helper.c 291.6 KB
Newer Older
B
bellard 已提交
1
#include "cpu.h"
2
#include "internals.h"
3
#include "exec/gdbstub.h"
4
#include "exec/helper-proto.h"
5
#include "qemu/host-utils.h"
6
#include "sysemu/arch_init.h"
7
#include "sysemu/sysemu.h"
8
#include "qemu/bitops.h"
9
#include "qemu/crc32c.h"
P
Paolo Bonzini 已提交
10
#include "exec/cpu_ldst.h"
11
#include "arm_ldst.h"
12
#include <zlib.h> /* For crc32 */
13
#include "exec/semihost.h"
P
Peter Maydell 已提交
14

15
#ifndef CONFIG_USER_ONLY
16 17 18 19
static inline bool get_phys_addr(CPUARMState *env, target_ulong address,
                                 int access_type, ARMMMUIdx mmu_idx,
                                 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
                                 target_ulong *page_size, uint32_t *fsr);
20 21 22 23 24

/* Definitions for the PMCCNTR and PMCR registers */
#define PMCRD   0x8
#define PMCRC   0x4
#define PMCRE   0x1
25 26
#endif

27
static int vfp_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg)
P
pbrook 已提交
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53
{
    int nregs;

    /* VFP data registers are always little-endian.  */
    nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16;
    if (reg < nregs) {
        stfq_le_p(buf, env->vfp.regs[reg]);
        return 8;
    }
    if (arm_feature(env, ARM_FEATURE_NEON)) {
        /* Aliases for Q regs.  */
        nregs += 16;
        if (reg < nregs) {
            stfq_le_p(buf, env->vfp.regs[(reg - 32) * 2]);
            stfq_le_p(buf + 8, env->vfp.regs[(reg - 32) * 2 + 1]);
            return 16;
        }
    }
    switch (reg - nregs) {
    case 0: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSID]); return 4;
    case 1: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSCR]); return 4;
    case 2: stl_p(buf, env->vfp.xregs[ARM_VFP_FPEXC]); return 4;
    }
    return 0;
}

54
static int vfp_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg)
P
pbrook 已提交
55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73
{
    int nregs;

    nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16;
    if (reg < nregs) {
        env->vfp.regs[reg] = ldfq_le_p(buf);
        return 8;
    }
    if (arm_feature(env, ARM_FEATURE_NEON)) {
        nregs += 16;
        if (reg < nregs) {
            env->vfp.regs[(reg - 32) * 2] = ldfq_le_p(buf);
            env->vfp.regs[(reg - 32) * 2 + 1] = ldfq_le_p(buf + 8);
            return 16;
        }
    }
    switch (reg - nregs) {
    case 0: env->vfp.xregs[ARM_VFP_FPSID] = ldl_p(buf); return 4;
    case 1: env->vfp.xregs[ARM_VFP_FPSCR] = ldl_p(buf); return 4;
74
    case 2: env->vfp.xregs[ARM_VFP_FPEXC] = ldl_p(buf) & (1 << 30); return 4;
P
pbrook 已提交
75 76 77 78
    }
    return 0;
}

79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120
static int aarch64_fpu_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg)
{
    switch (reg) {
    case 0 ... 31:
        /* 128 bit FP register */
        stfq_le_p(buf, env->vfp.regs[reg * 2]);
        stfq_le_p(buf + 8, env->vfp.regs[reg * 2 + 1]);
        return 16;
    case 32:
        /* FPSR */
        stl_p(buf, vfp_get_fpsr(env));
        return 4;
    case 33:
        /* FPCR */
        stl_p(buf, vfp_get_fpcr(env));
        return 4;
    default:
        return 0;
    }
}

static int aarch64_fpu_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg)
{
    switch (reg) {
    case 0 ... 31:
        /* 128 bit FP register */
        env->vfp.regs[reg * 2] = ldfq_le_p(buf);
        env->vfp.regs[reg * 2 + 1] = ldfq_le_p(buf + 8);
        return 16;
    case 32:
        /* FPSR */
        vfp_set_fpsr(env, ldl_p(buf));
        return 4;
    case 33:
        /* FPCR */
        vfp_set_fpcr(env, ldl_p(buf));
        return 4;
    default:
        return 0;
    }
}

121
static uint64_t raw_read(CPUARMState *env, const ARMCPRegInfo *ri)
122
{
123
    assert(ri->fieldoffset);
124
    if (cpreg_field_is_64bit(ri)) {
125
        return CPREG_FIELD64(env, ri);
126
    } else {
127
        return CPREG_FIELD32(env, ri);
128
    }
129 130
}

131 132
static void raw_write(CPUARMState *env, const ARMCPRegInfo *ri,
                      uint64_t value)
133
{
134
    assert(ri->fieldoffset);
135
    if (cpreg_field_is_64bit(ri)) {
136 137 138 139
        CPREG_FIELD64(env, ri) = value;
    } else {
        CPREG_FIELD32(env, ri) = value;
    }
140 141
}

F
Fabian Aggeler 已提交
142 143 144 145 146
static void *raw_ptr(CPUARMState *env, const ARMCPRegInfo *ri)
{
    return (char *)env + ri->fieldoffset;
}

147
uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri)
148
{
149
    /* Raw read of a coprocessor register (as needed for migration, etc). */
150
    if (ri->type & ARM_CP_CONST) {
151
        return ri->resetvalue;
152
    } else if (ri->raw_readfn) {
153
        return ri->raw_readfn(env, ri);
154
    } else if (ri->readfn) {
155
        return ri->readfn(env, ri);
156
    } else {
157
        return raw_read(env, ri);
158 159 160
    }
}

161
static void write_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri,
162
                             uint64_t v)
163 164 165 166 167 168 169
{
    /* Raw write of a coprocessor register (as needed for migration, etc).
     * Note that constant registers are treated as write-ignored; the
     * caller should check for success by whether a readback gives the
     * value written.
     */
    if (ri->type & ARM_CP_CONST) {
170
        return;
171
    } else if (ri->raw_writefn) {
172
        ri->raw_writefn(env, ri, v);
173
    } else if (ri->writefn) {
174
        ri->writefn(env, ri, v);
175
    } else {
176
        raw_write(env, ri, v);
177 178 179
    }
}

180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200
static bool raw_accessors_invalid(const ARMCPRegInfo *ri)
{
   /* Return true if the regdef would cause an assertion if you called
    * read_raw_cp_reg() or write_raw_cp_reg() on it (ie if it is a
    * program bug for it not to have the NO_RAW flag).
    * NB that returning false here doesn't necessarily mean that calling
    * read/write_raw_cp_reg() is safe, because we can't distinguish "has
    * read/write access functions which are safe for raw use" from "has
    * read/write access functions which have side effects but has forgotten
    * to provide raw access functions".
    * The tests here line up with the conditions in read/write_raw_cp_reg()
    * and assertions in raw_read()/raw_write().
    */
    if ((ri->type & ARM_CP_CONST) ||
        ri->fieldoffset ||
        ((ri->raw_writefn || ri->writefn) && (ri->raw_readfn || ri->readfn))) {
        return false;
    }
    return true;
}

201 202 203 204 205 206 207 208 209
bool write_cpustate_to_list(ARMCPU *cpu)
{
    /* Write the coprocessor state from cpu->env to the (index,value) list. */
    int i;
    bool ok = true;

    for (i = 0; i < cpu->cpreg_array_len; i++) {
        uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
        const ARMCPRegInfo *ri;
210

211
        ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
212 213 214 215
        if (!ri) {
            ok = false;
            continue;
        }
216
        if (ri->type & ARM_CP_NO_RAW) {
217 218
            continue;
        }
219
        cpu->cpreg_values[i] = read_raw_cp_reg(&cpu->env, ri);
220 221 222 223 224 225 226 227 228 229 230 231 232 233
    }
    return ok;
}

bool write_list_to_cpustate(ARMCPU *cpu)
{
    int i;
    bool ok = true;

    for (i = 0; i < cpu->cpreg_array_len; i++) {
        uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
        uint64_t v = cpu->cpreg_values[i];
        const ARMCPRegInfo *ri;

234
        ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
235 236 237 238
        if (!ri) {
            ok = false;
            continue;
        }
239
        if (ri->type & ARM_CP_NO_RAW) {
240 241 242 243 244 245
            continue;
        }
        /* Write value and confirm it reads back as written
         * (to catch read-only registers and partially read-only
         * registers where the incoming migration value doesn't match)
         */
246 247
        write_raw_cp_reg(&cpu->env, ri, v);
        if (read_raw_cp_reg(&cpu->env, ri) != v) {
248 249 250 251 252 253 254 255 256 257 258 259 260
            ok = false;
        }
    }
    return ok;
}

static void add_cpreg_to_list(gpointer key, gpointer opaque)
{
    ARMCPU *cpu = opaque;
    uint64_t regidx;
    const ARMCPRegInfo *ri;

    regidx = *(uint32_t *)key;
261
    ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
262

263
    if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) {
264 265 266 267 268 269 270 271 272 273 274 275 276
        cpu->cpreg_indexes[cpu->cpreg_array_len] = cpreg_to_kvm_id(regidx);
        /* The value array need not be initialized at this point */
        cpu->cpreg_array_len++;
    }
}

static void count_cpreg(gpointer key, gpointer opaque)
{
    ARMCPU *cpu = opaque;
    uint64_t regidx;
    const ARMCPRegInfo *ri;

    regidx = *(uint32_t *)key;
277
    ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
278

279
    if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) {
280 281 282 283 284 285
        cpu->cpreg_array_len++;
    }
}

static gint cpreg_key_compare(gconstpointer a, gconstpointer b)
{
286 287
    uint64_t aidx = cpreg_to_kvm_id(*(uint32_t *)a);
    uint64_t bidx = cpreg_to_kvm_id(*(uint32_t *)b);
288

289 290 291 292 293 294 295
    if (aidx > bidx) {
        return 1;
    }
    if (aidx < bidx) {
        return -1;
    }
    return 0;
296 297 298 299 300 301 302
}

void init_cpreg_list(ARMCPU *cpu)
{
    /* Initialise the cpreg_tuples[] array based on the cp_regs hash.
     * Note that we require cpreg_tuples[] to be sorted by key ID.
     */
303
    GList *keys;
304 305
    int arraylen;

306
    keys = g_hash_table_get_keys(cpu->cp_regs);
307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327
    keys = g_list_sort(keys, cpreg_key_compare);

    cpu->cpreg_array_len = 0;

    g_list_foreach(keys, count_cpreg, cpu);

    arraylen = cpu->cpreg_array_len;
    cpu->cpreg_indexes = g_new(uint64_t, arraylen);
    cpu->cpreg_values = g_new(uint64_t, arraylen);
    cpu->cpreg_vmstate_indexes = g_new(uint64_t, arraylen);
    cpu->cpreg_vmstate_values = g_new(uint64_t, arraylen);
    cpu->cpreg_vmstate_array_len = cpu->cpreg_array_len;
    cpu->cpreg_array_len = 0;

    g_list_foreach(keys, add_cpreg_to_list, cpu);

    assert(cpu->cpreg_array_len == arraylen);

    g_list_free(keys);
}

328
static void dacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
329
{
330 331
    ARMCPU *cpu = arm_env_get_cpu(env);

332
    raw_write(env, ri, value);
333
    tlb_flush(CPU(cpu), 1); /* Flush TLB as domain not tracked in TLB */
334 335
}

336
static void fcse_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
337
{
338 339
    ARMCPU *cpu = arm_env_get_cpu(env);

340
    if (raw_read(env, ri) != value) {
341 342 343
        /* Unlike real hardware the qemu TLB uses virtual addresses,
         * not modified virtual addresses, so this causes a TLB flush.
         */
344
        tlb_flush(CPU(cpu), 1);
345
        raw_write(env, ri, value);
346 347
    }
}
348 349 350

static void contextidr_write(CPUARMState *env, const ARMCPRegInfo *ri,
                             uint64_t value)
351
{
352 353
    ARMCPU *cpu = arm_env_get_cpu(env);

354
    if (raw_read(env, ri) != value && !arm_feature(env, ARM_FEATURE_MPU)
355
        && !extended_addresses_enabled(env)) {
356 357 358 359
        /* For VMSA (when not using the LPAE long descriptor page table
         * format) this register includes the ASID, so do a TLB flush.
         * For PMSA it is purely a process ID and no action is needed.
         */
360
        tlb_flush(CPU(cpu), 1);
361
    }
362
    raw_write(env, ri, value);
363 364
}

365 366
static void tlbiall_write(CPUARMState *env, const ARMCPRegInfo *ri,
                          uint64_t value)
367 368
{
    /* Invalidate all (TLBIALL) */
369 370 371
    ARMCPU *cpu = arm_env_get_cpu(env);

    tlb_flush(CPU(cpu), 1);
372 373
}

374 375
static void tlbimva_write(CPUARMState *env, const ARMCPRegInfo *ri,
                          uint64_t value)
376 377
{
    /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */
378 379 380
    ARMCPU *cpu = arm_env_get_cpu(env);

    tlb_flush_page(CPU(cpu), value & TARGET_PAGE_MASK);
381 382
}

383 384
static void tlbiasid_write(CPUARMState *env, const ARMCPRegInfo *ri,
                           uint64_t value)
385 386
{
    /* Invalidate by ASID (TLBIASID) */
387 388 389
    ARMCPU *cpu = arm_env_get_cpu(env);

    tlb_flush(CPU(cpu), value == 0);
390 391
}

392 393
static void tlbimvaa_write(CPUARMState *env, const ARMCPRegInfo *ri,
                           uint64_t value)
394 395
{
    /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */
396 397 398
    ARMCPU *cpu = arm_env_get_cpu(env);

    tlb_flush_page(CPU(cpu), value & TARGET_PAGE_MASK);
399 400
}

401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441
/* IS variants of TLB operations must affect all cores */
static void tlbiall_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
                             uint64_t value)
{
    CPUState *other_cs;

    CPU_FOREACH(other_cs) {
        tlb_flush(other_cs, 1);
    }
}

static void tlbiasid_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
                             uint64_t value)
{
    CPUState *other_cs;

    CPU_FOREACH(other_cs) {
        tlb_flush(other_cs, value == 0);
    }
}

static void tlbimva_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
                             uint64_t value)
{
    CPUState *other_cs;

    CPU_FOREACH(other_cs) {
        tlb_flush_page(other_cs, value & TARGET_PAGE_MASK);
    }
}

static void tlbimvaa_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
                             uint64_t value)
{
    CPUState *other_cs;

    CPU_FOREACH(other_cs) {
        tlb_flush_page(other_cs, value & TARGET_PAGE_MASK);
    }
}

442
static const ARMCPRegInfo cp_reginfo[] = {
443 444 445 446 447 448 449 450 451 452 453 454 455 456
    /* Define the secure and non-secure FCSE identifier CP registers
     * separately because there is no secure bank in V8 (no _EL3).  This allows
     * the secure register to be properly reset and migrated. There is also no
     * v8 EL1 version of the register so the non-secure instance stands alone.
     */
    { .name = "FCSEIDR(NS)",
      .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0,
      .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS,
      .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_ns),
      .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
    { .name = "FCSEIDR(S)",
      .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0,
      .access = PL1_RW, .secure = ARM_CP_SECSTATE_S,
      .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_s),
457
      .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
458 459 460 461 462 463 464
    /* Define the secure and non-secure context identifier CP registers
     * separately because there is no secure bank in V8 (no _EL3).  This allows
     * the secure register to be properly reset and migrated.  In the
     * non-secure case, the 32-bit register will have reset and migration
     * disabled during registration as it is handled by the 64-bit instance.
     */
    { .name = "CONTEXTIDR_EL1", .state = ARM_CP_STATE_BOTH,
465
      .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
466 467 468 469 470 471 472
      .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS,
      .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[1]),
      .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
    { .name = "CONTEXTIDR(S)", .state = ARM_CP_STATE_AA32,
      .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
      .access = PL1_RW, .secure = ARM_CP_SECSTATE_S,
      .fieldoffset = offsetof(CPUARMState, cp15.contextidr_s),
473
      .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
474 475 476 477 478 479 480 481
    REGINFO_SENTINEL
};

static const ARMCPRegInfo not_v8_cp_reginfo[] = {
    /* NB: Some of these registers exist in v8 but with more precise
     * definitions that don't use CP_ANY wildcards (mostly in v8_cp_reginfo[]).
     */
    /* MMU Domain access control / MPU write buffer control */
F
Fabian Aggeler 已提交
482 483 484 485 486 487
    { .name = "DACR",
      .cp = 15, .opc1 = CP_ANY, .crn = 3, .crm = CP_ANY, .opc2 = CP_ANY,
      .access = PL1_RW, .resetvalue = 0,
      .writefn = dacr_write, .raw_writefn = raw_write,
      .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s),
                             offsetoflow32(CPUARMState, cp15.dacr_ns) } },
488 489
    /* ARMv7 allocates a range of implementation defined TLB LOCKDOWN regs.
     * For v6 and v5, these mappings are overly broad.
490
     */
491 492 493 494 495 496 497
    { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 0,
      .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
    { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 1,
      .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
    { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 4,
      .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
    { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 8,
498
      .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
499 500 501 502
    /* Cache maintenance ops; some of this space may be overridden later. */
    { .name = "CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
      .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
      .type = ARM_CP_NOP | ARM_CP_OVERRIDE },
503 504 505
    REGINFO_SENTINEL
};

506 507 508 509 510 511 512 513 514 515 516 517 518 519 520
static const ARMCPRegInfo not_v6_cp_reginfo[] = {
    /* Not all pre-v6 cores implemented this WFI, so this is slightly
     * over-broad.
     */
    { .name = "WFI_v5", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = 2,
      .access = PL1_W, .type = ARM_CP_WFI },
    REGINFO_SENTINEL
};

static const ARMCPRegInfo not_v7_cp_reginfo[] = {
    /* Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which
     * is UNPREDICTABLE; we choose to NOP as most implementations do).
     */
    { .name = "WFI_v6", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
      .access = PL1_W, .type = ARM_CP_WFI },
521 522 523 524 525 526 527 528 529 530
    /* L1 cache lockdown. Not architectural in v6 and earlier but in practice
     * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and
     * OMAPCP will override this space.
     */
    { .name = "DLOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 0,
      .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_data),
      .resetvalue = 0 },
    { .name = "ILOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 1,
      .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_insn),
      .resetvalue = 0 },
531 532
    /* v6 doesn't have the cache ID registers but Linux reads them anyway */
    { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = CP_ANY,
533
      .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
534
      .resetvalue = 0 },
535 536 537 538 539 540 541
    /* We don't implement pre-v7 debug but most CPUs had at least a DBGDIDR;
     * implementing it as RAZ means the "debug architecture version" bits
     * will read as a reserved value, which should cause Linux to not try
     * to use the debug hardware.
     */
    { .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0,
      .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
542 543 544 545 546
    /* MMU TLB control. Note that the wildcarding means we cover not just
     * the unified TLB ops but also the dside/iside/inner-shareable variants.
     */
    { .name = "TLBIALL", .cp = 15, .crn = 8, .crm = CP_ANY,
      .opc1 = CP_ANY, .opc2 = 0, .access = PL1_W, .writefn = tlbiall_write,
547
      .type = ARM_CP_NO_RAW },
548 549
    { .name = "TLBIMVA", .cp = 15, .crn = 8, .crm = CP_ANY,
      .opc1 = CP_ANY, .opc2 = 1, .access = PL1_W, .writefn = tlbimva_write,
550
      .type = ARM_CP_NO_RAW },
551 552
    { .name = "TLBIASID", .cp = 15, .crn = 8, .crm = CP_ANY,
      .opc1 = CP_ANY, .opc2 = 2, .access = PL1_W, .writefn = tlbiasid_write,
553
      .type = ARM_CP_NO_RAW },
554 555
    { .name = "TLBIMVAA", .cp = 15, .crn = 8, .crm = CP_ANY,
      .opc1 = CP_ANY, .opc2 = 3, .access = PL1_W, .writefn = tlbimvaa_write,
556
      .type = ARM_CP_NO_RAW },
557 558 559 560
    { .name = "PRRR", .cp = 15, .crn = 10, .crm = 2,
      .opc1 = 0, .opc2 = 0, .access = PL1_RW, .type = ARM_CP_NOP },
    { .name = "NMRR", .cp = 15, .crn = 10, .crm = 2,
      .opc1 = 0, .opc2 = 1, .access = PL1_RW, .type = ARM_CP_NOP },
561 562 563
    REGINFO_SENTINEL
};

564 565
static void cpacr_write(CPUARMState *env, const ARMCPRegInfo *ri,
                        uint64_t value)
566
{
567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593
    uint32_t mask = 0;

    /* In ARMv8 most bits of CPACR_EL1 are RES0. */
    if (!arm_feature(env, ARM_FEATURE_V8)) {
        /* ARMv7 defines bits for unimplemented coprocessors as RAZ/WI.
         * ASEDIS [31] and D32DIS [30] are both UNK/SBZP without VFP.
         * TRCDIS [28] is RAZ/WI since we do not implement a trace macrocell.
         */
        if (arm_feature(env, ARM_FEATURE_VFP)) {
            /* VFP coprocessor: cp10 & cp11 [23:20] */
            mask |= (1 << 31) | (1 << 30) | (0xf << 20);

            if (!arm_feature(env, ARM_FEATURE_NEON)) {
                /* ASEDIS [31] bit is RAO/WI */
                value |= (1 << 31);
            }

            /* VFPv3 and upwards with NEON implement 32 double precision
             * registers (D0-D31).
             */
            if (!arm_feature(env, ARM_FEATURE_NEON) ||
                    !arm_feature(env, ARM_FEATURE_VFP3)) {
                /* D32DIS [30] is RAO/WI if D16-31 are not implemented. */
                value |= (1 << 30);
            }
        }
        value &= mask;
594
    }
595
    env->cp15.cpacr_el1 = value;
596 597
}

598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624
static CPAccessResult cpacr_access(CPUARMState *env, const ARMCPRegInfo *ri)
{
    if (arm_feature(env, ARM_FEATURE_V8)) {
        /* Check if CPACR accesses are to be trapped to EL2 */
        if (arm_current_el(env) == 1 &&
            (env->cp15.cptr_el[2] & CPTR_TCPAC) && !arm_is_secure(env)) {
            return CP_ACCESS_TRAP_EL2;
        /* Check if CPACR accesses are to be trapped to EL3 */
        } else if (arm_current_el(env) < 3 &&
                   (env->cp15.cptr_el[3] & CPTR_TCPAC)) {
            return CP_ACCESS_TRAP_EL3;
        }
    }

    return CP_ACCESS_OK;
}

static CPAccessResult cptr_access(CPUARMState *env, const ARMCPRegInfo *ri)
{
    /* Check if CPTR accesses are set to trap to EL3 */
    if (arm_current_el(env) == 2 && (env->cp15.cptr_el[3] & CPTR_TCPAC)) {
        return CP_ACCESS_TRAP_EL3;
    }

    return CP_ACCESS_OK;
}

625 626 627 628 629 630 631
static const ARMCPRegInfo v6_cp_reginfo[] = {
    /* prefetch by MVA in v6, NOP in v7 */
    { .name = "MVA_prefetch",
      .cp = 15, .crn = 7, .crm = 13, .opc1 = 0, .opc2 = 1,
      .access = PL1_W, .type = ARM_CP_NOP },
    { .name = "ISB", .cp = 15, .crn = 7, .crm = 5, .opc1 = 0, .opc2 = 4,
      .access = PL0_W, .type = ARM_CP_NOP },
632
    { .name = "DSB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 4,
633
      .access = PL0_W, .type = ARM_CP_NOP },
634
    { .name = "DMB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 5,
635
      .access = PL0_W, .type = ARM_CP_NOP },
636
    { .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 2,
637
      .access = PL1_RW,
F
Fabian Aggeler 已提交
638 639
      .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ifar_s),
                             offsetof(CPUARMState, cp15.ifar_ns) },
640 641 642 643 644 645
      .resetvalue = 0, },
    /* Watchpoint Fault Address Register : should actually only be present
     * for 1136, 1176, 11MPCore.
     */
    { .name = "WFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1,
      .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, },
646
    { .name = "CPACR", .state = ARM_CP_STATE_BOTH, .opc0 = 3,
647
      .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 2, .accessfn = cpacr_access,
648
      .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.cpacr_el1),
649
      .resetvalue = 0, .writefn = cpacr_write },
650 651 652
    REGINFO_SENTINEL
};

653
static CPAccessResult pmreg_access(CPUARMState *env, const ARMCPRegInfo *ri)
654
{
S
Stefan Weil 已提交
655
    /* Performance monitor registers user accessibility is controlled
656
     * by PMUSERENR.
657
     */
658
    if (arm_current_el(env) == 0 && !env->cp15.c9_pmuserenr) {
659
        return CP_ACCESS_TRAP;
660
    }
661
    return CP_ACCESS_OK;
662 663
}

664
#ifndef CONFIG_USER_ONLY
665 666 667 668 669 670 671 672 673 674 675 676

static inline bool arm_ccnt_enabled(CPUARMState *env)
{
    /* This does not support checking PMCCFILTR_EL0 register */

    if (!(env->cp15.c9_pmcr & PMCRE)) {
        return false;
    }

    return true;
}

677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693
void pmccntr_sync(CPUARMState *env)
{
    uint64_t temp_ticks;

    temp_ticks = muldiv64(qemu_clock_get_us(QEMU_CLOCK_VIRTUAL),
                          get_ticks_per_sec(), 1000000);

    if (env->cp15.c9_pmcr & PMCRD) {
        /* Increment once every 64 processor clock cycles */
        temp_ticks /= 64;
    }

    if (arm_ccnt_enabled(env)) {
        env->cp15.c15_ccnt = temp_ticks - env->cp15.c15_ccnt;
    }
}

694 695
static void pmcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
                       uint64_t value)
696
{
697
    pmccntr_sync(env);
698 699 700 701 702 703

    if (value & PMCRC) {
        /* The counter has been reset */
        env->cp15.c15_ccnt = 0;
    }

704 705 706
    /* only the DP, X, D and E bits are writable */
    env->cp15.c9_pmcr &= ~0x39;
    env->cp15.c9_pmcr |= (value & 0x39);
707

708
    pmccntr_sync(env);
709 710 711 712
}

static uint64_t pmccntr_read(CPUARMState *env, const ARMCPRegInfo *ri)
{
713
    uint64_t total_ticks;
714

715
    if (!arm_ccnt_enabled(env)) {
716 717 718 719
        /* Counter is disabled, do not change value */
        return env->cp15.c15_ccnt;
    }

720 721
    total_ticks = muldiv64(qemu_clock_get_us(QEMU_CLOCK_VIRTUAL),
                           get_ticks_per_sec(), 1000000);
722 723 724 725 726 727 728 729 730 731 732

    if (env->cp15.c9_pmcr & PMCRD) {
        /* Increment once every 64 processor clock cycles */
        total_ticks /= 64;
    }
    return total_ticks - env->cp15.c15_ccnt;
}

static void pmccntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
                        uint64_t value)
{
733
    uint64_t total_ticks;
734

735
    if (!arm_ccnt_enabled(env)) {
736 737 738 739 740
        /* Counter is disabled, set the absolute value */
        env->cp15.c15_ccnt = value;
        return;
    }

741 742
    total_ticks = muldiv64(qemu_clock_get_us(QEMU_CLOCK_VIRTUAL),
                           get_ticks_per_sec(), 1000000);
743 744 745 746 747 748

    if (env->cp15.c9_pmcr & PMCRD) {
        /* Increment once every 64 processor clock cycles */
        total_ticks /= 64;
    }
    env->cp15.c15_ccnt = total_ticks - value;
749
}
750 751 752 753 754 755 756 757 758

static void pmccntr_write32(CPUARMState *env, const ARMCPRegInfo *ri,
                            uint64_t value)
{
    uint64_t cur_val = pmccntr_read(env, NULL);

    pmccntr_write(env, ri, deposit64(cur_val, 0, 32, value));
}

759 760 761 762 763 764
#else /* CONFIG_USER_ONLY */

void pmccntr_sync(CPUARMState *env)
{
}

765
#endif
766

767 768 769 770 771 772 773 774
static void pmccfiltr_write(CPUARMState *env, const ARMCPRegInfo *ri,
                            uint64_t value)
{
    pmccntr_sync(env);
    env->cp15.pmccfiltr_el0 = value & 0x7E000000;
    pmccntr_sync(env);
}

775
static void pmcntenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
776 777 778 779 780 781
                            uint64_t value)
{
    value &= (1 << 31);
    env->cp15.c9_pmcnten |= value;
}

782 783
static void pmcntenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
                             uint64_t value)
784 785 786 787 788
{
    value &= (1 << 31);
    env->cp15.c9_pmcnten &= ~value;
}

789 790
static void pmovsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
                         uint64_t value)
791 792 793 794
{
    env->cp15.c9_pmovsr &= ~value;
}

795 796
static void pmxevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri,
                             uint64_t value)
797 798 799 800
{
    env->cp15.c9_pmxevtyper = value & 0xff;
}

801
static void pmuserenr_write(CPUARMState *env, const ARMCPRegInfo *ri,
802 803 804 805 806
                            uint64_t value)
{
    env->cp15.c9_pmuserenr = value & 1;
}

807 808
static void pmintenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
                             uint64_t value)
809 810 811 812 813 814
{
    /* We have no event counters so only the C bit can be changed */
    value &= (1 << 31);
    env->cp15.c9_pminten |= value;
}

815 816
static void pmintenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
                             uint64_t value)
817 818 819 820 821
{
    value &= (1 << 31);
    env->cp15.c9_pminten &= ~value;
}

822 823
static void vbar_write(CPUARMState *env, const ARMCPRegInfo *ri,
                       uint64_t value)
N
Nathan Rossi 已提交
824
{
825 826 827 828 829 830
    /* Note that even though the AArch64 view of this register has bits
     * [10:0] all RES0 we can only mask the bottom 5, to comply with the
     * architectural requirements for bits which are RES0 only in some
     * contexts. (ARMv8 would permit us to do no masking at all, but ARMv7
     * requires the bottom five bits to be RAZ/WI because they're UNK/SBZP.)
     */
831
    raw_write(env, ri, value & ~0x1FULL);
N
Nathan Rossi 已提交
832 833
}

E
Edgar E. Iglesias 已提交
834 835 836 837 838 839 840 841 842 843 844 845 846 847 848
static void scr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
{
    /* We only mask off bits that are RES0 both for AArch64 and AArch32.
     * For bits that vary between AArch32/64, code needs to check the
     * current execution mode before directly using the feature bit.
     */
    uint32_t valid_mask = SCR_AARCH64_MASK | SCR_AARCH32_MASK;

    if (!arm_feature(env, ARM_FEATURE_EL2)) {
        valid_mask &= ~SCR_HCE;

        /* On ARMv7, SMD (or SCD as it is called in v7) is only
         * supported if EL2 exists. The bit is UNK/SBZP when
         * EL2 is unavailable. In QEMU ARMv7, we force it to always zero
         * when EL2 is unavailable.
G
Greg Bellows 已提交
849
         * On ARMv8, this bit is always available.
E
Edgar E. Iglesias 已提交
850
         */
G
Greg Bellows 已提交
851 852
        if (arm_feature(env, ARM_FEATURE_V7) &&
            !arm_feature(env, ARM_FEATURE_V8)) {
E
Edgar E. Iglesias 已提交
853 854 855 856 857 858 859 860 861
            valid_mask &= ~SCR_SMD;
        }
    }

    /* Clear all-context RES0 bits.  */
    value &= valid_mask;
    raw_write(env, ri, value);
}

862
static uint64_t ccsidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
863 864
{
    ARMCPU *cpu = arm_env_get_cpu(env);
F
Fabian Aggeler 已提交
865 866 867 868 869 870 871 872

    /* Acquire the CSSELR index from the bank corresponding to the CCSIDR
     * bank
     */
    uint32_t index = A32_BANKED_REG_GET(env, csselr,
                                        ri->secure & ARM_CP_SECSTATE_S);

    return cpu->ccsidr[index];
873 874
}

875 876
static void csselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
                         uint64_t value)
877
{
878
    raw_write(env, ri, value & 0xf);
879 880
}

881 882 883 884 885 886 887 888 889 890 891 892 893 894 895
static uint64_t isr_read(CPUARMState *env, const ARMCPRegInfo *ri)
{
    CPUState *cs = ENV_GET_CPU(env);
    uint64_t ret = 0;

    if (cs->interrupt_request & CPU_INTERRUPT_HARD) {
        ret |= CPSR_I;
    }
    if (cs->interrupt_request & CPU_INTERRUPT_FIQ) {
        ret |= CPSR_F;
    }
    /* External aborts are not possible in QEMU so A bit is always clear */
    return ret;
}

896
static const ARMCPRegInfo v7_cp_reginfo[] = {
897 898 899
    /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */
    { .name = "NOP", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
      .access = PL1_W, .type = ARM_CP_NOP },
900 901 902 903 904 905 906 907 908 909 910 911
    /* Performance monitors are implementation defined in v7,
     * but with an ARM recommended set of registers, which we
     * follow (although we don't actually implement any counters)
     *
     * Performance registers fall into three categories:
     *  (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR)
     *  (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR)
     *  (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others)
     * For the cases controlled by PMUSERENR we must set .access to PL0_RW
     * or PL0_RO as appropriate and then check PMUSERENR in the helper fn.
     */
    { .name = "PMCNTENSET", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 1,
912
      .access = PL0_RW, .type = ARM_CP_ALIAS,
913
      .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten),
914 915 916
      .writefn = pmcntenset_write,
      .accessfn = pmreg_access,
      .raw_writefn = raw_write },
917 918 919 920 921
    { .name = "PMCNTENSET_EL0", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 1,
      .access = PL0_RW, .accessfn = pmreg_access,
      .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), .resetvalue = 0,
      .writefn = pmcntenset_write, .raw_writefn = raw_write },
922
    { .name = "PMCNTENCLR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 2,
923 924
      .access = PL0_RW,
      .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten),
925 926
      .accessfn = pmreg_access,
      .writefn = pmcntenclr_write,
927
      .type = ARM_CP_ALIAS },
928 929 930
    { .name = "PMCNTENCLR_EL0", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 2,
      .access = PL0_RW, .accessfn = pmreg_access,
931
      .type = ARM_CP_ALIAS,
932 933
      .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten),
      .writefn = pmcntenclr_write },
934 935
    { .name = "PMOVSR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 3,
      .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
936 937 938 939
      .accessfn = pmreg_access,
      .writefn = pmovsr_write,
      .raw_writefn = raw_write },
    /* Unimplemented so WI. */
940
    { .name = "PMSWINC", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 4,
941
      .access = PL0_W, .accessfn = pmreg_access, .type = ARM_CP_NOP },
942
    /* Since we don't implement any events, writing to PMSELR is UNPREDICTABLE.
943
     * We choose to RAZ/WI.
944 945
     */
    { .name = "PMSELR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 5,
946 947
      .access = PL0_RW, .type = ARM_CP_CONST, .resetvalue = 0,
      .accessfn = pmreg_access },
948
#ifndef CONFIG_USER_ONLY
949
    { .name = "PMCCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 0,
950
      .access = PL0_RW, .resetvalue = 0, .type = ARM_CP_IO,
951
      .readfn = pmccntr_read, .writefn = pmccntr_write32,
952
      .accessfn = pmreg_access },
953 954 955 956 957
    { .name = "PMCCNTR_EL0", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 0,
      .access = PL0_RW, .accessfn = pmreg_access,
      .type = ARM_CP_IO,
      .readfn = pmccntr_read, .writefn = pmccntr_write, },
958
#endif
959 960
    { .name = "PMCCFILTR_EL0", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 15, .opc2 = 7,
961
      .writefn = pmccfiltr_write,
962 963 964 965
      .access = PL0_RW, .accessfn = pmreg_access,
      .type = ARM_CP_IO,
      .fieldoffset = offsetof(CPUARMState, cp15.pmccfiltr_el0),
      .resetvalue = 0, },
966 967 968
    { .name = "PMXEVTYPER", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 1,
      .access = PL0_RW,
      .fieldoffset = offsetof(CPUARMState, cp15.c9_pmxevtyper),
969 970 971
      .accessfn = pmreg_access, .writefn = pmxevtyper_write,
      .raw_writefn = raw_write },
    /* Unimplemented, RAZ/WI. */
972
    { .name = "PMXEVCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 2,
973 974
      .access = PL0_RW, .type = ARM_CP_CONST, .resetvalue = 0,
      .accessfn = pmreg_access },
975 976 977 978
    { .name = "PMUSERENR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 0,
      .access = PL0_R | PL1_RW,
      .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr),
      .resetvalue = 0,
979
      .writefn = pmuserenr_write, .raw_writefn = raw_write },
980 981 982 983
    { .name = "PMINTENSET", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 1,
      .access = PL1_RW,
      .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
      .resetvalue = 0,
984
      .writefn = pmintenset_write, .raw_writefn = raw_write },
985
    { .name = "PMINTENCLR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 2,
986
      .access = PL1_RW, .type = ARM_CP_ALIAS,
987
      .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
988
      .writefn = pmintenclr_write, },
989 990
    { .name = "VBAR", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .crn = 12, .crm = 0, .opc1 = 0, .opc2 = 0,
N
Nathan Rossi 已提交
991
      .access = PL1_RW, .writefn = vbar_write,
G
Greg Bellows 已提交
992 993
      .bank_fieldoffsets = { offsetof(CPUARMState, cp15.vbar_s),
                             offsetof(CPUARMState, cp15.vbar_ns) },
N
Nathan Rossi 已提交
994
      .resetvalue = 0 },
995 996
    { .name = "CCSIDR", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 0,
997
      .access = PL1_R, .readfn = ccsidr_read, .type = ARM_CP_NO_RAW },
998 999
    { .name = "CSSELR", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 2, .opc2 = 0,
F
Fabian Aggeler 已提交
1000 1001 1002
      .access = PL1_RW, .writefn = csselr_write, .resetvalue = 0,
      .bank_fieldoffsets = { offsetof(CPUARMState, cp15.csselr_s),
                             offsetof(CPUARMState, cp15.csselr_ns) } },
1003 1004 1005
    /* Auxiliary ID register: this actually has an IMPDEF value but for now
     * just RAZ for all cores:
     */
1006 1007
    { .name = "AIDR", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 7,
1008
      .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
1009 1010 1011 1012 1013 1014 1015 1016 1017
    /* Auxiliary fault status registers: these also are IMPDEF, and we
     * choose to RAZ/WI for all cores.
     */
    { .name = "AFSR0_EL1", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 0,
      .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
    { .name = "AFSR1_EL1", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 1,
      .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
1018 1019 1020 1021 1022
    /* MAIR can just read-as-written because we don't implement caches
     * and so don't need to care about memory attributes.
     */
    { .name = "MAIR_EL1", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0,
G
Greg Bellows 已提交
1023
      .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[1]),
1024
      .resetvalue = 0 },
1025 1026 1027 1028
    { .name = "MAIR_EL3", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 2, .opc2 = 0,
      .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[3]),
      .resetvalue = 0 },
1029 1030 1031
    /* For non-long-descriptor page tables these are PRRR and NMRR;
     * regardless they still act as reads-as-written for QEMU.
     */
1032
     /* MAIR0/1 are defined separately from their 64-bit counterpart which
G
Greg Bellows 已提交
1033 1034 1035
      * allows them to assign the correct fieldoffset based on the endianness
      * handled in the field definitions.
      */
1036
    { .name = "MAIR0", .state = ARM_CP_STATE_AA32,
1037
      .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, .access = PL1_RW,
G
Greg Bellows 已提交
1038 1039
      .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair0_s),
                             offsetof(CPUARMState, cp15.mair0_ns) },
1040
      .resetfn = arm_cp_reset_ignore },
1041
    { .name = "MAIR1", .state = ARM_CP_STATE_AA32,
1042
      .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 1, .access = PL1_RW,
G
Greg Bellows 已提交
1043 1044
      .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair1_s),
                             offsetof(CPUARMState, cp15.mair1_ns) },
1045
      .resetfn = arm_cp_reset_ignore },
1046 1047
    { .name = "ISR_EL1", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 0,
1048
      .type = ARM_CP_NO_RAW, .access = PL1_R, .readfn = isr_read },
1049 1050
    /* 32 bit ITLB invalidates */
    { .name = "ITLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 0,
1051
      .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write },
1052
    { .name = "ITLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1,
1053
      .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
1054
    { .name = "ITLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 2,
1055
      .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write },
1056 1057
    /* 32 bit DTLB invalidates */
    { .name = "DTLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 0,
1058
      .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write },
1059
    { .name = "DTLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1,
1060
      .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
1061
    { .name = "DTLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 2,
1062
      .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write },
1063 1064
    /* 32 bit TLB invalidates */
    { .name = "TLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0,
1065
      .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write },
1066
    { .name = "TLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1,
1067
      .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
1068
    { .name = "TLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2,
1069
      .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write },
1070
    { .name = "TLBIMVAA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3,
1071
      .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimvaa_write },
1072 1073 1074 1075 1076 1077
    REGINFO_SENTINEL
};

static const ARMCPRegInfo v7mp_cp_reginfo[] = {
    /* 32 bit TLB invalidates, Inner Shareable */
    { .name = "TLBIALLIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0,
1078
      .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_is_write },
1079
    { .name = "TLBIMVAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1,
1080
      .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_is_write },
1081
    { .name = "TLBIASIDIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2,
1082
      .type = ARM_CP_NO_RAW, .access = PL1_W,
1083
      .writefn = tlbiasid_is_write },
1084
    { .name = "TLBIMVAAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3,
1085
      .type = ARM_CP_NO_RAW, .access = PL1_W,
1086
      .writefn = tlbimvaa_is_write },
1087 1088 1089
    REGINFO_SENTINEL
};

1090 1091
static void teecr_write(CPUARMState *env, const ARMCPRegInfo *ri,
                        uint64_t value)
1092 1093 1094 1095 1096
{
    value &= 1;
    env->teecr = value;
}

1097
static CPAccessResult teehbr_access(CPUARMState *env, const ARMCPRegInfo *ri)
1098
{
1099
    if (arm_current_el(env) == 0 && (env->teecr & 1)) {
1100
        return CP_ACCESS_TRAP;
1101
    }
1102
    return CP_ACCESS_OK;
1103 1104 1105 1106 1107 1108 1109 1110 1111
}

static const ARMCPRegInfo t2ee_cp_reginfo[] = {
    { .name = "TEECR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 6, .opc2 = 0,
      .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, teecr),
      .resetvalue = 0,
      .writefn = teecr_write },
    { .name = "TEEHBR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 6, .opc2 = 0,
      .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, teehbr),
1112
      .accessfn = teehbr_access, .resetvalue = 0 },
1113 1114 1115
    REGINFO_SENTINEL
};

1116
static const ARMCPRegInfo v6k_cp_reginfo[] = {
1117 1118 1119
    { .name = "TPIDR_EL0", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 3, .opc2 = 2, .crn = 13, .crm = 0,
      .access = PL0_RW,
1120
      .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[0]), .resetvalue = 0 },
1121 1122
    { .name = "TPIDRURW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 2,
      .access = PL0_RW,
1123 1124
      .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrurw_s),
                             offsetoflow32(CPUARMState, cp15.tpidrurw_ns) },
1125 1126 1127 1128
      .resetfn = arm_cp_reset_ignore },
    { .name = "TPIDRRO_EL0", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 3, .opc2 = 3, .crn = 13, .crm = 0,
      .access = PL0_R|PL1_W,
1129 1130
      .fieldoffset = offsetof(CPUARMState, cp15.tpidrro_el[0]),
      .resetvalue = 0},
1131 1132
    { .name = "TPIDRURO", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 3,
      .access = PL0_R|PL1_W,
1133 1134
      .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidruro_s),
                             offsetoflow32(CPUARMState, cp15.tpidruro_ns) },
1135
      .resetfn = arm_cp_reset_ignore },
1136
    { .name = "TPIDR_EL1", .state = ARM_CP_STATE_AA64,
1137
      .opc0 = 3, .opc1 = 0, .opc2 = 4, .crn = 13, .crm = 0,
1138
      .access = PL1_RW,
1139 1140 1141 1142 1143 1144
      .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[1]), .resetvalue = 0 },
    { .name = "TPIDRPRW", .opc1 = 0, .cp = 15, .crn = 13, .crm = 0, .opc2 = 4,
      .access = PL1_RW,
      .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrprw_s),
                             offsetoflow32(CPUARMState, cp15.tpidrprw_ns) },
      .resetvalue = 0 },
1145 1146 1147
    REGINFO_SENTINEL
};

1148 1149
#ifndef CONFIG_USER_ONLY

1150 1151 1152
static CPAccessResult gt_cntfrq_access(CPUARMState *env, const ARMCPRegInfo *ri)
{
    /* CNTFRQ: not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero */
1153
    if (arm_current_el(env) == 0 && !extract32(env->cp15.c14_cntkctl, 0, 2)) {
1154 1155 1156 1157 1158 1159 1160
        return CP_ACCESS_TRAP;
    }
    return CP_ACCESS_OK;
}

static CPAccessResult gt_counter_access(CPUARMState *env, int timeridx)
{
E
Edgar E. Iglesias 已提交
1161 1162 1163
    unsigned int cur_el = arm_current_el(env);
    bool secure = arm_is_secure(env);

1164
    /* CNT[PV]CT: not visible from PL0 if ELO[PV]CTEN is zero */
E
Edgar E. Iglesias 已提交
1165
    if (cur_el == 0 &&
1166 1167 1168
        !extract32(env->cp15.c14_cntkctl, timeridx, 1)) {
        return CP_ACCESS_TRAP;
    }
E
Edgar E. Iglesias 已提交
1169 1170 1171 1172 1173 1174

    if (arm_feature(env, ARM_FEATURE_EL2) &&
        timeridx == GTIMER_PHYS && !secure && cur_el < 2 &&
        !extract32(env->cp15.cnthctl_el2, 0, 1)) {
        return CP_ACCESS_TRAP_EL2;
    }
1175 1176 1177 1178 1179
    return CP_ACCESS_OK;
}

static CPAccessResult gt_timer_access(CPUARMState *env, int timeridx)
{
E
Edgar E. Iglesias 已提交
1180 1181 1182
    unsigned int cur_el = arm_current_el(env);
    bool secure = arm_is_secure(env);

1183 1184 1185
    /* CNT[PV]_CVAL, CNT[PV]_CTL, CNT[PV]_TVAL: not visible from PL0 if
     * EL0[PV]TEN is zero.
     */
E
Edgar E. Iglesias 已提交
1186
    if (cur_el == 0 &&
1187 1188 1189
        !extract32(env->cp15.c14_cntkctl, 9 - timeridx, 1)) {
        return CP_ACCESS_TRAP;
    }
E
Edgar E. Iglesias 已提交
1190 1191 1192 1193 1194 1195

    if (arm_feature(env, ARM_FEATURE_EL2) &&
        timeridx == GTIMER_PHYS && !secure && cur_el < 2 &&
        !extract32(env->cp15.cnthctl_el2, 1, 1)) {
        return CP_ACCESS_TRAP_EL2;
    }
1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220
    return CP_ACCESS_OK;
}

static CPAccessResult gt_pct_access(CPUARMState *env,
                                         const ARMCPRegInfo *ri)
{
    return gt_counter_access(env, GTIMER_PHYS);
}

static CPAccessResult gt_vct_access(CPUARMState *env,
                                         const ARMCPRegInfo *ri)
{
    return gt_counter_access(env, GTIMER_VIRT);
}

static CPAccessResult gt_ptimer_access(CPUARMState *env, const ARMCPRegInfo *ri)
{
    return gt_timer_access(env, GTIMER_PHYS);
}

static CPAccessResult gt_vtimer_access(CPUARMState *env, const ARMCPRegInfo *ri)
{
    return gt_timer_access(env, GTIMER_VIRT);
}

1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246
static CPAccessResult gt_stimer_access(CPUARMState *env,
                                       const ARMCPRegInfo *ri)
{
    /* The AArch64 register view of the secure physical timer is
     * always accessible from EL3, and configurably accessible from
     * Secure EL1.
     */
    switch (arm_current_el(env)) {
    case 1:
        if (!arm_is_secure(env)) {
            return CP_ACCESS_TRAP;
        }
        if (!(env->cp15.scr_el3 & SCR_ST)) {
            return CP_ACCESS_TRAP_EL3;
        }
        return CP_ACCESS_OK;
    case 0:
    case 2:
        return CP_ACCESS_TRAP;
    case 3:
        return CP_ACCESS_OK;
    default:
        g_assert_not_reached();
    }
}

1247 1248
static uint64_t gt_get_countervalue(CPUARMState *env)
{
1249
    return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / GTIMER_SCALE;
1250 1251 1252 1253 1254 1255 1256 1257 1258 1259
}

static void gt_recalc_timer(ARMCPU *cpu, int timeridx)
{
    ARMGenericTimer *gt = &cpu->env.cp15.c14_timer[timeridx];

    if (gt->ctl & 1) {
        /* Timer enabled: calculate and set current ISTATUS, irq, and
         * reset timer to when ISTATUS next has to change
         */
E
Edgar E. Iglesias 已提交
1260 1261
        uint64_t offset = timeridx == GTIMER_VIRT ?
                                      cpu->env.cp15.cntvoff_el2 : 0;
1262 1263
        uint64_t count = gt_get_countervalue(&cpu->env);
        /* Note that this must be unsigned 64 bit arithmetic: */
E
Edgar E. Iglesias 已提交
1264
        int istatus = count - offset >= gt->cval;
1265 1266 1267 1268 1269 1270 1271 1272 1273 1274
        uint64_t nexttick;

        gt->ctl = deposit32(gt->ctl, 2, 1, istatus);
        qemu_set_irq(cpu->gt_timer_outputs[timeridx],
                     (istatus && !(gt->ctl & 2)));
        if (istatus) {
            /* Next transition is when count rolls back over to zero */
            nexttick = UINT64_MAX;
        } else {
            /* Next transition is when we hit cval */
E
Edgar E. Iglesias 已提交
1275
            nexttick = gt->cval + offset;
1276 1277 1278 1279 1280 1281 1282 1283 1284
        }
        /* Note that the desired next expiry time might be beyond the
         * signed-64-bit range of a QEMUTimer -- in this case we just
         * set the timer for as far in the future as possible. When the
         * timer expires we will reset the timer for any remaining period.
         */
        if (nexttick > INT64_MAX / GTIMER_SCALE) {
            nexttick = INT64_MAX / GTIMER_SCALE;
        }
1285
        timer_mod(cpu->gt_timer[timeridx], nexttick);
1286 1287 1288 1289
    } else {
        /* Timer disabled: ISTATUS and timer output always clear */
        gt->ctl &= ~4;
        qemu_set_irq(cpu->gt_timer_outputs[timeridx], 0);
1290
        timer_del(cpu->gt_timer[timeridx]);
1291 1292 1293
    }
}

1294 1295
static void gt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri,
                           int timeridx)
1296 1297 1298
{
    ARMCPU *cpu = arm_env_get_cpu(env);

1299
    timer_del(cpu->gt_timer[timeridx]);
1300 1301
}

1302
static uint64_t gt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
1303
{
1304
    return gt_get_countervalue(env);
1305 1306
}

E
Edgar E. Iglesias 已提交
1307 1308 1309 1310 1311
static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
{
    return gt_get_countervalue(env) - env->cp15.cntvoff_el2;
}

1312
static void gt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1313
                          int timeridx,
1314
                          uint64_t value)
1315 1316 1317 1318
{
    env->cp15.c14_timer[timeridx].cval = value;
    gt_recalc_timer(arm_env_get_cpu(env), timeridx);
}
1319

1320 1321
static uint64_t gt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri,
                             int timeridx)
1322
{
E
Edgar E. Iglesias 已提交
1323
    uint64_t offset = timeridx == GTIMER_VIRT ? env->cp15.cntvoff_el2 : 0;
1324

1325
    return (uint32_t)(env->cp15.c14_timer[timeridx].cval -
E
Edgar E. Iglesias 已提交
1326
                      (gt_get_countervalue(env) - offset));
1327 1328
}

1329
static void gt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1330
                          int timeridx,
1331
                          uint64_t value)
1332
{
E
Edgar E. Iglesias 已提交
1333
    uint64_t offset = timeridx == GTIMER_VIRT ? env->cp15.cntvoff_el2 : 0;
1334

E
Edgar E. Iglesias 已提交
1335
    env->cp15.c14_timer[timeridx].cval = gt_get_countervalue(env) - offset +
1336
                                         sextract64(value, 0, 32);
1337 1338 1339
    gt_recalc_timer(arm_env_get_cpu(env), timeridx);
}

1340
static void gt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
1341
                         int timeridx,
1342
                         uint64_t value)
1343 1344 1345 1346
{
    ARMCPU *cpu = arm_env_get_cpu(env);
    uint32_t oldval = env->cp15.c14_timer[timeridx].ctl;

1347
    env->cp15.c14_timer[timeridx].ctl = deposit64(oldval, 0, 2, value);
1348 1349 1350
    if ((oldval ^ value) & 1) {
        /* Enable toggled */
        gt_recalc_timer(cpu, timeridx);
1351
    } else if ((oldval ^ value) & 2) {
1352 1353 1354 1355
        /* IMASK toggled: don't need to recalculate,
         * just set the interrupt line based on ISTATUS
         */
        qemu_set_irq(cpu->gt_timer_outputs[timeridx],
1356
                     (oldval & 4) && !(value & 2));
1357 1358 1359
    }
}

1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415
static void gt_phys_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
{
    gt_timer_reset(env, ri, GTIMER_PHYS);
}

static void gt_phys_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
                               uint64_t value)
{
    gt_cval_write(env, ri, GTIMER_PHYS, value);
}

static uint64_t gt_phys_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
{
    return gt_tval_read(env, ri, GTIMER_PHYS);
}

static void gt_phys_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
                               uint64_t value)
{
    gt_tval_write(env, ri, GTIMER_PHYS, value);
}

static void gt_phys_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
                              uint64_t value)
{
    gt_ctl_write(env, ri, GTIMER_PHYS, value);
}

static void gt_virt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
{
    gt_timer_reset(env, ri, GTIMER_VIRT);
}

static void gt_virt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
                               uint64_t value)
{
    gt_cval_write(env, ri, GTIMER_VIRT, value);
}

static uint64_t gt_virt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
{
    return gt_tval_read(env, ri, GTIMER_VIRT);
}

static void gt_virt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
                               uint64_t value)
{
    gt_tval_write(env, ri, GTIMER_VIRT, value);
}

static void gt_virt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
                              uint64_t value)
{
    gt_ctl_write(env, ri, GTIMER_VIRT, value);
}

E
Edgar E. Iglesias 已提交
1416 1417 1418 1419 1420 1421 1422 1423 1424
static void gt_cntvoff_write(CPUARMState *env, const ARMCPRegInfo *ri,
                              uint64_t value)
{
    ARMCPU *cpu = arm_env_get_cpu(env);

    raw_write(env, ri, value);
    gt_recalc_timer(cpu, GTIMER_VIRT);
}

1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452
static void gt_hyp_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
{
    gt_timer_reset(env, ri, GTIMER_HYP);
}

static void gt_hyp_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
                              uint64_t value)
{
    gt_cval_write(env, ri, GTIMER_HYP, value);
}

static uint64_t gt_hyp_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
{
    return gt_tval_read(env, ri, GTIMER_HYP);
}

static void gt_hyp_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
                              uint64_t value)
{
    gt_tval_write(env, ri, GTIMER_HYP, value);
}

static void gt_hyp_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
                              uint64_t value)
{
    gt_ctl_write(env, ri, GTIMER_HYP, value);
}

1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480
static void gt_sec_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
{
    gt_timer_reset(env, ri, GTIMER_SEC);
}

static void gt_sec_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
                              uint64_t value)
{
    gt_cval_write(env, ri, GTIMER_SEC, value);
}

static uint64_t gt_sec_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
{
    return gt_tval_read(env, ri, GTIMER_SEC);
}

static void gt_sec_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
                              uint64_t value)
{
    gt_tval_write(env, ri, GTIMER_SEC, value);
}

static void gt_sec_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
                              uint64_t value)
{
    gt_ctl_write(env, ri, GTIMER_SEC, value);
}

1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494
void arm_gt_ptimer_cb(void *opaque)
{
    ARMCPU *cpu = opaque;

    gt_recalc_timer(cpu, GTIMER_PHYS);
}

void arm_gt_vtimer_cb(void *opaque)
{
    ARMCPU *cpu = opaque;

    gt_recalc_timer(cpu, GTIMER_VIRT);
}

1495 1496 1497 1498 1499 1500 1501
void arm_gt_htimer_cb(void *opaque)
{
    ARMCPU *cpu = opaque;

    gt_recalc_timer(cpu, GTIMER_HYP);
}

1502 1503 1504 1505 1506 1507 1508
void arm_gt_stimer_cb(void *opaque)
{
    ARMCPU *cpu = opaque;

    gt_recalc_timer(cpu, GTIMER_SEC);
}

1509 1510 1511 1512 1513 1514
static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
    /* Note that CNTFRQ is purely reads-as-written for the benefit
     * of software; writing it doesn't actually change the timer frequency.
     * Our reset value matches the fixed frequency we implement the timer at.
     */
    { .name = "CNTFRQ", .cp = 15, .crn = 14, .crm = 0, .opc1 = 0, .opc2 = 0,
1515
      .type = ARM_CP_ALIAS,
1516 1517 1518 1519 1520 1521
      .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
      .fieldoffset = offsetoflow32(CPUARMState, cp15.c14_cntfrq),
    },
    { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0,
      .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
1522 1523 1524 1525
      .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq),
      .resetvalue = (1000 * 1000 * 1000) / GTIMER_SCALE,
    },
    /* overall control: mostly access permissions */
1526 1527
    { .name = "CNTKCTL", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .opc1 = 0, .crn = 14, .crm = 1, .opc2 = 0,
1528 1529 1530 1531 1532 1533
      .access = PL1_RW,
      .fieldoffset = offsetof(CPUARMState, cp15.c14_cntkctl),
      .resetvalue = 0,
    },
    /* per-timer control */
    { .name = "CNTP_CTL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
1534
      .secure = ARM_CP_SECSTATE_NS,
1535
      .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL1_RW | PL0_R,
1536 1537 1538
      .accessfn = gt_ptimer_access,
      .fieldoffset = offsetoflow32(CPUARMState,
                                   cp15.c14_timer[GTIMER_PHYS].ctl),
1539
      .writefn = gt_phys_ctl_write, .raw_writefn = raw_write,
1540
    },
1541 1542 1543 1544 1545 1546 1547 1548 1549
    { .name = "CNTP_CTL(S)",
      .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
      .secure = ARM_CP_SECSTATE_S,
      .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL1_RW | PL0_R,
      .accessfn = gt_ptimer_access,
      .fieldoffset = offsetoflow32(CPUARMState,
                                   cp15.c14_timer[GTIMER_SEC].ctl),
      .writefn = gt_sec_ctl_write, .raw_writefn = raw_write,
    },
1550 1551
    { .name = "CNTP_CTL_EL0", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 1,
1552
      .type = ARM_CP_IO, .access = PL1_RW | PL0_R,
1553
      .accessfn = gt_ptimer_access,
1554 1555
      .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl),
      .resetvalue = 0,
1556
      .writefn = gt_phys_ctl_write, .raw_writefn = raw_write,
1557 1558
    },
    { .name = "CNTV_CTL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 1,
1559
      .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL1_RW | PL0_R,
1560 1561 1562
      .accessfn = gt_vtimer_access,
      .fieldoffset = offsetoflow32(CPUARMState,
                                   cp15.c14_timer[GTIMER_VIRT].ctl),
1563
      .writefn = gt_virt_ctl_write, .raw_writefn = raw_write,
1564 1565 1566
    },
    { .name = "CNTV_CTL_EL0", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 1,
1567
      .type = ARM_CP_IO, .access = PL1_RW | PL0_R,
1568
      .accessfn = gt_vtimer_access,
1569 1570
      .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl),
      .resetvalue = 0,
1571
      .writefn = gt_virt_ctl_write, .raw_writefn = raw_write,
1572 1573 1574
    },
    /* TimerValue views: a 32 bit downcounting view of the underlying state */
    { .name = "CNTP_TVAL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
1575
      .secure = ARM_CP_SECSTATE_NS,
1576
      .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
1577
      .accessfn = gt_ptimer_access,
1578
      .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write,
1579
    },
1580 1581 1582 1583 1584 1585 1586
    { .name = "CNTP_TVAL(S)",
      .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
      .secure = ARM_CP_SECSTATE_S,
      .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
      .accessfn = gt_ptimer_access,
      .readfn = gt_sec_tval_read, .writefn = gt_sec_tval_write,
    },
1587 1588
    { .name = "CNTP_TVAL_EL0", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 0,
1589
      .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
1590 1591
      .accessfn = gt_ptimer_access, .resetfn = gt_phys_timer_reset,
      .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write,
1592
    },
1593
    { .name = "CNTV_TVAL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 0,
1594
      .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
1595
      .accessfn = gt_vtimer_access,
1596
      .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write,
1597
    },
1598 1599
    { .name = "CNTV_TVAL_EL0", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 0,
1600
      .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
1601 1602
      .accessfn = gt_vtimer_access, .resetfn = gt_virt_timer_reset,
      .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write,
1603
    },
1604 1605
    /* The counter itself */
    { .name = "CNTPCT", .cp = 15, .crm = 14, .opc1 = 0,
1606
      .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
1607
      .accessfn = gt_pct_access,
1608 1609 1610 1611
      .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore,
    },
    { .name = "CNTPCT_EL0", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 1,
1612
      .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
1613
      .accessfn = gt_pct_access, .readfn = gt_cnt_read,
1614 1615
    },
    { .name = "CNTVCT", .cp = 15, .crm = 14, .opc1 = 1,
1616
      .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
1617
      .accessfn = gt_vct_access,
E
Edgar E. Iglesias 已提交
1618
      .readfn = gt_virt_cnt_read, .resetfn = arm_cp_reset_ignore,
1619 1620 1621
    },
    { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2,
1622
      .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
1623
      .accessfn = gt_vct_access, .readfn = gt_virt_cnt_read,
1624 1625 1626
    },
    /* Comparison value, indicating when the timer goes off */
    { .name = "CNTP_CVAL", .cp = 15, .crm = 14, .opc1 = 2,
1627
      .secure = ARM_CP_SECSTATE_NS,
1628
      .access = PL1_RW | PL0_R,
1629
      .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
1630
      .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
1631
      .accessfn = gt_ptimer_access,
1632
      .writefn = gt_phys_cval_write, .raw_writefn = raw_write,
1633
    },
1634 1635 1636 1637 1638 1639 1640 1641
    { .name = "CNTP_CVAL(S)", .cp = 15, .crm = 14, .opc1 = 2,
      .secure = ARM_CP_SECSTATE_S,
      .access = PL1_RW | PL0_R,
      .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
      .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval),
      .accessfn = gt_ptimer_access,
      .writefn = gt_sec_cval_write, .raw_writefn = raw_write,
    },
1642 1643 1644 1645 1646
    { .name = "CNTP_CVAL_EL0", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 2,
      .access = PL1_RW | PL0_R,
      .type = ARM_CP_IO,
      .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
1647
      .resetvalue = 0, .accessfn = gt_ptimer_access,
1648
      .writefn = gt_phys_cval_write, .raw_writefn = raw_write,
1649 1650 1651
    },
    { .name = "CNTV_CVAL", .cp = 15, .crm = 14, .opc1 = 3,
      .access = PL1_RW | PL0_R,
1652
      .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
1653
      .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
1654
      .accessfn = gt_vtimer_access,
1655
      .writefn = gt_virt_cval_write, .raw_writefn = raw_write,
1656 1657 1658 1659 1660 1661 1662
    },
    { .name = "CNTV_CVAL_EL0", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 2,
      .access = PL1_RW | PL0_R,
      .type = ARM_CP_IO,
      .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
      .resetvalue = 0, .accessfn = gt_vtimer_access,
1663
      .writefn = gt_virt_cval_write, .raw_writefn = raw_write,
1664
    },
1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690
    /* Secure timer -- this is actually restricted to only EL3
     * and configurably Secure-EL1 via the accessfn.
     */
    { .name = "CNTPS_TVAL_EL1", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 0,
      .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW,
      .accessfn = gt_stimer_access,
      .readfn = gt_sec_tval_read,
      .writefn = gt_sec_tval_write,
      .resetfn = gt_sec_timer_reset,
    },
    { .name = "CNTPS_CTL_EL1", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 1,
      .type = ARM_CP_IO, .access = PL1_RW,
      .accessfn = gt_stimer_access,
      .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].ctl),
      .resetvalue = 0,
      .writefn = gt_sec_ctl_write, .raw_writefn = raw_write,
    },
    { .name = "CNTPS_CVAL_EL1", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 2,
      .type = ARM_CP_IO, .access = PL1_RW,
      .accessfn = gt_stimer_access,
      .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval),
      .writefn = gt_sec_cval_write, .raw_writefn = raw_write,
    },
1691 1692 1693 1694 1695
    REGINFO_SENTINEL
};

#else
/* In user-mode none of the generic timer registers are accessible,
1696
 * and their implementation depends on QEMU_CLOCK_VIRTUAL and qdev gpio outputs,
1697 1698
 * so instead just don't register any of them.
 */
1699 1700 1701 1702
static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
    REGINFO_SENTINEL
};

1703 1704
#endif

1705
static void par_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
1706
{
1707
    if (arm_feature(env, ARM_FEATURE_LPAE)) {
1708
        raw_write(env, ri, value);
1709
    } else if (arm_feature(env, ARM_FEATURE_V7)) {
1710
        raw_write(env, ri, value & 0xfffff6ff);
1711
    } else {
1712
        raw_write(env, ri, value & 0xfffff1ff);
1713 1714 1715 1716 1717
    }
}

#ifndef CONFIG_USER_ONLY
/* get_phys_addr() isn't present for user-mode-only targets */
1718

1719 1720 1721
static CPAccessResult ats_access(CPUARMState *env, const ARMCPRegInfo *ri)
{
    if (ri->opc2 & 4) {
1722 1723 1724 1725
        /* The ATS12NSO* operations must trap to EL3 if executed in
         * Secure EL1 (which can only happen if EL3 is AArch64).
         * They are simply UNDEF if executed from NS EL1.
         * They function normally from EL2 or EL3.
1726
         */
1727 1728 1729 1730 1731 1732
        if (arm_current_el(env) == 1) {
            if (arm_is_secure_below_el3(env)) {
                return CP_ACCESS_TRAP_UNCATEGORIZED_EL3;
            }
            return CP_ACCESS_TRAP_UNCATEGORIZED;
        }
1733 1734 1735 1736
    }
    return CP_ACCESS_OK;
}

1737
static uint64_t do_ats_write(CPUARMState *env, uint64_t value,
1738
                             int access_type, ARMMMUIdx mmu_idx)
1739
{
A
Avi Kivity 已提交
1740
    hwaddr phys_addr;
1741 1742
    target_ulong page_size;
    int prot;
1743 1744
    uint32_t fsr;
    bool ret;
F
Fabian Aggeler 已提交
1745
    uint64_t par64;
1746
    MemTxAttrs attrs = {};
1747

1748
    ret = get_phys_addr(env, value, access_type, mmu_idx,
1749
                        &phys_addr, &attrs, &prot, &page_size, &fsr);
1750
    if (extended_addresses_enabled(env)) {
1751
        /* fsr is a DFSR/IFSR value for the long descriptor
1752 1753 1754
         * translation table format, but with WnR always clear.
         * Convert it to a 64-bit PAR.
         */
F
Fabian Aggeler 已提交
1755
        par64 = (1 << 11); /* LPAE bit always set */
1756
        if (!ret) {
1757
            par64 |= phys_addr & ~0xfffULL;
1758 1759 1760
            if (!attrs.secure) {
                par64 |= (1 << 9); /* NS */
            }
1761
            /* We don't set the ATTR or SH fields in the PAR. */
1762
        } else {
1763
            par64 |= 1; /* F */
1764
            par64 |= (fsr & 0x3f) << 1; /* FS */
1765 1766 1767 1768
            /* Note that S2WLK and FSTAGE are always zero, because we don't
             * implement virtualization and therefore there can't be a stage 2
             * fault.
             */
1769 1770
        }
    } else {
1771
        /* fsr is a DFSR/IFSR value for the short descriptor
1772 1773 1774
         * translation table format (with WnR always clear).
         * Convert it to a 32-bit PAR.
         */
1775
        if (!ret) {
1776 1777 1778
            /* We do not set any attribute bits in the PAR */
            if (page_size == (1 << 24)
                && arm_feature(env, ARM_FEATURE_V7)) {
F
Fabian Aggeler 已提交
1779
                par64 = (phys_addr & 0xff000000) | (1 << 1);
1780
            } else {
F
Fabian Aggeler 已提交
1781
                par64 = phys_addr & 0xfffff000;
1782
            }
1783 1784 1785
            if (!attrs.secure) {
                par64 |= (1 << 9); /* NS */
            }
1786
        } else {
1787 1788
            par64 = ((fsr & (1 << 10)) >> 5) | ((fsr & (1 << 12)) >> 6) |
                    ((fsr & 0xf) << 1) | 1;
1789
        }
1790
    }
1791 1792 1793 1794 1795 1796 1797
    return par64;
}

static void ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
{
    int access_type = ri->opc2 & 1;
    uint64_t par64;
1798 1799 1800
    ARMMMUIdx mmu_idx;
    int el = arm_current_el(env);
    bool secure = arm_is_secure_below_el3(env);
1801

1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847
    switch (ri->opc2 & 6) {
    case 0:
        /* stage 1 current state PL1: ATS1CPR, ATS1CPW */
        switch (el) {
        case 3:
            mmu_idx = ARMMMUIdx_S1E3;
            break;
        case 2:
            mmu_idx = ARMMMUIdx_S1NSE1;
            break;
        case 1:
            mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S1NSE1;
            break;
        default:
            g_assert_not_reached();
        }
        break;
    case 2:
        /* stage 1 current state PL0: ATS1CUR, ATS1CUW */
        switch (el) {
        case 3:
            mmu_idx = ARMMMUIdx_S1SE0;
            break;
        case 2:
            mmu_idx = ARMMMUIdx_S1NSE0;
            break;
        case 1:
            mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S1NSE0;
            break;
        default:
            g_assert_not_reached();
        }
        break;
    case 4:
        /* stage 1+2 NonSecure PL1: ATS12NSOPR, ATS12NSOPW */
        mmu_idx = ARMMMUIdx_S12NSE1;
        break;
    case 6:
        /* stage 1+2 NonSecure PL0: ATS12NSOUR, ATS12NSOUW */
        mmu_idx = ARMMMUIdx_S12NSE0;
        break;
    default:
        g_assert_not_reached();
    }

    par64 = do_ats_write(env, value, access_type, mmu_idx);
F
Fabian Aggeler 已提交
1848 1849

    A32_BANKED_CURRENT_REG_SET(env, par, par64);
1850
}
1851

1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862
static void ats1h_write(CPUARMState *env, const ARMCPRegInfo *ri,
                        uint64_t value)
{
    int access_type = ri->opc2 & 1;
    uint64_t par64;

    par64 = do_ats_write(env, value, access_type, ARMMMUIdx_S2NS);

    A32_BANKED_CURRENT_REG_SET(env, par, par64);
}

1863 1864 1865 1866 1867 1868 1869 1870
static CPAccessResult at_s1e2_access(CPUARMState *env, const ARMCPRegInfo *ri)
{
    if (arm_current_el(env) == 3 && !(env->cp15.scr_el3 & SCR_NS)) {
        return CP_ACCESS_TRAP;
    }
    return CP_ACCESS_OK;
}

1871 1872 1873 1874
static void ats_write64(CPUARMState *env, const ARMCPRegInfo *ri,
                        uint64_t value)
{
    int access_type = ri->opc2 & 1;
1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897
    ARMMMUIdx mmu_idx;
    int secure = arm_is_secure_below_el3(env);

    switch (ri->opc2 & 6) {
    case 0:
        switch (ri->opc1) {
        case 0: /* AT S1E1R, AT S1E1W */
            mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S1NSE1;
            break;
        case 4: /* AT S1E2R, AT S1E2W */
            mmu_idx = ARMMMUIdx_S1E2;
            break;
        case 6: /* AT S1E3R, AT S1E3W */
            mmu_idx = ARMMMUIdx_S1E3;
            break;
        default:
            g_assert_not_reached();
        }
        break;
    case 2: /* AT S1E0R, AT S1E0W */
        mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S1NSE0;
        break;
    case 4: /* AT S12E1R, AT S12E1W */
1898
        mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S12NSE1;
1899 1900
        break;
    case 6: /* AT S12E0R, AT S12E0W */
1901
        mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S12NSE0;
1902 1903 1904 1905
        break;
    default:
        g_assert_not_reached();
    }
1906

1907
    env->cp15.par_el[1] = do_ats_write(env, value, access_type, mmu_idx);
1908
}
1909 1910 1911 1912 1913
#endif

static const ARMCPRegInfo vapa_cp_reginfo[] = {
    { .name = "PAR", .cp = 15, .crn = 7, .crm = 4, .opc1 = 0, .opc2 = 0,
      .access = PL1_RW, .resetvalue = 0,
F
Fabian Aggeler 已提交
1914 1915
      .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.par_s),
                             offsetoflow32(CPUARMState, cp15.par_ns) },
1916 1917
      .writefn = par_write },
#ifndef CONFIG_USER_ONLY
1918
    /* This underdecoding is safe because the reginfo is NO_RAW. */
1919
    { .name = "ATS", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = CP_ANY,
1920
      .access = PL1_W, .accessfn = ats_access,
1921
      .writefn = ats_write, .type = ARM_CP_NO_RAW },
1922 1923 1924 1925
#endif
    REGINFO_SENTINEL
};

1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955
/* Return basic MPU access permission bits.  */
static uint32_t simple_mpu_ap_bits(uint32_t val)
{
    uint32_t ret;
    uint32_t mask;
    int i;
    ret = 0;
    mask = 3;
    for (i = 0; i < 16; i += 2) {
        ret |= (val >> i) & mask;
        mask <<= 2;
    }
    return ret;
}

/* Pad basic MPU access permission bits to extended format.  */
static uint32_t extended_mpu_ap_bits(uint32_t val)
{
    uint32_t ret;
    uint32_t mask;
    int i;
    ret = 0;
    mask = 3;
    for (i = 0; i < 16; i += 2) {
        ret |= (val & mask) << i;
        mask <<= 2;
    }
    return ret;
}

1956 1957
static void pmsav5_data_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
                                 uint64_t value)
1958
{
1959
    env->cp15.pmsav5_data_ap = extended_mpu_ap_bits(value);
1960 1961
}

1962
static uint64_t pmsav5_data_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
1963
{
1964
    return simple_mpu_ap_bits(env->cp15.pmsav5_data_ap);
1965 1966
}

1967 1968
static void pmsav5_insn_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
                                 uint64_t value)
1969
{
1970
    env->cp15.pmsav5_insn_ap = extended_mpu_ap_bits(value);
1971 1972
}

1973
static uint64_t pmsav5_insn_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
1974
{
1975
    return simple_mpu_ap_bits(env->cp15.pmsav5_insn_ap);
1976 1977
}

1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052
static uint64_t pmsav7_read(CPUARMState *env, const ARMCPRegInfo *ri)
{
    uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);

    if (!u32p) {
        return 0;
    }

    u32p += env->cp15.c6_rgnr;
    return *u32p;
}

static void pmsav7_write(CPUARMState *env, const ARMCPRegInfo *ri,
                         uint64_t value)
{
    ARMCPU *cpu = arm_env_get_cpu(env);
    uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);

    if (!u32p) {
        return;
    }

    u32p += env->cp15.c6_rgnr;
    tlb_flush(CPU(cpu), 1); /* Mappings may have changed - purge! */
    *u32p = value;
}

static void pmsav7_reset(CPUARMState *env, const ARMCPRegInfo *ri)
{
    ARMCPU *cpu = arm_env_get_cpu(env);
    uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);

    if (!u32p) {
        return;
    }

    memset(u32p, 0, sizeof(*u32p) * cpu->pmsav7_dregion);
}

static void pmsav7_rgnr_write(CPUARMState *env, const ARMCPRegInfo *ri,
                              uint64_t value)
{
    ARMCPU *cpu = arm_env_get_cpu(env);
    uint32_t nrgs = cpu->pmsav7_dregion;

    if (value >= nrgs) {
        qemu_log_mask(LOG_GUEST_ERROR,
                      "PMSAv7 RGNR write >= # supported regions, %" PRIu32
                      " > %" PRIu32 "\n", (uint32_t)value, nrgs);
        return;
    }

    raw_write(env, ri, value);
}

static const ARMCPRegInfo pmsav7_cp_reginfo[] = {
    { .name = "DRBAR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 0,
      .access = PL1_RW, .type = ARM_CP_NO_RAW,
      .fieldoffset = offsetof(CPUARMState, pmsav7.drbar),
      .readfn = pmsav7_read, .writefn = pmsav7_write, .resetfn = pmsav7_reset },
    { .name = "DRSR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 2,
      .access = PL1_RW, .type = ARM_CP_NO_RAW,
      .fieldoffset = offsetof(CPUARMState, pmsav7.drsr),
      .readfn = pmsav7_read, .writefn = pmsav7_write, .resetfn = pmsav7_reset },
    { .name = "DRACR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 4,
      .access = PL1_RW, .type = ARM_CP_NO_RAW,
      .fieldoffset = offsetof(CPUARMState, pmsav7.dracr),
      .readfn = pmsav7_read, .writefn = pmsav7_write, .resetfn = pmsav7_reset },
    { .name = "RGNR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 2, .opc2 = 0,
      .access = PL1_RW,
      .fieldoffset = offsetof(CPUARMState, cp15.c6_rgnr),
      .writefn = pmsav7_rgnr_write },
    REGINFO_SENTINEL
};

2053 2054
static const ARMCPRegInfo pmsav5_cp_reginfo[] = {
    { .name = "DATA_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
2055
      .access = PL1_RW, .type = ARM_CP_ALIAS,
2056
      .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
2057 2058
      .readfn = pmsav5_data_ap_read, .writefn = pmsav5_data_ap_write, },
    { .name = "INSN_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
2059
      .access = PL1_RW, .type = ARM_CP_ALIAS,
2060
      .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
2061 2062 2063
      .readfn = pmsav5_insn_ap_read, .writefn = pmsav5_insn_ap_write, },
    { .name = "DATA_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 2,
      .access = PL1_RW,
2064 2065
      .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
      .resetvalue = 0, },
2066 2067
    { .name = "INSN_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 3,
      .access = PL1_RW,
2068 2069
      .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
      .resetvalue = 0, },
2070 2071 2072 2073 2074 2075
    { .name = "DCACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
      .access = PL1_RW,
      .fieldoffset = offsetof(CPUARMState, cp15.c2_data), .resetvalue = 0, },
    { .name = "ICACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1,
      .access = PL1_RW,
      .fieldoffset = offsetof(CPUARMState, cp15.c2_insn), .resetvalue = 0, },
2076
    /* Protection region base and size registers */
2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100
    { .name = "946_PRBS0", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0,
      .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
      .fieldoffset = offsetof(CPUARMState, cp15.c6_region[0]) },
    { .name = "946_PRBS1", .cp = 15, .crn = 6, .crm = 1, .opc1 = 0,
      .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
      .fieldoffset = offsetof(CPUARMState, cp15.c6_region[1]) },
    { .name = "946_PRBS2", .cp = 15, .crn = 6, .crm = 2, .opc1 = 0,
      .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
      .fieldoffset = offsetof(CPUARMState, cp15.c6_region[2]) },
    { .name = "946_PRBS3", .cp = 15, .crn = 6, .crm = 3, .opc1 = 0,
      .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
      .fieldoffset = offsetof(CPUARMState, cp15.c6_region[3]) },
    { .name = "946_PRBS4", .cp = 15, .crn = 6, .crm = 4, .opc1 = 0,
      .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
      .fieldoffset = offsetof(CPUARMState, cp15.c6_region[4]) },
    { .name = "946_PRBS5", .cp = 15, .crn = 6, .crm = 5, .opc1 = 0,
      .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
      .fieldoffset = offsetof(CPUARMState, cp15.c6_region[5]) },
    { .name = "946_PRBS6", .cp = 15, .crn = 6, .crm = 6, .opc1 = 0,
      .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
      .fieldoffset = offsetof(CPUARMState, cp15.c6_region[6]) },
    { .name = "946_PRBS7", .cp = 15, .crn = 6, .crm = 7, .opc1 = 0,
      .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
      .fieldoffset = offsetof(CPUARMState, cp15.c6_region[7]) },
2101 2102 2103
    REGINFO_SENTINEL
};

2104 2105
static void vmsa_ttbcr_raw_write(CPUARMState *env, const ARMCPRegInfo *ri,
                                 uint64_t value)
2106
{
F
Fabian Aggeler 已提交
2107
    TCR *tcr = raw_ptr(env, ri);
2108 2109
    int maskshift = extract32(value, 0, 3);

2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123
    if (!arm_feature(env, ARM_FEATURE_V8)) {
        if (arm_feature(env, ARM_FEATURE_LPAE) && (value & TTBCR_EAE)) {
            /* Pre ARMv8 bits [21:19], [15:14] and [6:3] are UNK/SBZP when
             * using Long-desciptor translation table format */
            value &= ~((7 << 19) | (3 << 14) | (0xf << 3));
        } else if (arm_feature(env, ARM_FEATURE_EL3)) {
            /* In an implementation that includes the Security Extensions
             * TTBCR has additional fields PD0 [4] and PD1 [5] for
             * Short-descriptor translation table format.
             */
            value &= TTBCR_PD1 | TTBCR_PD0 | TTBCR_N;
        } else {
            value &= TTBCR_N;
        }
2124
    }
2125

2126
    /* Update the masks corresponding to the TCR bank being written
F
Fabian Aggeler 已提交
2127
     * Note that we always calculate mask and base_mask, but
2128
     * they are only used for short-descriptor tables (ie if EAE is 0);
F
Fabian Aggeler 已提交
2129 2130
     * for long-descriptor tables the TCR fields are used differently
     * and the mask and base_mask values are meaningless.
2131
     */
F
Fabian Aggeler 已提交
2132 2133 2134
    tcr->raw_tcr = value;
    tcr->mask = ~(((uint32_t)0xffffffffu) >> maskshift);
    tcr->base_mask = ~((uint32_t)0x3fffu >> maskshift);
2135 2136
}

2137 2138
static void vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
                             uint64_t value)
2139
{
2140 2141
    ARMCPU *cpu = arm_env_get_cpu(env);

2142 2143 2144 2145
    if (arm_feature(env, ARM_FEATURE_LPAE)) {
        /* With LPAE the TTBCR could result in a change of ASID
         * via the TTBCR.A1 bit, so do a TLB flush.
         */
2146
        tlb_flush(CPU(cpu), 1);
2147
    }
2148
    vmsa_ttbcr_raw_write(env, ri, value);
2149 2150
}

2151 2152
static void vmsa_ttbcr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
{
F
Fabian Aggeler 已提交
2153 2154 2155 2156 2157 2158 2159 2160
    TCR *tcr = raw_ptr(env, ri);

    /* Reset both the TCR as well as the masks corresponding to the bank of
     * the TCR being reset.
     */
    tcr->raw_tcr = 0;
    tcr->mask = 0;
    tcr->base_mask = 0xffffc000u;
2161 2162
}

2163 2164 2165
static void vmsa_tcr_el1_write(CPUARMState *env, const ARMCPRegInfo *ri,
                               uint64_t value)
{
2166
    ARMCPU *cpu = arm_env_get_cpu(env);
F
Fabian Aggeler 已提交
2167
    TCR *tcr = raw_ptr(env, ri);
2168

2169
    /* For AArch64 the A1 bit could result in a change of ASID, so TLB flush. */
2170
    tlb_flush(CPU(cpu), 1);
F
Fabian Aggeler 已提交
2171
    tcr->raw_tcr = value;
2172 2173
}

2174 2175 2176 2177 2178 2179 2180
static void vmsa_ttbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
                            uint64_t value)
{
    /* 64 bit accesses to the TTBRs can change the ASID and so we
     * must flush the TLB.
     */
    if (cpreg_field_is_64bit(ri)) {
2181 2182 2183
        ARMCPU *cpu = arm_env_get_cpu(env);

        tlb_flush(CPU(cpu), 1);
2184 2185 2186 2187
    }
    raw_write(env, ri, value);
}

2188
static const ARMCPRegInfo vmsa_pmsa_cp_reginfo[] = {
2189
    { .name = "DFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
2190
      .access = PL1_RW, .type = ARM_CP_ALIAS,
F
Fabian Aggeler 已提交
2191
      .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dfsr_s),
2192
                             offsetoflow32(CPUARMState, cp15.dfsr_ns) }, },
2193
    { .name = "IFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
F
Fabian Aggeler 已提交
2194 2195 2196
      .access = PL1_RW, .resetvalue = 0,
      .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.ifsr_s),
                             offsetoflow32(CPUARMState, cp15.ifsr_ns) } },
2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208
    { .name = "DFAR", .cp = 15, .opc1 = 0, .crn = 6, .crm = 0, .opc2 = 0,
      .access = PL1_RW, .resetvalue = 0,
      .bank_fieldoffsets = { offsetof(CPUARMState, cp15.dfar_s),
                             offsetof(CPUARMState, cp15.dfar_ns) } },
    { .name = "FAR_EL1", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0,
      .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[1]),
      .resetvalue = 0, },
    REGINFO_SENTINEL
};

static const ARMCPRegInfo vmsa_cp_reginfo[] = {
2209 2210 2211
    { .name = "ESR_EL1", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .crn = 5, .crm = 2, .opc1 = 0, .opc2 = 0,
      .access = PL1_RW,
2212
      .fieldoffset = offsetof(CPUARMState, cp15.esr_el[1]), .resetvalue = 0, },
2213
    { .name = "TTBR0_EL1", .state = ARM_CP_STATE_BOTH,
F
Fabian Aggeler 已提交
2214 2215 2216 2217
      .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 0,
      .access = PL1_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0,
      .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s),
                             offsetof(CPUARMState, cp15.ttbr0_ns) } },
2218
    { .name = "TTBR1_EL1", .state = ARM_CP_STATE_BOTH,
F
Fabian Aggeler 已提交
2219 2220 2221 2222
      .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 1,
      .access = PL1_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0,
      .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s),
                             offsetof(CPUARMState, cp15.ttbr1_ns) } },
2223 2224 2225 2226
    { .name = "TCR_EL1", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
      .access = PL1_RW, .writefn = vmsa_tcr_el1_write,
      .resetfn = vmsa_ttbcr_reset, .raw_writefn = raw_write,
F
Fabian Aggeler 已提交
2227
      .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[1]) },
2228
    { .name = "TTBCR", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
2229
      .access = PL1_RW, .type = ARM_CP_ALIAS, .writefn = vmsa_ttbcr_write,
2230
      .raw_writefn = vmsa_ttbcr_raw_write,
F
Fabian Aggeler 已提交
2231 2232
      .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tcr_el[3]),
                             offsetoflow32(CPUARMState, cp15.tcr_el[1])} },
2233 2234 2235
    REGINFO_SENTINEL
};

2236 2237
static void omap_ticonfig_write(CPUARMState *env, const ARMCPRegInfo *ri,
                                uint64_t value)
2238 2239 2240 2241 2242 2243 2244
{
    env->cp15.c15_ticonfig = value & 0xe7;
    /* The OS_TYPE bit in this register changes the reported CPUID! */
    env->cp15.c0_cpuid = (value & (1 << 5)) ?
        ARM_CPUID_TI915T : ARM_CPUID_TI925T;
}

2245 2246
static void omap_threadid_write(CPUARMState *env, const ARMCPRegInfo *ri,
                                uint64_t value)
2247 2248 2249 2250
{
    env->cp15.c15_threadid = value & 0xffff;
}

2251 2252
static void omap_wfi_write(CPUARMState *env, const ARMCPRegInfo *ri,
                           uint64_t value)
2253 2254
{
    /* Wait-for-interrupt (deprecated) */
2255
    cpu_interrupt(CPU(arm_env_get_cpu(env)), CPU_INTERRUPT_HALT);
2256 2257
}

2258 2259
static void omap_cachemaint_write(CPUARMState *env, const ARMCPRegInfo *ri,
                                  uint64_t value)
2260 2261 2262 2263 2264 2265 2266 2267
{
    /* On OMAP there are registers indicating the max/min index of dcache lines
     * containing a dirty line; cache flush operations have to reset these.
     */
    env->cp15.c15_i_max = 0x000;
    env->cp15.c15_i_min = 0xff0;
}

2268 2269 2270
static const ARMCPRegInfo omap_cp_reginfo[] = {
    { .name = "DFSR", .cp = 15, .crn = 5, .crm = CP_ANY,
      .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_OVERRIDE,
2271
      .fieldoffset = offsetoflow32(CPUARMState, cp15.esr_el[1]),
2272
      .resetvalue = 0, },
2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290
    { .name = "", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0,
      .access = PL1_RW, .type = ARM_CP_NOP },
    { .name = "TICONFIG", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0,
      .access = PL1_RW,
      .fieldoffset = offsetof(CPUARMState, cp15.c15_ticonfig), .resetvalue = 0,
      .writefn = omap_ticonfig_write },
    { .name = "IMAX", .cp = 15, .crn = 15, .crm = 2, .opc1 = 0, .opc2 = 0,
      .access = PL1_RW,
      .fieldoffset = offsetof(CPUARMState, cp15.c15_i_max), .resetvalue = 0, },
    { .name = "IMIN", .cp = 15, .crn = 15, .crm = 3, .opc1 = 0, .opc2 = 0,
      .access = PL1_RW, .resetvalue = 0xff0,
      .fieldoffset = offsetof(CPUARMState, cp15.c15_i_min) },
    { .name = "THREADID", .cp = 15, .crn = 15, .crm = 4, .opc1 = 0, .opc2 = 0,
      .access = PL1_RW,
      .fieldoffset = offsetof(CPUARMState, cp15.c15_threadid), .resetvalue = 0,
      .writefn = omap_threadid_write },
    { .name = "TI925T_STATUS", .cp = 15, .crn = 15,
      .crm = 8, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
2291
      .type = ARM_CP_NO_RAW,
2292 2293 2294 2295 2296 2297
      .readfn = arm_cp_read_zero, .writefn = omap_wfi_write, },
    /* TODO: Peripheral port remap register:
     * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller
     * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff),
     * when MMU is off.
     */
2298
    { .name = "OMAP_CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
2299
      .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
2300
      .type = ARM_CP_OVERRIDE | ARM_CP_NO_RAW,
2301
      .writefn = omap_cachemaint_write },
2302 2303 2304
    { .name = "C9", .cp = 15, .crn = 9,
      .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW,
      .type = ARM_CP_CONST | ARM_CP_OVERRIDE, .resetvalue = 0 },
2305 2306 2307
    REGINFO_SENTINEL
};

2308 2309
static void xscale_cpar_write(CPUARMState *env, const ARMCPRegInfo *ri,
                              uint64_t value)
2310
{
2311
    env->cp15.c15_cpar = value & 0x3fff;
2312 2313 2314 2315 2316 2317 2318
}

static const ARMCPRegInfo xscale_cp_reginfo[] = {
    { .name = "XSCALE_CPAR",
      .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
      .fieldoffset = offsetof(CPUARMState, cp15.c15_cpar), .resetvalue = 0,
      .writefn = xscale_cpar_write, },
2319 2320 2321 2322
    { .name = "XSCALE_AUXCR",
      .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW,
      .fieldoffset = offsetof(CPUARMState, cp15.c1_xscaleauxcr),
      .resetvalue = 0, },
2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337
    /* XScale specific cache-lockdown: since we have no cache we NOP these
     * and hope the guest does not really rely on cache behaviour.
     */
    { .name = "XSCALE_LOCK_ICACHE_LINE",
      .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0,
      .access = PL1_W, .type = ARM_CP_NOP },
    { .name = "XSCALE_UNLOCK_ICACHE",
      .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1,
      .access = PL1_W, .type = ARM_CP_NOP },
    { .name = "XSCALE_DCACHE_LOCK",
      .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 0,
      .access = PL1_RW, .type = ARM_CP_NOP },
    { .name = "XSCALE_UNLOCK_DCACHE",
      .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 1,
      .access = PL1_W, .type = ARM_CP_NOP },
2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348
    REGINFO_SENTINEL
};

static const ARMCPRegInfo dummy_c15_cp_reginfo[] = {
    /* RAZ/WI the whole crn=15 space, when we don't have a more specific
     * implementation of this implementation-defined space.
     * Ideally this should eventually disappear in favour of actually
     * implementing the correct behaviour for all cores.
     */
    { .name = "C15_IMPDEF", .cp = 15, .crn = 15,
      .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
2349
      .access = PL1_RW,
2350
      .type = ARM_CP_CONST | ARM_CP_NO_RAW | ARM_CP_OVERRIDE,
2351
      .resetvalue = 0 },
2352 2353 2354
    REGINFO_SENTINEL
};

2355 2356 2357
static const ARMCPRegInfo cache_dirty_status_cp_reginfo[] = {
    /* Cache status: RAZ because we have no cache so it's always clean */
    { .name = "CDSR", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 6,
2358
      .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
2359
      .resetvalue = 0 },
2360 2361 2362 2363 2364 2365
    REGINFO_SENTINEL
};

static const ARMCPRegInfo cache_block_ops_cp_reginfo[] = {
    /* We never have a a block transfer operation in progress */
    { .name = "BXSR", .cp = 15, .crn = 7, .crm = 12, .opc1 = 0, .opc2 = 4,
2366
      .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
2367
      .resetvalue = 0 },
2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380
    /* The cache ops themselves: these all NOP for QEMU */
    { .name = "IICR", .cp = 15, .crm = 5, .opc1 = 0,
      .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
    { .name = "IDCR", .cp = 15, .crm = 6, .opc1 = 0,
      .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
    { .name = "CDCR", .cp = 15, .crm = 12, .opc1 = 0,
      .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
    { .name = "PIR", .cp = 15, .crm = 12, .opc1 = 1,
      .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
    { .name = "PDR", .cp = 15, .crm = 12, .opc1 = 2,
      .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
    { .name = "CIDCR", .cp = 15, .crm = 14, .opc1 = 0,
      .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
2381 2382 2383 2384 2385 2386 2387 2388
    REGINFO_SENTINEL
};

static const ARMCPRegInfo cache_test_clean_cp_reginfo[] = {
    /* The cache test-and-clean instructions always return (1 << 30)
     * to indicate that there are no dirty cache lines.
     */
    { .name = "TC_DCACHE", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 3,
2389
      .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
2390
      .resetvalue = (1 << 30) },
2391
    { .name = "TCI_DCACHE", .cp = 15, .crn = 7, .crm = 14, .opc1 = 0, .opc2 = 3,
2392
      .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
2393
      .resetvalue = (1 << 30) },
2394 2395 2396
    REGINFO_SENTINEL
};

2397 2398 2399 2400
static const ARMCPRegInfo strongarm_cp_reginfo[] = {
    /* Ignore ReadBuffer accesses */
    { .name = "C9_READBUFFER", .cp = 15, .crn = 9,
      .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
2401
      .access = PL1_RW, .resetvalue = 0,
2402
      .type = ARM_CP_CONST | ARM_CP_OVERRIDE | ARM_CP_NO_RAW },
2403 2404 2405
    REGINFO_SENTINEL
};

2406
static uint64_t mpidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
P
Peter Maydell 已提交
2407
{
2408 2409 2410
    ARMCPU *cpu = ARM_CPU(arm_env_get_cpu(env));
    uint64_t mpidr = cpu->mp_affinity;

P
Peter Maydell 已提交
2411
    if (arm_feature(env, ARM_FEATURE_V7MP)) {
2412
        mpidr |= (1U << 31);
P
Peter Maydell 已提交
2413 2414
        /* Cores which are uniprocessor (non-coherent)
         * but still implement the MP extensions set
2415
         * bit 30. (For instance, Cortex-R5).
P
Peter Maydell 已提交
2416
         */
2417 2418 2419
        if (cpu->mp_is_up) {
            mpidr |= (1u << 30);
        }
P
Peter Maydell 已提交
2420
    }
2421
    return mpidr;
P
Peter Maydell 已提交
2422 2423 2424
}

static const ARMCPRegInfo mpidr_cp_reginfo[] = {
2425 2426
    { .name = "MPIDR", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 5,
2427
      .access = PL1_R, .readfn = mpidr_read, .type = ARM_CP_NO_RAW },
P
Peter Maydell 已提交
2428 2429 2430
    REGINFO_SENTINEL
};

2431
static const ARMCPRegInfo lpae_cp_reginfo[] = {
2432
    /* NOP AMAIR0/1 */
2433 2434
    { .name = "AMAIR0", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 0,
2435
      .access = PL1_RW, .type = ARM_CP_CONST,
2436
      .resetvalue = 0 },
2437
    /* AMAIR1 is mapped to AMAIR_EL1[63:32] */
2438
    { .name = "AMAIR1", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 1,
2439
      .access = PL1_RW, .type = ARM_CP_CONST,
2440
      .resetvalue = 0 },
2441
    { .name = "PAR", .cp = 15, .crm = 7, .opc1 = 0,
F
Fabian Aggeler 已提交
2442 2443 2444
      .access = PL1_RW, .type = ARM_CP_64BIT, .resetvalue = 0,
      .bank_fieldoffsets = { offsetof(CPUARMState, cp15.par_s),
                             offsetof(CPUARMState, cp15.par_ns)} },
2445
    { .name = "TTBR0", .cp = 15, .crm = 2, .opc1 = 0,
2446
      .access = PL1_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
F
Fabian Aggeler 已提交
2447 2448
      .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s),
                             offsetof(CPUARMState, cp15.ttbr0_ns) },
2449
      .writefn = vmsa_ttbr_write, },
2450
    { .name = "TTBR1", .cp = 15, .crm = 2, .opc1 = 1,
2451
      .access = PL1_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
F
Fabian Aggeler 已提交
2452 2453
      .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s),
                             offsetof(CPUARMState, cp15.ttbr1_ns) },
2454
      .writefn = vmsa_ttbr_write, },
2455 2456 2457
    REGINFO_SENTINEL
};

2458
static uint64_t aa64_fpcr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2459
{
2460
    return vfp_get_fpcr(env);
2461 2462
}

2463 2464
static void aa64_fpcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
                            uint64_t value)
2465 2466 2467 2468
{
    vfp_set_fpcr(env, value);
}

2469
static uint64_t aa64_fpsr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2470
{
2471
    return vfp_get_fpsr(env);
2472 2473
}

2474 2475
static void aa64_fpsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
                            uint64_t value)
2476 2477 2478 2479
{
    vfp_set_fpsr(env, value);
}

2480 2481
static CPAccessResult aa64_daif_access(CPUARMState *env, const ARMCPRegInfo *ri)
{
2482
    if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UMA)) {
2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493
        return CP_ACCESS_TRAP;
    }
    return CP_ACCESS_OK;
}

static void aa64_daif_write(CPUARMState *env, const ARMCPRegInfo *ri,
                            uint64_t value)
{
    env->daif = value & PSTATE_DAIF;
}

2494 2495 2496 2497 2498 2499
static CPAccessResult aa64_cacheop_access(CPUARMState *env,
                                          const ARMCPRegInfo *ri)
{
    /* Cache invalidate/clean: NOP, but EL0 must UNDEF unless
     * SCTLR_EL1.UCI is set.
     */
2500
    if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UCI)) {
2501 2502 2503 2504 2505
        return CP_ACCESS_TRAP;
    }
    return CP_ACCESS_OK;
}

2506 2507 2508 2509
/* See: D4.7.2 TLB maintenance requirements and the TLB maintenance instructions
 * Page D4-1736 (DDI0487A.b)
 */

2510 2511
static void tlbi_aa64_vmalle1_write(CPUARMState *env, const ARMCPRegInfo *ri,
                                    uint64_t value)
2512
{
2513
    ARMCPU *cpu = arm_env_get_cpu(env);
2514
    CPUState *cs = CPU(cpu);
2515

2516 2517 2518 2519 2520
    if (arm_is_secure_below_el3(env)) {
        tlb_flush_by_mmuidx(cs, ARMMMUIdx_S1SE1, ARMMMUIdx_S1SE0, -1);
    } else {
        tlb_flush_by_mmuidx(cs, ARMMMUIdx_S12NSE1, ARMMMUIdx_S12NSE0, -1);
    }
2521 2522
}

2523 2524
static void tlbi_aa64_vmalle1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
                                      uint64_t value)
2525
{
2526 2527
    bool sec = arm_is_secure_below_el3(env);
    CPUState *other_cs;
2528

2529 2530 2531 2532 2533 2534 2535 2536
    CPU_FOREACH(other_cs) {
        if (sec) {
            tlb_flush_by_mmuidx(other_cs, ARMMMUIdx_S1SE1, ARMMMUIdx_S1SE0, -1);
        } else {
            tlb_flush_by_mmuidx(other_cs, ARMMMUIdx_S12NSE1,
                                ARMMMUIdx_S12NSE0, -1);
        }
    }
2537 2538
}

2539 2540
static void tlbi_aa64_alle1_write(CPUARMState *env, const ARMCPRegInfo *ri,
                                  uint64_t value)
2541
{
2542 2543 2544 2545
    /* Note that the 'ALL' scope must invalidate both stage 1 and
     * stage 2 translations, whereas most other scopes only invalidate
     * stage 1 translations.
     */
2546
    ARMCPU *cpu = arm_env_get_cpu(env);
2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558
    CPUState *cs = CPU(cpu);

    if (arm_is_secure_below_el3(env)) {
        tlb_flush_by_mmuidx(cs, ARMMMUIdx_S1SE1, ARMMMUIdx_S1SE0, -1);
    } else {
        if (arm_feature(env, ARM_FEATURE_EL2)) {
            tlb_flush_by_mmuidx(cs, ARMMMUIdx_S12NSE1, ARMMMUIdx_S12NSE0,
                                ARMMMUIdx_S2NS, -1);
        } else {
            tlb_flush_by_mmuidx(cs, ARMMMUIdx_S12NSE1, ARMMMUIdx_S12NSE0, -1);
        }
    }
2559 2560
}

2561
static void tlbi_aa64_alle2_write(CPUARMState *env, const ARMCPRegInfo *ri,
2562 2563
                                  uint64_t value)
{
2564 2565 2566 2567 2568 2569
    ARMCPU *cpu = arm_env_get_cpu(env);
    CPUState *cs = CPU(cpu);

    tlb_flush_by_mmuidx(cs, ARMMMUIdx_S1E2, -1);
}

2570 2571 2572 2573 2574 2575 2576 2577 2578
static void tlbi_aa64_alle3_write(CPUARMState *env, const ARMCPRegInfo *ri,
                                  uint64_t value)
{
    ARMCPU *cpu = arm_env_get_cpu(env);
    CPUState *cs = CPU(cpu);

    tlb_flush_by_mmuidx(cs, ARMMMUIdx_S1E3, -1);
}

2579 2580 2581 2582 2583 2584 2585 2586 2587
static void tlbi_aa64_alle1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
                                    uint64_t value)
{
    /* Note that the 'ALL' scope must invalidate both stage 1 and
     * stage 2 translations, whereas most other scopes only invalidate
     * stage 1 translations.
     */
    bool sec = arm_is_secure_below_el3(env);
    bool has_el2 = arm_feature(env, ARM_FEATURE_EL2);
2588 2589 2590
    CPUState *other_cs;

    CPU_FOREACH(other_cs) {
2591 2592 2593 2594 2595 2596 2597 2598 2599
        if (sec) {
            tlb_flush_by_mmuidx(other_cs, ARMMMUIdx_S1SE1, ARMMMUIdx_S1SE0, -1);
        } else if (has_el2) {
            tlb_flush_by_mmuidx(other_cs, ARMMMUIdx_S12NSE1,
                                ARMMMUIdx_S12NSE0, ARMMMUIdx_S2NS, -1);
        } else {
            tlb_flush_by_mmuidx(other_cs, ARMMMUIdx_S12NSE1,
                                ARMMMUIdx_S12NSE0, -1);
        }
2600 2601 2602
    }
}

2603 2604 2605 2606 2607 2608 2609 2610 2611 2612
static void tlbi_aa64_alle2is_write(CPUARMState *env, const ARMCPRegInfo *ri,
                                    uint64_t value)
{
    CPUState *other_cs;

    CPU_FOREACH(other_cs) {
        tlb_flush_by_mmuidx(other_cs, ARMMMUIdx_S1E2, -1);
    }
}

2613 2614 2615 2616 2617 2618 2619 2620 2621 2622
static void tlbi_aa64_alle3is_write(CPUARMState *env, const ARMCPRegInfo *ri,
                                    uint64_t value)
{
    CPUState *other_cs;

    CPU_FOREACH(other_cs) {
        tlb_flush_by_mmuidx(other_cs, ARMMMUIdx_S1E3, -1);
    }
}

2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645
static void tlbi_aa64_vae1_write(CPUARMState *env, const ARMCPRegInfo *ri,
                                 uint64_t value)
{
    /* Invalidate by VA, EL1&0 (AArch64 version).
     * Currently handles all of VAE1, VAAE1, VAALE1 and VALE1,
     * since we don't support flush-for-specific-ASID-only or
     * flush-last-level-only.
     */
    ARMCPU *cpu = arm_env_get_cpu(env);
    CPUState *cs = CPU(cpu);
    uint64_t pageaddr = sextract64(value << 12, 0, 56);

    if (arm_is_secure_below_el3(env)) {
        tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdx_S1SE1,
                                 ARMMMUIdx_S1SE0, -1);
    } else {
        tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdx_S12NSE1,
                                 ARMMMUIdx_S12NSE0, -1);
    }
}

static void tlbi_aa64_vae2_write(CPUARMState *env, const ARMCPRegInfo *ri,
                                 uint64_t value)
2646
{
2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657
    /* Invalidate by VA, EL2
     * Currently handles both VAE2 and VALE2, since we don't support
     * flush-last-level-only.
     */
    ARMCPU *cpu = arm_env_get_cpu(env);
    CPUState *cs = CPU(cpu);
    uint64_t pageaddr = sextract64(value << 12, 0, 56);

    tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdx_S1E2, -1);
}

2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671
static void tlbi_aa64_vae3_write(CPUARMState *env, const ARMCPRegInfo *ri,
                                 uint64_t value)
{
    /* Invalidate by VA, EL3
     * Currently handles both VAE3 and VALE3, since we don't support
     * flush-last-level-only.
     */
    ARMCPU *cpu = arm_env_get_cpu(env);
    CPUState *cs = CPU(cpu);
    uint64_t pageaddr = sextract64(value << 12, 0, 56);

    tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdx_S1E3, -1);
}

2672 2673 2674 2675
static void tlbi_aa64_vae1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
                                   uint64_t value)
{
    bool sec = arm_is_secure_below_el3(env);
2676 2677 2678 2679
    CPUState *other_cs;
    uint64_t pageaddr = sextract64(value << 12, 0, 56);

    CPU_FOREACH(other_cs) {
2680 2681 2682 2683 2684 2685 2686
        if (sec) {
            tlb_flush_page_by_mmuidx(other_cs, pageaddr, ARMMMUIdx_S1SE1,
                                     ARMMMUIdx_S1SE0, -1);
        } else {
            tlb_flush_page_by_mmuidx(other_cs, pageaddr, ARMMMUIdx_S12NSE1,
                                     ARMMMUIdx_S12NSE0, -1);
        }
2687 2688 2689
    }
}

2690 2691
static void tlbi_aa64_vae2is_write(CPUARMState *env, const ARMCPRegInfo *ri,
                                   uint64_t value)
2692 2693
{
    CPUState *other_cs;
2694
    uint64_t pageaddr = sextract64(value << 12, 0, 56);
2695 2696

    CPU_FOREACH(other_cs) {
2697
        tlb_flush_page_by_mmuidx(other_cs, pageaddr, ARMMMUIdx_S1E2, -1);
2698 2699 2700
    }
}

2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711
static void tlbi_aa64_vae3is_write(CPUARMState *env, const ARMCPRegInfo *ri,
                                   uint64_t value)
{
    CPUState *other_cs;
    uint64_t pageaddr = sextract64(value << 12, 0, 56);

    CPU_FOREACH(other_cs) {
        tlb_flush_page_by_mmuidx(other_cs, pageaddr, ARMMMUIdx_S1E3, -1);
    }
}

2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750
static void tlbi_aa64_ipas2e1_write(CPUARMState *env, const ARMCPRegInfo *ri,
                                    uint64_t value)
{
    /* Invalidate by IPA. This has to invalidate any structures that
     * contain only stage 2 translation information, but does not need
     * to apply to structures that contain combined stage 1 and stage 2
     * translation information.
     * This must NOP if EL2 isn't implemented or SCR_EL3.NS is zero.
     */
    ARMCPU *cpu = arm_env_get_cpu(env);
    CPUState *cs = CPU(cpu);
    uint64_t pageaddr;

    if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) {
        return;
    }

    pageaddr = sextract64(value << 12, 0, 48);

    tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdx_S2NS, -1);
}

static void tlbi_aa64_ipas2e1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
                                      uint64_t value)
{
    CPUState *other_cs;
    uint64_t pageaddr;

    if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) {
        return;
    }

    pageaddr = sextract64(value << 12, 0, 48);

    CPU_FOREACH(other_cs) {
        tlb_flush_page_by_mmuidx(other_cs, pageaddr, ARMMMUIdx_S2NS, -1);
    }
}

2751 2752 2753 2754 2755
static CPAccessResult aa64_zva_access(CPUARMState *env, const ARMCPRegInfo *ri)
{
    /* We don't implement EL2, so the only control on DC ZVA is the
     * bit in the SCTLR which can prohibit access for EL0.
     */
2756
    if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_DZE)) {
2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767
        return CP_ACCESS_TRAP;
    }
    return CP_ACCESS_OK;
}

static uint64_t aa64_dczid_read(CPUARMState *env, const ARMCPRegInfo *ri)
{
    ARMCPU *cpu = arm_env_get_cpu(env);
    int dzp_bit = 1 << 4;

    /* DZP indicates whether DC ZVA access is allowed */
2768
    if (aa64_zva_access(env, NULL) == CP_ACCESS_OK) {
2769 2770 2771 2772 2773
        dzp_bit = 0;
    }
    return cpu->dcz_blocksize | dzp_bit;
}

2774 2775
static CPAccessResult sp_el0_access(CPUARMState *env, const ARMCPRegInfo *ri)
{
2776
    if (!(env->pstate & PSTATE_SP)) {
2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794
        /* Access to SP_EL0 is undefined if it's being used as
         * the stack pointer.
         */
        return CP_ACCESS_TRAP_UNCATEGORIZED;
    }
    return CP_ACCESS_OK;
}

static uint64_t spsel_read(CPUARMState *env, const ARMCPRegInfo *ri)
{
    return env->pstate & PSTATE_SP;
}

static void spsel_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val)
{
    update_spsel(env, val);
}

2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812
static void sctlr_write(CPUARMState *env, const ARMCPRegInfo *ri,
                        uint64_t value)
{
    ARMCPU *cpu = arm_env_get_cpu(env);

    if (raw_read(env, ri) == value) {
        /* Skip the TLB flush if nothing actually changed; Linux likes
         * to do a lot of pointless SCTLR writes.
         */
        return;
    }

    raw_write(env, ri, value);
    /* ??? Lots of these bits are not implemented.  */
    /* This may enable/disable the MMU, so do a TLB flush.  */
    tlb_flush(CPU(cpu), 1);
}

2813 2814 2815 2816 2817 2818 2819
static const ARMCPRegInfo v8_cp_reginfo[] = {
    /* Minimal set of EL0-visible registers. This will need to be expanded
     * significantly for system emulation of AArch64 CPUs.
     */
    { .name = "NZCV", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 2,
      .access = PL0_RW, .type = ARM_CP_NZCV },
2820 2821
    { .name = "DAIF", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 2,
2822
      .type = ARM_CP_NO_RAW,
2823 2824 2825
      .access = PL0_RW, .accessfn = aa64_daif_access,
      .fieldoffset = offsetof(CPUARMState, daif),
      .writefn = aa64_daif_write, .resetfn = arm_cp_reset_ignore },
2826 2827 2828 2829 2830 2831 2832 2833
    { .name = "FPCR", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 4,
      .access = PL0_RW, .readfn = aa64_fpcr_read, .writefn = aa64_fpcr_write },
    { .name = "FPSR", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 4,
      .access = PL0_RW, .readfn = aa64_fpsr_read, .writefn = aa64_fpsr_write },
    { .name = "DCZID_EL0", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 3, .opc2 = 7, .crn = 0, .crm = 0,
2834
      .access = PL0_R, .type = ARM_CP_NO_RAW,
2835 2836 2837 2838 2839 2840 2841 2842 2843
      .readfn = aa64_dczid_read },
    { .name = "DC_ZVA", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 1,
      .access = PL0_W, .type = ARM_CP_DC_ZVA,
#ifndef CONFIG_USER_ONLY
      /* Avoid overhead of an access check that always passes in user-mode */
      .accessfn = aa64_zva_access,
#endif
    },
2844 2845 2846
    { .name = "CURRENTEL", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 0, .opc2 = 2, .crn = 4, .crm = 2,
      .access = PL1_R, .type = ARM_CP_CURRENTEL },
2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881
    /* Cache ops: all NOPs since we don't emulate caches */
    { .name = "IC_IALLUIS", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
      .access = PL1_W, .type = ARM_CP_NOP },
    { .name = "IC_IALLU", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
      .access = PL1_W, .type = ARM_CP_NOP },
    { .name = "IC_IVAU", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 5, .opc2 = 1,
      .access = PL0_W, .type = ARM_CP_NOP,
      .accessfn = aa64_cacheop_access },
    { .name = "DC_IVAC", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
      .access = PL1_W, .type = ARM_CP_NOP },
    { .name = "DC_ISW", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
      .access = PL1_W, .type = ARM_CP_NOP },
    { .name = "DC_CVAC", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 1,
      .access = PL0_W, .type = ARM_CP_NOP,
      .accessfn = aa64_cacheop_access },
    { .name = "DC_CSW", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
      .access = PL1_W, .type = ARM_CP_NOP },
    { .name = "DC_CVAU", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 11, .opc2 = 1,
      .access = PL0_W, .type = ARM_CP_NOP,
      .accessfn = aa64_cacheop_access },
    { .name = "DC_CIVAC", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 1,
      .access = PL0_W, .type = ARM_CP_NOP,
      .accessfn = aa64_cacheop_access },
    { .name = "DC_CISW", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
      .access = PL1_W, .type = ARM_CP_NOP },
2882 2883
    /* TLBI operations */
    { .name = "TLBI_VMALLE1IS", .state = ARM_CP_STATE_AA64,
2884
      .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0,
2885
      .access = PL1_W, .type = ARM_CP_NO_RAW,
2886
      .writefn = tlbi_aa64_vmalle1is_write },
2887
    { .name = "TLBI_VAE1IS", .state = ARM_CP_STATE_AA64,
2888
      .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1,
2889
      .access = PL1_W, .type = ARM_CP_NO_RAW,
2890
      .writefn = tlbi_aa64_vae1is_write },
2891
    { .name = "TLBI_ASIDE1IS", .state = ARM_CP_STATE_AA64,
2892
      .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2,
2893
      .access = PL1_W, .type = ARM_CP_NO_RAW,
2894
      .writefn = tlbi_aa64_vmalle1is_write },
2895
    { .name = "TLBI_VAAE1IS", .state = ARM_CP_STATE_AA64,
2896
      .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3,
2897
      .access = PL1_W, .type = ARM_CP_NO_RAW,
2898
      .writefn = tlbi_aa64_vae1is_write },
2899
    { .name = "TLBI_VALE1IS", .state = ARM_CP_STATE_AA64,
2900
      .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5,
2901
      .access = PL1_W, .type = ARM_CP_NO_RAW,
2902
      .writefn = tlbi_aa64_vae1is_write },
2903
    { .name = "TLBI_VAALE1IS", .state = ARM_CP_STATE_AA64,
2904
      .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7,
2905
      .access = PL1_W, .type = ARM_CP_NO_RAW,
2906
      .writefn = tlbi_aa64_vae1is_write },
2907
    { .name = "TLBI_VMALLE1", .state = ARM_CP_STATE_AA64,
2908
      .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0,
2909
      .access = PL1_W, .type = ARM_CP_NO_RAW,
2910
      .writefn = tlbi_aa64_vmalle1_write },
2911
    { .name = "TLBI_VAE1", .state = ARM_CP_STATE_AA64,
2912
      .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1,
2913
      .access = PL1_W, .type = ARM_CP_NO_RAW,
2914
      .writefn = tlbi_aa64_vae1_write },
2915
    { .name = "TLBI_ASIDE1", .state = ARM_CP_STATE_AA64,
2916
      .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2,
2917
      .access = PL1_W, .type = ARM_CP_NO_RAW,
2918
      .writefn = tlbi_aa64_vmalle1_write },
2919
    { .name = "TLBI_VAAE1", .state = ARM_CP_STATE_AA64,
2920
      .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3,
2921
      .access = PL1_W, .type = ARM_CP_NO_RAW,
2922
      .writefn = tlbi_aa64_vae1_write },
2923
    { .name = "TLBI_VALE1", .state = ARM_CP_STATE_AA64,
2924
      .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5,
2925
      .access = PL1_W, .type = ARM_CP_NO_RAW,
2926
      .writefn = tlbi_aa64_vae1_write },
2927
    { .name = "TLBI_VAALE1", .state = ARM_CP_STATE_AA64,
2928
      .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7,
2929
      .access = PL1_W, .type = ARM_CP_NO_RAW,
2930
      .writefn = tlbi_aa64_vae1_write },
2931 2932 2933 2934 2935 2936 2937 2938
    { .name = "TLBI_IPAS2E1IS", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1,
      .access = PL2_W, .type = ARM_CP_NO_RAW,
      .writefn = tlbi_aa64_ipas2e1is_write },
    { .name = "TLBI_IPAS2LE1IS", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5,
      .access = PL2_W, .type = ARM_CP_NO_RAW,
      .writefn = tlbi_aa64_ipas2e1is_write },
2939 2940 2941
    { .name = "TLBI_ALLE1IS", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4,
      .access = PL2_W, .type = ARM_CP_NO_RAW,
2942
      .writefn = tlbi_aa64_alle1is_write },
2943 2944 2945 2946
    { .name = "TLBI_VMALLS12E1IS", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 6,
      .access = PL2_W, .type = ARM_CP_NO_RAW,
      .writefn = tlbi_aa64_alle1is_write },
2947 2948 2949 2950 2951 2952 2953 2954
    { .name = "TLBI_IPAS2E1", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1,
      .access = PL2_W, .type = ARM_CP_NO_RAW,
      .writefn = tlbi_aa64_ipas2e1_write },
    { .name = "TLBI_IPAS2LE1", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5,
      .access = PL2_W, .type = ARM_CP_NO_RAW,
      .writefn = tlbi_aa64_ipas2e1_write },
2955 2956 2957
    { .name = "TLBI_ALLE1", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4,
      .access = PL2_W, .type = ARM_CP_NO_RAW,
2958
      .writefn = tlbi_aa64_alle1_write },
2959 2960 2961 2962
    { .name = "TLBI_VMALLS12E1", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 6,
      .access = PL2_W, .type = ARM_CP_NO_RAW,
      .writefn = tlbi_aa64_alle1is_write },
2963 2964 2965 2966
#ifndef CONFIG_USER_ONLY
    /* 64 bit address translation operations */
    { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 0,
2967
      .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
2968 2969
    { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 1,
2970
      .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
2971 2972
    { .name = "AT_S1E0R", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 2,
2973
      .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
2974 2975
    { .name = "AT_S1E0W", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 3,
2976
      .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
2977
    { .name = "AT_S12E1R", .state = ARM_CP_STATE_AA64,
2978
      .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 4,
2979 2980
      .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
    { .name = "AT_S12E1W", .state = ARM_CP_STATE_AA64,
2981
      .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 5,
2982 2983
      .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
    { .name = "AT_S12E0R", .state = ARM_CP_STATE_AA64,
2984
      .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 6,
2985 2986
      .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
    { .name = "AT_S12E0W", .state = ARM_CP_STATE_AA64,
2987
      .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 7,
2988 2989 2990 2991 2992 2993 2994 2995
      .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
    /* AT S1E2* are elsewhere as they UNDEF from EL3 if EL2 is not present */
    { .name = "AT_S1E3R", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 0,
      .access = PL3_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
    { .name = "AT_S1E3W", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 1,
      .access = PL3_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
2996 2997 2998 2999 3000 3001
    { .name = "PAR_EL1", .state = ARM_CP_STATE_AA64,
      .type = ARM_CP_ALIAS,
      .opc0 = 3, .opc1 = 0, .crn = 7, .crm = 4, .opc2 = 0,
      .access = PL1_RW, .resetvalue = 0,
      .fieldoffset = offsetof(CPUARMState, cp15.par_el[1]),
      .writefn = par_write },
3002
#endif
3003
    /* TLB invalidate last level of translation table walk */
3004
    { .name = "TLBIMVALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5,
3005
      .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_is_write },
3006
    { .name = "TLBIMVAALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7,
3007
      .type = ARM_CP_NO_RAW, .access = PL1_W,
3008
      .writefn = tlbimvaa_is_write },
3009
    { .name = "TLBIMVAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5,
3010
      .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
3011
    { .name = "TLBIMVAAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7,
3012
      .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimvaa_write },
3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040
    /* 32 bit cache operations */
    { .name = "ICIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
      .type = ARM_CP_NOP, .access = PL1_W },
    { .name = "BPIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 6,
      .type = ARM_CP_NOP, .access = PL1_W },
    { .name = "ICIALLU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
      .type = ARM_CP_NOP, .access = PL1_W },
    { .name = "ICIMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 1,
      .type = ARM_CP_NOP, .access = PL1_W },
    { .name = "BPIALL", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 6,
      .type = ARM_CP_NOP, .access = PL1_W },
    { .name = "BPIMVA", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 7,
      .type = ARM_CP_NOP, .access = PL1_W },
    { .name = "DCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
      .type = ARM_CP_NOP, .access = PL1_W },
    { .name = "DCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
      .type = ARM_CP_NOP, .access = PL1_W },
    { .name = "DCCMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 1,
      .type = ARM_CP_NOP, .access = PL1_W },
    { .name = "DCCSW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
      .type = ARM_CP_NOP, .access = PL1_W },
    { .name = "DCCMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 11, .opc2 = 1,
      .type = ARM_CP_NOP, .access = PL1_W },
    { .name = "DCCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 1,
      .type = ARM_CP_NOP, .access = PL1_W },
    { .name = "DCCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
      .type = ARM_CP_NOP, .access = PL1_W },
    /* MMU Domain access control / MPU write buffer control */
F
Fabian Aggeler 已提交
3041 3042 3043 3044 3045
    { .name = "DACR", .cp = 15, .opc1 = 0, .crn = 3, .crm = 0, .opc2 = 0,
      .access = PL1_RW, .resetvalue = 0,
      .writefn = dacr_write, .raw_writefn = raw_write,
      .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s),
                             offsetoflow32(CPUARMState, cp15.dacr_ns) } },
3046
    { .name = "ELR_EL1", .state = ARM_CP_STATE_AA64,
3047
      .type = ARM_CP_ALIAS,
3048
      .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 1,
3049 3050
      .access = PL1_RW,
      .fieldoffset = offsetof(CPUARMState, elr_el[1]) },
3051
    { .name = "SPSR_EL1", .state = ARM_CP_STATE_AA64,
3052
      .type = ARM_CP_ALIAS,
3053
      .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 0,
3054
      .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, banked_spsr[1]) },
3055 3056 3057 3058 3059 3060 3061
    /* We rely on the access checks not allowing the guest to write to the
     * state field when SPSel indicates that it's being used as the stack
     * pointer.
     */
    { .name = "SP_EL0", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 1, .opc2 = 0,
      .access = PL1_RW, .accessfn = sp_el0_access,
3062
      .type = ARM_CP_ALIAS,
3063
      .fieldoffset = offsetof(CPUARMState, sp_el[0]) },
3064 3065
    { .name = "SP_EL1", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 1, .opc2 = 0,
3066
      .access = PL2_RW, .type = ARM_CP_ALIAS,
3067
      .fieldoffset = offsetof(CPUARMState, sp_el[1]) },
3068 3069
    { .name = "SPSel", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 0,
3070
      .type = ARM_CP_NO_RAW,
3071
      .access = PL1_RW, .readfn = spsel_read, .writefn = spsel_write },
3072 3073 3074
    REGINFO_SENTINEL
};

3075
/* Used to describe the behaviour of EL2 regs when EL2 does not exist.  */
3076
static const ARMCPRegInfo el3_no_el2_cp_reginfo[] = {
3077 3078 3079 3080
    { .name = "VBAR_EL2", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0,
      .access = PL2_RW,
      .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore },
E
Edgar E. Iglesias 已提交
3081
    { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64,
3082
      .type = ARM_CP_NO_RAW,
E
Edgar E. Iglesias 已提交
3083 3084 3085
      .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
      .access = PL2_RW,
      .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore },
3086 3087 3088
    { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2,
      .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
E
Edgar E. Iglesias 已提交
3089 3090 3091 3092 3093 3094 3095
    { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0,
      .access = PL2_RW, .type = ARM_CP_CONST,
      .resetvalue = 0 },
    { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
      .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1,
      .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3096 3097 3098 3099 3100 3101 3102 3103
    { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0,
      .access = PL2_RW, .type = ARM_CP_CONST,
      .resetvalue = 0 },
    { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
      .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1,
      .access = PL2_RW, .type = ARM_CP_CONST,
      .resetvalue = 0 },
3104 3105 3106 3107 3108 3109 3110 3111
    { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0,
      .access = PL2_RW, .type = ARM_CP_CONST,
      .resetvalue = 0 },
    { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1,
      .access = PL2_RW, .type = ARM_CP_CONST,
      .resetvalue = 0 },
E
Edgar E. Iglesias 已提交
3112 3113 3114
    { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2,
      .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
E
Edgar E. Iglesias 已提交
3115 3116 3117
    { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0,
      .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
E
Edgar E. Iglesias 已提交
3118 3119 3120
    { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2,
      .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
E
Edgar E. Iglesias 已提交
3121 3122 3123 3124 3125 3126
    { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0,
      .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
    { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2,
      .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
      .resetvalue = 0 },
E
Edgar E. Iglesias 已提交
3127 3128 3129
    { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0,
      .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
E
Edgar E. Iglesias 已提交
3130 3131 3132 3133 3134 3135
    { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3,
      .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
    { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14,
      .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
      .resetvalue = 0 },
3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147
    { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2,
      .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
    { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14,
      .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
      .resetvalue = 0 },
    { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0,
      .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
    { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1,
      .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3148 3149 3150
    REGINFO_SENTINEL
};

E
Edgar E. Iglesias 已提交
3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175
static void hcr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
{
    ARMCPU *cpu = arm_env_get_cpu(env);
    uint64_t valid_mask = HCR_MASK;

    if (arm_feature(env, ARM_FEATURE_EL3)) {
        valid_mask &= ~HCR_HCD;
    } else {
        valid_mask &= ~HCR_TSC;
    }

    /* Clear RES0 bits.  */
    value &= valid_mask;

    /* These bits change the MMU setup:
     * HCR_VM enables stage 2 translation
     * HCR_PTW forbids certain page-table setups
     * HCR_DC Disables stage1 and enables stage2 translation
     */
    if ((raw_read(env, ri) ^ value) & (HCR_VM | HCR_PTW | HCR_DC)) {
        tlb_flush(CPU(cpu), 1);
    }
    raw_write(env, ri, value);
}

3176
static const ARMCPRegInfo el2_cp_reginfo[] = {
E
Edgar E. Iglesias 已提交
3177 3178 3179 3180
    { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
      .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2),
      .writefn = hcr_write },
F
Fabian Aggeler 已提交
3181 3182 3183 3184 3185
    { .name = "DACR32_EL2", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 0, .opc2 = 0,
      .access = PL2_RW, .resetvalue = 0,
      .writefn = dacr_write, .raw_writefn = raw_write,
      .fieldoffset = offsetof(CPUARMState, cp15.dacr32_el2) },
3186
    { .name = "ELR_EL2", .state = ARM_CP_STATE_AA64,
3187
      .type = ARM_CP_ALIAS,
3188 3189 3190
      .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 1,
      .access = PL2_RW,
      .fieldoffset = offsetof(CPUARMState, elr_el[2]) },
3191
    { .name = "ESR_EL2", .state = ARM_CP_STATE_AA64,
3192
      .type = ARM_CP_ALIAS,
3193 3194
      .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0,
      .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[2]) },
F
Fabian Aggeler 已提交
3195 3196 3197 3198
    { .name = "IFSR32_EL2", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 0, .opc2 = 1,
      .access = PL2_RW, .resetvalue = 0,
      .fieldoffset = offsetof(CPUARMState, cp15.ifsr32_el2) },
3199 3200 3201
    { .name = "FAR_EL2", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0,
      .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[2]) },
3202
    { .name = "SPSR_EL2", .state = ARM_CP_STATE_AA64,
3203
      .type = ARM_CP_ALIAS,
3204 3205
      .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 0,
      .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, banked_spsr[6]) },
3206 3207 3208 3209 3210
    { .name = "VBAR_EL2", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0,
      .access = PL2_RW, .writefn = vbar_write,
      .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[2]),
      .resetvalue = 0 },
3211 3212
    { .name = "SP_EL2", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 1, .opc2 = 0,
3213
      .access = PL3_RW, .type = ARM_CP_ALIAS,
3214
      .fieldoffset = offsetof(CPUARMState, sp_el[2]) },
3215 3216 3217 3218
    { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2,
      .access = PL2_RW, .accessfn = cptr_access, .resetvalue = 0,
      .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[2]) },
E
Edgar E. Iglesias 已提交
3219 3220 3221 3222 3223 3224 3225 3226
    { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0,
      .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[2]),
      .resetvalue = 0 },
    { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
      .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1,
      .access = PL2_RW, .type = ARM_CP_ALIAS,
      .fieldoffset = offsetofhigh32(CPUARMState, cp15.mair_el[2]) },
3227 3228 3229 3230 3231 3232 3233 3234 3235
    { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0,
      .access = PL2_RW, .type = ARM_CP_CONST,
      .resetvalue = 0 },
    /* HAMAIR1 is mapped to AMAIR_EL2[63:32] */
    { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
      .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1,
      .access = PL2_RW, .type = ARM_CP_CONST,
      .resetvalue = 0 },
3236 3237 3238 3239 3240 3241 3242 3243
    { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0,
      .access = PL2_RW, .type = ARM_CP_CONST,
      .resetvalue = 0 },
    { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1,
      .access = PL2_RW, .type = ARM_CP_CONST,
      .resetvalue = 0 },
E
Edgar E. Iglesias 已提交
3244 3245 3246 3247 3248
    { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2,
      .access = PL2_RW, .writefn = vmsa_tcr_el1_write,
      .resetfn = vmsa_ttbcr_reset, .raw_writefn = raw_write,
      .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[2]) },
E
Edgar E. Iglesias 已提交
3249 3250 3251 3252
    { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0,
      .access = PL2_RW, .raw_writefn = raw_write, .writefn = sctlr_write,
      .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[2]) },
E
Edgar E. Iglesias 已提交
3253 3254 3255 3256
    { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2,
      .access = PL2_RW, .resetvalue = 0,
      .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[2]) },
E
Edgar E. Iglesias 已提交
3257 3258 3259 3260 3261 3262 3263
    { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0,
      .access = PL2_RW, .resetvalue = 0,
      .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) },
    { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2,
      .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
      .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) },
E
Edgar E. Iglesias 已提交
3264 3265 3266
    { .name = "TLBI_ALLE2", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0,
      .type = ARM_CP_NO_RAW, .access = PL2_W,
3267
      .writefn = tlbi_aa64_alle2_write },
3268 3269 3270
    { .name = "TLBI_VAE2", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1,
      .type = ARM_CP_NO_RAW, .access = PL2_W,
3271
      .writefn = tlbi_aa64_vae2_write },
3272 3273 3274 3275 3276 3277 3278 3279
    { .name = "TLBI_VALE2", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5,
      .access = PL2_W, .type = ARM_CP_NO_RAW,
      .writefn = tlbi_aa64_vae2_write },
    { .name = "TLBI_ALLE2IS", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0,
      .access = PL2_W, .type = ARM_CP_NO_RAW,
      .writefn = tlbi_aa64_alle2is_write },
3280 3281 3282
    { .name = "TLBI_VAE2IS", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1,
      .type = ARM_CP_NO_RAW, .access = PL2_W,
3283
      .writefn = tlbi_aa64_vae2is_write },
3284 3285 3286 3287
    { .name = "TLBI_VALE2IS", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5,
      .access = PL2_W, .type = ARM_CP_NO_RAW,
      .writefn = tlbi_aa64_vae2is_write },
E
Edgar E. Iglesias 已提交
3288
#ifndef CONFIG_USER_ONLY
3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300
    /* Unlike the other EL2-related AT operations, these must
     * UNDEF from EL3 if EL2 is not implemented, which is why we
     * define them here rather than with the rest of the AT ops.
     */
    { .name = "AT_S1E2R", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0,
      .access = PL2_W, .accessfn = at_s1e2_access,
      .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
    { .name = "AT_S1E2W", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1,
      .access = PL2_W, .accessfn = at_s1e2_access,
      .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311
    /* The AArch32 ATS1H* operations are CONSTRAINED UNPREDICTABLE
     * if EL2 is not implemented; we choose to UNDEF. Behaviour at EL3
     * with SCR.NS == 0 outside Monitor mode is UNPREDICTABLE; we choose
     * to behave as if SCR.NS was 1.
     */
    { .name = "ATS1HR", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0,
      .access = PL2_W,
      .writefn = ats1h_write, .type = ARM_CP_NO_RAW },
    { .name = "ATS1HW", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1,
      .access = PL2_W,
      .writefn = ats1h_write, .type = ARM_CP_NO_RAW },
E
Edgar E. Iglesias 已提交
3312 3313 3314 3315 3316 3317 3318 3319
    { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0,
      /* ARMv7 requires bit 0 and 1 to reset to 1. ARMv8 defines the
       * reset values as IMPDEF. We choose to reset to 3 to comply with
       * both ARMv7 and ARMv8.
       */
      .access = PL2_RW, .resetvalue = 3,
      .fieldoffset = offsetof(CPUARMState, cp15.cnthctl_el2) },
E
Edgar E. Iglesias 已提交
3320 3321 3322 3323 3324 3325 3326 3327 3328
    { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3,
      .access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 0,
      .writefn = gt_cntvoff_write,
      .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) },
    { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14,
      .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS | ARM_CP_IO,
      .writefn = gt_cntvoff_write,
      .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) },
3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349
    { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2,
      .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval),
      .type = ARM_CP_IO, .access = PL2_RW,
      .writefn = gt_hyp_cval_write, .raw_writefn = raw_write },
    { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14,
      .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval),
      .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_IO,
      .writefn = gt_hyp_cval_write, .raw_writefn = raw_write },
    { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0,
      .type = ARM_CP_IO, .access = PL2_RW,
      .resetfn = gt_hyp_timer_reset,
      .readfn = gt_hyp_tval_read, .writefn = gt_hyp_tval_write },
    { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH,
      .type = ARM_CP_IO,
      .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1,
      .access = PL2_RW,
      .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].ctl),
      .resetvalue = 0,
      .writefn = gt_hyp_ctl_write, .raw_writefn = raw_write },
E
Edgar E. Iglesias 已提交
3350
#endif
3351 3352 3353
    REGINFO_SENTINEL
};

3354 3355 3356 3357 3358
static const ARMCPRegInfo el3_cp_reginfo[] = {
    { .name = "SCR_EL3", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 0,
      .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.scr_el3),
      .resetvalue = 0, .writefn = scr_write },
3359
    { .name = "SCR",  .type = ARM_CP_ALIAS,
3360 3361
      .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 0,
      .access = PL3_RW, .fieldoffset = offsetoflow32(CPUARMState, cp15.scr_el3),
3362
      .writefn = scr_write },
3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377
    { .name = "SDER32_EL3", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 1,
      .access = PL3_RW, .resetvalue = 0,
      .fieldoffset = offsetof(CPUARMState, cp15.sder) },
    { .name = "SDER",
      .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 1,
      .access = PL3_RW, .resetvalue = 0,
      .fieldoffset = offsetoflow32(CPUARMState, cp15.sder) },
      /* TODO: Implement NSACR trapping of secure EL1 accesses to EL3 */
    { .name = "NSACR", .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
      .access = PL3_W | PL1_R, .resetvalue = 0,
      .fieldoffset = offsetof(CPUARMState, cp15.nsacr) },
    { .name = "MVBAR", .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
      .access = PL3_RW, .writefn = vbar_write, .resetvalue = 0,
      .fieldoffset = offsetof(CPUARMState, cp15.mvbar) },
3378
    { .name = "SCTLR_EL3", .state = ARM_CP_STATE_AA64,
3379
      .type = ARM_CP_ALIAS, /* reset handled by AArch32 view */
3380 3381 3382
      .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 0,
      .access = PL3_RW, .raw_writefn = raw_write, .writefn = sctlr_write,
      .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[3]) },
F
Fabian Aggeler 已提交
3383 3384 3385 3386
    { .name = "TTBR0_EL3", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 0,
      .access = PL3_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0,
      .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[3]) },
F
Fabian Aggeler 已提交
3387 3388 3389 3390 3391
    { .name = "TCR_EL3", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 2,
      .access = PL3_RW, .writefn = vmsa_tcr_el1_write,
      .resetfn = vmsa_ttbcr_reset, .raw_writefn = raw_write,
      .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[3]) },
3392
    { .name = "ELR_EL3", .state = ARM_CP_STATE_AA64,
3393
      .type = ARM_CP_ALIAS,
3394 3395 3396
      .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 1,
      .access = PL3_RW,
      .fieldoffset = offsetof(CPUARMState, elr_el[3]) },
3397
    { .name = "ESR_EL3", .state = ARM_CP_STATE_AA64,
3398
      .type = ARM_CP_ALIAS,
3399 3400
      .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 2, .opc2 = 0,
      .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[3]) },
3401 3402 3403
    { .name = "FAR_EL3", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 0,
      .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[3]) },
3404
    { .name = "SPSR_EL3", .state = ARM_CP_STATE_AA64,
3405
      .type = ARM_CP_ALIAS,
3406 3407
      .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 0,
      .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, banked_spsr[7]) },
3408 3409 3410 3411 3412
    { .name = "VBAR_EL3", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 0,
      .access = PL3_RW, .writefn = vbar_write,
      .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[3]),
      .resetvalue = 0 },
3413 3414 3415 3416
    { .name = "CPTR_EL3", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 2,
      .access = PL3_RW, .accessfn = cptr_access, .resetvalue = 0,
      .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[3]) },
3417 3418 3419 3420
    { .name = "TPIDR_EL3", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 2,
      .access = PL3_RW, .resetvalue = 0,
      .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[3]) },
3421 3422 3423 3424
    { .name = "AMAIR_EL3", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 3, .opc2 = 0,
      .access = PL3_RW, .type = ARM_CP_CONST,
      .resetvalue = 0 },
3425 3426 3427 3428 3429 3430 3431 3432
    { .name = "AFSR0_EL3", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 0,
      .access = PL3_RW, .type = ARM_CP_CONST,
      .resetvalue = 0 },
    { .name = "AFSR1_EL3", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 1,
      .access = PL3_RW, .type = ARM_CP_CONST,
      .resetvalue = 0 },
3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456
    { .name = "TLBI_ALLE3IS", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 0,
      .access = PL3_W, .type = ARM_CP_NO_RAW,
      .writefn = tlbi_aa64_alle3is_write },
    { .name = "TLBI_VAE3IS", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 1,
      .access = PL3_W, .type = ARM_CP_NO_RAW,
      .writefn = tlbi_aa64_vae3is_write },
    { .name = "TLBI_VALE3IS", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 5,
      .access = PL3_W, .type = ARM_CP_NO_RAW,
      .writefn = tlbi_aa64_vae3is_write },
    { .name = "TLBI_ALLE3", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 0,
      .access = PL3_W, .type = ARM_CP_NO_RAW,
      .writefn = tlbi_aa64_alle3_write },
    { .name = "TLBI_VAE3", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 1,
      .access = PL3_W, .type = ARM_CP_NO_RAW,
      .writefn = tlbi_aa64_vae3_write },
    { .name = "TLBI_VALE3", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 5,
      .access = PL3_W, .type = ARM_CP_NO_RAW,
      .writefn = tlbi_aa64_vae3_write },
3457 3458 3459
    REGINFO_SENTINEL
};

3460 3461 3462 3463 3464
static CPAccessResult ctr_el0_access(CPUARMState *env, const ARMCPRegInfo *ri)
{
    /* Only accessible in EL0 if SCTLR.UCT is set (and only in AArch64,
     * but the AArch32 CTR has its own reginfo struct)
     */
3465
    if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UCT)) {
3466 3467 3468 3469 3470
        return CP_ACCESS_TRAP;
    }
    return CP_ACCESS_OK;
}

3471 3472
static const ARMCPRegInfo debug_cp_reginfo[] = {
    /* DBGDRAR, DBGDSAR: always RAZ since we don't implement memory mapped
3473 3474 3475 3476
     * debug components. The AArch64 version of DBGDRAR is named MDRAR_EL1;
     * unlike DBGDRAR it is never accessible from EL0.
     * DBGDSAR is deprecated and must RAZ from v8 anyway, so it has no AArch64
     * accessor.
3477 3478 3479
     */
    { .name = "DBGDRAR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 0,
      .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
3480 3481 3482
    { .name = "MDRAR_EL1", .state = ARM_CP_STATE_AA64,
      .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0,
      .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
3483 3484
    { .name = "DBGDSAR", .cp = 14, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
      .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
3485
    /* Monitor debug system control register; the 32-bit alias is DBGDSCRext. */
3486 3487
    { .name = "MDSCR_EL1", .state = ARM_CP_STATE_BOTH,
      .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2,
3488 3489 3490
      .access = PL1_RW,
      .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1),
      .resetvalue = 0 },
3491 3492 3493 3494 3495
    /* MDCCSR_EL0, aka DBGDSCRint. This is a read-only mirror of MDSCR_EL1.
     * We don't implement the configurable EL0 access.
     */
    { .name = "MDCCSR_EL0", .state = ARM_CP_STATE_BOTH,
      .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0,
3496
      .type = ARM_CP_ALIAS,
3497
      .access = PL1_R,
3498
      .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1), },
3499
    /* We define a dummy WI OSLAR_EL1, because Linux writes to it. */
3500 3501
    { .name = "OSLAR_EL1", .state = ARM_CP_STATE_BOTH,
      .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 4,
3502
      .access = PL1_W, .type = ARM_CP_NOP },
3503 3504 3505 3506 3507 3508 3509 3510 3511 3512
    /* Dummy OSDLR_EL1: 32-bit Linux will read this */
    { .name = "OSDLR_EL1", .state = ARM_CP_STATE_BOTH,
      .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 4,
      .access = PL1_RW, .type = ARM_CP_NOP },
    /* Dummy DBGVCR: Linux wants to clear this on startup, but we don't
     * implement vector catch debug events yet.
     */
    { .name = "DBGVCR",
      .cp = 14, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0,
      .access = PL1_RW, .type = ARM_CP_NOP },
3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524
    REGINFO_SENTINEL
};

static const ARMCPRegInfo debug_lpae_cp_reginfo[] = {
    /* 64 bit access versions of the (dummy) debug registers */
    { .name = "DBGDRAR", .cp = 14, .crm = 1, .opc1 = 0,
      .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 },
    { .name = "DBGDSAR", .cp = 14, .crm = 2, .opc1 = 0,
      .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 },
    REGINFO_SENTINEL
};

3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649
void hw_watchpoint_update(ARMCPU *cpu, int n)
{
    CPUARMState *env = &cpu->env;
    vaddr len = 0;
    vaddr wvr = env->cp15.dbgwvr[n];
    uint64_t wcr = env->cp15.dbgwcr[n];
    int mask;
    int flags = BP_CPU | BP_STOP_BEFORE_ACCESS;

    if (env->cpu_watchpoint[n]) {
        cpu_watchpoint_remove_by_ref(CPU(cpu), env->cpu_watchpoint[n]);
        env->cpu_watchpoint[n] = NULL;
    }

    if (!extract64(wcr, 0, 1)) {
        /* E bit clear : watchpoint disabled */
        return;
    }

    switch (extract64(wcr, 3, 2)) {
    case 0:
        /* LSC 00 is reserved and must behave as if the wp is disabled */
        return;
    case 1:
        flags |= BP_MEM_READ;
        break;
    case 2:
        flags |= BP_MEM_WRITE;
        break;
    case 3:
        flags |= BP_MEM_ACCESS;
        break;
    }

    /* Attempts to use both MASK and BAS fields simultaneously are
     * CONSTRAINED UNPREDICTABLE; we opt to ignore BAS in this case,
     * thus generating a watchpoint for every byte in the masked region.
     */
    mask = extract64(wcr, 24, 4);
    if (mask == 1 || mask == 2) {
        /* Reserved values of MASK; we must act as if the mask value was
         * some non-reserved value, or as if the watchpoint were disabled.
         * We choose the latter.
         */
        return;
    } else if (mask) {
        /* Watchpoint covers an aligned area up to 2GB in size */
        len = 1ULL << mask;
        /* If masked bits in WVR are not zero it's CONSTRAINED UNPREDICTABLE
         * whether the watchpoint fires when the unmasked bits match; we opt
         * to generate the exceptions.
         */
        wvr &= ~(len - 1);
    } else {
        /* Watchpoint covers bytes defined by the byte address select bits */
        int bas = extract64(wcr, 5, 8);
        int basstart;

        if (bas == 0) {
            /* This must act as if the watchpoint is disabled */
            return;
        }

        if (extract64(wvr, 2, 1)) {
            /* Deprecated case of an only 4-aligned address. BAS[7:4] are
             * ignored, and BAS[3:0] define which bytes to watch.
             */
            bas &= 0xf;
        }
        /* The BAS bits are supposed to be programmed to indicate a contiguous
         * range of bytes. Otherwise it is CONSTRAINED UNPREDICTABLE whether
         * we fire for each byte in the word/doubleword addressed by the WVR.
         * We choose to ignore any non-zero bits after the first range of 1s.
         */
        basstart = ctz32(bas);
        len = cto32(bas >> basstart);
        wvr += basstart;
    }

    cpu_watchpoint_insert(CPU(cpu), wvr, len, flags,
                          &env->cpu_watchpoint[n]);
}

void hw_watchpoint_update_all(ARMCPU *cpu)
{
    int i;
    CPUARMState *env = &cpu->env;

    /* Completely clear out existing QEMU watchpoints and our array, to
     * avoid possible stale entries following migration load.
     */
    cpu_watchpoint_remove_all(CPU(cpu), BP_CPU);
    memset(env->cpu_watchpoint, 0, sizeof(env->cpu_watchpoint));

    for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_watchpoint); i++) {
        hw_watchpoint_update(cpu, i);
    }
}

static void dbgwvr_write(CPUARMState *env, const ARMCPRegInfo *ri,
                         uint64_t value)
{
    ARMCPU *cpu = arm_env_get_cpu(env);
    int i = ri->crm;

    /* Bits [63:49] are hardwired to the value of bit [48]; that is, the
     * register reads and behaves as if values written are sign extended.
     * Bits [1:0] are RES0.
     */
    value = sextract64(value, 0, 49) & ~3ULL;

    raw_write(env, ri, value);
    hw_watchpoint_update(cpu, i);
}

static void dbgwcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
                         uint64_t value)
{
    ARMCPU *cpu = arm_env_get_cpu(env);
    int i = ri->crm;

    raw_write(env, ri, value);
    hw_watchpoint_update(cpu, i);
}

3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767
void hw_breakpoint_update(ARMCPU *cpu, int n)
{
    CPUARMState *env = &cpu->env;
    uint64_t bvr = env->cp15.dbgbvr[n];
    uint64_t bcr = env->cp15.dbgbcr[n];
    vaddr addr;
    int bt;
    int flags = BP_CPU;

    if (env->cpu_breakpoint[n]) {
        cpu_breakpoint_remove_by_ref(CPU(cpu), env->cpu_breakpoint[n]);
        env->cpu_breakpoint[n] = NULL;
    }

    if (!extract64(bcr, 0, 1)) {
        /* E bit clear : watchpoint disabled */
        return;
    }

    bt = extract64(bcr, 20, 4);

    switch (bt) {
    case 4: /* unlinked address mismatch (reserved if AArch64) */
    case 5: /* linked address mismatch (reserved if AArch64) */
        qemu_log_mask(LOG_UNIMP,
                      "arm: address mismatch breakpoint types not implemented");
        return;
    case 0: /* unlinked address match */
    case 1: /* linked address match */
    {
        /* Bits [63:49] are hardwired to the value of bit [48]; that is,
         * we behave as if the register was sign extended. Bits [1:0] are
         * RES0. The BAS field is used to allow setting breakpoints on 16
         * bit wide instructions; it is CONSTRAINED UNPREDICTABLE whether
         * a bp will fire if the addresses covered by the bp and the addresses
         * covered by the insn overlap but the insn doesn't start at the
         * start of the bp address range. We choose to require the insn and
         * the bp to have the same address. The constraints on writing to
         * BAS enforced in dbgbcr_write mean we have only four cases:
         *  0b0000  => no breakpoint
         *  0b0011  => breakpoint on addr
         *  0b1100  => breakpoint on addr + 2
         *  0b1111  => breakpoint on addr
         * See also figure D2-3 in the v8 ARM ARM (DDI0487A.c).
         */
        int bas = extract64(bcr, 5, 4);
        addr = sextract64(bvr, 0, 49) & ~3ULL;
        if (bas == 0) {
            return;
        }
        if (bas == 0xc) {
            addr += 2;
        }
        break;
    }
    case 2: /* unlinked context ID match */
    case 8: /* unlinked VMID match (reserved if no EL2) */
    case 10: /* unlinked context ID and VMID match (reserved if no EL2) */
        qemu_log_mask(LOG_UNIMP,
                      "arm: unlinked context breakpoint types not implemented");
        return;
    case 9: /* linked VMID match (reserved if no EL2) */
    case 11: /* linked context ID and VMID match (reserved if no EL2) */
    case 3: /* linked context ID match */
    default:
        /* We must generate no events for Linked context matches (unless
         * they are linked to by some other bp/wp, which is handled in
         * updates for the linking bp/wp). We choose to also generate no events
         * for reserved values.
         */
        return;
    }

    cpu_breakpoint_insert(CPU(cpu), addr, flags, &env->cpu_breakpoint[n]);
}

void hw_breakpoint_update_all(ARMCPU *cpu)
{
    int i;
    CPUARMState *env = &cpu->env;

    /* Completely clear out existing QEMU breakpoints and our array, to
     * avoid possible stale entries following migration load.
     */
    cpu_breakpoint_remove_all(CPU(cpu), BP_CPU);
    memset(env->cpu_breakpoint, 0, sizeof(env->cpu_breakpoint));

    for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_breakpoint); i++) {
        hw_breakpoint_update(cpu, i);
    }
}

static void dbgbvr_write(CPUARMState *env, const ARMCPRegInfo *ri,
                         uint64_t value)
{
    ARMCPU *cpu = arm_env_get_cpu(env);
    int i = ri->crm;

    raw_write(env, ri, value);
    hw_breakpoint_update(cpu, i);
}

static void dbgbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
                         uint64_t value)
{
    ARMCPU *cpu = arm_env_get_cpu(env);
    int i = ri->crm;

    /* BAS[3] is a read-only copy of BAS[2], and BAS[1] a read-only
     * copy of BAS[0].
     */
    value = deposit64(value, 6, 1, extract64(value, 5, 1));
    value = deposit64(value, 8, 1, extract64(value, 7, 1));

    raw_write(env, ri, value);
    hw_breakpoint_update(cpu, i);
}

3768
static void define_debug_regs(ARMCPU *cpu)
3769
{
3770 3771
    /* Define v7 and v8 architectural debug registers.
     * These are just dummy implementations for now.
3772 3773
     */
    int i;
3774
    int wrps, brps, ctx_cmps;
3775 3776 3777 3778 3779
    ARMCPRegInfo dbgdidr = {
        .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0,
        .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = cpu->dbgdidr,
    };

3780
    /* Note that all these register fields hold "number of Xs minus 1". */
3781 3782
    brps = extract32(cpu->dbgdidr, 24, 4);
    wrps = extract32(cpu->dbgdidr, 28, 4);
3783 3784 3785
    ctx_cmps = extract32(cpu->dbgdidr, 20, 4);

    assert(ctx_cmps <= brps);
3786 3787 3788 3789 3790 3791 3792 3793

    /* The DBGDIDR and ID_AA64DFR0_EL1 define various properties
     * of the debug registers such as number of breakpoints;
     * check that if they both exist then they agree.
     */
    if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
        assert(extract32(cpu->id_aa64dfr0, 12, 4) == brps);
        assert(extract32(cpu->id_aa64dfr0, 20, 4) == wrps);
3794
        assert(extract32(cpu->id_aa64dfr0, 28, 4) == ctx_cmps);
3795
    }
3796

3797
    define_one_arm_cp_reg(cpu, &dbgdidr);
3798 3799 3800 3801 3802 3803
    define_arm_cp_regs(cpu, debug_cp_reginfo);

    if (arm_feature(&cpu->env, ARM_FEATURE_LPAE)) {
        define_arm_cp_regs(cpu, debug_lpae_cp_reginfo);
    }

3804
    for (i = 0; i < brps + 1; i++) {
3805
        ARMCPRegInfo dbgregs[] = {
3806 3807
            { .name = "DBGBVR", .state = ARM_CP_STATE_BOTH,
              .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 4,
3808
              .access = PL1_RW,
3809 3810 3811
              .fieldoffset = offsetof(CPUARMState, cp15.dbgbvr[i]),
              .writefn = dbgbvr_write, .raw_writefn = raw_write
            },
3812 3813
            { .name = "DBGBCR", .state = ARM_CP_STATE_BOTH,
              .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 5,
3814
              .access = PL1_RW,
3815 3816 3817
              .fieldoffset = offsetof(CPUARMState, cp15.dbgbcr[i]),
              .writefn = dbgbcr_write, .raw_writefn = raw_write
            },
3818 3819 3820 3821 3822 3823 3824
            REGINFO_SENTINEL
        };
        define_arm_cp_regs(cpu, dbgregs);
    }

    for (i = 0; i < wrps + 1; i++) {
        ARMCPRegInfo dbgregs[] = {
3825 3826
            { .name = "DBGWVR", .state = ARM_CP_STATE_BOTH,
              .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 6,
3827
              .access = PL1_RW,
3828 3829 3830
              .fieldoffset = offsetof(CPUARMState, cp15.dbgwvr[i]),
              .writefn = dbgwvr_write, .raw_writefn = raw_write
            },
3831 3832
            { .name = "DBGWCR", .state = ARM_CP_STATE_BOTH,
              .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 7,
3833
              .access = PL1_RW,
3834 3835 3836 3837
              .fieldoffset = offsetof(CPUARMState, cp15.dbgwcr[i]),
              .writefn = dbgwcr_write, .raw_writefn = raw_write
            },
            REGINFO_SENTINEL
3838 3839 3840 3841 3842
        };
        define_arm_cp_regs(cpu, dbgregs);
    }
}

3843 3844 3845 3846 3847 3848 3849 3850 3851
void register_cp_regs_for_features(ARMCPU *cpu)
{
    /* Register all the coprocessor registers based on feature bits */
    CPUARMState *env = &cpu->env;
    if (arm_feature(env, ARM_FEATURE_M)) {
        /* M profile has no coprocessor registers */
        return;
    }

3852
    define_arm_cp_regs(cpu, cp_reginfo);
3853 3854 3855 3856 3857 3858 3859
    if (!arm_feature(env, ARM_FEATURE_V8)) {
        /* Must go early as it is full of wildcards that may be
         * overridden by later definitions.
         */
        define_arm_cp_regs(cpu, not_v8_cp_reginfo);
    }

3860
    if (arm_feature(env, ARM_FEATURE_V6)) {
3861 3862
        /* The ID registers all have impdef reset values */
        ARMCPRegInfo v6_idregs[] = {
3863 3864 3865
            { .name = "ID_PFR0", .state = ARM_CP_STATE_BOTH,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0,
              .access = PL1_R, .type = ARM_CP_CONST,
3866
              .resetvalue = cpu->id_pfr0 },
3867 3868 3869
            { .name = "ID_PFR1", .state = ARM_CP_STATE_BOTH,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 1,
              .access = PL1_R, .type = ARM_CP_CONST,
3870
              .resetvalue = cpu->id_pfr1 },
3871 3872 3873
            { .name = "ID_DFR0", .state = ARM_CP_STATE_BOTH,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 2,
              .access = PL1_R, .type = ARM_CP_CONST,
3874
              .resetvalue = cpu->id_dfr0 },
3875 3876 3877
            { .name = "ID_AFR0", .state = ARM_CP_STATE_BOTH,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 3,
              .access = PL1_R, .type = ARM_CP_CONST,
3878
              .resetvalue = cpu->id_afr0 },
3879 3880 3881
            { .name = "ID_MMFR0", .state = ARM_CP_STATE_BOTH,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 4,
              .access = PL1_R, .type = ARM_CP_CONST,
3882
              .resetvalue = cpu->id_mmfr0 },
3883 3884 3885
            { .name = "ID_MMFR1", .state = ARM_CP_STATE_BOTH,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 5,
              .access = PL1_R, .type = ARM_CP_CONST,
3886
              .resetvalue = cpu->id_mmfr1 },
3887 3888 3889
            { .name = "ID_MMFR2", .state = ARM_CP_STATE_BOTH,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 6,
              .access = PL1_R, .type = ARM_CP_CONST,
3890
              .resetvalue = cpu->id_mmfr2 },
3891 3892 3893
            { .name = "ID_MMFR3", .state = ARM_CP_STATE_BOTH,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 7,
              .access = PL1_R, .type = ARM_CP_CONST,
3894
              .resetvalue = cpu->id_mmfr3 },
3895 3896 3897
            { .name = "ID_ISAR0", .state = ARM_CP_STATE_BOTH,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0,
              .access = PL1_R, .type = ARM_CP_CONST,
3898
              .resetvalue = cpu->id_isar0 },
3899 3900 3901
            { .name = "ID_ISAR1", .state = ARM_CP_STATE_BOTH,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 1,
              .access = PL1_R, .type = ARM_CP_CONST,
3902
              .resetvalue = cpu->id_isar1 },
3903 3904 3905
            { .name = "ID_ISAR2", .state = ARM_CP_STATE_BOTH,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2,
              .access = PL1_R, .type = ARM_CP_CONST,
3906
              .resetvalue = cpu->id_isar2 },
3907 3908 3909
            { .name = "ID_ISAR3", .state = ARM_CP_STATE_BOTH,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 3,
              .access = PL1_R, .type = ARM_CP_CONST,
3910
              .resetvalue = cpu->id_isar3 },
3911 3912 3913
            { .name = "ID_ISAR4", .state = ARM_CP_STATE_BOTH,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 4,
              .access = PL1_R, .type = ARM_CP_CONST,
3914
              .resetvalue = cpu->id_isar4 },
3915 3916 3917
            { .name = "ID_ISAR5", .state = ARM_CP_STATE_BOTH,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 5,
              .access = PL1_R, .type = ARM_CP_CONST,
3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928
              .resetvalue = cpu->id_isar5 },
            /* 6..7 are as yet unallocated and must RAZ */
            { .name = "ID_ISAR6", .cp = 15, .crn = 0, .crm = 2,
              .opc1 = 0, .opc2 = 6, .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = 0 },
            { .name = "ID_ISAR7", .cp = 15, .crn = 0, .crm = 2,
              .opc1 = 0, .opc2 = 7, .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = 0 },
            REGINFO_SENTINEL
        };
        define_arm_cp_regs(cpu, v6_idregs);
3929 3930 3931 3932
        define_arm_cp_regs(cpu, v6_cp_reginfo);
    } else {
        define_arm_cp_regs(cpu, not_v6_cp_reginfo);
    }
3933 3934 3935
    if (arm_feature(env, ARM_FEATURE_V6K)) {
        define_arm_cp_regs(cpu, v6k_cp_reginfo);
    }
3936 3937
    if (arm_feature(env, ARM_FEATURE_V7MP) &&
        !arm_feature(env, ARM_FEATURE_MPU)) {
3938 3939
        define_arm_cp_regs(cpu, v7mp_cp_reginfo);
    }
3940
    if (arm_feature(env, ARM_FEATURE_V7)) {
3941
        /* v7 performance monitor control register: same implementor
3942 3943
         * field as main ID register, and we implement only the cycle
         * count register.
3944
         */
3945
#ifndef CONFIG_USER_ONLY
3946 3947
        ARMCPRegInfo pmcr = {
            .name = "PMCR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 0,
3948
            .access = PL0_RW,
3949
            .type = ARM_CP_IO | ARM_CP_ALIAS,
3950
            .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcr),
3951 3952
            .accessfn = pmreg_access, .writefn = pmcr_write,
            .raw_writefn = raw_write,
3953
        };
3954 3955 3956 3957 3958 3959 3960 3961 3962
        ARMCPRegInfo pmcr64 = {
            .name = "PMCR_EL0", .state = ARM_CP_STATE_AA64,
            .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 0,
            .access = PL0_RW, .accessfn = pmreg_access,
            .type = ARM_CP_IO,
            .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcr),
            .resetvalue = cpu->midr & 0xff000000,
            .writefn = pmcr_write, .raw_writefn = raw_write,
        };
3963
        define_one_arm_cp_reg(cpu, &pmcr);
3964
        define_one_arm_cp_reg(cpu, &pmcr64);
3965
#endif
3966
        ARMCPRegInfo clidr = {
3967 3968
            .name = "CLIDR", .state = ARM_CP_STATE_BOTH,
            .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 1,
3969 3970 3971
            .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->clidr
        };
        define_one_arm_cp_reg(cpu, &clidr);
3972
        define_arm_cp_regs(cpu, v7_cp_reginfo);
3973
        define_debug_regs(cpu);
3974 3975
    } else {
        define_arm_cp_regs(cpu, not_v7_cp_reginfo);
3976
    }
3977
    if (arm_feature(env, ARM_FEATURE_V8)) {
3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990
        /* AArch64 ID registers, which all have impdef reset values */
        ARMCPRegInfo v8_idregs[] = {
            { .name = "ID_AA64PFR0_EL1", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 0,
              .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = cpu->id_aa64pfr0 },
            { .name = "ID_AA64PFR1_EL1", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 1,
              .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = cpu->id_aa64pfr1},
            { .name = "ID_AA64DFR0_EL1", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 0,
              .access = PL1_R, .type = ARM_CP_CONST,
S
Stefan Weil 已提交
3991
              /* We mask out the PMUVer field, because we don't currently
3992 3993 3994 3995 3996
               * implement the PMU. Not advertising it prevents the guest
               * from trying to use it and getting UNDEFs on registers we
               * don't implement.
               */
              .resetvalue = cpu->id_aa64dfr0 & ~0xf00 },
3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024
            { .name = "ID_AA64DFR1_EL1", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 1,
              .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = cpu->id_aa64dfr1 },
            { .name = "ID_AA64AFR0_EL1", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 4,
              .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = cpu->id_aa64afr0 },
            { .name = "ID_AA64AFR1_EL1", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 5,
              .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = cpu->id_aa64afr1 },
            { .name = "ID_AA64ISAR0_EL1", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 0,
              .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = cpu->id_aa64isar0 },
            { .name = "ID_AA64ISAR1_EL1", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 1,
              .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = cpu->id_aa64isar1 },
            { .name = "ID_AA64MMFR0_EL1", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0,
              .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = cpu->id_aa64mmfr0 },
            { .name = "ID_AA64MMFR1_EL1", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 1,
              .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = cpu->id_aa64mmfr1 },
4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036
            { .name = "MVFR0_EL1", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0,
              .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = cpu->mvfr0 },
            { .name = "MVFR1_EL1", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1,
              .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = cpu->mvfr1 },
            { .name = "MVFR2_EL1", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2,
              .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = cpu->mvfr2 },
4037 4038
            REGINFO_SENTINEL
        };
4039 4040 4041 4042 4043 4044 4045 4046 4047 4048
        /* RVBAR_EL1 is only implemented if EL1 is the highest EL */
        if (!arm_feature(env, ARM_FEATURE_EL3) &&
            !arm_feature(env, ARM_FEATURE_EL2)) {
            ARMCPRegInfo rvbar = {
                .name = "RVBAR_EL1", .state = ARM_CP_STATE_AA64,
                .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
                .type = ARM_CP_CONST, .access = PL1_R, .resetvalue = cpu->rvbar
            };
            define_one_arm_cp_reg(cpu, &rvbar);
        }
4049
        define_arm_cp_regs(cpu, v8_idregs);
4050 4051
        define_arm_cp_regs(cpu, v8_cp_reginfo);
    }
4052
    if (arm_feature(env, ARM_FEATURE_EL2)) {
4053
        define_arm_cp_regs(cpu, el2_cp_reginfo);
4054 4055 4056 4057 4058 4059 4060 4061 4062
        /* RVBAR_EL2 is only implemented if EL2 is the highest EL */
        if (!arm_feature(env, ARM_FEATURE_EL3)) {
            ARMCPRegInfo rvbar = {
                .name = "RVBAR_EL2", .state = ARM_CP_STATE_AA64,
                .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 1,
                .type = ARM_CP_CONST, .access = PL2_R, .resetvalue = cpu->rvbar
            };
            define_one_arm_cp_reg(cpu, &rvbar);
        }
4063 4064 4065 4066 4067
    } else {
        /* If EL2 is missing but higher ELs are enabled, we need to
         * register the no_el2 reginfos.
         */
        if (arm_feature(env, ARM_FEATURE_EL3)) {
4068
            define_arm_cp_regs(cpu, el3_no_el2_cp_reginfo);
4069
        }
4070
    }
4071
    if (arm_feature(env, ARM_FEATURE_EL3)) {
4072
        define_arm_cp_regs(cpu, el3_cp_reginfo);
4073 4074 4075 4076 4077 4078
        ARMCPRegInfo rvbar = {
            .name = "RVBAR_EL3", .state = ARM_CP_STATE_AA64,
            .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 1,
            .type = ARM_CP_CONST, .access = PL3_R, .resetvalue = cpu->rvbar
        };
        define_one_arm_cp_reg(cpu, &rvbar);
4079
    }
4080
    if (arm_feature(env, ARM_FEATURE_MPU)) {
4081 4082 4083 4084 4085 4086 4087 4088
        if (arm_feature(env, ARM_FEATURE_V6)) {
            /* PMSAv6 not implemented */
            assert(arm_feature(env, ARM_FEATURE_V7));
            define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo);
            define_arm_cp_regs(cpu, pmsav7_cp_reginfo);
        } else {
            define_arm_cp_regs(cpu, pmsav5_cp_reginfo);
        }
4089
    } else {
4090
        define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo);
4091 4092
        define_arm_cp_regs(cpu, vmsa_cp_reginfo);
    }
4093 4094 4095
    if (arm_feature(env, ARM_FEATURE_THUMB2EE)) {
        define_arm_cp_regs(cpu, t2ee_cp_reginfo);
    }
4096 4097 4098
    if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
        define_arm_cp_regs(cpu, generic_timer_cp_reginfo);
    }
4099 4100 4101
    if (arm_feature(env, ARM_FEATURE_VAPA)) {
        define_arm_cp_regs(cpu, vapa_cp_reginfo);
    }
4102 4103 4104 4105 4106 4107 4108 4109 4110
    if (arm_feature(env, ARM_FEATURE_CACHE_TEST_CLEAN)) {
        define_arm_cp_regs(cpu, cache_test_clean_cp_reginfo);
    }
    if (arm_feature(env, ARM_FEATURE_CACHE_DIRTY_REG)) {
        define_arm_cp_regs(cpu, cache_dirty_status_cp_reginfo);
    }
    if (arm_feature(env, ARM_FEATURE_CACHE_BLOCK_OPS)) {
        define_arm_cp_regs(cpu, cache_block_ops_cp_reginfo);
    }
4111 4112 4113
    if (arm_feature(env, ARM_FEATURE_OMAPCP)) {
        define_arm_cp_regs(cpu, omap_cp_reginfo);
    }
4114 4115 4116
    if (arm_feature(env, ARM_FEATURE_STRONGARM)) {
        define_arm_cp_regs(cpu, strongarm_cp_reginfo);
    }
4117 4118 4119 4120 4121 4122
    if (arm_feature(env, ARM_FEATURE_XSCALE)) {
        define_arm_cp_regs(cpu, xscale_cp_reginfo);
    }
    if (arm_feature(env, ARM_FEATURE_DUMMY_C15_REGS)) {
        define_arm_cp_regs(cpu, dummy_c15_cp_reginfo);
    }
4123 4124 4125
    if (arm_feature(env, ARM_FEATURE_LPAE)) {
        define_arm_cp_regs(cpu, lpae_cp_reginfo);
    }
4126 4127 4128 4129 4130
    /* Slightly awkwardly, the OMAP and StrongARM cores need all of
     * cp15 crn=0 to be writes-ignored, whereas for other cores they should
     * be read-only (ie write causes UNDEF exception).
     */
    {
4131 4132 4133
        ARMCPRegInfo id_pre_v8_midr_cp_reginfo[] = {
            /* Pre-v8 MIDR space.
             * Note that the MIDR isn't a simple constant register because
4134 4135
             * of the TI925 behaviour where writes to another register can
             * cause the MIDR value to change.
4136 4137 4138 4139
             *
             * Unimplemented registers in the c15 0 0 0 space default to
             * MIDR. Define MIDR first as this entire space, then CTR, TCMTR
             * and friends override accordingly.
4140 4141
             */
            { .name = "MIDR",
4142
              .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = CP_ANY,
4143
              .access = PL1_R, .resetvalue = cpu->midr,
4144
              .writefn = arm_cp_write_ignore, .raw_writefn = raw_write,
4145 4146
              .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
              .type = ARM_CP_OVERRIDE },
4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164
            /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */
            { .name = "DUMMY",
              .cp = 15, .crn = 0, .crm = 3, .opc1 = 0, .opc2 = CP_ANY,
              .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
            { .name = "DUMMY",
              .cp = 15, .crn = 0, .crm = 4, .opc1 = 0, .opc2 = CP_ANY,
              .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
            { .name = "DUMMY",
              .cp = 15, .crn = 0, .crm = 5, .opc1 = 0, .opc2 = CP_ANY,
              .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
            { .name = "DUMMY",
              .cp = 15, .crn = 0, .crm = 6, .opc1 = 0, .opc2 = CP_ANY,
              .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
            { .name = "DUMMY",
              .cp = 15, .crn = 0, .crm = 7, .opc1 = 0, .opc2 = CP_ANY,
              .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
            REGINFO_SENTINEL
        };
4165 4166 4167 4168
        ARMCPRegInfo id_v8_midr_cp_reginfo[] = {
            { .name = "MIDR_EL1", .state = ARM_CP_STATE_BOTH,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 0,
              .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->midr },
4169 4170 4171 4172 4173 4174 4175
            /* crn = 0 op1 = 0 crm = 0 op2 = 4,7 : AArch32 aliases of MIDR */
            { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST,
              .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4,
              .access = PL1_R, .resetvalue = cpu->midr },
            { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST,
              .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 7,
              .access = PL1_R, .resetvalue = cpu->midr },
4176 4177
            { .name = "REVIDR_EL1", .state = ARM_CP_STATE_BOTH,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 6,
4178
              .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->revidr },
4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195
            REGINFO_SENTINEL
        };
        ARMCPRegInfo id_cp_reginfo[] = {
            /* These are common to v8 and pre-v8 */
            { .name = "CTR",
              .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 1,
              .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
            { .name = "CTR_EL0", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 0, .crm = 0,
              .access = PL0_R, .accessfn = ctr_el0_access,
              .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
            /* TCMTR and TLBTR exist in v8 but have no 64-bit versions */
            { .name = "TCMTR",
              .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 2,
              .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
            REGINFO_SENTINEL
        };
4196 4197 4198 4199 4200 4201
        /* TLBTR is specific to VMSA */
        ARMCPRegInfo id_tlbtr_reginfo = {
              .name = "TLBTR",
              .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 3,
              .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0,
        };
4202 4203 4204 4205 4206 4207 4208
        /* MPUIR is specific to PMSA V6+ */
        ARMCPRegInfo id_mpuir_reginfo = {
              .name = "MPUIR",
              .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4,
              .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = cpu->pmsav7_dregion << 8
        };
4209 4210 4211 4212 4213 4214 4215 4216 4217
        ARMCPRegInfo crn0_wi_reginfo = {
            .name = "CRN0_WI", .cp = 15, .crn = 0, .crm = CP_ANY,
            .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_W,
            .type = ARM_CP_NOP | ARM_CP_OVERRIDE
        };
        if (arm_feature(env, ARM_FEATURE_OMAPCP) ||
            arm_feature(env, ARM_FEATURE_STRONGARM)) {
            ARMCPRegInfo *r;
            /* Register the blanket "writes ignored" value first to cover the
4218 4219 4220
             * whole space. Then update the specific ID registers to allow write
             * access, so that they ignore writes rather than causing them to
             * UNDEF.
4221 4222
             */
            define_one_arm_cp_reg(cpu, &crn0_wi_reginfo);
4223 4224 4225 4226
            for (r = id_pre_v8_midr_cp_reginfo;
                 r->type != ARM_CP_SENTINEL; r++) {
                r->access = PL1_RW;
            }
4227 4228 4229
            for (r = id_cp_reginfo; r->type != ARM_CP_SENTINEL; r++) {
                r->access = PL1_RW;
            }
4230
            id_tlbtr_reginfo.access = PL1_RW;
4231
            id_tlbtr_reginfo.access = PL1_RW;
4232
        }
4233 4234 4235 4236 4237
        if (arm_feature(env, ARM_FEATURE_V8)) {
            define_arm_cp_regs(cpu, id_v8_midr_cp_reginfo);
        } else {
            define_arm_cp_regs(cpu, id_pre_v8_midr_cp_reginfo);
        }
4238
        define_arm_cp_regs(cpu, id_cp_reginfo);
4239 4240
        if (!arm_feature(env, ARM_FEATURE_MPU)) {
            define_one_arm_cp_reg(cpu, &id_tlbtr_reginfo);
4241 4242
        } else if (arm_feature(env, ARM_FEATURE_V7)) {
            define_one_arm_cp_reg(cpu, &id_mpuir_reginfo);
4243
        }
4244 4245
    }

4246 4247 4248 4249
    if (arm_feature(env, ARM_FEATURE_MPIDR)) {
        define_arm_cp_regs(cpu, mpidr_cp_reginfo);
    }

4250
    if (arm_feature(env, ARM_FEATURE_AUXCR)) {
4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264
        ARMCPRegInfo auxcr_reginfo[] = {
            { .name = "ACTLR_EL1", .state = ARM_CP_STATE_BOTH,
              .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 1,
              .access = PL1_RW, .type = ARM_CP_CONST,
              .resetvalue = cpu->reset_auxcr },
            { .name = "ACTLR_EL2", .state = ARM_CP_STATE_BOTH,
              .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 1,
              .access = PL2_RW, .type = ARM_CP_CONST,
              .resetvalue = 0 },
            { .name = "ACTLR_EL3", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 1,
              .access = PL3_RW, .type = ARM_CP_CONST,
              .resetvalue = 0 },
            REGINFO_SENTINEL
4265
        };
4266
        define_arm_cp_regs(cpu, auxcr_reginfo);
4267 4268
    }

4269
    if (arm_feature(env, ARM_FEATURE_CBAR)) {
4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302
        if (arm_feature(env, ARM_FEATURE_AARCH64)) {
            /* 32 bit view is [31:18] 0...0 [43:32]. */
            uint32_t cbar32 = (extract64(cpu->reset_cbar, 18, 14) << 18)
                | extract64(cpu->reset_cbar, 32, 12);
            ARMCPRegInfo cbar_reginfo[] = {
                { .name = "CBAR",
                  .type = ARM_CP_CONST,
                  .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0,
                  .access = PL1_R, .resetvalue = cpu->reset_cbar },
                { .name = "CBAR_EL1", .state = ARM_CP_STATE_AA64,
                  .type = ARM_CP_CONST,
                  .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 3, .opc2 = 0,
                  .access = PL1_R, .resetvalue = cbar32 },
                REGINFO_SENTINEL
            };
            /* We don't implement a r/w 64 bit CBAR currently */
            assert(arm_feature(env, ARM_FEATURE_CBAR_RO));
            define_arm_cp_regs(cpu, cbar_reginfo);
        } else {
            ARMCPRegInfo cbar = {
                .name = "CBAR",
                .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0,
                .access = PL1_R|PL3_W, .resetvalue = cpu->reset_cbar,
                .fieldoffset = offsetof(CPUARMState,
                                        cp15.c15_config_base_address)
            };
            if (arm_feature(env, ARM_FEATURE_CBAR_RO)) {
                cbar.access = PL1_R;
                cbar.fieldoffset = 0;
                cbar.type = ARM_CP_CONST;
            }
            define_one_arm_cp_reg(cpu, &cbar);
        }
4303 4304
    }

4305 4306 4307
    /* Generic registers whose values depend on the implementation */
    {
        ARMCPRegInfo sctlr = {
4308
            .name = "SCTLR", .state = ARM_CP_STATE_BOTH,
4309 4310 4311 4312
            .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0,
            .access = PL1_RW,
            .bank_fieldoffsets = { offsetof(CPUARMState, cp15.sctlr_s),
                                   offsetof(CPUARMState, cp15.sctlr_ns) },
4313 4314
            .writefn = sctlr_write, .resetvalue = cpu->reset_sctlr,
            .raw_writefn = raw_write,
4315 4316 4317 4318 4319 4320 4321 4322 4323 4324
        };
        if (arm_feature(env, ARM_FEATURE_XSCALE)) {
            /* Normally we would always end the TB on an SCTLR write, but Linux
             * arch/arm/mach-pxa/sleep.S expects two instructions following
             * an MMU enable to execute from cache.  Imitate this behaviour.
             */
            sctlr.type |= ARM_CP_SUPPRESS_TB_END;
        }
        define_one_arm_cp_reg(cpu, &sctlr);
    }
4325 4326
}

4327
ARMCPU *cpu_arm_init(const char *cpu_model)
P
pbrook 已提交
4328
{
4329
    return ARM_CPU(cpu_generic_init(TYPE_ARM_CPU, cpu_model));
4330 4331 4332 4333
}

void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu)
{
4334
    CPUState *cs = CPU(cpu);
4335 4336
    CPUARMState *env = &cpu->env;

4337 4338 4339 4340 4341
    if (arm_feature(env, ARM_FEATURE_AARCH64)) {
        gdb_register_coprocessor(cs, aarch64_fpu_gdb_get_reg,
                                 aarch64_fpu_gdb_set_reg,
                                 34, "aarch64-fpu.xml", 0);
    } else if (arm_feature(env, ARM_FEATURE_NEON)) {
4342
        gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
P
pbrook 已提交
4343 4344
                                 51, "arm-neon.xml", 0);
    } else if (arm_feature(env, ARM_FEATURE_VFP3)) {
4345
        gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
P
pbrook 已提交
4346 4347
                                 35, "arm-vfp3.xml", 0);
    } else if (arm_feature(env, ARM_FEATURE_VFP)) {
4348
        gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
P
pbrook 已提交
4349 4350
                                 19, "arm-vfp.xml", 0);
    }
P
pbrook 已提交
4351 4352
}

4353 4354
/* Sort alphabetically by type name, except for "any". */
static gint arm_cpu_list_compare(gconstpointer a, gconstpointer b)
P
pbrook 已提交
4355
{
4356 4357 4358
    ObjectClass *class_a = (ObjectClass *)a;
    ObjectClass *class_b = (ObjectClass *)b;
    const char *name_a, *name_b;
P
pbrook 已提交
4359

4360 4361
    name_a = object_class_get_name(class_a);
    name_b = object_class_get_name(class_b);
A
Andreas Färber 已提交
4362
    if (strcmp(name_a, "any-" TYPE_ARM_CPU) == 0) {
4363
        return 1;
A
Andreas Färber 已提交
4364
    } else if (strcmp(name_b, "any-" TYPE_ARM_CPU) == 0) {
4365 4366 4367
        return -1;
    } else {
        return strcmp(name_a, name_b);
P
pbrook 已提交
4368 4369 4370
    }
}

4371
static void arm_cpu_list_entry(gpointer data, gpointer user_data)
P
pbrook 已提交
4372
{
4373
    ObjectClass *oc = data;
4374
    CPUListState *s = user_data;
A
Andreas Färber 已提交
4375 4376
    const char *typename;
    char *name;
P
pbrook 已提交
4377

A
Andreas Färber 已提交
4378 4379
    typename = object_class_get_name(oc);
    name = g_strndup(typename, strlen(typename) - strlen("-" TYPE_ARM_CPU));
4380
    (*s->cpu_fprintf)(s->file, "  %s\n",
A
Andreas Färber 已提交
4381 4382
                      name);
    g_free(name);
4383 4384 4385 4386
}

void arm_cpu_list(FILE *f, fprintf_function cpu_fprintf)
{
4387
    CPUListState s = {
4388 4389 4390 4391 4392 4393 4394 4395 4396 4397
        .file = f,
        .cpu_fprintf = cpu_fprintf,
    };
    GSList *list;

    list = object_class_get_list(TYPE_ARM_CPU, false);
    list = g_slist_sort(list, arm_cpu_list_compare);
    (*cpu_fprintf)(f, "Available CPUs:\n");
    g_slist_foreach(list, arm_cpu_list_entry, &s);
    g_slist_free(list);
4398 4399 4400 4401 4402 4403
#ifdef CONFIG_KVM
    /* The 'host' CPU type is dynamically registered only if KVM is
     * enabled, so we have to special-case it here:
     */
    (*cpu_fprintf)(f, "  host (only available in KVM mode)\n");
#endif
P
pbrook 已提交
4404 4405
}

4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436
static void arm_cpu_add_definition(gpointer data, gpointer user_data)
{
    ObjectClass *oc = data;
    CpuDefinitionInfoList **cpu_list = user_data;
    CpuDefinitionInfoList *entry;
    CpuDefinitionInfo *info;
    const char *typename;

    typename = object_class_get_name(oc);
    info = g_malloc0(sizeof(*info));
    info->name = g_strndup(typename,
                           strlen(typename) - strlen("-" TYPE_ARM_CPU));

    entry = g_malloc0(sizeof(*entry));
    entry->value = info;
    entry->next = *cpu_list;
    *cpu_list = entry;
}

CpuDefinitionInfoList *arch_query_cpu_definitions(Error **errp)
{
    CpuDefinitionInfoList *cpu_list = NULL;
    GSList *list;

    list = object_class_get_list(TYPE_ARM_CPU, false);
    g_slist_foreach(list, arm_cpu_add_definition, &cpu_list);
    g_slist_free(list);

    return cpu_list;
}

4437
static void add_cpreg_to_hashtable(ARMCPU *cpu, const ARMCPRegInfo *r,
4438
                                   void *opaque, int state, int secstate,
4439
                                   int crm, int opc1, int opc2)
4440 4441 4442 4443 4444 4445 4446
{
    /* Private utility function for define_one_arm_cp_reg_with_opaque():
     * add a single reginfo struct to the hash table.
     */
    uint32_t *key = g_new(uint32_t, 1);
    ARMCPRegInfo *r2 = g_memdup(r, sizeof(ARMCPRegInfo));
    int is64 = (r->type & ARM_CP_64BIT) ? 1 : 0;
4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457
    int ns = (secstate & ARM_CP_SECSTATE_NS) ? 1 : 0;

    /* Reset the secure state to the specific incoming state.  This is
     * necessary as the register may have been defined with both states.
     */
    r2->secure = secstate;

    if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) {
        /* Register is banked (using both entries in array).
         * Overwriting fieldoffset as the array is only used to define
         * banked registers but later only fieldoffset is used.
4458
         */
4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475
        r2->fieldoffset = r->bank_fieldoffsets[ns];
    }

    if (state == ARM_CP_STATE_AA32) {
        if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) {
            /* If the register is banked then we don't need to migrate or
             * reset the 32-bit instance in certain cases:
             *
             * 1) If the register has both 32-bit and 64-bit instances then we
             *    can count on the 64-bit instance taking care of the
             *    non-secure bank.
             * 2) If ARMv8 is enabled then we can count on a 64-bit version
             *    taking care of the secure bank.  This requires that separate
             *    32 and 64-bit definitions are provided.
             */
            if ((r->state == ARM_CP_STATE_BOTH && ns) ||
                (arm_feature(&cpu->env, ARM_FEATURE_V8) && !ns)) {
4476
                r2->type |= ARM_CP_ALIAS;
4477 4478 4479 4480 4481
            }
        } else if ((secstate != r->secure) && !ns) {
            /* The register is not banked so we only want to allow migration of
             * the non-secure instance.
             */
4482
            r2->type |= ARM_CP_ALIAS;
4483
        }
4484 4485 4486 4487 4488 4489 4490 4491

        if (r->state == ARM_CP_STATE_BOTH) {
            /* We assume it is a cp15 register if the .cp field is left unset.
             */
            if (r2->cp == 0) {
                r2->cp = 15;
            }

4492
#ifdef HOST_WORDS_BIGENDIAN
4493 4494 4495
            if (r2->fieldoffset) {
                r2->fieldoffset += sizeof(uint32_t);
            }
4496
#endif
4497
        }
4498 4499 4500 4501 4502
    }
    if (state == ARM_CP_STATE_AA64) {
        /* To allow abbreviation of ARMCPRegInfo
         * definitions, we treat cp == 0 as equivalent to
         * the value for "standard guest-visible sysreg".
4503 4504 4505
         * STATE_BOTH definitions are also always "standard
         * sysreg" in their AArch64 view (the .cp value may
         * be non-zero for the benefit of the AArch32 view).
4506
         */
4507
        if (r->cp == 0 || r->state == ARM_CP_STATE_BOTH) {
4508 4509 4510 4511 4512
            r2->cp = CP_REG_ARM64_SYSREG_CP;
        }
        *key = ENCODE_AA64_CP_REG(r2->cp, r2->crn, crm,
                                  r2->opc0, opc1, opc2);
    } else {
4513
        *key = ENCODE_CP_REG(r2->cp, is64, ns, r2->crn, crm, opc1, opc2);
4514
    }
4515 4516 4517
    if (opaque) {
        r2->opaque = opaque;
    }
4518 4519 4520 4521
    /* reginfo passed to helpers is correct for the actual access,
     * and is never ARM_CP_STATE_BOTH:
     */
    r2->state = state;
4522 4523 4524 4525 4526 4527 4528 4529
    /* Make sure reginfo passed to helpers for wildcarded regs
     * has the correct crm/opc1/opc2 for this reg, not CP_ANY:
     */
    r2->crm = crm;
    r2->opc1 = opc1;
    r2->opc2 = opc2;
    /* By convention, for wildcarded registers only the first
     * entry is used for migration; the others are marked as
4530
     * ALIAS so we don't try to transfer the register
4531
     * multiple times. Special registers (ie NOP/WFI) are
4532
     * never migratable and not even raw-accessible.
4533
     */
4534 4535 4536 4537
    if ((r->type & ARM_CP_SPECIAL)) {
        r2->type |= ARM_CP_NO_RAW;
    }
    if (((r->crm == CP_ANY) && crm != 0) ||
4538 4539
        ((r->opc1 == CP_ANY) && opc1 != 0) ||
        ((r->opc2 == CP_ANY) && opc2 != 0)) {
4540
        r2->type |= ARM_CP_ALIAS;
4541 4542
    }

4543 4544 4545 4546 4547 4548 4549 4550
    /* Check that raw accesses are either forbidden or handled. Note that
     * we can't assert this earlier because the setup of fieldoffset for
     * banked registers has to be done first.
     */
    if (!(r2->type & ARM_CP_NO_RAW)) {
        assert(!raw_accessors_invalid(r2));
    }

4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569
    /* Overriding of an existing definition must be explicitly
     * requested.
     */
    if (!(r->type & ARM_CP_OVERRIDE)) {
        ARMCPRegInfo *oldreg;
        oldreg = g_hash_table_lookup(cpu->cp_regs, key);
        if (oldreg && !(oldreg->type & ARM_CP_OVERRIDE)) {
            fprintf(stderr, "Register redefined: cp=%d %d bit "
                    "crn=%d crm=%d opc1=%d opc2=%d, "
                    "was %s, now %s\n", r2->cp, 32 + 32 * is64,
                    r2->crn, r2->crm, r2->opc1, r2->opc2,
                    oldreg->name, r2->name);
            g_assert_not_reached();
        }
    }
    g_hash_table_insert(cpu->cp_regs, key, r2);
}


4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583
void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
                                       const ARMCPRegInfo *r, void *opaque)
{
    /* Define implementations of coprocessor registers.
     * We store these in a hashtable because typically
     * there are less than 150 registers in a space which
     * is 16*16*16*8*8 = 262144 in size.
     * Wildcarding is supported for the crm, opc1 and opc2 fields.
     * If a register is defined twice then the second definition is
     * used, so this can be used to define some generic registers and
     * then override them with implementation specific variations.
     * At least one of the original and the second definition should
     * include ARM_CP_OVERRIDE in its type bits -- this is just a guard
     * against accidental use.
4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594
     *
     * The state field defines whether the register is to be
     * visible in the AArch32 or AArch64 execution state. If the
     * state is set to ARM_CP_STATE_BOTH then we synthesise a
     * reginfo structure for the AArch32 view, which sees the lower
     * 32 bits of the 64 bit register.
     *
     * Only registers visible in AArch64 may set r->opc0; opc0 cannot
     * be wildcarded. AArch64 registers are always considered to be 64
     * bits; the ARM_CP_64BIT* flag applies only to the AArch32 view of
     * the register, if any.
4595
     */
4596
    int crm, opc1, opc2, state;
4597 4598 4599 4600 4601 4602 4603 4604
    int crmmin = (r->crm == CP_ANY) ? 0 : r->crm;
    int crmmax = (r->crm == CP_ANY) ? 15 : r->crm;
    int opc1min = (r->opc1 == CP_ANY) ? 0 : r->opc1;
    int opc1max = (r->opc1 == CP_ANY) ? 7 : r->opc1;
    int opc2min = (r->opc2 == CP_ANY) ? 0 : r->opc2;
    int opc2max = (r->opc2 == CP_ANY) ? 7 : r->opc2;
    /* 64 bit registers have only CRm and Opc1 fields */
    assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn)));
4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650
    /* op0 only exists in the AArch64 encodings */
    assert((r->state != ARM_CP_STATE_AA32) || (r->opc0 == 0));
    /* AArch64 regs are all 64 bit so ARM_CP_64BIT is meaningless */
    assert((r->state != ARM_CP_STATE_AA64) || !(r->type & ARM_CP_64BIT));
    /* The AArch64 pseudocode CheckSystemAccess() specifies that op1
     * encodes a minimum access level for the register. We roll this
     * runtime check into our general permission check code, so check
     * here that the reginfo's specified permissions are strict enough
     * to encompass the generic architectural permission check.
     */
    if (r->state != ARM_CP_STATE_AA32) {
        int mask = 0;
        switch (r->opc1) {
        case 0: case 1: case 2:
            /* min_EL EL1 */
            mask = PL1_RW;
            break;
        case 3:
            /* min_EL EL0 */
            mask = PL0_RW;
            break;
        case 4:
            /* min_EL EL2 */
            mask = PL2_RW;
            break;
        case 5:
            /* unallocated encoding, so not possible */
            assert(false);
            break;
        case 6:
            /* min_EL EL3 */
            mask = PL3_RW;
            break;
        case 7:
            /* min_EL EL1, secure mode only (we don't check the latter) */
            mask = PL1_RW;
            break;
        default:
            /* broken reginfo with out-of-range opc1 */
            assert(false);
            break;
        }
        /* assert our permissions are not too lax (stricter is fine) */
        assert((r->access & ~mask) == 0);
    }

4651 4652 4653 4654 4655
    /* Check that the register definition has enough info to handle
     * reads and writes if they are permitted.
     */
    if (!(r->type & (ARM_CP_SPECIAL|ARM_CP_CONST))) {
        if (r->access & PL3_R) {
4656 4657 4658
            assert((r->fieldoffset ||
                   (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
                   r->readfn);
4659 4660
        }
        if (r->access & PL3_W) {
4661 4662 4663
            assert((r->fieldoffset ||
                   (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
                   r->writefn);
4664 4665 4666 4667 4668 4669 4670
        }
    }
    /* Bad type field probably means missing sentinel at end of reg list */
    assert(cptype_valid(r->type));
    for (crm = crmmin; crm <= crmmax; crm++) {
        for (opc1 = opc1min; opc1 <= opc1max; opc1++) {
            for (opc2 = opc2min; opc2 <= opc2max; opc2++) {
4671 4672 4673 4674 4675
                for (state = ARM_CP_STATE_AA32;
                     state <= ARM_CP_STATE_AA64; state++) {
                    if (r->state != state && r->state != ARM_CP_STATE_BOTH) {
                        continue;
                    }
4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701
                    if (state == ARM_CP_STATE_AA32) {
                        /* Under AArch32 CP registers can be common
                         * (same for secure and non-secure world) or banked.
                         */
                        switch (r->secure) {
                        case ARM_CP_SECSTATE_S:
                        case ARM_CP_SECSTATE_NS:
                            add_cpreg_to_hashtable(cpu, r, opaque, state,
                                                   r->secure, crm, opc1, opc2);
                            break;
                        default:
                            add_cpreg_to_hashtable(cpu, r, opaque, state,
                                                   ARM_CP_SECSTATE_S,
                                                   crm, opc1, opc2);
                            add_cpreg_to_hashtable(cpu, r, opaque, state,
                                                   ARM_CP_SECSTATE_NS,
                                                   crm, opc1, opc2);
                            break;
                        }
                    } else {
                        /* AArch64 registers get mapped to non-secure instance
                         * of AArch32 */
                        add_cpreg_to_hashtable(cpu, r, opaque, state,
                                               ARM_CP_SECSTATE_NS,
                                               crm, opc1, opc2);
                    }
4702
                }
4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717
            }
        }
    }
}

void define_arm_cp_regs_with_opaque(ARMCPU *cpu,
                                    const ARMCPRegInfo *regs, void *opaque)
{
    /* Define a whole list of registers */
    const ARMCPRegInfo *r;
    for (r = regs; r->type != ARM_CP_SENTINEL; r++) {
        define_one_arm_cp_reg_with_opaque(cpu, r, opaque);
    }
}

4718
const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp)
4719
{
4720
    return g_hash_table_lookup(cpregs, &encoded_cp);
4721 4722
}

4723 4724
void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
                         uint64_t value)
4725 4726 4727 4728
{
    /* Helper coprocessor write function for write-ignore registers */
}

4729
uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri)
4730 4731 4732 4733 4734
{
    /* Helper coprocessor write function for read-as-zero registers */
    return 0;
}

4735 4736 4737 4738 4739
void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque)
{
    /* Helper coprocessor reset function for do-nothing-on-reset registers */
}

4740
static int bad_mode_switch(CPUARMState *env, int mode)
4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754
{
    /* Return true if it is not valid for us to switch to
     * this CPU mode (ie all the UNPREDICTABLE cases in
     * the ARM ARM CPSRWriteByInstr pseudocode).
     */
    switch (mode) {
    case ARM_CPU_MODE_USR:
    case ARM_CPU_MODE_SYS:
    case ARM_CPU_MODE_SVC:
    case ARM_CPU_MODE_ABT:
    case ARM_CPU_MODE_UND:
    case ARM_CPU_MODE_IRQ:
    case ARM_CPU_MODE_FIQ:
        return 0;
4755 4756
    case ARM_CPU_MODE_MON:
        return !arm_is_secure(env);
4757 4758 4759 4760 4761
    default:
        return 1;
    }
}

4762 4763 4764
uint32_t cpsr_read(CPUARMState *env)
{
    int ZF;
P
pbrook 已提交
4765 4766
    ZF = (env->ZF == 0);
    return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) |
4767 4768 4769
        (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
        | (env->thumb << 5) | ((env->condexec_bits & 3) << 25)
        | ((env->condexec_bits & 0xfc) << 8)
4770
        | (env->GE << 16) | (env->daif & CPSR_AIF);
4771 4772 4773 4774
}

void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask)
{
4775 4776
    uint32_t changed_daif;

4777
    if (mask & CPSR_NZCV) {
P
pbrook 已提交
4778 4779
        env->ZF = (~val) & CPSR_Z;
        env->NF = val;
4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798
        env->CF = (val >> 29) & 1;
        env->VF = (val << 3) & 0x80000000;
    }
    if (mask & CPSR_Q)
        env->QF = ((val & CPSR_Q) != 0);
    if (mask & CPSR_T)
        env->thumb = ((val & CPSR_T) != 0);
    if (mask & CPSR_IT_0_1) {
        env->condexec_bits &= ~3;
        env->condexec_bits |= (val >> 25) & 3;
    }
    if (mask & CPSR_IT_2_7) {
        env->condexec_bits &= 3;
        env->condexec_bits |= (val >> 8) & 0xfc;
    }
    if (mask & CPSR_GE) {
        env->GE = (val >> 16) & 0xf;
    }

4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850
    /* In a V7 implementation that includes the security extensions but does
     * not include Virtualization Extensions the SCR.FW and SCR.AW bits control
     * whether non-secure software is allowed to change the CPSR_F and CPSR_A
     * bits respectively.
     *
     * In a V8 implementation, it is permitted for privileged software to
     * change the CPSR A/F bits regardless of the SCR.AW/FW bits.
     */
    if (!arm_feature(env, ARM_FEATURE_V8) &&
        arm_feature(env, ARM_FEATURE_EL3) &&
        !arm_feature(env, ARM_FEATURE_EL2) &&
        !arm_is_secure(env)) {

        changed_daif = (env->daif ^ val) & mask;

        if (changed_daif & CPSR_A) {
            /* Check to see if we are allowed to change the masking of async
             * abort exceptions from a non-secure state.
             */
            if (!(env->cp15.scr_el3 & SCR_AW)) {
                qemu_log_mask(LOG_GUEST_ERROR,
                              "Ignoring attempt to switch CPSR_A flag from "
                              "non-secure world with SCR.AW bit clear\n");
                mask &= ~CPSR_A;
            }
        }

        if (changed_daif & CPSR_F) {
            /* Check to see if we are allowed to change the masking of FIQ
             * exceptions from a non-secure state.
             */
            if (!(env->cp15.scr_el3 & SCR_FW)) {
                qemu_log_mask(LOG_GUEST_ERROR,
                              "Ignoring attempt to switch CPSR_F flag from "
                              "non-secure world with SCR.FW bit clear\n");
                mask &= ~CPSR_F;
            }

            /* Check whether non-maskable FIQ (NMFI) support is enabled.
             * If this bit is set software is not allowed to mask
             * FIQs, but is allowed to set CPSR_F to 0.
             */
            if ((A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_NMFI) &&
                (val & CPSR_F)) {
                qemu_log_mask(LOG_GUEST_ERROR,
                              "Ignoring attempt to enable CPSR_F flag "
                              "(non-maskable FIQ [NMFI] support enabled)\n");
                mask &= ~CPSR_F;
            }
        }
    }

4851 4852 4853
    env->daif &= ~(CPSR_AIF & mask);
    env->daif |= val & CPSR_AIF & mask;

4854
    if ((env->uncached_cpsr ^ val) & mask & CPSR_M) {
4855 4856 4857 4858 4859 4860 4861 4862 4863
        if (bad_mode_switch(env, val & CPSR_M)) {
            /* Attempt to switch to an invalid mode: this is UNPREDICTABLE.
             * We choose to ignore the attempt and leave the CPSR M field
             * untouched.
             */
            mask &= ~CPSR_M;
        } else {
            switch_mode(env, val & CPSR_M);
        }
4864 4865 4866 4867 4868
    }
    mask &= ~CACHED_CPSR_BITS;
    env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask);
}

P
pbrook 已提交
4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885
/* Sign/zero extend */
uint32_t HELPER(sxtb16)(uint32_t x)
{
    uint32_t res;
    res = (uint16_t)(int8_t)x;
    res |= (uint32_t)(int8_t)(x >> 16) << 16;
    return res;
}

uint32_t HELPER(uxtb16)(uint32_t x)
{
    uint32_t res;
    res = (uint16_t)(uint8_t)x;
    res |= (uint32_t)(uint8_t)(x >> 16) << 16;
    return res;
}

P
pbrook 已提交
4886 4887
uint32_t HELPER(clz)(uint32_t x)
{
4888
    return clz32(x);
P
pbrook 已提交
4889 4890
}

P
pbrook 已提交
4891 4892 4893 4894
int32_t HELPER(sdiv)(int32_t num, int32_t den)
{
    if (den == 0)
      return 0;
A
Aurelien Jarno 已提交
4895 4896
    if (num == INT_MIN && den == -1)
      return INT_MIN;
P
pbrook 已提交
4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921
    return num / den;
}

uint32_t HELPER(udiv)(uint32_t num, uint32_t den)
{
    if (den == 0)
      return 0;
    return num / den;
}

uint32_t HELPER(rbit)(uint32_t x)
{
    x =  ((x & 0xff000000) >> 24)
       | ((x & 0x00ff0000) >> 8)
       | ((x & 0x0000ff00) << 8)
       | ((x & 0x000000ff) << 24);
    x =  ((x & 0xf0f0f0f0) >> 4)
       | ((x & 0x0f0f0f0f) << 4);
    x =  ((x & 0x88888888) >> 3)
       | ((x & 0x44444444) >> 1)
       | ((x & 0x22222222) << 1)
       | ((x & 0x11111111) << 3);
    return x;
}

4922
#if defined(CONFIG_USER_ONLY)
B
bellard 已提交
4923

P
pbrook 已提交
4924
/* These should probably raise undefined insn exceptions.  */
4925
void HELPER(v7m_msr)(CPUARMState *env, uint32_t reg, uint32_t val)
P
pbrook 已提交
4926
{
4927 4928 4929
    ARMCPU *cpu = arm_env_get_cpu(env);

    cpu_abort(CPU(cpu), "v7m_msr %d\n", reg);
P
pbrook 已提交
4930 4931
}

4932
uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg)
P
pbrook 已提交
4933
{
4934 4935 4936
    ARMCPU *cpu = arm_env_get_cpu(env);

    cpu_abort(CPU(cpu), "v7m_mrs %d\n", reg);
P
pbrook 已提交
4937 4938 4939
    return 0;
}

4940
void switch_mode(CPUARMState *env, int mode)
B
bellard 已提交
4941
{
4942 4943 4944 4945 4946
    ARMCPU *cpu = arm_env_get_cpu(env);

    if (mode != ARM_CPU_MODE_USR) {
        cpu_abort(CPU(cpu), "Tried to switch out of user mode\n");
    }
B
bellard 已提交
4947 4948
}

4949
void HELPER(set_r13_banked)(CPUARMState *env, uint32_t mode, uint32_t val)
P
pbrook 已提交
4950
{
4951 4952 4953
    ARMCPU *cpu = arm_env_get_cpu(env);

    cpu_abort(CPU(cpu), "banked r13 write\n");
P
pbrook 已提交
4954 4955
}

4956
uint32_t HELPER(get_r13_banked)(CPUARMState *env, uint32_t mode)
P
pbrook 已提交
4957
{
4958 4959 4960
    ARMCPU *cpu = arm_env_get_cpu(env);

    cpu_abort(CPU(cpu), "banked r13 read\n");
P
pbrook 已提交
4961 4962 4963
    return 0;
}

4964 4965
uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
                                 uint32_t cur_el, bool secure)
4966 4967 4968 4969
{
    return 1;
}

4970 4971 4972 4973 4974
void aarch64_sync_64_to_32(CPUARMState *env)
{
    g_assert_not_reached();
}

B
bellard 已提交
4975 4976 4977
#else

/* Map CPU modes onto saved register banks.  */
4978
int bank_number(int mode)
B
bellard 已提交
4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993
{
    switch (mode) {
    case ARM_CPU_MODE_USR:
    case ARM_CPU_MODE_SYS:
        return 0;
    case ARM_CPU_MODE_SVC:
        return 1;
    case ARM_CPU_MODE_ABT:
        return 2;
    case ARM_CPU_MODE_UND:
        return 3;
    case ARM_CPU_MODE_IRQ:
        return 4;
    case ARM_CPU_MODE_FIQ:
        return 5;
4994 4995 4996 4997
    case ARM_CPU_MODE_HYP:
        return 6;
    case ARM_CPU_MODE_MON:
        return 7;
B
bellard 已提交
4998
    }
4999
    g_assert_not_reached();
B
bellard 已提交
5000 5001
}

5002
void switch_mode(CPUARMState *env, int mode)
B
bellard 已提交
5003 5004 5005 5006 5007 5008 5009 5010 5011 5012
{
    int old_mode;
    int i;

    old_mode = env->uncached_cpsr & CPSR_M;
    if (mode == old_mode)
        return;

    if (old_mode == ARM_CPU_MODE_FIQ) {
        memcpy (env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t));
P
pbrook 已提交
5013
        memcpy (env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t));
B
bellard 已提交
5014 5015
    } else if (mode == ARM_CPU_MODE_FIQ) {
        memcpy (env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t));
P
pbrook 已提交
5016
        memcpy (env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t));
B
bellard 已提交
5017 5018
    }

5019
    i = bank_number(old_mode);
B
bellard 已提交
5020 5021 5022 5023
    env->banked_r13[i] = env->regs[13];
    env->banked_r14[i] = env->regs[14];
    env->banked_spsr[i] = env->spsr;

5024
    i = bank_number(mode);
B
bellard 已提交
5025 5026 5027 5028 5029
    env->regs[13] = env->banked_r13[i];
    env->regs[14] = env->banked_r14[i];
    env->spsr = env->banked_spsr[i];
}

5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088
/* Physical Interrupt Target EL Lookup Table
 *
 * [ From ARM ARM section G1.13.4 (Table G1-15) ]
 *
 * The below multi-dimensional table is used for looking up the target
 * exception level given numerous condition criteria.  Specifically, the
 * target EL is based on SCR and HCR routing controls as well as the
 * currently executing EL and secure state.
 *
 *    Dimensions:
 *    target_el_table[2][2][2][2][2][4]
 *                    |  |  |  |  |  +--- Current EL
 *                    |  |  |  |  +------ Non-secure(0)/Secure(1)
 *                    |  |  |  +--------- HCR mask override
 *                    |  |  +------------ SCR exec state control
 *                    |  +--------------- SCR mask override
 *                    +------------------ 32-bit(0)/64-bit(1) EL3
 *
 *    The table values are as such:
 *    0-3 = EL0-EL3
 *     -1 = Cannot occur
 *
 * The ARM ARM target EL table includes entries indicating that an "exception
 * is not taken".  The two cases where this is applicable are:
 *    1) An exception is taken from EL3 but the SCR does not have the exception
 *    routed to EL3.
 *    2) An exception is taken from EL2 but the HCR does not have the exception
 *    routed to EL2.
 * In these two cases, the below table contain a target of EL1.  This value is
 * returned as it is expected that the consumer of the table data will check
 * for "target EL >= current EL" to ensure the exception is not taken.
 *
 *            SCR     HCR
 *         64  EA     AMO                 From
 *        BIT IRQ     IMO      Non-secure         Secure
 *        EL3 FIQ  RW FMO   EL0 EL1 EL2 EL3   EL0 EL1 EL2 EL3
 */
const int8_t target_el_table[2][2][2][2][2][4] = {
    {{{{/* 0   0   0   0 */{ 1,  1,  2, -1 },{ 3, -1, -1,  3 },},
       {/* 0   0   0   1 */{ 2,  2,  2, -1 },{ 3, -1, -1,  3 },},},
      {{/* 0   0   1   0 */{ 1,  1,  2, -1 },{ 3, -1, -1,  3 },},
       {/* 0   0   1   1 */{ 2,  2,  2, -1 },{ 3, -1, -1,  3 },},},},
     {{{/* 0   1   0   0 */{ 3,  3,  3, -1 },{ 3, -1, -1,  3 },},
       {/* 0   1   0   1 */{ 3,  3,  3, -1 },{ 3, -1, -1,  3 },},},
      {{/* 0   1   1   0 */{ 3,  3,  3, -1 },{ 3, -1, -1,  3 },},
       {/* 0   1   1   1 */{ 3,  3,  3, -1 },{ 3, -1, -1,  3 },},},},},
    {{{{/* 1   0   0   0 */{ 1,  1,  2, -1 },{ 1,  1, -1,  1 },},
       {/* 1   0   0   1 */{ 2,  2,  2, -1 },{ 1,  1, -1,  1 },},},
      {{/* 1   0   1   0 */{ 1,  1,  1, -1 },{ 1,  1, -1,  1 },},
       {/* 1   0   1   1 */{ 2,  2,  2, -1 },{ 1,  1, -1,  1 },},},},
     {{{/* 1   1   0   0 */{ 3,  3,  3, -1 },{ 3,  3, -1,  3 },},
       {/* 1   1   0   1 */{ 3,  3,  3, -1 },{ 3,  3, -1,  3 },},},
      {{/* 1   1   1   0 */{ 3,  3,  3, -1 },{ 3,  3, -1,  3 },},
       {/* 1   1   1   1 */{ 3,  3,  3, -1 },{ 3,  3, -1,  3 },},},},},
};

/*
 * Determine the target EL for physical exceptions
 */
5089 5090
uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
                                 uint32_t cur_el, bool secure)
5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124
{
    CPUARMState *env = cs->env_ptr;
    int rw = ((env->cp15.scr_el3 & SCR_RW) == SCR_RW);
    int scr;
    int hcr;
    int target_el;
    int is64 = arm_el_is_aa64(env, 3);

    switch (excp_idx) {
    case EXCP_IRQ:
        scr = ((env->cp15.scr_el3 & SCR_IRQ) == SCR_IRQ);
        hcr = ((env->cp15.hcr_el2 & HCR_IMO) == HCR_IMO);
        break;
    case EXCP_FIQ:
        scr = ((env->cp15.scr_el3 & SCR_FIQ) == SCR_FIQ);
        hcr = ((env->cp15.hcr_el2 & HCR_FMO) == HCR_FMO);
        break;
    default:
        scr = ((env->cp15.scr_el3 & SCR_EA) == SCR_EA);
        hcr = ((env->cp15.hcr_el2 & HCR_AMO) == HCR_AMO);
        break;
    };

    /* If HCR.TGE is set then HCR is treated as being 1 */
    hcr |= ((env->cp15.hcr_el2 & HCR_TGE) == HCR_TGE);

    /* Perform a table-lookup for the target EL given the current state */
    target_el = target_el_table[is64][scr][rw][hcr][secure][cur_el];

    assert(target_el > 0);

    return target_el;
}

P
pbrook 已提交
5125 5126
static void v7m_push(CPUARMState *env, uint32_t val)
{
5127 5128
    CPUState *cs = CPU(arm_env_get_cpu(env));

P
pbrook 已提交
5129
    env->regs[13] -= 4;
5130
    stl_phys(cs->as, env->regs[13], val);
P
pbrook 已提交
5131 5132 5133 5134
}

static uint32_t v7m_pop(CPUARMState *env)
{
5135
    CPUState *cs = CPU(arm_env_get_cpu(env));
P
pbrook 已提交
5136
    uint32_t val;
5137

5138
    val = ldl_phys(cs->as, env->regs[13]);
P
pbrook 已提交
5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161
    env->regs[13] += 4;
    return val;
}

/* Switch to V7M main or process stack pointer.  */
static void switch_v7m_sp(CPUARMState *env, int process)
{
    uint32_t tmp;
    if (env->v7m.current_sp != process) {
        tmp = env->v7m.other_sp;
        env->v7m.other_sp = env->regs[13];
        env->regs[13] = tmp;
        env->v7m.current_sp = process;
    }
}

static void do_v7m_exception_exit(CPUARMState *env)
{
    uint32_t type;
    uint32_t xpsr;

    type = env->regs[15];
    if (env->v7m.exception != 0)
P
Paul Brook 已提交
5162
        armv7m_nvic_complete_irq(env->nvic, env->v7m.exception);
P
pbrook 已提交
5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173

    /* Switch to the target stack.  */
    switch_v7m_sp(env, (type & 4) != 0);
    /* Pop registers.  */
    env->regs[0] = v7m_pop(env);
    env->regs[1] = v7m_pop(env);
    env->regs[2] = v7m_pop(env);
    env->regs[3] = v7m_pop(env);
    env->regs[12] = v7m_pop(env);
    env->regs[14] = v7m_pop(env);
    env->regs[15] = v7m_pop(env);
5174 5175 5176 5177 5178 5179 5180 5181 5182 5183
    if (env->regs[15] & 1) {
        qemu_log_mask(LOG_GUEST_ERROR,
                      "M profile return from interrupt with misaligned "
                      "PC is UNPREDICTABLE\n");
        /* Actual hardware seems to ignore the lsbit, and there are several
         * RTOSes out there which incorrectly assume the r15 in the stack
         * frame should be a Thumb-style "lsbit indicates ARM/Thumb" value.
         */
        env->regs[15] &= ~1U;
    }
P
pbrook 已提交
5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195
    xpsr = v7m_pop(env);
    xpsr_write(env, xpsr, 0xfffffdff);
    /* Undo stack alignment.  */
    if (xpsr & 0x200)
        env->regs[13] |= 4;
    /* ??? The exception return type specifies Thread/Handler mode.  However
       this is also implied by the xPSR value. Not sure what to do
       if there is a mismatch.  */
    /* ??? Likewise for mismatches between the CONTROL register and the stack
       pointer.  */
}

5196
void arm_v7m_cpu_do_interrupt(CPUState *cs)
P
pbrook 已提交
5197
{
5198 5199
    ARMCPU *cpu = ARM_CPU(cs);
    CPUARMState *env = &cpu->env;
P
pbrook 已提交
5200 5201 5202 5203
    uint32_t xpsr = xpsr_read(env);
    uint32_t lr;
    uint32_t addr;

5204
    arm_log_exception(cs->exception_index);
5205

P
pbrook 已提交
5206 5207 5208 5209 5210 5211 5212 5213 5214 5215
    lr = 0xfffffff1;
    if (env->v7m.current_sp)
        lr |= 4;
    if (env->v7m.exception == 0)
        lr |= 8;

    /* For exceptions we just mark as pending on the NVIC, and let that
       handle it.  */
    /* TODO: Need to escalate if the current priority is higher than the
       one we're raising.  */
5216
    switch (cs->exception_index) {
P
pbrook 已提交
5217
    case EXCP_UDEF:
P
Paul Brook 已提交
5218
        armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE);
P
pbrook 已提交
5219 5220
        return;
    case EXCP_SWI:
5221
        /* The PC already points to the next instruction.  */
P
Paul Brook 已提交
5222
        armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SVC);
P
pbrook 已提交
5223 5224 5225
        return;
    case EXCP_PREFETCH_ABORT:
    case EXCP_DATA_ABORT:
5226 5227 5228
        /* TODO: if we implemented the MPU registers, this is where we
         * should set the MMFAR, etc from exception.fsr and exception.vaddress.
         */
P
Paul Brook 已提交
5229
        armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_MEM);
P
pbrook 已提交
5230 5231
        return;
    case EXCP_BKPT:
5232
        if (semihosting_enabled()) {
P
pbrook 已提交
5233
            int nr;
5234
            nr = arm_lduw_code(env, env->regs[15], env->bswap_code) & 0xff;
P
pbrook 已提交
5235 5236
            if (nr == 0xab) {
                env->regs[15] += 2;
5237 5238 5239
                qemu_log_mask(CPU_LOG_INT,
                              "...handling as semihosting call 0x%x\n",
                              env->regs[0]);
P
pbrook 已提交
5240 5241 5242 5243
                env->regs[0] = do_arm_semihosting(env);
                return;
            }
        }
P
Paul Brook 已提交
5244
        armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_DEBUG);
P
pbrook 已提交
5245 5246
        return;
    case EXCP_IRQ:
P
Paul Brook 已提交
5247
        env->v7m.exception = armv7m_nvic_acknowledge_irq(env->nvic);
P
pbrook 已提交
5248 5249 5250 5251 5252
        break;
    case EXCP_EXCEPTION_EXIT:
        do_v7m_exception_exit(env);
        return;
    default:
5253
        cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
P
pbrook 已提交
5254 5255 5256 5257 5258 5259 5260
        return; /* Never happens.  Keep compiler happy.  */
    }

    /* Align stack pointer.  */
    /* ??? Should only do this if Configuration Control Register
       STACKALIGN bit is set.  */
    if (env->regs[13] & 4) {
P
pbrook 已提交
5261
        env->regs[13] -= 4;
P
pbrook 已提交
5262 5263
        xpsr |= 0x200;
    }
B
balrog 已提交
5264
    /* Switch to the handler mode.  */
P
pbrook 已提交
5265 5266 5267 5268 5269 5270 5271 5272 5273
    v7m_push(env, xpsr);
    v7m_push(env, env->regs[15]);
    v7m_push(env, env->regs[14]);
    v7m_push(env, env->regs[12]);
    v7m_push(env, env->regs[3]);
    v7m_push(env, env->regs[2]);
    v7m_push(env, env->regs[1]);
    v7m_push(env, env->regs[0]);
    switch_v7m_sp(env, 0);
5274 5275
    /* Clear IT bits */
    env->condexec_bits = 0;
P
pbrook 已提交
5276
    env->regs[14] = lr;
5277
    addr = ldl_phys(cs->as, env->v7m.vecbase + env->v7m.exception * 4);
P
pbrook 已提交
5278 5279 5280 5281
    env->regs[15] = addr & 0xfffffffe;
    env->thumb = addr & 1;
}

5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332
/* Function used to synchronize QEMU's AArch64 register set with AArch32
 * register set.  This is necessary when switching between AArch32 and AArch64
 * execution state.
 */
void aarch64_sync_32_to_64(CPUARMState *env)
{
    int i;
    uint32_t mode = env->uncached_cpsr & CPSR_M;

    /* We can blanket copy R[0:7] to X[0:7] */
    for (i = 0; i < 8; i++) {
        env->xregs[i] = env->regs[i];
    }

    /* Unless we are in FIQ mode, x8-x12 come from the user registers r8-r12.
     * Otherwise, they come from the banked user regs.
     */
    if (mode == ARM_CPU_MODE_FIQ) {
        for (i = 8; i < 13; i++) {
            env->xregs[i] = env->usr_regs[i - 8];
        }
    } else {
        for (i = 8; i < 13; i++) {
            env->xregs[i] = env->regs[i];
        }
    }

    /* Registers x13-x23 are the various mode SP and FP registers. Registers
     * r13 and r14 are only copied if we are in that mode, otherwise we copy
     * from the mode banked register.
     */
    if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) {
        env->xregs[13] = env->regs[13];
        env->xregs[14] = env->regs[14];
    } else {
        env->xregs[13] = env->banked_r13[bank_number(ARM_CPU_MODE_USR)];
        /* HYP is an exception in that it is copied from r14 */
        if (mode == ARM_CPU_MODE_HYP) {
            env->xregs[14] = env->regs[14];
        } else {
            env->xregs[14] = env->banked_r14[bank_number(ARM_CPU_MODE_USR)];
        }
    }

    if (mode == ARM_CPU_MODE_HYP) {
        env->xregs[15] = env->regs[13];
    } else {
        env->xregs[15] = env->banked_r13[bank_number(ARM_CPU_MODE_HYP)];
    }

    if (mode == ARM_CPU_MODE_IRQ) {
5333 5334
        env->xregs[16] = env->regs[14];
        env->xregs[17] = env->regs[13];
5335
    } else {
5336 5337
        env->xregs[16] = env->banked_r14[bank_number(ARM_CPU_MODE_IRQ)];
        env->xregs[17] = env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)];
5338 5339 5340
    }

    if (mode == ARM_CPU_MODE_SVC) {
5341 5342
        env->xregs[18] = env->regs[14];
        env->xregs[19] = env->regs[13];
5343
    } else {
5344 5345
        env->xregs[18] = env->banked_r14[bank_number(ARM_CPU_MODE_SVC)];
        env->xregs[19] = env->banked_r13[bank_number(ARM_CPU_MODE_SVC)];
5346 5347 5348
    }

    if (mode == ARM_CPU_MODE_ABT) {
5349 5350
        env->xregs[20] = env->regs[14];
        env->xregs[21] = env->regs[13];
5351
    } else {
5352 5353
        env->xregs[20] = env->banked_r14[bank_number(ARM_CPU_MODE_ABT)];
        env->xregs[21] = env->banked_r13[bank_number(ARM_CPU_MODE_ABT)];
5354 5355 5356
    }

    if (mode == ARM_CPU_MODE_UND) {
5357 5358
        env->xregs[22] = env->regs[14];
        env->xregs[23] = env->regs[13];
5359
    } else {
5360 5361
        env->xregs[22] = env->banked_r14[bank_number(ARM_CPU_MODE_UND)];
        env->xregs[23] = env->banked_r13[bank_number(ARM_CPU_MODE_UND)];
5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437
    }

    /* Registers x24-x30 are mapped to r8-r14 in FIQ mode.  If we are in FIQ
     * mode, then we can copy from r8-r14.  Otherwise, we copy from the
     * FIQ bank for r8-r14.
     */
    if (mode == ARM_CPU_MODE_FIQ) {
        for (i = 24; i < 31; i++) {
            env->xregs[i] = env->regs[i - 16];   /* X[24:30] <- R[8:14] */
        }
    } else {
        for (i = 24; i < 29; i++) {
            env->xregs[i] = env->fiq_regs[i - 24];
        }
        env->xregs[29] = env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)];
        env->xregs[30] = env->banked_r14[bank_number(ARM_CPU_MODE_FIQ)];
    }

    env->pc = env->regs[15];
}

/* Function used to synchronize QEMU's AArch32 register set with AArch64
 * register set.  This is necessary when switching between AArch32 and AArch64
 * execution state.
 */
void aarch64_sync_64_to_32(CPUARMState *env)
{
    int i;
    uint32_t mode = env->uncached_cpsr & CPSR_M;

    /* We can blanket copy X[0:7] to R[0:7] */
    for (i = 0; i < 8; i++) {
        env->regs[i] = env->xregs[i];
    }

    /* Unless we are in FIQ mode, r8-r12 come from the user registers x8-x12.
     * Otherwise, we copy x8-x12 into the banked user regs.
     */
    if (mode == ARM_CPU_MODE_FIQ) {
        for (i = 8; i < 13; i++) {
            env->usr_regs[i - 8] = env->xregs[i];
        }
    } else {
        for (i = 8; i < 13; i++) {
            env->regs[i] = env->xregs[i];
        }
    }

    /* Registers r13 & r14 depend on the current mode.
     * If we are in a given mode, we copy the corresponding x registers to r13
     * and r14.  Otherwise, we copy the x register to the banked r13 and r14
     * for the mode.
     */
    if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) {
        env->regs[13] = env->xregs[13];
        env->regs[14] = env->xregs[14];
    } else {
        env->banked_r13[bank_number(ARM_CPU_MODE_USR)] = env->xregs[13];

        /* HYP is an exception in that it does not have its own banked r14 but
         * shares the USR r14
         */
        if (mode == ARM_CPU_MODE_HYP) {
            env->regs[14] = env->xregs[14];
        } else {
            env->banked_r14[bank_number(ARM_CPU_MODE_USR)] = env->xregs[14];
        }
    }

    if (mode == ARM_CPU_MODE_HYP) {
        env->regs[13] = env->xregs[15];
    } else {
        env->banked_r13[bank_number(ARM_CPU_MODE_HYP)] = env->xregs[15];
    }

    if (mode == ARM_CPU_MODE_IRQ) {
5438 5439
        env->regs[14] = env->xregs[16];
        env->regs[13] = env->xregs[17];
5440
    } else {
5441 5442
        env->banked_r14[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[16];
        env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[17];
5443 5444 5445
    }

    if (mode == ARM_CPU_MODE_SVC) {
5446 5447
        env->regs[14] = env->xregs[18];
        env->regs[13] = env->xregs[19];
5448
    } else {
5449 5450
        env->banked_r14[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[18];
        env->banked_r13[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[19];
5451 5452 5453
    }

    if (mode == ARM_CPU_MODE_ABT) {
5454 5455
        env->regs[14] = env->xregs[20];
        env->regs[13] = env->xregs[21];
5456
    } else {
5457 5458
        env->banked_r14[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[20];
        env->banked_r13[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[21];
5459 5460 5461
    }

    if (mode == ARM_CPU_MODE_UND) {
5462 5463
        env->regs[14] = env->xregs[22];
        env->regs[13] = env->xregs[23];
5464
    } else {
5465 5466
        env->banked_r14[bank_number(ARM_CPU_MODE_UND)] = env->xregs[22];
        env->banked_r13[bank_number(ARM_CPU_MODE_UND)] = env->xregs[23];
5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487
    }

    /* Registers x24-x30 are mapped to r8-r14 in FIQ mode.  If we are in FIQ
     * mode, then we can copy to r8-r14.  Otherwise, we copy to the
     * FIQ bank for r8-r14.
     */
    if (mode == ARM_CPU_MODE_FIQ) {
        for (i = 24; i < 31; i++) {
            env->regs[i - 16] = env->xregs[i];   /* X[24:30] -> R[8:14] */
        }
    } else {
        for (i = 24; i < 29; i++) {
            env->fiq_regs[i - 24] = env->xregs[i];
        }
        env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[29];
        env->banked_r14[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[30];
    }

    env->regs[15] = env->pc;
}

B
bellard 已提交
5488
/* Handle a CPU exception.  */
5489
void arm_cpu_do_interrupt(CPUState *cs)
B
bellard 已提交
5490
{
5491 5492
    ARMCPU *cpu = ARM_CPU(cs);
    CPUARMState *env = &cpu->env;
B
bellard 已提交
5493 5494 5495 5496
    uint32_t addr;
    uint32_t mask;
    int new_mode;
    uint32_t offset;
5497
    uint32_t moe;
B
bellard 已提交
5498

5499 5500
    assert(!IS_M(env));

5501
    arm_log_exception(cs->exception_index);
5502

5503 5504 5505 5506 5507 5508
    if (arm_is_psci_call(cpu, cs->exception_index)) {
        arm_handle_psci_call(cpu);
        qemu_log_mask(CPU_LOG_INT, "...handled as PSCI call\n");
        return;
    }

5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533
    /* If this is a debug exception we must update the DBGDSCR.MOE bits */
    switch (env->exception.syndrome >> ARM_EL_EC_SHIFT) {
    case EC_BREAKPOINT:
    case EC_BREAKPOINT_SAME_EL:
        moe = 1;
        break;
    case EC_WATCHPOINT:
    case EC_WATCHPOINT_SAME_EL:
        moe = 10;
        break;
    case EC_AA32_BKPT:
        moe = 3;
        break;
    case EC_VECTORCATCH:
        moe = 5;
        break;
    default:
        moe = 0;
        break;
    }

    if (moe) {
        env->cp15.mdscr_el1 = deposit64(env->cp15.mdscr_el1, 2, 4, moe);
    }

B
bellard 已提交
5534
    /* TODO: Vectored interrupt controller.  */
5535
    switch (cs->exception_index) {
B
bellard 已提交
5536 5537 5538 5539 5540 5541 5542 5543 5544 5545
    case EXCP_UDEF:
        new_mode = ARM_CPU_MODE_UND;
        addr = 0x04;
        mask = CPSR_I;
        if (env->thumb)
            offset = 2;
        else
            offset = 4;
        break;
    case EXCP_SWI:
5546
        if (semihosting_enabled()) {
5547 5548
            /* Check for semihosting interrupt.  */
            if (env->thumb) {
5549 5550
                mask = arm_lduw_code(env, env->regs[15] - 2, env->bswap_code)
                    & 0xff;
5551
            } else {
5552
                mask = arm_ldl_code(env, env->regs[15] - 4, env->bswap_code)
P
Paul Brook 已提交
5553
                    & 0xffffff;
5554 5555 5556 5557 5558 5559
            }
            /* Only intercept calls from privileged modes, to provide some
               semblance of security.  */
            if (((mask == 0x123456 && !env->thumb)
                    || (mask == 0xab && env->thumb))
                  && (env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR) {
5560 5561 5562
                qemu_log_mask(CPU_LOG_INT,
                              "...handling as semihosting call 0x%x\n",
                              env->regs[0]);
5563 5564 5565 5566
                env->regs[0] = do_arm_semihosting(env);
                return;
            }
        }
B
bellard 已提交
5567 5568 5569
        new_mode = ARM_CPU_MODE_SVC;
        addr = 0x08;
        mask = CPSR_I;
5570
        /* The PC already points to the next instruction.  */
B
bellard 已提交
5571 5572
        offset = 0;
        break;
P
pbrook 已提交
5573
    case EXCP_BKPT:
P
pbrook 已提交
5574
        /* See if this is a semihosting syscall.  */
5575
        if (env->thumb && semihosting_enabled()) {
5576
            mask = arm_lduw_code(env, env->regs[15], env->bswap_code) & 0xff;
P
pbrook 已提交
5577 5578 5579
            if (mask == 0xab
                  && (env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR) {
                env->regs[15] += 2;
5580 5581 5582
                qemu_log_mask(CPU_LOG_INT,
                              "...handling as semihosting call 0x%x\n",
                              env->regs[0]);
P
pbrook 已提交
5583 5584 5585 5586
                env->regs[0] = do_arm_semihosting(env);
                return;
            }
        }
5587
        env->exception.fsr = 2;
P
pbrook 已提交
5588 5589
        /* Fall through to prefetch abort.  */
    case EXCP_PREFETCH_ABORT:
F
Fabian Aggeler 已提交
5590
        A32_BANKED_CURRENT_REG_SET(env, ifsr, env->exception.fsr);
F
Fabian Aggeler 已提交
5591
        A32_BANKED_CURRENT_REG_SET(env, ifar, env->exception.vaddress);
5592
        qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x IFAR 0x%x\n",
F
Fabian Aggeler 已提交
5593
                      env->exception.fsr, (uint32_t)env->exception.vaddress);
B
bellard 已提交
5594 5595 5596 5597 5598 5599
        new_mode = ARM_CPU_MODE_ABT;
        addr = 0x0c;
        mask = CPSR_A | CPSR_I;
        offset = 4;
        break;
    case EXCP_DATA_ABORT:
F
Fabian Aggeler 已提交
5600
        A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr);
F
Fabian Aggeler 已提交
5601
        A32_BANKED_CURRENT_REG_SET(env, dfar, env->exception.vaddress);
5602
        qemu_log_mask(CPU_LOG_INT, "...with DFSR 0x%x DFAR 0x%x\n",
F
Fabian Aggeler 已提交
5603
                      env->exception.fsr,
5604
                      (uint32_t)env->exception.vaddress);
B
bellard 已提交
5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615
        new_mode = ARM_CPU_MODE_ABT;
        addr = 0x10;
        mask = CPSR_A | CPSR_I;
        offset = 8;
        break;
    case EXCP_IRQ:
        new_mode = ARM_CPU_MODE_IRQ;
        addr = 0x18;
        /* Disable IRQ and imprecise data aborts.  */
        mask = CPSR_A | CPSR_I;
        offset = 4;
5616 5617 5618 5619 5620
        if (env->cp15.scr_el3 & SCR_IRQ) {
            /* IRQ routed to monitor mode */
            new_mode = ARM_CPU_MODE_MON;
            mask |= CPSR_F;
        }
B
bellard 已提交
5621 5622 5623 5624 5625 5626
        break;
    case EXCP_FIQ:
        new_mode = ARM_CPU_MODE_FIQ;
        addr = 0x1c;
        /* Disable FIQ, IRQ and imprecise data aborts.  */
        mask = CPSR_A | CPSR_I | CPSR_F;
5627 5628 5629 5630
        if (env->cp15.scr_el3 & SCR_FIQ) {
            /* FIQ routed to monitor mode */
            new_mode = ARM_CPU_MODE_MON;
        }
B
bellard 已提交
5631 5632
        offset = 4;
        break;
5633 5634 5635 5636 5637 5638
    case EXCP_SMC:
        new_mode = ARM_CPU_MODE_MON;
        addr = 0x08;
        mask = CPSR_A | CPSR_I | CPSR_F;
        offset = 0;
        break;
B
bellard 已提交
5639
    default:
5640
        cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
B
bellard 已提交
5641 5642
        return; /* Never happens.  Keep compiler happy.  */
    }
F
Fabian Aggeler 已提交
5643 5644 5645

    if (new_mode == ARM_CPU_MODE_MON) {
        addr += env->cp15.mvbar;
5646
    } else if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) {
F
Fabian Aggeler 已提交
5647
        /* High vectors. When enabled, base address cannot be remapped. */
B
bellard 已提交
5648
        addr += 0xffff0000;
N
Nathan Rossi 已提交
5649 5650 5651
    } else {
        /* ARM v7 architectures provide a vector base address register to remap
         * the interrupt vector table.
F
Fabian Aggeler 已提交
5652
         * This register is only followed in non-monitor mode, and is banked.
N
Nathan Rossi 已提交
5653 5654
         * Note: only bits 31:5 are valid.
         */
G
Greg Bellows 已提交
5655
        addr += A32_BANKED_CURRENT_REG_GET(env, vbar);
B
bellard 已提交
5656
    }
5657 5658 5659 5660 5661

    if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
        env->cp15.scr_el3 &= ~SCR_NS;
    }

B
bellard 已提交
5662
    switch_mode (env, new_mode);
5663 5664 5665 5666
    /* For exceptions taken to AArch32 we must clear the SS bit in both
     * PSTATE and in the old-state value we save to SPSR_<mode>, so zero it now.
     */
    env->uncached_cpsr &= ~PSTATE_SS;
B
bellard 已提交
5667
    env->spsr = cpsr_read(env);
P
pbrook 已提交
5668 5669
    /* Clear IT bits.  */
    env->condexec_bits = 0;
5670
    /* Switch to the new mode, and to the correct instruction set.  */
5671
    env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode;
5672
    env->daif |= mask;
5673 5674 5675
    /* this is a lie, as the was no c1_sys on V4T/V5, but who cares
     * and we should just guard the thumb mode on V4 */
    if (arm_feature(env, ARM_FEATURE_V4T)) {
5676
        env->thumb = (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_TE) != 0;
5677
    }
B
bellard 已提交
5678 5679
    env->regs[14] = env->regs[15] + offset;
    env->regs[15] = addr;
5680
    cs->interrupt_request |= CPU_INTERRUPT_EXITTB;
B
bellard 已提交
5681 5682
}

5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703

/* Return the exception level which controls this address translation regime */
static inline uint32_t regime_el(CPUARMState *env, ARMMMUIdx mmu_idx)
{
    switch (mmu_idx) {
    case ARMMMUIdx_S2NS:
    case ARMMMUIdx_S1E2:
        return 2;
    case ARMMMUIdx_S1E3:
        return 3;
    case ARMMMUIdx_S1SE0:
        return arm_el_is_aa64(env, 3) ? 1 : 3;
    case ARMMMUIdx_S1SE1:
    case ARMMMUIdx_S1NSE0:
    case ARMMMUIdx_S1NSE1:
        return 1;
    default:
        g_assert_not_reached();
    }
}

5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723
/* Return true if this address translation regime is secure */
static inline bool regime_is_secure(CPUARMState *env, ARMMMUIdx mmu_idx)
{
    switch (mmu_idx) {
    case ARMMMUIdx_S12NSE0:
    case ARMMMUIdx_S12NSE1:
    case ARMMMUIdx_S1NSE0:
    case ARMMMUIdx_S1NSE1:
    case ARMMMUIdx_S1E2:
    case ARMMMUIdx_S2NS:
        return false;
    case ARMMMUIdx_S1E3:
    case ARMMMUIdx_S1SE0:
    case ARMMMUIdx_S1SE1:
        return true;
    default:
        g_assert_not_reached();
    }
}

5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749
/* Return the SCTLR value which controls this address translation regime */
static inline uint32_t regime_sctlr(CPUARMState *env, ARMMMUIdx mmu_idx)
{
    return env->cp15.sctlr_el[regime_el(env, mmu_idx)];
}

/* Return true if the specified stage of address translation is disabled */
static inline bool regime_translation_disabled(CPUARMState *env,
                                               ARMMMUIdx mmu_idx)
{
    if (mmu_idx == ARMMMUIdx_S2NS) {
        return (env->cp15.hcr_el2 & HCR_VM) == 0;
    }
    return (regime_sctlr(env, mmu_idx) & SCTLR_M) == 0;
}

/* Return the TCR controlling this translation regime */
static inline TCR *regime_tcr(CPUARMState *env, ARMMMUIdx mmu_idx)
{
    if (mmu_idx == ARMMMUIdx_S2NS) {
        /* TODO: return VTCR_EL2 */
        g_assert_not_reached();
    }
    return &env->cp15.tcr_el[regime_el(env, mmu_idx)];
}

5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764
/* Return the TTBR associated with this translation regime */
static inline uint64_t regime_ttbr(CPUARMState *env, ARMMMUIdx mmu_idx,
                                   int ttbrn)
{
    if (mmu_idx == ARMMMUIdx_S2NS) {
        /* TODO: return VTTBR_EL2 */
        g_assert_not_reached();
    }
    if (ttbrn == 0) {
        return env->cp15.ttbr0_el[regime_el(env, mmu_idx)];
    } else {
        return env->cp15.ttbr1_el[regime_el(env, mmu_idx)];
    }
}

5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793
/* Return true if the translation regime is using LPAE format page tables */
static inline bool regime_using_lpae_format(CPUARMState *env,
                                            ARMMMUIdx mmu_idx)
{
    int el = regime_el(env, mmu_idx);
    if (el == 2 || arm_el_is_aa64(env, el)) {
        return true;
    }
    if (arm_feature(env, ARM_FEATURE_LPAE)
        && (regime_tcr(env, mmu_idx)->raw_tcr & TTBCR_EAE)) {
        return true;
    }
    return false;
}

static inline bool regime_is_user(CPUARMState *env, ARMMMUIdx mmu_idx)
{
    switch (mmu_idx) {
    case ARMMMUIdx_S1SE0:
    case ARMMMUIdx_S1NSE0:
        return true;
    default:
        return false;
    case ARMMMUIdx_S12NSE0:
    case ARMMMUIdx_S12NSE1:
        g_assert_not_reached();
    }
}

5794 5795
/* Translate section/page access permissions to page
 * R/W protection flags
5796 5797 5798 5799 5800
 *
 * @env:         CPUARMState
 * @mmu_idx:     MMU index indicating required translation regime
 * @ap:          The 3-bit access permissions (AP[2:0])
 * @domain_prot: The 2-bit domain access permissions
5801 5802 5803 5804
 */
static inline int ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx,
                                int ap, int domain_prot)
{
5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826
    bool is_user = regime_is_user(env, mmu_idx);

    if (domain_prot == 3) {
        return PAGE_READ | PAGE_WRITE;
    }

    switch (ap) {
    case 0:
        if (arm_feature(env, ARM_FEATURE_V7)) {
            return 0;
        }
        switch (regime_sctlr(env, mmu_idx) & (SCTLR_S | SCTLR_R)) {
        case SCTLR_S:
            return is_user ? 0 : PAGE_READ;
        case SCTLR_R:
            return PAGE_READ;
        default:
            return 0;
        }
    case 1:
        return is_user ? 0 : PAGE_READ | PAGE_WRITE;
    case 2:
5827
        if (is_user) {
5828
            return PAGE_READ;
5829
        } else {
5830
            return PAGE_READ | PAGE_WRITE;
5831
        }
5832 5833 5834 5835 5836
    case 3:
        return PAGE_READ | PAGE_WRITE;
    case 4: /* Reserved.  */
        return 0;
    case 5:
5837
        return is_user ? 0 : PAGE_READ;
5838
    case 6:
5839
        return PAGE_READ;
5840
    case 7:
5841
        if (!arm_feature(env, ARM_FEATURE_V6K)) {
5842
            return 0;
5843
        }
5844
        return PAGE_READ;
5845
    default:
5846
        g_assert_not_reached();
5847
    }
B
bellard 已提交
5848 5849
}

5850 5851 5852 5853
/* Translate section/page access permissions to page
 * R/W protection flags.
 *
 * @ap:      The 2-bit simple AP (AP[2:1])
5854
 * @is_user: TRUE if accessing from PL0
5855
 */
5856
static inline int simple_ap_to_rw_prot_is_user(int ap, bool is_user)
5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871
{
    switch (ap) {
    case 0:
        return is_user ? 0 : PAGE_READ | PAGE_WRITE;
    case 1:
        return PAGE_READ | PAGE_WRITE;
    case 2:
        return is_user ? 0 : PAGE_READ;
    case 3:
        return PAGE_READ;
    default:
        g_assert_not_reached();
    }
}

5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958
static inline int
simple_ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, int ap)
{
    return simple_ap_to_rw_prot_is_user(ap, regime_is_user(env, mmu_idx));
}

/* Translate section/page access permissions to protection flags
 *
 * @env:     CPUARMState
 * @mmu_idx: MMU index indicating required translation regime
 * @is_aa64: TRUE if AArch64
 * @ap:      The 2-bit simple AP (AP[2:1])
 * @ns:      NS (non-secure) bit
 * @xn:      XN (execute-never) bit
 * @pxn:     PXN (privileged execute-never) bit
 */
static int get_S1prot(CPUARMState *env, ARMMMUIdx mmu_idx, bool is_aa64,
                      int ap, int ns, int xn, int pxn)
{
    bool is_user = regime_is_user(env, mmu_idx);
    int prot_rw, user_rw;
    bool have_wxn;
    int wxn = 0;

    assert(mmu_idx != ARMMMUIdx_S2NS);

    user_rw = simple_ap_to_rw_prot_is_user(ap, true);
    if (is_user) {
        prot_rw = user_rw;
    } else {
        prot_rw = simple_ap_to_rw_prot_is_user(ap, false);
    }

    if (ns && arm_is_secure(env) && (env->cp15.scr_el3 & SCR_SIF)) {
        return prot_rw;
    }

    /* TODO have_wxn should be replaced with
     *   ARM_FEATURE_V8 || (ARM_FEATURE_V7 && ARM_FEATURE_EL2)
     * when ARM_FEATURE_EL2 starts getting set. For now we assume all LPAE
     * compatible processors have EL2, which is required for [U]WXN.
     */
    have_wxn = arm_feature(env, ARM_FEATURE_LPAE);

    if (have_wxn) {
        wxn = regime_sctlr(env, mmu_idx) & SCTLR_WXN;
    }

    if (is_aa64) {
        switch (regime_el(env, mmu_idx)) {
        case 1:
            if (!is_user) {
                xn = pxn || (user_rw & PAGE_WRITE);
            }
            break;
        case 2:
        case 3:
            break;
        }
    } else if (arm_feature(env, ARM_FEATURE_V7)) {
        switch (regime_el(env, mmu_idx)) {
        case 1:
        case 3:
            if (is_user) {
                xn = xn || !(user_rw & PAGE_READ);
            } else {
                int uwxn = 0;
                if (have_wxn) {
                    uwxn = regime_sctlr(env, mmu_idx) & SCTLR_UWXN;
                }
                xn = xn || !(prot_rw & PAGE_READ) || pxn ||
                     (uwxn && (user_rw & PAGE_WRITE));
            }
            break;
        case 2:
            break;
        }
    } else {
        xn = wxn = 0;
    }

    if (xn || (wxn && (prot_rw & PAGE_WRITE))) {
        return prot_rw;
    }
    return prot_rw | PAGE_EXEC;
}

5959 5960
static bool get_level1_table_address(CPUARMState *env, ARMMMUIdx mmu_idx,
                                     uint32_t *table, uint32_t address)
5961
{
5962 5963
    /* Note that we can only get here for an AArch32 PL0/PL1 lookup */
    TCR *tcr = regime_tcr(env, mmu_idx);
F
Fabian Aggeler 已提交
5964 5965 5966

    if (address & tcr->mask) {
        if (tcr->raw_tcr & TTBCR_PD1) {
5967 5968 5969
            /* Translation table walk disabled for TTBR1 */
            return false;
        }
5970
        *table = regime_ttbr(env, mmu_idx, 1) & 0xffffc000;
5971
    } else {
F
Fabian Aggeler 已提交
5972
        if (tcr->raw_tcr & TTBCR_PD0) {
5973 5974 5975
            /* Translation table walk disabled for TTBR0 */
            return false;
        }
5976
        *table = regime_ttbr(env, mmu_idx, 0) & tcr->base_mask;
5977 5978 5979
    }
    *table |= (address >> 18) & 0x3ffc;
    return true;
5980 5981
}

5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004
/* All loads done in the course of a page table walk go through here.
 * TODO: rather than ignoring errors from physical memory reads (which
 * are external aborts in ARM terminology) we should propagate this
 * error out so that we can turn it into a Data Abort if this walk
 * was being done for a CPU load/store or an address translation instruction
 * (but not if it was for a debug access).
 */
static uint32_t arm_ldl_ptw(CPUState *cs, hwaddr addr, bool is_secure)
{
    MemTxAttrs attrs = {};

    attrs.secure = is_secure;
    return address_space_ldl(cs->as, addr, attrs, NULL);
}

static uint64_t arm_ldq_ptw(CPUState *cs, hwaddr addr, bool is_secure)
{
    MemTxAttrs attrs = {};

    attrs.secure = is_secure;
    return address_space_ldq(cs->as, addr, attrs, NULL);
}

6005 6006 6007 6008
static bool get_phys_addr_v5(CPUARMState *env, uint32_t address,
                             int access_type, ARMMMUIdx mmu_idx,
                             hwaddr *phys_ptr, int *prot,
                             target_ulong *page_size, uint32_t *fsr)
B
bellard 已提交
6009
{
6010
    CPUState *cs = CPU(arm_env_get_cpu(env));
B
bellard 已提交
6011 6012 6013 6014 6015
    int code;
    uint32_t table;
    uint32_t desc;
    int type;
    int ap;
6016
    int domain = 0;
6017
    int domain_prot;
A
Avi Kivity 已提交
6018
    hwaddr phys_addr;
6019
    uint32_t dacr;
B
bellard 已提交
6020

P
pbrook 已提交
6021 6022
    /* Pagetable walk.  */
    /* Lookup l1 descriptor.  */
6023
    if (!get_level1_table_address(env, mmu_idx, &table, address)) {
6024 6025 6026 6027
        /* Section translation fault if page walk is disabled by PD0 or PD1 */
        code = 5;
        goto do_fault;
    }
6028
    desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx));
P
pbrook 已提交
6029
    type = (desc & 3);
6030
    domain = (desc >> 5) & 0x0f;
6031 6032 6033 6034 6035 6036
    if (regime_el(env, mmu_idx) == 1) {
        dacr = env->cp15.dacr_ns;
    } else {
        dacr = env->cp15.dacr_s;
    }
    domain_prot = (dacr >> (domain * 2)) & 3;
P
pbrook 已提交
6037
    if (type == 0) {
6038
        /* Section translation fault.  */
P
pbrook 已提交
6039 6040 6041
        code = 5;
        goto do_fault;
    }
6042
    if (domain_prot == 0 || domain_prot == 2) {
P
pbrook 已提交
6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053
        if (type == 2)
            code = 9; /* Section domain fault.  */
        else
            code = 11; /* Page domain fault.  */
        goto do_fault;
    }
    if (type == 2) {
        /* 1Mb section.  */
        phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
        ap = (desc >> 10) & 3;
        code = 13;
P
Paul Brook 已提交
6054
        *page_size = 1024 * 1024;
P
pbrook 已提交
6055 6056
    } else {
        /* Lookup l2 entry.  */
6057 6058 6059 6060 6061 6062 6063
        if (type == 1) {
            /* Coarse pagetable.  */
            table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
        } else {
            /* Fine pagetable.  */
            table = (desc & 0xfffff000) | ((address >> 8) & 0xffc);
        }
6064
        desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx));
P
pbrook 已提交
6065 6066 6067 6068 6069 6070 6071
        switch (desc & 3) {
        case 0: /* Page translation fault.  */
            code = 7;
            goto do_fault;
        case 1: /* 64k page.  */
            phys_addr = (desc & 0xffff0000) | (address & 0xffff);
            ap = (desc >> (4 + ((address >> 13) & 6))) & 3;
P
Paul Brook 已提交
6072
            *page_size = 0x10000;
P
pbrook 已提交
6073
            break;
P
pbrook 已提交
6074 6075
        case 2: /* 4k page.  */
            phys_addr = (desc & 0xfffff000) | (address & 0xfff);
6076
            ap = (desc >> (4 + ((address >> 9) & 6))) & 3;
P
Paul Brook 已提交
6077
            *page_size = 0x1000;
P
pbrook 已提交
6078
            break;
6079
        case 3: /* 1k page, or ARMv6/XScale "extended small (4k) page" */
6080
            if (type == 1) {
6081 6082 6083
                /* ARMv6/XScale extended small page format */
                if (arm_feature(env, ARM_FEATURE_XSCALE)
                    || arm_feature(env, ARM_FEATURE_V6)) {
6084
                    phys_addr = (desc & 0xfffff000) | (address & 0xfff);
6085
                    *page_size = 0x1000;
6086
                } else {
6087 6088 6089
                    /* UNPREDICTABLE in ARMv5; we choose to take a
                     * page translation fault.
                     */
6090 6091 6092 6093 6094
                    code = 7;
                    goto do_fault;
                }
            } else {
                phys_addr = (desc & 0xfffffc00) | (address & 0x3ff);
6095
                *page_size = 0x400;
6096
            }
P
pbrook 已提交
6097
            ap = (desc >> 4) & 3;
P
pbrook 已提交
6098 6099
            break;
        default:
P
pbrook 已提交
6100 6101
            /* Never happens, but compiler isn't smart enough to tell.  */
            abort();
P
pbrook 已提交
6102
        }
P
pbrook 已提交
6103 6104
        code = 15;
    }
6105 6106 6107
    *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot);
    *prot |= *prot ? PAGE_EXEC : 0;
    if (!(*prot & (1 << access_type))) {
P
pbrook 已提交
6108 6109 6110 6111
        /* Access permission fault.  */
        goto do_fault;
    }
    *phys_ptr = phys_addr;
6112
    return false;
P
pbrook 已提交
6113
do_fault:
6114 6115
    *fsr = code | (domain << 4);
    return true;
P
pbrook 已提交
6116 6117
}

6118 6119 6120 6121
static bool get_phys_addr_v6(CPUARMState *env, uint32_t address,
                             int access_type, ARMMMUIdx mmu_idx,
                             hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
                             target_ulong *page_size, uint32_t *fsr)
P
pbrook 已提交
6122
{
6123
    CPUState *cs = CPU(arm_env_get_cpu(env));
P
pbrook 已提交
6124 6125 6126 6127
    int code;
    uint32_t table;
    uint32_t desc;
    uint32_t xn;
6128
    uint32_t pxn = 0;
P
pbrook 已提交
6129 6130
    int type;
    int ap;
6131
    int domain = 0;
6132
    int domain_prot;
A
Avi Kivity 已提交
6133
    hwaddr phys_addr;
6134
    uint32_t dacr;
6135
    bool ns;
P
pbrook 已提交
6136 6137 6138

    /* Pagetable walk.  */
    /* Lookup l1 descriptor.  */
6139
    if (!get_level1_table_address(env, mmu_idx, &table, address)) {
6140 6141 6142 6143
        /* Section translation fault if page walk is disabled by PD0 or PD1 */
        code = 5;
        goto do_fault;
    }
6144
    desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx));
P
pbrook 已提交
6145
    type = (desc & 3);
6146 6147 6148 6149
    if (type == 0 || (type == 3 && !arm_feature(env, ARM_FEATURE_PXN))) {
        /* Section translation fault, or attempt to use the encoding
         * which is Reserved on implementations without PXN.
         */
P
pbrook 已提交
6150 6151
        code = 5;
        goto do_fault;
6152 6153 6154
    }
    if ((type == 1) || !(desc & (1 << 18))) {
        /* Page or Section.  */
6155
        domain = (desc >> 5) & 0x0f;
P
pbrook 已提交
6156
    }
6157 6158 6159 6160 6161 6162
    if (regime_el(env, mmu_idx) == 1) {
        dacr = env->cp15.dacr_ns;
    } else {
        dacr = env->cp15.dacr_s;
    }
    domain_prot = (dacr >> (domain * 2)) & 3;
6163
    if (domain_prot == 0 || domain_prot == 2) {
6164
        if (type != 1) {
P
pbrook 已提交
6165
            code = 9; /* Section domain fault.  */
6166
        } else {
P
pbrook 已提交
6167
            code = 11; /* Page domain fault.  */
6168
        }
P
pbrook 已提交
6169 6170
        goto do_fault;
    }
6171
    if (type != 1) {
P
pbrook 已提交
6172 6173 6174
        if (desc & (1 << 18)) {
            /* Supersection.  */
            phys_addr = (desc & 0xff000000) | (address & 0x00ffffff);
6175 6176
            phys_addr |= (uint64_t)extract32(desc, 20, 4) << 32;
            phys_addr |= (uint64_t)extract32(desc, 5, 4) << 36;
P
Paul Brook 已提交
6177
            *page_size = 0x1000000;
B
bellard 已提交
6178
        } else {
P
pbrook 已提交
6179 6180
            /* Section.  */
            phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
P
Paul Brook 已提交
6181
            *page_size = 0x100000;
B
bellard 已提交
6182
        }
P
pbrook 已提交
6183 6184
        ap = ((desc >> 10) & 3) | ((desc >> 13) & 4);
        xn = desc & (1 << 4);
6185
        pxn = desc & 1;
P
pbrook 已提交
6186
        code = 13;
6187
        ns = extract32(desc, 19, 1);
P
pbrook 已提交
6188
    } else {
6189 6190 6191
        if (arm_feature(env, ARM_FEATURE_PXN)) {
            pxn = (desc >> 2) & 1;
        }
6192
        ns = extract32(desc, 3, 1);
P
pbrook 已提交
6193 6194
        /* Lookup l2 entry.  */
        table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
6195
        desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx));
P
pbrook 已提交
6196 6197 6198 6199
        ap = ((desc >> 4) & 3) | ((desc >> 7) & 4);
        switch (desc & 3) {
        case 0: /* Page translation fault.  */
            code = 7;
B
bellard 已提交
6200
            goto do_fault;
P
pbrook 已提交
6201 6202 6203
        case 1: /* 64k page.  */
            phys_addr = (desc & 0xffff0000) | (address & 0xffff);
            xn = desc & (1 << 15);
P
Paul Brook 已提交
6204
            *page_size = 0x10000;
P
pbrook 已提交
6205 6206 6207 6208
            break;
        case 2: case 3: /* 4k page.  */
            phys_addr = (desc & 0xfffff000) | (address & 0xfff);
            xn = desc & 1;
P
Paul Brook 已提交
6209
            *page_size = 0x1000;
P
pbrook 已提交
6210 6211 6212 6213
            break;
        default:
            /* Never happens, but compiler isn't smart enough to tell.  */
            abort();
B
bellard 已提交
6214
        }
P
pbrook 已提交
6215 6216
        code = 15;
    }
6217
    if (domain_prot == 3) {
6218 6219
        *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
    } else {
6220
        if (pxn && !regime_is_user(env, mmu_idx)) {
6221 6222
            xn = 1;
        }
6223 6224
        if (xn && access_type == 2)
            goto do_fault;
P
pbrook 已提交
6225

6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236
        if (arm_feature(env, ARM_FEATURE_V6K) &&
                (regime_sctlr(env, mmu_idx) & SCTLR_AFE)) {
            /* The simplified model uses AP[0] as an access control bit.  */
            if ((ap & 1) == 0) {
                /* Access flag fault.  */
                code = (code == 15) ? 6 : 3;
                goto do_fault;
            }
            *prot = simple_ap_to_rw_prot(env, mmu_idx, ap >> 1);
        } else {
            *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot);
6237
        }
6238 6239 6240 6241
        if (*prot && !xn) {
            *prot |= PAGE_EXEC;
        }
        if (!(*prot & (1 << access_type))) {
6242 6243 6244
            /* Access permission fault.  */
            goto do_fault;
        }
6245
    }
6246 6247 6248 6249 6250 6251 6252
    if (ns) {
        /* The NS bit will (as required by the architecture) have no effect if
         * the CPU doesn't support TZ or this is a non-secure translation
         * regime, because the attribute will already be non-secure.
         */
        attrs->secure = false;
    }
P
pbrook 已提交
6253
    *phys_ptr = phys_addr;
6254
    return false;
B
bellard 已提交
6255
do_fault:
6256 6257
    *fsr = code | (domain << 4);
    return true;
B
bellard 已提交
6258 6259
}

6260 6261 6262 6263 6264 6265 6266 6267 6268
/* Fault type for long-descriptor MMU fault reporting; this corresponds
 * to bits [5..2] in the STATUS field in long-format DFSR/IFSR.
 */
typedef enum {
    translation_fault = 1,
    access_fault = 2,
    permission_fault = 3,
} MMUFaultType;

6269 6270 6271 6272
static bool get_phys_addr_lpae(CPUARMState *env, target_ulong address,
                               int access_type, ARMMMUIdx mmu_idx,
                               hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot,
                               target_ulong *page_size_ptr, uint32_t *fsr)
6273
{
6274
    CPUState *cs = CPU(arm_env_get_cpu(env));
6275 6276 6277 6278
    /* Read an LPAE long-descriptor translation table. */
    MMUFaultType fault_type = translation_fault;
    uint32_t level = 1;
    uint32_t epd;
6279 6280
    int32_t tsz;
    uint32_t tg;
6281 6282
    uint64_t ttbr;
    int ttbr_select;
6283
    hwaddr descaddr, descmask;
6284 6285 6286
    uint32_t tableattrs;
    target_ulong page_size;
    uint32_t attrs;
6287 6288 6289
    int32_t granule_sz = 9;
    int32_t va_size = 32;
    int32_t tbi = 0;
6290
    TCR *tcr = regime_tcr(env, mmu_idx);
6291
    int ap, ns, xn, pxn;
6292 6293
    uint32_t el = regime_el(env, mmu_idx);
    bool ttbr1_valid = true;
6294 6295

    /* TODO:
6296 6297 6298 6299
     * This code does not handle the different format TCR for VTCR_EL2.
     * This code also does not support shareability levels.
     * Attribute and permission bit handling should also be checked when adding
     * support for those page table walks.
6300
     */
6301
    if (arm_el_is_aa64(env, el)) {
6302
        va_size = 64;
6303 6304 6305 6306 6307 6308 6309 6310 6311
        if (el > 1) {
            tbi = extract64(tcr->raw_tcr, 20, 1);
        } else {
            if (extract64(address, 55, 1)) {
                tbi = extract64(tcr->raw_tcr, 38, 1);
            } else {
                tbi = extract64(tcr->raw_tcr, 37, 1);
            }
        }
6312
        tbi *= 8;
6313 6314 6315 6316 6317 6318 6319

        /* If we are in 64-bit EL2 or EL3 then there is no TTBR1, so mark it
         * invalid.
         */
        if (el > 1) {
            ttbr1_valid = false;
        }
6320 6321 6322 6323 6324
    } else {
        /* There is no TTBR1 for EL2 */
        if (el == 2) {
            ttbr1_valid = false;
        }
6325
    }
6326 6327 6328 6329 6330 6331

    /* Determine whether this address is in the region controlled by
     * TTBR0 or TTBR1 (or if it is in neither region and should fault).
     * This is a Non-secure PL0/1 stage 1 translation, so controlled by
     * TTBCR/TTBR0/TTBR1 in accordance with ARM ARM DDI0406C table B-32:
     */
F
Fabian Aggeler 已提交
6332
    uint32_t t0sz = extract32(tcr->raw_tcr, 0, 6);
6333
    if (va_size == 64) {
6334 6335 6336
        t0sz = MIN(t0sz, 39);
        t0sz = MAX(t0sz, 16);
    }
F
Fabian Aggeler 已提交
6337
    uint32_t t1sz = extract32(tcr->raw_tcr, 16, 6);
6338
    if (va_size == 64) {
6339 6340 6341 6342
        t1sz = MIN(t1sz, 39);
        t1sz = MAX(t1sz, 16);
    }
    if (t0sz && !extract64(address, va_size - t0sz, t0sz - tbi)) {
6343 6344
        /* there is a ttbr0 region and we are in it (high bits all zero) */
        ttbr_select = 0;
6345 6346
    } else if (ttbr1_valid && t1sz &&
               !extract64(~address, va_size - t1sz, t1sz - tbi)) {
6347 6348 6349 6350 6351
        /* there is a ttbr1 region and we are in it (high bits all one) */
        ttbr_select = 1;
    } else if (!t0sz) {
        /* ttbr0 region is "everything not in the ttbr1 region" */
        ttbr_select = 0;
6352
    } else if (!t1sz && ttbr1_valid) {
6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368
        /* ttbr1 region is "everything not in the ttbr0 region" */
        ttbr_select = 1;
    } else {
        /* in the gap between the two regions, this is a Translation fault */
        fault_type = translation_fault;
        goto do_fault;
    }

    /* Note that QEMU ignores shareability and cacheability attributes,
     * so we don't need to do anything with the SH, ORGN, IRGN fields
     * in the TTBCR.  Similarly, TTBCR:A1 selects whether we get the
     * ASID from TTBR0 or TTBR1, but QEMU's TLB doesn't currently
     * implement any ASID-like capability so we can ignore it (instead
     * we will always flush the TLB any time the ASID is changed).
     */
    if (ttbr_select == 0) {
6369
        ttbr = regime_ttbr(env, mmu_idx, 0);
F
Fabian Aggeler 已提交
6370
        epd = extract32(tcr->raw_tcr, 7, 1);
6371
        tsz = t0sz;
6372

F
Fabian Aggeler 已提交
6373
        tg = extract32(tcr->raw_tcr, 14, 2);
6374 6375 6376 6377 6378 6379
        if (tg == 1) { /* 64KB pages */
            granule_sz = 13;
        }
        if (tg == 2) { /* 16KB pages */
            granule_sz = 11;
        }
6380
    } else {
6381 6382 6383
        /* We should only be here if TTBR1 is valid */
        assert(ttbr1_valid);

6384
        ttbr = regime_ttbr(env, mmu_idx, 1);
F
Fabian Aggeler 已提交
6385
        epd = extract32(tcr->raw_tcr, 23, 1);
6386
        tsz = t1sz;
6387

F
Fabian Aggeler 已提交
6388
        tg = extract32(tcr->raw_tcr, 30, 2);
6389 6390 6391 6392 6393 6394
        if (tg == 3)  { /* 64KB pages */
            granule_sz = 13;
        }
        if (tg == 1) { /* 16KB pages */
            granule_sz = 11;
        }
6395 6396
    }

6397 6398 6399 6400
    /* Here we should have set up all the parameters for the translation:
     * va_size, ttbr, epd, tsz, granule_sz, tbi
     */

6401
    if (epd) {
6402 6403 6404
        /* Translation table walk disabled => Translation fault on TLB miss
         * Note: This is always 0 on 64-bit EL2 and EL3.
         */
6405 6406 6407
        goto do_fault;
    }

6408 6409 6410 6411 6412 6413 6414 6415 6416 6417
    /* The starting level depends on the virtual address size (which can be
     * up to 48 bits) and the translation granule size. It indicates the number
     * of strides (granule_sz bits at a time) needed to consume the bits
     * of the input address. In the pseudocode this is:
     *  level = 4 - RoundUp((inputsize - grainsize) / stride)
     * where their 'inputsize' is our 'va_size - tsz', 'grainsize' is
     * our 'granule_sz + 3' and 'stride' is our 'granule_sz'.
     * Applying the usual "rounded up m/n is (m+n-1)/n" and simplifying:
     *     = 4 - (va_size - tsz - granule_sz - 3 + granule_sz - 1) / granule_sz
     *     = 4 - (va_size - tsz - 4) / granule_sz;
6418
     */
6419
    level = 4 - (va_size - tsz - 4) / granule_sz;
6420 6421 6422 6423 6424

    /* Clear the vaddr bits which aren't part of the within-region address,
     * so that we don't have to special case things when calculating the
     * first descriptor address.
     */
6425 6426 6427 6428 6429
    if (tsz) {
        address &= (1ULL << (va_size - tsz)) - 1;
    }

    descmask = (1ULL << (granule_sz + 3)) - 1;
6430 6431

    /* Now we can extract the actual base address from the TTBR */
6432 6433
    descaddr = extract64(ttbr, 0, 48);
    descaddr &= ~((1ULL << (va_size - tsz - (granule_sz * (4 - level)))) - 1);
6434

6435 6436 6437 6438 6439 6440
    /* Secure accesses start with the page table in secure memory and
     * can be downgraded to non-secure at any step. Non-secure accesses
     * remain non-secure. We implement this by just ORing in the NSTable/NS
     * bits at each step.
     */
    tableattrs = regime_is_secure(env, mmu_idx) ? 0 : (1 << 4);
6441 6442
    for (;;) {
        uint64_t descriptor;
6443
        bool nstable;
6444

6445 6446
        descaddr |= (address >> (granule_sz * (4 - level))) & descmask;
        descaddr &= ~7ULL;
6447 6448
        nstable = extract32(tableattrs, 4, 1);
        descriptor = arm_ldq_ptw(cs, descaddr, !nstable);
6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469
        if (!(descriptor & 1) ||
            (!(descriptor & 2) && (level == 3))) {
            /* Invalid, or the Reserved level 3 encoding */
            goto do_fault;
        }
        descaddr = descriptor & 0xfffffff000ULL;

        if ((descriptor & 2) && (level < 3)) {
            /* Table entry. The top five bits are attributes which  may
             * propagate down through lower levels of the table (and
             * which are all arranged so that 0 means "no effect", so
             * we can gather them up by ORing in the bits at each level).
             */
            tableattrs |= extract64(descriptor, 59, 5);
            level++;
            continue;
        }
        /* Block entry at level 1 or 2, or page entry at level 3.
         * These are basically the same thing, although the number
         * of bits we pull in from the vaddr varies.
         */
6470
        page_size = (1ULL << ((granule_sz * (4 - level)) + 3));
6471 6472
        descaddr |= (address & (page_size - 1));
        /* Extract attributes from the descriptor and merge with table attrs */
6473 6474
        attrs = extract64(descriptor, 2, 10)
            | (extract64(descriptor, 52, 12) << 10);
6475 6476 6477 6478 6479 6480 6481 6482
        attrs |= extract32(tableattrs, 0, 2) << 11; /* XN, PXN */
        attrs |= extract32(tableattrs, 3, 1) << 5; /* APTable[1] => AP[2] */
        /* The sense of AP[1] vs APTable[0] is reversed, as APTable[0] == 1
         * means "force PL1 access only", which means forcing AP[1] to 0.
         */
        if (extract32(tableattrs, 2, 1)) {
            attrs &= ~(1 << 4);
        }
6483
        attrs |= nstable << 3; /* NS */
6484 6485 6486 6487 6488 6489 6490 6491 6492 6493
        break;
    }
    /* Here descaddr is the final physical address, and attributes
     * are all in attrs.
     */
    fault_type = access_fault;
    if ((attrs & (1 << 8)) == 0) {
        /* Access flag */
        goto do_fault;
    }
6494 6495 6496 6497 6498 6499 6500 6501

    ap = extract32(attrs, 4, 2);
    ns = extract32(attrs, 3, 1);
    xn = extract32(attrs, 12, 1);
    pxn = extract32(attrs, 11, 1);

    *prot = get_S1prot(env, mmu_idx, va_size == 64, ap, ns, xn, pxn);

6502
    fault_type = permission_fault;
6503
    if (!(*prot & (1 << access_type))) {
6504 6505 6506
        goto do_fault;
    }

6507 6508 6509 6510 6511 6512 6513
    if (ns) {
        /* The NS bit will (as required by the architecture) have no effect if
         * the CPU doesn't support TZ or this is a non-secure translation
         * regime, because the attribute will already be non-secure.
         */
        txattrs->secure = false;
    }
6514 6515
    *phys_ptr = descaddr;
    *page_size_ptr = page_size;
6516
    return false;
6517 6518 6519

do_fault:
    /* Long-descriptor format IFSR/DFSR value */
6520 6521
    *fsr = (1 << 9) | (fault_type << 2) | level;
    return true;
6522 6523
}

6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684
static inline void get_phys_addr_pmsav7_default(CPUARMState *env,
                                                ARMMMUIdx mmu_idx,
                                                int32_t address, int *prot)
{
    *prot = PAGE_READ | PAGE_WRITE;
    switch (address) {
    case 0xF0000000 ... 0xFFFFFFFF:
        if (regime_sctlr(env, mmu_idx) & SCTLR_V) { /* hivecs execing is ok */
            *prot |= PAGE_EXEC;
        }
        break;
    case 0x00000000 ... 0x7FFFFFFF:
        *prot |= PAGE_EXEC;
        break;
    }

}

static bool get_phys_addr_pmsav7(CPUARMState *env, uint32_t address,
                                 int access_type, ARMMMUIdx mmu_idx,
                                 hwaddr *phys_ptr, int *prot, uint32_t *fsr)
{
    ARMCPU *cpu = arm_env_get_cpu(env);
    int n;
    bool is_user = regime_is_user(env, mmu_idx);

    *phys_ptr = address;
    *prot = 0;

    if (regime_translation_disabled(env, mmu_idx)) { /* MPU disabled */
        get_phys_addr_pmsav7_default(env, mmu_idx, address, prot);
    } else { /* MPU enabled */
        for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) {
            /* region search */
            uint32_t base = env->pmsav7.drbar[n];
            uint32_t rsize = extract32(env->pmsav7.drsr[n], 1, 5);
            uint32_t rmask;
            bool srdis = false;

            if (!(env->pmsav7.drsr[n] & 0x1)) {
                continue;
            }

            if (!rsize) {
                qemu_log_mask(LOG_GUEST_ERROR, "DRSR.Rsize field can not be 0");
                continue;
            }
            rsize++;
            rmask = (1ull << rsize) - 1;

            if (base & rmask) {
                qemu_log_mask(LOG_GUEST_ERROR, "DRBAR %" PRIx32 " misaligned "
                              "to DRSR region size, mask = %" PRIx32,
                              base, rmask);
                continue;
            }

            if (address < base || address > base + rmask) {
                continue;
            }

            /* Region matched */

            if (rsize >= 8) { /* no subregions for regions < 256 bytes */
                int i, snd;
                uint32_t srdis_mask;

                rsize -= 3; /* sub region size (power of 2) */
                snd = ((address - base) >> rsize) & 0x7;
                srdis = extract32(env->pmsav7.drsr[n], snd + 8, 1);

                srdis_mask = srdis ? 0x3 : 0x0;
                for (i = 2; i <= 8 && rsize < TARGET_PAGE_BITS; i *= 2) {
                    /* This will check in groups of 2, 4 and then 8, whether
                     * the subregion bits are consistent. rsize is incremented
                     * back up to give the region size, considering consistent
                     * adjacent subregions as one region. Stop testing if rsize
                     * is already big enough for an entire QEMU page.
                     */
                    int snd_rounded = snd & ~(i - 1);
                    uint32_t srdis_multi = extract32(env->pmsav7.drsr[n],
                                                     snd_rounded + 8, i);
                    if (srdis_mask ^ srdis_multi) {
                        break;
                    }
                    srdis_mask = (srdis_mask << i) | srdis_mask;
                    rsize++;
                }
            }
            if (rsize < TARGET_PAGE_BITS) {
                qemu_log_mask(LOG_UNIMP, "No support for MPU (sub)region"
                              "alignment of %" PRIu32 " bits. Minimum is %d\n",
                              rsize, TARGET_PAGE_BITS);
                continue;
            }
            if (srdis) {
                continue;
            }
            break;
        }

        if (n == -1) { /* no hits */
            if (cpu->pmsav7_dregion &&
                (is_user || !(regime_sctlr(env, mmu_idx) & SCTLR_BR))) {
                /* background fault */
                *fsr = 0;
                return true;
            }
            get_phys_addr_pmsav7_default(env, mmu_idx, address, prot);
        } else { /* a MPU hit! */
            uint32_t ap = extract32(env->pmsav7.dracr[n], 8, 3);

            if (is_user) { /* User mode AP bit decoding */
                switch (ap) {
                case 0:
                case 1:
                case 5:
                    break; /* no access */
                case 3:
                    *prot |= PAGE_WRITE;
                    /* fall through */
                case 2:
                case 6:
                    *prot |= PAGE_READ | PAGE_EXEC;
                    break;
                default:
                    qemu_log_mask(LOG_GUEST_ERROR,
                                  "Bad value for AP bits in DRACR %"
                                  PRIx32 "\n", ap);
                }
            } else { /* Priv. mode AP bits decoding */
                switch (ap) {
                case 0:
                    break; /* no access */
                case 1:
                case 2:
                case 3:
                    *prot |= PAGE_WRITE;
                    /* fall through */
                case 5:
                case 6:
                    *prot |= PAGE_READ | PAGE_EXEC;
                    break;
                default:
                    qemu_log_mask(LOG_GUEST_ERROR,
                                  "Bad value for AP bits in DRACR %"
                                  PRIx32 "\n", ap);
                }
            }

            /* execute never */
            if (env->pmsav7.dracr[n] & (1 << 12)) {
                *prot &= ~PAGE_EXEC;
            }
        }
    }

    *fsr = 0x00d; /* Permission fault */
    return !(*prot & (1 << access_type));
}

6685 6686 6687
static bool get_phys_addr_pmsav5(CPUARMState *env, uint32_t address,
                                 int access_type, ARMMMUIdx mmu_idx,
                                 hwaddr *phys_ptr, int *prot, uint32_t *fsr)
P
pbrook 已提交
6688 6689 6690 6691
{
    int n;
    uint32_t mask;
    uint32_t base;
6692
    bool is_user = regime_is_user(env, mmu_idx);
P
pbrook 已提交
6693 6694 6695

    *phys_ptr = address;
    for (n = 7; n >= 0; n--) {
6696
        base = env->cp15.c6_region[n];
6697
        if ((base & 1) == 0) {
6698
            continue;
6699
        }
6700 6701 6702 6703
        mask = 1 << ((base >> 1) & 0x1f);
        /* Keep this shift separate from the above to avoid an
           (undefined) << 32.  */
        mask = (mask << 1) - 1;
6704
        if (((base ^ address) & ~mask) == 0) {
6705
            break;
6706
        }
P
pbrook 已提交
6707
    }
6708
    if (n < 0) {
6709 6710
        *fsr = 2;
        return true;
6711
    }
P
pbrook 已提交
6712 6713

    if (access_type == 2) {
6714
        mask = env->cp15.pmsav5_insn_ap;
P
pbrook 已提交
6715
    } else {
6716
        mask = env->cp15.pmsav5_data_ap;
P
pbrook 已提交
6717 6718 6719 6720
    }
    mask = (mask >> (n * 4)) & 0xf;
    switch (mask) {
    case 0:
6721 6722
        *fsr = 1;
        return true;
P
pbrook 已提交
6723
    case 1:
6724
        if (is_user) {
6725 6726
            *fsr = 1;
            return true;
6727
        }
6728 6729
        *prot = PAGE_READ | PAGE_WRITE;
        break;
P
pbrook 已提交
6730
    case 2:
6731
        *prot = PAGE_READ;
6732
        if (!is_user) {
6733
            *prot |= PAGE_WRITE;
6734
        }
6735
        break;
P
pbrook 已提交
6736
    case 3:
6737 6738
        *prot = PAGE_READ | PAGE_WRITE;
        break;
P
pbrook 已提交
6739
    case 5:
6740
        if (is_user) {
6741 6742
            *fsr = 1;
            return true;
6743
        }
6744 6745
        *prot = PAGE_READ;
        break;
P
pbrook 已提交
6746
    case 6:
6747 6748
        *prot = PAGE_READ;
        break;
P
pbrook 已提交
6749
    default:
6750
        /* Bad permission.  */
6751 6752
        *fsr = 1;
        return true;
P
pbrook 已提交
6753
    }
6754
    *prot |= PAGE_EXEC;
6755
    return false;
P
pbrook 已提交
6756 6757
}

6758 6759 6760 6761 6762 6763
/* get_phys_addr - get the physical address for this virtual address
 *
 * Find the physical address corresponding to the given virtual address,
 * by doing a translation table walk on MMU based systems or using the
 * MPU state on MPU based systems.
 *
6764 6765
 * Returns false if the translation was successful. Otherwise, phys_ptr, attrs,
 * prot and page_size may not be filled in, and the populated fsr value provides
6766 6767 6768 6769
 * information on why the translation aborted, in the format of a
 * DFSR/IFSR fault register, with the following caveats:
 *  * we honour the short vs long DFSR format differences.
 *  * the WnR bit is never set (the caller must do this).
6770
 *  * for PSMAv5 based systems we don't bother to return a full FSR format
6771 6772 6773 6774 6775
 *    value.
 *
 * @env: CPUARMState
 * @address: virtual address to get physical address for
 * @access_type: 0 for read, 1 for write, 2 for execute
6776
 * @mmu_idx: MMU index indicating required translation regime
6777
 * @phys_ptr: set to the physical address corresponding to the virtual address
6778
 * @attrs: set to the memory transaction attributes to use
6779 6780
 * @prot: set to the permissions for the page containing phys_ptr
 * @page_size: set to the size of the page containing phys_ptr
6781
 * @fsr: set to the DFSR/IFSR value on failure
6782
 */
6783 6784 6785 6786
static inline bool get_phys_addr(CPUARMState *env, target_ulong address,
                                 int access_type, ARMMMUIdx mmu_idx,
                                 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
                                 target_ulong *page_size, uint32_t *fsr)
P
pbrook 已提交
6787
{
6788 6789
    if (mmu_idx == ARMMMUIdx_S12NSE0 || mmu_idx == ARMMMUIdx_S12NSE1) {
        /* TODO: when we support EL2 we should here call ourselves recursively
6790 6791 6792
         * to do the stage 1 and then stage 2 translations. The arm_ld*_ptw
         * functions will also need changing to perform ARMMMUIdx_S2NS loads
         * rather than direct physical memory loads when appropriate.
6793 6794 6795 6796 6797
         * For non-EL2 CPUs a stage1+stage2 translation is just stage 1.
         */
        assert(!arm_feature(env, ARM_FEATURE_EL2));
        mmu_idx += ARMMMUIdx_S1NSE0;
    }
6798

6799 6800 6801 6802 6803
    /* The page table entries may downgrade secure to non-secure, but
     * cannot upgrade an non-secure translation regime's attributes
     * to secure.
     */
    attrs->secure = regime_is_secure(env, mmu_idx);
6804
    attrs->user = regime_is_user(env, mmu_idx);
6805

6806 6807 6808 6809 6810 6811 6812 6813 6814 6815
    /* Fast Context Switch Extension. This doesn't exist at all in v8.
     * In v7 and earlier it affects all stage 1 translations.
     */
    if (address < 0x02000000 && mmu_idx != ARMMMUIdx_S2NS
        && !arm_feature(env, ARM_FEATURE_V8)) {
        if (regime_el(env, mmu_idx) == 3) {
            address += env->cp15.fcseidr_s;
        } else {
            address += env->cp15.fcseidr_ns;
        }
6816
    }
P
pbrook 已提交
6817

6818 6819 6820 6821 6822 6823 6824 6825 6826 6827
    /* pmsav7 has special handling for when MPU is disabled so call it before
     * the common MMU/MPU disabled check below.
     */
    if (arm_feature(env, ARM_FEATURE_MPU) &&
        arm_feature(env, ARM_FEATURE_V7)) {
        *page_size = TARGET_PAGE_SIZE;
        return get_phys_addr_pmsav7(env, address, access_type, mmu_idx,
                                    phys_ptr, prot, fsr);
    }

6828
    if (regime_translation_disabled(env, mmu_idx)) {
P
pbrook 已提交
6829 6830
        /* MMU/MPU disabled.  */
        *phys_ptr = address;
6831
        *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
P
Paul Brook 已提交
6832
        *page_size = TARGET_PAGE_SIZE;
P
pbrook 已提交
6833
        return 0;
6834 6835 6836
    }

    if (arm_feature(env, ARM_FEATURE_MPU)) {
6837
        /* Pre-v7 MPU */
P
Paul Brook 已提交
6838
        *page_size = TARGET_PAGE_SIZE;
6839 6840
        return get_phys_addr_pmsav5(env, address, access_type, mmu_idx,
                                    phys_ptr, prot, fsr);
6841 6842 6843 6844
    }

    if (regime_using_lpae_format(env, mmu_idx)) {
        return get_phys_addr_lpae(env, address, access_type, mmu_idx, phys_ptr,
6845
                                  attrs, prot, page_size, fsr);
6846 6847
    } else if (regime_sctlr(env, mmu_idx) & SCTLR_XP) {
        return get_phys_addr_v6(env, address, access_type, mmu_idx, phys_ptr,
6848
                                attrs, prot, page_size, fsr);
P
pbrook 已提交
6849
    } else {
6850
        return get_phys_addr_v5(env, address, access_type, mmu_idx, phys_ptr,
6851
                                prot, page_size, fsr);
P
pbrook 已提交
6852 6853 6854
    }
}

6855
/* Walk the page table and (if the mapping exists) add the page
6856 6857
 * to the TLB. Return false on success, or true on failure. Populate
 * fsr with ARM DFSR/IFSR fault register format value on failure.
6858
 */
6859 6860
bool arm_tlb_fill(CPUState *cs, vaddr address,
                  int access_type, int mmu_idx, uint32_t *fsr)
B
bellard 已提交
6861
{
6862 6863
    ARMCPU *cpu = ARM_CPU(cs);
    CPUARMState *env = &cpu->env;
A
Avi Kivity 已提交
6864
    hwaddr phys_addr;
P
Paul Brook 已提交
6865
    target_ulong page_size;
B
bellard 已提交
6866
    int prot;
6867
    int ret;
6868
    MemTxAttrs attrs = {};
B
bellard 已提交
6869

6870
    ret = get_phys_addr(env, address, access_type, mmu_idx, &phys_addr,
6871 6872
                        &attrs, &prot, &page_size, fsr);
    if (!ret) {
B
bellard 已提交
6873
        /* Map a single [sub]page.  */
6874 6875
        phys_addr &= TARGET_PAGE_MASK;
        address &= TARGET_PAGE_MASK;
6876 6877
        tlb_set_page_with_attrs(cs, address, phys_addr, attrs,
                                prot, mmu_idx, page_size);
P
Paul Brook 已提交
6878
        return 0;
B
bellard 已提交
6879 6880
    }

6881
    return ret;
B
bellard 已提交
6882 6883
}

6884
hwaddr arm_cpu_get_phys_page_debug(CPUState *cs, vaddr addr)
B
bellard 已提交
6885
{
6886
    ARMCPU *cpu = ARM_CPU(cs);
6887
    CPUARMState *env = &cpu->env;
A
Avi Kivity 已提交
6888
    hwaddr phys_addr;
P
Paul Brook 已提交
6889
    target_ulong page_size;
B
bellard 已提交
6890
    int prot;
6891 6892
    bool ret;
    uint32_t fsr;
6893
    MemTxAttrs attrs = {};
B
bellard 已提交
6894

6895
    ret = get_phys_addr(env, addr, 0, cpu_mmu_index(env, false), &phys_addr,
6896
                        &attrs, &prot, &page_size, &fsr);
B
bellard 已提交
6897

6898
    if (ret) {
B
bellard 已提交
6899
        return -1;
6900
    }
B
bellard 已提交
6901 6902 6903 6904

    return phys_addr;
}

6905
void HELPER(set_r13_banked)(CPUARMState *env, uint32_t mode, uint32_t val)
P
pbrook 已提交
6906
{
6907 6908 6909
    if ((env->uncached_cpsr & CPSR_M) == mode) {
        env->regs[13] = val;
    } else {
6910
        env->banked_r13[bank_number(mode)] = val;
6911
    }
P
pbrook 已提交
6912 6913
}

6914
uint32_t HELPER(get_r13_banked)(CPUARMState *env, uint32_t mode)
P
pbrook 已提交
6915
{
6916 6917 6918
    if ((env->uncached_cpsr & CPSR_M) == mode) {
        return env->regs[13];
    } else {
6919
        return env->banked_r13[bank_number(mode)];
6920
    }
P
pbrook 已提交
6921 6922
}

6923
uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg)
P
pbrook 已提交
6924
{
6925 6926
    ARMCPU *cpu = arm_env_get_cpu(env);

P
pbrook 已提交
6927 6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938 6939 6940 6941 6942 6943 6944 6945 6946
    switch (reg) {
    case 0: /* APSR */
        return xpsr_read(env) & 0xf8000000;
    case 1: /* IAPSR */
        return xpsr_read(env) & 0xf80001ff;
    case 2: /* EAPSR */
        return xpsr_read(env) & 0xff00fc00;
    case 3: /* xPSR */
        return xpsr_read(env) & 0xff00fdff;
    case 5: /* IPSR */
        return xpsr_read(env) & 0x000001ff;
    case 6: /* EPSR */
        return xpsr_read(env) & 0x0700fc00;
    case 7: /* IEPSR */
        return xpsr_read(env) & 0x0700edff;
    case 8: /* MSP */
        return env->v7m.current_sp ? env->v7m.other_sp : env->regs[13];
    case 9: /* PSP */
        return env->v7m.current_sp ? env->regs[13] : env->v7m.other_sp;
    case 16: /* PRIMASK */
6947
        return (env->daif & PSTATE_I) != 0;
6948 6949
    case 17: /* BASEPRI */
    case 18: /* BASEPRI_MAX */
P
pbrook 已提交
6950
        return env->v7m.basepri;
6951
    case 19: /* FAULTMASK */
6952
        return (env->daif & PSTATE_F) != 0;
P
pbrook 已提交
6953 6954 6955 6956
    case 20: /* CONTROL */
        return env->v7m.control;
    default:
        /* ??? For debugging only.  */
6957
        cpu_abort(CPU(cpu), "Unimplemented system register read (%d)\n", reg);
P
pbrook 已提交
6958 6959 6960 6961
        return 0;
    }
}

6962
void HELPER(v7m_msr)(CPUARMState *env, uint32_t reg, uint32_t val)
P
pbrook 已提交
6963
{
6964 6965
    ARMCPU *cpu = arm_env_get_cpu(env);

P
pbrook 已提交
6966 6967 6968 6969 6970 6971 6972 6973 6974 6975 6976 6977 6978 6979 6980 6981 6982 6983 6984 6985 6986 6987 6988 6989 6990 6991 6992 6993 6994 6995 6996 6997 6998 6999 7000
    switch (reg) {
    case 0: /* APSR */
        xpsr_write(env, val, 0xf8000000);
        break;
    case 1: /* IAPSR */
        xpsr_write(env, val, 0xf8000000);
        break;
    case 2: /* EAPSR */
        xpsr_write(env, val, 0xfe00fc00);
        break;
    case 3: /* xPSR */
        xpsr_write(env, val, 0xfe00fc00);
        break;
    case 5: /* IPSR */
        /* IPSR bits are readonly.  */
        break;
    case 6: /* EPSR */
        xpsr_write(env, val, 0x0600fc00);
        break;
    case 7: /* IEPSR */
        xpsr_write(env, val, 0x0600fc00);
        break;
    case 8: /* MSP */
        if (env->v7m.current_sp)
            env->v7m.other_sp = val;
        else
            env->regs[13] = val;
        break;
    case 9: /* PSP */
        if (env->v7m.current_sp)
            env->regs[13] = val;
        else
            env->v7m.other_sp = val;
        break;
    case 16: /* PRIMASK */
7001 7002 7003 7004 7005
        if (val & 1) {
            env->daif |= PSTATE_I;
        } else {
            env->daif &= ~PSTATE_I;
        }
P
pbrook 已提交
7006
        break;
7007
    case 17: /* BASEPRI */
P
pbrook 已提交
7008 7009
        env->v7m.basepri = val & 0xff;
        break;
7010
    case 18: /* BASEPRI_MAX */
P
pbrook 已提交
7011 7012 7013 7014
        val &= 0xff;
        if (val != 0 && (val < env->v7m.basepri || env->v7m.basepri == 0))
            env->v7m.basepri = val;
        break;
7015
    case 19: /* FAULTMASK */
7016 7017 7018 7019 7020
        if (val & 1) {
            env->daif |= PSTATE_F;
        } else {
            env->daif &= ~PSTATE_F;
        }
7021
        break;
P
pbrook 已提交
7022 7023 7024 7025 7026 7027
    case 20: /* CONTROL */
        env->v7m.control = val & 3;
        switch_v7m_sp(env, (val & 2) != 0);
        break;
    default:
        /* ??? For debugging only.  */
7028
        cpu_abort(CPU(cpu), "Unimplemented system register write (%d)\n", reg);
P
pbrook 已提交
7029 7030 7031 7032
        return;
    }
}

B
bellard 已提交
7033
#endif
P
pbrook 已提交
7034

7035 7036 7037 7038 7039 7040 7041 7042 7043 7044 7045 7046 7047 7048 7049 7050 7051 7052 7053 7054 7055 7056 7057 7058 7059
void HELPER(dc_zva)(CPUARMState *env, uint64_t vaddr_in)
{
    /* Implement DC ZVA, which zeroes a fixed-length block of memory.
     * Note that we do not implement the (architecturally mandated)
     * alignment fault for attempts to use this on Device memory
     * (which matches the usual QEMU behaviour of not implementing either
     * alignment faults or any memory attribute handling).
     */

    ARMCPU *cpu = arm_env_get_cpu(env);
    uint64_t blocklen = 4 << cpu->dcz_blocksize;
    uint64_t vaddr = vaddr_in & ~(blocklen - 1);

#ifndef CONFIG_USER_ONLY
    {
        /* Slightly awkwardly, QEMU's TARGET_PAGE_SIZE may be less than
         * the block size so we might have to do more than one TLB lookup.
         * We know that in fact for any v8 CPU the page size is at least 4K
         * and the block size must be 2K or less, but TARGET_PAGE_SIZE is only
         * 1K as an artefact of legacy v5 subpage support being present in the
         * same QEMU executable.
         */
        int maxidx = DIV_ROUND_UP(blocklen, TARGET_PAGE_SIZE);
        void *hostaddr[maxidx];
        int try, i;
7060
        unsigned mmu_idx = cpu_mmu_index(env, false);
7061
        TCGMemOpIdx oi = make_memop_idx(MO_UB, mmu_idx);
7062 7063 7064 7065 7066 7067

        for (try = 0; try < 2; try++) {

            for (i = 0; i < maxidx; i++) {
                hostaddr[i] = tlb_vaddr_to_host(env,
                                                vaddr + TARGET_PAGE_SIZE * i,
7068
                                                1, mmu_idx);
7069 7070 7071 7072 7073 7074 7075 7076 7077 7078 7079 7080 7081 7082 7083 7084 7085 7086 7087 7088
                if (!hostaddr[i]) {
                    break;
                }
            }
            if (i == maxidx) {
                /* If it's all in the TLB it's fair game for just writing to;
                 * we know we don't need to update dirty status, etc.
                 */
                for (i = 0; i < maxidx - 1; i++) {
                    memset(hostaddr[i], 0, TARGET_PAGE_SIZE);
                }
                memset(hostaddr[i], 0, blocklen - (i * TARGET_PAGE_SIZE));
                return;
            }
            /* OK, try a store and see if we can populate the tlb. This
             * might cause an exception if the memory isn't writable,
             * in which case we will longjmp out of here. We must for
             * this purpose use the actual register value passed to us
             * so that we get the fault address right.
             */
7089
            helper_ret_stb_mmu(env, vaddr_in, 0, oi, GETRA());
7090 7091 7092 7093
            /* Now we can populate the other TLB entries, if any */
            for (i = 0; i < maxidx; i++) {
                uint64_t va = vaddr + TARGET_PAGE_SIZE * i;
                if (va != (vaddr_in & TARGET_PAGE_MASK)) {
7094
                    helper_ret_stb_mmu(env, va, 0, oi, GETRA());
7095 7096 7097 7098 7099 7100 7101 7102 7103 7104 7105 7106 7107 7108 7109 7110
                }
            }
        }

        /* Slow path (probably attempt to do this to an I/O device or
         * similar, or clearing of a block of code we have translations
         * cached for). Just do a series of byte writes as the architecture
         * demands. It's not worth trying to use a cpu_physical_memory_map(),
         * memset(), unmap() sequence here because:
         *  + we'd need to account for the blocksize being larger than a page
         *  + the direct-RAM access case is almost always going to be dealt
         *    with in the fastpath code above, so there's no speed benefit
         *  + we would have to deal with the map returning NULL because the
         *    bounce buffer was in use
         */
        for (i = 0; i < blocklen; i++) {
7111
            helper_ret_stb_mmu(env, vaddr + i, 0, oi, GETRA());
7112 7113 7114 7115 7116 7117 7118
        }
    }
#else
    memset(g2h(vaddr), 0, blocklen);
#endif
}

P
pbrook 已提交
7119 7120 7121 7122 7123 7124
/* Note that signed overflow is undefined in C.  The following routines are
   careful to use unsigned types where modulo arithmetic is required.
   Failure to do so _will_ break on newer gcc.  */

/* Signed saturating arithmetic.  */

A
aurel32 已提交
7125
/* Perform 16-bit signed saturating addition.  */
P
pbrook 已提交
7126 7127 7128 7129 7130 7131 7132 7133 7134 7135 7136 7137 7138 7139
static inline uint16_t add16_sat(uint16_t a, uint16_t b)
{
    uint16_t res;

    res = a + b;
    if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) {
        if (a & 0x8000)
            res = 0x8000;
        else
            res = 0x7fff;
    }
    return res;
}

A
aurel32 已提交
7140
/* Perform 8-bit signed saturating addition.  */
P
pbrook 已提交
7141 7142 7143 7144 7145 7146 7147 7148 7149 7150 7151 7152 7153 7154
static inline uint8_t add8_sat(uint8_t a, uint8_t b)
{
    uint8_t res;

    res = a + b;
    if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) {
        if (a & 0x80)
            res = 0x80;
        else
            res = 0x7f;
    }
    return res;
}

A
aurel32 已提交
7155
/* Perform 16-bit signed saturating subtraction.  */
P
pbrook 已提交
7156 7157 7158 7159 7160 7161 7162 7163 7164 7165 7166 7167 7168 7169
static inline uint16_t sub16_sat(uint16_t a, uint16_t b)
{
    uint16_t res;

    res = a - b;
    if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) {
        if (a & 0x8000)
            res = 0x8000;
        else
            res = 0x7fff;
    }
    return res;
}

A
aurel32 已提交
7170
/* Perform 8-bit signed saturating subtraction.  */
P
pbrook 已提交
7171 7172 7173 7174 7175 7176 7177 7178 7179 7180 7181 7182 7183 7184 7185 7186 7187 7188 7189 7190 7191 7192 7193
static inline uint8_t sub8_sat(uint8_t a, uint8_t b)
{
    uint8_t res;

    res = a - b;
    if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) {
        if (a & 0x80)
            res = 0x80;
        else
            res = 0x7f;
    }
    return res;
}

#define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16);
#define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16);
#define ADD8(a, b, n)  RESULT(add8_sat(a, b), n, 8);
#define SUB8(a, b, n)  RESULT(sub8_sat(a, b), n, 8);
#define PFX q

#include "op_addsub.h"

/* Unsigned saturating arithmetic.  */
P
pbrook 已提交
7194
static inline uint16_t add16_usat(uint16_t a, uint16_t b)
P
pbrook 已提交
7195 7196 7197 7198 7199 7200 7201 7202
{
    uint16_t res;
    res = a + b;
    if (res < a)
        res = 0xffff;
    return res;
}

P
pbrook 已提交
7203
static inline uint16_t sub16_usat(uint16_t a, uint16_t b)
P
pbrook 已提交
7204
{
7205
    if (a > b)
P
pbrook 已提交
7206 7207 7208 7209 7210 7211 7212 7213 7214 7215 7216 7217 7218 7219 7220 7221
        return a - b;
    else
        return 0;
}

static inline uint8_t add8_usat(uint8_t a, uint8_t b)
{
    uint8_t res;
    res = a + b;
    if (res < a)
        res = 0xff;
    return res;
}

static inline uint8_t sub8_usat(uint8_t a, uint8_t b)
{
7222
    if (a > b)
P
pbrook 已提交
7223 7224 7225 7226 7227 7228 7229 7230 7231 7232 7233 7234 7235 7236 7237 7238
        return a - b;
    else
        return 0;
}

#define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16);
#define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16);
#define ADD8(a, b, n)  RESULT(add8_usat(a, b), n, 8);
#define SUB8(a, b, n)  RESULT(sub8_usat(a, b), n, 8);
#define PFX uq

#include "op_addsub.h"

/* Signed modulo arithmetic.  */
#define SARITH16(a, b, n, op) do { \
    int32_t sum; \
7239
    sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \
P
pbrook 已提交
7240 7241 7242 7243 7244 7245 7246
    RESULT(sum, n, 16); \
    if (sum >= 0) \
        ge |= 3 << (n * 2); \
    } while(0)

#define SARITH8(a, b, n, op) do { \
    int32_t sum; \
7247
    sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \
P
pbrook 已提交
7248 7249 7250 7251 7252 7253 7254 7255 7256 7257 7258 7259 7260 7261 7262 7263 7264 7265 7266 7267
    RESULT(sum, n, 8); \
    if (sum >= 0) \
        ge |= 1 << n; \
    } while(0)


#define ADD16(a, b, n) SARITH16(a, b, n, +)
#define SUB16(a, b, n) SARITH16(a, b, n, -)
#define ADD8(a, b, n)  SARITH8(a, b, n, +)
#define SUB8(a, b, n)  SARITH8(a, b, n, -)
#define PFX s
#define ARITH_GE

#include "op_addsub.h"

/* Unsigned modulo arithmetic.  */
#define ADD16(a, b, n) do { \
    uint32_t sum; \
    sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \
    RESULT(sum, n, 16); \
7268
    if ((sum >> 16) == 1) \
P
pbrook 已提交
7269 7270 7271 7272 7273 7274 7275
        ge |= 3 << (n * 2); \
    } while(0)

#define ADD8(a, b, n) do { \
    uint32_t sum; \
    sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \
    RESULT(sum, n, 8); \
7276 7277
    if ((sum >> 8) == 1) \
        ge |= 1 << n; \
P
pbrook 已提交
7278 7279 7280 7281 7282 7283 7284 7285 7286 7287 7288 7289 7290 7291 7292
    } while(0)

#define SUB16(a, b, n) do { \
    uint32_t sum; \
    sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \
    RESULT(sum, n, 16); \
    if ((sum >> 16) == 0) \
        ge |= 3 << (n * 2); \
    } while(0)

#define SUB8(a, b, n) do { \
    uint32_t sum; \
    sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \
    RESULT(sum, n, 8); \
    if ((sum >> 8) == 0) \
7293
        ge |= 1 << n; \
P
pbrook 已提交
7294 7295 7296 7297 7298 7299 7300 7301 7302 7303 7304 7305 7306 7307 7308 7309 7310 7311 7312 7313 7314 7315 7316 7317 7318 7319 7320 7321 7322 7323 7324 7325 7326 7327 7328 7329 7330 7331 7332 7333 7334 7335 7336 7337 7338 7339 7340 7341 7342 7343 7344 7345 7346 7347 7348 7349 7350 7351 7352 7353 7354 7355 7356 7357 7358 7359 7360 7361 7362
    } while(0)

#define PFX u
#define ARITH_GE

#include "op_addsub.h"

/* Halved signed arithmetic.  */
#define ADD16(a, b, n) \
  RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16)
#define SUB16(a, b, n) \
  RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16)
#define ADD8(a, b, n) \
  RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8)
#define SUB8(a, b, n) \
  RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8)
#define PFX sh

#include "op_addsub.h"

/* Halved unsigned arithmetic.  */
#define ADD16(a, b, n) \
  RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16)
#define SUB16(a, b, n) \
  RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16)
#define ADD8(a, b, n) \
  RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8)
#define SUB8(a, b, n) \
  RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8)
#define PFX uh

#include "op_addsub.h"

static inline uint8_t do_usad(uint8_t a, uint8_t b)
{
    if (a > b)
        return a - b;
    else
        return b - a;
}

/* Unsigned sum of absolute byte differences.  */
uint32_t HELPER(usad8)(uint32_t a, uint32_t b)
{
    uint32_t sum;
    sum = do_usad(a, b);
    sum += do_usad(a >> 8, b >> 8);
    sum += do_usad(a >> 16, b >>16);
    sum += do_usad(a >> 24, b >> 24);
    return sum;
}

/* For ARMv6 SEL instruction.  */
uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b)
{
    uint32_t mask;

    mask = 0;
    if (flags & 1)
        mask |= 0xff;
    if (flags & 2)
        mask |= 0xff00;
    if (flags & 4)
        mask |= 0xff0000;
    if (flags & 8)
        mask |= 0xff000000;
    return (a & mask) | (b & ~mask);
}

7363 7364
/* VFP support.  We follow the convention used for VFP instructions:
   Single precision routines have a "s" suffix, double precision a
P
pbrook 已提交
7365 7366 7367 7368 7369 7370 7371 7372 7373 7374 7375 7376 7377
   "d" suffix.  */

/* Convert host exception flags to vfp form.  */
static inline int vfp_exceptbits_from_host(int host_bits)
{
    int target_bits = 0;

    if (host_bits & float_flag_invalid)
        target_bits |= 1;
    if (host_bits & float_flag_divbyzero)
        target_bits |= 2;
    if (host_bits & float_flag_overflow)
        target_bits |= 4;
7378
    if (host_bits & (float_flag_underflow | float_flag_output_denormal))
P
pbrook 已提交
7379 7380 7381
        target_bits |= 8;
    if (host_bits & float_flag_inexact)
        target_bits |= 0x10;
7382 7383
    if (host_bits & float_flag_input_denormal)
        target_bits |= 0x80;
P
pbrook 已提交
7384 7385 7386
    return target_bits;
}

7387
uint32_t HELPER(vfp_get_fpscr)(CPUARMState *env)
P
pbrook 已提交
7388 7389 7390 7391 7392 7393 7394 7395
{
    int i;
    uint32_t fpscr;

    fpscr = (env->vfp.xregs[ARM_VFP_FPSCR] & 0xffc8ffff)
            | (env->vfp.vec_len << 16)
            | (env->vfp.vec_stride << 20);
    i = get_float_exception_flags(&env->vfp.fp_status);
7396
    i |= get_float_exception_flags(&env->vfp.standard_fp_status);
P
pbrook 已提交
7397 7398 7399 7400
    fpscr |= vfp_exceptbits_from_host(i);
    return fpscr;
}

7401
uint32_t vfp_get_fpscr(CPUARMState *env)
7402 7403 7404 7405
{
    return HELPER(vfp_get_fpscr)(env);
}

P
pbrook 已提交
7406 7407 7408 7409 7410 7411 7412 7413 7414 7415 7416 7417 7418 7419 7420
/* Convert vfp exception flags to target form.  */
static inline int vfp_exceptbits_to_host(int target_bits)
{
    int host_bits = 0;

    if (target_bits & 1)
        host_bits |= float_flag_invalid;
    if (target_bits & 2)
        host_bits |= float_flag_divbyzero;
    if (target_bits & 4)
        host_bits |= float_flag_overflow;
    if (target_bits & 8)
        host_bits |= float_flag_underflow;
    if (target_bits & 0x10)
        host_bits |= float_flag_inexact;
7421 7422
    if (target_bits & 0x80)
        host_bits |= float_flag_input_denormal;
P
pbrook 已提交
7423 7424 7425
    return host_bits;
}

7426
void HELPER(vfp_set_fpscr)(CPUARMState *env, uint32_t val)
P
pbrook 已提交
7427 7428 7429 7430 7431 7432 7433 7434 7435 7436 7437 7438 7439
{
    int i;
    uint32_t changed;

    changed = env->vfp.xregs[ARM_VFP_FPSCR];
    env->vfp.xregs[ARM_VFP_FPSCR] = (val & 0xffc8ffff);
    env->vfp.vec_len = (val >> 16) & 7;
    env->vfp.vec_stride = (val >> 20) & 3;

    changed ^= val;
    if (changed & (3 << 22)) {
        i = (val >> 22) & 3;
        switch (i) {
7440
        case FPROUNDING_TIEEVEN:
P
pbrook 已提交
7441 7442
            i = float_round_nearest_even;
            break;
7443
        case FPROUNDING_POSINF:
P
pbrook 已提交
7444 7445
            i = float_round_up;
            break;
7446
        case FPROUNDING_NEGINF:
P
pbrook 已提交
7447 7448
            i = float_round_down;
            break;
7449
        case FPROUNDING_ZERO:
P
pbrook 已提交
7450 7451 7452 7453 7454
            i = float_round_to_zero;
            break;
        }
        set_float_rounding_mode(i, &env->vfp.fp_status);
    }
7455
    if (changed & (1 << 24)) {
7456
        set_flush_to_zero((val & (1 << 24)) != 0, &env->vfp.fp_status);
7457 7458
        set_flush_inputs_to_zero((val & (1 << 24)) != 0, &env->vfp.fp_status);
    }
P
pbrook 已提交
7459 7460
    if (changed & (1 << 25))
        set_default_nan_mode((val & (1 << 25)) != 0, &env->vfp.fp_status);
P
pbrook 已提交
7461

7462
    i = vfp_exceptbits_to_host(val);
P
pbrook 已提交
7463
    set_float_exception_flags(i, &env->vfp.fp_status);
7464
    set_float_exception_flags(0, &env->vfp.standard_fp_status);
P
pbrook 已提交
7465 7466
}

7467
void vfp_set_fpscr(CPUARMState *env, uint32_t val)
7468 7469 7470 7471
{
    HELPER(vfp_set_fpscr)(env, val);
}

P
pbrook 已提交
7472 7473 7474
#define VFP_HELPER(name, p) HELPER(glue(glue(vfp_,name),p))

#define VFP_BINOP(name) \
7475
float32 VFP_HELPER(name, s)(float32 a, float32 b, void *fpstp) \
P
pbrook 已提交
7476
{ \
7477 7478
    float_status *fpst = fpstp; \
    return float32_ ## name(a, b, fpst); \
P
pbrook 已提交
7479
} \
7480
float64 VFP_HELPER(name, d)(float64 a, float64 b, void *fpstp) \
P
pbrook 已提交
7481
{ \
7482 7483
    float_status *fpst = fpstp; \
    return float64_ ## name(a, b, fpst); \
P
pbrook 已提交
7484 7485 7486 7487 7488
}
VFP_BINOP(add)
VFP_BINOP(sub)
VFP_BINOP(mul)
VFP_BINOP(div)
7489 7490 7491 7492
VFP_BINOP(min)
VFP_BINOP(max)
VFP_BINOP(minnum)
VFP_BINOP(maxnum)
P
pbrook 已提交
7493 7494 7495 7496 7497 7498 7499 7500 7501
#undef VFP_BINOP

float32 VFP_HELPER(neg, s)(float32 a)
{
    return float32_chs(a);
}

float64 VFP_HELPER(neg, d)(float64 a)
{
7502
    return float64_chs(a);
P
pbrook 已提交
7503 7504 7505 7506 7507 7508 7509 7510 7511
}

float32 VFP_HELPER(abs, s)(float32 a)
{
    return float32_abs(a);
}

float64 VFP_HELPER(abs, d)(float64 a)
{
7512
    return float64_abs(a);
P
pbrook 已提交
7513 7514
}

7515
float32 VFP_HELPER(sqrt, s)(float32 a, CPUARMState *env)
P
pbrook 已提交
7516 7517 7518 7519
{
    return float32_sqrt(a, &env->vfp.fp_status);
}

7520
float64 VFP_HELPER(sqrt, d)(float64 a, CPUARMState *env)
P
pbrook 已提交
7521 7522 7523 7524 7525 7526
{
    return float64_sqrt(a, &env->vfp.fp_status);
}

/* XXX: check quiet/signaling case */
#define DO_VFP_cmp(p, type) \
7527
void VFP_HELPER(cmp, p)(type a, type b, CPUARMState *env)  \
P
pbrook 已提交
7528 7529 7530 7531 7532 7533 7534 7535 7536 7537 7538
{ \
    uint32_t flags; \
    switch(type ## _compare_quiet(a, b, &env->vfp.fp_status)) { \
    case 0: flags = 0x6; break; \
    case -1: flags = 0x8; break; \
    case 1: flags = 0x2; break; \
    default: case 2: flags = 0x3; break; \
    } \
    env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
        | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
} \
7539
void VFP_HELPER(cmpe, p)(type a, type b, CPUARMState *env) \
P
pbrook 已提交
7540 7541 7542 7543 7544 7545 7546 7547 7548 7549 7550 7551 7552 7553 7554
{ \
    uint32_t flags; \
    switch(type ## _compare(a, b, &env->vfp.fp_status)) { \
    case 0: flags = 0x6; break; \
    case -1: flags = 0x8; break; \
    case 1: flags = 0x2; break; \
    default: case 2: flags = 0x3; break; \
    } \
    env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
        | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
}
DO_VFP_cmp(s, float32)
DO_VFP_cmp(d, float64)
#undef DO_VFP_cmp

7555
/* Integer to float and float to integer conversions */
P
pbrook 已提交
7556

7557 7558 7559 7560
#define CONV_ITOF(name, fsz, sign) \
    float##fsz HELPER(name)(uint32_t x, void *fpstp) \
{ \
    float_status *fpst = fpstp; \
7561
    return sign##int32_to_##float##fsz((sign##int32_t)x, fpst); \
P
pbrook 已提交
7562 7563
}

7564 7565 7566 7567 7568 7569 7570 7571 7572
#define CONV_FTOI(name, fsz, sign, round) \
uint32_t HELPER(name)(float##fsz x, void *fpstp) \
{ \
    float_status *fpst = fpstp; \
    if (float##fsz##_is_any_nan(x)) { \
        float_raise(float_flag_invalid, fpst); \
        return 0; \
    } \
    return float##fsz##_to_##sign##int32##round(x, fpst); \
P
pbrook 已提交
7573 7574
}

7575 7576 7577 7578
#define FLOAT_CONVS(name, p, fsz, sign) \
CONV_ITOF(vfp_##name##to##p, fsz, sign) \
CONV_FTOI(vfp_to##name##p, fsz, sign, ) \
CONV_FTOI(vfp_to##name##z##p, fsz, sign, _round_to_zero)
P
pbrook 已提交
7579

7580 7581 7582 7583
FLOAT_CONVS(si, s, 32, )
FLOAT_CONVS(si, d, 64, )
FLOAT_CONVS(ui, s, 32, u)
FLOAT_CONVS(ui, d, 64, u)
P
pbrook 已提交
7584

7585 7586 7587
#undef CONV_ITOF
#undef CONV_FTOI
#undef FLOAT_CONVS
P
pbrook 已提交
7588 7589

/* floating point conversion */
7590
float64 VFP_HELPER(fcvtd, s)(float32 x, CPUARMState *env)
P
pbrook 已提交
7591
{
7592 7593 7594 7595 7596
    float64 r = float32_to_float64(x, &env->vfp.fp_status);
    /* ARM requires that S<->D conversion of any kind of NaN generates
     * a quiet NaN by forcing the most significant frac bit to 1.
     */
    return float64_maybe_silence_nan(r);
P
pbrook 已提交
7597 7598
}

7599
float32 VFP_HELPER(fcvts, d)(float64 x, CPUARMState *env)
P
pbrook 已提交
7600
{
7601 7602 7603 7604 7605
    float32 r =  float64_to_float32(x, &env->vfp.fp_status);
    /* ARM requires that S<->D conversion of any kind of NaN generates
     * a quiet NaN by forcing the most significant frac bit to 1.
     */
    return float32_maybe_silence_nan(r);
P
pbrook 已提交
7606 7607 7608
}

/* VFP3 fixed point conversion.  */
7609
#define VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \
7610 7611
float##fsz HELPER(vfp_##name##to##p)(uint##isz##_t  x, uint32_t shift, \
                                     void *fpstp) \
P
pbrook 已提交
7612
{ \
7613
    float_status *fpst = fpstp; \
7614
    float##fsz tmp; \
7615
    tmp = itype##_to_##float##fsz(x, fpst); \
7616
    return float##fsz##_scalbn(tmp, -(int)shift, fpst); \
7617 7618
}

7619 7620 7621 7622 7623
/* Notice that we want only input-denormal exception flags from the
 * scalbn operation: the other possible flags (overflow+inexact if
 * we overflow to infinity, output-denormal) aren't correct for the
 * complete scale-and-convert operation.
 */
7624 7625 7626 7627
#define VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, round) \
uint##isz##_t HELPER(vfp_to##name##p##round)(float##fsz x, \
                                             uint32_t shift, \
                                             void *fpstp) \
P
pbrook 已提交
7628
{ \
7629
    float_status *fpst = fpstp; \
7630
    int old_exc_flags = get_float_exception_flags(fpst); \
7631 7632
    float##fsz tmp; \
    if (float##fsz##_is_any_nan(x)) { \
7633
        float_raise(float_flag_invalid, fpst); \
7634
        return 0; \
7635
    } \
7636
    tmp = float##fsz##_scalbn(x, shift, fpst); \
7637 7638 7639
    old_exc_flags |= get_float_exception_flags(fpst) \
        & float_flag_input_denormal; \
    set_float_exception_flags(old_exc_flags, fpst); \
7640
    return float##fsz##_to_##itype##round(tmp, fpst); \
7641 7642
}

7643 7644
#define VFP_CONV_FIX(name, p, fsz, isz, itype)                   \
VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype)                     \
7645 7646 7647 7648 7649 7650
VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, _round_to_zero) \
VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, )

#define VFP_CONV_FIX_A64(name, p, fsz, isz, itype)               \
VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype)                     \
VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, )
7651

7652 7653
VFP_CONV_FIX(sh, d, 64, 64, int16)
VFP_CONV_FIX(sl, d, 64, 64, int32)
7654
VFP_CONV_FIX_A64(sq, d, 64, 64, int64)
7655 7656
VFP_CONV_FIX(uh, d, 64, 64, uint16)
VFP_CONV_FIX(ul, d, 64, 64, uint32)
7657
VFP_CONV_FIX_A64(uq, d, 64, 64, uint64)
7658 7659
VFP_CONV_FIX(sh, s, 32, 32, int16)
VFP_CONV_FIX(sl, s, 32, 32, int32)
7660
VFP_CONV_FIX_A64(sq, s, 32, 64, int64)
7661 7662
VFP_CONV_FIX(uh, s, 32, 32, uint16)
VFP_CONV_FIX(ul, s, 32, 32, uint32)
7663
VFP_CONV_FIX_A64(uq, s, 32, 64, uint64)
P
pbrook 已提交
7664
#undef VFP_CONV_FIX
7665 7666
#undef VFP_CONV_FIX_FLOAT
#undef VFP_CONV_FLOAT_FIX_ROUND
P
pbrook 已提交
7667

7668 7669 7670 7671 7672 7673 7674 7675 7676 7677 7678 7679 7680
/* Set the current fp rounding mode and return the old one.
 * The argument is a softfloat float_round_ value.
 */
uint32_t HELPER(set_rmode)(uint32_t rmode, CPUARMState *env)
{
    float_status *fp_status = &env->vfp.fp_status;

    uint32_t prev_rmode = get_float_rounding_mode(fp_status);
    set_float_rounding_mode(rmode, fp_status);

    return prev_rmode;
}

7681 7682 7683 7684 7685 7686 7687 7688 7689 7690 7691 7692 7693 7694 7695 7696 7697
/* Set the current fp rounding mode in the standard fp status and return
 * the old one. This is for NEON instructions that need to change the
 * rounding mode but wish to use the standard FPSCR values for everything
 * else. Always set the rounding mode back to the correct value after
 * modifying it.
 * The argument is a softfloat float_round_ value.
 */
uint32_t HELPER(set_neon_rmode)(uint32_t rmode, CPUARMState *env)
{
    float_status *fp_status = &env->vfp.standard_fp_status;

    uint32_t prev_rmode = get_float_rounding_mode(fp_status);
    set_float_rounding_mode(rmode, fp_status);

    return prev_rmode;
}

P
Paul Brook 已提交
7698
/* Half precision conversions.  */
7699
static float32 do_fcvt_f16_to_f32(uint32_t a, CPUARMState *env, float_status *s)
P
Paul Brook 已提交
7700 7701
{
    int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
7702 7703 7704 7705 7706
    float32 r = float16_to_float32(make_float16(a), ieee, s);
    if (ieee) {
        return float32_maybe_silence_nan(r);
    }
    return r;
P
Paul Brook 已提交
7707 7708
}

7709
static uint32_t do_fcvt_f32_to_f16(float32 a, CPUARMState *env, float_status *s)
P
Paul Brook 已提交
7710 7711
{
    int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
7712 7713 7714 7715 7716
    float16 r = float32_to_float16(a, ieee, s);
    if (ieee) {
        r = float16_maybe_silence_nan(r);
    }
    return float16_val(r);
P
Paul Brook 已提交
7717 7718
}

7719
float32 HELPER(neon_fcvt_f16_to_f32)(uint32_t a, CPUARMState *env)
7720 7721 7722 7723
{
    return do_fcvt_f16_to_f32(a, env, &env->vfp.standard_fp_status);
}

7724
uint32_t HELPER(neon_fcvt_f32_to_f16)(float32 a, CPUARMState *env)
7725 7726 7727 7728
{
    return do_fcvt_f32_to_f16(a, env, &env->vfp.standard_fp_status);
}

7729
float32 HELPER(vfp_fcvt_f16_to_f32)(uint32_t a, CPUARMState *env)
7730 7731 7732 7733
{
    return do_fcvt_f16_to_f32(a, env, &env->vfp.fp_status);
}

7734
uint32_t HELPER(vfp_fcvt_f32_to_f16)(float32 a, CPUARMState *env)
7735 7736 7737 7738
{
    return do_fcvt_f32_to_f16(a, env, &env->vfp.fp_status);
}

7739 7740 7741 7742 7743 7744 7745 7746 7747 7748 7749 7750 7751 7752 7753 7754 7755 7756 7757 7758
float64 HELPER(vfp_fcvt_f16_to_f64)(uint32_t a, CPUARMState *env)
{
    int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
    float64 r = float16_to_float64(make_float16(a), ieee, &env->vfp.fp_status);
    if (ieee) {
        return float64_maybe_silence_nan(r);
    }
    return r;
}

uint32_t HELPER(vfp_fcvt_f64_to_f16)(float64 a, CPUARMState *env)
{
    int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
    float16 r = float64_to_float16(a, ieee, &env->vfp.fp_status);
    if (ieee) {
        r = float16_maybe_silence_nan(r);
    }
    return float16_val(r);
}

7759
#define float32_two make_float32(0x40000000)
7760 7761
#define float32_three make_float32(0x40400000)
#define float32_one_point_five make_float32(0x3fc00000)
7762

7763
float32 HELPER(recps_f32)(float32 a, float32 b, CPUARMState *env)
P
pbrook 已提交
7764
{
7765 7766 7767
    float_status *s = &env->vfp.standard_fp_status;
    if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) ||
        (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) {
7768 7769 7770
        if (!(float32_is_zero(a) || float32_is_zero(b))) {
            float_raise(float_flag_input_denormal, s);
        }
7771 7772 7773
        return float32_two;
    }
    return float32_sub(float32_two, float32_mul(a, b, s), s);
P
pbrook 已提交
7774 7775
}

7776
float32 HELPER(rsqrts_f32)(float32 a, float32 b, CPUARMState *env)
P
pbrook 已提交
7777
{
7778
    float_status *s = &env->vfp.standard_fp_status;
7779 7780 7781
    float32 product;
    if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) ||
        (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) {
7782 7783 7784
        if (!(float32_is_zero(a) || float32_is_zero(b))) {
            float_raise(float_flag_input_denormal, s);
        }
7785
        return float32_one_point_five;
7786
    }
7787 7788
    product = float32_mul(a, b, s);
    return float32_div(float32_sub(float32_three, product, s), float32_two, s);
P
pbrook 已提交
7789 7790
}

P
pbrook 已提交
7791 7792
/* NEON helpers.  */

7793 7794 7795 7796
/* Constants 256 and 512 are used in some helpers; we avoid relying on
 * int->float conversions at run-time.  */
#define float64_256 make_float64(0x4070000000000000LL)
#define float64_512 make_float64(0x4080000000000000LL)
7797 7798
#define float32_maxnorm make_float32(0x7f7fffff)
#define float64_maxnorm make_float64(0x7fefffffffffffffLL)
7799

7800 7801 7802 7803
/* Reciprocal functions
 *
 * The algorithm that must be used to calculate the estimate
 * is specified by the ARM ARM, see FPRecipEstimate()
7804
 */
7805 7806

static float64 recip_estimate(float64 a, float_status *real_fp_status)
7807
{
7808 7809 7810
    /* These calculations mustn't set any fp exception flags,
     * so we use a local copy of the fp_status.
     */
7811
    float_status dummy_status = *real_fp_status;
7812
    float_status *s = &dummy_status;
7813 7814 7815 7816 7817 7818 7819 7820 7821 7822 7823 7824 7825 7826 7827 7828 7829 7830 7831
    /* q = (int)(a * 512.0) */
    float64 q = float64_mul(float64_512, a, s);
    int64_t q_int = float64_to_int64_round_to_zero(q, s);

    /* r = 1.0 / (((double)q + 0.5) / 512.0) */
    q = int64_to_float64(q_int, s);
    q = float64_add(q, float64_half, s);
    q = float64_div(q, float64_512, s);
    q = float64_div(float64_one, q, s);

    /* s = (int)(256.0 * r + 0.5) */
    q = float64_mul(q, float64_256, s);
    q = float64_add(q, float64_half, s);
    q_int = float64_to_int64_round_to_zero(q, s);

    /* return (double)s / 256.0 */
    return float64_div(int64_to_float64(q_int, s), float64_256, s);
}

7832 7833
/* Common wrapper to call recip_estimate */
static float64 call_recip_estimate(float64 num, int off, float_status *fpst)
P
pbrook 已提交
7834
{
7835 7836 7837 7838 7839
    uint64_t val64 = float64_val(num);
    uint64_t frac = extract64(val64, 0, 52);
    int64_t exp = extract64(val64, 52, 11);
    uint64_t sbit;
    float64 scaled, estimate;
7840

7841 7842 7843 7844 7845 7846 7847 7848 7849
    /* Generate the scaled number for the estimate function */
    if (exp == 0) {
        if (extract64(frac, 51, 1) == 0) {
            exp = -1;
            frac = extract64(frac, 0, 50) << 2;
        } else {
            frac = extract64(frac, 0, 51) << 1;
        }
    }
7850

7851 7852 7853 7854 7855 7856 7857 7858 7859 7860 7861 7862 7863 7864 7865 7866 7867 7868 7869 7870 7871 7872 7873 7874 7875 7876 7877 7878 7879 7880 7881 7882 7883 7884 7885 7886 7887 7888 7889 7890 7891 7892 7893 7894 7895 7896 7897 7898 7899 7900 7901 7902 7903 7904 7905 7906
    /* scaled = '0' : '01111111110' : fraction<51:44> : Zeros(44); */
    scaled = make_float64((0x3feULL << 52)
                          | extract64(frac, 44, 8) << 44);

    estimate = recip_estimate(scaled, fpst);

    /* Build new result */
    val64 = float64_val(estimate);
    sbit = 0x8000000000000000ULL & val64;
    exp = off - exp;
    frac = extract64(val64, 0, 52);

    if (exp == 0) {
        frac = 1ULL << 51 | extract64(frac, 1, 51);
    } else if (exp == -1) {
        frac = 1ULL << 50 | extract64(frac, 2, 50);
        exp = 0;
    }

    return make_float64(sbit | (exp << 52) | frac);
}

static bool round_to_inf(float_status *fpst, bool sign_bit)
{
    switch (fpst->float_rounding_mode) {
    case float_round_nearest_even: /* Round to Nearest */
        return true;
    case float_round_up: /* Round to +Inf */
        return !sign_bit;
    case float_round_down: /* Round to -Inf */
        return sign_bit;
    case float_round_to_zero: /* Round to Zero */
        return false;
    }

    g_assert_not_reached();
}

float32 HELPER(recpe_f32)(float32 input, void *fpstp)
{
    float_status *fpst = fpstp;
    float32 f32 = float32_squash_input_denormal(input, fpst);
    uint32_t f32_val = float32_val(f32);
    uint32_t f32_sbit = 0x80000000ULL & f32_val;
    int32_t f32_exp = extract32(f32_val, 23, 8);
    uint32_t f32_frac = extract32(f32_val, 0, 23);
    float64 f64, r64;
    uint64_t r64_val;
    int64_t r64_exp;
    uint64_t r64_frac;

    if (float32_is_any_nan(f32)) {
        float32 nan = f32;
        if (float32_is_signaling_nan(f32)) {
            float_raise(float_flag_invalid, fpst);
            nan = float32_maybe_silence_nan(f32);
7907
        }
7908 7909
        if (fpst->default_nan_mode) {
            nan =  float32_default_nan;
7910
        }
7911 7912 7913 7914 7915 7916 7917 7918 7919 7920 7921 7922 7923 7924 7925 7926 7927
        return nan;
    } else if (float32_is_infinity(f32)) {
        return float32_set_sign(float32_zero, float32_is_neg(f32));
    } else if (float32_is_zero(f32)) {
        float_raise(float_flag_divbyzero, fpst);
        return float32_set_sign(float32_infinity, float32_is_neg(f32));
    } else if ((f32_val & ~(1ULL << 31)) < (1ULL << 21)) {
        /* Abs(value) < 2.0^-128 */
        float_raise(float_flag_overflow | float_flag_inexact, fpst);
        if (round_to_inf(fpst, f32_sbit)) {
            return float32_set_sign(float32_infinity, float32_is_neg(f32));
        } else {
            return float32_set_sign(float32_maxnorm, float32_is_neg(f32));
        }
    } else if (f32_exp >= 253 && fpst->flush_to_zero) {
        float_raise(float_flag_underflow, fpst);
        return float32_set_sign(float32_zero, float32_is_neg(f32));
7928 7929 7930
    }


7931 7932 7933 7934 7935 7936 7937 7938 7939 7940 7941 7942 7943 7944 7945 7946 7947 7948 7949 7950 7951 7952 7953 7954 7955 7956 7957 7958 7959 7960 7961 7962 7963 7964 7965 7966 7967 7968 7969 7970 7971 7972 7973 7974 7975 7976 7977 7978
    f64 = make_float64(((int64_t)(f32_exp) << 52) | (int64_t)(f32_frac) << 29);
    r64 = call_recip_estimate(f64, 253, fpst);
    r64_val = float64_val(r64);
    r64_exp = extract64(r64_val, 52, 11);
    r64_frac = extract64(r64_val, 0, 52);

    /* result = sign : result_exp<7:0> : fraction<51:29>; */
    return make_float32(f32_sbit |
                        (r64_exp & 0xff) << 23 |
                        extract64(r64_frac, 29, 24));
}

float64 HELPER(recpe_f64)(float64 input, void *fpstp)
{
    float_status *fpst = fpstp;
    float64 f64 = float64_squash_input_denormal(input, fpst);
    uint64_t f64_val = float64_val(f64);
    uint64_t f64_sbit = 0x8000000000000000ULL & f64_val;
    int64_t f64_exp = extract64(f64_val, 52, 11);
    float64 r64;
    uint64_t r64_val;
    int64_t r64_exp;
    uint64_t r64_frac;

    /* Deal with any special cases */
    if (float64_is_any_nan(f64)) {
        float64 nan = f64;
        if (float64_is_signaling_nan(f64)) {
            float_raise(float_flag_invalid, fpst);
            nan = float64_maybe_silence_nan(f64);
        }
        if (fpst->default_nan_mode) {
            nan =  float64_default_nan;
        }
        return nan;
    } else if (float64_is_infinity(f64)) {
        return float64_set_sign(float64_zero, float64_is_neg(f64));
    } else if (float64_is_zero(f64)) {
        float_raise(float_flag_divbyzero, fpst);
        return float64_set_sign(float64_infinity, float64_is_neg(f64));
    } else if ((f64_val & ~(1ULL << 63)) < (1ULL << 50)) {
        /* Abs(value) < 2.0^-1024 */
        float_raise(float_flag_overflow | float_flag_inexact, fpst);
        if (round_to_inf(fpst, f64_sbit)) {
            return float64_set_sign(float64_infinity, float64_is_neg(f64));
        } else {
            return float64_set_sign(float64_maxnorm, float64_is_neg(f64));
        }
7979
    } else if (f64_exp >= 2045 && fpst->flush_to_zero) {
7980 7981 7982
        float_raise(float_flag_underflow, fpst);
        return float64_set_sign(float64_zero, float64_is_neg(f64));
    }
7983

7984 7985 7986 7987
    r64 = call_recip_estimate(f64, 2045, fpst);
    r64_val = float64_val(r64);
    r64_exp = extract64(r64_val, 52, 11);
    r64_frac = extract64(r64_val, 0, 52);
7988

7989 7990 7991 7992
    /* result = sign : result_exp<10:0> : fraction<51:0> */
    return make_float64(f64_sbit |
                        ((r64_exp & 0x7ff) << 52) |
                        r64_frac);
P
pbrook 已提交
7993 7994
}

7995 7996 7997
/* The algorithm that must be used to calculate the estimate
 * is specified by the ARM ARM.
 */
7998
static float64 recip_sqrt_estimate(float64 a, float_status *real_fp_status)
7999
{
8000 8001 8002
    /* These calculations mustn't set any fp exception flags,
     * so we use a local copy of the fp_status.
     */
8003
    float_status dummy_status = *real_fp_status;
8004
    float_status *s = &dummy_status;
8005 8006 8007 8008 8009 8010 8011 8012 8013 8014 8015 8016 8017 8018 8019 8020 8021 8022 8023 8024 8025 8026 8027 8028 8029 8030 8031 8032 8033 8034 8035 8036 8037 8038 8039 8040 8041 8042 8043 8044 8045 8046 8047 8048 8049
    float64 q;
    int64_t q_int;

    if (float64_lt(a, float64_half, s)) {
        /* range 0.25 <= a < 0.5 */

        /* a in units of 1/512 rounded down */
        /* q0 = (int)(a * 512.0);  */
        q = float64_mul(float64_512, a, s);
        q_int = float64_to_int64_round_to_zero(q, s);

        /* reciprocal root r */
        /* r = 1.0 / sqrt(((double)q0 + 0.5) / 512.0);  */
        q = int64_to_float64(q_int, s);
        q = float64_add(q, float64_half, s);
        q = float64_div(q, float64_512, s);
        q = float64_sqrt(q, s);
        q = float64_div(float64_one, q, s);
    } else {
        /* range 0.5 <= a < 1.0 */

        /* a in units of 1/256 rounded down */
        /* q1 = (int)(a * 256.0); */
        q = float64_mul(float64_256, a, s);
        int64_t q_int = float64_to_int64_round_to_zero(q, s);

        /* reciprocal root r */
        /* r = 1.0 /sqrt(((double)q1 + 0.5) / 256); */
        q = int64_to_float64(q_int, s);
        q = float64_add(q, float64_half, s);
        q = float64_div(q, float64_256, s);
        q = float64_sqrt(q, s);
        q = float64_div(float64_one, q, s);
    }
    /* r in units of 1/256 rounded to nearest */
    /* s = (int)(256.0 * r + 0.5); */

    q = float64_mul(q, float64_256,s );
    q = float64_add(q, float64_half, s);
    q_int = float64_to_int64_round_to_zero(q, s);

    /* return (double)s / 256.0;*/
    return float64_div(int64_to_float64(q_int, s), float64_256, s);
}

8050
float32 HELPER(rsqrte_f32)(float32 input, void *fpstp)
P
pbrook 已提交
8051
{
8052 8053 8054 8055 8056 8057 8058 8059
    float_status *s = fpstp;
    float32 f32 = float32_squash_input_denormal(input, s);
    uint32_t val = float32_val(f32);
    uint32_t f32_sbit = 0x80000000 & val;
    int32_t f32_exp = extract32(val, 23, 8);
    uint32_t f32_frac = extract32(val, 0, 23);
    uint64_t f64_frac;
    uint64_t val64;
8060 8061 8062
    int result_exp;
    float64 f64;

8063 8064 8065
    if (float32_is_any_nan(f32)) {
        float32 nan = f32;
        if (float32_is_signaling_nan(f32)) {
8066
            float_raise(float_flag_invalid, s);
8067
            nan = float32_maybe_silence_nan(f32);
8068
        }
8069 8070
        if (s->default_nan_mode) {
            nan =  float32_default_nan;
8071
        }
8072 8073
        return nan;
    } else if (float32_is_zero(f32)) {
8074
        float_raise(float_flag_divbyzero, s);
8075 8076
        return float32_set_sign(float32_infinity, float32_is_neg(f32));
    } else if (float32_is_neg(f32)) {
8077 8078
        float_raise(float_flag_invalid, s);
        return float32_default_nan;
8079
    } else if (float32_is_infinity(f32)) {
8080 8081 8082
        return float32_zero;
    }

8083
    /* Scale and normalize to a double-precision value between 0.25 and 1.0,
8084
     * preserving the parity of the exponent.  */
8085 8086 8087 8088 8089 8090 8091 8092 8093 8094 8095 8096

    f64_frac = ((uint64_t) f32_frac) << 29;
    if (f32_exp == 0) {
        while (extract64(f64_frac, 51, 1) == 0) {
            f64_frac = f64_frac << 1;
            f32_exp = f32_exp-1;
        }
        f64_frac = extract64(f64_frac, 0, 51) << 1;
    }

    if (extract64(f32_exp, 0, 1) == 0) {
        f64 = make_float64(((uint64_t) f32_sbit) << 32
8097
                           | (0x3feULL << 52)
8098
                           | f64_frac);
8099
    } else {
8100
        f64 = make_float64(((uint64_t) f32_sbit) << 32
8101
                           | (0x3fdULL << 52)
8102
                           | f64_frac);
8103 8104
    }

8105
    result_exp = (380 - f32_exp) / 2;
8106

8107
    f64 = recip_sqrt_estimate(f64, s);
8108 8109 8110

    val64 = float64_val(f64);

8111
    val = ((result_exp & 0xff) << 23)
8112 8113
        | ((val64 >> 29)  & 0x7fffff);
    return make_float32(val);
P
pbrook 已提交
8114 8115
}

8116 8117 8118 8119 8120 8121 8122 8123 8124 8125 8126 8127 8128 8129 8130 8131 8132 8133 8134 8135 8136 8137 8138 8139 8140 8141 8142 8143 8144 8145 8146 8147 8148 8149 8150 8151 8152 8153 8154 8155 8156 8157 8158 8159 8160 8161 8162 8163 8164 8165 8166 8167 8168 8169 8170 8171 8172 8173 8174 8175 8176 8177 8178
float64 HELPER(rsqrte_f64)(float64 input, void *fpstp)
{
    float_status *s = fpstp;
    float64 f64 = float64_squash_input_denormal(input, s);
    uint64_t val = float64_val(f64);
    uint64_t f64_sbit = 0x8000000000000000ULL & val;
    int64_t f64_exp = extract64(val, 52, 11);
    uint64_t f64_frac = extract64(val, 0, 52);
    int64_t result_exp;
    uint64_t result_frac;

    if (float64_is_any_nan(f64)) {
        float64 nan = f64;
        if (float64_is_signaling_nan(f64)) {
            float_raise(float_flag_invalid, s);
            nan = float64_maybe_silence_nan(f64);
        }
        if (s->default_nan_mode) {
            nan =  float64_default_nan;
        }
        return nan;
    } else if (float64_is_zero(f64)) {
        float_raise(float_flag_divbyzero, s);
        return float64_set_sign(float64_infinity, float64_is_neg(f64));
    } else if (float64_is_neg(f64)) {
        float_raise(float_flag_invalid, s);
        return float64_default_nan;
    } else if (float64_is_infinity(f64)) {
        return float64_zero;
    }

    /* Scale and normalize to a double-precision value between 0.25 and 1.0,
     * preserving the parity of the exponent.  */

    if (f64_exp == 0) {
        while (extract64(f64_frac, 51, 1) == 0) {
            f64_frac = f64_frac << 1;
            f64_exp = f64_exp - 1;
        }
        f64_frac = extract64(f64_frac, 0, 51) << 1;
    }

    if (extract64(f64_exp, 0, 1) == 0) {
        f64 = make_float64(f64_sbit
                           | (0x3feULL << 52)
                           | f64_frac);
    } else {
        f64 = make_float64(f64_sbit
                           | (0x3fdULL << 52)
                           | f64_frac);
    }

    result_exp = (3068 - f64_exp) / 2;

    f64 = recip_sqrt_estimate(f64, s);

    result_frac = extract64(float64_val(f64), 0, 52);

    return make_float64(f64_sbit |
                        ((result_exp & 0x7ff) << 52) |
                        result_frac);
}

8179
uint32_t HELPER(recpe_u32)(uint32_t a, void *fpstp)
P
pbrook 已提交
8180
{
8181
    float_status *s = fpstp;
8182 8183 8184 8185 8186 8187 8188 8189 8190
    float64 f64;

    if ((a & 0x80000000) == 0) {
        return 0xffffffff;
    }

    f64 = make_float64((0x3feULL << 52)
                       | ((int64_t)(a & 0x7fffffff) << 21));

8191
    f64 = recip_estimate(f64, s);
8192 8193

    return 0x80000000 | ((float64_val(f64) >> 21) & 0x7fffffff);
P
pbrook 已提交
8194 8195
}

8196
uint32_t HELPER(rsqrte_u32)(uint32_t a, void *fpstp)
P
pbrook 已提交
8197
{
8198
    float_status *fpst = fpstp;
8199 8200 8201 8202 8203 8204 8205 8206 8207 8208 8209 8210 8211 8212
    float64 f64;

    if ((a & 0xc0000000) == 0) {
        return 0xffffffff;
    }

    if (a & 0x80000000) {
        f64 = make_float64((0x3feULL << 52)
                           | ((uint64_t)(a & 0x7fffffff) << 21));
    } else { /* bits 31-30 == '01' */
        f64 = make_float64((0x3fdULL << 52)
                           | ((uint64_t)(a & 0x3fffffff) << 22));
    }

8213
    f64 = recip_sqrt_estimate(f64, fpst);
8214 8215

    return 0x80000000 | ((float64_val(f64) >> 21) & 0x7fffffff);
P
pbrook 已提交
8216
}
8217

8218 8219 8220 8221 8222 8223 8224 8225 8226 8227 8228 8229
/* VFPv4 fused multiply-accumulate */
float32 VFP_HELPER(muladd, s)(float32 a, float32 b, float32 c, void *fpstp)
{
    float_status *fpst = fpstp;
    return float32_muladd(a, b, c, 0, fpst);
}

float64 VFP_HELPER(muladd, d)(float64 a, float64 b, float64 c, void *fpstp)
{
    float_status *fpst = fpstp;
    return float64_muladd(a, b, c, 0, fpst);
}
8230 8231 8232 8233 8234 8235 8236 8237 8238 8239 8240 8241 8242 8243 8244 8245 8246 8247 8248 8249 8250 8251 8252 8253 8254 8255 8256 8257 8258 8259 8260 8261 8262 8263 8264 8265 8266 8267 8268 8269 8270 8271 8272 8273 8274

/* ARMv8 round to integral */
float32 HELPER(rints_exact)(float32 x, void *fp_status)
{
    return float32_round_to_int(x, fp_status);
}

float64 HELPER(rintd_exact)(float64 x, void *fp_status)
{
    return float64_round_to_int(x, fp_status);
}

float32 HELPER(rints)(float32 x, void *fp_status)
{
    int old_flags = get_float_exception_flags(fp_status), new_flags;
    float32 ret;

    ret = float32_round_to_int(x, fp_status);

    /* Suppress any inexact exceptions the conversion produced */
    if (!(old_flags & float_flag_inexact)) {
        new_flags = get_float_exception_flags(fp_status);
        set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status);
    }

    return ret;
}

float64 HELPER(rintd)(float64 x, void *fp_status)
{
    int old_flags = get_float_exception_flags(fp_status), new_flags;
    float64 ret;

    ret = float64_round_to_int(x, fp_status);

    new_flags = get_float_exception_flags(fp_status);

    /* Suppress any inexact exceptions the conversion produced */
    if (!(old_flags & float_flag_inexact)) {
        new_flags = get_float_exception_flags(fp_status);
        set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status);
    }

    return ret;
}
8275 8276 8277 8278 8279 8280 8281 8282 8283 8284 8285 8286 8287 8288 8289 8290 8291 8292 8293 8294 8295 8296 8297 8298 8299 8300 8301 8302

/* Convert ARM rounding mode to softfloat */
int arm_rmode_to_sf(int rmode)
{
    switch (rmode) {
    case FPROUNDING_TIEAWAY:
        rmode = float_round_ties_away;
        break;
    case FPROUNDING_ODD:
        /* FIXME: add support for TIEAWAY and ODD */
        qemu_log_mask(LOG_UNIMP, "arm: unimplemented rounding mode: %d\n",
                      rmode);
    case FPROUNDING_TIEEVEN:
    default:
        rmode = float_round_nearest_even;
        break;
    case FPROUNDING_POSINF:
        rmode = float_round_up;
        break;
    case FPROUNDING_NEGINF:
        rmode = float_round_down;
        break;
    case FPROUNDING_ZERO:
        rmode = float_round_to_zero;
        break;
    }
    return rmode;
}
8303

8304 8305 8306 8307
/* CRC helpers.
 * The upper bytes of val (above the number specified by 'bytes') must have
 * been zeroed out by the caller.
 */
8308 8309 8310 8311
uint32_t HELPER(crc32)(uint32_t acc, uint32_t val, uint32_t bytes)
{
    uint8_t buf[4];

8312
    stl_le_p(buf, val);
8313 8314 8315 8316 8317 8318 8319 8320 8321

    /* zlib crc32 converts the accumulator and output to one's complement.  */
    return crc32(acc ^ 0xffffffff, buf, bytes) ^ 0xffffffff;
}

uint32_t HELPER(crc32c)(uint32_t acc, uint32_t val, uint32_t bytes)
{
    uint8_t buf[4];

8322
    stl_le_p(buf, val);
8323 8324 8325 8326

    /* Linux crc32c converts the output to one's complement.  */
    return crc32c(acc, buf, bytes) ^ 0xffffffff;
}