intel_pstate.c 64.6 KB
Newer Older
1
/*
2
 * intel_pstate.c: Native P state management for Intel processors
3 4 5 6 7 8 9 10 11 12
 *
 * (C) Copyright 2012 Intel Corporation
 * Author: Dirk Brandewie <dirk.j.brandewie@intel.com>
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; version 2
 * of the License.
 */

J
Joe Perches 已提交
13 14
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

15 16 17 18 19 20 21
#include <linux/kernel.h>
#include <linux/kernel_stat.h>
#include <linux/module.h>
#include <linux/ktime.h>
#include <linux/hrtimer.h>
#include <linux/tick.h>
#include <linux/slab.h>
22
#include <linux/sched/cpufreq.h>
23 24 25 26 27 28 29
#include <linux/list.h>
#include <linux/cpu.h>
#include <linux/cpufreq.h>
#include <linux/sysfs.h>
#include <linux/types.h>
#include <linux/fs.h>
#include <linux/debugfs.h>
30
#include <linux/acpi.h>
31
#include <linux/vmalloc.h>
32 33 34 35 36
#include <trace/events/power.h>

#include <asm/div64.h>
#include <asm/msr.h>
#include <asm/cpu_device_id.h>
37
#include <asm/cpufeature.h>
38
#include <asm/intel-family.h>
39

40 41 42
#define INTEL_PSTATE_DEFAULT_SAMPLING_INTERVAL	(10 * NSEC_PER_MSEC)
#define INTEL_PSTATE_HWP_SAMPLING_INTERVAL	(50 * NSEC_PER_MSEC)

43
#define INTEL_CPUFREQ_TRANSITION_LATENCY	20000
44
#define INTEL_CPUFREQ_TRANSITION_DELAY		500
45

46 47
#ifdef CONFIG_ACPI
#include <acpi/processor.h>
48
#include <acpi/cppc_acpi.h>
49 50
#endif

51
#define FRAC_BITS 8
52 53
#define int_tofp(X) ((int64_t)(X) << FRAC_BITS)
#define fp_toint(X) ((X) >> FRAC_BITS)
54

55 56
#define EXT_BITS 6
#define EXT_FRAC_BITS (EXT_BITS + FRAC_BITS)
57 58
#define fp_ext_toint(X) ((X) >> EXT_FRAC_BITS)
#define int_ext_tofp(X) ((int64_t)(X) << EXT_FRAC_BITS)
59

60 61 62 63 64
static inline int32_t mul_fp(int32_t x, int32_t y)
{
	return ((int64_t)x * (int64_t)y) >> FRAC_BITS;
}

65
static inline int32_t div_fp(s64 x, s64 y)
66
{
67
	return div64_s64((int64_t)x << FRAC_BITS, y);
68 69
}

70 71 72 73 74 75 76 77 78 79 80
static inline int ceiling_fp(int32_t x)
{
	int mask, ret;

	ret = fp_toint(x);
	mask = (1 << FRAC_BITS) - 1;
	if (x & mask)
		ret += 1;
	return ret;
}

81 82 83 84 85
static inline int32_t percent_fp(int percent)
{
	return div_fp(percent, 100);
}

86 87 88 89 90 91 92 93 94 95
static inline u64 mul_ext_fp(u64 x, u64 y)
{
	return (x * y) >> EXT_FRAC_BITS;
}

static inline u64 div_ext_fp(u64 x, u64 y)
{
	return div64_u64(x << EXT_FRAC_BITS, y);
}

96 97 98 99 100
static inline int32_t percent_ext_fp(int percent)
{
	return div_ext_fp(percent, 100);
}

101 102
/**
 * struct sample -	Store performance sample
103
 * @core_avg_perf:	Ratio of APERF/MPERF which is the actual average
104 105
 *			performance during last sample period
 * @busy_scaled:	Scaled busy value which is used to calculate next
106
 *			P state. This can be different than core_avg_perf
107 108 109 110 111 112 113 114 115 116 117 118
 *			to account for cpu idle period
 * @aperf:		Difference of actual performance frequency clock count
 *			read from APERF MSR between last and current sample
 * @mperf:		Difference of maximum performance frequency clock count
 *			read from MPERF MSR between last and current sample
 * @tsc:		Difference of time stamp counter between last and
 *			current sample
 * @time:		Current time from scheduler
 *
 * This structure is used in the cpudata structure to store performance sample
 * data for choosing next P State.
 */
119
struct sample {
120
	int32_t core_avg_perf;
121
	int32_t busy_scaled;
122 123
	u64 aperf;
	u64 mperf;
124
	u64 tsc;
125
	u64 time;
126 127
};

128 129 130 131 132 133 134 135 136 137 138
/**
 * struct pstate_data - Store P state data
 * @current_pstate:	Current requested P state
 * @min_pstate:		Min P state possible for this platform
 * @max_pstate:		Max P state possible for this platform
 * @max_pstate_physical:This is physical Max P state for a processor
 *			This can be higher than the max_pstate which can
 *			be limited by platform thermal design power limits
 * @scaling:		Scaling factor to  convert frequency to cpufreq
 *			frequency units
 * @turbo_pstate:	Max Turbo P state possible for this platform
139 140
 * @max_freq:		@max_pstate frequency in cpufreq units
 * @turbo_freq:		@turbo_pstate frequency in cpufreq units
141 142 143
 *
 * Stores the per cpu model P state limits and current P state.
 */
144 145 146 147
struct pstate_data {
	int	current_pstate;
	int	min_pstate;
	int	max_pstate;
148
	int	max_pstate_physical;
149
	int	scaling;
150
	int	turbo_pstate;
151 152
	unsigned int max_freq;
	unsigned int turbo_freq;
153 154
};

155 156 157 158 159 160 161 162 163 164 165 166 167
/**
 * struct vid_data -	Stores voltage information data
 * @min:		VID data for this platform corresponding to
 *			the lowest P state
 * @max:		VID data corresponding to the highest P State.
 * @turbo:		VID data for turbo P state
 * @ratio:		Ratio of (vid max - vid min) /
 *			(max P state - Min P State)
 *
 * Stores the voltage data for DVFS (Dynamic Voltage and Frequency Scaling)
 * This data is used in Atom platforms, where in addition to target P state,
 * the voltage data needs to be specified to select next P State.
 */
168
struct vid_data {
169 170 171
	int min;
	int max;
	int turbo;
172 173 174
	int32_t ratio;
};

175 176 177 178 179 180 181 182 183 184 185 186
/**
 * struct _pid -	Stores PID data
 * @setpoint:		Target set point for busyness or performance
 * @integral:		Storage for accumulated error values
 * @p_gain:		PID proportional gain
 * @i_gain:		PID integral gain
 * @d_gain:		PID derivative gain
 * @deadband:		PID deadband
 * @last_err:		Last error storage for integral part of PID calculation
 *
 * Stores PID coefficients and last error for PID controller.
 */
187 188 189 190 191 192 193
struct _pid {
	int setpoint;
	int32_t integral;
	int32_t p_gain;
	int32_t i_gain;
	int32_t d_gain;
	int deadband;
194
	int32_t last_err;
195 196
};

197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213
/**
 * struct global_params - Global parameters, mostly tunable via sysfs.
 * @no_turbo:		Whether or not to use turbo P-states.
 * @turbo_disabled:	Whethet or not turbo P-states are available at all,
 *			based on the MSR_IA32_MISC_ENABLE value and whether or
 *			not the maximum reported turbo P-state is different from
 *			the maximum reported non-turbo one.
 * @min_perf_pct:	Minimum capacity limit in percent of the maximum turbo
 *			P-state capacity.
 * @max_perf_pct:	Maximum capacity limit in percent of the maximum turbo
 *			P-state capacity.
 */
struct global_params {
	bool no_turbo;
	bool turbo_disabled;
	int max_perf_pct;
	int min_perf_pct;
214 215
};

216 217 218
/**
 * struct cpudata -	Per CPU instance data storage
 * @cpu:		CPU number for this instance data
219
 * @policy:		CPUFreq policy value
220
 * @update_util:	CPUFreq utility callback information
221
 * @update_util_set:	CPUFreq utility callback is set
222 223
 * @iowait_boost:	iowait-related boost fraction
 * @last_update:	Time of the last update.
224 225 226 227 228 229 230 231 232 233
 * @pstate:		Stores P state limits for this CPU
 * @vid:		Stores VID limits for this CPU
 * @pid:		Stores PID parameters for this CPU
 * @last_sample_time:	Last Sample time
 * @prev_aperf:		Last APERF value read from APERF MSR
 * @prev_mperf:		Last MPERF value read from MPERF MSR
 * @prev_tsc:		Last timestamp counter (TSC) value
 * @prev_cummulative_iowait: IO Wait time difference from last and
 *			current sample
 * @sample:		Storage for storing last Sample data
234 235 236 237
 * @min_perf:		Minimum capacity limit as a fraction of the maximum
 *			turbo P-state capacity.
 * @max_perf:		Maximum capacity limit as a fraction of the maximum
 *			turbo P-state capacity.
238 239
 * @acpi_perf_data:	Stores ACPI perf information read from _PSS
 * @valid_pss_table:	Set to true for valid ACPI _PSS entries found
240 241 242
 * @epp_powersave:	Last saved HWP energy performance preference
 *			(EPP) or energy performance bias (EPB),
 *			when policy switched to performance
243
 * @epp_policy:		Last saved policy used to set EPP/EPB
244 245 246 247
 * @epp_default:	Power on default HWP energy performance
 *			preference/bias
 * @epp_saved:		Saved EPP/EPB during system suspend or CPU offline
 *			operation
248 249 250
 *
 * This structure stores per CPU instance data for all CPUs.
 */
251 252 253
struct cpudata {
	int cpu;

254
	unsigned int policy;
255
	struct update_util_data update_util;
256
	bool   update_util_set;
257 258

	struct pstate_data pstate;
259
	struct vid_data vid;
260 261
	struct _pid pid;

262
	u64	last_update;
263
	u64	last_sample_time;
264 265
	u64	prev_aperf;
	u64	prev_mperf;
266
	u64	prev_tsc;
267
	u64	prev_cummulative_iowait;
268
	struct sample sample;
269 270
	int32_t	min_perf;
	int32_t	max_perf;
271 272 273 274
#ifdef CONFIG_ACPI
	struct acpi_processor_performance acpi_perf_data;
	bool valid_pss_table;
#endif
275
	unsigned int iowait_boost;
276
	s16 epp_powersave;
277
	s16 epp_policy;
278 279
	s16 epp_default;
	s16 epp_saved;
280 281 282
};

static struct cpudata **all_cpu_data;
283 284

/**
285
 * struct pstate_adjust_policy - Stores static PID configuration data
286 287 288 289 290 291 292 293 294 295
 * @sample_rate_ms:	PID calculation sample rate in ms
 * @sample_rate_ns:	Sample rate calculation in ns
 * @deadband:		PID deadband
 * @setpoint:		PID Setpoint
 * @p_gain_pct:		PID proportional gain
 * @i_gain_pct:		PID integral gain
 * @d_gain_pct:		PID derivative gain
 *
 * Stores per CPU model static PID configuration data.
 */
296 297
struct pstate_adjust_policy {
	int sample_rate_ms;
298
	s64 sample_rate_ns;
299 300 301 302 303 304 305
	int deadband;
	int setpoint;
	int p_gain_pct;
	int d_gain_pct;
	int i_gain_pct;
};

306 307 308 309 310 311 312 313 314
/**
 * struct pstate_funcs - Per CPU model specific callbacks
 * @get_max:		Callback to get maximum non turbo effective P state
 * @get_max_physical:	Callback to get maximum non turbo physical P state
 * @get_min:		Callback to get minimum P state
 * @get_turbo:		Callback to get turbo P state
 * @get_scaling:	Callback to get frequency scaling factor
 * @get_val:		Callback to convert P state to actual MSR write value
 * @get_vid:		Callback to get VID data for Atom platforms
315
 * @update_util:	Active mode utilization update callback.
316 317 318 319
 *
 * Core and Atom CPU models have different way to get P State limits. This
 * structure is used to store those callbacks.
 */
320 321
struct pstate_funcs {
	int (*get_max)(void);
322
	int (*get_max_physical)(void);
323 324
	int (*get_min)(void);
	int (*get_turbo)(void);
325
	int (*get_scaling)(void);
326
	u64 (*get_val)(struct cpudata*, int pstate);
327
	void (*get_vid)(struct cpudata *);
328 329
	void (*update_util)(struct update_util_data *data, u64 time,
			    unsigned int flags);
330 331
};

332
static struct pstate_funcs pstate_funcs __read_mostly;
333 334 335 336 337 338 339 340 341 342
static struct pstate_adjust_policy pid_params __read_mostly = {
	.sample_rate_ms = 10,
	.sample_rate_ns = 10 * NSEC_PER_MSEC,
	.deadband = 0,
	.setpoint = 97,
	.p_gain_pct = 20,
	.d_gain_pct = 0,
	.i_gain_pct = 0,
};

343
static int hwp_active __read_mostly;
344
static bool per_cpu_limits __read_mostly;
345

346
static struct cpufreq_driver *intel_pstate_driver __read_mostly;
347

348 349 350
#ifdef CONFIG_ACPI
static bool acpi_ppc;
#endif
351

352
static struct global_params global;
353

354
static DEFINE_MUTEX(intel_pstate_driver_lock);
355 356
static DEFINE_MUTEX(intel_pstate_limits_lock);

357
#ifdef CONFIG_ACPI
358 359 360 361 362 363 364 365 366 367

static bool intel_pstate_get_ppc_enable_status(void)
{
	if (acpi_gbl_FADT.preferred_profile == PM_ENTERPRISE_SERVER ||
	    acpi_gbl_FADT.preferred_profile == PM_PERFORMANCE_SERVER)
		return true;

	return acpi_ppc;
}

368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418
#ifdef CONFIG_ACPI_CPPC_LIB

/* The work item is needed to avoid CPU hotplug locking issues */
static void intel_pstste_sched_itmt_work_fn(struct work_struct *work)
{
	sched_set_itmt_support();
}

static DECLARE_WORK(sched_itmt_work, intel_pstste_sched_itmt_work_fn);

static void intel_pstate_set_itmt_prio(int cpu)
{
	struct cppc_perf_caps cppc_perf;
	static u32 max_highest_perf = 0, min_highest_perf = U32_MAX;
	int ret;

	ret = cppc_get_perf_caps(cpu, &cppc_perf);
	if (ret)
		return;

	/*
	 * The priorities can be set regardless of whether or not
	 * sched_set_itmt_support(true) has been called and it is valid to
	 * update them at any time after it has been called.
	 */
	sched_set_itmt_core_prio(cppc_perf.highest_perf, cpu);

	if (max_highest_perf <= min_highest_perf) {
		if (cppc_perf.highest_perf > max_highest_perf)
			max_highest_perf = cppc_perf.highest_perf;

		if (cppc_perf.highest_perf < min_highest_perf)
			min_highest_perf = cppc_perf.highest_perf;

		if (max_highest_perf > min_highest_perf) {
			/*
			 * This code can be run during CPU online under the
			 * CPU hotplug locks, so sched_set_itmt_support()
			 * cannot be called from here.  Queue up a work item
			 * to invoke it.
			 */
			schedule_work(&sched_itmt_work);
		}
	}
}
#else
static void intel_pstate_set_itmt_prio(int cpu)
{
}
#endif

419 420 421 422 423 424
static void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
{
	struct cpudata *cpu;
	int ret;
	int i;

425 426
	if (hwp_active) {
		intel_pstate_set_itmt_prio(policy->cpu);
427
		return;
428
	}
429

430
	if (!intel_pstate_get_ppc_enable_status())
431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472
		return;

	cpu = all_cpu_data[policy->cpu];

	ret = acpi_processor_register_performance(&cpu->acpi_perf_data,
						  policy->cpu);
	if (ret)
		return;

	/*
	 * Check if the control value in _PSS is for PERF_CTL MSR, which should
	 * guarantee that the states returned by it map to the states in our
	 * list directly.
	 */
	if (cpu->acpi_perf_data.control_register.space_id !=
						ACPI_ADR_SPACE_FIXED_HARDWARE)
		goto err;

	/*
	 * If there is only one entry _PSS, simply ignore _PSS and continue as
	 * usual without taking _PSS into account
	 */
	if (cpu->acpi_perf_data.state_count < 2)
		goto err;

	pr_debug("CPU%u - ACPI _PSS perf data\n", policy->cpu);
	for (i = 0; i < cpu->acpi_perf_data.state_count; i++) {
		pr_debug("     %cP%d: %u MHz, %u mW, 0x%x\n",
			 (i == cpu->acpi_perf_data.state ? '*' : ' '), i,
			 (u32) cpu->acpi_perf_data.states[i].core_frequency,
			 (u32) cpu->acpi_perf_data.states[i].power,
			 (u32) cpu->acpi_perf_data.states[i].control);
	}

	/*
	 * The _PSS table doesn't contain whole turbo frequency range.
	 * This just contains +1 MHZ above the max non turbo frequency,
	 * with control value corresponding to max turbo ratio. But
	 * when cpufreq set policy is called, it will call with this
	 * max frequency, which will cause a reduced performance as
	 * this driver uses real max turbo frequency as the max
	 * frequency. So correct this frequency in _PSS table to
473
	 * correct max turbo frequency based on the turbo state.
474 475
	 * Also need to convert to MHz as _PSS freq is in MHz.
	 */
476
	if (!global.turbo_disabled)
477 478 479
		cpu->acpi_perf_data.states[0].core_frequency =
					policy->cpuinfo.max_freq / 1000;
	cpu->valid_pss_table = true;
480
	pr_debug("_PPC limits will be enforced\n");
481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499

	return;

 err:
	cpu->valid_pss_table = false;
	acpi_processor_unregister_performance(policy->cpu);
}

static void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
{
	struct cpudata *cpu;

	cpu = all_cpu_data[policy->cpu];
	if (!cpu->valid_pss_table)
		return;

	acpi_processor_unregister_performance(policy->cpu);
}
#else
500
static inline void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
501 502 503
{
}

504
static inline void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
505 506 507 508
{
}
#endif

509
static signed int pid_calc(struct _pid *pid, int32_t busy)
510
{
511
	signed int result;
512 513 514
	int32_t pterm, dterm, fp_error;
	int32_t integral_limit;

515
	fp_error = pid->setpoint - busy;
516

517
	if (abs(fp_error) <= pid->deadband)
518 519 520 521 522 523
		return 0;

	pterm = mul_fp(pid->p_gain, fp_error);

	pid->integral += fp_error;

524 525 526 527 528 529 530 531
	/*
	 * We limit the integral here so that it will never
	 * get higher than 30.  This prevents it from becoming
	 * too large an input over long periods of time and allows
	 * it to get factored out sooner.
	 *
	 * The value of 30 was chosen through experimentation.
	 */
532 533 534 535 536 537
	integral_limit = int_tofp(30);
	if (pid->integral > integral_limit)
		pid->integral = integral_limit;
	if (pid->integral < -integral_limit)
		pid->integral = -integral_limit;

538 539
	dterm = mul_fp(pid->d_gain, fp_error - pid->last_err);
	pid->last_err = fp_error;
540 541

	result = pterm + mul_fp(pid->integral, pid->i_gain) + dterm;
542
	result = result + (1 << (FRAC_BITS-1));
543 544 545
	return (signed int)fp_toint(result);
}

546
static inline void intel_pstate_pid_reset(struct cpudata *cpu)
547
{
548
	struct _pid *pid = &cpu->pid;
549

550 551 552 553 554 555 556
	pid->p_gain = percent_fp(pid_params.p_gain_pct);
	pid->d_gain = percent_fp(pid_params.d_gain_pct);
	pid->i_gain = percent_fp(pid_params.i_gain_pct);
	pid->setpoint = int_tofp(pid_params.setpoint);
	pid->last_err  = pid->setpoint - int_tofp(100);
	pid->deadband  = int_tofp(pid_params.deadband);
	pid->integral  = 0;
557 558
}

559 560 561 562 563 564 565
static inline void update_turbo_state(void)
{
	u64 misc_en;
	struct cpudata *cpu;

	cpu = all_cpu_data[0];
	rdmsrl(MSR_IA32_MISC_ENABLE, misc_en);
566
	global.turbo_disabled =
567 568 569 570
		(misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE ||
		 cpu->pstate.max_pstate == cpu->pstate.turbo_pstate);
}

571 572 573 574 575 576 577 578
static int min_perf_pct_min(void)
{
	struct cpudata *cpu = all_cpu_data[0];

	return DIV_ROUND_UP(cpu->pstate.min_pstate * 100,
			    cpu->pstate.turbo_pstate);
}

579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597
static s16 intel_pstate_get_epb(struct cpudata *cpu_data)
{
	u64 epb;
	int ret;

	if (!static_cpu_has(X86_FEATURE_EPB))
		return -ENXIO;

	ret = rdmsrl_on_cpu(cpu_data->cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
	if (ret)
		return (s16)ret;

	return (s16)(epb & 0x0f);
}

static s16 intel_pstate_get_epp(struct cpudata *cpu_data, u64 hwp_req_data)
{
	s16 epp;

598 599 600 601 602 603 604 605 606 607 608
	if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
		/*
		 * When hwp_req_data is 0, means that caller didn't read
		 * MSR_HWP_REQUEST, so need to read and get EPP.
		 */
		if (!hwp_req_data) {
			epp = rdmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST,
					    &hwp_req_data);
			if (epp)
				return epp;
		}
609
		epp = (hwp_req_data >> 24) & 0xff;
610
	} else {
611 612
		/* When there is no EPP present, HWP uses EPB settings */
		epp = intel_pstate_get_epb(cpu_data);
613
	}
614 615 616 617

	return epp;
}

618
static int intel_pstate_set_epb(int cpu, s16 pref)
619 620
{
	u64 epb;
621
	int ret;
622 623

	if (!static_cpu_has(X86_FEATURE_EPB))
624
		return -ENXIO;
625

626 627 628
	ret = rdmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
	if (ret)
		return ret;
629 630 631

	epb = (epb & ~0x0f) | pref;
	wrmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, epb);
632 633

	return 0;
634 635
}

636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795
/*
 * EPP/EPB display strings corresponding to EPP index in the
 * energy_perf_strings[]
 *	index		String
 *-------------------------------------
 *	0		default
 *	1		performance
 *	2		balance_performance
 *	3		balance_power
 *	4		power
 */
static const char * const energy_perf_strings[] = {
	"default",
	"performance",
	"balance_performance",
	"balance_power",
	"power",
	NULL
};

static int intel_pstate_get_energy_pref_index(struct cpudata *cpu_data)
{
	s16 epp;
	int index = -EINVAL;

	epp = intel_pstate_get_epp(cpu_data, 0);
	if (epp < 0)
		return epp;

	if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
		/*
		 * Range:
		 *	0x00-0x3F	:	Performance
		 *	0x40-0x7F	:	Balance performance
		 *	0x80-0xBF	:	Balance power
		 *	0xC0-0xFF	:	Power
		 * The EPP is a 8 bit value, but our ranges restrict the
		 * value which can be set. Here only using top two bits
		 * effectively.
		 */
		index = (epp >> 6) + 1;
	} else if (static_cpu_has(X86_FEATURE_EPB)) {
		/*
		 * Range:
		 *	0x00-0x03	:	Performance
		 *	0x04-0x07	:	Balance performance
		 *	0x08-0x0B	:	Balance power
		 *	0x0C-0x0F	:	Power
		 * The EPB is a 4 bit value, but our ranges restrict the
		 * value which can be set. Here only using top two bits
		 * effectively.
		 */
		index = (epp >> 2) + 1;
	}

	return index;
}

static int intel_pstate_set_energy_pref_index(struct cpudata *cpu_data,
					      int pref_index)
{
	int epp = -EINVAL;
	int ret;

	if (!pref_index)
		epp = cpu_data->epp_default;

	mutex_lock(&intel_pstate_limits_lock);

	if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
		u64 value;

		ret = rdmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST, &value);
		if (ret)
			goto return_pref;

		value &= ~GENMASK_ULL(31, 24);

		/*
		 * If epp is not default, convert from index into
		 * energy_perf_strings to epp value, by shifting 6
		 * bits left to use only top two bits in epp.
		 * The resultant epp need to shifted by 24 bits to
		 * epp position in MSR_HWP_REQUEST.
		 */
		if (epp == -EINVAL)
			epp = (pref_index - 1) << 6;

		value |= (u64)epp << 24;
		ret = wrmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST, value);
	} else {
		if (epp == -EINVAL)
			epp = (pref_index - 1) << 2;
		ret = intel_pstate_set_epb(cpu_data->cpu, epp);
	}
return_pref:
	mutex_unlock(&intel_pstate_limits_lock);

	return ret;
}

static ssize_t show_energy_performance_available_preferences(
				struct cpufreq_policy *policy, char *buf)
{
	int i = 0;
	int ret = 0;

	while (energy_perf_strings[i] != NULL)
		ret += sprintf(&buf[ret], "%s ", energy_perf_strings[i++]);

	ret += sprintf(&buf[ret], "\n");

	return ret;
}

cpufreq_freq_attr_ro(energy_performance_available_preferences);

static ssize_t store_energy_performance_preference(
		struct cpufreq_policy *policy, const char *buf, size_t count)
{
	struct cpudata *cpu_data = all_cpu_data[policy->cpu];
	char str_preference[21];
	int ret, i = 0;

	ret = sscanf(buf, "%20s", str_preference);
	if (ret != 1)
		return -EINVAL;

	while (energy_perf_strings[i] != NULL) {
		if (!strcmp(str_preference, energy_perf_strings[i])) {
			intel_pstate_set_energy_pref_index(cpu_data, i);
			return count;
		}
		++i;
	}

	return -EINVAL;
}

static ssize_t show_energy_performance_preference(
				struct cpufreq_policy *policy, char *buf)
{
	struct cpudata *cpu_data = all_cpu_data[policy->cpu];
	int preference;

	preference = intel_pstate_get_energy_pref_index(cpu_data);
	if (preference < 0)
		return preference;

	return  sprintf(buf, "%s\n", energy_perf_strings[preference]);
}

cpufreq_freq_attr_rw(energy_performance_preference);

static struct freq_attr *hwp_cpufreq_attrs[] = {
	&energy_performance_preference,
	&energy_performance_available_preferences,
	NULL,
};

796
static void intel_pstate_hwp_set(unsigned int cpu)
D
Dirk Brandewie 已提交
797
{
798 799
	struct cpudata *cpu_data = all_cpu_data[cpu];
	int min, hw_min, max, hw_max;
800
	u64 value, cap;
801
	s16 epp;
802

803 804 805 806 807 808
	rdmsrl_on_cpu(cpu, MSR_HWP_CAPABILITIES, &cap);
	hw_min = HWP_LOWEST_PERF(cap);
	if (global.no_turbo)
		hw_max = HWP_GUARANTEED_PERF(cap);
	else
		hw_max = HWP_HIGHEST_PERF(cap);
809

810 811 812 813 814
	max = fp_ext_toint(hw_max * cpu_data->max_perf);
	if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE)
		min = max;
	else
		min = fp_ext_toint(hw_max * cpu_data->min_perf);
815

816
	rdmsrl_on_cpu(cpu, MSR_HWP_REQUEST, &value);
D
Dirk Brandewie 已提交
817

818 819
	value &= ~HWP_MIN_PERF(~0L);
	value |= HWP_MIN_PERF(min);
820

821 822
	value &= ~HWP_MAX_PERF(~0L);
	value |= HWP_MAX_PERF(max);
823

824 825
	if (cpu_data->epp_policy == cpu_data->policy)
		goto skip_epp;
826

827
	cpu_data->epp_policy = cpu_data->policy;
828

829 830 831 832 833
	if (cpu_data->epp_saved >= 0) {
		epp = cpu_data->epp_saved;
		cpu_data->epp_saved = -EINVAL;
		goto update_epp;
	}
834

835 836 837 838 839 840
	if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE) {
		epp = intel_pstate_get_epp(cpu_data, value);
		cpu_data->epp_powersave = epp;
		/* If EPP read was failed, then don't try to write */
		if (epp < 0)
			goto skip_epp;
841

842 843 844 845 846
		epp = 0;
	} else {
		/* skip setting EPP, when saved value is invalid */
		if (cpu_data->epp_powersave < 0)
			goto skip_epp;
847

848 849 850 851 852 853 854 855 856 857
		/*
		 * No need to restore EPP when it is not zero. This
		 * means:
		 *  - Policy is not changed
		 *  - user has manually changed
		 *  - Error reading EPB
		 */
		epp = intel_pstate_get_epp(cpu_data, value);
		if (epp)
			goto skip_epp;
858

859 860
		epp = cpu_data->epp_powersave;
	}
861
update_epp:
862 863 864 865 866
	if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
		value &= ~GENMASK_ULL(31, 24);
		value |= (u64)epp << 24;
	} else {
		intel_pstate_set_epb(cpu, epp);
D
Dirk Brandewie 已提交
867
	}
868 869
skip_epp:
	wrmsrl_on_cpu(cpu, MSR_HWP_REQUEST, value);
870
}
D
Dirk Brandewie 已提交
871

872 873 874 875 876 877 878 879 880 881 882 883
static int intel_pstate_hwp_save_state(struct cpufreq_policy *policy)
{
	struct cpudata *cpu_data = all_cpu_data[policy->cpu];

	if (!hwp_active)
		return 0;

	cpu_data->epp_saved = intel_pstate_get_epp(cpu_data, 0);

	return 0;
}

884 885 886 887 888
static int intel_pstate_resume(struct cpufreq_policy *policy)
{
	if (!hwp_active)
		return 0;

889 890
	mutex_lock(&intel_pstate_limits_lock);

891
	all_cpu_data[policy->cpu]->epp_policy = 0;
892
	intel_pstate_hwp_set(policy->cpu);
893 894 895

	mutex_unlock(&intel_pstate_limits_lock);

896
	return 0;
897 898
}

899
static void intel_pstate_update_policies(void)
900
{
901 902 903 904
	int cpu;

	for_each_possible_cpu(cpu)
		cpufreq_update_policy(cpu);
D
Dirk Brandewie 已提交
905 906
}

907 908 909
/************************** debugfs begin ************************/
static int pid_param_set(void *data, u64 val)
{
910 911
	unsigned int cpu;

912
	*(u32 *)data = val;
913
	pid_params.sample_rate_ns = pid_params.sample_rate_ms * NSEC_PER_MSEC;
914 915
	for_each_possible_cpu(cpu)
		if (all_cpu_data[cpu])
916
			intel_pstate_pid_reset(all_cpu_data[cpu]);
917

918 919
	return 0;
}
920

921 922 923 924 925
static int pid_param_get(void *data, u64 *val)
{
	*val = *(u32 *)data;
	return 0;
}
926
DEFINE_SIMPLE_ATTRIBUTE(fops_pid_param, pid_param_get, pid_param_set, "%llu\n");
927

928 929
static struct dentry *debugfs_parent;

930 931 932
struct pid_param {
	char *name;
	void *value;
933
	struct dentry *dentry;
934 935 936
};

static struct pid_param pid_files[] = {
937 938 939 940 941 942 943
	{"sample_rate_ms", &pid_params.sample_rate_ms, },
	{"d_gain_pct", &pid_params.d_gain_pct, },
	{"i_gain_pct", &pid_params.i_gain_pct, },
	{"deadband", &pid_params.deadband, },
	{"setpoint", &pid_params.setpoint, },
	{"p_gain_pct", &pid_params.p_gain_pct, },
	{NULL, NULL, }
944 945
};

946
static void intel_pstate_debug_expose_params(void)
947
{
948
	int i;
949 950 951 952

	debugfs_parent = debugfs_create_dir("pstate_snb", NULL);
	if (IS_ERR_OR_NULL(debugfs_parent))
		return;
953 954 955 956 957 958 959 960 961

	for (i = 0; pid_files[i].name; i++) {
		struct dentry *dentry;

		dentry = debugfs_create_file(pid_files[i].name, 0660,
					     debugfs_parent, pid_files[i].value,
					     &fops_pid_param);
		if (!IS_ERR(dentry))
			pid_files[i].dentry = dentry;
962 963 964
	}
}

965 966 967 968 969 970 971 972 973 974
static void intel_pstate_debug_hide_params(void)
{
	int i;

	if (IS_ERR_OR_NULL(debugfs_parent))
		return;

	for (i = 0; pid_files[i].name; i++) {
		debugfs_remove(pid_files[i].dentry);
		pid_files[i].dentry = NULL;
975
	}
976 977 978

	debugfs_remove(debugfs_parent);
	debugfs_parent = NULL;
979 980 981 982 983 984 985 986 987
}

/************************** debugfs end ************************/

/************************** sysfs begin ************************/
#define show_one(file_name, object)					\
	static ssize_t show_##file_name					\
	(struct kobject *kobj, struct attribute *attr, char *buf)	\
	{								\
988
		return sprintf(buf, "%u\n", global.object);		\
989 990
	}

991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018
static ssize_t intel_pstate_show_status(char *buf);
static int intel_pstate_update_status(const char *buf, size_t size);

static ssize_t show_status(struct kobject *kobj,
			   struct attribute *attr, char *buf)
{
	ssize_t ret;

	mutex_lock(&intel_pstate_driver_lock);
	ret = intel_pstate_show_status(buf);
	mutex_unlock(&intel_pstate_driver_lock);

	return ret;
}

static ssize_t store_status(struct kobject *a, struct attribute *b,
			    const char *buf, size_t count)
{
	char *p = memchr(buf, '\n', count);
	int ret;

	mutex_lock(&intel_pstate_driver_lock);
	ret = intel_pstate_update_status(buf, p ? p - buf : count);
	mutex_unlock(&intel_pstate_driver_lock);

	return ret < 0 ? ret : count;
}

1019 1020 1021 1022 1023 1024 1025
static ssize_t show_turbo_pct(struct kobject *kobj,
				struct attribute *attr, char *buf)
{
	struct cpudata *cpu;
	int total, no_turbo, turbo_pct;
	uint32_t turbo_fp;

1026 1027
	mutex_lock(&intel_pstate_driver_lock);

1028
	if (!intel_pstate_driver) {
1029 1030 1031 1032
		mutex_unlock(&intel_pstate_driver_lock);
		return -EAGAIN;
	}

1033 1034 1035 1036
	cpu = all_cpu_data[0];

	total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
	no_turbo = cpu->pstate.max_pstate - cpu->pstate.min_pstate + 1;
1037
	turbo_fp = div_fp(no_turbo, total);
1038
	turbo_pct = 100 - fp_toint(mul_fp(turbo_fp, int_tofp(100)));
1039 1040 1041

	mutex_unlock(&intel_pstate_driver_lock);

1042 1043 1044
	return sprintf(buf, "%u\n", turbo_pct);
}

1045 1046 1047 1048 1049 1050
static ssize_t show_num_pstates(struct kobject *kobj,
				struct attribute *attr, char *buf)
{
	struct cpudata *cpu;
	int total;

1051 1052
	mutex_lock(&intel_pstate_driver_lock);

1053
	if (!intel_pstate_driver) {
1054 1055 1056 1057
		mutex_unlock(&intel_pstate_driver_lock);
		return -EAGAIN;
	}

1058 1059
	cpu = all_cpu_data[0];
	total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
1060 1061 1062

	mutex_unlock(&intel_pstate_driver_lock);

1063 1064 1065
	return sprintf(buf, "%u\n", total);
}

1066 1067 1068 1069 1070
static ssize_t show_no_turbo(struct kobject *kobj,
			     struct attribute *attr, char *buf)
{
	ssize_t ret;

1071 1072
	mutex_lock(&intel_pstate_driver_lock);

1073
	if (!intel_pstate_driver) {
1074 1075 1076 1077
		mutex_unlock(&intel_pstate_driver_lock);
		return -EAGAIN;
	}

1078
	update_turbo_state();
1079 1080
	if (global.turbo_disabled)
		ret = sprintf(buf, "%u\n", global.turbo_disabled);
1081
	else
1082
		ret = sprintf(buf, "%u\n", global.no_turbo);
1083

1084 1085
	mutex_unlock(&intel_pstate_driver_lock);

1086 1087 1088
	return ret;
}

1089
static ssize_t store_no_turbo(struct kobject *a, struct attribute *b,
1090
			      const char *buf, size_t count)
1091 1092 1093
{
	unsigned int input;
	int ret;
1094

1095 1096 1097
	ret = sscanf(buf, "%u", &input);
	if (ret != 1)
		return -EINVAL;
1098

1099 1100
	mutex_lock(&intel_pstate_driver_lock);

1101
	if (!intel_pstate_driver) {
1102 1103 1104 1105
		mutex_unlock(&intel_pstate_driver_lock);
		return -EAGAIN;
	}

1106 1107
	mutex_lock(&intel_pstate_limits_lock);

1108
	update_turbo_state();
1109
	if (global.turbo_disabled) {
J
Joe Perches 已提交
1110
		pr_warn("Turbo disabled by BIOS or unavailable on processor\n");
1111
		mutex_unlock(&intel_pstate_limits_lock);
1112
		mutex_unlock(&intel_pstate_driver_lock);
1113
		return -EPERM;
1114
	}
D
Dirk Brandewie 已提交
1115

1116
	global.no_turbo = clamp_t(int, input, 0, 1);
1117

1118 1119 1120 1121 1122 1123 1124 1125 1126
	if (global.no_turbo) {
		struct cpudata *cpu = all_cpu_data[0];
		int pct = cpu->pstate.max_pstate * 100 / cpu->pstate.turbo_pstate;

		/* Squash the global minimum into the permitted range. */
		if (global.min_perf_pct > pct)
			global.min_perf_pct = pct;
	}

1127 1128
	mutex_unlock(&intel_pstate_limits_lock);

1129 1130
	intel_pstate_update_policies();

1131 1132
	mutex_unlock(&intel_pstate_driver_lock);

1133 1134 1135 1136
	return count;
}

static ssize_t store_max_perf_pct(struct kobject *a, struct attribute *b,
1137
				  const char *buf, size_t count)
1138 1139 1140
{
	unsigned int input;
	int ret;
1141

1142 1143 1144 1145
	ret = sscanf(buf, "%u", &input);
	if (ret != 1)
		return -EINVAL;

1146 1147
	mutex_lock(&intel_pstate_driver_lock);

1148
	if (!intel_pstate_driver) {
1149 1150 1151 1152
		mutex_unlock(&intel_pstate_driver_lock);
		return -EAGAIN;
	}

1153 1154
	mutex_lock(&intel_pstate_limits_lock);

1155
	global.max_perf_pct = clamp_t(int, input, global.min_perf_pct, 100);
1156

1157 1158
	mutex_unlock(&intel_pstate_limits_lock);

1159 1160
	intel_pstate_update_policies();

1161 1162
	mutex_unlock(&intel_pstate_driver_lock);

1163 1164 1165 1166
	return count;
}

static ssize_t store_min_perf_pct(struct kobject *a, struct attribute *b,
1167
				  const char *buf, size_t count)
1168 1169 1170
{
	unsigned int input;
	int ret;
1171

1172 1173 1174
	ret = sscanf(buf, "%u", &input);
	if (ret != 1)
		return -EINVAL;
1175

1176 1177
	mutex_lock(&intel_pstate_driver_lock);

1178
	if (!intel_pstate_driver) {
1179 1180 1181 1182
		mutex_unlock(&intel_pstate_driver_lock);
		return -EAGAIN;
	}

1183 1184
	mutex_lock(&intel_pstate_limits_lock);

1185 1186
	global.min_perf_pct = clamp_t(int, input,
				      min_perf_pct_min(), global.max_perf_pct);
1187

1188 1189
	mutex_unlock(&intel_pstate_limits_lock);

1190 1191
	intel_pstate_update_policies();

1192 1193
	mutex_unlock(&intel_pstate_driver_lock);

1194 1195 1196 1197 1198 1199
	return count;
}

show_one(max_perf_pct, max_perf_pct);
show_one(min_perf_pct, min_perf_pct);

1200
define_one_global_rw(status);
1201 1202 1203
define_one_global_rw(no_turbo);
define_one_global_rw(max_perf_pct);
define_one_global_rw(min_perf_pct);
1204
define_one_global_ro(turbo_pct);
1205
define_one_global_ro(num_pstates);
1206 1207

static struct attribute *intel_pstate_attributes[] = {
1208
	&status.attr,
1209
	&no_turbo.attr,
1210
	&turbo_pct.attr,
1211
	&num_pstates.attr,
1212 1213 1214 1215 1216 1217 1218
	NULL
};

static struct attribute_group intel_pstate_attr_group = {
	.attrs = intel_pstate_attributes,
};

1219
static void __init intel_pstate_sysfs_expose_params(void)
1220
{
1221
	struct kobject *intel_pstate_kobject;
1222 1223 1224 1225
	int rc;

	intel_pstate_kobject = kobject_create_and_add("intel_pstate",
						&cpu_subsys.dev_root->kobj);
1226 1227 1228
	if (WARN_ON(!intel_pstate_kobject))
		return;

1229
	rc = sysfs_create_group(intel_pstate_kobject, &intel_pstate_attr_group);
1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245
	if (WARN_ON(rc))
		return;

	/*
	 * If per cpu limits are enforced there are no global limits, so
	 * return without creating max/min_perf_pct attributes
	 */
	if (per_cpu_limits)
		return;

	rc = sysfs_create_file(intel_pstate_kobject, &max_perf_pct.attr);
	WARN_ON(rc);

	rc = sysfs_create_file(intel_pstate_kobject, &min_perf_pct.attr);
	WARN_ON(rc);

1246 1247
}
/************************** sysfs end ************************/
D
Dirk Brandewie 已提交
1248

1249
static void intel_pstate_hwp_enable(struct cpudata *cpudata)
D
Dirk Brandewie 已提交
1250
{
1251
	/* First disable HWP notification interrupt as we don't process them */
1252 1253
	if (static_cpu_has(X86_FEATURE_HWP_NOTIFY))
		wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, 0x00);
1254

1255
	wrmsrl_on_cpu(cpudata->cpu, MSR_PM_ENABLE, 0x1);
1256
	cpudata->epp_policy = 0;
1257 1258
	if (cpudata->epp_default == -EINVAL)
		cpudata->epp_default = intel_pstate_get_epp(cpudata, 0);
D
Dirk Brandewie 已提交
1259 1260
}

1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279
#define MSR_IA32_POWER_CTL_BIT_EE	19

/* Disable energy efficiency optimization */
static void intel_pstate_disable_ee(int cpu)
{
	u64 power_ctl;
	int ret;

	ret = rdmsrl_on_cpu(cpu, MSR_IA32_POWER_CTL, &power_ctl);
	if (ret)
		return;

	if (!(power_ctl & BIT(MSR_IA32_POWER_CTL_BIT_EE))) {
		pr_info("Disabling energy efficiency optimization\n");
		power_ctl |= BIT(MSR_IA32_POWER_CTL_BIT_EE);
		wrmsrl_on_cpu(cpu, MSR_IA32_POWER_CTL, power_ctl);
	}
}

1280
static int atom_get_min_pstate(void)
1281 1282
{
	u64 value;
1283

1284
	rdmsrl(MSR_ATOM_CORE_RATIOS, value);
D
Dirk Brandewie 已提交
1285
	return (value >> 8) & 0x7F;
1286 1287
}

1288
static int atom_get_max_pstate(void)
1289 1290
{
	u64 value;
1291

1292
	rdmsrl(MSR_ATOM_CORE_RATIOS, value);
D
Dirk Brandewie 已提交
1293
	return (value >> 16) & 0x7F;
1294
}
1295

1296
static int atom_get_turbo_pstate(void)
1297 1298
{
	u64 value;
1299

1300
	rdmsrl(MSR_ATOM_CORE_TURBO_RATIOS, value);
D
Dirk Brandewie 已提交
1301
	return value & 0x7F;
1302 1303
}

1304
static u64 atom_get_val(struct cpudata *cpudata, int pstate)
1305 1306 1307 1308 1309
{
	u64 val;
	int32_t vid_fp;
	u32 vid;

1310
	val = (u64)pstate << 8;
1311
	if (global.no_turbo && !global.turbo_disabled)
1312 1313 1314 1315 1316 1317 1318
		val |= (u64)1 << 32;

	vid_fp = cpudata->vid.min + mul_fp(
		int_tofp(pstate - cpudata->pstate.min_pstate),
		cpudata->vid.ratio);

	vid_fp = clamp_t(int32_t, vid_fp, cpudata->vid.min, cpudata->vid.max);
1319
	vid = ceiling_fp(vid_fp);
1320

1321 1322 1323
	if (pstate > cpudata->pstate.max_pstate)
		vid = cpudata->vid.turbo;

1324
	return val | vid;
1325 1326
}

1327
static int silvermont_get_scaling(void)
1328 1329 1330
{
	u64 value;
	int i;
1331 1332 1333
	/* Defined in Table 35-6 from SDM (Sept 2015) */
	static int silvermont_freq_table[] = {
		83300, 100000, 133300, 116700, 80000};
1334 1335

	rdmsrl(MSR_FSB_FREQ, value);
1336 1337
	i = value & 0x7;
	WARN_ON(i > 4);
1338

1339 1340
	return silvermont_freq_table[i];
}
1341

1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355
static int airmont_get_scaling(void)
{
	u64 value;
	int i;
	/* Defined in Table 35-10 from SDM (Sept 2015) */
	static int airmont_freq_table[] = {
		83300, 100000, 133300, 116700, 80000,
		93300, 90000, 88900, 87500};

	rdmsrl(MSR_FSB_FREQ, value);
	i = value & 0xF;
	WARN_ON(i > 8);

	return airmont_freq_table[i];
1356 1357
}

1358
static void atom_get_vid(struct cpudata *cpudata)
1359 1360 1361
{
	u64 value;

1362
	rdmsrl(MSR_ATOM_CORE_VIDS, value);
D
Dirk Brandewie 已提交
1363 1364
	cpudata->vid.min = int_tofp((value >> 8) & 0x7f);
	cpudata->vid.max = int_tofp((value >> 16) & 0x7f);
1365 1366 1367 1368
	cpudata->vid.ratio = div_fp(
		cpudata->vid.max - cpudata->vid.min,
		int_tofp(cpudata->pstate.max_pstate -
			cpudata->pstate.min_pstate));
1369

1370
	rdmsrl(MSR_ATOM_CORE_TURBO_VIDS, value);
1371
	cpudata->vid.turbo = value & 0x7f;
1372 1373
}

1374
static int core_get_min_pstate(void)
1375 1376
{
	u64 value;
1377

1378
	rdmsrl(MSR_PLATFORM_INFO, value);
1379 1380 1381
	return (value >> 40) & 0xFF;
}

1382
static int core_get_max_pstate_physical(void)
1383 1384
{
	u64 value;
1385

1386
	rdmsrl(MSR_PLATFORM_INFO, value);
1387 1388 1389
	return (value >> 8) & 0xFF;
}

1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422
static int core_get_tdp_ratio(u64 plat_info)
{
	/* Check how many TDP levels present */
	if (plat_info & 0x600000000) {
		u64 tdp_ctrl;
		u64 tdp_ratio;
		int tdp_msr;
		int err;

		/* Get the TDP level (0, 1, 2) to get ratios */
		err = rdmsrl_safe(MSR_CONFIG_TDP_CONTROL, &tdp_ctrl);
		if (err)
			return err;

		/* TDP MSR are continuous starting at 0x648 */
		tdp_msr = MSR_CONFIG_TDP_NOMINAL + (tdp_ctrl & 0x03);
		err = rdmsrl_safe(tdp_msr, &tdp_ratio);
		if (err)
			return err;

		/* For level 1 and 2, bits[23:16] contain the ratio */
		if (tdp_ctrl & 0x03)
			tdp_ratio >>= 16;

		tdp_ratio &= 0xff; /* ratios are only 8 bits long */
		pr_debug("tdp_ratio %x\n", (int)tdp_ratio);

		return (int)tdp_ratio;
	}

	return -ENXIO;
}

1423
static int core_get_max_pstate(void)
1424
{
1425 1426 1427
	u64 tar;
	u64 plat_info;
	int max_pstate;
1428
	int tdp_ratio;
1429 1430 1431 1432 1433
	int err;

	rdmsrl(MSR_PLATFORM_INFO, plat_info);
	max_pstate = (plat_info >> 8) & 0xFF;

1434 1435 1436 1437 1438 1439 1440 1441 1442
	tdp_ratio = core_get_tdp_ratio(plat_info);
	if (tdp_ratio <= 0)
		return max_pstate;

	if (hwp_active) {
		/* Turbo activation ratio is not used on HWP platforms */
		return tdp_ratio;
	}

1443 1444
	err = rdmsrl_safe(MSR_TURBO_ACTIVATION_RATIO, &tar);
	if (!err) {
1445 1446
		int tar_levels;

1447
		/* Do some sanity checking for safety */
1448 1449 1450 1451
		tar_levels = tar & 0xff;
		if (tdp_ratio - 1 == tar_levels) {
			max_pstate = tar_levels;
			pr_debug("max_pstate=TAC %x\n", max_pstate);
1452 1453
		}
	}
1454

1455
	return max_pstate;
1456 1457
}

1458
static int core_get_turbo_pstate(void)
1459 1460 1461
{
	u64 value;
	int nont, ret;
1462

1463
	rdmsrl(MSR_TURBO_RATIO_LIMIT, value);
1464
	nont = core_get_max_pstate();
1465
	ret = (value) & 255;
1466 1467 1468 1469 1470
	if (ret <= nont)
		ret = nont;
	return ret;
}

1471 1472 1473 1474 1475
static inline int core_get_scaling(void)
{
	return 100000;
}

1476
static u64 core_get_val(struct cpudata *cpudata, int pstate)
1477 1478 1479
{
	u64 val;

1480
	val = (u64)pstate << 8;
1481
	if (global.no_turbo && !global.turbo_disabled)
1482 1483
		val |= (u64)1 << 32;

1484
	return val;
1485 1486
}

1487 1488 1489 1490 1491
static int knl_get_turbo_pstate(void)
{
	u64 value;
	int nont, ret;

1492
	rdmsrl(MSR_TURBO_RATIO_LIMIT, value);
1493 1494 1495 1496 1497 1498 1499
	nont = core_get_max_pstate();
	ret = (((value) >> 8) & 0xFF);
	if (ret <= nont)
		ret = nont;
	return ret;
}

1500
static int intel_pstate_get_base_pstate(struct cpudata *cpu)
1501
{
1502 1503
	return global.no_turbo || global.turbo_disabled ?
			cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
1504 1505
}

1506
static void intel_pstate_set_pstate(struct cpudata *cpu, int pstate)
1507
{
1508 1509
	trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu);
	cpu->pstate.current_pstate = pstate;
1510 1511 1512 1513 1514 1515 1516
	/*
	 * Generally, there is no guarantee that this code will always run on
	 * the CPU being updated, so force the register update to run on the
	 * right CPU.
	 */
	wrmsrl_on_cpu(cpu->cpu, MSR_IA32_PERF_CTL,
		      pstate_funcs.get_val(cpu, pstate));
1517 1518
}

1519 1520 1521 1522 1523 1524 1525
static void intel_pstate_set_min_pstate(struct cpudata *cpu)
{
	intel_pstate_set_pstate(cpu, cpu->pstate.min_pstate);
}

static void intel_pstate_max_within_limits(struct cpudata *cpu)
{
1526
	int pstate;
1527 1528

	update_turbo_state();
1529 1530 1531 1532
	pstate = intel_pstate_get_base_pstate(cpu);
	pstate = max(cpu->pstate.min_pstate,
		     fp_ext_toint(pstate * cpu->max_perf));
	intel_pstate_set_pstate(cpu, pstate);
1533 1534
}

1535 1536
static void intel_pstate_get_cpu_pstates(struct cpudata *cpu)
{
1537 1538
	cpu->pstate.min_pstate = pstate_funcs.get_min();
	cpu->pstate.max_pstate = pstate_funcs.get_max();
1539
	cpu->pstate.max_pstate_physical = pstate_funcs.get_max_physical();
1540
	cpu->pstate.turbo_pstate = pstate_funcs.get_turbo();
1541
	cpu->pstate.scaling = pstate_funcs.get_scaling();
1542 1543
	cpu->pstate.max_freq = cpu->pstate.max_pstate * cpu->pstate.scaling;
	cpu->pstate.turbo_freq = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
1544

1545 1546
	if (pstate_funcs.get_vid)
		pstate_funcs.get_vid(cpu);
1547 1548

	intel_pstate_set_min_pstate(cpu);
1549 1550
}

1551
static inline void intel_pstate_calc_avg_perf(struct cpudata *cpu)
1552
{
1553
	struct sample *sample = &cpu->sample;
1554

1555
	sample->core_avg_perf = div_ext_fp(sample->aperf, sample->mperf);
1556 1557
}

1558
static inline bool intel_pstate_sample(struct cpudata *cpu, u64 time)
1559 1560
{
	u64 aperf, mperf;
1561
	unsigned long flags;
1562
	u64 tsc;
1563

1564
	local_irq_save(flags);
1565 1566
	rdmsrl(MSR_IA32_APERF, aperf);
	rdmsrl(MSR_IA32_MPERF, mperf);
1567
	tsc = rdtsc();
1568
	if (cpu->prev_mperf == mperf || cpu->prev_tsc == tsc) {
1569
		local_irq_restore(flags);
1570
		return false;
1571
	}
1572
	local_irq_restore(flags);
1573

1574
	cpu->last_sample_time = cpu->sample.time;
1575
	cpu->sample.time = time;
1576 1577
	cpu->sample.aperf = aperf;
	cpu->sample.mperf = mperf;
1578
	cpu->sample.tsc =  tsc;
1579 1580
	cpu->sample.aperf -= cpu->prev_aperf;
	cpu->sample.mperf -= cpu->prev_mperf;
1581
	cpu->sample.tsc -= cpu->prev_tsc;
1582

1583 1584
	cpu->prev_aperf = aperf;
	cpu->prev_mperf = mperf;
1585
	cpu->prev_tsc = tsc;
1586 1587 1588 1589 1590 1591 1592
	/*
	 * First time this function is invoked in a given cycle, all of the
	 * previous sample data fields are equal to zero or stale and they must
	 * be populated with meaningful numbers for things to work, so assume
	 * that sample.time will always be reset before setting the utilization
	 * update hook and make the caller skip the sample then.
	 */
1593 1594 1595 1596 1597
	if (cpu->last_sample_time) {
		intel_pstate_calc_avg_perf(cpu);
		return true;
	}
	return false;
1598 1599
}

1600 1601
static inline int32_t get_avg_frequency(struct cpudata *cpu)
{
1602 1603
	return mul_ext_fp(cpu->sample.core_avg_perf,
			  cpu->pstate.max_pstate_physical * cpu->pstate.scaling);
1604 1605
}

1606 1607
static inline int32_t get_avg_pstate(struct cpudata *cpu)
{
1608 1609
	return mul_ext_fp(cpu->pstate.max_pstate_physical,
			  cpu->sample.core_avg_perf);
1610 1611
}

1612 1613 1614
static inline int32_t get_target_pstate_use_cpu_load(struct cpudata *cpu)
{
	struct sample *sample = &cpu->sample;
1615
	int32_t busy_frac, boost;
1616
	int target, avg_pstate;
1617

1618 1619 1620
	if (cpu->policy == CPUFREQ_POLICY_PERFORMANCE)
		return cpu->pstate.turbo_pstate;

1621
	busy_frac = div_fp(sample->mperf, sample->tsc);
1622

1623 1624
	boost = cpu->iowait_boost;
	cpu->iowait_boost >>= 1;
1625

1626 1627
	if (busy_frac < boost)
		busy_frac = boost;
1628

1629
	sample->busy_scaled = busy_frac * 100;
1630

1631
	target = global.no_turbo || global.turbo_disabled ?
1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649
			cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
	target += target >> 2;
	target = mul_fp(target, busy_frac);
	if (target < cpu->pstate.min_pstate)
		target = cpu->pstate.min_pstate;

	/*
	 * If the average P-state during the previous cycle was higher than the
	 * current target, add 50% of the difference to the target to reduce
	 * possible performance oscillations and offset possible performance
	 * loss related to moving the workload from one CPU to another within
	 * a package/module.
	 */
	avg_pstate = get_avg_pstate(cpu);
	if (avg_pstate > target)
		target += (avg_pstate - target) >> 1;

	return target;
1650 1651
}

1652
static inline int32_t get_target_pstate_use_performance(struct cpudata *cpu)
1653
{
1654
	int32_t perf_scaled, max_pstate, current_pstate, sample_ratio;
1655
	u64 duration_ns;
1656

1657 1658 1659
	if (cpu->policy == CPUFREQ_POLICY_PERFORMANCE)
		return cpu->pstate.turbo_pstate;

1660
	/*
1661 1662 1663 1664 1665
	 * perf_scaled is the ratio of the average P-state during the last
	 * sampling period to the P-state requested last time (in percent).
	 *
	 * That measures the system's response to the previous P-state
	 * selection.
1666
	 */
1667 1668
	max_pstate = cpu->pstate.max_pstate_physical;
	current_pstate = cpu->pstate.current_pstate;
1669
	perf_scaled = mul_ext_fp(cpu->sample.core_avg_perf,
1670
			       div_fp(100 * max_pstate, current_pstate));
1671

1672
	/*
1673 1674 1675
	 * Since our utilization update callback will not run unless we are
	 * in C0, check if the actual elapsed time is significantly greater (3x)
	 * than our sample interval.  If it is, then we were idle for a long
1676
	 * enough period of time to adjust our performance metric.
1677
	 */
1678
	duration_ns = cpu->sample.time - cpu->last_sample_time;
1679
	if ((s64)duration_ns > pid_params.sample_rate_ns * 3) {
1680
		sample_ratio = div_fp(pid_params.sample_rate_ns, duration_ns);
1681
		perf_scaled = mul_fp(perf_scaled, sample_ratio);
1682 1683 1684
	} else {
		sample_ratio = div_fp(100 * cpu->sample.mperf, cpu->sample.tsc);
		if (sample_ratio < int_tofp(1))
1685
			perf_scaled = 0;
1686 1687
	}

1688 1689
	cpu->sample.busy_scaled = perf_scaled;
	return cpu->pstate.current_pstate - pid_calc(&cpu->pid, perf_scaled);
1690 1691
}

1692
static int intel_pstate_prepare_request(struct cpudata *cpu, int pstate)
1693
{
1694 1695
	int max_pstate = intel_pstate_get_base_pstate(cpu);
	int min_pstate;
1696

1697 1698 1699 1700
	min_pstate = max(cpu->pstate.min_pstate,
			 fp_ext_toint(max_pstate * cpu->min_perf));
	max_pstate = max(min_pstate, fp_ext_toint(max_pstate * cpu->max_perf));
	return clamp_t(int, pstate, min_pstate, max_pstate);
1701 1702 1703 1704
}

static void intel_pstate_update_pstate(struct cpudata *cpu, int pstate)
{
1705 1706 1707
	if (pstate == cpu->pstate.current_pstate)
		return;

1708
	cpu->pstate.current_pstate = pstate;
1709 1710 1711
	wrmsrl(MSR_IA32_PERF_CTL, pstate_funcs.get_val(cpu, pstate));
}

1712
static void intel_pstate_adjust_pstate(struct cpudata *cpu, int target_pstate)
1713
{
1714
	int from = cpu->pstate.current_pstate;
1715 1716
	struct sample *sample;

1717 1718
	update_turbo_state();

1719 1720
	target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
	trace_cpu_frequency(target_pstate * cpu->pstate.scaling, cpu->cpu);
1721
	intel_pstate_update_pstate(cpu, target_pstate);
1722 1723

	sample = &cpu->sample;
1724
	trace_pstate_sample(mul_ext_fp(100, sample->core_avg_perf),
1725
		fp_toint(sample->busy_scaled),
1726 1727 1728 1729 1730
		from,
		cpu->pstate.current_pstate,
		sample->mperf,
		sample->aperf,
		sample->tsc,
1731 1732
		get_avg_frequency(cpu),
		fp_toint(cpu->iowait_boost * 100));
1733 1734
}

1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753
static void intel_pstate_update_util_hwp(struct update_util_data *data,
					 u64 time, unsigned int flags)
{
	struct cpudata *cpu = container_of(data, struct cpudata, update_util);
	u64 delta_ns = time - cpu->sample.time;

	if ((s64)delta_ns >= INTEL_PSTATE_HWP_SAMPLING_INTERVAL)
		intel_pstate_sample(cpu, time);
}

static void intel_pstate_update_util_pid(struct update_util_data *data,
					 u64 time, unsigned int flags)
{
	struct cpudata *cpu = container_of(data, struct cpudata, update_util);
	u64 delta_ns = time - cpu->sample.time;

	if ((s64)delta_ns < pid_params.sample_rate_ns)
		return;

1754 1755 1756 1757 1758 1759
	if (intel_pstate_sample(cpu, time)) {
		int target_pstate;

		target_pstate = get_target_pstate_use_performance(cpu);
		intel_pstate_adjust_pstate(cpu, target_pstate);
	}
1760 1761
}

1762
static void intel_pstate_update_util(struct update_util_data *data, u64 time,
1763
				     unsigned int flags)
1764
{
1765
	struct cpudata *cpu = container_of(data, struct cpudata, update_util);
1766 1767
	u64 delta_ns;

1768 1769 1770 1771 1772 1773 1774
	if (flags & SCHED_CPUFREQ_IOWAIT) {
		cpu->iowait_boost = int_tofp(1);
	} else if (cpu->iowait_boost) {
		/* Clear iowait_boost if the CPU may have been idle. */
		delta_ns = time - cpu->last_update;
		if (delta_ns > TICK_NSEC)
			cpu->iowait_boost = 0;
1775
	}
1776
	cpu->last_update = time;
1777
	delta_ns = time - cpu->sample.time;
1778 1779
	if ((s64)delta_ns < INTEL_PSTATE_DEFAULT_SAMPLING_INTERVAL)
		return;
1780

1781 1782
	if (intel_pstate_sample(cpu, time)) {
		int target_pstate;
1783

1784 1785 1786 1787
		target_pstate = get_target_pstate_use_cpu_load(cpu);
		intel_pstate_adjust_pstate(cpu, target_pstate);
	}
}
1788

1789 1790 1791 1792 1793 1794 1795 1796
static struct pstate_funcs core_funcs = {
	.get_max = core_get_max_pstate,
	.get_max_physical = core_get_max_pstate_physical,
	.get_min = core_get_min_pstate,
	.get_turbo = core_get_turbo_pstate,
	.get_scaling = core_get_scaling,
	.get_val = core_get_val,
	.update_util = intel_pstate_update_util_pid,
1797 1798
};

1799 1800 1801 1802 1803 1804 1805 1806 1807
static const struct pstate_funcs silvermont_funcs = {
	.get_max = atom_get_max_pstate,
	.get_max_physical = atom_get_max_pstate,
	.get_min = atom_get_min_pstate,
	.get_turbo = atom_get_turbo_pstate,
	.get_val = atom_get_val,
	.get_scaling = silvermont_get_scaling,
	.get_vid = atom_get_vid,
	.update_util = intel_pstate_update_util,
1808 1809
};

1810 1811 1812 1813 1814 1815 1816 1817 1818
static const struct pstate_funcs airmont_funcs = {
	.get_max = atom_get_max_pstate,
	.get_max_physical = atom_get_max_pstate,
	.get_min = atom_get_min_pstate,
	.get_turbo = atom_get_turbo_pstate,
	.get_val = atom_get_val,
	.get_scaling = airmont_get_scaling,
	.get_vid = atom_get_vid,
	.update_util = intel_pstate_update_util,
1819 1820
};

1821 1822 1823 1824 1825 1826 1827 1828
static const struct pstate_funcs knl_funcs = {
	.get_max = core_get_max_pstate,
	.get_max_physical = core_get_max_pstate_physical,
	.get_min = core_get_min_pstate,
	.get_turbo = knl_get_turbo_pstate,
	.get_scaling = core_get_scaling,
	.get_val = core_get_val,
	.update_util = intel_pstate_update_util_pid,
1829 1830
};

1831 1832 1833 1834 1835 1836 1837 1838
static const struct pstate_funcs bxt_funcs = {
	.get_max = core_get_max_pstate,
	.get_max_physical = core_get_max_pstate_physical,
	.get_min = core_get_min_pstate,
	.get_turbo = core_get_turbo_pstate,
	.get_scaling = core_get_scaling,
	.get_val = core_get_val,
	.update_util = intel_pstate_update_util,
1839 1840
};

1841
#define ICPU(model, policy) \
1842 1843
	{ X86_VENDOR_INTEL, 6, model, X86_FEATURE_APERFMPERF,\
			(unsigned long)&policy }
1844 1845

static const struct x86_cpu_id intel_pstate_cpu_ids[] = {
1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864
	ICPU(INTEL_FAM6_SANDYBRIDGE, 		core_funcs),
	ICPU(INTEL_FAM6_SANDYBRIDGE_X,		core_funcs),
	ICPU(INTEL_FAM6_ATOM_SILVERMONT1,	silvermont_funcs),
	ICPU(INTEL_FAM6_IVYBRIDGE,		core_funcs),
	ICPU(INTEL_FAM6_HASWELL_CORE,		core_funcs),
	ICPU(INTEL_FAM6_BROADWELL_CORE,		core_funcs),
	ICPU(INTEL_FAM6_IVYBRIDGE_X,		core_funcs),
	ICPU(INTEL_FAM6_HASWELL_X,		core_funcs),
	ICPU(INTEL_FAM6_HASWELL_ULT,		core_funcs),
	ICPU(INTEL_FAM6_HASWELL_GT3E,		core_funcs),
	ICPU(INTEL_FAM6_BROADWELL_GT3E,		core_funcs),
	ICPU(INTEL_FAM6_ATOM_AIRMONT,		airmont_funcs),
	ICPU(INTEL_FAM6_SKYLAKE_MOBILE,		core_funcs),
	ICPU(INTEL_FAM6_BROADWELL_X,		core_funcs),
	ICPU(INTEL_FAM6_SKYLAKE_DESKTOP,	core_funcs),
	ICPU(INTEL_FAM6_BROADWELL_XEON_D,	core_funcs),
	ICPU(INTEL_FAM6_XEON_PHI_KNL,		knl_funcs),
	ICPU(INTEL_FAM6_XEON_PHI_KNM,		knl_funcs),
	ICPU(INTEL_FAM6_ATOM_GOLDMONT,		bxt_funcs),
1865
	ICPU(INTEL_FAM6_ATOM_GEMINI_LAKE,       bxt_funcs),
1866 1867 1868 1869
	{}
};
MODULE_DEVICE_TABLE(x86cpu, intel_pstate_cpu_ids);

1870
static const struct x86_cpu_id intel_pstate_cpu_oob_ids[] __initconst = {
1871 1872 1873
	ICPU(INTEL_FAM6_BROADWELL_XEON_D, core_funcs),
	ICPU(INTEL_FAM6_BROADWELL_X, core_funcs),
	ICPU(INTEL_FAM6_SKYLAKE_X, core_funcs),
D
Dirk Brandewie 已提交
1874 1875 1876
	{}
};

1877
static const struct x86_cpu_id intel_pstate_cpu_ee_disable_ids[] = {
1878
	ICPU(INTEL_FAM6_KABYLAKE_DESKTOP, core_funcs),
1879 1880 1881
	{}
};

1882 1883
static bool pid_in_use(void);

1884 1885 1886 1887
static int intel_pstate_init_cpu(unsigned int cpunum)
{
	struct cpudata *cpu;

1888 1889 1890
	cpu = all_cpu_data[cpunum];

	if (!cpu) {
1891
		cpu = kzalloc(sizeof(*cpu), GFP_KERNEL);
1892 1893 1894 1895 1896
		if (!cpu)
			return -ENOMEM;

		all_cpu_data[cpunum] = cpu;

1897 1898 1899
		cpu->epp_default = -EINVAL;
		cpu->epp_powersave = -EINVAL;
		cpu->epp_saved = -EINVAL;
1900
	}
1901 1902 1903 1904

	cpu = all_cpu_data[cpunum];

	cpu->cpu = cpunum;
1905

1906
	if (hwp_active) {
1907 1908 1909 1910 1911 1912
		const struct x86_cpu_id *id;

		id = x86_match_cpu(intel_pstate_cpu_ee_disable_ids);
		if (id)
			intel_pstate_disable_ee(cpunum);

1913
		intel_pstate_hwp_enable(cpu);
1914
	} else if (pid_in_use()) {
1915
		intel_pstate_pid_reset(cpu);
1916
	}
1917

1918
	intel_pstate_get_cpu_pstates(cpu);
1919

J
Joe Perches 已提交
1920
	pr_debug("controlling: cpu %d\n", cpunum);
1921 1922 1923 1924 1925 1926

	return 0;
}

static unsigned int intel_pstate_get(unsigned int cpu_num)
{
1927
	struct cpudata *cpu = all_cpu_data[cpu_num];
1928

1929
	return cpu ? get_avg_frequency(cpu) : 0;
1930 1931
}

1932
static void intel_pstate_set_update_util_hook(unsigned int cpu_num)
1933
{
1934 1935
	struct cpudata *cpu = all_cpu_data[cpu_num];

1936 1937 1938
	if (cpu->update_util_set)
		return;

1939 1940
	/* Prevent intel_pstate_update_util() from using stale data. */
	cpu->sample.time = 0;
1941 1942
	cpufreq_add_update_util_hook(cpu_num, &cpu->update_util,
				     pstate_funcs.update_util);
1943
	cpu->update_util_set = true;
1944 1945 1946 1947
}

static void intel_pstate_clear_update_util_hook(unsigned int cpu)
{
1948 1949 1950 1951 1952
	struct cpudata *cpu_data = all_cpu_data[cpu];

	if (!cpu_data->update_util_set)
		return;

1953
	cpufreq_remove_update_util_hook(cpu);
1954
	cpu_data->update_util_set = false;
1955 1956 1957
	synchronize_sched();
}

1958 1959 1960 1961 1962 1963
static int intel_pstate_get_max_freq(struct cpudata *cpu)
{
	return global.turbo_disabled || global.no_turbo ?
			cpu->pstate.max_freq : cpu->pstate.turbo_freq;
}

1964
static void intel_pstate_update_perf_limits(struct cpufreq_policy *policy,
1965
					    struct cpudata *cpu)
1966
{
1967
	int max_freq = intel_pstate_get_max_freq(cpu);
1968
	int32_t max_policy_perf, min_policy_perf;
1969

1970
	max_policy_perf = div_ext_fp(policy->max, max_freq);
1971
	max_policy_perf = clamp_t(int32_t, max_policy_perf, 0, int_ext_tofp(1));
1972
	if (policy->max == policy->min) {
1973
		min_policy_perf = max_policy_perf;
1974
	} else {
1975
		min_policy_perf = div_ext_fp(policy->min, max_freq);
1976 1977
		min_policy_perf = clamp_t(int32_t, min_policy_perf,
					  0, max_policy_perf);
1978
	}
1979

1980
	/* Normalize user input to [min_perf, max_perf] */
1981
	if (per_cpu_limits) {
1982 1983
		cpu->min_perf = min_policy_perf;
		cpu->max_perf = max_policy_perf;
1984 1985 1986 1987 1988 1989
	} else {
		int32_t global_min, global_max;

		/* Global limits are in percent of the maximum turbo P-state. */
		global_max = percent_ext_fp(global.max_perf_pct);
		global_min = percent_ext_fp(global.min_perf_pct);
1990
		if (max_freq != cpu->pstate.turbo_freq) {
1991 1992 1993 1994 1995 1996 1997 1998
			int32_t turbo_factor;

			turbo_factor = div_ext_fp(cpu->pstate.turbo_pstate,
						  cpu->pstate.max_pstate);
			global_min = mul_ext_fp(global_min, turbo_factor);
			global_max = mul_ext_fp(global_max, turbo_factor);
		}
		global_min = clamp_t(int32_t, global_min, 0, global_max);
1999

2000 2001 2002 2003
		cpu->min_perf = max(min_policy_perf, global_min);
		cpu->min_perf = min(cpu->min_perf, max_policy_perf);
		cpu->max_perf = min(max_policy_perf, global_max);
		cpu->max_perf = max(min_policy_perf, cpu->max_perf);
2004 2005

		/* Make sure min_perf <= max_perf */
2006
		cpu->min_perf = min(cpu->min_perf, cpu->max_perf);
2007
	}
2008

2009 2010
	cpu->max_perf = round_up(cpu->max_perf, EXT_FRAC_BITS);
	cpu->min_perf = round_up(cpu->min_perf, EXT_FRAC_BITS);
2011 2012

	pr_debug("cpu:%d max_perf_pct:%d min_perf_pct:%d\n", policy->cpu,
2013 2014
		 fp_ext_toint(cpu->max_perf * 100),
		 fp_ext_toint(cpu->min_perf * 100));
2015 2016
}

2017 2018
static int intel_pstate_set_policy(struct cpufreq_policy *policy)
{
2019 2020
	struct cpudata *cpu;

2021 2022 2023
	if (!policy->cpuinfo.max_freq)
		return -ENODEV;

2024 2025 2026
	pr_debug("set_policy cpuinfo.max %u policy->max %u\n",
		 policy->cpuinfo.max_freq, policy->max);

2027
	cpu = all_cpu_data[policy->cpu];
2028 2029
	cpu->policy = policy->policy;

2030 2031
	mutex_lock(&intel_pstate_limits_lock);

2032
	intel_pstate_update_perf_limits(policy, cpu);
2033

2034
	if (cpu->policy == CPUFREQ_POLICY_PERFORMANCE) {
2035 2036 2037 2038 2039 2040 2041 2042
		/*
		 * NOHZ_FULL CPUs need this as the governor callback may not
		 * be invoked on them.
		 */
		intel_pstate_clear_update_util_hook(policy->cpu);
		intel_pstate_max_within_limits(cpu);
	}

2043 2044
	intel_pstate_set_update_util_hook(policy->cpu);

2045
	if (hwp_active)
2046
		intel_pstate_hwp_set(policy->cpu);
D
Dirk Brandewie 已提交
2047

2048 2049
	mutex_unlock(&intel_pstate_limits_lock);

2050 2051 2052
	return 0;
}

2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063
static void intel_pstate_adjust_policy_max(struct cpufreq_policy *policy,
					 struct cpudata *cpu)
{
	if (cpu->pstate.max_pstate_physical > cpu->pstate.max_pstate &&
	    policy->max < policy->cpuinfo.max_freq &&
	    policy->max > cpu->pstate.max_freq) {
		pr_debug("policy->max > max non turbo frequency\n");
		policy->max = policy->cpuinfo.max_freq;
	}
}

2064 2065
static int intel_pstate_verify_policy(struct cpufreq_policy *policy)
{
2066 2067 2068
	struct cpudata *cpu = all_cpu_data[policy->cpu];

	update_turbo_state();
2069 2070
	cpufreq_verify_within_limits(policy, policy->cpuinfo.min_freq,
				     intel_pstate_get_max_freq(cpu));
2071

2072
	if (policy->policy != CPUFREQ_POLICY_POWERSAVE &&
2073
	    policy->policy != CPUFREQ_POLICY_PERFORMANCE)
2074 2075
		return -EINVAL;

2076 2077
	intel_pstate_adjust_policy_max(policy, cpu);

2078 2079 2080
	return 0;
}

2081 2082 2083 2084 2085
static void intel_cpufreq_stop_cpu(struct cpufreq_policy *policy)
{
	intel_pstate_set_min_pstate(all_cpu_data[policy->cpu]);
}

2086
static void intel_pstate_stop_cpu(struct cpufreq_policy *policy)
2087
{
2088
	pr_debug("CPU %d exiting\n", policy->cpu);
2089

2090
	intel_pstate_clear_update_util_hook(policy->cpu);
2091 2092 2093
	if (hwp_active)
		intel_pstate_hwp_save_state(policy);
	else
2094 2095
		intel_cpufreq_stop_cpu(policy);
}
2096

2097 2098 2099
static int intel_pstate_cpu_exit(struct cpufreq_policy *policy)
{
	intel_pstate_exit_perf_limits(policy);
2100

2101
	policy->fast_switch_possible = false;
D
Dirk Brandewie 已提交
2102

2103
	return 0;
2104 2105
}

2106
static int __intel_pstate_cpu_init(struct cpufreq_policy *policy)
2107 2108
{
	struct cpudata *cpu;
2109
	int rc;
2110 2111 2112 2113 2114 2115 2116

	rc = intel_pstate_init_cpu(policy->cpu);
	if (rc)
		return rc;

	cpu = all_cpu_data[policy->cpu];

2117 2118
	cpu->max_perf = int_ext_tofp(1);
	cpu->min_perf = 0;
2119

2120 2121
	policy->min = cpu->pstate.min_pstate * cpu->pstate.scaling;
	policy->max = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
2122 2123

	/* cpuinfo and default policy values */
2124
	policy->cpuinfo.min_freq = cpu->pstate.min_pstate * cpu->pstate.scaling;
2125
	update_turbo_state();
2126
	policy->cpuinfo.max_freq = global.turbo_disabled ?
2127 2128 2129
			cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
	policy->cpuinfo.max_freq *= cpu->pstate.scaling;

2130
	intel_pstate_init_acpi_perf_limits(policy);
2131 2132
	cpumask_set_cpu(policy->cpu, policy->cpus);

2133 2134
	policy->fast_switch_possible = true;

2135 2136 2137
	return 0;
}

2138
static int intel_pstate_cpu_init(struct cpufreq_policy *policy)
2139
{
2140 2141 2142 2143 2144 2145
	int ret = __intel_pstate_cpu_init(policy);

	if (ret)
		return ret;

	policy->cpuinfo.transition_latency = CPUFREQ_ETERNAL;
2146
	if (IS_ENABLED(CONFIG_CPU_FREQ_DEFAULT_GOV_PERFORMANCE))
2147 2148 2149
		policy->policy = CPUFREQ_POLICY_PERFORMANCE;
	else
		policy->policy = CPUFREQ_POLICY_POWERSAVE;
2150 2151 2152 2153

	return 0;
}

2154
static struct cpufreq_driver intel_pstate = {
2155 2156 2157
	.flags		= CPUFREQ_CONST_LOOPS,
	.verify		= intel_pstate_verify_policy,
	.setpolicy	= intel_pstate_set_policy,
2158
	.suspend	= intel_pstate_hwp_save_state,
2159
	.resume		= intel_pstate_resume,
2160 2161
	.get		= intel_pstate_get,
	.init		= intel_pstate_cpu_init,
2162
	.exit		= intel_pstate_cpu_exit,
2163
	.stop_cpu	= intel_pstate_stop_cpu,
2164 2165 2166
	.name		= "intel_pstate",
};

2167 2168 2169 2170 2171
static int intel_cpufreq_verify_policy(struct cpufreq_policy *policy)
{
	struct cpudata *cpu = all_cpu_data[policy->cpu];

	update_turbo_state();
2172 2173
	cpufreq_verify_within_limits(policy, policy->cpuinfo.min_freq,
				     intel_pstate_get_max_freq(cpu));
2174

2175
	intel_pstate_adjust_policy_max(policy, cpu);
2176

2177 2178
	intel_pstate_update_perf_limits(policy, cpu);

2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189
	return 0;
}

static int intel_cpufreq_target(struct cpufreq_policy *policy,
				unsigned int target_freq,
				unsigned int relation)
{
	struct cpudata *cpu = all_cpu_data[policy->cpu];
	struct cpufreq_freqs freqs;
	int target_pstate;

2190 2191
	update_turbo_state();

2192
	freqs.old = policy->cur;
2193
	freqs.new = target_freq;
2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212

	cpufreq_freq_transition_begin(policy, &freqs);
	switch (relation) {
	case CPUFREQ_RELATION_L:
		target_pstate = DIV_ROUND_UP(freqs.new, cpu->pstate.scaling);
		break;
	case CPUFREQ_RELATION_H:
		target_pstate = freqs.new / cpu->pstate.scaling;
		break;
	default:
		target_pstate = DIV_ROUND_CLOSEST(freqs.new, cpu->pstate.scaling);
		break;
	}
	target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
	if (target_pstate != cpu->pstate.current_pstate) {
		cpu->pstate.current_pstate = target_pstate;
		wrmsrl_on_cpu(policy->cpu, MSR_IA32_PERF_CTL,
			      pstate_funcs.get_val(cpu, target_pstate));
	}
2213
	freqs.new = target_pstate * cpu->pstate.scaling;
2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224
	cpufreq_freq_transition_end(policy, &freqs, false);

	return 0;
}

static unsigned int intel_cpufreq_fast_switch(struct cpufreq_policy *policy,
					      unsigned int target_freq)
{
	struct cpudata *cpu = all_cpu_data[policy->cpu];
	int target_pstate;

2225 2226
	update_turbo_state();

2227
	target_pstate = DIV_ROUND_UP(target_freq, cpu->pstate.scaling);
2228
	target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
2229
	intel_pstate_update_pstate(cpu, target_pstate);
2230
	return target_pstate * cpu->pstate.scaling;
2231 2232 2233 2234 2235 2236 2237 2238 2239 2240
}

static int intel_cpufreq_cpu_init(struct cpufreq_policy *policy)
{
	int ret = __intel_pstate_cpu_init(policy);

	if (ret)
		return ret;

	policy->cpuinfo.transition_latency = INTEL_CPUFREQ_TRANSITION_LATENCY;
2241
	policy->transition_delay_us = INTEL_CPUFREQ_TRANSITION_DELAY;
2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258
	/* This reflects the intel_pstate_get_cpu_pstates() setting. */
	policy->cur = policy->cpuinfo.min_freq;

	return 0;
}

static struct cpufreq_driver intel_cpufreq = {
	.flags		= CPUFREQ_CONST_LOOPS,
	.verify		= intel_cpufreq_verify_policy,
	.target		= intel_cpufreq_target,
	.fast_switch	= intel_cpufreq_fast_switch,
	.init		= intel_cpufreq_cpu_init,
	.exit		= intel_pstate_cpu_exit,
	.stop_cpu	= intel_cpufreq_stop_cpu,
	.name		= "intel_cpufreq",
};

2259
static struct cpufreq_driver *default_driver = &intel_pstate;
2260

2261 2262 2263 2264 2265 2266
static bool pid_in_use(void)
{
	return intel_pstate_driver == &intel_pstate &&
		pstate_funcs.update_util == intel_pstate_update_util_pid;
}

2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281
static void intel_pstate_driver_cleanup(void)
{
	unsigned int cpu;

	get_online_cpus();
	for_each_online_cpu(cpu) {
		if (all_cpu_data[cpu]) {
			if (intel_pstate_driver == &intel_pstate)
				intel_pstate_clear_update_util_hook(cpu);

			kfree(all_cpu_data[cpu]);
			all_cpu_data[cpu] = NULL;
		}
	}
	put_online_cpus();
2282
	intel_pstate_driver = NULL;
2283 2284
}

2285
static int intel_pstate_register_driver(struct cpufreq_driver *driver)
2286 2287 2288
{
	int ret;

2289 2290
	memset(&global, 0, sizeof(global));
	global.max_perf_pct = 100;
2291

2292
	intel_pstate_driver = driver;
2293 2294 2295 2296 2297 2298
	ret = cpufreq_register_driver(intel_pstate_driver);
	if (ret) {
		intel_pstate_driver_cleanup();
		return ret;
	}

2299 2300
	global.min_perf_pct = min_perf_pct_min();

2301
	if (pid_in_use())
2302 2303 2304 2305 2306 2307 2308 2309 2310 2311
		intel_pstate_debug_expose_params();

	return 0;
}

static int intel_pstate_unregister_driver(void)
{
	if (hwp_active)
		return -EBUSY;

2312
	if (pid_in_use())
2313 2314 2315 2316 2317 2318 2319 2320 2321 2322
		intel_pstate_debug_hide_params();

	cpufreq_unregister_driver(intel_pstate_driver);
	intel_pstate_driver_cleanup();

	return 0;
}

static ssize_t intel_pstate_show_status(char *buf)
{
2323
	if (!intel_pstate_driver)
2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334
		return sprintf(buf, "off\n");

	return sprintf(buf, "%s\n", intel_pstate_driver == &intel_pstate ?
					"active" : "passive");
}

static int intel_pstate_update_status(const char *buf, size_t size)
{
	int ret;

	if (size == 3 && !strncmp(buf, "off", size))
2335
		return intel_pstate_driver ?
2336 2337 2338
			intel_pstate_unregister_driver() : -EINVAL;

	if (size == 6 && !strncmp(buf, "active", size)) {
2339
		if (intel_pstate_driver) {
2340 2341 2342 2343 2344 2345 2346 2347
			if (intel_pstate_driver == &intel_pstate)
				return 0;

			ret = intel_pstate_unregister_driver();
			if (ret)
				return ret;
		}

2348
		return intel_pstate_register_driver(&intel_pstate);
2349 2350 2351
	}

	if (size == 7 && !strncmp(buf, "passive", size)) {
2352
		if (intel_pstate_driver) {
2353
			if (intel_pstate_driver == &intel_cpufreq)
2354 2355 2356 2357 2358 2359 2360
				return 0;

			ret = intel_pstate_unregister_driver();
			if (ret)
				return ret;
		}

2361
		return intel_pstate_register_driver(&intel_cpufreq);
2362 2363 2364 2365 2366
	}

	return -EINVAL;
}

2367 2368 2369
static int no_load __initdata;
static int no_hwp __initdata;
static int hwp_only __initdata;
2370
static unsigned int force_load __initdata;
2371

2372
static int __init intel_pstate_msrs_not_valid(void)
2373
{
2374
	if (!pstate_funcs.get_max() ||
2375 2376
	    !pstate_funcs.get_min() ||
	    !pstate_funcs.get_turbo())
2377 2378 2379 2380
		return -ENODEV;

	return 0;
}
2381

2382 2383 2384
#ifdef CONFIG_ACPI
static void intel_pstate_use_acpi_profile(void)
{
2385 2386 2387 2388 2389 2390
	switch (acpi_gbl_FADT.preferred_profile) {
	case PM_MOBILE:
	case PM_TABLET:
	case PM_APPLIANCE_PC:
	case PM_DESKTOP:
	case PM_WORKSTATION:
2391
		pstate_funcs.update_util = intel_pstate_update_util;
2392
	}
2393 2394 2395 2396 2397 2398 2399
}
#else
static void intel_pstate_use_acpi_profile(void)
{
}
#endif

2400
static void __init copy_cpu_funcs(struct pstate_funcs *funcs)
2401 2402
{
	pstate_funcs.get_max   = funcs->get_max;
2403
	pstate_funcs.get_max_physical = funcs->get_max_physical;
2404 2405
	pstate_funcs.get_min   = funcs->get_min;
	pstate_funcs.get_turbo = funcs->get_turbo;
2406
	pstate_funcs.get_scaling = funcs->get_scaling;
2407
	pstate_funcs.get_val   = funcs->get_val;
2408
	pstate_funcs.get_vid   = funcs->get_vid;
2409
	pstate_funcs.update_util = funcs->update_util;
2410

2411
	intel_pstate_use_acpi_profile();
2412 2413
}

2414
#ifdef CONFIG_ACPI
2415

2416
static bool __init intel_pstate_no_acpi_pss(void)
2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444
{
	int i;

	for_each_possible_cpu(i) {
		acpi_status status;
		union acpi_object *pss;
		struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
		struct acpi_processor *pr = per_cpu(processors, i);

		if (!pr)
			continue;

		status = acpi_evaluate_object(pr->handle, "_PSS", NULL, &buffer);
		if (ACPI_FAILURE(status))
			continue;

		pss = buffer.pointer;
		if (pss && pss->type == ACPI_TYPE_PACKAGE) {
			kfree(pss);
			return false;
		}

		kfree(pss);
	}

	return true;
}

2445
static bool __init intel_pstate_has_acpi_ppc(void)
2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464
{
	int i;

	for_each_possible_cpu(i) {
		struct acpi_processor *pr = per_cpu(processors, i);

		if (!pr)
			continue;
		if (acpi_has_method(pr->handle, "_PPC"))
			return true;
	}
	return false;
}

enum {
	PSS,
	PPC,
};

2465 2466 2467 2468
struct hw_vendor_info {
	u16  valid;
	char oem_id[ACPI_OEM_ID_SIZE];
	char oem_table_id[ACPI_OEM_TABLE_ID_SIZE];
2469
	int  oem_pwr_table;
2470 2471 2472
};

/* Hardware vendor-specific info that has its own power management modes */
2473
static struct hw_vendor_info vendor_info[] __initdata = {
2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484
	{1, "HP    ", "ProLiant", PSS},
	{1, "ORACLE", "X4-2    ", PPC},
	{1, "ORACLE", "X4-2L   ", PPC},
	{1, "ORACLE", "X4-2B   ", PPC},
	{1, "ORACLE", "X3-2    ", PPC},
	{1, "ORACLE", "X3-2L   ", PPC},
	{1, "ORACLE", "X3-2B   ", PPC},
	{1, "ORACLE", "X4470M2 ", PPC},
	{1, "ORACLE", "X4270M3 ", PPC},
	{1, "ORACLE", "X4270M2 ", PPC},
	{1, "ORACLE", "X4170M2 ", PPC},
2485 2486 2487 2488
	{1, "ORACLE", "X4170 M3", PPC},
	{1, "ORACLE", "X4275 M3", PPC},
	{1, "ORACLE", "X6-2    ", PPC},
	{1, "ORACLE", "Sudbury ", PPC},
2489 2490 2491
	{0, "", ""},
};

2492
static bool __init intel_pstate_platform_pwr_mgmt_exists(void)
2493 2494 2495
{
	struct acpi_table_header hdr;
	struct hw_vendor_info *v_info;
D
Dirk Brandewie 已提交
2496 2497 2498 2499 2500 2501 2502 2503 2504
	const struct x86_cpu_id *id;
	u64 misc_pwr;

	id = x86_match_cpu(intel_pstate_cpu_oob_ids);
	if (id) {
		rdmsrl(MSR_MISC_PWR_MGMT, misc_pwr);
		if ( misc_pwr & (1 << 8))
			return true;
	}
2505

2506 2507
	if (acpi_disabled ||
	    ACPI_FAILURE(acpi_get_table_header(ACPI_SIG_FADT, 0, &hdr)))
2508 2509 2510
		return false;

	for (v_info = vendor_info; v_info->valid; v_info++) {
2511
		if (!strncmp(hdr.oem_id, v_info->oem_id, ACPI_OEM_ID_SIZE) &&
2512 2513 2514 2515 2516 2517
			!strncmp(hdr.oem_table_id, v_info->oem_table_id,
						ACPI_OEM_TABLE_ID_SIZE))
			switch (v_info->oem_pwr_table) {
			case PSS:
				return intel_pstate_no_acpi_pss();
			case PPC:
2518 2519
				return intel_pstate_has_acpi_ppc() &&
					(!force_load);
2520
			}
2521 2522 2523 2524
	}

	return false;
}
2525 2526 2527 2528 2529 2530 2531 2532 2533 2534

static void intel_pstate_request_control_from_smm(void)
{
	/*
	 * It may be unsafe to request P-states control from SMM if _PPC support
	 * has not been enabled.
	 */
	if (acpi_ppc)
		acpi_processor_pstate_control();
}
2535 2536
#else /* CONFIG_ACPI not enabled */
static inline bool intel_pstate_platform_pwr_mgmt_exists(void) { return false; }
2537
static inline bool intel_pstate_has_acpi_ppc(void) { return false; }
2538
static inline void intel_pstate_request_control_from_smm(void) {}
2539 2540
#endif /* CONFIG_ACPI */

2541 2542 2543 2544 2545
static const struct x86_cpu_id hwp_support_ids[] __initconst = {
	{ X86_VENDOR_INTEL, 6, X86_MODEL_ANY, X86_FEATURE_HWP },
	{}
};

2546 2547
static int __init intel_pstate_init(void)
{
2548
	int rc;
2549

2550 2551 2552
	if (no_load)
		return -ENODEV;

2553
	if (x86_match_cpu(hwp_support_ids)) {
2554
		copy_cpu_funcs(&core_funcs);
2555
		if (no_hwp) {
2556
			pstate_funcs.update_util = intel_pstate_update_util;
2557 2558 2559
		} else {
			hwp_active++;
			intel_pstate.attr = hwp_cpufreq_attrs;
2560
			pstate_funcs.update_util = intel_pstate_update_util_hwp;
2561 2562 2563 2564
			goto hwp_cpu_matched;
		}
	} else {
		const struct x86_cpu_id *id;
2565

2566 2567 2568
		id = x86_match_cpu(intel_pstate_cpu_ids);
		if (!id)
			return -ENODEV;
2569

2570
		copy_cpu_funcs((struct pstate_funcs *)id->driver_data);
2571
	}
2572

2573 2574 2575
	if (intel_pstate_msrs_not_valid())
		return -ENODEV;

2576 2577 2578 2579 2580 2581 2582 2583
hwp_cpu_matched:
	/*
	 * The Intel pstate driver will be ignored if the platform
	 * firmware has its own power management modes.
	 */
	if (intel_pstate_platform_pwr_mgmt_exists())
		return -ENODEV;

2584 2585 2586
	if (!hwp_active && hwp_only)
		return -ENOTSUPP;

J
Joe Perches 已提交
2587
	pr_info("Intel P-state driver initializing\n");
2588

2589
	all_cpu_data = vzalloc(sizeof(void *) * num_possible_cpus());
2590 2591 2592
	if (!all_cpu_data)
		return -ENOMEM;

2593 2594
	intel_pstate_request_control_from_smm();

2595
	intel_pstate_sysfs_expose_params();
2596

2597
	mutex_lock(&intel_pstate_driver_lock);
2598
	rc = intel_pstate_register_driver(default_driver);
2599
	mutex_unlock(&intel_pstate_driver_lock);
2600 2601
	if (rc)
		return rc;
2602

2603
	if (hwp_active)
J
Joe Perches 已提交
2604
		pr_info("HWP enabled\n");
2605

2606
	return 0;
2607 2608 2609
}
device_initcall(intel_pstate_init);

2610 2611 2612 2613 2614
static int __init intel_pstate_setup(char *str)
{
	if (!str)
		return -EINVAL;

2615
	if (!strcmp(str, "disable")) {
2616
		no_load = 1;
2617 2618
	} else if (!strcmp(str, "passive")) {
		pr_info("Passive mode enabled\n");
2619
		default_driver = &intel_cpufreq;
2620 2621
		no_hwp = 1;
	}
2622
	if (!strcmp(str, "no_hwp")) {
J
Joe Perches 已提交
2623
		pr_info("HWP disabled\n");
D
Dirk Brandewie 已提交
2624
		no_hwp = 1;
2625
	}
2626 2627
	if (!strcmp(str, "force"))
		force_load = 1;
2628 2629
	if (!strcmp(str, "hwp_only"))
		hwp_only = 1;
2630 2631
	if (!strcmp(str, "per_cpu_perf_limits"))
		per_cpu_limits = true;
2632 2633 2634 2635 2636 2637

#ifdef CONFIG_ACPI
	if (!strcmp(str, "support_acpi_ppc"))
		acpi_ppc = true;
#endif

2638 2639 2640 2641
	return 0;
}
early_param("intel_pstate", intel_pstate_setup);

2642 2643 2644
MODULE_AUTHOR("Dirk Brandewie <dirk.j.brandewie@intel.com>");
MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors");
MODULE_LICENSE("GPL");