3);
1907 1908
	val &= ~(DPIO_PCS_TX1DEEMP_MASK | DPIO_PCS_TX2DEEMP_MASK);
	val |= DPIO_PCS_TX1DEEMP_9P5 | DPIO_PCS_TX2DEEMP_9P5;
1909
	vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW10(ch), val);
1910

1911 1912 1913 1914 1915 1916 1917 1918 1919 1920
	val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW9(ch));
	val &= ~(DPIO_PCS_TX1MARGIN_MASK | DPIO_PCS_TX2MARGIN_MASK);
	val |= DPIO_PCS_TX1MARGIN_000 | DPIO_PCS_TX2MARGIN_000;
	vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW9(ch), val);

	val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW9(ch));
	val &= ~(DPIO_PCS_TX1MARGIN_MASK | DPIO_PCS_TX2MARGIN_MASK);
	val |= DPIO_PCS_TX1MARGIN_000 | DPIO_PCS_TX2MARGIN_000;
	vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW9(ch), val);

1921 1922
	/* FIXME: Program the support xxx V-dB */
	/* Use 800mV-0dB */
1923 1924 1925 1926 1927 1928
	for (i = 0; i < 4; i++) {
		val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW4(ch, i));
		val &= ~DPIO_SWING_DEEMPH9P5_MASK;
		val |= 128 << DPIO_SWING_DEEMPH9P5_SHIFT;
		vlv_dpio_write(dev_priv, pipe, CHV_TX_DW4(ch, i), val);
	}
1929

1930 1931
	for (i = 0; i < 4; i++) {
		val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW2(ch, i));
1932

1933 1934
		val &= ~DPIO_SWING_MARGIN000_MASK;
		val |= 102 << DPIO_SWING_MARGIN000_SHIFT;
1935 1936 1937 1938 1939 1940 1941 1942 1943

		/*
		 * Supposedly this value shouldn't matter when unique transition
		 * scale is disabled, but in fact it does matter. Let's just
		 * always program the same value and hope it's OK.
		 */
		val &= ~(0xff << DPIO_UNIQ_TRANS_SCALE_SHIFT);
		val |= 0x9a << DPIO_UNIQ_TRANS_SCALE_SHIFT;

1944 1945
		vlv_dpio_write(dev_priv, pipe, CHV_TX_DW2(ch, i), val);
	}
1946

1947 1948 1949 1950 1951 1952
	/*
	 * The document said it needs to set bit 27 for ch0 and bit 26
	 * for ch1. Might be a typo in the doc.
	 * For now, for this unique transition scale selection, set bit
	 * 27 for ch0 and ch1.
	 */
1953 1954 1955 1956 1957
	for (i = 0; i < 4; i++) {
		val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW3(ch, i));
		val &= ~DPIO_TX_UNIQ_TRANS_SCALE_EN;
		vlv_dpio_write(dev_priv, pipe, CHV_TX_DW3(ch, i), val);
	}
1958 1959

	/* Start swing calculation */
1960 1961 1962 1963 1964 1965 1966
	val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW10(ch));
	val |= DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3;
	vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW10(ch), val);

	val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW10(ch));
	val |= DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3;
	vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW10(ch), val);
1967

V
Ville Syrjälä 已提交
1968
	mutex_unlock(&dev_priv->sb_lock);
1969

1970
	intel_hdmi->set_infoframes(&encoder->base,
1971
				   intel_crtc->config->has_hdmi_sink,
1972 1973
				   adjusted_mode);

1974
	g4x_enable_hdmi(encoder);
1975

1976
	vlv_wait_port_ready(dev_priv, dport, 0x0);
1977 1978 1979 1980 1981 1982

	/* Second common lane will stay alive on its own now */
	if (dport->release_cl2_override) {
		chv_phy_powergate_ch(dev_priv, DPIO_PHY0, DPIO_CH1, false);
		dport->release_cl2_override = false;
	}
1983 1984
}

1985 1986
static void intel_hdmi_destroy(struct drm_connector *connector)
{
1987
	kfree(to_intel_connector(connector)->detect_edid);
1988
	drm_connector_cleanup(connector);
1989
	kfree(connector);
1990 1991 1992
}

static const struct drm_connector_funcs intel_hdmi_connector_funcs = {
1993
	.dpms = drm_atomic_helper_connector_dpms,
1994
	.detect = intel_hdmi_detect,
1995
	.force = intel_hdmi_force,
1996
	.fill_modes = drm_helper_probe_single_connector_modes,
1997
	.set_property = intel_hdmi_set_property,
1998
	.atomic_get_property = intel_connector_atomic_get_property,
1999
	.destroy = intel_hdmi_destroy,
2000
	.atomic_destroy_state = drm_atomic_helper_connector_destroy_state,
2001
	.atomic_duplicate_state = drm_atomic_helper_connector_duplicate_state,
2002 2003 2004 2005 2006
};

static const struct drm_connector_helper_funcs intel_hdmi_connector_helper_funcs = {
	.get_modes = intel_hdmi_get_modes,
	.mode_valid = intel_hdmi_mode_valid,
2007
	.best_encoder = intel_best_encoder,
2008 2009 2010
};

static const struct drm_encoder_funcs intel_hdmi_enc_funcs = {
C
Chris Wilson 已提交
2011
	.destroy = intel_encoder_destroy,
2012 2013
};

2014 2015 2016
static void
intel_hdmi_add_properties(struct intel_hdmi *intel_hdmi, struct drm_connector *connector)
{
2017
	intel_attach_force_audio_property(connector);
2018
	intel_attach_broadcast_rgb_property(connector);
2019
	intel_hdmi->color_range_auto = true;
2020 2021
	intel_attach_aspect_ratio_property(connector);
	intel_hdmi->aspect_ratio = HDMI_PICTURE_ASPECT_NONE;
2022 2023
}

P
Paulo Zanoni 已提交
2024 2025
void intel_hdmi_init_connector(struct intel_digital_port *intel_dig_port,
			       struct intel_connector *intel_connector)
2026
{
2027 2028 2029 2030
	struct drm_connector *connector = &intel_connector->base;
	struct intel_hdmi *intel_hdmi = &intel_dig_port->hdmi;
	struct intel_encoder *intel_encoder = &intel_dig_port->base;
	struct drm_device *dev = intel_encoder->base.dev;
2031
	struct drm_i915_private *dev_priv = dev->dev_private;
2032
	enum port port = intel_dig_port->port;
X
Xiong Zhang 已提交
2033
	uint8_t alternate_ddc_pin;
2034

2035
	drm_connector_init(dev, connector, &intel_hdmi_connector_funcs,
2036
			   DRM_MODE_CONNECTOR_HDMIA);
2037 2038
	drm_connector_helper_add(connector, &intel_hdmi_connector_helper_funcs);

2039
	connector->interlace_allowed = 1;
2040
	connector->doublescan_allowed = 0;
2041
	connector->stereo_allowed = 1;
2042

2043 2044
	switch (port) {
	case PORT_B:
J
Jani Nikula 已提交
2045 2046 2047 2048
		if (IS_BROXTON(dev_priv))
			intel_hdmi->ddc_bus = GMBUS_PIN_1_BXT;
		else
			intel_hdmi->ddc_bus = GMBUS_PIN_DPB;
2049 2050 2051 2052
		/*
		 * On BXT A0/A1, sw needs to activate DDIA HPD logic and
		 * interrupts to check the external panel connection.
		 */
2053
		if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1))
2054 2055 2056
			intel_encoder->hpd_pin = HPD_PORT_A;
		else
			intel_encoder->hpd_pin = HPD_PORT_B;
2057 2058
		break;
	case PORT_C:
J
Jani Nikula 已提交
2059 2060 2061 2062
		if (IS_BROXTON(dev_priv))
			intel_hdmi->ddc_bus = GMBUS_PIN_2_BXT;
		else
			intel_hdmi->ddc_bus = GMBUS_PIN_DPC;
2063
		intel_encoder->hpd_pin = HPD_PORT_C;
2064 2065
		break;
	case PORT_D:
J
Jani Nikula 已提交
2066 2067 2068
		if (WARN_ON(IS_BROXTON(dev_priv)))
			intel_hdmi->ddc_bus = GMBUS_PIN_DISABLED;
		else if (IS_CHERRYVIEW(dev_priv))
2069
			intel_hdmi->ddc_bus = GMBUS_PIN_DPD_CHV;
2070
		else
2071
			intel_hdmi->ddc_bus = GMBUS_PIN_DPD;
2072
		intel_encoder->hpd_pin = HPD_PORT_D;
2073
		break;
X
Xiong Zhang 已提交
2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093
	case PORT_E:
		/* On SKL PORT E doesn't have seperate GMBUS pin
		 *  We rely on VBT to set a proper alternate GMBUS pin. */
		alternate_ddc_pin =
			dev_priv->vbt.ddi_port_info[PORT_E].alternate_ddc_pin;
		switch (alternate_ddc_pin) {
		case DDC_PIN_B:
			intel_hdmi->ddc_bus = GMBUS_PIN_DPB;
			break;
		case DDC_PIN_C:
			intel_hdmi->ddc_bus = GMBUS_PIN_DPC;
			break;
		case DDC_PIN_D:
			intel_hdmi->ddc_bus = GMBUS_PIN_DPD;
			break;
		default:
			MISSING_CASE(alternate_ddc_pin);
		}
		intel_encoder->hpd_pin = HPD_PORT_E;
		break;
2094
	case PORT_A:
2095
		intel_encoder->hpd_pin = HPD_PORT_A;
2096 2097
		/* Internal port only for eDP. */
	default:
2098
		BUG();
2099
	}
2100

2101
	if (IS_VALLEYVIEW(dev)) {
2102
		intel_hdmi->write_infoframe = vlv_write_infoframe;
2103
		intel_hdmi->set_infoframes = vlv_set_infoframes;
2104
		intel_hdmi->infoframe_enabled = vlv_infoframe_enabled;
2105
	} else if (IS_G4X(dev)) {
2106 2107
		intel_hdmi->write_infoframe = g4x_write_infoframe;
		intel_hdmi->set_infoframes = g4x_set_infoframes;
2108
		intel_hdmi->infoframe_enabled = g4x_infoframe_enabled;
2109
	} else if (HAS_DDI(dev)) {
2110
		intel_hdmi->write_infoframe = hsw_write_infoframe;
2111
		intel_hdmi->set_infoframes = hsw_set_infoframes;
2112
		intel_hdmi->infoframe_enabled = hsw_infoframe_enabled;
2113 2114
	} else if (HAS_PCH_IBX(dev)) {
		intel_hdmi->write_infoframe = ibx_write_infoframe;
2115
		intel_hdmi->set_infoframes = ibx_set_infoframes;
2116
		intel_hdmi->infoframe_enabled = ibx_infoframe_enabled;
2117 2118
	} else {
		intel_hdmi->write_infoframe = cpt_write_infoframe;
2119
		intel_hdmi->set_infoframes = cpt_set_infoframes;
2120
		intel_hdmi->infoframe_enabled = cpt_infoframe_enabled;
2121
	}
2122

P
Paulo Zanoni 已提交
2123
	if (HAS_DDI(dev))
2124 2125 2126
		intel_connector->get_hw_state = intel_ddi_connector_get_hw_state;
	else
		intel_connector->get_hw_state = intel_connector_get_hw_state;
2127
	intel_connector->unregister = intel_connector_unregister;
2128 2129 2130 2131

	intel_hdmi_add_properties(intel_hdmi, connector);

	intel_connector_attach_encoder(intel_connector, intel_encoder);
2132
	drm_connector_register(connector);
2133
	intel_hdmi->attached_connector = intel_connector;
2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144

	/* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
	 * 0xd.  Failure to do so will result in spurious interrupts being
	 * generated on the port when a cable is not attached.
	 */
	if (IS_G4X(dev) && !IS_GM45(dev)) {
		u32 temp = I915_READ(PEG_BAND_GAP_DATA);
		I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd);
	}
}

2145
void intel_hdmi_init(struct drm_device *dev, int hdmi_reg, enum port port)
2146 2147 2148 2149 2150
{
	struct intel_digital_port *intel_dig_port;
	struct intel_encoder *intel_encoder;
	struct intel_connector *intel_connector;

2151
	intel_dig_port = kzalloc(sizeof(*intel_dig_port), GFP_KERNEL);
2152 2153 2154
	if (!intel_dig_port)
		return;

2155
	intel_connector = intel_connector_alloc();
2156 2157 2158 2159 2160 2161 2162 2163 2164
	if (!intel_connector) {
		kfree(intel_dig_port);
		return;
	}

	intel_encoder = &intel_dig_port->base;

	drm_encoder_init(dev, &intel_encoder->base, &intel_hdmi_enc_funcs,
			 DRM_MODE_ENCODER_TMDS);
P
Paulo Zanoni 已提交
2165

2166
	intel_encoder->compute_config = intel_hdmi_compute_config;
2167 2168 2169 2170 2171 2172
	if (HAS_PCH_SPLIT(dev)) {
		intel_encoder->disable = pch_disable_hdmi;
		intel_encoder->post_disable = pch_post_disable_hdmi;
	} else {
		intel_encoder->disable = g4x_disable_hdmi;
	}
P
Paulo Zanoni 已提交
2173
	intel_encoder->get_hw_state = intel_hdmi_get_hw_state;
2174
	intel_encoder->get_config = intel_hdmi_get_config;
2175
	if (IS_CHERRYVIEW(dev)) {
2176
		intel_encoder->pre_pll_enable = chv_hdmi_pre_pll_enable;
2177 2178
		intel_encoder->pre_enable = chv_hdmi_pre_enable;
		intel_encoder->enable = vlv_enable_hdmi;
2179
		intel_encoder->post_disable = chv_hdmi_post_disable;
2180
		intel_encoder->post_pll_disable = chv_hdmi_post_pll_disable;
2181
	} else if (IS_VALLEYVIEW(dev)) {
2182 2183
		intel_encoder->pre_pll_enable = vlv_hdmi_pre_pll_enable;
		intel_encoder->pre_enable = vlv_hdmi_pre_enable;
2184
		intel_encoder->enable = vlv_enable_hdmi;
2185
		intel_encoder->post_disable = vlv_hdmi_post_disable;
2186
	} else {
2187
		intel_encoder->pre_enable = intel_hdmi_pre_enable;
2188 2189
		if (HAS_PCH_CPT(dev))
			intel_encoder->enable = cpt_enable_hdmi;
2190 2191
		else if (HAS_PCH_IBX(dev))
			intel_encoder->enable = ibx_enable_hdmi;
2192
		else
2193
			intel_encoder->enable = g4x_enable_hdmi;
2194
	}
2195

2196
	intel_encoder->type = INTEL_OUTPUT_HDMI;
2197 2198 2199 2200 2201 2202 2203 2204
	if (IS_CHERRYVIEW(dev)) {
		if (port == PORT_D)
			intel_encoder->crtc_mask = 1 << 2;
		else
			intel_encoder->crtc_mask = (1 << 0) | (1 << 1);
	} else {
		intel_encoder->crtc_mask = (1 << 0) | (1 << 1) | (1 << 2);
	}
2205
	intel_encoder->cloneable = 1 << INTEL_OUTPUT_ANALOG;
2206 2207 2208 2209 2210 2211 2212
	/*
	 * BSpec is unclear about HDMI+HDMI cloning on g4x, but it seems
	 * to work on real hardware. And since g4x can send infoframes to
	 * only one port anyway, nothing is lost by allowing it.
	 */
	if (IS_G4X(dev))
		intel_encoder->cloneable |= 1 << INTEL_OUTPUT_HDMI;
2213

2214
	intel_dig_port->port = port;
2215
	intel_dig_port->hdmi.hdmi_reg = hdmi_reg;
2216
	intel_dig_port->dp.output_reg = 0;
2217

2218
	intel_hdmi_init_connector(intel_dig_port, intel_connector);
2219
}