helper.c 161.0 KB
Newer Older
B
bellard 已提交
1
#include "cpu.h"
2
#include "exec/gdbstub.h"
L
Lluís 已提交
3
#include "helper.h"
4
#include "qemu/host-utils.h"
5
#include "sysemu/arch_init.h"
6
#include "sysemu/sysemu.h"
7
#include "qemu/bitops.h"
8 9
#include "qemu/crc32c.h"
#include <zlib.h> /* For crc32 */
P
Peter Maydell 已提交
10

11 12 13
#ifndef CONFIG_USER_ONLY
static inline int get_phys_addr(CPUARMState *env, uint32_t address,
                                int access_type, int is_user,
A
Avi Kivity 已提交
14
                                hwaddr *phys_ptr, int *prot,
15
                                target_ulong *page_size);
16 17 18 19 20

/* Definitions for the PMCCNTR and PMCR registers */
#define PMCRD   0x8
#define PMCRC   0x4
#define PMCRE   0x1
21 22
#endif

23
static int vfp_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg)
P
pbrook 已提交
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49
{
    int nregs;

    /* VFP data registers are always little-endian.  */
    nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16;
    if (reg < nregs) {
        stfq_le_p(buf, env->vfp.regs[reg]);
        return 8;
    }
    if (arm_feature(env, ARM_FEATURE_NEON)) {
        /* Aliases for Q regs.  */
        nregs += 16;
        if (reg < nregs) {
            stfq_le_p(buf, env->vfp.regs[(reg - 32) * 2]);
            stfq_le_p(buf + 8, env->vfp.regs[(reg - 32) * 2 + 1]);
            return 16;
        }
    }
    switch (reg - nregs) {
    case 0: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSID]); return 4;
    case 1: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSCR]); return 4;
    case 2: stl_p(buf, env->vfp.xregs[ARM_VFP_FPEXC]); return 4;
    }
    return 0;
}

50
static int vfp_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg)
P
pbrook 已提交
51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69
{
    int nregs;

    nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16;
    if (reg < nregs) {
        env->vfp.regs[reg] = ldfq_le_p(buf);
        return 8;
    }
    if (arm_feature(env, ARM_FEATURE_NEON)) {
        nregs += 16;
        if (reg < nregs) {
            env->vfp.regs[(reg - 32) * 2] = ldfq_le_p(buf);
            env->vfp.regs[(reg - 32) * 2 + 1] = ldfq_le_p(buf + 8);
            return 16;
        }
    }
    switch (reg - nregs) {
    case 0: env->vfp.xregs[ARM_VFP_FPSID] = ldl_p(buf); return 4;
    case 1: env->vfp.xregs[ARM_VFP_FPSCR] = ldl_p(buf); return 4;
70
    case 2: env->vfp.xregs[ARM_VFP_FPEXC] = ldl_p(buf) & (1 << 30); return 4;
P
pbrook 已提交
71 72 73 74
    }
    return 0;
}

75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116
static int aarch64_fpu_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg)
{
    switch (reg) {
    case 0 ... 31:
        /* 128 bit FP register */
        stfq_le_p(buf, env->vfp.regs[reg * 2]);
        stfq_le_p(buf + 8, env->vfp.regs[reg * 2 + 1]);
        return 16;
    case 32:
        /* FPSR */
        stl_p(buf, vfp_get_fpsr(env));
        return 4;
    case 33:
        /* FPCR */
        stl_p(buf, vfp_get_fpcr(env));
        return 4;
    default:
        return 0;
    }
}

static int aarch64_fpu_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg)
{
    switch (reg) {
    case 0 ... 31:
        /* 128 bit FP register */
        env->vfp.regs[reg * 2] = ldfq_le_p(buf);
        env->vfp.regs[reg * 2 + 1] = ldfq_le_p(buf + 8);
        return 16;
    case 32:
        /* FPSR */
        vfp_set_fpsr(env, ldl_p(buf));
        return 4;
    case 33:
        /* FPCR */
        vfp_set_fpcr(env, ldl_p(buf));
        return 4;
    default:
        return 0;
    }
}

117
static uint64_t raw_read(CPUARMState *env, const ARMCPRegInfo *ri)
118
{
119
    if (cpreg_field_is_64bit(ri)) {
120
        return CPREG_FIELD64(env, ri);
121
    } else {
122
        return CPREG_FIELD32(env, ri);
123
    }
124 125
}

126 127
static void raw_write(CPUARMState *env, const ARMCPRegInfo *ri,
                      uint64_t value)
128
{
129
    if (cpreg_field_is_64bit(ri)) {
130 131 132 133
        CPREG_FIELD64(env, ri) = value;
    } else {
        CPREG_FIELD32(env, ri) = value;
    }
134 135
}

136
static uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri)
137
{
138
    /* Raw read of a coprocessor register (as needed for migration, etc). */
139
    if (ri->type & ARM_CP_CONST) {
140
        return ri->resetvalue;
141
    } else if (ri->raw_readfn) {
142
        return ri->raw_readfn(env, ri);
143
    } else if (ri->readfn) {
144
        return ri->readfn(env, ri);
145
    } else {
146
        return raw_read(env, ri);
147 148 149
    }
}

150
static void write_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri,
151
                             uint64_t v)
152 153 154 155 156 157 158
{
    /* Raw write of a coprocessor register (as needed for migration, etc).
     * Note that constant registers are treated as write-ignored; the
     * caller should check for success by whether a readback gives the
     * value written.
     */
    if (ri->type & ARM_CP_CONST) {
159
        return;
160
    } else if (ri->raw_writefn) {
161
        ri->raw_writefn(env, ri, v);
162
    } else if (ri->writefn) {
163
        ri->writefn(env, ri, v);
164
    } else {
165
        raw_write(env, ri, v);
166 167 168 169 170 171 172 173 174 175 176 177
    }
}

bool write_cpustate_to_list(ARMCPU *cpu)
{
    /* Write the coprocessor state from cpu->env to the (index,value) list. */
    int i;
    bool ok = true;

    for (i = 0; i < cpu->cpreg_array_len; i++) {
        uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
        const ARMCPRegInfo *ri;
178

179
        ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
180 181 182 183 184 185 186
        if (!ri) {
            ok = false;
            continue;
        }
        if (ri->type & ARM_CP_NO_MIGRATE) {
            continue;
        }
187
        cpu->cpreg_values[i] = read_raw_cp_reg(&cpu->env, ri);
188 189 190 191 192 193 194 195 196 197 198 199 200 201
    }
    return ok;
}

bool write_list_to_cpustate(ARMCPU *cpu)
{
    int i;
    bool ok = true;

    for (i = 0; i < cpu->cpreg_array_len; i++) {
        uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
        uint64_t v = cpu->cpreg_values[i];
        const ARMCPRegInfo *ri;

202
        ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
203 204 205 206 207 208 209 210 211 212 213
        if (!ri) {
            ok = false;
            continue;
        }
        if (ri->type & ARM_CP_NO_MIGRATE) {
            continue;
        }
        /* Write value and confirm it reads back as written
         * (to catch read-only registers and partially read-only
         * registers where the incoming migration value doesn't match)
         */
214 215
        write_raw_cp_reg(&cpu->env, ri, v);
        if (read_raw_cp_reg(&cpu->env, ri) != v) {
216 217 218 219 220 221 222 223 224 225 226 227 228
            ok = false;
        }
    }
    return ok;
}

static void add_cpreg_to_list(gpointer key, gpointer opaque)
{
    ARMCPU *cpu = opaque;
    uint64_t regidx;
    const ARMCPRegInfo *ri;

    regidx = *(uint32_t *)key;
229
    ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
230 231 232 233 234 235 236 237 238 239 240 241 242 243 244

    if (!(ri->type & ARM_CP_NO_MIGRATE)) {
        cpu->cpreg_indexes[cpu->cpreg_array_len] = cpreg_to_kvm_id(regidx);
        /* The value array need not be initialized at this point */
        cpu->cpreg_array_len++;
    }
}

static void count_cpreg(gpointer key, gpointer opaque)
{
    ARMCPU *cpu = opaque;
    uint64_t regidx;
    const ARMCPRegInfo *ri;

    regidx = *(uint32_t *)key;
245
    ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
246 247 248 249 250 251 252 253

    if (!(ri->type & ARM_CP_NO_MIGRATE)) {
        cpu->cpreg_array_len++;
    }
}

static gint cpreg_key_compare(gconstpointer a, gconstpointer b)
{
254 255
    uint64_t aidx = cpreg_to_kvm_id(*(uint32_t *)a);
    uint64_t bidx = cpreg_to_kvm_id(*(uint32_t *)b);
256

257 258 259 260 261 262 263
    if (aidx > bidx) {
        return 1;
    }
    if (aidx < bidx) {
        return -1;
    }
    return 0;
264 265
}

266 267 268 269 270 271 272
static void cpreg_make_keylist(gpointer key, gpointer value, gpointer udata)
{
    GList **plist = udata;

    *plist = g_list_prepend(*plist, key);
}

273 274 275 276 277
void init_cpreg_list(ARMCPU *cpu)
{
    /* Initialise the cpreg_tuples[] array based on the cp_regs hash.
     * Note that we require cpreg_tuples[] to be sorted by key ID.
     */
278
    GList *keys = NULL;
279 280
    int arraylen;

281 282
    g_hash_table_foreach(cpu->cp_regs, cpreg_make_keylist, &keys);

283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303
    keys = g_list_sort(keys, cpreg_key_compare);

    cpu->cpreg_array_len = 0;

    g_list_foreach(keys, count_cpreg, cpu);

    arraylen = cpu->cpreg_array_len;
    cpu->cpreg_indexes = g_new(uint64_t, arraylen);
    cpu->cpreg_values = g_new(uint64_t, arraylen);
    cpu->cpreg_vmstate_indexes = g_new(uint64_t, arraylen);
    cpu->cpreg_vmstate_values = g_new(uint64_t, arraylen);
    cpu->cpreg_vmstate_array_len = cpu->cpreg_array_len;
    cpu->cpreg_array_len = 0;

    g_list_foreach(keys, add_cpreg_to_list, cpu);

    assert(cpu->cpreg_array_len == arraylen);

    g_list_free(keys);
}

304
static void dacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
305 306 307 308 309
{
    env->cp15.c3 = value;
    tlb_flush(env, 1); /* Flush TLB as domain not tracked in TLB */
}

310
static void fcse_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
311 312 313 314 315 316 317 318 319
{
    if (env->cp15.c13_fcse != value) {
        /* Unlike real hardware the qemu TLB uses virtual addresses,
         * not modified virtual addresses, so this causes a TLB flush.
         */
        tlb_flush(env, 1);
        env->cp15.c13_fcse = value;
    }
}
320 321 322

static void contextidr_write(CPUARMState *env, const ARMCPRegInfo *ri,
                             uint64_t value)
323 324 325 326 327 328 329 330 331 332 333
{
    if (env->cp15.c13_context != value && !arm_feature(env, ARM_FEATURE_MPU)) {
        /* For VMSA (when not using the LPAE long descriptor page table
         * format) this register includes the ASID, so do a TLB flush.
         * For PMSA it is purely a process ID and no action is needed.
         */
        tlb_flush(env, 1);
    }
    env->cp15.c13_context = value;
}

334 335
static void tlbiall_write(CPUARMState *env, const ARMCPRegInfo *ri,
                          uint64_t value)
336 337 338 339 340
{
    /* Invalidate all (TLBIALL) */
    tlb_flush(env, 1);
}

341 342
static void tlbimva_write(CPUARMState *env, const ARMCPRegInfo *ri,
                          uint64_t value)
343 344 345 346 347
{
    /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */
    tlb_flush_page(env, value & TARGET_PAGE_MASK);
}

348 349
static void tlbiasid_write(CPUARMState *env, const ARMCPRegInfo *ri,
                           uint64_t value)
350 351 352 353 354
{
    /* Invalidate by ASID (TLBIASID) */
    tlb_flush(env, value == 0);
}

355 356
static void tlbimvaa_write(CPUARMState *env, const ARMCPRegInfo *ri,
                           uint64_t value)
357 358 359 360 361
{
    /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */
    tlb_flush_page(env, value & TARGET_PAGE_MASK);
}

362 363 364 365 366 367 368
static const ARMCPRegInfo cp_reginfo[] = {
    /* DBGDIDR: just RAZ. In particular this means the "debug architecture
     * version" bits will read as a reserved value, which should cause
     * Linux to not try to use the debug hardware.
     */
    { .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0,
      .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
369 370 371 372
    /* MMU Domain access control / MPU write buffer control */
    { .name = "DACR", .cp = 15,
      .crn = 3, .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
      .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c3),
373
      .resetvalue = 0, .writefn = dacr_write, .raw_writefn = raw_write, },
374 375
    { .name = "FCSEIDR", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 0,
      .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c13_fcse),
376
      .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
377
    { .name = "CONTEXTIDR", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 1,
378
      .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c13_context),
379
      .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
380 381 382 383 384
    /* ??? This covers not just the impdef TLB lockdown registers but also
     * some v7VMSA registers relating to TEX remap, so it is overly broad.
     */
    { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = CP_ANY,
      .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
385 386 387 388
    /* MMU TLB control. Note that the wildcarding means we cover not just
     * the unified TLB ops but also the dside/iside/inner-shareable variants.
     */
    { .name = "TLBIALL", .cp = 15, .crn = 8, .crm = CP_ANY,
389 390
      .opc1 = CP_ANY, .opc2 = 0, .access = PL1_W, .writefn = tlbiall_write,
      .type = ARM_CP_NO_MIGRATE },
391
    { .name = "TLBIMVA", .cp = 15, .crn = 8, .crm = CP_ANY,
392 393
      .opc1 = CP_ANY, .opc2 = 1, .access = PL1_W, .writefn = tlbimva_write,
      .type = ARM_CP_NO_MIGRATE },
394
    { .name = "TLBIASID", .cp = 15, .crn = 8, .crm = CP_ANY,
395 396
      .opc1 = CP_ANY, .opc2 = 2, .access = PL1_W, .writefn = tlbiasid_write,
      .type = ARM_CP_NO_MIGRATE },
397
    { .name = "TLBIMVAA", .cp = 15, .crn = 8, .crm = CP_ANY,
398 399
      .opc1 = CP_ANY, .opc2 = 3, .access = PL1_W, .writefn = tlbimvaa_write,
      .type = ARM_CP_NO_MIGRATE },
400 401 402 403
    /* Cache maintenance ops; some of this space may be overridden later. */
    { .name = "CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
      .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
      .type = ARM_CP_NOP | ARM_CP_OVERRIDE },
404 405 406
    REGINFO_SENTINEL
};

407 408 409 410 411 412 413 414 415 416 417 418 419 420 421
static const ARMCPRegInfo not_v6_cp_reginfo[] = {
    /* Not all pre-v6 cores implemented this WFI, so this is slightly
     * over-broad.
     */
    { .name = "WFI_v5", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = 2,
      .access = PL1_W, .type = ARM_CP_WFI },
    REGINFO_SENTINEL
};

static const ARMCPRegInfo not_v7_cp_reginfo[] = {
    /* Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which
     * is UNPREDICTABLE; we choose to NOP as most implementations do).
     */
    { .name = "WFI_v6", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
      .access = PL1_W, .type = ARM_CP_WFI },
422 423 424 425 426 427 428 429 430 431
    /* L1 cache lockdown. Not architectural in v6 and earlier but in practice
     * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and
     * OMAPCP will override this space.
     */
    { .name = "DLOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 0,
      .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_data),
      .resetvalue = 0 },
    { .name = "ILOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 1,
      .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_insn),
      .resetvalue = 0 },
432 433
    /* v6 doesn't have the cache ID registers but Linux reads them anyway */
    { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = CP_ANY,
434 435
      .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_MIGRATE,
      .resetvalue = 0 },
436 437 438
    REGINFO_SENTINEL
};

439 440
static void cpacr_write(CPUARMState *env, const ARMCPRegInfo *ri,
                        uint64_t value)
441 442 443 444 445 446 447 448
{
    if (env->cp15.c1_coproc != value) {
        env->cp15.c1_coproc = value;
        /* ??? Is this safe when called from within a TB?  */
        tb_flush(env);
    }
}

449 450 451 452 453 454 455
static const ARMCPRegInfo v6_cp_reginfo[] = {
    /* prefetch by MVA in v6, NOP in v7 */
    { .name = "MVA_prefetch",
      .cp = 15, .crn = 7, .crm = 13, .opc1 = 0, .opc2 = 1,
      .access = PL1_W, .type = ARM_CP_NOP },
    { .name = "ISB", .cp = 15, .crn = 7, .crm = 5, .opc1 = 0, .opc2 = 4,
      .access = PL0_W, .type = ARM_CP_NOP },
456
    { .name = "DSB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 4,
457
      .access = PL0_W, .type = ARM_CP_NOP },
458
    { .name = "DMB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 5,
459
      .access = PL0_W, .type = ARM_CP_NOP },
460 461 462 463 464 465 466 467
    { .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 2,
      .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c6_insn),
      .resetvalue = 0, },
    /* Watchpoint Fault Address Register : should actually only be present
     * for 1136, 1176, 11MPCore.
     */
    { .name = "WFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1,
      .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, },
468 469
    { .name = "CPACR", .state = ARM_CP_STATE_BOTH, .opc0 = 3,
      .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 2,
470 471
      .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c1_coproc),
      .resetvalue = 0, .writefn = cpacr_write },
472 473 474
    REGINFO_SENTINEL
};

475
static CPAccessResult pmreg_access(CPUARMState *env, const ARMCPRegInfo *ri)
476
{
477 478
    /* Perfomance monitor registers user accessibility is controlled
     * by PMUSERENR.
479 480
     */
    if (arm_current_pl(env) == 0 && !env->cp15.c9_pmuserenr) {
481
        return CP_ACCESS_TRAP;
482
    }
483
    return CP_ACCESS_OK;
484 485
}

486
#ifndef CONFIG_USER_ONLY
487 488
static void pmcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
                       uint64_t value)
489
{
490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510
    /* Don't computer the number of ticks in user mode */
    uint32_t temp_ticks;

    temp_ticks = qemu_clock_get_us(QEMU_CLOCK_VIRTUAL) *
                  get_ticks_per_sec() / 1000000;

    if (env->cp15.c9_pmcr & PMCRE) {
        /* If the counter is enabled */
        if (env->cp15.c9_pmcr & PMCRD) {
            /* Increment once every 64 processor clock cycles */
            env->cp15.c15_ccnt = (temp_ticks/64) - env->cp15.c15_ccnt;
        } else {
            env->cp15.c15_ccnt = temp_ticks - env->cp15.c15_ccnt;
        }
    }

    if (value & PMCRC) {
        /* The counter has been reset */
        env->cp15.c15_ccnt = 0;
    }

511 512 513
    /* only the DP, X, D and E bits are writable */
    env->cp15.c9_pmcr &= ~0x39;
    env->cp15.c9_pmcr |= (value & 0x39);
514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561

    if (env->cp15.c9_pmcr & PMCRE) {
        if (env->cp15.c9_pmcr & PMCRD) {
            /* Increment once every 64 processor clock cycles */
            temp_ticks /= 64;
        }
        env->cp15.c15_ccnt = temp_ticks - env->cp15.c15_ccnt;
    }
}

static uint64_t pmccntr_read(CPUARMState *env, const ARMCPRegInfo *ri)
{
    uint32_t total_ticks;

    if (!(env->cp15.c9_pmcr & PMCRE)) {
        /* Counter is disabled, do not change value */
        return env->cp15.c15_ccnt;
    }

    total_ticks = qemu_clock_get_us(QEMU_CLOCK_VIRTUAL) *
                  get_ticks_per_sec() / 1000000;

    if (env->cp15.c9_pmcr & PMCRD) {
        /* Increment once every 64 processor clock cycles */
        total_ticks /= 64;
    }
    return total_ticks - env->cp15.c15_ccnt;
}

static void pmccntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
                        uint64_t value)
{
    uint32_t total_ticks;

    if (!(env->cp15.c9_pmcr & PMCRE)) {
        /* Counter is disabled, set the absolute value */
        env->cp15.c15_ccnt = value;
        return;
    }

    total_ticks = qemu_clock_get_us(QEMU_CLOCK_VIRTUAL) *
                  get_ticks_per_sec() / 1000000;

    if (env->cp15.c9_pmcr & PMCRD) {
        /* Increment once every 64 processor clock cycles */
        total_ticks /= 64;
    }
    env->cp15.c15_ccnt = total_ticks - value;
562
}
563
#endif
564

565
static void pmcntenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
566 567 568 569 570 571
                            uint64_t value)
{
    value &= (1 << 31);
    env->cp15.c9_pmcnten |= value;
}

572 573
static void pmcntenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
                             uint64_t value)
574 575 576 577 578
{
    value &= (1 << 31);
    env->cp15.c9_pmcnten &= ~value;
}

579 580
static void pmovsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
                         uint64_t value)
581 582 583 584
{
    env->cp15.c9_pmovsr &= ~value;
}

585 586
static void pmxevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri,
                             uint64_t value)
587 588 589 590
{
    env->cp15.c9_pmxevtyper = value & 0xff;
}

591
static void pmuserenr_write(CPUARMState *env, const ARMCPRegInfo *ri,
592 593 594 595 596
                            uint64_t value)
{
    env->cp15.c9_pmuserenr = value & 1;
}

597 598
static void pmintenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
                             uint64_t value)
599 600 601 602 603 604
{
    /* We have no event counters so only the C bit can be changed */
    value &= (1 << 31);
    env->cp15.c9_pminten |= value;
}

605 606
static void pmintenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
                             uint64_t value)
607 608 609 610 611
{
    value &= (1 << 31);
    env->cp15.c9_pminten &= ~value;
}

612 613
static void vbar_write(CPUARMState *env, const ARMCPRegInfo *ri,
                       uint64_t value)
N
Nathan Rossi 已提交
614
{
615 616 617 618 619 620
    /* Note that even though the AArch64 view of this register has bits
     * [10:0] all RES0 we can only mask the bottom 5, to comply with the
     * architectural requirements for bits which are RES0 only in some
     * contexts. (ARMv8 would permit us to do no masking at all, but ARMv7
     * requires the bottom five bits to be RAZ/WI because they're UNK/SBZP.)
     */
N
Nathan Rossi 已提交
621 622 623
    env->cp15.c12_vbar = value & ~0x1Ful;
}

624
static uint64_t ccsidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
625 626
{
    ARMCPU *cpu = arm_env_get_cpu(env);
627
    return cpu->ccsidr[env->cp15.c0_cssel];
628 629
}

630 631
static void csselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
                         uint64_t value)
632 633 634 635
{
    env->cp15.c0_cssel = value & 0xf;
}

636 637 638 639 640 641
static const ARMCPRegInfo v7_cp_reginfo[] = {
    /* DBGDRAR, DBGDSAR: always RAZ since we don't implement memory mapped
     * debug components
     */
    { .name = "DBGDRAR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 0,
      .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
642
    { .name = "DBGDSAR", .cp = 14, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
643
      .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
644 645 646
    /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */
    { .name = "NOP", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
      .access = PL1_W, .type = ARM_CP_NOP },
647 648 649 650 651 652 653 654 655 656 657 658 659 660
    /* Performance monitors are implementation defined in v7,
     * but with an ARM recommended set of registers, which we
     * follow (although we don't actually implement any counters)
     *
     * Performance registers fall into three categories:
     *  (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR)
     *  (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR)
     *  (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others)
     * For the cases controlled by PMUSERENR we must set .access to PL0_RW
     * or PL0_RO as appropriate and then check PMUSERENR in the helper fn.
     */
    { .name = "PMCNTENSET", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 1,
      .access = PL0_RW, .resetvalue = 0,
      .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten),
661 662 663
      .writefn = pmcntenset_write,
      .accessfn = pmreg_access,
      .raw_writefn = raw_write },
664 665
    { .name = "PMCNTENCLR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 2,
      .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten),
666 667
      .accessfn = pmreg_access,
      .writefn = pmcntenclr_write,
668
      .type = ARM_CP_NO_MIGRATE },
669 670
    { .name = "PMOVSR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 3,
      .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
671 672 673 674
      .accessfn = pmreg_access,
      .writefn = pmovsr_write,
      .raw_writefn = raw_write },
    /* Unimplemented so WI. */
675
    { .name = "PMSWINC", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 4,
676
      .access = PL0_W, .accessfn = pmreg_access, .type = ARM_CP_NOP },
677
    /* Since we don't implement any events, writing to PMSELR is UNPREDICTABLE.
678
     * We choose to RAZ/WI.
679 680
     */
    { .name = "PMSELR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 5,
681 682
      .access = PL0_RW, .type = ARM_CP_CONST, .resetvalue = 0,
      .accessfn = pmreg_access },
683
#ifndef CONFIG_USER_ONLY
684
    { .name = "PMCCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 0,
685 686
      .access = PL0_RW, .resetvalue = 0, .type = ARM_CP_IO,
      .readfn = pmccntr_read, .writefn = pmccntr_write,
687
      .accessfn = pmreg_access },
688
#endif
689 690 691
    { .name = "PMXEVTYPER", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 1,
      .access = PL0_RW,
      .fieldoffset = offsetof(CPUARMState, cp15.c9_pmxevtyper),
692 693 694
      .accessfn = pmreg_access, .writefn = pmxevtyper_write,
      .raw_writefn = raw_write },
    /* Unimplemented, RAZ/WI. */
695
    { .name = "PMXEVCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 2,
696 697
      .access = PL0_RW, .type = ARM_CP_CONST, .resetvalue = 0,
      .accessfn = pmreg_access },
698 699 700 701
    { .name = "PMUSERENR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 0,
      .access = PL0_R | PL1_RW,
      .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr),
      .resetvalue = 0,
702
      .writefn = pmuserenr_write, .raw_writefn = raw_write },
703 704 705 706
    { .name = "PMINTENSET", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 1,
      .access = PL1_RW,
      .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
      .resetvalue = 0,
707
      .writefn = pmintenset_write, .raw_writefn = raw_write },
708
    { .name = "PMINTENCLR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 2,
709
      .access = PL1_RW, .type = ARM_CP_NO_MIGRATE,
710
      .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
711
      .resetvalue = 0, .writefn = pmintenclr_write, },
712 713
    { .name = "VBAR", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .crn = 12, .crm = 0, .opc1 = 0, .opc2 = 0,
N
Nathan Rossi 已提交
714 715 716
      .access = PL1_RW, .writefn = vbar_write,
      .fieldoffset = offsetof(CPUARMState, cp15.c12_vbar),
      .resetvalue = 0 },
717 718 719
    { .name = "SCR", .cp = 15, .crn = 1, .crm = 1, .opc1 = 0, .opc2 = 0,
      .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c1_scr),
      .resetvalue = 0, },
720 721
    { .name = "CCSIDR", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 0,
722
      .access = PL1_R, .readfn = ccsidr_read, .type = ARM_CP_NO_MIGRATE },
723 724
    { .name = "CSSELR", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 2, .opc2 = 0,
725 726 727 728 729 730 731
      .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c0_cssel),
      .writefn = csselr_write, .resetvalue = 0 },
    /* Auxiliary ID register: this actually has an IMPDEF value but for now
     * just RAZ for all cores:
     */
    { .name = "AIDR", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 7,
      .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751
    /* MAIR can just read-as-written because we don't implement caches
     * and so don't need to care about memory attributes.
     */
    { .name = "MAIR_EL1", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0,
      .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el1),
      .resetvalue = 0 },
    /* For non-long-descriptor page tables these are PRRR and NMRR;
     * regardless they still act as reads-as-written for QEMU.
     * The override is necessary because of the overly-broad TLB_LOCKDOWN
     * definition.
     */
    { .name = "MAIR0", .state = ARM_CP_STATE_AA32, .type = ARM_CP_OVERRIDE,
      .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, .access = PL1_RW,
      .fieldoffset = offsetoflow32(CPUARMState, cp15.mair_el1),
      .resetfn = arm_cp_reset_ignore },
    { .name = "MAIR1", .state = ARM_CP_STATE_AA32, .type = ARM_CP_OVERRIDE,
      .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 1, .access = PL1_RW,
      .fieldoffset = offsetofhigh32(CPUARMState, cp15.mair_el1),
      .resetfn = arm_cp_reset_ignore },
752 753 754
    REGINFO_SENTINEL
};

755 756
static void teecr_write(CPUARMState *env, const ARMCPRegInfo *ri,
                        uint64_t value)
757 758 759 760 761
{
    value &= 1;
    env->teecr = value;
}

762
static CPAccessResult teehbr_access(CPUARMState *env, const ARMCPRegInfo *ri)
763 764
{
    if (arm_current_pl(env) == 0 && (env->teecr & 1)) {
765
        return CP_ACCESS_TRAP;
766
    }
767
    return CP_ACCESS_OK;
768 769 770 771 772 773 774 775 776
}

static const ARMCPRegInfo t2ee_cp_reginfo[] = {
    { .name = "TEECR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 6, .opc2 = 0,
      .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, teecr),
      .resetvalue = 0,
      .writefn = teecr_write },
    { .name = "TEEHBR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 6, .opc2 = 0,
      .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, teehbr),
777
      .accessfn = teehbr_access, .resetvalue = 0 },
778 779 780
    REGINFO_SENTINEL
};

781
static const ARMCPRegInfo v6k_cp_reginfo[] = {
782 783 784 785
    { .name = "TPIDR_EL0", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 3, .opc2 = 2, .crn = 13, .crm = 0,
      .access = PL0_RW,
      .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el0), .resetvalue = 0 },
786 787
    { .name = "TPIDRURW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 2,
      .access = PL0_RW,
788 789 790 791 792 793
      .fieldoffset = offsetoflow32(CPUARMState, cp15.tpidr_el0),
      .resetfn = arm_cp_reset_ignore },
    { .name = "TPIDRRO_EL0", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 3, .opc2 = 3, .crn = 13, .crm = 0,
      .access = PL0_R|PL1_W,
      .fieldoffset = offsetof(CPUARMState, cp15.tpidrro_el0), .resetvalue = 0 },
794 795
    { .name = "TPIDRURO", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 3,
      .access = PL0_R|PL1_W,
796 797 798 799
      .fieldoffset = offsetoflow32(CPUARMState, cp15.tpidrro_el0),
      .resetfn = arm_cp_reset_ignore },
    { .name = "TPIDR_EL1", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .opc1 = 0, .opc2 = 4, .crn = 13, .crm = 0,
800
      .access = PL1_RW,
801
      .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el1), .resetvalue = 0 },
802 803 804
    REGINFO_SENTINEL
};

805 806
#ifndef CONFIG_USER_ONLY

807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859
static CPAccessResult gt_cntfrq_access(CPUARMState *env, const ARMCPRegInfo *ri)
{
    /* CNTFRQ: not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero */
    if (arm_current_pl(env) == 0 && !extract32(env->cp15.c14_cntkctl, 0, 2)) {
        return CP_ACCESS_TRAP;
    }
    return CP_ACCESS_OK;
}

static CPAccessResult gt_counter_access(CPUARMState *env, int timeridx)
{
    /* CNT[PV]CT: not visible from PL0 if ELO[PV]CTEN is zero */
    if (arm_current_pl(env) == 0 &&
        !extract32(env->cp15.c14_cntkctl, timeridx, 1)) {
        return CP_ACCESS_TRAP;
    }
    return CP_ACCESS_OK;
}

static CPAccessResult gt_timer_access(CPUARMState *env, int timeridx)
{
    /* CNT[PV]_CVAL, CNT[PV]_CTL, CNT[PV]_TVAL: not visible from PL0 if
     * EL0[PV]TEN is zero.
     */
    if (arm_current_pl(env) == 0 &&
        !extract32(env->cp15.c14_cntkctl, 9 - timeridx, 1)) {
        return CP_ACCESS_TRAP;
    }
    return CP_ACCESS_OK;
}

static CPAccessResult gt_pct_access(CPUARMState *env,
                                         const ARMCPRegInfo *ri)
{
    return gt_counter_access(env, GTIMER_PHYS);
}

static CPAccessResult gt_vct_access(CPUARMState *env,
                                         const ARMCPRegInfo *ri)
{
    return gt_counter_access(env, GTIMER_VIRT);
}

static CPAccessResult gt_ptimer_access(CPUARMState *env, const ARMCPRegInfo *ri)
{
    return gt_timer_access(env, GTIMER_PHYS);
}

static CPAccessResult gt_vtimer_access(CPUARMState *env, const ARMCPRegInfo *ri)
{
    return gt_timer_access(env, GTIMER_VIRT);
}

860 861
static uint64_t gt_get_countervalue(CPUARMState *env)
{
862
    return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / GTIMER_SCALE;
863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895
}

static void gt_recalc_timer(ARMCPU *cpu, int timeridx)
{
    ARMGenericTimer *gt = &cpu->env.cp15.c14_timer[timeridx];

    if (gt->ctl & 1) {
        /* Timer enabled: calculate and set current ISTATUS, irq, and
         * reset timer to when ISTATUS next has to change
         */
        uint64_t count = gt_get_countervalue(&cpu->env);
        /* Note that this must be unsigned 64 bit arithmetic: */
        int istatus = count >= gt->cval;
        uint64_t nexttick;

        gt->ctl = deposit32(gt->ctl, 2, 1, istatus);
        qemu_set_irq(cpu->gt_timer_outputs[timeridx],
                     (istatus && !(gt->ctl & 2)));
        if (istatus) {
            /* Next transition is when count rolls back over to zero */
            nexttick = UINT64_MAX;
        } else {
            /* Next transition is when we hit cval */
            nexttick = gt->cval;
        }
        /* Note that the desired next expiry time might be beyond the
         * signed-64-bit range of a QEMUTimer -- in this case we just
         * set the timer for as far in the future as possible. When the
         * timer expires we will reset the timer for any remaining period.
         */
        if (nexttick > INT64_MAX / GTIMER_SCALE) {
            nexttick = INT64_MAX / GTIMER_SCALE;
        }
896
        timer_mod(cpu->gt_timer[timeridx], nexttick);
897 898 899 900
    } else {
        /* Timer disabled: ISTATUS and timer output always clear */
        gt->ctl &= ~4;
        qemu_set_irq(cpu->gt_timer_outputs[timeridx], 0);
901
        timer_del(cpu->gt_timer[timeridx]);
902 903 904 905 906 907 908 909
    }
}

static void gt_cnt_reset(CPUARMState *env, const ARMCPRegInfo *ri)
{
    ARMCPU *cpu = arm_env_get_cpu(env);
    int timeridx = ri->opc1 & 1;

910
    timer_del(cpu->gt_timer[timeridx]);
911 912
}

913
static uint64_t gt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
914
{
915
    return gt_get_countervalue(env);
916 917
}

918 919
static void gt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
                          uint64_t value)
920 921 922 923 924 925
{
    int timeridx = ri->opc1 & 1;

    env->cp15.c14_timer[timeridx].cval = value;
    gt_recalc_timer(arm_env_get_cpu(env), timeridx);
}
926 927

static uint64_t gt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
928 929 930
{
    int timeridx = ri->crm & 1;

931 932
    return (uint32_t)(env->cp15.c14_timer[timeridx].cval -
                      gt_get_countervalue(env));
933 934
}

935 936
static void gt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
                          uint64_t value)
937 938 939 940 941 942 943 944
{
    int timeridx = ri->crm & 1;

    env->cp15.c14_timer[timeridx].cval = gt_get_countervalue(env) +
        + sextract64(value, 0, 32);
    gt_recalc_timer(arm_env_get_cpu(env), timeridx);
}

945 946
static void gt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
                         uint64_t value)
947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984
{
    ARMCPU *cpu = arm_env_get_cpu(env);
    int timeridx = ri->crm & 1;
    uint32_t oldval = env->cp15.c14_timer[timeridx].ctl;

    env->cp15.c14_timer[timeridx].ctl = value & 3;
    if ((oldval ^ value) & 1) {
        /* Enable toggled */
        gt_recalc_timer(cpu, timeridx);
    } else if ((oldval & value) & 2) {
        /* IMASK toggled: don't need to recalculate,
         * just set the interrupt line based on ISTATUS
         */
        qemu_set_irq(cpu->gt_timer_outputs[timeridx],
                     (oldval & 4) && (value & 2));
    }
}

void arm_gt_ptimer_cb(void *opaque)
{
    ARMCPU *cpu = opaque;

    gt_recalc_timer(cpu, GTIMER_PHYS);
}

void arm_gt_vtimer_cb(void *opaque)
{
    ARMCPU *cpu = opaque;

    gt_recalc_timer(cpu, GTIMER_VIRT);
}

static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
    /* Note that CNTFRQ is purely reads-as-written for the benefit
     * of software; writing it doesn't actually change the timer frequency.
     * Our reset value matches the fixed frequency we implement the timer at.
     */
    { .name = "CNTFRQ", .cp = 15, .crn = 14, .crm = 0, .opc1 = 0, .opc2 = 0,
985 986 987 988 989 990 991 992
      .type = ARM_CP_NO_MIGRATE,
      .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
      .fieldoffset = offsetoflow32(CPUARMState, cp15.c14_cntfrq),
      .resetfn = arm_cp_reset_ignore,
    },
    { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0,
      .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
993 994 995 996
      .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq),
      .resetvalue = (1000 * 1000 * 1000) / GTIMER_SCALE,
    },
    /* overall control: mostly access permissions */
997 998
    { .name = "CNTKCTL", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .opc1 = 0, .crn = 14, .crm = 1, .opc2 = 0,
999 1000 1001 1002 1003 1004
      .access = PL1_RW,
      .fieldoffset = offsetof(CPUARMState, cp15.c14_cntkctl),
      .resetvalue = 0,
    },
    /* per-timer control */
    { .name = "CNTP_CTL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
1005 1006 1007 1008 1009 1010 1011 1012 1013
      .type = ARM_CP_IO | ARM_CP_NO_MIGRATE, .access = PL1_RW | PL0_R,
      .accessfn = gt_ptimer_access,
      .fieldoffset = offsetoflow32(CPUARMState,
                                   cp15.c14_timer[GTIMER_PHYS].ctl),
      .resetfn = arm_cp_reset_ignore,
      .writefn = gt_ctl_write, .raw_writefn = raw_write,
    },
    { .name = "CNTP_CTL_EL0", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 1,
1014
      .type = ARM_CP_IO, .access = PL1_RW | PL0_R,
1015
      .accessfn = gt_ptimer_access,
1016 1017
      .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl),
      .resetvalue = 0,
1018
      .writefn = gt_ctl_write, .raw_writefn = raw_write,
1019 1020
    },
    { .name = "CNTV_CTL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 1,
1021 1022 1023 1024 1025 1026 1027 1028 1029
      .type = ARM_CP_IO | ARM_CP_NO_MIGRATE, .access = PL1_RW | PL0_R,
      .accessfn = gt_vtimer_access,
      .fieldoffset = offsetoflow32(CPUARMState,
                                   cp15.c14_timer[GTIMER_VIRT].ctl),
      .resetfn = arm_cp_reset_ignore,
      .writefn = gt_ctl_write, .raw_writefn = raw_write,
    },
    { .name = "CNTV_CTL_EL0", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 1,
1030
      .type = ARM_CP_IO, .access = PL1_RW | PL0_R,
1031
      .accessfn = gt_vtimer_access,
1032 1033
      .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl),
      .resetvalue = 0,
1034
      .writefn = gt_ctl_write, .raw_writefn = raw_write,
1035 1036 1037 1038
    },
    /* TimerValue views: a 32 bit downcounting view of the underlying state */
    { .name = "CNTP_TVAL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
      .type = ARM_CP_NO_MIGRATE | ARM_CP_IO, .access = PL1_RW | PL0_R,
1039
      .accessfn = gt_ptimer_access,
1040 1041
      .readfn = gt_tval_read, .writefn = gt_tval_write,
    },
1042 1043 1044 1045 1046
    { .name = "CNTP_TVAL_EL0", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 0,
      .type = ARM_CP_NO_MIGRATE | ARM_CP_IO, .access = PL1_RW | PL0_R,
      .readfn = gt_tval_read, .writefn = gt_tval_write,
    },
1047 1048
    { .name = "CNTV_TVAL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 0,
      .type = ARM_CP_NO_MIGRATE | ARM_CP_IO, .access = PL1_RW | PL0_R,
1049
      .accessfn = gt_vtimer_access,
1050 1051
      .readfn = gt_tval_read, .writefn = gt_tval_write,
    },
1052 1053 1054 1055 1056
    { .name = "CNTV_TVAL_EL0", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 0,
      .type = ARM_CP_NO_MIGRATE | ARM_CP_IO, .access = PL1_RW | PL0_R,
      .readfn = gt_tval_read, .writefn = gt_tval_write,
    },
1057 1058 1059
    /* The counter itself */
    { .name = "CNTPCT", .cp = 15, .crm = 14, .opc1 = 0,
      .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_MIGRATE | ARM_CP_IO,
1060
      .accessfn = gt_pct_access,
1061 1062 1063 1064 1065 1066
      .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore,
    },
    { .name = "CNTPCT_EL0", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 1,
      .access = PL0_R, .type = ARM_CP_NO_MIGRATE | ARM_CP_IO,
      .accessfn = gt_pct_access,
1067 1068 1069 1070
      .readfn = gt_cnt_read, .resetfn = gt_cnt_reset,
    },
    { .name = "CNTVCT", .cp = 15, .crm = 14, .opc1 = 1,
      .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_MIGRATE | ARM_CP_IO,
1071
      .accessfn = gt_vct_access,
1072 1073 1074 1075 1076 1077
      .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore,
    },
    { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2,
      .access = PL0_R, .type = ARM_CP_NO_MIGRATE | ARM_CP_IO,
      .accessfn = gt_vct_access,
1078 1079 1080 1081 1082
      .readfn = gt_cnt_read, .resetfn = gt_cnt_reset,
    },
    /* Comparison value, indicating when the timer goes off */
    { .name = "CNTP_CVAL", .cp = 15, .crm = 14, .opc1 = 2,
      .access = PL1_RW | PL0_R,
1083
      .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_NO_MIGRATE,
1084
      .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
1085 1086 1087 1088 1089 1090 1091 1092 1093
      .accessfn = gt_ptimer_access, .resetfn = arm_cp_reset_ignore,
      .writefn = gt_cval_write, .raw_writefn = raw_write,
    },
    { .name = "CNTP_CVAL_EL0", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 2,
      .access = PL1_RW | PL0_R,
      .type = ARM_CP_IO,
      .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
      .resetvalue = 0, .accessfn = gt_vtimer_access,
1094
      .writefn = gt_cval_write, .raw_writefn = raw_write,
1095 1096 1097
    },
    { .name = "CNTV_CVAL", .cp = 15, .crm = 14, .opc1 = 3,
      .access = PL1_RW | PL0_R,
1098
      .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_NO_MIGRATE,
1099
      .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
1100 1101 1102 1103 1104 1105 1106 1107 1108
      .accessfn = gt_vtimer_access, .resetfn = arm_cp_reset_ignore,
      .writefn = gt_cval_write, .raw_writefn = raw_write,
    },
    { .name = "CNTV_CVAL_EL0", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 2,
      .access = PL1_RW | PL0_R,
      .type = ARM_CP_IO,
      .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
      .resetvalue = 0, .accessfn = gt_vtimer_access,
1109
      .writefn = gt_cval_write, .raw_writefn = raw_write,
1110 1111 1112 1113 1114 1115
    },
    REGINFO_SENTINEL
};

#else
/* In user-mode none of the generic timer registers are accessible,
1116
 * and their implementation depends on QEMU_CLOCK_VIRTUAL and qdev gpio outputs,
1117 1118
 * so instead just don't register any of them.
 */
1119 1120 1121 1122
static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
    REGINFO_SENTINEL
};

1123 1124
#endif

1125
static void par_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
1126
{
1127 1128 1129
    if (arm_feature(env, ARM_FEATURE_LPAE)) {
        env->cp15.c7_par = value;
    } else if (arm_feature(env, ARM_FEATURE_V7)) {
1130 1131 1132 1133 1134 1135 1136 1137
        env->cp15.c7_par = value & 0xfffff6ff;
    } else {
        env->cp15.c7_par = value & 0xfffff1ff;
    }
}

#ifndef CONFIG_USER_ONLY
/* get_phys_addr() isn't present for user-mode-only targets */
1138 1139 1140 1141 1142 1143 1144 1145

/* Return true if extended addresses are enabled, ie this is an
 * LPAE implementation and we are using the long-descriptor translation
 * table format because the TTBCR EAE bit is set.
 */
static inline bool extended_addresses_enabled(CPUARMState *env)
{
    return arm_feature(env, ARM_FEATURE_LPAE)
1146
        && (env->cp15.c2_control & (1U << 31));
1147 1148
}

1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161
static CPAccessResult ats_access(CPUARMState *env, const ARMCPRegInfo *ri)
{
    if (ri->opc2 & 4) {
        /* Other states are only available with TrustZone; in
         * a non-TZ implementation these registers don't exist
         * at all, which is an Uncategorized trap. This underdecoding
         * is safe because the reginfo is NO_MIGRATE.
         */
        return CP_ACCESS_TRAP_UNCATEGORIZED;
    }
    return CP_ACCESS_OK;
}

1162
static void ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
1163
{
A
Avi Kivity 已提交
1164
    hwaddr phys_addr;
1165 1166 1167 1168 1169 1170 1171
    target_ulong page_size;
    int prot;
    int ret, is_user = ri->opc2 & 2;
    int access_type = ri->opc2 & 1;

    ret = get_phys_addr(env, value, access_type, is_user,
                        &phys_addr, &prot, &page_size);
1172 1173 1174 1175 1176 1177 1178 1179 1180
    if (extended_addresses_enabled(env)) {
        /* ret is a DFSR/IFSR value for the long descriptor
         * translation table format, but with WnR always clear.
         * Convert it to a 64-bit PAR.
         */
        uint64_t par64 = (1 << 11); /* LPAE bit always set */
        if (ret == 0) {
            par64 |= phys_addr & ~0xfffULL;
            /* We don't set the ATTR or SH fields in the PAR. */
1181
        } else {
1182 1183 1184 1185 1186 1187
            par64 |= 1; /* F */
            par64 |= (ret & 0x3f) << 1; /* FS */
            /* Note that S2WLK and FSTAGE are always zero, because we don't
             * implement virtualization and therefore there can't be a stage 2
             * fault.
             */
1188
        }
1189 1190
        env->cp15.c7_par = par64;
        env->cp15.c7_par_hi = par64 >> 32;
1191
    } else {
1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204
        /* ret is a DFSR/IFSR value for the short descriptor
         * translation table format (with WnR always clear).
         * Convert it to a 32-bit PAR.
         */
        if (ret == 0) {
            /* We do not set any attribute bits in the PAR */
            if (page_size == (1 << 24)
                && arm_feature(env, ARM_FEATURE_V7)) {
                env->cp15.c7_par = (phys_addr & 0xff000000) | 1 << 1;
            } else {
                env->cp15.c7_par = phys_addr & 0xfffff000;
            }
        } else {
1205 1206
            env->cp15.c7_par = ((ret & (1 << 10)) >> 5) |
                ((ret & (1 << 12)) >> 6) |
1207 1208 1209
                ((ret & 0xf) << 1) | 1;
        }
        env->cp15.c7_par_hi = 0;
1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220
    }
}
#endif

static const ARMCPRegInfo vapa_cp_reginfo[] = {
    { .name = "PAR", .cp = 15, .crn = 7, .crm = 4, .opc1 = 0, .opc2 = 0,
      .access = PL1_RW, .resetvalue = 0,
      .fieldoffset = offsetof(CPUARMState, cp15.c7_par),
      .writefn = par_write },
#ifndef CONFIG_USER_ONLY
    { .name = "ATS", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = CP_ANY,
1221 1222
      .access = PL1_W, .accessfn = ats_access,
      .writefn = ats_write, .type = ARM_CP_NO_MIGRATE },
1223 1224 1225 1226
#endif
    REGINFO_SENTINEL
};

1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256
/* Return basic MPU access permission bits.  */
static uint32_t simple_mpu_ap_bits(uint32_t val)
{
    uint32_t ret;
    uint32_t mask;
    int i;
    ret = 0;
    mask = 3;
    for (i = 0; i < 16; i += 2) {
        ret |= (val >> i) & mask;
        mask <<= 2;
    }
    return ret;
}

/* Pad basic MPU access permission bits to extended format.  */
static uint32_t extended_mpu_ap_bits(uint32_t val)
{
    uint32_t ret;
    uint32_t mask;
    int i;
    ret = 0;
    mask = 3;
    for (i = 0; i < 16; i += 2) {
        ret |= (val & mask) << i;
        mask <<= 2;
    }
    return ret;
}

1257 1258
static void pmsav5_data_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
                                 uint64_t value)
1259 1260 1261 1262
{
    env->cp15.c5_data = extended_mpu_ap_bits(value);
}

1263
static uint64_t pmsav5_data_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
1264
{
1265
    return simple_mpu_ap_bits(env->cp15.c5_data);
1266 1267
}

1268 1269
static void pmsav5_insn_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
                                 uint64_t value)
1270 1271 1272 1273
{
    env->cp15.c5_insn = extended_mpu_ap_bits(value);
}

1274
static uint64_t pmsav5_insn_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
1275
{
1276
    return simple_mpu_ap_bits(env->cp15.c5_insn);
1277 1278 1279 1280
}

static const ARMCPRegInfo pmsav5_cp_reginfo[] = {
    { .name = "DATA_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
1281
      .access = PL1_RW, .type = ARM_CP_NO_MIGRATE,
1282 1283 1284
      .fieldoffset = offsetof(CPUARMState, cp15.c5_data), .resetvalue = 0,
      .readfn = pmsav5_data_ap_read, .writefn = pmsav5_data_ap_write, },
    { .name = "INSN_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
1285
      .access = PL1_RW, .type = ARM_CP_NO_MIGRATE,
1286 1287 1288 1289 1290 1291 1292 1293
      .fieldoffset = offsetof(CPUARMState, cp15.c5_insn), .resetvalue = 0,
      .readfn = pmsav5_insn_ap_read, .writefn = pmsav5_insn_ap_write, },
    { .name = "DATA_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 2,
      .access = PL1_RW,
      .fieldoffset = offsetof(CPUARMState, cp15.c5_data), .resetvalue = 0, },
    { .name = "INSN_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 3,
      .access = PL1_RW,
      .fieldoffset = offsetof(CPUARMState, cp15.c5_insn), .resetvalue = 0, },
1294 1295 1296 1297 1298 1299
    { .name = "DCACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
      .access = PL1_RW,
      .fieldoffset = offsetof(CPUARMState, cp15.c2_data), .resetvalue = 0, },
    { .name = "ICACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1,
      .access = PL1_RW,
      .fieldoffset = offsetof(CPUARMState, cp15.c2_insn), .resetvalue = 0, },
1300
    /* Protection region base and size registers */
1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324
    { .name = "946_PRBS0", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0,
      .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
      .fieldoffset = offsetof(CPUARMState, cp15.c6_region[0]) },
    { .name = "946_PRBS1", .cp = 15, .crn = 6, .crm = 1, .opc1 = 0,
      .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
      .fieldoffset = offsetof(CPUARMState, cp15.c6_region[1]) },
    { .name = "946_PRBS2", .cp = 15, .crn = 6, .crm = 2, .opc1 = 0,
      .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
      .fieldoffset = offsetof(CPUARMState, cp15.c6_region[2]) },
    { .name = "946_PRBS3", .cp = 15, .crn = 6, .crm = 3, .opc1 = 0,
      .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
      .fieldoffset = offsetof(CPUARMState, cp15.c6_region[3]) },
    { .name = "946_PRBS4", .cp = 15, .crn = 6, .crm = 4, .opc1 = 0,
      .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
      .fieldoffset = offsetof(CPUARMState, cp15.c6_region[4]) },
    { .name = "946_PRBS5", .cp = 15, .crn = 6, .crm = 5, .opc1 = 0,
      .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
      .fieldoffset = offsetof(CPUARMState, cp15.c6_region[5]) },
    { .name = "946_PRBS6", .cp = 15, .crn = 6, .crm = 6, .opc1 = 0,
      .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
      .fieldoffset = offsetof(CPUARMState, cp15.c6_region[6]) },
    { .name = "946_PRBS7", .cp = 15, .crn = 6, .crm = 7, .opc1 = 0,
      .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
      .fieldoffset = offsetof(CPUARMState, cp15.c6_region[7]) },
1325 1326 1327
    REGINFO_SENTINEL
};

1328 1329
static void vmsa_ttbcr_raw_write(CPUARMState *env, const ARMCPRegInfo *ri,
                                 uint64_t value)
1330
{
1331 1332
    int maskshift = extract32(value, 0, 3);

1333
    if (arm_feature(env, ARM_FEATURE_LPAE) && (value & (1 << 31))) {
1334 1335 1336 1337 1338 1339 1340 1341 1342
        value &= ~((7 << 19) | (3 << 14) | (0xf << 3));
    } else {
        value &= 7;
    }
    /* Note that we always calculate c2_mask and c2_base_mask, but
     * they are only used for short-descriptor tables (ie if EAE is 0);
     * for long-descriptor tables the TTBCR fields are used differently
     * and the c2_mask and c2_base_mask values are meaningless.
     */
1343
    env->cp15.c2_control = value;
1344 1345
    env->cp15.c2_mask = ~(((uint32_t)0xffffffffu) >> maskshift);
    env->cp15.c2_base_mask = ~((uint32_t)0x3fffu >> maskshift);
1346 1347
}

1348 1349
static void vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
                             uint64_t value)
1350 1351 1352 1353 1354 1355 1356
{
    if (arm_feature(env, ARM_FEATURE_LPAE)) {
        /* With LPAE the TTBCR could result in a change of ASID
         * via the TTBCR.A1 bit, so do a TLB flush.
         */
        tlb_flush(env, 1);
    }
1357
    vmsa_ttbcr_raw_write(env, ri, value);
1358 1359
}

1360 1361 1362 1363 1364 1365 1366
static void vmsa_ttbcr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
{
    env->cp15.c2_base_mask = 0xffffc000u;
    env->cp15.c2_control = 0;
    env->cp15.c2_mask = 0;
}

1367 1368 1369 1370 1371 1372 1373 1374
static void vmsa_tcr_el1_write(CPUARMState *env, const ARMCPRegInfo *ri,
                               uint64_t value)
{
    /* For AArch64 the A1 bit could result in a change of ASID, so TLB flush. */
    tlb_flush(env, 1);
    env->cp15.c2_control = value;
}

1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386
static void vmsa_ttbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
                            uint64_t value)
{
    /* 64 bit accesses to the TTBRs can change the ASID and so we
     * must flush the TLB.
     */
    if (cpreg_field_is_64bit(ri)) {
        tlb_flush(env, 1);
    }
    raw_write(env, ri, value);
}

1387 1388 1389 1390 1391 1392 1393
static const ARMCPRegInfo vmsa_cp_reginfo[] = {
    { .name = "DFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
      .access = PL1_RW,
      .fieldoffset = offsetof(CPUARMState, cp15.c5_data), .resetvalue = 0, },
    { .name = "IFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
      .access = PL1_RW,
      .fieldoffset = offsetof(CPUARMState, cp15.c5_insn), .resetvalue = 0, },
1394 1395 1396 1397 1398 1399 1400 1401
    { .name = "TTBR0_EL1", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
      .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el1),
      .writefn = vmsa_ttbr_write, .resetvalue = 0 },
    { .name = "TTBR1_EL1", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1,
      .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.ttbr1_el1),
      .writefn = vmsa_ttbr_write, .resetvalue = 0 },
1402 1403 1404 1405
    { .name = "TCR_EL1", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
      .access = PL1_RW, .writefn = vmsa_tcr_el1_write,
      .resetfn = vmsa_ttbcr_reset, .raw_writefn = raw_write,
1406
      .fieldoffset = offsetof(CPUARMState, cp15.c2_control) },
1407 1408 1409 1410
    { .name = "TTBCR", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
      .access = PL1_RW, .type = ARM_CP_NO_MIGRATE, .writefn = vmsa_ttbcr_write,
      .resetfn = arm_cp_reset_ignore, .raw_writefn = vmsa_ttbcr_raw_write,
      .fieldoffset = offsetoflow32(CPUARMState, cp15.c2_control) },
1411 1412 1413
    { .name = "DFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0,
      .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c6_data),
      .resetvalue = 0, },
1414 1415 1416
    REGINFO_SENTINEL
};

1417 1418
static void omap_ticonfig_write(CPUARMState *env, const ARMCPRegInfo *ri,
                                uint64_t value)
1419 1420 1421 1422 1423 1424 1425
{
    env->cp15.c15_ticonfig = value & 0xe7;
    /* The OS_TYPE bit in this register changes the reported CPUID! */
    env->cp15.c0_cpuid = (value & (1 << 5)) ?
        ARM_CPUID_TI915T : ARM_CPUID_TI925T;
}

1426 1427
static void omap_threadid_write(CPUARMState *env, const ARMCPRegInfo *ri,
                                uint64_t value)
1428 1429 1430 1431
{
    env->cp15.c15_threadid = value & 0xffff;
}

1432 1433
static void omap_wfi_write(CPUARMState *env, const ARMCPRegInfo *ri,
                           uint64_t value)
1434 1435
{
    /* Wait-for-interrupt (deprecated) */
1436
    cpu_interrupt(CPU(arm_env_get_cpu(env)), CPU_INTERRUPT_HALT);
1437 1438
}

1439 1440
static void omap_cachemaint_write(CPUARMState *env, const ARMCPRegInfo *ri,
                                  uint64_t value)
1441 1442 1443 1444 1445 1446 1447 1448
{
    /* On OMAP there are registers indicating the max/min index of dcache lines
     * containing a dirty line; cache flush operations have to reset these.
     */
    env->cp15.c15_i_max = 0x000;
    env->cp15.c15_i_min = 0xff0;
}

1449 1450 1451 1452
static const ARMCPRegInfo omap_cp_reginfo[] = {
    { .name = "DFSR", .cp = 15, .crn = 5, .crm = CP_ANY,
      .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_OVERRIDE,
      .fieldoffset = offsetof(CPUARMState, cp15.c5_data), .resetvalue = 0, },
1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470
    { .name = "", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0,
      .access = PL1_RW, .type = ARM_CP_NOP },
    { .name = "TICONFIG", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0,
      .access = PL1_RW,
      .fieldoffset = offsetof(CPUARMState, cp15.c15_ticonfig), .resetvalue = 0,
      .writefn = omap_ticonfig_write },
    { .name = "IMAX", .cp = 15, .crn = 15, .crm = 2, .opc1 = 0, .opc2 = 0,
      .access = PL1_RW,
      .fieldoffset = offsetof(CPUARMState, cp15.c15_i_max), .resetvalue = 0, },
    { .name = "IMIN", .cp = 15, .crn = 15, .crm = 3, .opc1 = 0, .opc2 = 0,
      .access = PL1_RW, .resetvalue = 0xff0,
      .fieldoffset = offsetof(CPUARMState, cp15.c15_i_min) },
    { .name = "THREADID", .cp = 15, .crn = 15, .crm = 4, .opc1 = 0, .opc2 = 0,
      .access = PL1_RW,
      .fieldoffset = offsetof(CPUARMState, cp15.c15_threadid), .resetvalue = 0,
      .writefn = omap_threadid_write },
    { .name = "TI925T_STATUS", .cp = 15, .crn = 15,
      .crm = 8, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
1471
      .type = ARM_CP_NO_MIGRATE,
1472 1473 1474 1475 1476 1477
      .readfn = arm_cp_read_zero, .writefn = omap_wfi_write, },
    /* TODO: Peripheral port remap register:
     * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller
     * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff),
     * when MMU is off.
     */
1478
    { .name = "OMAP_CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
1479 1480
      .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
      .type = ARM_CP_OVERRIDE | ARM_CP_NO_MIGRATE,
1481
      .writefn = omap_cachemaint_write },
1482 1483 1484
    { .name = "C9", .cp = 15, .crn = 9,
      .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW,
      .type = ARM_CP_CONST | ARM_CP_OVERRIDE, .resetvalue = 0 },
1485 1486 1487
    REGINFO_SENTINEL
};

1488 1489
static void xscale_cpar_write(CPUARMState *env, const ARMCPRegInfo *ri,
                              uint64_t value)
1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503
{
    value &= 0x3fff;
    if (env->cp15.c15_cpar != value) {
        /* Changes cp0 to cp13 behavior, so needs a TB flush.  */
        tb_flush(env);
        env->cp15.c15_cpar = value;
    }
}

static const ARMCPRegInfo xscale_cp_reginfo[] = {
    { .name = "XSCALE_CPAR",
      .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
      .fieldoffset = offsetof(CPUARMState, cp15.c15_cpar), .resetvalue = 0,
      .writefn = xscale_cpar_write, },
1504 1505 1506 1507
    { .name = "XSCALE_AUXCR",
      .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW,
      .fieldoffset = offsetof(CPUARMState, cp15.c1_xscaleauxcr),
      .resetvalue = 0, },
1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518
    REGINFO_SENTINEL
};

static const ARMCPRegInfo dummy_c15_cp_reginfo[] = {
    /* RAZ/WI the whole crn=15 space, when we don't have a more specific
     * implementation of this implementation-defined space.
     * Ideally this should eventually disappear in favour of actually
     * implementing the correct behaviour for all cores.
     */
    { .name = "C15_IMPDEF", .cp = 15, .crn = 15,
      .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
1519 1520
      .access = PL1_RW,
      .type = ARM_CP_CONST | ARM_CP_NO_MIGRATE | ARM_CP_OVERRIDE,
1521
      .resetvalue = 0 },
1522 1523 1524
    REGINFO_SENTINEL
};

1525 1526 1527
static const ARMCPRegInfo cache_dirty_status_cp_reginfo[] = {
    /* Cache status: RAZ because we have no cache so it's always clean */
    { .name = "CDSR", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 6,
1528 1529
      .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_MIGRATE,
      .resetvalue = 0 },
1530 1531 1532 1533 1534 1535
    REGINFO_SENTINEL
};

static const ARMCPRegInfo cache_block_ops_cp_reginfo[] = {
    /* We never have a a block transfer operation in progress */
    { .name = "BXSR", .cp = 15, .crn = 7, .crm = 12, .opc1 = 0, .opc2 = 4,
1536 1537
      .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_MIGRATE,
      .resetvalue = 0 },
1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550
    /* The cache ops themselves: these all NOP for QEMU */
    { .name = "IICR", .cp = 15, .crm = 5, .opc1 = 0,
      .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
    { .name = "IDCR", .cp = 15, .crm = 6, .opc1 = 0,
      .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
    { .name = "CDCR", .cp = 15, .crm = 12, .opc1 = 0,
      .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
    { .name = "PIR", .cp = 15, .crm = 12, .opc1 = 1,
      .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
    { .name = "PDR", .cp = 15, .crm = 12, .opc1 = 2,
      .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
    { .name = "CIDCR", .cp = 15, .crm = 14, .opc1 = 0,
      .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
1551 1552 1553 1554 1555 1556 1557 1558
    REGINFO_SENTINEL
};

static const ARMCPRegInfo cache_test_clean_cp_reginfo[] = {
    /* The cache test-and-clean instructions always return (1 << 30)
     * to indicate that there are no dirty cache lines.
     */
    { .name = "TC_DCACHE", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 3,
1559 1560
      .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_MIGRATE,
      .resetvalue = (1 << 30) },
1561
    { .name = "TCI_DCACHE", .cp = 15, .crn = 7, .crm = 14, .opc1 = 0, .opc2 = 3,
1562 1563
      .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_MIGRATE,
      .resetvalue = (1 << 30) },
1564 1565 1566
    REGINFO_SENTINEL
};

1567 1568 1569 1570
static const ARMCPRegInfo strongarm_cp_reginfo[] = {
    /* Ignore ReadBuffer accesses */
    { .name = "C9_READBUFFER", .cp = 15, .crn = 9,
      .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
1571 1572
      .access = PL1_RW, .resetvalue = 0,
      .type = ARM_CP_CONST | ARM_CP_OVERRIDE | ARM_CP_NO_MIGRATE },
1573 1574 1575
    REGINFO_SENTINEL
};

1576
static uint64_t mpidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
P
Peter Maydell 已提交
1577
{
1578 1579
    CPUState *cs = CPU(arm_env_get_cpu(env));
    uint32_t mpidr = cs->cpu_index;
1580 1581
    /* We don't support setting cluster ID ([8..11]) (known as Aff1
     * in later ARM ARM versions), or any of the higher affinity level fields,
P
Peter Maydell 已提交
1582 1583 1584
     * so these bits always RAZ.
     */
    if (arm_feature(env, ARM_FEATURE_V7MP)) {
1585
        mpidr |= (1U << 31);
P
Peter Maydell 已提交
1586 1587 1588 1589 1590 1591
        /* Cores which are uniprocessor (non-coherent)
         * but still implement the MP extensions set
         * bit 30. (For instance, A9UP.) However we do
         * not currently model any of those cores.
         */
    }
1592
    return mpidr;
P
Peter Maydell 已提交
1593 1594 1595
}

static const ARMCPRegInfo mpidr_cp_reginfo[] = {
1596 1597
    { .name = "MPIDR", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 5,
1598
      .access = PL1_R, .readfn = mpidr_read, .type = ARM_CP_NO_MIGRATE },
P
Peter Maydell 已提交
1599 1600 1601
    REGINFO_SENTINEL
};

1602
static uint64_t par64_read(CPUARMState *env, const ARMCPRegInfo *ri)
1603
{
1604
    return ((uint64_t)env->cp15.c7_par_hi << 32) | env->cp15.c7_par;
1605 1606
}

1607 1608
static void par64_write(CPUARMState *env, const ARMCPRegInfo *ri,
                        uint64_t value)
1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619
{
    env->cp15.c7_par_hi = value >> 32;
    env->cp15.c7_par = value;
}

static void par64_reset(CPUARMState *env, const ARMCPRegInfo *ri)
{
    env->cp15.c7_par_hi = 0;
    env->cp15.c7_par = 0;
}

1620
static const ARMCPRegInfo lpae_cp_reginfo[] = {
1621
    /* NOP AMAIR0/1: the override is because these clash with the rather
1622 1623
     * broadly specified TLB_LOCKDOWN entry in the generic cp_reginfo.
     */
1624 1625
    { .name = "AMAIR0", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 0,
1626 1627
      .access = PL1_RW, .type = ARM_CP_CONST | ARM_CP_OVERRIDE,
      .resetvalue = 0 },
1628
    /* AMAIR1 is mapped to AMAIR_EL1[63:32] */
1629 1630 1631
    { .name = "AMAIR1", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 1,
      .access = PL1_RW, .type = ARM_CP_CONST | ARM_CP_OVERRIDE,
      .resetvalue = 0 },
1632 1633 1634 1635 1636
    /* 64 bit access versions of the (dummy) debug registers */
    { .name = "DBGDRAR", .cp = 14, .crm = 1, .opc1 = 0,
      .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 },
    { .name = "DBGDSAR", .cp = 14, .crm = 2, .opc1 = 0,
      .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 },
1637 1638 1639 1640
    { .name = "PAR", .cp = 15, .crm = 7, .opc1 = 0,
      .access = PL1_RW, .type = ARM_CP_64BIT,
      .readfn = par64_read, .writefn = par64_write, .resetfn = par64_reset },
    { .name = "TTBR0", .cp = 15, .crm = 2, .opc1 = 0,
1641 1642 1643
      .access = PL1_RW, .type = ARM_CP_64BIT | ARM_CP_NO_MIGRATE,
      .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el1),
      .writefn = vmsa_ttbr_write, .resetfn = arm_cp_reset_ignore },
1644
    { .name = "TTBR1", .cp = 15, .crm = 2, .opc1 = 1,
1645 1646 1647
      .access = PL1_RW, .type = ARM_CP_64BIT | ARM_CP_NO_MIGRATE,
      .fieldoffset = offsetof(CPUARMState, cp15.ttbr1_el1),
      .writefn = vmsa_ttbr_write, .resetfn = arm_cp_reset_ignore },
1648 1649 1650
    REGINFO_SENTINEL
};

1651
static uint64_t aa64_fpcr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1652
{
1653
    return vfp_get_fpcr(env);
1654 1655
}

1656 1657
static void aa64_fpcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
                            uint64_t value)
1658 1659 1660 1661
{
    vfp_set_fpcr(env, value);
}

1662
static uint64_t aa64_fpsr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1663
{
1664
    return vfp_get_fpsr(env);
1665 1666
}

1667 1668
static void aa64_fpsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
                            uint64_t value)
1669 1670 1671 1672
{
    vfp_set_fpsr(env, value);
}

1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684
static CPAccessResult aa64_cacheop_access(CPUARMState *env,
                                          const ARMCPRegInfo *ri)
{
    /* Cache invalidate/clean: NOP, but EL0 must UNDEF unless
     * SCTLR_EL1.UCI is set.
     */
    if (arm_current_pl(env) == 0 && !(env->cp15.c1_sys & SCTLR_UCI)) {
        return CP_ACCESS_TRAP;
    }
    return CP_ACCESS_OK;
}

1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708
static void tlbi_aa64_va_write(CPUARMState *env, const ARMCPRegInfo *ri,
                               uint64_t value)
{
    /* Invalidate by VA (AArch64 version) */
    uint64_t pageaddr = value << 12;
    tlb_flush_page(env, pageaddr);
}

static void tlbi_aa64_vaa_write(CPUARMState *env, const ARMCPRegInfo *ri,
                                uint64_t value)
{
    /* Invalidate by VA, all ASIDs (AArch64 version) */
    uint64_t pageaddr = value << 12;
    tlb_flush_page(env, pageaddr);
}

static void tlbi_aa64_asid_write(CPUARMState *env, const ARMCPRegInfo *ri,
                                 uint64_t value)
{
    /* Invalidate by ASID (AArch64 version) */
    int asid = extract64(value, 48, 16);
    tlb_flush(env, asid == 0);
}

1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728
static const ARMCPRegInfo v8_cp_reginfo[] = {
    /* Minimal set of EL0-visible registers. This will need to be expanded
     * significantly for system emulation of AArch64 CPUs.
     */
    { .name = "NZCV", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 2,
      .access = PL0_RW, .type = ARM_CP_NZCV },
    { .name = "FPCR", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 4,
      .access = PL0_RW, .readfn = aa64_fpcr_read, .writefn = aa64_fpcr_write },
    { .name = "FPSR", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 4,
      .access = PL0_RW, .readfn = aa64_fpsr_read, .writefn = aa64_fpsr_write },
    /* Prohibit use of DC ZVA. OPTME: implement DC ZVA and allow its use.
     * For system mode the DZP bit here will need to be computed, not constant.
     */
    { .name = "DCZID_EL0", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 3, .opc2 = 7, .crn = 0, .crm = 0,
      .access = PL0_R, .type = ARM_CP_CONST,
      .resetvalue = 0x10 },
1729 1730 1731
    { .name = "CURRENTEL", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 0, .opc2 = 2, .crn = 4, .crm = 2,
      .access = PL1_R, .type = ARM_CP_CURRENTEL },
1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766
    /* Cache ops: all NOPs since we don't emulate caches */
    { .name = "IC_IALLUIS", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
      .access = PL1_W, .type = ARM_CP_NOP },
    { .name = "IC_IALLU", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
      .access = PL1_W, .type = ARM_CP_NOP },
    { .name = "IC_IVAU", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 5, .opc2 = 1,
      .access = PL0_W, .type = ARM_CP_NOP,
      .accessfn = aa64_cacheop_access },
    { .name = "DC_IVAC", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
      .access = PL1_W, .type = ARM_CP_NOP },
    { .name = "DC_ISW", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
      .access = PL1_W, .type = ARM_CP_NOP },
    { .name = "DC_CVAC", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 1,
      .access = PL0_W, .type = ARM_CP_NOP,
      .accessfn = aa64_cacheop_access },
    { .name = "DC_CSW", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
      .access = PL1_W, .type = ARM_CP_NOP },
    { .name = "DC_CVAU", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 11, .opc2 = 1,
      .access = PL0_W, .type = ARM_CP_NOP,
      .accessfn = aa64_cacheop_access },
    { .name = "DC_CIVAC", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 1,
      .access = PL0_W, .type = ARM_CP_NOP,
      .accessfn = aa64_cacheop_access },
    { .name = "DC_CISW", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
      .access = PL1_W, .type = ARM_CP_NOP },
1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815
    /* TLBI operations */
    { .name = "TLBI_VMALLE1IS", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc2 = 0, .crn = 8, .crm = 3, .opc2 = 0,
      .access = PL1_W, .type = ARM_CP_NO_MIGRATE,
      .writefn = tlbiall_write },
    { .name = "TLBI_VAE1IS", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc2 = 0, .crn = 8, .crm = 3, .opc2 = 1,
      .access = PL1_W, .type = ARM_CP_NO_MIGRATE,
      .writefn = tlbi_aa64_va_write },
    { .name = "TLBI_ASIDE1IS", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc2 = 0, .crn = 8, .crm = 3, .opc2 = 2,
      .access = PL1_W, .type = ARM_CP_NO_MIGRATE,
      .writefn = tlbi_aa64_asid_write },
    { .name = "TLBI_VAAE1IS", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc2 = 0, .crn = 8, .crm = 3, .opc2 = 3,
      .access = PL1_W, .type = ARM_CP_NO_MIGRATE,
      .writefn = tlbi_aa64_vaa_write },
    { .name = "TLBI_VALE1IS", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc2 = 0, .crn = 8, .crm = 3, .opc2 = 5,
      .access = PL1_W, .type = ARM_CP_NO_MIGRATE,
      .writefn = tlbi_aa64_va_write },
    { .name = "TLBI_VAALE1IS", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc2 = 0, .crn = 8, .crm = 3, .opc2 = 7,
      .access = PL1_W, .type = ARM_CP_NO_MIGRATE,
      .writefn = tlbi_aa64_vaa_write },
    { .name = "TLBI_VMALLE1", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc2 = 0, .crn = 8, .crm = 7, .opc2 = 0,
      .access = PL1_W, .type = ARM_CP_NO_MIGRATE,
      .writefn = tlbiall_write },
    { .name = "TLBI_VAE1", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc2 = 0, .crn = 8, .crm = 7, .opc2 = 1,
      .access = PL1_W, .type = ARM_CP_NO_MIGRATE,
      .writefn = tlbi_aa64_va_write },
    { .name = "TLBI_ASIDE1", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc2 = 0, .crn = 8, .crm = 7, .opc2 = 2,
      .access = PL1_W, .type = ARM_CP_NO_MIGRATE,
      .writefn = tlbi_aa64_asid_write },
    { .name = "TLBI_VAAE1", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc2 = 0, .crn = 8, .crm = 7, .opc2 = 3,
      .access = PL1_W, .type = ARM_CP_NO_MIGRATE,
      .writefn = tlbi_aa64_vaa_write },
    { .name = "TLBI_VALE1", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc2 = 0, .crn = 8, .crm = 7, .opc2 = 5,
      .access = PL1_W, .type = ARM_CP_NO_MIGRATE,
      .writefn = tlbi_aa64_va_write },
    { .name = "TLBI_VAALE1", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc2 = 0, .crn = 8, .crm = 7, .opc2 = 7,
      .access = PL1_W, .type = ARM_CP_NO_MIGRATE,
      .writefn = tlbi_aa64_vaa_write },
1816 1817 1818 1819 1820 1821
    /* Dummy implementation of monitor debug system control register:
     * we don't support debug.
     */
    { .name = "MDSCR_EL1", .state = ARM_CP_STATE_AA64,
      .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2,
      .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
1822 1823 1824 1825
    /* We define a dummy WI OSLAR_EL1, because Linux writes to it. */
    { .name = "OSLAR_EL1", .state = ARM_CP_STATE_AA64,
      .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 4,
      .access = PL1_W, .type = ARM_CP_NOP },
1826 1827 1828
    REGINFO_SENTINEL
};

1829 1830
static void sctlr_write(CPUARMState *env, const ARMCPRegInfo *ri,
                        uint64_t value)
1831 1832 1833 1834 1835 1836 1837
{
    env->cp15.c1_sys = value;
    /* ??? Lots of these bits are not implemented.  */
    /* This may enable/disable the MMU, so do a TLB flush.  */
    tlb_flush(env, 1);
}

1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848
static CPAccessResult ctr_el0_access(CPUARMState *env, const ARMCPRegInfo *ri)
{
    /* Only accessible in EL0 if SCTLR.UCT is set (and only in AArch64,
     * but the AArch32 CTR has its own reginfo struct)
     */
    if (arm_current_pl(env) == 0 && !(env->cp15.c1_sys & SCTLR_UCT)) {
        return CP_ACCESS_TRAP;
    }
    return CP_ACCESS_OK;
}

1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879
static void define_aarch64_debug_regs(ARMCPU *cpu)
{
    /* Define breakpoint and watchpoint registers. These do nothing
     * but read as written, for now.
     */
    int i;

    for (i = 0; i < 16; i++) {
        ARMCPRegInfo dbgregs[] = {
            { .name = "DBGBVR", .state = ARM_CP_STATE_AA64,
              .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 4,
              .access = PL1_RW,
              .fieldoffset = offsetof(CPUARMState, cp15.dbgbvr[i]) },
            { .name = "DBGBCR", .state = ARM_CP_STATE_AA64,
              .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 5,
              .access = PL1_RW,
              .fieldoffset = offsetof(CPUARMState, cp15.dbgbcr[i]) },
            { .name = "DBGWVR", .state = ARM_CP_STATE_AA64,
              .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 6,
              .access = PL1_RW,
              .fieldoffset = offsetof(CPUARMState, cp15.dbgwvr[i]) },
            { .name = "DBGWCR", .state = ARM_CP_STATE_AA64,
              .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 7,
              .access = PL1_RW,
              .fieldoffset = offsetof(CPUARMState, cp15.dbgwcr[i]) },
               REGINFO_SENTINEL
        };
        define_arm_cp_regs(cpu, dbgregs);
    }
}

1880 1881 1882 1883 1884 1885 1886 1887 1888
void register_cp_regs_for_features(ARMCPU *cpu)
{
    /* Register all the coprocessor registers based on feature bits */
    CPUARMState *env = &cpu->env;
    if (arm_feature(env, ARM_FEATURE_M)) {
        /* M profile has no coprocessor registers */
        return;
    }

1889
    define_arm_cp_regs(cpu, cp_reginfo);
1890
    if (arm_feature(env, ARM_FEATURE_V6)) {
1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944
        /* The ID registers all have impdef reset values */
        ARMCPRegInfo v6_idregs[] = {
            { .name = "ID_PFR0", .cp = 15, .crn = 0, .crm = 1,
              .opc1 = 0, .opc2 = 0, .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = cpu->id_pfr0 },
            { .name = "ID_PFR1", .cp = 15, .crn = 0, .crm = 1,
              .opc1 = 0, .opc2 = 1, .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = cpu->id_pfr1 },
            { .name = "ID_DFR0", .cp = 15, .crn = 0, .crm = 1,
              .opc1 = 0, .opc2 = 2, .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = cpu->id_dfr0 },
            { .name = "ID_AFR0", .cp = 15, .crn = 0, .crm = 1,
              .opc1 = 0, .opc2 = 3, .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = cpu->id_afr0 },
            { .name = "ID_MMFR0", .cp = 15, .crn = 0, .crm = 1,
              .opc1 = 0, .opc2 = 4, .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = cpu->id_mmfr0 },
            { .name = "ID_MMFR1", .cp = 15, .crn = 0, .crm = 1,
              .opc1 = 0, .opc2 = 5, .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = cpu->id_mmfr1 },
            { .name = "ID_MMFR2", .cp = 15, .crn = 0, .crm = 1,
              .opc1 = 0, .opc2 = 6, .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = cpu->id_mmfr2 },
            { .name = "ID_MMFR3", .cp = 15, .crn = 0, .crm = 1,
              .opc1 = 0, .opc2 = 7, .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = cpu->id_mmfr3 },
            { .name = "ID_ISAR0", .cp = 15, .crn = 0, .crm = 2,
              .opc1 = 0, .opc2 = 0, .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = cpu->id_isar0 },
            { .name = "ID_ISAR1", .cp = 15, .crn = 0, .crm = 2,
              .opc1 = 0, .opc2 = 1, .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = cpu->id_isar1 },
            { .name = "ID_ISAR2", .cp = 15, .crn = 0, .crm = 2,
              .opc1 = 0, .opc2 = 2, .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = cpu->id_isar2 },
            { .name = "ID_ISAR3", .cp = 15, .crn = 0, .crm = 2,
              .opc1 = 0, .opc2 = 3, .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = cpu->id_isar3 },
            { .name = "ID_ISAR4", .cp = 15, .crn = 0, .crm = 2,
              .opc1 = 0, .opc2 = 4, .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = cpu->id_isar4 },
            { .name = "ID_ISAR5", .cp = 15, .crn = 0, .crm = 2,
              .opc1 = 0, .opc2 = 5, .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = cpu->id_isar5 },
            /* 6..7 are as yet unallocated and must RAZ */
            { .name = "ID_ISAR6", .cp = 15, .crn = 0, .crm = 2,
              .opc1 = 0, .opc2 = 6, .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = 0 },
            { .name = "ID_ISAR7", .cp = 15, .crn = 0, .crm = 2,
              .opc1 = 0, .opc2 = 7, .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = 0 },
            REGINFO_SENTINEL
        };
        define_arm_cp_regs(cpu, v6_idregs);
1945 1946 1947 1948
        define_arm_cp_regs(cpu, v6_cp_reginfo);
    } else {
        define_arm_cp_regs(cpu, not_v6_cp_reginfo);
    }
1949 1950 1951
    if (arm_feature(env, ARM_FEATURE_V6K)) {
        define_arm_cp_regs(cpu, v6k_cp_reginfo);
    }
1952
    if (arm_feature(env, ARM_FEATURE_V7)) {
1953
        /* v7 performance monitor control register: same implementor
1954 1955
         * field as main ID register, and we implement only the cycle
         * count register.
1956
         */
1957
#ifndef CONFIG_USER_ONLY
1958 1959 1960 1961
        ARMCPRegInfo pmcr = {
            .name = "PMCR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 0,
            .access = PL0_RW, .resetvalue = cpu->midr & 0xff000000,
            .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcr),
1962 1963
            .accessfn = pmreg_access, .writefn = pmcr_write,
            .raw_writefn = raw_write,
1964
        };
1965 1966
        define_one_arm_cp_reg(cpu, &pmcr);
#endif
1967
        ARMCPRegInfo clidr = {
1968 1969
            .name = "CLIDR", .state = ARM_CP_STATE_BOTH,
            .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 1,
1970 1971 1972
            .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->clidr
        };
        define_one_arm_cp_reg(cpu, &clidr);
1973
        define_arm_cp_regs(cpu, v7_cp_reginfo);
1974 1975
    } else {
        define_arm_cp_regs(cpu, not_v7_cp_reginfo);
1976
    }
1977
    if (arm_feature(env, ARM_FEATURE_V8)) {
1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022
        /* AArch64 ID registers, which all have impdef reset values */
        ARMCPRegInfo v8_idregs[] = {
            { .name = "ID_AA64PFR0_EL1", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 0,
              .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = cpu->id_aa64pfr0 },
            { .name = "ID_AA64PFR1_EL1", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 1,
              .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = cpu->id_aa64pfr1},
            { .name = "ID_AA64DFR0_EL1", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 0,
              .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = cpu->id_aa64dfr0 },
            { .name = "ID_AA64DFR1_EL1", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 1,
              .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = cpu->id_aa64dfr1 },
            { .name = "ID_AA64AFR0_EL1", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 4,
              .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = cpu->id_aa64afr0 },
            { .name = "ID_AA64AFR1_EL1", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 5,
              .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = cpu->id_aa64afr1 },
            { .name = "ID_AA64ISAR0_EL1", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 0,
              .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = cpu->id_aa64isar0 },
            { .name = "ID_AA64ISAR1_EL1", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 1,
              .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = cpu->id_aa64isar1 },
            { .name = "ID_AA64MMFR0_EL1", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0,
              .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = cpu->id_aa64mmfr0 },
            { .name = "ID_AA64MMFR1_EL1", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 1,
              .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = cpu->id_aa64mmfr1 },
            REGINFO_SENTINEL
        };
        define_arm_cp_regs(cpu, v8_idregs);
2023
        define_arm_cp_regs(cpu, v8_cp_reginfo);
2024
        define_aarch64_debug_regs(cpu);
2025
    }
2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036
    if (arm_feature(env, ARM_FEATURE_MPU)) {
        /* These are the MPU registers prior to PMSAv6. Any new
         * PMSA core later than the ARM946 will require that we
         * implement the PMSAv6 or PMSAv7 registers, which are
         * completely different.
         */
        assert(!arm_feature(env, ARM_FEATURE_V6));
        define_arm_cp_regs(cpu, pmsav5_cp_reginfo);
    } else {
        define_arm_cp_regs(cpu, vmsa_cp_reginfo);
    }
2037 2038 2039
    if (arm_feature(env, ARM_FEATURE_THUMB2EE)) {
        define_arm_cp_regs(cpu, t2ee_cp_reginfo);
    }
2040 2041 2042
    if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
        define_arm_cp_regs(cpu, generic_timer_cp_reginfo);
    }
2043 2044 2045
    if (arm_feature(env, ARM_FEATURE_VAPA)) {
        define_arm_cp_regs(cpu, vapa_cp_reginfo);
    }
2046 2047 2048 2049 2050 2051 2052 2053 2054
    if (arm_feature(env, ARM_FEATURE_CACHE_TEST_CLEAN)) {
        define_arm_cp_regs(cpu, cache_test_clean_cp_reginfo);
    }
    if (arm_feature(env, ARM_FEATURE_CACHE_DIRTY_REG)) {
        define_arm_cp_regs(cpu, cache_dirty_status_cp_reginfo);
    }
    if (arm_feature(env, ARM_FEATURE_CACHE_BLOCK_OPS)) {
        define_arm_cp_regs(cpu, cache_block_ops_cp_reginfo);
    }
2055 2056 2057
    if (arm_feature(env, ARM_FEATURE_OMAPCP)) {
        define_arm_cp_regs(cpu, omap_cp_reginfo);
    }
2058 2059 2060
    if (arm_feature(env, ARM_FEATURE_STRONGARM)) {
        define_arm_cp_regs(cpu, strongarm_cp_reginfo);
    }
2061 2062 2063 2064 2065 2066
    if (arm_feature(env, ARM_FEATURE_XSCALE)) {
        define_arm_cp_regs(cpu, xscale_cp_reginfo);
    }
    if (arm_feature(env, ARM_FEATURE_DUMMY_C15_REGS)) {
        define_arm_cp_regs(cpu, dummy_c15_cp_reginfo);
    }
2067 2068 2069
    if (arm_feature(env, ARM_FEATURE_LPAE)) {
        define_arm_cp_regs(cpu, lpae_cp_reginfo);
    }
2070 2071 2072 2073 2074 2075 2076 2077 2078
    /* Slightly awkwardly, the OMAP and StrongARM cores need all of
     * cp15 crn=0 to be writes-ignored, whereas for other cores they should
     * be read-only (ie write causes UNDEF exception).
     */
    {
        ARMCPRegInfo id_cp_reginfo[] = {
            /* Note that the MIDR isn't a simple constant register because
             * of the TI925 behaviour where writes to another register can
             * cause the MIDR value to change.
2079 2080 2081 2082
             *
             * Unimplemented registers in the c15 0 0 0 space default to
             * MIDR. Define MIDR first as this entire space, then CTR, TCMTR
             * and friends override accordingly.
2083 2084
             */
            { .name = "MIDR",
2085
              .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = CP_ANY,
2086
              .access = PL1_R, .resetvalue = cpu->midr,
2087
              .writefn = arm_cp_write_ignore, .raw_writefn = raw_write,
2088 2089
              .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
              .type = ARM_CP_OVERRIDE },
2090 2091 2092
            { .name = "MIDR_EL1", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 0, .opc2 = 0, .crn = 0, .crm = 0,
              .access = PL1_R, .resetvalue = cpu->midr, .type = ARM_CP_CONST },
2093 2094 2095
            { .name = "CTR",
              .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 1,
              .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
2096 2097 2098 2099
            { .name = "CTR_EL0", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 0, .crm = 0,
              .access = PL0_R, .accessfn = ctr_el0_access,
              .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132
            { .name = "TCMTR",
              .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 2,
              .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
            { .name = "TLBTR",
              .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 3,
              .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
            /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */
            { .name = "DUMMY",
              .cp = 15, .crn = 0, .crm = 3, .opc1 = 0, .opc2 = CP_ANY,
              .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
            { .name = "DUMMY",
              .cp = 15, .crn = 0, .crm = 4, .opc1 = 0, .opc2 = CP_ANY,
              .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
            { .name = "DUMMY",
              .cp = 15, .crn = 0, .crm = 5, .opc1 = 0, .opc2 = CP_ANY,
              .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
            { .name = "DUMMY",
              .cp = 15, .crn = 0, .crm = 6, .opc1 = 0, .opc2 = CP_ANY,
              .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
            { .name = "DUMMY",
              .cp = 15, .crn = 0, .crm = 7, .opc1 = 0, .opc2 = CP_ANY,
              .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
            REGINFO_SENTINEL
        };
        ARMCPRegInfo crn0_wi_reginfo = {
            .name = "CRN0_WI", .cp = 15, .crn = 0, .crm = CP_ANY,
            .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_W,
            .type = ARM_CP_NOP | ARM_CP_OVERRIDE
        };
        if (arm_feature(env, ARM_FEATURE_OMAPCP) ||
            arm_feature(env, ARM_FEATURE_STRONGARM)) {
            ARMCPRegInfo *r;
            /* Register the blanket "writes ignored" value first to cover the
2133 2134 2135
             * whole space. Then update the specific ID registers to allow write
             * access, so that they ignore writes rather than causing them to
             * UNDEF.
2136 2137 2138 2139 2140 2141
             */
            define_one_arm_cp_reg(cpu, &crn0_wi_reginfo);
            for (r = id_cp_reginfo; r->type != ARM_CP_SENTINEL; r++) {
                r->access = PL1_RW;
            }
        }
2142
        define_arm_cp_regs(cpu, id_cp_reginfo);
2143 2144
    }

2145 2146 2147 2148
    if (arm_feature(env, ARM_FEATURE_MPIDR)) {
        define_arm_cp_regs(cpu, mpidr_cp_reginfo);
    }

2149 2150 2151 2152 2153 2154 2155 2156 2157
    if (arm_feature(env, ARM_FEATURE_AUXCR)) {
        ARMCPRegInfo auxcr = {
            .name = "AUXCR", .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1,
            .access = PL1_RW, .type = ARM_CP_CONST,
            .resetvalue = cpu->reset_auxcr
        };
        define_one_arm_cp_reg(cpu, &auxcr);
    }

2158 2159 2160 2161 2162 2163 2164 2165 2166
    if (arm_feature(env, ARM_FEATURE_CBAR)) {
        ARMCPRegInfo cbar = {
            .name = "CBAR", .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0,
            .access = PL1_R|PL3_W, .resetvalue = cpu->reset_cbar,
            .fieldoffset = offsetof(CPUARMState, cp15.c15_config_base_address)
        };
        define_one_arm_cp_reg(cpu, &cbar);
    }

2167 2168 2169
    /* Generic registers whose values depend on the implementation */
    {
        ARMCPRegInfo sctlr = {
2170 2171
            .name = "SCTLR", .state = ARM_CP_STATE_BOTH,
            .opc0 = 3, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 0,
2172
            .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c1_sys),
2173 2174
            .writefn = sctlr_write, .resetvalue = cpu->reset_sctlr,
            .raw_writefn = raw_write,
2175 2176 2177 2178 2179 2180 2181 2182 2183 2184
        };
        if (arm_feature(env, ARM_FEATURE_XSCALE)) {
            /* Normally we would always end the TB on an SCTLR write, but Linux
             * arch/arm/mach-pxa/sleep.S expects two instructions following
             * an MMU enable to execute from cache.  Imitate this behaviour.
             */
            sctlr.type |= ARM_CP_SUPPRESS_TB_END;
        }
        define_one_arm_cp_reg(cpu, &sctlr);
    }
2185 2186
}

2187
ARMCPU *cpu_arm_init(const char *cpu_model)
P
pbrook 已提交
2188
{
2189
    ARMCPU *cpu;
2190
    ObjectClass *oc;
P
pbrook 已提交
2191

2192 2193
    oc = cpu_class_by_name(TYPE_ARM_CPU, cpu_model);
    if (!oc) {
B
bellard 已提交
2194
        return NULL;
2195
    }
2196
    cpu = ARM_CPU(object_new(object_class_get_name(oc)));
2197 2198 2199

    /* TODO this should be set centrally, once possible */
    object_property_set_bool(OBJECT(cpu), true, "realized", NULL);
2200

2201 2202 2203 2204 2205
    return cpu;
}

void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu)
{
2206
    CPUState *cs = CPU(cpu);
2207 2208
    CPUARMState *env = &cpu->env;

2209 2210 2211 2212 2213
    if (arm_feature(env, ARM_FEATURE_AARCH64)) {
        gdb_register_coprocessor(cs, aarch64_fpu_gdb_get_reg,
                                 aarch64_fpu_gdb_set_reg,
                                 34, "aarch64-fpu.xml", 0);
    } else if (arm_feature(env, ARM_FEATURE_NEON)) {
2214
        gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
P
pbrook 已提交
2215 2216
                                 51, "arm-neon.xml", 0);
    } else if (arm_feature(env, ARM_FEATURE_VFP3)) {
2217
        gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
P
pbrook 已提交
2218 2219
                                 35, "arm-vfp3.xml", 0);
    } else if (arm_feature(env, ARM_FEATURE_VFP)) {
2220
        gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
P
pbrook 已提交
2221 2222
                                 19, "arm-vfp.xml", 0);
    }
P
pbrook 已提交
2223 2224
}

2225 2226
/* Sort alphabetically by type name, except for "any". */
static gint arm_cpu_list_compare(gconstpointer a, gconstpointer b)
P
pbrook 已提交
2227
{
2228 2229 2230
    ObjectClass *class_a = (ObjectClass *)a;
    ObjectClass *class_b = (ObjectClass *)b;
    const char *name_a, *name_b;
P
pbrook 已提交
2231

2232 2233
    name_a = object_class_get_name(class_a);
    name_b = object_class_get_name(class_b);
A
Andreas Färber 已提交
2234
    if (strcmp(name_a, "any-" TYPE_ARM_CPU) == 0) {
2235
        return 1;
A
Andreas Färber 已提交
2236
    } else if (strcmp(name_b, "any-" TYPE_ARM_CPU) == 0) {
2237 2238 2239
        return -1;
    } else {
        return strcmp(name_a, name_b);
P
pbrook 已提交
2240 2241 2242
    }
}

2243
static void arm_cpu_list_entry(gpointer data, gpointer user_data)
P
pbrook 已提交
2244
{
2245
    ObjectClass *oc = data;
2246
    CPUListState *s = user_data;
A
Andreas Färber 已提交
2247 2248
    const char *typename;
    char *name;
P
pbrook 已提交
2249

A
Andreas Färber 已提交
2250 2251
    typename = object_class_get_name(oc);
    name = g_strndup(typename, strlen(typename) - strlen("-" TYPE_ARM_CPU));
2252
    (*s->cpu_fprintf)(s->file, "  %s\n",
A
Andreas Färber 已提交
2253 2254
                      name);
    g_free(name);
2255 2256 2257 2258
}

void arm_cpu_list(FILE *f, fprintf_function cpu_fprintf)
{
2259
    CPUListState s = {
2260 2261 2262 2263 2264 2265 2266 2267 2268 2269
        .file = f,
        .cpu_fprintf = cpu_fprintf,
    };
    GSList *list;

    list = object_class_get_list(TYPE_ARM_CPU, false);
    list = g_slist_sort(list, arm_cpu_list_compare);
    (*cpu_fprintf)(f, "Available CPUs:\n");
    g_slist_foreach(list, arm_cpu_list_entry, &s);
    g_slist_free(list);
2270 2271 2272 2273 2274 2275
#ifdef CONFIG_KVM
    /* The 'host' CPU type is dynamically registered only if KVM is
     * enabled, so we have to special-case it here:
     */
    (*cpu_fprintf)(f, "  host (only available in KVM mode)\n");
#endif
P
pbrook 已提交
2276 2277
}

2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308
static void arm_cpu_add_definition(gpointer data, gpointer user_data)
{
    ObjectClass *oc = data;
    CpuDefinitionInfoList **cpu_list = user_data;
    CpuDefinitionInfoList *entry;
    CpuDefinitionInfo *info;
    const char *typename;

    typename = object_class_get_name(oc);
    info = g_malloc0(sizeof(*info));
    info->name = g_strndup(typename,
                           strlen(typename) - strlen("-" TYPE_ARM_CPU));

    entry = g_malloc0(sizeof(*entry));
    entry->value = info;
    entry->next = *cpu_list;
    *cpu_list = entry;
}

CpuDefinitionInfoList *arch_query_cpu_definitions(Error **errp)
{
    CpuDefinitionInfoList *cpu_list = NULL;
    GSList *list;

    list = object_class_get_list(TYPE_ARM_CPU, false);
    g_slist_foreach(list, arm_cpu_add_definition, &cpu_list);
    g_slist_free(list);

    return cpu_list;
}

2309
static void add_cpreg_to_hashtable(ARMCPU *cpu, const ARMCPRegInfo *r,
2310 2311
                                   void *opaque, int state,
                                   int crm, int opc1, int opc2)
2312 2313 2314 2315 2316 2317 2318
{
    /* Private utility function for define_one_arm_cp_reg_with_opaque():
     * add a single reginfo struct to the hash table.
     */
    uint32_t *key = g_new(uint32_t, 1);
    ARMCPRegInfo *r2 = g_memdup(r, sizeof(ARMCPRegInfo));
    int is64 = (r->type & ARM_CP_64BIT) ? 1 : 0;
2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346
    if (r->state == ARM_CP_STATE_BOTH && state == ARM_CP_STATE_AA32) {
        /* The AArch32 view of a shared register sees the lower 32 bits
         * of a 64 bit backing field. It is not migratable as the AArch64
         * view handles that. AArch64 also handles reset.
         * We assume it is a cp15 register.
         */
        r2->cp = 15;
        r2->type |= ARM_CP_NO_MIGRATE;
        r2->resetfn = arm_cp_reset_ignore;
#ifdef HOST_WORDS_BIGENDIAN
        if (r2->fieldoffset) {
            r2->fieldoffset += sizeof(uint32_t);
        }
#endif
    }
    if (state == ARM_CP_STATE_AA64) {
        /* To allow abbreviation of ARMCPRegInfo
         * definitions, we treat cp == 0 as equivalent to
         * the value for "standard guest-visible sysreg".
         */
        if (r->cp == 0) {
            r2->cp = CP_REG_ARM64_SYSREG_CP;
        }
        *key = ENCODE_AA64_CP_REG(r2->cp, r2->crn, crm,
                                  r2->opc0, opc1, opc2);
    } else {
        *key = ENCODE_CP_REG(r2->cp, is64, r2->crn, crm, opc1, opc2);
    }
2347 2348 2349
    if (opaque) {
        r2->opaque = opaque;
    }
2350 2351 2352 2353
    /* reginfo passed to helpers is correct for the actual access,
     * and is never ARM_CP_STATE_BOTH:
     */
    r2->state = state;
2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391
    /* Make sure reginfo passed to helpers for wildcarded regs
     * has the correct crm/opc1/opc2 for this reg, not CP_ANY:
     */
    r2->crm = crm;
    r2->opc1 = opc1;
    r2->opc2 = opc2;
    /* By convention, for wildcarded registers only the first
     * entry is used for migration; the others are marked as
     * NO_MIGRATE so we don't try to transfer the register
     * multiple times. Special registers (ie NOP/WFI) are
     * never migratable.
     */
    if ((r->type & ARM_CP_SPECIAL) ||
        ((r->crm == CP_ANY) && crm != 0) ||
        ((r->opc1 == CP_ANY) && opc1 != 0) ||
        ((r->opc2 == CP_ANY) && opc2 != 0)) {
        r2->type |= ARM_CP_NO_MIGRATE;
    }

    /* Overriding of an existing definition must be explicitly
     * requested.
     */
    if (!(r->type & ARM_CP_OVERRIDE)) {
        ARMCPRegInfo *oldreg;
        oldreg = g_hash_table_lookup(cpu->cp_regs, key);
        if (oldreg && !(oldreg->type & ARM_CP_OVERRIDE)) {
            fprintf(stderr, "Register redefined: cp=%d %d bit "
                    "crn=%d crm=%d opc1=%d opc2=%d, "
                    "was %s, now %s\n", r2->cp, 32 + 32 * is64,
                    r2->crn, r2->crm, r2->opc1, r2->opc2,
                    oldreg->name, r2->name);
            g_assert_not_reached();
        }
    }
    g_hash_table_insert(cpu->cp_regs, key, r2);
}


2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405
void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
                                       const ARMCPRegInfo *r, void *opaque)
{
    /* Define implementations of coprocessor registers.
     * We store these in a hashtable because typically
     * there are less than 150 registers in a space which
     * is 16*16*16*8*8 = 262144 in size.
     * Wildcarding is supported for the crm, opc1 and opc2 fields.
     * If a register is defined twice then the second definition is
     * used, so this can be used to define some generic registers and
     * then override them with implementation specific variations.
     * At least one of the original and the second definition should
     * include ARM_CP_OVERRIDE in its type bits -- this is just a guard
     * against accidental use.
2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416
     *
     * The state field defines whether the register is to be
     * visible in the AArch32 or AArch64 execution state. If the
     * state is set to ARM_CP_STATE_BOTH then we synthesise a
     * reginfo structure for the AArch32 view, which sees the lower
     * 32 bits of the 64 bit register.
     *
     * Only registers visible in AArch64 may set r->opc0; opc0 cannot
     * be wildcarded. AArch64 registers are always considered to be 64
     * bits; the ARM_CP_64BIT* flag applies only to the AArch32 view of
     * the register, if any.
2417
     */
2418
    int crm, opc1, opc2, state;
2419 2420 2421 2422 2423 2424 2425 2426
    int crmmin = (r->crm == CP_ANY) ? 0 : r->crm;
    int crmmax = (r->crm == CP_ANY) ? 15 : r->crm;
    int opc1min = (r->opc1 == CP_ANY) ? 0 : r->opc1;
    int opc1max = (r->opc1 == CP_ANY) ? 7 : r->opc1;
    int opc2min = (r->opc2 == CP_ANY) ? 0 : r->opc2;
    int opc2max = (r->opc2 == CP_ANY) ? 7 : r->opc2;
    /* 64 bit registers have only CRm and Opc1 fields */
    assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn)));
2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472
    /* op0 only exists in the AArch64 encodings */
    assert((r->state != ARM_CP_STATE_AA32) || (r->opc0 == 0));
    /* AArch64 regs are all 64 bit so ARM_CP_64BIT is meaningless */
    assert((r->state != ARM_CP_STATE_AA64) || !(r->type & ARM_CP_64BIT));
    /* The AArch64 pseudocode CheckSystemAccess() specifies that op1
     * encodes a minimum access level for the register. We roll this
     * runtime check into our general permission check code, so check
     * here that the reginfo's specified permissions are strict enough
     * to encompass the generic architectural permission check.
     */
    if (r->state != ARM_CP_STATE_AA32) {
        int mask = 0;
        switch (r->opc1) {
        case 0: case 1: case 2:
            /* min_EL EL1 */
            mask = PL1_RW;
            break;
        case 3:
            /* min_EL EL0 */
            mask = PL0_RW;
            break;
        case 4:
            /* min_EL EL2 */
            mask = PL2_RW;
            break;
        case 5:
            /* unallocated encoding, so not possible */
            assert(false);
            break;
        case 6:
            /* min_EL EL3 */
            mask = PL3_RW;
            break;
        case 7:
            /* min_EL EL1, secure mode only (we don't check the latter) */
            mask = PL1_RW;
            break;
        default:
            /* broken reginfo with out-of-range opc1 */
            assert(false);
            break;
        }
        /* assert our permissions are not too lax (stricter is fine) */
        assert((r->access & ~mask) == 0);
    }

2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488
    /* Check that the register definition has enough info to handle
     * reads and writes if they are permitted.
     */
    if (!(r->type & (ARM_CP_SPECIAL|ARM_CP_CONST))) {
        if (r->access & PL3_R) {
            assert(r->fieldoffset || r->readfn);
        }
        if (r->access & PL3_W) {
            assert(r->fieldoffset || r->writefn);
        }
    }
    /* Bad type field probably means missing sentinel at end of reg list */
    assert(cptype_valid(r->type));
    for (crm = crmmin; crm <= crmmax; crm++) {
        for (opc1 = opc1min; opc1 <= opc1max; opc1++) {
            for (opc2 = opc2min; opc2 <= opc2max; opc2++) {
2489 2490 2491 2492 2493 2494 2495 2496
                for (state = ARM_CP_STATE_AA32;
                     state <= ARM_CP_STATE_AA64; state++) {
                    if (r->state != state && r->state != ARM_CP_STATE_BOTH) {
                        continue;
                    }
                    add_cpreg_to_hashtable(cpu, r, opaque, state,
                                           crm, opc1, opc2);
                }
2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511
            }
        }
    }
}

void define_arm_cp_regs_with_opaque(ARMCPU *cpu,
                                    const ARMCPRegInfo *regs, void *opaque)
{
    /* Define a whole list of registers */
    const ARMCPRegInfo *r;
    for (r = regs; r->type != ARM_CP_SENTINEL; r++) {
        define_one_arm_cp_reg_with_opaque(cpu, r, opaque);
    }
}

2512
const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp)
2513
{
2514
    return g_hash_table_lookup(cpregs, &encoded_cp);
2515 2516
}

2517 2518
void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
                         uint64_t value)
2519 2520 2521 2522
{
    /* Helper coprocessor write function for write-ignore registers */
}

2523
uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri)
2524 2525 2526 2527 2528
{
    /* Helper coprocessor write function for read-as-zero registers */
    return 0;
}

2529 2530 2531 2532 2533
void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque)
{
    /* Helper coprocessor reset function for do-nothing-on-reset registers */
}

2534
static int bad_mode_switch(CPUARMState *env, int mode)
2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553
{
    /* Return true if it is not valid for us to switch to
     * this CPU mode (ie all the UNPREDICTABLE cases in
     * the ARM ARM CPSRWriteByInstr pseudocode).
     */
    switch (mode) {
    case ARM_CPU_MODE_USR:
    case ARM_CPU_MODE_SYS:
    case ARM_CPU_MODE_SVC:
    case ARM_CPU_MODE_ABT:
    case ARM_CPU_MODE_UND:
    case ARM_CPU_MODE_IRQ:
    case ARM_CPU_MODE_FIQ:
        return 0;
    default:
        return 1;
    }
}

2554 2555 2556
uint32_t cpsr_read(CPUARMState *env)
{
    int ZF;
P
pbrook 已提交
2557 2558
    ZF = (env->ZF == 0);
    return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) |
2559 2560 2561
        (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
        | (env->thumb << 5) | ((env->condexec_bits & 3) << 25)
        | ((env->condexec_bits & 0xfc) << 8)
2562
        | (env->GE << 16) | (env->daif & CPSR_AIF);
2563 2564 2565 2566 2567
}

void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask)
{
    if (mask & CPSR_NZCV) {
P
pbrook 已提交
2568 2569
        env->ZF = (~val) & CPSR_Z;
        env->NF = val;
2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588
        env->CF = (val >> 29) & 1;
        env->VF = (val << 3) & 0x80000000;
    }
    if (mask & CPSR_Q)
        env->QF = ((val & CPSR_Q) != 0);
    if (mask & CPSR_T)
        env->thumb = ((val & CPSR_T) != 0);
    if (mask & CPSR_IT_0_1) {
        env->condexec_bits &= ~3;
        env->condexec_bits |= (val >> 25) & 3;
    }
    if (mask & CPSR_IT_2_7) {
        env->condexec_bits &= 3;
        env->condexec_bits |= (val >> 8) & 0xfc;
    }
    if (mask & CPSR_GE) {
        env->GE = (val >> 16) & 0xf;
    }

2589 2590 2591
    env->daif &= ~(CPSR_AIF & mask);
    env->daif |= val & CPSR_AIF & mask;

2592
    if ((env->uncached_cpsr ^ val) & mask & CPSR_M) {
2593 2594 2595 2596 2597 2598 2599 2600 2601
        if (bad_mode_switch(env, val & CPSR_M)) {
            /* Attempt to switch to an invalid mode: this is UNPREDICTABLE.
             * We choose to ignore the attempt and leave the CPSR M field
             * untouched.
             */
            mask &= ~CPSR_M;
        } else {
            switch_mode(env, val & CPSR_M);
        }
2602 2603 2604 2605 2606
    }
    mask &= ~CACHED_CPSR_BITS;
    env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask);
}

P
pbrook 已提交
2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623
/* Sign/zero extend */
uint32_t HELPER(sxtb16)(uint32_t x)
{
    uint32_t res;
    res = (uint16_t)(int8_t)x;
    res |= (uint32_t)(int8_t)(x >> 16) << 16;
    return res;
}

uint32_t HELPER(uxtb16)(uint32_t x)
{
    uint32_t res;
    res = (uint16_t)(uint8_t)x;
    res |= (uint32_t)(uint8_t)(x >> 16) << 16;
    return res;
}

P
pbrook 已提交
2624 2625
uint32_t HELPER(clz)(uint32_t x)
{
2626
    return clz32(x);
P
pbrook 已提交
2627 2628
}

P
pbrook 已提交
2629 2630 2631 2632
int32_t HELPER(sdiv)(int32_t num, int32_t den)
{
    if (den == 0)
      return 0;
A
Aurelien Jarno 已提交
2633 2634
    if (num == INT_MIN && den == -1)
      return INT_MIN;
P
pbrook 已提交
2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659
    return num / den;
}

uint32_t HELPER(udiv)(uint32_t num, uint32_t den)
{
    if (den == 0)
      return 0;
    return num / den;
}

uint32_t HELPER(rbit)(uint32_t x)
{
    x =  ((x & 0xff000000) >> 24)
       | ((x & 0x00ff0000) >> 8)
       | ((x & 0x0000ff00) << 8)
       | ((x & 0x000000ff) << 24);
    x =  ((x & 0xf0f0f0f0) >> 4)
       | ((x & 0x0f0f0f0f) << 4);
    x =  ((x & 0x88888888) >> 3)
       | ((x & 0x44444444) >> 1)
       | ((x & 0x22222222) << 1)
       | ((x & 0x11111111) << 3);
    return x;
}

2660
#if defined(CONFIG_USER_ONLY)
B
bellard 已提交
2661

2662
void arm_cpu_do_interrupt(CPUState *cs)
B
bellard 已提交
2663
{
2664 2665 2666
    ARMCPU *cpu = ARM_CPU(cs);
    CPUARMState *env = &cpu->env;

B
bellard 已提交
2667 2668 2669
    env->exception_index = -1;
}

2670
int cpu_arm_handle_mmu_fault (CPUARMState *env, target_ulong address, int rw,
2671
                              int mmu_idx)
B
bellard 已提交
2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682
{
    if (rw == 2) {
        env->exception_index = EXCP_PREFETCH_ABORT;
        env->cp15.c6_insn = address;
    } else {
        env->exception_index = EXCP_DATA_ABORT;
        env->cp15.c6_data = address;
    }
    return 1;
}

P
pbrook 已提交
2683
/* These should probably raise undefined insn exceptions.  */
2684
void HELPER(v7m_msr)(CPUARMState *env, uint32_t reg, uint32_t val)
P
pbrook 已提交
2685 2686 2687 2688
{
    cpu_abort(env, "v7m_mrs %d\n", reg);
}

2689
uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg)
P
pbrook 已提交
2690 2691 2692 2693 2694
{
    cpu_abort(env, "v7m_mrs %d\n", reg);
    return 0;
}

2695
void switch_mode(CPUARMState *env, int mode)
B
bellard 已提交
2696 2697 2698 2699 2700
{
    if (mode != ARM_CPU_MODE_USR)
        cpu_abort(env, "Tried to switch out of user mode\n");
}

2701
void HELPER(set_r13_banked)(CPUARMState *env, uint32_t mode, uint32_t val)
P
pbrook 已提交
2702 2703 2704 2705
{
    cpu_abort(env, "banked r13 write\n");
}

2706
uint32_t HELPER(get_r13_banked)(CPUARMState *env, uint32_t mode)
P
pbrook 已提交
2707 2708 2709 2710 2711
{
    cpu_abort(env, "banked r13 read\n");
    return 0;
}

B
bellard 已提交
2712 2713 2714
#else

/* Map CPU modes onto saved register banks.  */
2715
int bank_number(int mode)
B
bellard 已提交
2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731
{
    switch (mode) {
    case ARM_CPU_MODE_USR:
    case ARM_CPU_MODE_SYS:
        return 0;
    case ARM_CPU_MODE_SVC:
        return 1;
    case ARM_CPU_MODE_ABT:
        return 2;
    case ARM_CPU_MODE_UND:
        return 3;
    case ARM_CPU_MODE_IRQ:
        return 4;
    case ARM_CPU_MODE_FIQ:
        return 5;
    }
2732
    hw_error("bank number requested for bad CPSR mode value 0x%x\n", mode);
B
bellard 已提交
2733 2734
}

2735
void switch_mode(CPUARMState *env, int mode)
B
bellard 已提交
2736 2737 2738 2739 2740 2741 2742 2743 2744 2745
{
    int old_mode;
    int i;

    old_mode = env->uncached_cpsr & CPSR_M;
    if (mode == old_mode)
        return;

    if (old_mode == ARM_CPU_MODE_FIQ) {
        memcpy (env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t));
P
pbrook 已提交
2746
        memcpy (env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t));
B
bellard 已提交
2747 2748
    } else if (mode == ARM_CPU_MODE_FIQ) {
        memcpy (env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t));
P
pbrook 已提交
2749
        memcpy (env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t));
B
bellard 已提交
2750 2751
    }

2752
    i = bank_number(old_mode);
B
bellard 已提交
2753 2754 2755 2756
    env->banked_r13[i] = env->regs[13];
    env->banked_r14[i] = env->regs[14];
    env->banked_spsr[i] = env->spsr;

2757
    i = bank_number(mode);
B
bellard 已提交
2758 2759 2760 2761 2762
    env->regs[13] = env->banked_r13[i];
    env->regs[14] = env->banked_r14[i];
    env->spsr = env->banked_spsr[i];
}

P
pbrook 已提交
2763 2764
static void v7m_push(CPUARMState *env, uint32_t val)
{
2765
    CPUState *cs = ENV_GET_CPU(env);
P
pbrook 已提交
2766
    env->regs[13] -= 4;
2767
    stl_phys(cs->as, env->regs[13], val);
P
pbrook 已提交
2768 2769 2770 2771
}

static uint32_t v7m_pop(CPUARMState *env)
{
2772
    CPUState *cs = ENV_GET_CPU(env);
P
pbrook 已提交
2773
    uint32_t val;
2774
    val = ldl_phys(cs->as, env->regs[13]);
P
pbrook 已提交
2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797
    env->regs[13] += 4;
    return val;
}

/* Switch to V7M main or process stack pointer.  */
static void switch_v7m_sp(CPUARMState *env, int process)
{
    uint32_t tmp;
    if (env->v7m.current_sp != process) {
        tmp = env->v7m.other_sp;
        env->v7m.other_sp = env->regs[13];
        env->regs[13] = tmp;
        env->v7m.current_sp = process;
    }
}

static void do_v7m_exception_exit(CPUARMState *env)
{
    uint32_t type;
    uint32_t xpsr;

    type = env->regs[15];
    if (env->v7m.exception != 0)
P
Paul Brook 已提交
2798
        armv7m_nvic_complete_irq(env->nvic, env->v7m.exception);
P
pbrook 已提交
2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821

    /* Switch to the target stack.  */
    switch_v7m_sp(env, (type & 4) != 0);
    /* Pop registers.  */
    env->regs[0] = v7m_pop(env);
    env->regs[1] = v7m_pop(env);
    env->regs[2] = v7m_pop(env);
    env->regs[3] = v7m_pop(env);
    env->regs[12] = v7m_pop(env);
    env->regs[14] = v7m_pop(env);
    env->regs[15] = v7m_pop(env);
    xpsr = v7m_pop(env);
    xpsr_write(env, xpsr, 0xfffffdff);
    /* Undo stack alignment.  */
    if (xpsr & 0x200)
        env->regs[13] |= 4;
    /* ??? The exception return type specifies Thread/Handler mode.  However
       this is also implied by the xPSR value. Not sure what to do
       if there is a mismatch.  */
    /* ??? Likewise for mismatches between the CONTROL register and the stack
       pointer.  */
}

2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852
/* Exception names for debug logging; note that not all of these
 * precisely correspond to architectural exceptions.
 */
static const char * const excnames[] = {
    [EXCP_UDEF] = "Undefined Instruction",
    [EXCP_SWI] = "SVC",
    [EXCP_PREFETCH_ABORT] = "Prefetch Abort",
    [EXCP_DATA_ABORT] = "Data Abort",
    [EXCP_IRQ] = "IRQ",
    [EXCP_FIQ] = "FIQ",
    [EXCP_BKPT] = "Breakpoint",
    [EXCP_EXCEPTION_EXIT] = "QEMU v7M exception exit",
    [EXCP_KERNEL_TRAP] = "QEMU intercept of kernel commpage",
    [EXCP_STREX] = "QEMU intercept of STREX",
};

static inline void arm_log_exception(int idx)
{
    if (qemu_loglevel_mask(CPU_LOG_INT)) {
        const char *exc = NULL;

        if (idx >= 0 && idx < ARRAY_SIZE(excnames)) {
            exc = excnames[idx];
        }
        if (!exc) {
            exc = "unknown";
        }
        qemu_log_mask(CPU_LOG_INT, "Taking exception %d [%s]\n", idx, exc);
    }
}

2853
void arm_v7m_cpu_do_interrupt(CPUState *cs)
P
pbrook 已提交
2854
{
2855 2856
    ARMCPU *cpu = ARM_CPU(cs);
    CPUARMState *env = &cpu->env;
P
pbrook 已提交
2857 2858 2859 2860
    uint32_t xpsr = xpsr_read(env);
    uint32_t lr;
    uint32_t addr;

2861 2862
    arm_log_exception(env->exception_index);

P
pbrook 已提交
2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874
    lr = 0xfffffff1;
    if (env->v7m.current_sp)
        lr |= 4;
    if (env->v7m.exception == 0)
        lr |= 8;

    /* For exceptions we just mark as pending on the NVIC, and let that
       handle it.  */
    /* TODO: Need to escalate if the current priority is higher than the
       one we're raising.  */
    switch (env->exception_index) {
    case EXCP_UDEF:
P
Paul Brook 已提交
2875
        armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE);
P
pbrook 已提交
2876 2877
        return;
    case EXCP_SWI:
2878
        /* The PC already points to the next instruction.  */
P
Paul Brook 已提交
2879
        armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SVC);
P
pbrook 已提交
2880 2881 2882
        return;
    case EXCP_PREFETCH_ABORT:
    case EXCP_DATA_ABORT:
P
Paul Brook 已提交
2883
        armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_MEM);
P
pbrook 已提交
2884 2885
        return;
    case EXCP_BKPT:
P
pbrook 已提交
2886 2887
        if (semihosting_enabled) {
            int nr;
2888
            nr = arm_lduw_code(env, env->regs[15], env->bswap_code) & 0xff;
P
pbrook 已提交
2889 2890 2891
            if (nr == 0xab) {
                env->regs[15] += 2;
                env->regs[0] = do_arm_semihosting(env);
2892
                qemu_log_mask(CPU_LOG_INT, "...handled as semihosting call\n");
P
pbrook 已提交
2893 2894 2895
                return;
            }
        }
P
Paul Brook 已提交
2896
        armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_DEBUG);
P
pbrook 已提交
2897 2898
        return;
    case EXCP_IRQ:
P
Paul Brook 已提交
2899
        env->v7m.exception = armv7m_nvic_acknowledge_irq(env->nvic);
P
pbrook 已提交
2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912
        break;
    case EXCP_EXCEPTION_EXIT:
        do_v7m_exception_exit(env);
        return;
    default:
        cpu_abort(env, "Unhandled exception 0x%x\n", env->exception_index);
        return; /* Never happens.  Keep compiler happy.  */
    }

    /* Align stack pointer.  */
    /* ??? Should only do this if Configuration Control Register
       STACKALIGN bit is set.  */
    if (env->regs[13] & 4) {
P
pbrook 已提交
2913
        env->regs[13] -= 4;
P
pbrook 已提交
2914 2915
        xpsr |= 0x200;
    }
B
balrog 已提交
2916
    /* Switch to the handler mode.  */
P
pbrook 已提交
2917 2918 2919 2920 2921 2922 2923 2924 2925
    v7m_push(env, xpsr);
    v7m_push(env, env->regs[15]);
    v7m_push(env, env->regs[14]);
    v7m_push(env, env->regs[12]);
    v7m_push(env, env->regs[3]);
    v7m_push(env, env->regs[2]);
    v7m_push(env, env->regs[1]);
    v7m_push(env, env->regs[0]);
    switch_v7m_sp(env, 0);
2926 2927
    /* Clear IT bits */
    env->condexec_bits = 0;
P
pbrook 已提交
2928
    env->regs[14] = lr;
2929
    addr = ldl_phys(cs->as, env->v7m.vecbase + env->v7m.exception * 4);
P
pbrook 已提交
2930 2931 2932 2933
    env->regs[15] = addr & 0xfffffffe;
    env->thumb = addr & 1;
}

B
bellard 已提交
2934
/* Handle a CPU exception.  */
2935
void arm_cpu_do_interrupt(CPUState *cs)
B
bellard 已提交
2936
{
2937 2938
    ARMCPU *cpu = ARM_CPU(cs);
    CPUARMState *env = &cpu->env;
B
bellard 已提交
2939 2940 2941 2942 2943
    uint32_t addr;
    uint32_t mask;
    int new_mode;
    uint32_t offset;

2944 2945
    assert(!IS_M(env));

2946 2947
    arm_log_exception(env->exception_index);

B
bellard 已提交
2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959
    /* TODO: Vectored interrupt controller.  */
    switch (env->exception_index) {
    case EXCP_UDEF:
        new_mode = ARM_CPU_MODE_UND;
        addr = 0x04;
        mask = CPSR_I;
        if (env->thumb)
            offset = 2;
        else
            offset = 4;
        break;
    case EXCP_SWI:
2960 2961 2962
        if (semihosting_enabled) {
            /* Check for semihosting interrupt.  */
            if (env->thumb) {
2963 2964
                mask = arm_lduw_code(env, env->regs[15] - 2, env->bswap_code)
                    & 0xff;
2965
            } else {
2966
                mask = arm_ldl_code(env, env->regs[15] - 4, env->bswap_code)
P
Paul Brook 已提交
2967
                    & 0xffffff;
2968 2969 2970 2971 2972 2973 2974
            }
            /* Only intercept calls from privileged modes, to provide some
               semblance of security.  */
            if (((mask == 0x123456 && !env->thumb)
                    || (mask == 0xab && env->thumb))
                  && (env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR) {
                env->regs[0] = do_arm_semihosting(env);
2975
                qemu_log_mask(CPU_LOG_INT, "...handled as semihosting call\n");
2976 2977 2978
                return;
            }
        }
B
bellard 已提交
2979 2980 2981
        new_mode = ARM_CPU_MODE_SVC;
        addr = 0x08;
        mask = CPSR_I;
2982
        /* The PC already points to the next instruction.  */
B
bellard 已提交
2983 2984
        offset = 0;
        break;
P
pbrook 已提交
2985
    case EXCP_BKPT:
P
pbrook 已提交
2986
        /* See if this is a semihosting syscall.  */
P
pbrook 已提交
2987
        if (env->thumb && semihosting_enabled) {
2988
            mask = arm_lduw_code(env, env->regs[15], env->bswap_code) & 0xff;
P
pbrook 已提交
2989 2990 2991 2992
            if (mask == 0xab
                  && (env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR) {
                env->regs[15] += 2;
                env->regs[0] = do_arm_semihosting(env);
2993
                qemu_log_mask(CPU_LOG_INT, "...handled as semihosting call\n");
P
pbrook 已提交
2994 2995 2996
                return;
            }
        }
2997
        env->cp15.c5_insn = 2;
P
pbrook 已提交
2998 2999
        /* Fall through to prefetch abort.  */
    case EXCP_PREFETCH_ABORT:
3000 3001
        qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x IFAR 0x%x\n",
                      env->cp15.c5_insn, env->cp15.c6_insn);
B
bellard 已提交
3002 3003 3004 3005 3006 3007
        new_mode = ARM_CPU_MODE_ABT;
        addr = 0x0c;
        mask = CPSR_A | CPSR_I;
        offset = 4;
        break;
    case EXCP_DATA_ABORT:
3008 3009
        qemu_log_mask(CPU_LOG_INT, "...with DFSR 0x%x DFAR 0x%x\n",
                      env->cp15.c5_data, env->cp15.c6_data);
B
bellard 已提交
3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033
        new_mode = ARM_CPU_MODE_ABT;
        addr = 0x10;
        mask = CPSR_A | CPSR_I;
        offset = 8;
        break;
    case EXCP_IRQ:
        new_mode = ARM_CPU_MODE_IRQ;
        addr = 0x18;
        /* Disable IRQ and imprecise data aborts.  */
        mask = CPSR_A | CPSR_I;
        offset = 4;
        break;
    case EXCP_FIQ:
        new_mode = ARM_CPU_MODE_FIQ;
        addr = 0x1c;
        /* Disable FIQ, IRQ and imprecise data aborts.  */
        mask = CPSR_A | CPSR_I | CPSR_F;
        offset = 4;
        break;
    default:
        cpu_abort(env, "Unhandled exception 0x%x\n", env->exception_index);
        return; /* Never happens.  Keep compiler happy.  */
    }
    /* High vectors.  */
3034
    if (env->cp15.c1_sys & SCTLR_V) {
N
Nathan Rossi 已提交
3035
        /* when enabled, base address cannot be remapped.  */
B
bellard 已提交
3036
        addr += 0xffff0000;
N
Nathan Rossi 已提交
3037 3038 3039 3040 3041 3042 3043 3044 3045
    } else {
        /* ARM v7 architectures provide a vector base address register to remap
         * the interrupt vector table.
         * This register is only followed in non-monitor mode, and has a secure
         * and un-secure copy. Since the cpu is always in a un-secure operation
         * and is never in monitor mode this feature is always active.
         * Note: only bits 31:5 are valid.
         */
        addr += env->cp15.c12_vbar;
B
bellard 已提交
3046 3047 3048
    }
    switch_mode (env, new_mode);
    env->spsr = cpsr_read(env);
P
pbrook 已提交
3049 3050
    /* Clear IT bits.  */
    env->condexec_bits = 0;
3051
    /* Switch to the new mode, and to the correct instruction set.  */
3052
    env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode;
3053
    env->daif |= mask;
3054 3055 3056
    /* this is a lie, as the was no c1_sys on V4T/V5, but who cares
     * and we should just guard the thumb mode on V4 */
    if (arm_feature(env, ARM_FEATURE_V4T)) {
3057
        env->thumb = (env->cp15.c1_sys & SCTLR_TE) != 0;
3058
    }
B
bellard 已提交
3059 3060
    env->regs[14] = env->regs[15] + offset;
    env->regs[15] = addr;
3061
    cs->interrupt_request |= CPU_INTERRUPT_EXITTB;
B
bellard 已提交
3062 3063 3064 3065 3066
}

/* Check section/page access permissions.
   Returns the page protection flags, or zero if the access is not
   permitted.  */
3067
static inline int check_ap(CPUARMState *env, int ap, int domain_prot,
3068
                           int access_type, int is_user)
B
bellard 已提交
3069
{
P
pbrook 已提交
3070 3071
  int prot_ro;

3072
  if (domain_prot == 3) {
B
bellard 已提交
3073
    return PAGE_READ | PAGE_WRITE;
3074
  }
B
bellard 已提交
3075

P
pbrook 已提交
3076 3077 3078 3079 3080
  if (access_type == 1)
      prot_ro = 0;
  else
      prot_ro = PAGE_READ;

B
bellard 已提交
3081 3082
  switch (ap) {
  case 0:
3083 3084 3085
      if (arm_feature(env, ARM_FEATURE_V7)) {
          return 0;
      }
P
pbrook 已提交
3086
      if (access_type == 1)
B
bellard 已提交
3087
          return 0;
3088 3089
      switch (env->cp15.c1_sys & (SCTLR_S | SCTLR_R)) {
      case SCTLR_S:
B
bellard 已提交
3090
          return is_user ? 0 : PAGE_READ;
3091
      case SCTLR_R:
B
bellard 已提交
3092 3093 3094 3095 3096 3097 3098 3099
          return PAGE_READ;
      default:
          return 0;
      }
  case 1:
      return is_user ? 0 : PAGE_READ | PAGE_WRITE;
  case 2:
      if (is_user)
P
pbrook 已提交
3100
          return prot_ro;
B
bellard 已提交
3101 3102 3103 3104
      else
          return PAGE_READ | PAGE_WRITE;
  case 3:
      return PAGE_READ | PAGE_WRITE;
P
pbrook 已提交
3105
  case 4: /* Reserved.  */
P
pbrook 已提交
3106 3107 3108 3109 3110
      return 0;
  case 5:
      return is_user ? 0 : prot_ro;
  case 6:
      return prot_ro;
P
pbrook 已提交
3111
  case 7:
3112
      if (!arm_feature (env, ARM_FEATURE_V6K))
P
pbrook 已提交
3113 3114
          return 0;
      return prot_ro;
B
bellard 已提交
3115 3116 3117 3118 3119
  default:
      abort();
  }
}

3120
static uint32_t get_level1_table_address(CPUARMState *env, uint32_t address)
3121 3122 3123 3124
{
    uint32_t table;

    if (address & env->cp15.c2_mask)
3125
        table = env->cp15.ttbr1_el1 & 0xffffc000;
3126
    else
3127
        table = env->cp15.ttbr0_el1 & env->cp15.c2_base_mask;
3128 3129 3130 3131 3132

    table |= (address >> 18) & 0x3ffc;
    return table;
}

3133
static int get_phys_addr_v5(CPUARMState *env, uint32_t address, int access_type,
A
Avi Kivity 已提交
3134
                            int is_user, hwaddr *phys_ptr,
3135
                            int *prot, target_ulong *page_size)
B
bellard 已提交
3136
{
3137
    CPUState *cs = ENV_GET_CPU(env);
B
bellard 已提交
3138 3139 3140 3141 3142 3143
    int code;
    uint32_t table;
    uint32_t desc;
    int type;
    int ap;
    int domain;
3144
    int domain_prot;
A
Avi Kivity 已提交
3145
    hwaddr phys_addr;
B
bellard 已提交
3146

P
pbrook 已提交
3147 3148
    /* Pagetable walk.  */
    /* Lookup l1 descriptor.  */
3149
    table = get_level1_table_address(env, address);
3150
    desc = ldl_phys(cs->as, table);
P
pbrook 已提交
3151
    type = (desc & 3);
3152 3153
    domain = (desc >> 5) & 0x0f;
    domain_prot = (env->cp15.c3 >> (domain * 2)) & 3;
P
pbrook 已提交
3154
    if (type == 0) {
3155
        /* Section translation fault.  */
P
pbrook 已提交
3156 3157 3158
        code = 5;
        goto do_fault;
    }
3159
    if (domain_prot == 0 || domain_prot == 2) {
P
pbrook 已提交
3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170
        if (type == 2)
            code = 9; /* Section domain fault.  */
        else
            code = 11; /* Page domain fault.  */
        goto do_fault;
    }
    if (type == 2) {
        /* 1Mb section.  */
        phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
        ap = (desc >> 10) & 3;
        code = 13;
P
Paul Brook 已提交
3171
        *page_size = 1024 * 1024;
P
pbrook 已提交
3172 3173 3174 3175 3176 3177 3178 3179 3180
    } else {
        /* Lookup l2 entry.  */
	if (type == 1) {
	    /* Coarse pagetable.  */
	    table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
	} else {
	    /* Fine pagetable.  */
	    table = (desc & 0xfffff000) | ((address >> 8) & 0xffc);
	}
3181
        desc = ldl_phys(cs->as, table);
P
pbrook 已提交
3182 3183 3184 3185 3186 3187 3188
        switch (desc & 3) {
        case 0: /* Page translation fault.  */
            code = 7;
            goto do_fault;
        case 1: /* 64k page.  */
            phys_addr = (desc & 0xffff0000) | (address & 0xffff);
            ap = (desc >> (4 + ((address >> 13) & 6))) & 3;
P
Paul Brook 已提交
3189
            *page_size = 0x10000;
P
pbrook 已提交
3190
            break;
P
pbrook 已提交
3191 3192
        case 2: /* 4k page.  */
            phys_addr = (desc & 0xfffff000) | (address & 0xfff);
3193
            ap = (desc >> (4 + ((address >> 9) & 6))) & 3;
P
Paul Brook 已提交
3194
            *page_size = 0x1000;
P
pbrook 已提交
3195
            break;
P
pbrook 已提交
3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208
        case 3: /* 1k page.  */
	    if (type == 1) {
		if (arm_feature(env, ARM_FEATURE_XSCALE)) {
		    phys_addr = (desc & 0xfffff000) | (address & 0xfff);
		} else {
		    /* Page translation fault.  */
		    code = 7;
		    goto do_fault;
		}
	    } else {
		phys_addr = (desc & 0xfffffc00) | (address & 0x3ff);
	    }
            ap = (desc >> 4) & 3;
P
Paul Brook 已提交
3209
            *page_size = 0x400;
P
pbrook 已提交
3210 3211
            break;
        default:
P
pbrook 已提交
3212 3213
            /* Never happens, but compiler isn't smart enough to tell.  */
            abort();
P
pbrook 已提交
3214
        }
P
pbrook 已提交
3215 3216
        code = 15;
    }
3217
    *prot = check_ap(env, ap, domain_prot, access_type, is_user);
P
pbrook 已提交
3218 3219 3220 3221
    if (!*prot) {
        /* Access permission fault.  */
        goto do_fault;
    }
3222
    *prot |= PAGE_EXEC;
P
pbrook 已提交
3223 3224 3225 3226 3227 3228
    *phys_ptr = phys_addr;
    return 0;
do_fault:
    return code | (domain << 4);
}

3229
static int get_phys_addr_v6(CPUARMState *env, uint32_t address, int access_type,
A
Avi Kivity 已提交
3230
                            int is_user, hwaddr *phys_ptr,
3231
                            int *prot, target_ulong *page_size)
P
pbrook 已提交
3232
{
3233
    CPUState *cs = ENV_GET_CPU(env);
P
pbrook 已提交
3234 3235 3236 3237
    int code;
    uint32_t table;
    uint32_t desc;
    uint32_t xn;
3238
    uint32_t pxn = 0;
P
pbrook 已提交
3239 3240
    int type;
    int ap;
3241
    int domain = 0;
3242
    int domain_prot;
A
Avi Kivity 已提交
3243
    hwaddr phys_addr;
P
pbrook 已提交
3244 3245 3246

    /* Pagetable walk.  */
    /* Lookup l1 descriptor.  */
3247
    table = get_level1_table_address(env, address);
3248
    desc = ldl_phys(cs->as, table);
P
pbrook 已提交
3249
    type = (desc & 3);
3250 3251 3252 3253
    if (type == 0 || (type == 3 && !arm_feature(env, ARM_FEATURE_PXN))) {
        /* Section translation fault, or attempt to use the encoding
         * which is Reserved on implementations without PXN.
         */
P
pbrook 已提交
3254 3255
        code = 5;
        goto do_fault;
3256 3257 3258
    }
    if ((type == 1) || !(desc & (1 << 18))) {
        /* Page or Section.  */
3259
        domain = (desc >> 5) & 0x0f;
P
pbrook 已提交
3260
    }
3261 3262
    domain_prot = (env->cp15.c3 >> (domain * 2)) & 3;
    if (domain_prot == 0 || domain_prot == 2) {
3263
        if (type != 1) {
P
pbrook 已提交
3264
            code = 9; /* Section domain fault.  */
3265
        } else {
P
pbrook 已提交
3266
            code = 11; /* Page domain fault.  */
3267
        }
P
pbrook 已提交
3268 3269
        goto do_fault;
    }
3270
    if (type != 1) {
P
pbrook 已提交
3271 3272 3273
        if (desc & (1 << 18)) {
            /* Supersection.  */
            phys_addr = (desc & 0xff000000) | (address & 0x00ffffff);
P
Paul Brook 已提交
3274
            *page_size = 0x1000000;
B
bellard 已提交
3275
        } else {
P
pbrook 已提交
3276 3277
            /* Section.  */
            phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
P
Paul Brook 已提交
3278
            *page_size = 0x100000;
B
bellard 已提交
3279
        }
P
pbrook 已提交
3280 3281
        ap = ((desc >> 10) & 3) | ((desc >> 13) & 4);
        xn = desc & (1 << 4);
3282
        pxn = desc & 1;
P
pbrook 已提交
3283 3284
        code = 13;
    } else {
3285 3286 3287
        if (arm_feature(env, ARM_FEATURE_PXN)) {
            pxn = (desc >> 2) & 1;
        }
P
pbrook 已提交
3288 3289
        /* Lookup l2 entry.  */
        table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
3290
        desc = ldl_phys(cs->as, table);
P
pbrook 已提交
3291 3292 3293 3294
        ap = ((desc >> 4) & 3) | ((desc >> 7) & 4);
        switch (desc & 3) {
        case 0: /* Page translation fault.  */
            code = 7;
B
bellard 已提交
3295
            goto do_fault;
P
pbrook 已提交
3296 3297 3298
        case 1: /* 64k page.  */
            phys_addr = (desc & 0xffff0000) | (address & 0xffff);
            xn = desc & (1 << 15);
P
Paul Brook 已提交
3299
            *page_size = 0x10000;
P
pbrook 已提交
3300 3301 3302 3303
            break;
        case 2: case 3: /* 4k page.  */
            phys_addr = (desc & 0xfffff000) | (address & 0xfff);
            xn = desc & 1;
P
Paul Brook 已提交
3304
            *page_size = 0x1000;
P
pbrook 已提交
3305 3306 3307 3308
            break;
        default:
            /* Never happens, but compiler isn't smart enough to tell.  */
            abort();
B
bellard 已提交
3309
        }
P
pbrook 已提交
3310 3311
        code = 15;
    }
3312
    if (domain_prot == 3) {
3313 3314
        *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
    } else {
3315 3316 3317
        if (pxn && !is_user) {
            xn = 1;
        }
3318 3319
        if (xn && access_type == 2)
            goto do_fault;
P
pbrook 已提交
3320

3321
        /* The simplified model uses AP[0] as an access control bit.  */
3322
        if ((env->cp15.c1_sys & SCTLR_AFE) && (ap & 1) == 0) {
3323 3324 3325 3326
            /* Access flag fault.  */
            code = (code == 15) ? 6 : 3;
            goto do_fault;
        }
3327
        *prot = check_ap(env, ap, domain_prot, access_type, is_user);
3328 3329 3330 3331 3332 3333 3334
        if (!*prot) {
            /* Access permission fault.  */
            goto do_fault;
        }
        if (!xn) {
            *prot |= PAGE_EXEC;
        }
3335
    }
P
pbrook 已提交
3336
    *phys_ptr = phys_addr;
B
bellard 已提交
3337 3338 3339 3340 3341
    return 0;
do_fault:
    return code | (domain << 4);
}

3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352
/* Fault type for long-descriptor MMU fault reporting; this corresponds
 * to bits [5..2] in the STATUS field in long-format DFSR/IFSR.
 */
typedef enum {
    translation_fault = 1,
    access_fault = 2,
    permission_fault = 3,
} MMUFaultType;

static int get_phys_addr_lpae(CPUARMState *env, uint32_t address,
                              int access_type, int is_user,
A
Avi Kivity 已提交
3353
                              hwaddr *phys_ptr, int *prot,
3354 3355
                              target_ulong *page_size_ptr)
{
3356
    CPUState *cs = ENV_GET_CPU(env);
3357 3358 3359 3360 3361 3362 3363 3364
    /* Read an LPAE long-descriptor translation table. */
    MMUFaultType fault_type = translation_fault;
    uint32_t level = 1;
    uint32_t epd;
    uint32_t tsz;
    uint64_t ttbr;
    int ttbr_select;
    int n;
A
Avi Kivity 已提交
3365
    hwaddr descaddr;
3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402
    uint32_t tableattrs;
    target_ulong page_size;
    uint32_t attrs;

    /* Determine whether this address is in the region controlled by
     * TTBR0 or TTBR1 (or if it is in neither region and should fault).
     * This is a Non-secure PL0/1 stage 1 translation, so controlled by
     * TTBCR/TTBR0/TTBR1 in accordance with ARM ARM DDI0406C table B-32:
     */
    uint32_t t0sz = extract32(env->cp15.c2_control, 0, 3);
    uint32_t t1sz = extract32(env->cp15.c2_control, 16, 3);
    if (t0sz && !extract32(address, 32 - t0sz, t0sz)) {
        /* there is a ttbr0 region and we are in it (high bits all zero) */
        ttbr_select = 0;
    } else if (t1sz && !extract32(~address, 32 - t1sz, t1sz)) {
        /* there is a ttbr1 region and we are in it (high bits all one) */
        ttbr_select = 1;
    } else if (!t0sz) {
        /* ttbr0 region is "everything not in the ttbr1 region" */
        ttbr_select = 0;
    } else if (!t1sz) {
        /* ttbr1 region is "everything not in the ttbr0 region" */
        ttbr_select = 1;
    } else {
        /* in the gap between the two regions, this is a Translation fault */
        fault_type = translation_fault;
        goto do_fault;
    }

    /* Note that QEMU ignores shareability and cacheability attributes,
     * so we don't need to do anything with the SH, ORGN, IRGN fields
     * in the TTBCR.  Similarly, TTBCR:A1 selects whether we get the
     * ASID from TTBR0 or TTBR1, but QEMU's TLB doesn't currently
     * implement any ASID-like capability so we can ignore it (instead
     * we will always flush the TLB any time the ASID is changed).
     */
    if (ttbr_select == 0) {
3403
        ttbr = env->cp15.ttbr0_el1;
3404 3405 3406
        epd = extract32(env->cp15.c2_control, 7, 1);
        tsz = t0sz;
    } else {
3407
        ttbr = env->cp15.ttbr1_el1;
3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444
        epd = extract32(env->cp15.c2_control, 23, 1);
        tsz = t1sz;
    }

    if (epd) {
        /* Translation table walk disabled => Translation fault on TLB miss */
        goto do_fault;
    }

    /* If the region is small enough we will skip straight to a 2nd level
     * lookup. This affects the number of bits of the address used in
     * combination with the TTBR to find the first descriptor. ('n' here
     * matches the usage in the ARM ARM sB3.6.6, where bits [39..n] are
     * from the TTBR, [n-1..3] from the vaddr, and [2..0] always zero).
     */
    if (tsz > 1) {
        level = 2;
        n = 14 - tsz;
    } else {
        n = 5 - tsz;
    }

    /* Clear the vaddr bits which aren't part of the within-region address,
     * so that we don't have to special case things when calculating the
     * first descriptor address.
     */
    address &= (0xffffffffU >> tsz);

    /* Now we can extract the actual base address from the TTBR */
    descaddr = extract64(ttbr, 0, 40);
    descaddr &= ~((1ULL << n) - 1);

    tableattrs = 0;
    for (;;) {
        uint64_t descriptor;

        descaddr |= ((address >> (9 * (4 - level))) & 0xff8);
3445
        descriptor = ldq_phys(cs->as, descaddr);
3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520
        if (!(descriptor & 1) ||
            (!(descriptor & 2) && (level == 3))) {
            /* Invalid, or the Reserved level 3 encoding */
            goto do_fault;
        }
        descaddr = descriptor & 0xfffffff000ULL;

        if ((descriptor & 2) && (level < 3)) {
            /* Table entry. The top five bits are attributes which  may
             * propagate down through lower levels of the table (and
             * which are all arranged so that 0 means "no effect", so
             * we can gather them up by ORing in the bits at each level).
             */
            tableattrs |= extract64(descriptor, 59, 5);
            level++;
            continue;
        }
        /* Block entry at level 1 or 2, or page entry at level 3.
         * These are basically the same thing, although the number
         * of bits we pull in from the vaddr varies.
         */
        page_size = (1 << (39 - (9 * level)));
        descaddr |= (address & (page_size - 1));
        /* Extract attributes from the descriptor and merge with table attrs */
        attrs = extract64(descriptor, 2, 10)
            | (extract64(descriptor, 52, 12) << 10);
        attrs |= extract32(tableattrs, 0, 2) << 11; /* XN, PXN */
        attrs |= extract32(tableattrs, 3, 1) << 5; /* APTable[1] => AP[2] */
        /* The sense of AP[1] vs APTable[0] is reversed, as APTable[0] == 1
         * means "force PL1 access only", which means forcing AP[1] to 0.
         */
        if (extract32(tableattrs, 2, 1)) {
            attrs &= ~(1 << 4);
        }
        /* Since we're always in the Non-secure state, NSTable is ignored. */
        break;
    }
    /* Here descaddr is the final physical address, and attributes
     * are all in attrs.
     */
    fault_type = access_fault;
    if ((attrs & (1 << 8)) == 0) {
        /* Access flag */
        goto do_fault;
    }
    fault_type = permission_fault;
    if (is_user && !(attrs & (1 << 4))) {
        /* Unprivileged access not enabled */
        goto do_fault;
    }
    *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
    if (attrs & (1 << 12) || (!is_user && (attrs & (1 << 11)))) {
        /* XN or PXN */
        if (access_type == 2) {
            goto do_fault;
        }
        *prot &= ~PAGE_EXEC;
    }
    if (attrs & (1 << 5)) {
        /* Write access forbidden */
        if (access_type == 1) {
            goto do_fault;
        }
        *prot &= ~PAGE_WRITE;
    }

    *phys_ptr = descaddr;
    *page_size_ptr = page_size;
    return 0;

do_fault:
    /* Long-descriptor format IFSR/DFSR value */
    return (1 << 9) | (fault_type << 2) | level;
}

3521 3522
static int get_phys_addr_mpu(CPUARMState *env, uint32_t address,
                             int access_type, int is_user,
A
Avi Kivity 已提交
3523
                             hwaddr *phys_ptr, int *prot)
P
pbrook 已提交
3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577
{
    int n;
    uint32_t mask;
    uint32_t base;

    *phys_ptr = address;
    for (n = 7; n >= 0; n--) {
	base = env->cp15.c6_region[n];
	if ((base & 1) == 0)
	    continue;
	mask = 1 << ((base >> 1) & 0x1f);
	/* Keep this shift separate from the above to avoid an
	   (undefined) << 32.  */
	mask = (mask << 1) - 1;
	if (((base ^ address) & ~mask) == 0)
	    break;
    }
    if (n < 0)
	return 2;

    if (access_type == 2) {
	mask = env->cp15.c5_insn;
    } else {
	mask = env->cp15.c5_data;
    }
    mask = (mask >> (n * 4)) & 0xf;
    switch (mask) {
    case 0:
	return 1;
    case 1:
	if (is_user)
	  return 1;
	*prot = PAGE_READ | PAGE_WRITE;
	break;
    case 2:
	*prot = PAGE_READ;
	if (!is_user)
	    *prot |= PAGE_WRITE;
	break;
    case 3:
	*prot = PAGE_READ | PAGE_WRITE;
	break;
    case 5:
	if (is_user)
	    return 1;
	*prot = PAGE_READ;
	break;
    case 6:
	*prot = PAGE_READ;
	break;
    default:
	/* Bad permission.  */
	return 1;
    }
3578
    *prot |= PAGE_EXEC;
P
pbrook 已提交
3579 3580 3581
    return 0;
}

3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604
/* get_phys_addr - get the physical address for this virtual address
 *
 * Find the physical address corresponding to the given virtual address,
 * by doing a translation table walk on MMU based systems or using the
 * MPU state on MPU based systems.
 *
 * Returns 0 if the translation was successful. Otherwise, phys_ptr,
 * prot and page_size are not filled in, and the return value provides
 * information on why the translation aborted, in the format of a
 * DFSR/IFSR fault register, with the following caveats:
 *  * we honour the short vs long DFSR format differences.
 *  * the WnR bit is never set (the caller must do this).
 *  * for MPU based systems we don't bother to return a full FSR format
 *    value.
 *
 * @env: CPUARMState
 * @address: virtual address to get physical address for
 * @access_type: 0 for read, 1 for write, 2 for execute
 * @is_user: 0 for privileged access, 1 for user
 * @phys_ptr: set to the physical address corresponding to the virtual address
 * @prot: set to the permissions for the page containing phys_ptr
 * @page_size: set to the size of the page containing phys_ptr
 */
3605
static inline int get_phys_addr(CPUARMState *env, uint32_t address,
P
pbrook 已提交
3606
                                int access_type, int is_user,
A
Avi Kivity 已提交
3607
                                hwaddr *phys_ptr, int *prot,
P
Paul Brook 已提交
3608
                                target_ulong *page_size)
P
pbrook 已提交
3609 3610 3611 3612 3613
{
    /* Fast Context Switch Extension.  */
    if (address < 0x02000000)
        address += env->cp15.c13_fcse;

3614
    if ((env->cp15.c1_sys & SCTLR_M) == 0) {
P
pbrook 已提交
3615 3616
        /* MMU/MPU disabled.  */
        *phys_ptr = address;
3617
        *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
P
Paul Brook 已提交
3618
        *page_size = TARGET_PAGE_SIZE;
P
pbrook 已提交
3619 3620
        return 0;
    } else if (arm_feature(env, ARM_FEATURE_MPU)) {
P
Paul Brook 已提交
3621
        *page_size = TARGET_PAGE_SIZE;
P
pbrook 已提交
3622 3623
	return get_phys_addr_mpu(env, address, access_type, is_user, phys_ptr,
				 prot);
3624 3625 3626
    } else if (extended_addresses_enabled(env)) {
        return get_phys_addr_lpae(env, address, access_type, is_user, phys_ptr,
                                  prot, page_size);
3627
    } else if (env->cp15.c1_sys & SCTLR_XP) {
P
pbrook 已提交
3628
        return get_phys_addr_v6(env, address, access_type, is_user, phys_ptr,
P
Paul Brook 已提交
3629
                                prot, page_size);
P
pbrook 已提交
3630 3631
    } else {
        return get_phys_addr_v5(env, address, access_type, is_user, phys_ptr,
P
Paul Brook 已提交
3632
                                prot, page_size);
P
pbrook 已提交
3633 3634 3635
    }
}

3636
int cpu_arm_handle_mmu_fault (CPUARMState *env, target_ulong address,
3637
                              int access_type, int mmu_idx)
B
bellard 已提交
3638
{
A
Avi Kivity 已提交
3639
    hwaddr phys_addr;
P
Paul Brook 已提交
3640
    target_ulong page_size;
B
bellard 已提交
3641
    int prot;
3642
    int ret, is_user;
B
bellard 已提交
3643

3644
    is_user = mmu_idx == MMU_USER_IDX;
P
Paul Brook 已提交
3645 3646
    ret = get_phys_addr(env, address, access_type, is_user, &phys_addr, &prot,
                        &page_size);
B
bellard 已提交
3647 3648
    if (ret == 0) {
        /* Map a single [sub]page.  */
A
Avi Kivity 已提交
3649
        phys_addr &= ~(hwaddr)0x3ff;
B
bellard 已提交
3650
        address &= ~(uint32_t)0x3ff;
3651
        tlb_set_page (env, address, phys_addr, prot, mmu_idx, page_size);
P
Paul Brook 已提交
3652
        return 0;
B
bellard 已提交
3653 3654 3655 3656 3657 3658 3659 3660
    }

    if (access_type == 2) {
        env->cp15.c5_insn = ret;
        env->cp15.c6_insn = address;
        env->exception_index = EXCP_PREFETCH_ABORT;
    } else {
        env->cp15.c5_data = ret;
P
pbrook 已提交
3661 3662
        if (access_type == 1 && arm_feature(env, ARM_FEATURE_V6))
            env->cp15.c5_data |= (1 << 11);
B
bellard 已提交
3663 3664 3665 3666 3667 3668
        env->cp15.c6_data = address;
        env->exception_index = EXCP_DATA_ABORT;
    }
    return 1;
}

3669
hwaddr arm_cpu_get_phys_page_debug(CPUState *cs, vaddr addr)
B
bellard 已提交
3670
{
3671
    ARMCPU *cpu = ARM_CPU(cs);
A
Avi Kivity 已提交
3672
    hwaddr phys_addr;
P
Paul Brook 已提交
3673
    target_ulong page_size;
B
bellard 已提交
3674 3675 3676
    int prot;
    int ret;

3677
    ret = get_phys_addr(&cpu->env, addr, 0, 0, &phys_addr, &prot, &page_size);
B
bellard 已提交
3678

3679
    if (ret != 0) {
B
bellard 已提交
3680
        return -1;
3681
    }
B
bellard 已提交
3682 3683 3684 3685

    return phys_addr;
}

3686
void HELPER(set_r13_banked)(CPUARMState *env, uint32_t mode, uint32_t val)
P
pbrook 已提交
3687
{
3688 3689 3690
    if ((env->uncached_cpsr & CPSR_M) == mode) {
        env->regs[13] = val;
    } else {
3691
        env->banked_r13[bank_number(mode)] = val;
3692
    }
P
pbrook 已提交
3693 3694
}

3695
uint32_t HELPER(get_r13_banked)(CPUARMState *env, uint32_t mode)
P
pbrook 已提交
3696
{
3697 3698 3699
    if ((env->uncached_cpsr & CPSR_M) == mode) {
        return env->regs[13];
    } else {
3700
        return env->banked_r13[bank_number(mode)];
3701
    }
P
pbrook 已提交
3702 3703
}

3704
uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg)
P
pbrook 已提交
3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725
{
    switch (reg) {
    case 0: /* APSR */
        return xpsr_read(env) & 0xf8000000;
    case 1: /* IAPSR */
        return xpsr_read(env) & 0xf80001ff;
    case 2: /* EAPSR */
        return xpsr_read(env) & 0xff00fc00;
    case 3: /* xPSR */
        return xpsr_read(env) & 0xff00fdff;
    case 5: /* IPSR */
        return xpsr_read(env) & 0x000001ff;
    case 6: /* EPSR */
        return xpsr_read(env) & 0x0700fc00;
    case 7: /* IEPSR */
        return xpsr_read(env) & 0x0700edff;
    case 8: /* MSP */
        return env->v7m.current_sp ? env->v7m.other_sp : env->regs[13];
    case 9: /* PSP */
        return env->v7m.current_sp ? env->regs[13] : env->v7m.other_sp;
    case 16: /* PRIMASK */
3726
        return (env->daif & PSTATE_I) != 0;
3727 3728
    case 17: /* BASEPRI */
    case 18: /* BASEPRI_MAX */
P
pbrook 已提交
3729
        return env->v7m.basepri;
3730
    case 19: /* FAULTMASK */
3731
        return (env->daif & PSTATE_F) != 0;
P
pbrook 已提交
3732 3733 3734 3735 3736 3737 3738 3739 3740
    case 20: /* CONTROL */
        return env->v7m.control;
    default:
        /* ??? For debugging only.  */
        cpu_abort(env, "Unimplemented system register read (%d)\n", reg);
        return 0;
    }
}

3741
void HELPER(v7m_msr)(CPUARMState *env, uint32_t reg, uint32_t val)
P
pbrook 已提交
3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777
{
    switch (reg) {
    case 0: /* APSR */
        xpsr_write(env, val, 0xf8000000);
        break;
    case 1: /* IAPSR */
        xpsr_write(env, val, 0xf8000000);
        break;
    case 2: /* EAPSR */
        xpsr_write(env, val, 0xfe00fc00);
        break;
    case 3: /* xPSR */
        xpsr_write(env, val, 0xfe00fc00);
        break;
    case 5: /* IPSR */
        /* IPSR bits are readonly.  */
        break;
    case 6: /* EPSR */
        xpsr_write(env, val, 0x0600fc00);
        break;
    case 7: /* IEPSR */
        xpsr_write(env, val, 0x0600fc00);
        break;
    case 8: /* MSP */
        if (env->v7m.current_sp)
            env->v7m.other_sp = val;
        else
            env->regs[13] = val;
        break;
    case 9: /* PSP */
        if (env->v7m.current_sp)
            env->regs[13] = val;
        else
            env->v7m.other_sp = val;
        break;
    case 16: /* PRIMASK */
3778 3779 3780 3781 3782
        if (val & 1) {
            env->daif |= PSTATE_I;
        } else {
            env->daif &= ~PSTATE_I;
        }
P
pbrook 已提交
3783
        break;
3784
    case 17: /* BASEPRI */
P
pbrook 已提交
3785 3786
        env->v7m.basepri = val & 0xff;
        break;
3787
    case 18: /* BASEPRI_MAX */
P
pbrook 已提交
3788 3789 3790 3791
        val &= 0xff;
        if (val != 0 && (val < env->v7m.basepri || env->v7m.basepri == 0))
            env->v7m.basepri = val;
        break;
3792
    case 19: /* FAULTMASK */
3793 3794 3795 3796 3797
        if (val & 1) {
            env->daif |= PSTATE_F;
        } else {
            env->daif &= ~PSTATE_F;
        }
3798
        break;
P
pbrook 已提交
3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809
    case 20: /* CONTROL */
        env->v7m.control = val & 3;
        switch_v7m_sp(env, (val & 2) != 0);
        break;
    default:
        /* ??? For debugging only.  */
        cpu_abort(env, "Unimplemented system register write (%d)\n", reg);
        return;
    }
}

B
bellard 已提交
3810
#endif
P
pbrook 已提交
3811 3812 3813 3814 3815 3816 3817

/* Note that signed overflow is undefined in C.  The following routines are
   careful to use unsigned types where modulo arithmetic is required.
   Failure to do so _will_ break on newer gcc.  */

/* Signed saturating arithmetic.  */

A
aurel32 已提交
3818
/* Perform 16-bit signed saturating addition.  */
P
pbrook 已提交
3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832
static inline uint16_t add16_sat(uint16_t a, uint16_t b)
{
    uint16_t res;

    res = a + b;
    if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) {
        if (a & 0x8000)
            res = 0x8000;
        else
            res = 0x7fff;
    }
    return res;
}

A
aurel32 已提交
3833
/* Perform 8-bit signed saturating addition.  */
P
pbrook 已提交
3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847
static inline uint8_t add8_sat(uint8_t a, uint8_t b)
{
    uint8_t res;

    res = a + b;
    if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) {
        if (a & 0x80)
            res = 0x80;
        else
            res = 0x7f;
    }
    return res;
}

A
aurel32 已提交
3848
/* Perform 16-bit signed saturating subtraction.  */
P
pbrook 已提交
3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862
static inline uint16_t sub16_sat(uint16_t a, uint16_t b)
{
    uint16_t res;

    res = a - b;
    if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) {
        if (a & 0x8000)
            res = 0x8000;
        else
            res = 0x7fff;
    }
    return res;
}

A
aurel32 已提交
3863
/* Perform 8-bit signed saturating subtraction.  */
P
pbrook 已提交
3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886
static inline uint8_t sub8_sat(uint8_t a, uint8_t b)
{
    uint8_t res;

    res = a - b;
    if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) {
        if (a & 0x80)
            res = 0x80;
        else
            res = 0x7f;
    }
    return res;
}

#define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16);
#define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16);
#define ADD8(a, b, n)  RESULT(add8_sat(a, b), n, 8);
#define SUB8(a, b, n)  RESULT(sub8_sat(a, b), n, 8);
#define PFX q

#include "op_addsub.h"

/* Unsigned saturating arithmetic.  */
P
pbrook 已提交
3887
static inline uint16_t add16_usat(uint16_t a, uint16_t b)
P
pbrook 已提交
3888 3889 3890 3891 3892 3893 3894 3895
{
    uint16_t res;
    res = a + b;
    if (res < a)
        res = 0xffff;
    return res;
}

P
pbrook 已提交
3896
static inline uint16_t sub16_usat(uint16_t a, uint16_t b)
P
pbrook 已提交
3897
{
3898
    if (a > b)
P
pbrook 已提交
3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914
        return a - b;
    else
        return 0;
}

static inline uint8_t add8_usat(uint8_t a, uint8_t b)
{
    uint8_t res;
    res = a + b;
    if (res < a)
        res = 0xff;
    return res;
}

static inline uint8_t sub8_usat(uint8_t a, uint8_t b)
{
3915
    if (a > b)
P
pbrook 已提交
3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931
        return a - b;
    else
        return 0;
}

#define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16);
#define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16);
#define ADD8(a, b, n)  RESULT(add8_usat(a, b), n, 8);
#define SUB8(a, b, n)  RESULT(sub8_usat(a, b), n, 8);
#define PFX uq

#include "op_addsub.h"

/* Signed modulo arithmetic.  */
#define SARITH16(a, b, n, op) do { \
    int32_t sum; \
3932
    sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \
P
pbrook 已提交
3933 3934 3935 3936 3937 3938 3939
    RESULT(sum, n, 16); \
    if (sum >= 0) \
        ge |= 3 << (n * 2); \
    } while(0)

#define SARITH8(a, b, n, op) do { \
    int32_t sum; \
3940
    sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \
P
pbrook 已提交
3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960
    RESULT(sum, n, 8); \
    if (sum >= 0) \
        ge |= 1 << n; \
    } while(0)


#define ADD16(a, b, n) SARITH16(a, b, n, +)
#define SUB16(a, b, n) SARITH16(a, b, n, -)
#define ADD8(a, b, n)  SARITH8(a, b, n, +)
#define SUB8(a, b, n)  SARITH8(a, b, n, -)
#define PFX s
#define ARITH_GE

#include "op_addsub.h"

/* Unsigned modulo arithmetic.  */
#define ADD16(a, b, n) do { \
    uint32_t sum; \
    sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \
    RESULT(sum, n, 16); \
3961
    if ((sum >> 16) == 1) \
P
pbrook 已提交
3962 3963 3964 3965 3966 3967 3968
        ge |= 3 << (n * 2); \
    } while(0)

#define ADD8(a, b, n) do { \
    uint32_t sum; \
    sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \
    RESULT(sum, n, 8); \
3969 3970
    if ((sum >> 8) == 1) \
        ge |= 1 << n; \
P
pbrook 已提交
3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985
    } while(0)

#define SUB16(a, b, n) do { \
    uint32_t sum; \
    sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \
    RESULT(sum, n, 16); \
    if ((sum >> 16) == 0) \
        ge |= 3 << (n * 2); \
    } while(0)

#define SUB8(a, b, n) do { \
    uint32_t sum; \
    sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \
    RESULT(sum, n, 8); \
    if ((sum >> 8) == 0) \
3986
        ge |= 1 << n; \
P
pbrook 已提交
3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055
    } while(0)

#define PFX u
#define ARITH_GE

#include "op_addsub.h"

/* Halved signed arithmetic.  */
#define ADD16(a, b, n) \
  RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16)
#define SUB16(a, b, n) \
  RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16)
#define ADD8(a, b, n) \
  RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8)
#define SUB8(a, b, n) \
  RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8)
#define PFX sh

#include "op_addsub.h"

/* Halved unsigned arithmetic.  */
#define ADD16(a, b, n) \
  RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16)
#define SUB16(a, b, n) \
  RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16)
#define ADD8(a, b, n) \
  RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8)
#define SUB8(a, b, n) \
  RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8)
#define PFX uh

#include "op_addsub.h"

static inline uint8_t do_usad(uint8_t a, uint8_t b)
{
    if (a > b)
        return a - b;
    else
        return b - a;
}

/* Unsigned sum of absolute byte differences.  */
uint32_t HELPER(usad8)(uint32_t a, uint32_t b)
{
    uint32_t sum;
    sum = do_usad(a, b);
    sum += do_usad(a >> 8, b >> 8);
    sum += do_usad(a >> 16, b >>16);
    sum += do_usad(a >> 24, b >> 24);
    return sum;
}

/* For ARMv6 SEL instruction.  */
uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b)
{
    uint32_t mask;

    mask = 0;
    if (flags & 1)
        mask |= 0xff;
    if (flags & 2)
        mask |= 0xff00;
    if (flags & 4)
        mask |= 0xff0000;
    if (flags & 8)
        mask |= 0xff000000;
    return (a & mask) | (b & ~mask);
}

4056 4057
/* VFP support.  We follow the convention used for VFP instructions:
   Single precision routines have a "s" suffix, double precision a
P
pbrook 已提交
4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070
   "d" suffix.  */

/* Convert host exception flags to vfp form.  */
static inline int vfp_exceptbits_from_host(int host_bits)
{
    int target_bits = 0;

    if (host_bits & float_flag_invalid)
        target_bits |= 1;
    if (host_bits & float_flag_divbyzero)
        target_bits |= 2;
    if (host_bits & float_flag_overflow)
        target_bits |= 4;
4071
    if (host_bits & (float_flag_underflow | float_flag_output_denormal))
P
pbrook 已提交
4072 4073 4074
        target_bits |= 8;
    if (host_bits & float_flag_inexact)
        target_bits |= 0x10;
4075 4076
    if (host_bits & float_flag_input_denormal)
        target_bits |= 0x80;
P
pbrook 已提交
4077 4078 4079
    return target_bits;
}

4080
uint32_t HELPER(vfp_get_fpscr)(CPUARMState *env)
P
pbrook 已提交
4081 4082 4083 4084 4085 4086 4087 4088
{
    int i;
    uint32_t fpscr;

    fpscr = (env->vfp.xregs[ARM_VFP_FPSCR] & 0xffc8ffff)
            | (env->vfp.vec_len << 16)
            | (env->vfp.vec_stride << 20);
    i = get_float_exception_flags(&env->vfp.fp_status);
4089
    i |= get_float_exception_flags(&env->vfp.standard_fp_status);
P
pbrook 已提交
4090 4091 4092 4093
    fpscr |= vfp_exceptbits_from_host(i);
    return fpscr;
}

4094
uint32_t vfp_get_fpscr(CPUARMState *env)
4095 4096 4097 4098
{
    return HELPER(vfp_get_fpscr)(env);
}

P
pbrook 已提交
4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113
/* Convert vfp exception flags to target form.  */
static inline int vfp_exceptbits_to_host(int target_bits)
{
    int host_bits = 0;

    if (target_bits & 1)
        host_bits |= float_flag_invalid;
    if (target_bits & 2)
        host_bits |= float_flag_divbyzero;
    if (target_bits & 4)
        host_bits |= float_flag_overflow;
    if (target_bits & 8)
        host_bits |= float_flag_underflow;
    if (target_bits & 0x10)
        host_bits |= float_flag_inexact;
4114 4115
    if (target_bits & 0x80)
        host_bits |= float_flag_input_denormal;
P
pbrook 已提交
4116 4117 4118
    return host_bits;
}

4119
void HELPER(vfp_set_fpscr)(CPUARMState *env, uint32_t val)
P
pbrook 已提交
4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132
{
    int i;
    uint32_t changed;

    changed = env->vfp.xregs[ARM_VFP_FPSCR];
    env->vfp.xregs[ARM_VFP_FPSCR] = (val & 0xffc8ffff);
    env->vfp.vec_len = (val >> 16) & 7;
    env->vfp.vec_stride = (val >> 20) & 3;

    changed ^= val;
    if (changed & (3 << 22)) {
        i = (val >> 22) & 3;
        switch (i) {
4133
        case FPROUNDING_TIEEVEN:
P
pbrook 已提交
4134 4135
            i = float_round_nearest_even;
            break;
4136
        case FPROUNDING_POSINF:
P
pbrook 已提交
4137 4138
            i = float_round_up;
            break;
4139
        case FPROUNDING_NEGINF:
P
pbrook 已提交
4140 4141
            i = float_round_down;
            break;
4142
        case FPROUNDING_ZERO:
P
pbrook 已提交
4143 4144 4145 4146 4147
            i = float_round_to_zero;
            break;
        }
        set_float_rounding_mode(i, &env->vfp.fp_status);
    }
4148
    if (changed & (1 << 24)) {
4149
        set_flush_to_zero((val & (1 << 24)) != 0, &env->vfp.fp_status);
4150 4151
        set_flush_inputs_to_zero((val & (1 << 24)) != 0, &env->vfp.fp_status);
    }
P
pbrook 已提交
4152 4153
    if (changed & (1 << 25))
        set_default_nan_mode((val & (1 << 25)) != 0, &env->vfp.fp_status);
P
pbrook 已提交
4154

4155
    i = vfp_exceptbits_to_host(val);
P
pbrook 已提交
4156
    set_float_exception_flags(i, &env->vfp.fp_status);
4157
    set_float_exception_flags(0, &env->vfp.standard_fp_status);
P
pbrook 已提交
4158 4159
}

4160
void vfp_set_fpscr(CPUARMState *env, uint32_t val)
4161 4162 4163 4164
{
    HELPER(vfp_set_fpscr)(env, val);
}

P
pbrook 已提交
4165 4166 4167
#define VFP_HELPER(name, p) HELPER(glue(glue(vfp_,name),p))

#define VFP_BINOP(name) \
4168
float32 VFP_HELPER(name, s)(float32 a, float32 b, void *fpstp) \
P
pbrook 已提交
4169
{ \
4170 4171
    float_status *fpst = fpstp; \
    return float32_ ## name(a, b, fpst); \
P
pbrook 已提交
4172
} \
4173
float64 VFP_HELPER(name, d)(float64 a, float64 b, void *fpstp) \
P
pbrook 已提交
4174
{ \
4175 4176
    float_status *fpst = fpstp; \
    return float64_ ## name(a, b, fpst); \
P
pbrook 已提交
4177 4178 4179 4180 4181
}
VFP_BINOP(add)
VFP_BINOP(sub)
VFP_BINOP(mul)
VFP_BINOP(div)
4182 4183 4184 4185
VFP_BINOP(min)
VFP_BINOP(max)
VFP_BINOP(minnum)
VFP_BINOP(maxnum)
P
pbrook 已提交
4186 4187 4188 4189 4190 4191 4192 4193 4194
#undef VFP_BINOP

float32 VFP_HELPER(neg, s)(float32 a)
{
    return float32_chs(a);
}

float64 VFP_HELPER(neg, d)(float64 a)
{
4195
    return float64_chs(a);
P
pbrook 已提交
4196 4197 4198 4199 4200 4201 4202 4203 4204
}

float32 VFP_HELPER(abs, s)(float32 a)
{
    return float32_abs(a);
}

float64 VFP_HELPER(abs, d)(float64 a)
{
4205
    return float64_abs(a);
P
pbrook 已提交
4206 4207
}

4208
float32 VFP_HELPER(sqrt, s)(float32 a, CPUARMState *env)
P
pbrook 已提交
4209 4210 4211 4212
{
    return float32_sqrt(a, &env->vfp.fp_status);
}

4213
float64 VFP_HELPER(sqrt, d)(float64 a, CPUARMState *env)
P
pbrook 已提交
4214 4215 4216 4217 4218 4219
{
    return float64_sqrt(a, &env->vfp.fp_status);
}

/* XXX: check quiet/signaling case */
#define DO_VFP_cmp(p, type) \
4220
void VFP_HELPER(cmp, p)(type a, type b, CPUARMState *env)  \
P
pbrook 已提交
4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231
{ \
    uint32_t flags; \
    switch(type ## _compare_quiet(a, b, &env->vfp.fp_status)) { \
    case 0: flags = 0x6; break; \
    case -1: flags = 0x8; break; \
    case 1: flags = 0x2; break; \
    default: case 2: flags = 0x3; break; \
    } \
    env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
        | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
} \
4232
void VFP_HELPER(cmpe, p)(type a, type b, CPUARMState *env) \
P
pbrook 已提交
4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247
{ \
    uint32_t flags; \
    switch(type ## _compare(a, b, &env->vfp.fp_status)) { \
    case 0: flags = 0x6; break; \
    case -1: flags = 0x8; break; \
    case 1: flags = 0x2; break; \
    default: case 2: flags = 0x3; break; \
    } \
    env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
        | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
}
DO_VFP_cmp(s, float32)
DO_VFP_cmp(d, float64)
#undef DO_VFP_cmp

4248
/* Integer to float and float to integer conversions */
P
pbrook 已提交
4249

4250 4251 4252 4253
#define CONV_ITOF(name, fsz, sign) \
    float##fsz HELPER(name)(uint32_t x, void *fpstp) \
{ \
    float_status *fpst = fpstp; \
4254
    return sign##int32_to_##float##fsz((sign##int32_t)x, fpst); \
P
pbrook 已提交
4255 4256
}

4257 4258 4259 4260 4261 4262 4263 4264 4265
#define CONV_FTOI(name, fsz, sign, round) \
uint32_t HELPER(name)(float##fsz x, void *fpstp) \
{ \
    float_status *fpst = fpstp; \
    if (float##fsz##_is_any_nan(x)) { \
        float_raise(float_flag_invalid, fpst); \
        return 0; \
    } \
    return float##fsz##_to_##sign##int32##round(x, fpst); \
P
pbrook 已提交
4266 4267
}

4268 4269 4270 4271
#define FLOAT_CONVS(name, p, fsz, sign) \
CONV_ITOF(vfp_##name##to##p, fsz, sign) \
CONV_FTOI(vfp_to##name##p, fsz, sign, ) \
CONV_FTOI(vfp_to##name##z##p, fsz, sign, _round_to_zero)
P
pbrook 已提交
4272

4273 4274 4275 4276
FLOAT_CONVS(si, s, 32, )
FLOAT_CONVS(si, d, 64, )
FLOAT_CONVS(ui, s, 32, u)
FLOAT_CONVS(ui, d, 64, u)
P
pbrook 已提交
4277

4278 4279 4280
#undef CONV_ITOF
#undef CONV_FTOI
#undef FLOAT_CONVS
P
pbrook 已提交
4281 4282

/* floating point conversion */
4283
float64 VFP_HELPER(fcvtd, s)(float32 x, CPUARMState *env)
P
pbrook 已提交
4284
{
4285 4286 4287 4288 4289
    float64 r = float32_to_float64(x, &env->vfp.fp_status);
    /* ARM requires that S<->D conversion of any kind of NaN generates
     * a quiet NaN by forcing the most significant frac bit to 1.
     */
    return float64_maybe_silence_nan(r);
P
pbrook 已提交
4290 4291
}

4292
float32 VFP_HELPER(fcvts, d)(float64 x, CPUARMState *env)
P
pbrook 已提交
4293
{
4294 4295 4296 4297 4298
    float32 r =  float64_to_float32(x, &env->vfp.fp_status);
    /* ARM requires that S<->D conversion of any kind of NaN generates
     * a quiet NaN by forcing the most significant frac bit to 1.
     */
    return float32_maybe_silence_nan(r);
P
pbrook 已提交
4299 4300 4301
}

/* VFP3 fixed point conversion.  */
4302
#define VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \
4303 4304
float##fsz HELPER(vfp_##name##to##p)(uint##isz##_t  x, uint32_t shift, \
                                     void *fpstp) \
P
pbrook 已提交
4305
{ \
4306
    float_status *fpst = fpstp; \
4307
    float##fsz tmp; \
4308
    tmp = itype##_to_##float##fsz(x, fpst); \
4309
    return float##fsz##_scalbn(tmp, -(int)shift, fpst); \
4310 4311
}

4312 4313 4314 4315 4316
/* Notice that we want only input-denormal exception flags from the
 * scalbn operation: the other possible flags (overflow+inexact if
 * we overflow to infinity, output-denormal) aren't correct for the
 * complete scale-and-convert operation.
 */
4317 4318 4319 4320
#define VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, round) \
uint##isz##_t HELPER(vfp_to##name##p##round)(float##fsz x, \
                                             uint32_t shift, \
                                             void *fpstp) \
P
pbrook 已提交
4321
{ \
4322
    float_status *fpst = fpstp; \
4323
    int old_exc_flags = get_float_exception_flags(fpst); \
4324 4325
    float##fsz tmp; \
    if (float##fsz##_is_any_nan(x)) { \
4326
        float_raise(float_flag_invalid, fpst); \
4327
        return 0; \
4328
    } \
4329
    tmp = float##fsz##_scalbn(x, shift, fpst); \
4330 4331 4332
    old_exc_flags |= get_float_exception_flags(fpst) \
        & float_flag_input_denormal; \
    set_float_exception_flags(old_exc_flags, fpst); \
4333
    return float##fsz##_to_##itype##round(tmp, fpst); \
4334 4335
}

4336 4337
#define VFP_CONV_FIX(name, p, fsz, isz, itype)                   \
VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype)                     \
4338 4339 4340 4341 4342 4343
VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, _round_to_zero) \
VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, )

#define VFP_CONV_FIX_A64(name, p, fsz, isz, itype)               \
VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype)                     \
VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, )
4344

4345 4346
VFP_CONV_FIX(sh, d, 64, 64, int16)
VFP_CONV_FIX(sl, d, 64, 64, int32)
4347
VFP_CONV_FIX_A64(sq, d, 64, 64, int64)
4348 4349
VFP_CONV_FIX(uh, d, 64, 64, uint16)
VFP_CONV_FIX(ul, d, 64, 64, uint32)
4350
VFP_CONV_FIX_A64(uq, d, 64, 64, uint64)
4351 4352
VFP_CONV_FIX(sh, s, 32, 32, int16)
VFP_CONV_FIX(sl, s, 32, 32, int32)
4353
VFP_CONV_FIX_A64(sq, s, 32, 64, int64)
4354 4355
VFP_CONV_FIX(uh, s, 32, 32, uint16)
VFP_CONV_FIX(ul, s, 32, 32, uint32)
4356
VFP_CONV_FIX_A64(uq, s, 32, 64, uint64)
P
pbrook 已提交
4357
#undef VFP_CONV_FIX
4358 4359
#undef VFP_CONV_FIX_FLOAT
#undef VFP_CONV_FLOAT_FIX_ROUND
P
pbrook 已提交
4360

4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373
/* Set the current fp rounding mode and return the old one.
 * The argument is a softfloat float_round_ value.
 */
uint32_t HELPER(set_rmode)(uint32_t rmode, CPUARMState *env)
{
    float_status *fp_status = &env->vfp.fp_status;

    uint32_t prev_rmode = get_float_rounding_mode(fp_status);
    set_float_rounding_mode(rmode, fp_status);

    return prev_rmode;
}

4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390
/* Set the current fp rounding mode in the standard fp status and return
 * the old one. This is for NEON instructions that need to change the
 * rounding mode but wish to use the standard FPSCR values for everything
 * else. Always set the rounding mode back to the correct value after
 * modifying it.
 * The argument is a softfloat float_round_ value.
 */
uint32_t HELPER(set_neon_rmode)(uint32_t rmode, CPUARMState *env)
{
    float_status *fp_status = &env->vfp.standard_fp_status;

    uint32_t prev_rmode = get_float_rounding_mode(fp_status);
    set_float_rounding_mode(rmode, fp_status);

    return prev_rmode;
}

P
Paul Brook 已提交
4391
/* Half precision conversions.  */
4392
static float32 do_fcvt_f16_to_f32(uint32_t a, CPUARMState *env, float_status *s)
P
Paul Brook 已提交
4393 4394
{
    int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
4395 4396 4397 4398 4399
    float32 r = float16_to_float32(make_float16(a), ieee, s);
    if (ieee) {
        return float32_maybe_silence_nan(r);
    }
    return r;
P
Paul Brook 已提交
4400 4401
}

4402
static uint32_t do_fcvt_f32_to_f16(float32 a, CPUARMState *env, float_status *s)
P
Paul Brook 已提交
4403 4404
{
    int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
4405 4406 4407 4408 4409
    float16 r = float32_to_float16(a, ieee, s);
    if (ieee) {
        r = float16_maybe_silence_nan(r);
    }
    return float16_val(r);
P
Paul Brook 已提交
4410 4411
}

4412
float32 HELPER(neon_fcvt_f16_to_f32)(uint32_t a, CPUARMState *env)
4413 4414 4415 4416
{
    return do_fcvt_f16_to_f32(a, env, &env->vfp.standard_fp_status);
}

4417
uint32_t HELPER(neon_fcvt_f32_to_f16)(float32 a, CPUARMState *env)
4418 4419 4420 4421
{
    return do_fcvt_f32_to_f16(a, env, &env->vfp.standard_fp_status);
}

4422
float32 HELPER(vfp_fcvt_f16_to_f32)(uint32_t a, CPUARMState *env)
4423 4424 4425 4426
{
    return do_fcvt_f16_to_f32(a, env, &env->vfp.fp_status);
}

4427
uint32_t HELPER(vfp_fcvt_f32_to_f16)(float32 a, CPUARMState *env)
4428 4429 4430 4431
{
    return do_fcvt_f32_to_f16(a, env, &env->vfp.fp_status);
}

4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451
float64 HELPER(vfp_fcvt_f16_to_f64)(uint32_t a, CPUARMState *env)
{
    int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
    float64 r = float16_to_float64(make_float16(a), ieee, &env->vfp.fp_status);
    if (ieee) {
        return float64_maybe_silence_nan(r);
    }
    return r;
}

uint32_t HELPER(vfp_fcvt_f64_to_f16)(float64 a, CPUARMState *env)
{
    int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
    float16 r = float64_to_float16(a, ieee, &env->vfp.fp_status);
    if (ieee) {
        r = float16_maybe_silence_nan(r);
    }
    return float16_val(r);
}

4452
#define float32_two make_float32(0x40000000)
4453 4454
#define float32_three make_float32(0x40400000)
#define float32_one_point_five make_float32(0x3fc00000)
4455

4456
float32 HELPER(recps_f32)(float32 a, float32 b, CPUARMState *env)
P
pbrook 已提交
4457
{
4458 4459 4460
    float_status *s = &env->vfp.standard_fp_status;
    if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) ||
        (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) {
4461 4462 4463
        if (!(float32_is_zero(a) || float32_is_zero(b))) {
            float_raise(float_flag_input_denormal, s);
        }
4464 4465 4466
        return float32_two;
    }
    return float32_sub(float32_two, float32_mul(a, b, s), s);
P
pbrook 已提交
4467 4468
}

4469
float32 HELPER(rsqrts_f32)(float32 a, float32 b, CPUARMState *env)
P
pbrook 已提交
4470
{
4471
    float_status *s = &env->vfp.standard_fp_status;
4472 4473 4474
    float32 product;
    if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) ||
        (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) {
4475 4476 4477
        if (!(float32_is_zero(a) || float32_is_zero(b))) {
            float_raise(float_flag_input_denormal, s);
        }
4478
        return float32_one_point_five;
4479
    }
4480 4481
    product = float32_mul(a, b, s);
    return float32_div(float32_sub(float32_three, product, s), float32_two, s);
P
pbrook 已提交
4482 4483
}

P
pbrook 已提交
4484 4485
/* NEON helpers.  */

4486 4487 4488 4489 4490
/* Constants 256 and 512 are used in some helpers; we avoid relying on
 * int->float conversions at run-time.  */
#define float64_256 make_float64(0x4070000000000000LL)
#define float64_512 make_float64(0x4080000000000000LL)

4491 4492 4493
/* The algorithm that must be used to calculate the estimate
 * is specified by the ARM ARM.
 */
4494
static float64 recip_estimate(float64 a, CPUARMState *env)
4495
{
4496 4497 4498 4499 4500
    /* These calculations mustn't set any fp exception flags,
     * so we use a local copy of the fp_status.
     */
    float_status dummy_status = env->vfp.standard_fp_status;
    float_status *s = &dummy_status;
4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519
    /* q = (int)(a * 512.0) */
    float64 q = float64_mul(float64_512, a, s);
    int64_t q_int = float64_to_int64_round_to_zero(q, s);

    /* r = 1.0 / (((double)q + 0.5) / 512.0) */
    q = int64_to_float64(q_int, s);
    q = float64_add(q, float64_half, s);
    q = float64_div(q, float64_512, s);
    q = float64_div(float64_one, q, s);

    /* s = (int)(256.0 * r + 0.5) */
    q = float64_mul(q, float64_256, s);
    q = float64_add(q, float64_half, s);
    q_int = float64_to_int64_round_to_zero(q, s);

    /* return (double)s / 256.0 */
    return float64_div(int64_to_float64(q_int, s), float64_256, s);
}

4520
float32 HELPER(recpe_f32)(float32 a, CPUARMState *env)
P
pbrook 已提交
4521
{
4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537
    float_status *s = &env->vfp.standard_fp_status;
    float64 f64;
    uint32_t val32 = float32_val(a);

    int result_exp;
    int a_exp = (val32  & 0x7f800000) >> 23;
    int sign = val32 & 0x80000000;

    if (float32_is_any_nan(a)) {
        if (float32_is_signaling_nan(a)) {
            float_raise(float_flag_invalid, s);
        }
        return float32_default_nan;
    } else if (float32_is_infinity(a)) {
        return float32_set_sign(float32_zero, float32_is_neg(a));
    } else if (float32_is_zero_or_denormal(a)) {
4538 4539 4540
        if (!float32_is_zero(a)) {
            float_raise(float_flag_input_denormal, s);
        }
4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558
        float_raise(float_flag_divbyzero, s);
        return float32_set_sign(float32_infinity, float32_is_neg(a));
    } else if (a_exp >= 253) {
        float_raise(float_flag_underflow, s);
        return float32_set_sign(float32_zero, float32_is_neg(a));
    }

    f64 = make_float64((0x3feULL << 52)
                       | ((int64_t)(val32 & 0x7fffff) << 29));

    result_exp = 253 - a_exp;

    f64 = recip_estimate(f64, env);

    val32 = sign
        | ((result_exp & 0xff) << 23)
        | ((float64_val(f64) >> 29) & 0x7fffff);
    return make_float32(val32);
P
pbrook 已提交
4559 4560
}

4561 4562 4563
/* The algorithm that must be used to calculate the estimate
 * is specified by the ARM ARM.
 */
4564
static float64 recip_sqrt_estimate(float64 a, CPUARMState *env)
4565
{
4566 4567 4568 4569 4570
    /* These calculations mustn't set any fp exception flags,
     * so we use a local copy of the fp_status.
     */
    float_status dummy_status = env->vfp.standard_fp_status;
    float_status *s = &dummy_status;
4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615
    float64 q;
    int64_t q_int;

    if (float64_lt(a, float64_half, s)) {
        /* range 0.25 <= a < 0.5 */

        /* a in units of 1/512 rounded down */
        /* q0 = (int)(a * 512.0);  */
        q = float64_mul(float64_512, a, s);
        q_int = float64_to_int64_round_to_zero(q, s);

        /* reciprocal root r */
        /* r = 1.0 / sqrt(((double)q0 + 0.5) / 512.0);  */
        q = int64_to_float64(q_int, s);
        q = float64_add(q, float64_half, s);
        q = float64_div(q, float64_512, s);
        q = float64_sqrt(q, s);
        q = float64_div(float64_one, q, s);
    } else {
        /* range 0.5 <= a < 1.0 */

        /* a in units of 1/256 rounded down */
        /* q1 = (int)(a * 256.0); */
        q = float64_mul(float64_256, a, s);
        int64_t q_int = float64_to_int64_round_to_zero(q, s);

        /* reciprocal root r */
        /* r = 1.0 /sqrt(((double)q1 + 0.5) / 256); */
        q = int64_to_float64(q_int, s);
        q = float64_add(q, float64_half, s);
        q = float64_div(q, float64_256, s);
        q = float64_sqrt(q, s);
        q = float64_div(float64_one, q, s);
    }
    /* r in units of 1/256 rounded to nearest */
    /* s = (int)(256.0 * r + 0.5); */

    q = float64_mul(q, float64_256,s );
    q = float64_add(q, float64_half, s);
    q_int = float64_to_int64_round_to_zero(q, s);

    /* return (double)s / 256.0;*/
    return float64_div(int64_to_float64(q_int, s), float64_256, s);
}

4616
float32 HELPER(rsqrte_f32)(float32 a, CPUARMState *env)
P
pbrook 已提交
4617
{
4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631
    float_status *s = &env->vfp.standard_fp_status;
    int result_exp;
    float64 f64;
    uint32_t val;
    uint64_t val64;

    val = float32_val(a);

    if (float32_is_any_nan(a)) {
        if (float32_is_signaling_nan(a)) {
            float_raise(float_flag_invalid, s);
        }
        return float32_default_nan;
    } else if (float32_is_zero_or_denormal(a)) {
4632 4633 4634
        if (!float32_is_zero(a)) {
            float_raise(float_flag_input_denormal, s);
        }
4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661
        float_raise(float_flag_divbyzero, s);
        return float32_set_sign(float32_infinity, float32_is_neg(a));
    } else if (float32_is_neg(a)) {
        float_raise(float_flag_invalid, s);
        return float32_default_nan;
    } else if (float32_is_infinity(a)) {
        return float32_zero;
    }

    /* Normalize to a double-precision value between 0.25 and 1.0,
     * preserving the parity of the exponent.  */
    if ((val & 0x800000) == 0) {
        f64 = make_float64(((uint64_t)(val & 0x80000000) << 32)
                           | (0x3feULL << 52)
                           | ((uint64_t)(val & 0x7fffff) << 29));
    } else {
        f64 = make_float64(((uint64_t)(val & 0x80000000) << 32)
                           | (0x3fdULL << 52)
                           | ((uint64_t)(val & 0x7fffff) << 29));
    }

    result_exp = (380 - ((val & 0x7f800000) >> 23)) / 2;

    f64 = recip_sqrt_estimate(f64, env);

    val64 = float64_val(f64);

4662
    val = ((result_exp & 0xff) << 23)
4663 4664
        | ((val64 >> 29)  & 0x7fffff);
    return make_float32(val);
P
pbrook 已提交
4665 4666
}

4667
uint32_t HELPER(recpe_u32)(uint32_t a, CPUARMState *env)
P
pbrook 已提交
4668
{
4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680
    float64 f64;

    if ((a & 0x80000000) == 0) {
        return 0xffffffff;
    }

    f64 = make_float64((0x3feULL << 52)
                       | ((int64_t)(a & 0x7fffffff) << 21));

    f64 = recip_estimate (f64, env);

    return 0x80000000 | ((float64_val(f64) >> 21) & 0x7fffffff);
P
pbrook 已提交
4681 4682
}

4683
uint32_t HELPER(rsqrte_u32)(uint32_t a, CPUARMState *env)
P
pbrook 已提交
4684
{
4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701
    float64 f64;

    if ((a & 0xc0000000) == 0) {
        return 0xffffffff;
    }

    if (a & 0x80000000) {
        f64 = make_float64((0x3feULL << 52)
                           | ((uint64_t)(a & 0x7fffffff) << 21));
    } else { /* bits 31-30 == '01' */
        f64 = make_float64((0x3fdULL << 52)
                           | ((uint64_t)(a & 0x3fffffff) << 22));
    }

    f64 = recip_sqrt_estimate(f64, env);

    return 0x80000000 | ((float64_val(f64) >> 21) & 0x7fffffff);
P
pbrook 已提交
4702
}
4703

4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715
/* VFPv4 fused multiply-accumulate */
float32 VFP_HELPER(muladd, s)(float32 a, float32 b, float32 c, void *fpstp)
{
    float_status *fpst = fpstp;
    return float32_muladd(a, b, c, 0, fpst);
}

float64 VFP_HELPER(muladd, d)(float64 a, float64 b, float64 c, void *fpstp)
{
    float_status *fpst = fpstp;
    return float64_muladd(a, b, c, 0, fpst);
}
4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760

/* ARMv8 round to integral */
float32 HELPER(rints_exact)(float32 x, void *fp_status)
{
    return float32_round_to_int(x, fp_status);
}

float64 HELPER(rintd_exact)(float64 x, void *fp_status)
{
    return float64_round_to_int(x, fp_status);
}

float32 HELPER(rints)(float32 x, void *fp_status)
{
    int old_flags = get_float_exception_flags(fp_status), new_flags;
    float32 ret;

    ret = float32_round_to_int(x, fp_status);

    /* Suppress any inexact exceptions the conversion produced */
    if (!(old_flags & float_flag_inexact)) {
        new_flags = get_float_exception_flags(fp_status);
        set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status);
    }

    return ret;
}

float64 HELPER(rintd)(float64 x, void *fp_status)
{
    int old_flags = get_float_exception_flags(fp_status), new_flags;
    float64 ret;

    ret = float64_round_to_int(x, fp_status);

    new_flags = get_float_exception_flags(fp_status);

    /* Suppress any inexact exceptions the conversion produced */
    if (!(old_flags & float_flag_inexact)) {
        new_flags = get_float_exception_flags(fp_status);
        set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status);
    }

    return ret;
}
4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788

/* Convert ARM rounding mode to softfloat */
int arm_rmode_to_sf(int rmode)
{
    switch (rmode) {
    case FPROUNDING_TIEAWAY:
        rmode = float_round_ties_away;
        break;
    case FPROUNDING_ODD:
        /* FIXME: add support for TIEAWAY and ODD */
        qemu_log_mask(LOG_UNIMP, "arm: unimplemented rounding mode: %d\n",
                      rmode);
    case FPROUNDING_TIEEVEN:
    default:
        rmode = float_round_nearest_even;
        break;
    case FPROUNDING_POSINF:
        rmode = float_round_up;
        break;
    case FPROUNDING_NEGINF:
        rmode = float_round_down;
        break;
    case FPROUNDING_ZERO:
        rmode = float_round_to_zero;
        break;
    }
    return rmode;
}
4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825

static void crc_init_buffer(uint8_t *buf, uint32_t val, uint32_t bytes)
{
    memset(buf, 0, 4);

    if (bytes == 1) {
        buf[0] = val & 0xff;
    } else if (bytes == 2) {
        buf[0] = val & 0xff;
        buf[1] = (val >> 8) & 0xff;
    } else {
        buf[0] = val & 0xff;
        buf[1] = (val >> 8) & 0xff;
        buf[2] = (val >> 16) & 0xff;
        buf[3] = (val >> 24) & 0xff;
    }
}

uint32_t HELPER(crc32)(uint32_t acc, uint32_t val, uint32_t bytes)
{
    uint8_t buf[4];

    crc_init_buffer(buf, val, bytes);

    /* zlib crc32 converts the accumulator and output to one's complement.  */
    return crc32(acc ^ 0xffffffff, buf, bytes) ^ 0xffffffff;
}

uint32_t HELPER(crc32c)(uint32_t acc, uint32_t val, uint32_t bytes)
{
    uint8_t buf[4];

    crc_init_buffer(buf, val, bytes);

    /* Linux crc32c converts the output to one's complement.  */
    return crc32c(acc, buf, bytes) ^ 0xffffffff;
}