helper.c 171.1 KB
Newer Older
B
bellard 已提交
1
#include "cpu.h"
2
#include "internals.h"
3
#include "exec/gdbstub.h"
L
Lluís 已提交
4
#include "helper.h"
5
#include "qemu/host-utils.h"
6
#include "sysemu/arch_init.h"
7
#include "sysemu/sysemu.h"
8
#include "qemu/bitops.h"
9 10
#include "qemu/crc32c.h"
#include <zlib.h> /* For crc32 */
P
Peter Maydell 已提交
11

12
#ifndef CONFIG_USER_ONLY
13
static inline int get_phys_addr(CPUARMState *env, target_ulong address,
14
                                int access_type, int is_user,
A
Avi Kivity 已提交
15
                                hwaddr *phys_ptr, int *prot,
16
                                target_ulong *page_size);
17 18 19 20 21

/* Definitions for the PMCCNTR and PMCR registers */
#define PMCRD   0x8
#define PMCRC   0x4
#define PMCRE   0x1
22 23
#endif

24
static int vfp_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg)
P
pbrook 已提交
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
{
    int nregs;

    /* VFP data registers are always little-endian.  */
    nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16;
    if (reg < nregs) {
        stfq_le_p(buf, env->vfp.regs[reg]);
        return 8;
    }
    if (arm_feature(env, ARM_FEATURE_NEON)) {
        /* Aliases for Q regs.  */
        nregs += 16;
        if (reg < nregs) {
            stfq_le_p(buf, env->vfp.regs[(reg - 32) * 2]);
            stfq_le_p(buf + 8, env->vfp.regs[(reg - 32) * 2 + 1]);
            return 16;
        }
    }
    switch (reg - nregs) {
    case 0: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSID]); return 4;
    case 1: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSCR]); return 4;
    case 2: stl_p(buf, env->vfp.xregs[ARM_VFP_FPEXC]); return 4;
    }
    return 0;
}

51
static int vfp_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg)
P
pbrook 已提交
52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70
{
    int nregs;

    nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16;
    if (reg < nregs) {
        env->vfp.regs[reg] = ldfq_le_p(buf);
        return 8;
    }
    if (arm_feature(env, ARM_FEATURE_NEON)) {
        nregs += 16;
        if (reg < nregs) {
            env->vfp.regs[(reg - 32) * 2] = ldfq_le_p(buf);
            env->vfp.regs[(reg - 32) * 2 + 1] = ldfq_le_p(buf + 8);
            return 16;
        }
    }
    switch (reg - nregs) {
    case 0: env->vfp.xregs[ARM_VFP_FPSID] = ldl_p(buf); return 4;
    case 1: env->vfp.xregs[ARM_VFP_FPSCR] = ldl_p(buf); return 4;
71
    case 2: env->vfp.xregs[ARM_VFP_FPEXC] = ldl_p(buf) & (1 << 30); return 4;
P
pbrook 已提交
72 73 74 75
    }
    return 0;
}

76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117
static int aarch64_fpu_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg)
{
    switch (reg) {
    case 0 ... 31:
        /* 128 bit FP register */
        stfq_le_p(buf, env->vfp.regs[reg * 2]);
        stfq_le_p(buf + 8, env->vfp.regs[reg * 2 + 1]);
        return 16;
    case 32:
        /* FPSR */
        stl_p(buf, vfp_get_fpsr(env));
        return 4;
    case 33:
        /* FPCR */
        stl_p(buf, vfp_get_fpcr(env));
        return 4;
    default:
        return 0;
    }
}

static int aarch64_fpu_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg)
{
    switch (reg) {
    case 0 ... 31:
        /* 128 bit FP register */
        env->vfp.regs[reg * 2] = ldfq_le_p(buf);
        env->vfp.regs[reg * 2 + 1] = ldfq_le_p(buf + 8);
        return 16;
    case 32:
        /* FPSR */
        vfp_set_fpsr(env, ldl_p(buf));
        return 4;
    case 33:
        /* FPCR */
        vfp_set_fpcr(env, ldl_p(buf));
        return 4;
    default:
        return 0;
    }
}

118
static uint64_t raw_read(CPUARMState *env, const ARMCPRegInfo *ri)
119
{
120
    if (cpreg_field_is_64bit(ri)) {
121
        return CPREG_FIELD64(env, ri);
122
    } else {
123
        return CPREG_FIELD32(env, ri);
124
    }
125 126
}

127 128
static void raw_write(CPUARMState *env, const ARMCPRegInfo *ri,
                      uint64_t value)
129
{
130
    if (cpreg_field_is_64bit(ri)) {
131 132 133 134
        CPREG_FIELD64(env, ri) = value;
    } else {
        CPREG_FIELD32(env, ri) = value;
    }
135 136
}

137
static uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri)
138
{
139
    /* Raw read of a coprocessor register (as needed for migration, etc). */
140
    if (ri->type & ARM_CP_CONST) {
141
        return ri->resetvalue;
142
    } else if (ri->raw_readfn) {
143
        return ri->raw_readfn(env, ri);
144
    } else if (ri->readfn) {
145
        return ri->readfn(env, ri);
146
    } else {
147
        return raw_read(env, ri);
148 149 150
    }
}

151
static void write_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri,
152
                             uint64_t v)
153 154 155 156 157 158 159
{
    /* Raw write of a coprocessor register (as needed for migration, etc).
     * Note that constant registers are treated as write-ignored; the
     * caller should check for success by whether a readback gives the
     * value written.
     */
    if (ri->type & ARM_CP_CONST) {
160
        return;
161
    } else if (ri->raw_writefn) {
162
        ri->raw_writefn(env, ri, v);
163
    } else if (ri->writefn) {
164
        ri->writefn(env, ri, v);
165
    } else {
166
        raw_write(env, ri, v);
167 168 169 170 171 172 173 174 175 176 177 178
    }
}

bool write_cpustate_to_list(ARMCPU *cpu)
{
    /* Write the coprocessor state from cpu->env to the (index,value) list. */
    int i;
    bool ok = true;

    for (i = 0; i < cpu->cpreg_array_len; i++) {
        uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
        const ARMCPRegInfo *ri;
179

180
        ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
181 182 183 184 185 186 187
        if (!ri) {
            ok = false;
            continue;
        }
        if (ri->type & ARM_CP_NO_MIGRATE) {
            continue;
        }
188
        cpu->cpreg_values[i] = read_raw_cp_reg(&cpu->env, ri);
189 190 191 192 193 194 195 196 197 198 199 200 201 202
    }
    return ok;
}

bool write_list_to_cpustate(ARMCPU *cpu)
{
    int i;
    bool ok = true;

    for (i = 0; i < cpu->cpreg_array_len; i++) {
        uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
        uint64_t v = cpu->cpreg_values[i];
        const ARMCPRegInfo *ri;

203
        ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
204 205 206 207 208 209 210 211 212 213 214
        if (!ri) {
            ok = false;
            continue;
        }
        if (ri->type & ARM_CP_NO_MIGRATE) {
            continue;
        }
        /* Write value and confirm it reads back as written
         * (to catch read-only registers and partially read-only
         * registers where the incoming migration value doesn't match)
         */
215 216
        write_raw_cp_reg(&cpu->env, ri, v);
        if (read_raw_cp_reg(&cpu->env, ri) != v) {
217 218 219 220 221 222 223 224 225 226 227 228 229
            ok = false;
        }
    }
    return ok;
}

static void add_cpreg_to_list(gpointer key, gpointer opaque)
{
    ARMCPU *cpu = opaque;
    uint64_t regidx;
    const ARMCPRegInfo *ri;

    regidx = *(uint32_t *)key;
230
    ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
231 232 233 234 235 236 237 238 239 240 241 242 243 244 245

    if (!(ri->type & ARM_CP_NO_MIGRATE)) {
        cpu->cpreg_indexes[cpu->cpreg_array_len] = cpreg_to_kvm_id(regidx);
        /* The value array need not be initialized at this point */
        cpu->cpreg_array_len++;
    }
}

static void count_cpreg(gpointer key, gpointer opaque)
{
    ARMCPU *cpu = opaque;
    uint64_t regidx;
    const ARMCPRegInfo *ri;

    regidx = *(uint32_t *)key;
246
    ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
247 248 249 250 251 252 253 254

    if (!(ri->type & ARM_CP_NO_MIGRATE)) {
        cpu->cpreg_array_len++;
    }
}

static gint cpreg_key_compare(gconstpointer a, gconstpointer b)
{
255 256
    uint64_t aidx = cpreg_to_kvm_id(*(uint32_t *)a);
    uint64_t bidx = cpreg_to_kvm_id(*(uint32_t *)b);
257

258 259 260 261 262 263 264
    if (aidx > bidx) {
        return 1;
    }
    if (aidx < bidx) {
        return -1;
    }
    return 0;
265 266
}

267 268 269 270 271 272 273
static void cpreg_make_keylist(gpointer key, gpointer value, gpointer udata)
{
    GList **plist = udata;

    *plist = g_list_prepend(*plist, key);
}

274 275 276 277 278
void init_cpreg_list(ARMCPU *cpu)
{
    /* Initialise the cpreg_tuples[] array based on the cp_regs hash.
     * Note that we require cpreg_tuples[] to be sorted by key ID.
     */
279
    GList *keys = NULL;
280 281
    int arraylen;

282 283
    g_hash_table_foreach(cpu->cp_regs, cpreg_make_keylist, &keys);

284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304
    keys = g_list_sort(keys, cpreg_key_compare);

    cpu->cpreg_array_len = 0;

    g_list_foreach(keys, count_cpreg, cpu);

    arraylen = cpu->cpreg_array_len;
    cpu->cpreg_indexes = g_new(uint64_t, arraylen);
    cpu->cpreg_values = g_new(uint64_t, arraylen);
    cpu->cpreg_vmstate_indexes = g_new(uint64_t, arraylen);
    cpu->cpreg_vmstate_values = g_new(uint64_t, arraylen);
    cpu->cpreg_vmstate_array_len = cpu->cpreg_array_len;
    cpu->cpreg_array_len = 0;

    g_list_foreach(keys, add_cpreg_to_list, cpu);

    assert(cpu->cpreg_array_len == arraylen);

    g_list_free(keys);
}

305
static void dacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
306
{
307 308
    ARMCPU *cpu = arm_env_get_cpu(env);

309
    env->cp15.c3 = value;
310
    tlb_flush(CPU(cpu), 1); /* Flush TLB as domain not tracked in TLB */
311 312
}

313
static void fcse_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
314
{
315 316
    ARMCPU *cpu = arm_env_get_cpu(env);

317 318 319 320
    if (env->cp15.c13_fcse != value) {
        /* Unlike real hardware the qemu TLB uses virtual addresses,
         * not modified virtual addresses, so this causes a TLB flush.
         */
321
        tlb_flush(CPU(cpu), 1);
322 323 324
        env->cp15.c13_fcse = value;
    }
}
325 326 327

static void contextidr_write(CPUARMState *env, const ARMCPRegInfo *ri,
                             uint64_t value)
328
{
329 330
    ARMCPU *cpu = arm_env_get_cpu(env);

331 332 333 334 335
    if (env->cp15.c13_context != value && !arm_feature(env, ARM_FEATURE_MPU)) {
        /* For VMSA (when not using the LPAE long descriptor page table
         * format) this register includes the ASID, so do a TLB flush.
         * For PMSA it is purely a process ID and no action is needed.
         */
336
        tlb_flush(CPU(cpu), 1);
337 338 339 340
    }
    env->cp15.c13_context = value;
}

341 342
static void tlbiall_write(CPUARMState *env, const ARMCPRegInfo *ri,
                          uint64_t value)
343 344
{
    /* Invalidate all (TLBIALL) */
345 346 347
    ARMCPU *cpu = arm_env_get_cpu(env);

    tlb_flush(CPU(cpu), 1);
348 349
}

350 351
static void tlbimva_write(CPUARMState *env, const ARMCPRegInfo *ri,
                          uint64_t value)
352 353
{
    /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */
354 355 356
    ARMCPU *cpu = arm_env_get_cpu(env);

    tlb_flush_page(CPU(cpu), value & TARGET_PAGE_MASK);
357 358
}

359 360
static void tlbiasid_write(CPUARMState *env, const ARMCPRegInfo *ri,
                           uint64_t value)
361 362
{
    /* Invalidate by ASID (TLBIASID) */
363 364 365
    ARMCPU *cpu = arm_env_get_cpu(env);

    tlb_flush(CPU(cpu), value == 0);
366 367
}

368 369
static void tlbimvaa_write(CPUARMState *env, const ARMCPRegInfo *ri,
                           uint64_t value)
370 371
{
    /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */
372 373 374
    ARMCPU *cpu = arm_env_get_cpu(env);

    tlb_flush_page(CPU(cpu), value & TARGET_PAGE_MASK);
375 376
}

377 378 379 380 381 382 383
static const ARMCPRegInfo cp_reginfo[] = {
    /* DBGDIDR: just RAZ. In particular this means the "debug architecture
     * version" bits will read as a reserved value, which should cause
     * Linux to not try to use the debug hardware.
     */
    { .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0,
      .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
384 385 386 387
    /* MMU Domain access control / MPU write buffer control */
    { .name = "DACR", .cp = 15,
      .crn = 3, .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
      .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c3),
388
      .resetvalue = 0, .writefn = dacr_write, .raw_writefn = raw_write, },
389 390
    { .name = "FCSEIDR", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 0,
      .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c13_fcse),
391
      .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
392
    { .name = "CONTEXTIDR", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 1,
393
      .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c13_context),
394
      .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
395 396 397 398 399
    /* ??? This covers not just the impdef TLB lockdown registers but also
     * some v7VMSA registers relating to TEX remap, so it is overly broad.
     */
    { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = CP_ANY,
      .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
400 401 402 403
    /* MMU TLB control. Note that the wildcarding means we cover not just
     * the unified TLB ops but also the dside/iside/inner-shareable variants.
     */
    { .name = "TLBIALL", .cp = 15, .crn = 8, .crm = CP_ANY,
404 405
      .opc1 = CP_ANY, .opc2 = 0, .access = PL1_W, .writefn = tlbiall_write,
      .type = ARM_CP_NO_MIGRATE },
406
    { .name = "TLBIMVA", .cp = 15, .crn = 8, .crm = CP_ANY,
407 408
      .opc1 = CP_ANY, .opc2 = 1, .access = PL1_W, .writefn = tlbimva_write,
      .type = ARM_CP_NO_MIGRATE },
409
    { .name = "TLBIASID", .cp = 15, .crn = 8, .crm = CP_ANY,
410 411
      .opc1 = CP_ANY, .opc2 = 2, .access = PL1_W, .writefn = tlbiasid_write,
      .type = ARM_CP_NO_MIGRATE },
412
    { .name = "TLBIMVAA", .cp = 15, .crn = 8, .crm = CP_ANY,
413 414
      .opc1 = CP_ANY, .opc2 = 3, .access = PL1_W, .writefn = tlbimvaa_write,
      .type = ARM_CP_NO_MIGRATE },
415 416 417 418
    /* Cache maintenance ops; some of this space may be overridden later. */
    { .name = "CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
      .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
      .type = ARM_CP_NOP | ARM_CP_OVERRIDE },
419 420 421
    REGINFO_SENTINEL
};

422 423 424 425 426 427 428 429 430 431 432 433 434 435 436
static const ARMCPRegInfo not_v6_cp_reginfo[] = {
    /* Not all pre-v6 cores implemented this WFI, so this is slightly
     * over-broad.
     */
    { .name = "WFI_v5", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = 2,
      .access = PL1_W, .type = ARM_CP_WFI },
    REGINFO_SENTINEL
};

static const ARMCPRegInfo not_v7_cp_reginfo[] = {
    /* Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which
     * is UNPREDICTABLE; we choose to NOP as most implementations do).
     */
    { .name = "WFI_v6", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
      .access = PL1_W, .type = ARM_CP_WFI },
437 438 439 440 441 442 443 444 445 446
    /* L1 cache lockdown. Not architectural in v6 and earlier but in practice
     * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and
     * OMAPCP will override this space.
     */
    { .name = "DLOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 0,
      .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_data),
      .resetvalue = 0 },
    { .name = "ILOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 1,
      .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_insn),
      .resetvalue = 0 },
447 448
    /* v6 doesn't have the cache ID registers but Linux reads them anyway */
    { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = CP_ANY,
449 450
      .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_MIGRATE,
      .resetvalue = 0 },
451 452 453
    REGINFO_SENTINEL
};

454 455
static void cpacr_write(CPUARMState *env, const ARMCPRegInfo *ri,
                        uint64_t value)
456 457 458 459 460 461 462 463
{
    if (env->cp15.c1_coproc != value) {
        env->cp15.c1_coproc = value;
        /* ??? Is this safe when called from within a TB?  */
        tb_flush(env);
    }
}

464 465 466 467 468 469 470
static const ARMCPRegInfo v6_cp_reginfo[] = {
    /* prefetch by MVA in v6, NOP in v7 */
    { .name = "MVA_prefetch",
      .cp = 15, .crn = 7, .crm = 13, .opc1 = 0, .opc2 = 1,
      .access = PL1_W, .type = ARM_CP_NOP },
    { .name = "ISB", .cp = 15, .crn = 7, .crm = 5, .opc1 = 0, .opc2 = 4,
      .access = PL0_W, .type = ARM_CP_NOP },
471
    { .name = "DSB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 4,
472
      .access = PL0_W, .type = ARM_CP_NOP },
473
    { .name = "DMB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 5,
474
      .access = PL0_W, .type = ARM_CP_NOP },
475 476 477 478 479 480 481 482
    { .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 2,
      .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c6_insn),
      .resetvalue = 0, },
    /* Watchpoint Fault Address Register : should actually only be present
     * for 1136, 1176, 11MPCore.
     */
    { .name = "WFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1,
      .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, },
483 484
    { .name = "CPACR", .state = ARM_CP_STATE_BOTH, .opc0 = 3,
      .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 2,
485 486
      .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c1_coproc),
      .resetvalue = 0, .writefn = cpacr_write },
487 488 489
    REGINFO_SENTINEL
};

490
static CPAccessResult pmreg_access(CPUARMState *env, const ARMCPRegInfo *ri)
491
{
S
Stefan Weil 已提交
492
    /* Performance monitor registers user accessibility is controlled
493
     * by PMUSERENR.
494 495
     */
    if (arm_current_pl(env) == 0 && !env->cp15.c9_pmuserenr) {
496
        return CP_ACCESS_TRAP;
497
    }
498
    return CP_ACCESS_OK;
499 500
}

501
#ifndef CONFIG_USER_ONLY
502 503
static void pmcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
                       uint64_t value)
504
{
505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525
    /* Don't computer the number of ticks in user mode */
    uint32_t temp_ticks;

    temp_ticks = qemu_clock_get_us(QEMU_CLOCK_VIRTUAL) *
                  get_ticks_per_sec() / 1000000;

    if (env->cp15.c9_pmcr & PMCRE) {
        /* If the counter is enabled */
        if (env->cp15.c9_pmcr & PMCRD) {
            /* Increment once every 64 processor clock cycles */
            env->cp15.c15_ccnt = (temp_ticks/64) - env->cp15.c15_ccnt;
        } else {
            env->cp15.c15_ccnt = temp_ticks - env->cp15.c15_ccnt;
        }
    }

    if (value & PMCRC) {
        /* The counter has been reset */
        env->cp15.c15_ccnt = 0;
    }

526 527 528
    /* only the DP, X, D and E bits are writable */
    env->cp15.c9_pmcr &= ~0x39;
    env->cp15.c9_pmcr |= (value & 0x39);
529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576

    if (env->cp15.c9_pmcr & PMCRE) {
        if (env->cp15.c9_pmcr & PMCRD) {
            /* Increment once every 64 processor clock cycles */
            temp_ticks /= 64;
        }
        env->cp15.c15_ccnt = temp_ticks - env->cp15.c15_ccnt;
    }
}

static uint64_t pmccntr_read(CPUARMState *env, const ARMCPRegInfo *ri)
{
    uint32_t total_ticks;

    if (!(env->cp15.c9_pmcr & PMCRE)) {
        /* Counter is disabled, do not change value */
        return env->cp15.c15_ccnt;
    }

    total_ticks = qemu_clock_get_us(QEMU_CLOCK_VIRTUAL) *
                  get_ticks_per_sec() / 1000000;

    if (env->cp15.c9_pmcr & PMCRD) {
        /* Increment once every 64 processor clock cycles */
        total_ticks /= 64;
    }
    return total_ticks - env->cp15.c15_ccnt;
}

static void pmccntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
                        uint64_t value)
{
    uint32_t total_ticks;

    if (!(env->cp15.c9_pmcr & PMCRE)) {
        /* Counter is disabled, set the absolute value */
        env->cp15.c15_ccnt = value;
        return;
    }

    total_ticks = qemu_clock_get_us(QEMU_CLOCK_VIRTUAL) *
                  get_ticks_per_sec() / 1000000;

    if (env->cp15.c9_pmcr & PMCRD) {
        /* Increment once every 64 processor clock cycles */
        total_ticks /= 64;
    }
    env->cp15.c15_ccnt = total_ticks - value;
577
}
578
#endif
579

580
static void pmcntenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
581 582 583 584 585 586
                            uint64_t value)
{
    value &= (1 << 31);
    env->cp15.c9_pmcnten |= value;
}

587 588
static void pmcntenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
                             uint64_t value)
589 590 591 592 593
{
    value &= (1 << 31);
    env->cp15.c9_pmcnten &= ~value;
}

594 595
static void pmovsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
                         uint64_t value)
596 597 598 599
{
    env->cp15.c9_pmovsr &= ~value;
}

600 601
static void pmxevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri,
                             uint64_t value)
602 603 604 605
{
    env->cp15.c9_pmxevtyper = value & 0xff;
}

606
static void pmuserenr_write(CPUARMState *env, const ARMCPRegInfo *ri,
607 608 609 610 611
                            uint64_t value)
{
    env->cp15.c9_pmuserenr = value & 1;
}

612 613
static void pmintenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
                             uint64_t value)
614 615 616 617 618 619
{
    /* We have no event counters so only the C bit can be changed */
    value &= (1 << 31);
    env->cp15.c9_pminten |= value;
}

620 621
static void pmintenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
                             uint64_t value)
622 623 624 625 626
{
    value &= (1 << 31);
    env->cp15.c9_pminten &= ~value;
}

627 628
static void vbar_write(CPUARMState *env, const ARMCPRegInfo *ri,
                       uint64_t value)
N
Nathan Rossi 已提交
629
{
630 631 632 633 634 635
    /* Note that even though the AArch64 view of this register has bits
     * [10:0] all RES0 we can only mask the bottom 5, to comply with the
     * architectural requirements for bits which are RES0 only in some
     * contexts. (ARMv8 would permit us to do no masking at all, but ARMv7
     * requires the bottom five bits to be RAZ/WI because they're UNK/SBZP.)
     */
N
Nathan Rossi 已提交
636 637 638
    env->cp15.c12_vbar = value & ~0x1Ful;
}

639
static uint64_t ccsidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
640 641
{
    ARMCPU *cpu = arm_env_get_cpu(env);
642
    return cpu->ccsidr[env->cp15.c0_cssel];
643 644
}

645 646
static void csselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
                         uint64_t value)
647 648 649 650
{
    env->cp15.c0_cssel = value & 0xf;
}

651 652 653 654 655 656
static const ARMCPRegInfo v7_cp_reginfo[] = {
    /* DBGDRAR, DBGDSAR: always RAZ since we don't implement memory mapped
     * debug components
     */
    { .name = "DBGDRAR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 0,
      .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
657
    { .name = "DBGDSAR", .cp = 14, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
658
      .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
659 660 661
    /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */
    { .name = "NOP", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
      .access = PL1_W, .type = ARM_CP_NOP },
662 663 664 665 666 667 668 669 670 671 672 673 674 675
    /* Performance monitors are implementation defined in v7,
     * but with an ARM recommended set of registers, which we
     * follow (although we don't actually implement any counters)
     *
     * Performance registers fall into three categories:
     *  (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR)
     *  (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR)
     *  (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others)
     * For the cases controlled by PMUSERENR we must set .access to PL0_RW
     * or PL0_RO as appropriate and then check PMUSERENR in the helper fn.
     */
    { .name = "PMCNTENSET", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 1,
      .access = PL0_RW, .resetvalue = 0,
      .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten),
676 677 678
      .writefn = pmcntenset_write,
      .accessfn = pmreg_access,
      .raw_writefn = raw_write },
679 680
    { .name = "PMCNTENCLR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 2,
      .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten),
681 682
      .accessfn = pmreg_access,
      .writefn = pmcntenclr_write,
683
      .type = ARM_CP_NO_MIGRATE },
684 685
    { .name = "PMOVSR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 3,
      .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
686 687 688 689
      .accessfn = pmreg_access,
      .writefn = pmovsr_write,
      .raw_writefn = raw_write },
    /* Unimplemented so WI. */
690
    { .name = "PMSWINC", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 4,
691
      .access = PL0_W, .accessfn = pmreg_access, .type = ARM_CP_NOP },
692
    /* Since we don't implement any events, writing to PMSELR is UNPREDICTABLE.
693
     * We choose to RAZ/WI.
694 695
     */
    { .name = "PMSELR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 5,
696 697
      .access = PL0_RW, .type = ARM_CP_CONST, .resetvalue = 0,
      .accessfn = pmreg_access },
698
#ifndef CONFIG_USER_ONLY
699
    { .name = "PMCCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 0,
700 701
      .access = PL0_RW, .resetvalue = 0, .type = ARM_CP_IO,
      .readfn = pmccntr_read, .writefn = pmccntr_write,
702
      .accessfn = pmreg_access },
703
#endif
704 705 706
    { .name = "PMXEVTYPER", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 1,
      .access = PL0_RW,
      .fieldoffset = offsetof(CPUARMState, cp15.c9_pmxevtyper),
707 708 709
      .accessfn = pmreg_access, .writefn = pmxevtyper_write,
      .raw_writefn = raw_write },
    /* Unimplemented, RAZ/WI. */
710
    { .name = "PMXEVCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 2,
711 712
      .access = PL0_RW, .type = ARM_CP_CONST, .resetvalue = 0,
      .accessfn = pmreg_access },
713 714 715 716
    { .name = "PMUSERENR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 0,
      .access = PL0_R | PL1_RW,
      .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr),
      .resetvalue = 0,
717
      .writefn = pmuserenr_write, .raw_writefn = raw_write },
718 719 720 721
    { .name = "PMINTENSET", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 1,
      .access = PL1_RW,
      .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
      .resetvalue = 0,
722
      .writefn = pmintenset_write, .raw_writefn = raw_write },
723
    { .name = "PMINTENCLR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 2,
724
      .access = PL1_RW, .type = ARM_CP_NO_MIGRATE,
725
      .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
726
      .resetvalue = 0, .writefn = pmintenclr_write, },
727 728
    { .name = "VBAR", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .crn = 12, .crm = 0, .opc1 = 0, .opc2 = 0,
N
Nathan Rossi 已提交
729 730 731
      .access = PL1_RW, .writefn = vbar_write,
      .fieldoffset = offsetof(CPUARMState, cp15.c12_vbar),
      .resetvalue = 0 },
732 733 734
    { .name = "SCR", .cp = 15, .crn = 1, .crm = 1, .opc1 = 0, .opc2 = 0,
      .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c1_scr),
      .resetvalue = 0, },
735 736
    { .name = "CCSIDR", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 0,
737
      .access = PL1_R, .readfn = ccsidr_read, .type = ARM_CP_NO_MIGRATE },
738 739
    { .name = "CSSELR", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 2, .opc2 = 0,
740 741 742 743 744 745 746
      .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c0_cssel),
      .writefn = csselr_write, .resetvalue = 0 },
    /* Auxiliary ID register: this actually has an IMPDEF value but for now
     * just RAZ for all cores:
     */
    { .name = "AIDR", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 7,
      .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766
    /* MAIR can just read-as-written because we don't implement caches
     * and so don't need to care about memory attributes.
     */
    { .name = "MAIR_EL1", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0,
      .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el1),
      .resetvalue = 0 },
    /* For non-long-descriptor page tables these are PRRR and NMRR;
     * regardless they still act as reads-as-written for QEMU.
     * The override is necessary because of the overly-broad TLB_LOCKDOWN
     * definition.
     */
    { .name = "MAIR0", .state = ARM_CP_STATE_AA32, .type = ARM_CP_OVERRIDE,
      .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, .access = PL1_RW,
      .fieldoffset = offsetoflow32(CPUARMState, cp15.mair_el1),
      .resetfn = arm_cp_reset_ignore },
    { .name = "MAIR1", .state = ARM_CP_STATE_AA32, .type = ARM_CP_OVERRIDE,
      .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 1, .access = PL1_RW,
      .fieldoffset = offsetofhigh32(CPUARMState, cp15.mair_el1),
      .resetfn = arm_cp_reset_ignore },
767 768 769
    REGINFO_SENTINEL
};

770 771
static void teecr_write(CPUARMState *env, const ARMCPRegInfo *ri,
                        uint64_t value)
772 773 774 775 776
{
    value &= 1;
    env->teecr = value;
}

777
static CPAccessResult teehbr_access(CPUARMState *env, const ARMCPRegInfo *ri)
778 779
{
    if (arm_current_pl(env) == 0 && (env->teecr & 1)) {
780
        return CP_ACCESS_TRAP;
781
    }
782
    return CP_ACCESS_OK;
783 784 785 786 787 788 789 790 791
}

static const ARMCPRegInfo t2ee_cp_reginfo[] = {
    { .name = "TEECR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 6, .opc2 = 0,
      .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, teecr),
      .resetvalue = 0,
      .writefn = teecr_write },
    { .name = "TEEHBR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 6, .opc2 = 0,
      .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, teehbr),
792
      .accessfn = teehbr_access, .resetvalue = 0 },
793 794 795
    REGINFO_SENTINEL
};

796
static const ARMCPRegInfo v6k_cp_reginfo[] = {
797 798 799 800
    { .name = "TPIDR_EL0", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 3, .opc2 = 2, .crn = 13, .crm = 0,
      .access = PL0_RW,
      .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el0), .resetvalue = 0 },
801 802
    { .name = "TPIDRURW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 2,
      .access = PL0_RW,
803 804 805 806 807 808
      .fieldoffset = offsetoflow32(CPUARMState, cp15.tpidr_el0),
      .resetfn = arm_cp_reset_ignore },
    { .name = "TPIDRRO_EL0", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 3, .opc2 = 3, .crn = 13, .crm = 0,
      .access = PL0_R|PL1_W,
      .fieldoffset = offsetof(CPUARMState, cp15.tpidrro_el0), .resetvalue = 0 },
809 810
    { .name = "TPIDRURO", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 3,
      .access = PL0_R|PL1_W,
811 812 813 814
      .fieldoffset = offsetoflow32(CPUARMState, cp15.tpidrro_el0),
      .resetfn = arm_cp_reset_ignore },
    { .name = "TPIDR_EL1", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .opc1 = 0, .opc2 = 4, .crn = 13, .crm = 0,
815
      .access = PL1_RW,
816
      .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el1), .resetvalue = 0 },
817 818 819
    REGINFO_SENTINEL
};

820 821
#ifndef CONFIG_USER_ONLY

822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874
static CPAccessResult gt_cntfrq_access(CPUARMState *env, const ARMCPRegInfo *ri)
{
    /* CNTFRQ: not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero */
    if (arm_current_pl(env) == 0 && !extract32(env->cp15.c14_cntkctl, 0, 2)) {
        return CP_ACCESS_TRAP;
    }
    return CP_ACCESS_OK;
}

static CPAccessResult gt_counter_access(CPUARMState *env, int timeridx)
{
    /* CNT[PV]CT: not visible from PL0 if ELO[PV]CTEN is zero */
    if (arm_current_pl(env) == 0 &&
        !extract32(env->cp15.c14_cntkctl, timeridx, 1)) {
        return CP_ACCESS_TRAP;
    }
    return CP_ACCESS_OK;
}

static CPAccessResult gt_timer_access(CPUARMState *env, int timeridx)
{
    /* CNT[PV]_CVAL, CNT[PV]_CTL, CNT[PV]_TVAL: not visible from PL0 if
     * EL0[PV]TEN is zero.
     */
    if (arm_current_pl(env) == 0 &&
        !extract32(env->cp15.c14_cntkctl, 9 - timeridx, 1)) {
        return CP_ACCESS_TRAP;
    }
    return CP_ACCESS_OK;
}

static CPAccessResult gt_pct_access(CPUARMState *env,
                                         const ARMCPRegInfo *ri)
{
    return gt_counter_access(env, GTIMER_PHYS);
}

static CPAccessResult gt_vct_access(CPUARMState *env,
                                         const ARMCPRegInfo *ri)
{
    return gt_counter_access(env, GTIMER_VIRT);
}

static CPAccessResult gt_ptimer_access(CPUARMState *env, const ARMCPRegInfo *ri)
{
    return gt_timer_access(env, GTIMER_PHYS);
}

static CPAccessResult gt_vtimer_access(CPUARMState *env, const ARMCPRegInfo *ri)
{
    return gt_timer_access(env, GTIMER_VIRT);
}

875 876
static uint64_t gt_get_countervalue(CPUARMState *env)
{
877
    return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / GTIMER_SCALE;
878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910
}

static void gt_recalc_timer(ARMCPU *cpu, int timeridx)
{
    ARMGenericTimer *gt = &cpu->env.cp15.c14_timer[timeridx];

    if (gt->ctl & 1) {
        /* Timer enabled: calculate and set current ISTATUS, irq, and
         * reset timer to when ISTATUS next has to change
         */
        uint64_t count = gt_get_countervalue(&cpu->env);
        /* Note that this must be unsigned 64 bit arithmetic: */
        int istatus = count >= gt->cval;
        uint64_t nexttick;

        gt->ctl = deposit32(gt->ctl, 2, 1, istatus);
        qemu_set_irq(cpu->gt_timer_outputs[timeridx],
                     (istatus && !(gt->ctl & 2)));
        if (istatus) {
            /* Next transition is when count rolls back over to zero */
            nexttick = UINT64_MAX;
        } else {
            /* Next transition is when we hit cval */
            nexttick = gt->cval;
        }
        /* Note that the desired next expiry time might be beyond the
         * signed-64-bit range of a QEMUTimer -- in this case we just
         * set the timer for as far in the future as possible. When the
         * timer expires we will reset the timer for any remaining period.
         */
        if (nexttick > INT64_MAX / GTIMER_SCALE) {
            nexttick = INT64_MAX / GTIMER_SCALE;
        }
911
        timer_mod(cpu->gt_timer[timeridx], nexttick);
912 913 914 915
    } else {
        /* Timer disabled: ISTATUS and timer output always clear */
        gt->ctl &= ~4;
        qemu_set_irq(cpu->gt_timer_outputs[timeridx], 0);
916
        timer_del(cpu->gt_timer[timeridx]);
917 918 919 920 921 922 923 924
    }
}

static void gt_cnt_reset(CPUARMState *env, const ARMCPRegInfo *ri)
{
    ARMCPU *cpu = arm_env_get_cpu(env);
    int timeridx = ri->opc1 & 1;

925
    timer_del(cpu->gt_timer[timeridx]);
926 927
}

928
static uint64_t gt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
929
{
930
    return gt_get_countervalue(env);
931 932
}

933 934
static void gt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
                          uint64_t value)
935 936 937 938 939 940
{
    int timeridx = ri->opc1 & 1;

    env->cp15.c14_timer[timeridx].cval = value;
    gt_recalc_timer(arm_env_get_cpu(env), timeridx);
}
941 942

static uint64_t gt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
943 944 945
{
    int timeridx = ri->crm & 1;

946 947
    return (uint32_t)(env->cp15.c14_timer[timeridx].cval -
                      gt_get_countervalue(env));
948 949
}

950 951
static void gt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
                          uint64_t value)
952 953 954 955 956 957 958 959
{
    int timeridx = ri->crm & 1;

    env->cp15.c14_timer[timeridx].cval = gt_get_countervalue(env) +
        + sextract64(value, 0, 32);
    gt_recalc_timer(arm_env_get_cpu(env), timeridx);
}

960 961
static void gt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
                         uint64_t value)
962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999
{
    ARMCPU *cpu = arm_env_get_cpu(env);
    int timeridx = ri->crm & 1;
    uint32_t oldval = env->cp15.c14_timer[timeridx].ctl;

    env->cp15.c14_timer[timeridx].ctl = value & 3;
    if ((oldval ^ value) & 1) {
        /* Enable toggled */
        gt_recalc_timer(cpu, timeridx);
    } else if ((oldval & value) & 2) {
        /* IMASK toggled: don't need to recalculate,
         * just set the interrupt line based on ISTATUS
         */
        qemu_set_irq(cpu->gt_timer_outputs[timeridx],
                     (oldval & 4) && (value & 2));
    }
}

void arm_gt_ptimer_cb(void *opaque)
{
    ARMCPU *cpu = opaque;

    gt_recalc_timer(cpu, GTIMER_PHYS);
}

void arm_gt_vtimer_cb(void *opaque)
{
    ARMCPU *cpu = opaque;

    gt_recalc_timer(cpu, GTIMER_VIRT);
}

static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
    /* Note that CNTFRQ is purely reads-as-written for the benefit
     * of software; writing it doesn't actually change the timer frequency.
     * Our reset value matches the fixed frequency we implement the timer at.
     */
    { .name = "CNTFRQ", .cp = 15, .crn = 14, .crm = 0, .opc1 = 0, .opc2 = 0,
1000 1001 1002 1003 1004 1005 1006 1007
      .type = ARM_CP_NO_MIGRATE,
      .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
      .fieldoffset = offsetoflow32(CPUARMState, cp15.c14_cntfrq),
      .resetfn = arm_cp_reset_ignore,
    },
    { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0,
      .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
1008 1009 1010 1011
      .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq),
      .resetvalue = (1000 * 1000 * 1000) / GTIMER_SCALE,
    },
    /* overall control: mostly access permissions */
1012 1013
    { .name = "CNTKCTL", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .opc1 = 0, .crn = 14, .crm = 1, .opc2 = 0,
1014 1015 1016 1017 1018 1019
      .access = PL1_RW,
      .fieldoffset = offsetof(CPUARMState, cp15.c14_cntkctl),
      .resetvalue = 0,
    },
    /* per-timer control */
    { .name = "CNTP_CTL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
1020 1021 1022 1023 1024 1025 1026 1027 1028
      .type = ARM_CP_IO | ARM_CP_NO_MIGRATE, .access = PL1_RW | PL0_R,
      .accessfn = gt_ptimer_access,
      .fieldoffset = offsetoflow32(CPUARMState,
                                   cp15.c14_timer[GTIMER_PHYS].ctl),
      .resetfn = arm_cp_reset_ignore,
      .writefn = gt_ctl_write, .raw_writefn = raw_write,
    },
    { .name = "CNTP_CTL_EL0", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 1,
1029
      .type = ARM_CP_IO, .access = PL1_RW | PL0_R,
1030
      .accessfn = gt_ptimer_access,
1031 1032
      .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl),
      .resetvalue = 0,
1033
      .writefn = gt_ctl_write, .raw_writefn = raw_write,
1034 1035
    },
    { .name = "CNTV_CTL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 1,
1036 1037 1038 1039 1040 1041 1042 1043 1044
      .type = ARM_CP_IO | ARM_CP_NO_MIGRATE, .access = PL1_RW | PL0_R,
      .accessfn = gt_vtimer_access,
      .fieldoffset = offsetoflow32(CPUARMState,
                                   cp15.c14_timer[GTIMER_VIRT].ctl),
      .resetfn = arm_cp_reset_ignore,
      .writefn = gt_ctl_write, .raw_writefn = raw_write,
    },
    { .name = "CNTV_CTL_EL0", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 1,
1045
      .type = ARM_CP_IO, .access = PL1_RW | PL0_R,
1046
      .accessfn = gt_vtimer_access,
1047 1048
      .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl),
      .resetvalue = 0,
1049
      .writefn = gt_ctl_write, .raw_writefn = raw_write,
1050 1051 1052 1053
    },
    /* TimerValue views: a 32 bit downcounting view of the underlying state */
    { .name = "CNTP_TVAL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
      .type = ARM_CP_NO_MIGRATE | ARM_CP_IO, .access = PL1_RW | PL0_R,
1054
      .accessfn = gt_ptimer_access,
1055 1056
      .readfn = gt_tval_read, .writefn = gt_tval_write,
    },
1057 1058 1059 1060 1061
    { .name = "CNTP_TVAL_EL0", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 0,
      .type = ARM_CP_NO_MIGRATE | ARM_CP_IO, .access = PL1_RW | PL0_R,
      .readfn = gt_tval_read, .writefn = gt_tval_write,
    },
1062 1063
    { .name = "CNTV_TVAL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 0,
      .type = ARM_CP_NO_MIGRATE | ARM_CP_IO, .access = PL1_RW | PL0_R,
1064
      .accessfn = gt_vtimer_access,
1065 1066
      .readfn = gt_tval_read, .writefn = gt_tval_write,
    },
1067 1068 1069 1070 1071
    { .name = "CNTV_TVAL_EL0", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 0,
      .type = ARM_CP_NO_MIGRATE | ARM_CP_IO, .access = PL1_RW | PL0_R,
      .readfn = gt_tval_read, .writefn = gt_tval_write,
    },
1072 1073 1074
    /* The counter itself */
    { .name = "CNTPCT", .cp = 15, .crm = 14, .opc1 = 0,
      .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_MIGRATE | ARM_CP_IO,
1075
      .accessfn = gt_pct_access,
1076 1077 1078 1079 1080 1081
      .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore,
    },
    { .name = "CNTPCT_EL0", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 1,
      .access = PL0_R, .type = ARM_CP_NO_MIGRATE | ARM_CP_IO,
      .accessfn = gt_pct_access,
1082 1083 1084 1085
      .readfn = gt_cnt_read, .resetfn = gt_cnt_reset,
    },
    { .name = "CNTVCT", .cp = 15, .crm = 14, .opc1 = 1,
      .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_MIGRATE | ARM_CP_IO,
1086
      .accessfn = gt_vct_access,
1087 1088 1089 1090 1091 1092
      .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore,
    },
    { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2,
      .access = PL0_R, .type = ARM_CP_NO_MIGRATE | ARM_CP_IO,
      .accessfn = gt_vct_access,
1093 1094 1095 1096 1097
      .readfn = gt_cnt_read, .resetfn = gt_cnt_reset,
    },
    /* Comparison value, indicating when the timer goes off */
    { .name = "CNTP_CVAL", .cp = 15, .crm = 14, .opc1 = 2,
      .access = PL1_RW | PL0_R,
1098
      .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_NO_MIGRATE,
1099
      .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
1100 1101 1102 1103 1104 1105 1106 1107 1108
      .accessfn = gt_ptimer_access, .resetfn = arm_cp_reset_ignore,
      .writefn = gt_cval_write, .raw_writefn = raw_write,
    },
    { .name = "CNTP_CVAL_EL0", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 2,
      .access = PL1_RW | PL0_R,
      .type = ARM_CP_IO,
      .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
      .resetvalue = 0, .accessfn = gt_vtimer_access,
1109
      .writefn = gt_cval_write, .raw_writefn = raw_write,
1110 1111 1112
    },
    { .name = "CNTV_CVAL", .cp = 15, .crm = 14, .opc1 = 3,
      .access = PL1_RW | PL0_R,
1113
      .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_NO_MIGRATE,
1114
      .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
1115 1116 1117 1118 1119 1120 1121 1122 1123
      .accessfn = gt_vtimer_access, .resetfn = arm_cp_reset_ignore,
      .writefn = gt_cval_write, .raw_writefn = raw_write,
    },
    { .name = "CNTV_CVAL_EL0", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 2,
      .access = PL1_RW | PL0_R,
      .type = ARM_CP_IO,
      .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
      .resetvalue = 0, .accessfn = gt_vtimer_access,
1124
      .writefn = gt_cval_write, .raw_writefn = raw_write,
1125 1126 1127 1128 1129 1130
    },
    REGINFO_SENTINEL
};

#else
/* In user-mode none of the generic timer registers are accessible,
1131
 * and their implementation depends on QEMU_CLOCK_VIRTUAL and qdev gpio outputs,
1132 1133
 * so instead just don't register any of them.
 */
1134 1135 1136 1137
static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
    REGINFO_SENTINEL
};

1138 1139
#endif

1140
static void par_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
1141
{
1142 1143 1144
    if (arm_feature(env, ARM_FEATURE_LPAE)) {
        env->cp15.c7_par = value;
    } else if (arm_feature(env, ARM_FEATURE_V7)) {
1145 1146 1147 1148 1149 1150 1151 1152
        env->cp15.c7_par = value & 0xfffff6ff;
    } else {
        env->cp15.c7_par = value & 0xfffff1ff;
    }
}

#ifndef CONFIG_USER_ONLY
/* get_phys_addr() isn't present for user-mode-only targets */
1153

1154 1155 1156
/* Return true if extended addresses are enabled.
 * This is always the case if our translation regime is 64 bit,
 * but depends on TTBCR.EAE for 32 bit.
1157 1158 1159
 */
static inline bool extended_addresses_enabled(CPUARMState *env)
{
1160 1161 1162
    return arm_el_is_aa64(env, 1)
        || ((arm_feature(env, ARM_FEATURE_LPAE)
             && (env->cp15.c2_control & (1U << 31))));
1163 1164
}

1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177
static CPAccessResult ats_access(CPUARMState *env, const ARMCPRegInfo *ri)
{
    if (ri->opc2 & 4) {
        /* Other states are only available with TrustZone; in
         * a non-TZ implementation these registers don't exist
         * at all, which is an Uncategorized trap. This underdecoding
         * is safe because the reginfo is NO_MIGRATE.
         */
        return CP_ACCESS_TRAP_UNCATEGORIZED;
    }
    return CP_ACCESS_OK;
}

1178
static void ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
1179
{
A
Avi Kivity 已提交
1180
    hwaddr phys_addr;
1181 1182 1183 1184 1185 1186 1187
    target_ulong page_size;
    int prot;
    int ret, is_user = ri->opc2 & 2;
    int access_type = ri->opc2 & 1;

    ret = get_phys_addr(env, value, access_type, is_user,
                        &phys_addr, &prot, &page_size);
1188 1189 1190 1191 1192 1193 1194 1195 1196
    if (extended_addresses_enabled(env)) {
        /* ret is a DFSR/IFSR value for the long descriptor
         * translation table format, but with WnR always clear.
         * Convert it to a 64-bit PAR.
         */
        uint64_t par64 = (1 << 11); /* LPAE bit always set */
        if (ret == 0) {
            par64 |= phys_addr & ~0xfffULL;
            /* We don't set the ATTR or SH fields in the PAR. */
1197
        } else {
1198 1199 1200 1201 1202 1203
            par64 |= 1; /* F */
            par64 |= (ret & 0x3f) << 1; /* FS */
            /* Note that S2WLK and FSTAGE are always zero, because we don't
             * implement virtualization and therefore there can't be a stage 2
             * fault.
             */
1204
        }
1205 1206
        env->cp15.c7_par = par64;
        env->cp15.c7_par_hi = par64 >> 32;
1207
    } else {
1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220
        /* ret is a DFSR/IFSR value for the short descriptor
         * translation table format (with WnR always clear).
         * Convert it to a 32-bit PAR.
         */
        if (ret == 0) {
            /* We do not set any attribute bits in the PAR */
            if (page_size == (1 << 24)
                && arm_feature(env, ARM_FEATURE_V7)) {
                env->cp15.c7_par = (phys_addr & 0xff000000) | 1 << 1;
            } else {
                env->cp15.c7_par = phys_addr & 0xfffff000;
            }
        } else {
1221 1222
            env->cp15.c7_par = ((ret & (1 << 10)) >> 5) |
                ((ret & (1 << 12)) >> 6) |
1223 1224 1225
                ((ret & 0xf) << 1) | 1;
        }
        env->cp15.c7_par_hi = 0;
1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236
    }
}
#endif

static const ARMCPRegInfo vapa_cp_reginfo[] = {
    { .name = "PAR", .cp = 15, .crn = 7, .crm = 4, .opc1 = 0, .opc2 = 0,
      .access = PL1_RW, .resetvalue = 0,
      .fieldoffset = offsetof(CPUARMState, cp15.c7_par),
      .writefn = par_write },
#ifndef CONFIG_USER_ONLY
    { .name = "ATS", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = CP_ANY,
1237 1238
      .access = PL1_W, .accessfn = ats_access,
      .writefn = ats_write, .type = ARM_CP_NO_MIGRATE },
1239 1240 1241 1242
#endif
    REGINFO_SENTINEL
};

1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272
/* Return basic MPU access permission bits.  */
static uint32_t simple_mpu_ap_bits(uint32_t val)
{
    uint32_t ret;
    uint32_t mask;
    int i;
    ret = 0;
    mask = 3;
    for (i = 0; i < 16; i += 2) {
        ret |= (val >> i) & mask;
        mask <<= 2;
    }
    return ret;
}

/* Pad basic MPU access permission bits to extended format.  */
static uint32_t extended_mpu_ap_bits(uint32_t val)
{
    uint32_t ret;
    uint32_t mask;
    int i;
    ret = 0;
    mask = 3;
    for (i = 0; i < 16; i += 2) {
        ret |= (val & mask) << i;
        mask <<= 2;
    }
    return ret;
}

1273 1274
static void pmsav5_data_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
                                 uint64_t value)
1275 1276 1277 1278
{
    env->cp15.c5_data = extended_mpu_ap_bits(value);
}

1279
static uint64_t pmsav5_data_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
1280
{
1281
    return simple_mpu_ap_bits(env->cp15.c5_data);
1282 1283
}

1284 1285
static void pmsav5_insn_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
                                 uint64_t value)
1286 1287 1288 1289
{
    env->cp15.c5_insn = extended_mpu_ap_bits(value);
}

1290
static uint64_t pmsav5_insn_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
1291
{
1292
    return simple_mpu_ap_bits(env->cp15.c5_insn);
1293 1294 1295 1296
}

static const ARMCPRegInfo pmsav5_cp_reginfo[] = {
    { .name = "DATA_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
1297
      .access = PL1_RW, .type = ARM_CP_NO_MIGRATE,
1298 1299 1300
      .fieldoffset = offsetof(CPUARMState, cp15.c5_data), .resetvalue = 0,
      .readfn = pmsav5_data_ap_read, .writefn = pmsav5_data_ap_write, },
    { .name = "INSN_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
1301
      .access = PL1_RW, .type = ARM_CP_NO_MIGRATE,
1302 1303 1304 1305 1306 1307 1308 1309
      .fieldoffset = offsetof(CPUARMState, cp15.c5_insn), .resetvalue = 0,
      .readfn = pmsav5_insn_ap_read, .writefn = pmsav5_insn_ap_write, },
    { .name = "DATA_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 2,
      .access = PL1_RW,
      .fieldoffset = offsetof(CPUARMState, cp15.c5_data), .resetvalue = 0, },
    { .name = "INSN_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 3,
      .access = PL1_RW,
      .fieldoffset = offsetof(CPUARMState, cp15.c5_insn), .resetvalue = 0, },
1310 1311 1312 1313 1314 1315
    { .name = "DCACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
      .access = PL1_RW,
      .fieldoffset = offsetof(CPUARMState, cp15.c2_data), .resetvalue = 0, },
    { .name = "ICACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1,
      .access = PL1_RW,
      .fieldoffset = offsetof(CPUARMState, cp15.c2_insn), .resetvalue = 0, },
1316
    /* Protection region base and size registers */
1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340
    { .name = "946_PRBS0", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0,
      .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
      .fieldoffset = offsetof(CPUARMState, cp15.c6_region[0]) },
    { .name = "946_PRBS1", .cp = 15, .crn = 6, .crm = 1, .opc1 = 0,
      .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
      .fieldoffset = offsetof(CPUARMState, cp15.c6_region[1]) },
    { .name = "946_PRBS2", .cp = 15, .crn = 6, .crm = 2, .opc1 = 0,
      .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
      .fieldoffset = offsetof(CPUARMState, cp15.c6_region[2]) },
    { .name = "946_PRBS3", .cp = 15, .crn = 6, .crm = 3, .opc1 = 0,
      .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
      .fieldoffset = offsetof(CPUARMState, cp15.c6_region[3]) },
    { .name = "946_PRBS4", .cp = 15, .crn = 6, .crm = 4, .opc1 = 0,
      .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
      .fieldoffset = offsetof(CPUARMState, cp15.c6_region[4]) },
    { .name = "946_PRBS5", .cp = 15, .crn = 6, .crm = 5, .opc1 = 0,
      .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
      .fieldoffset = offsetof(CPUARMState, cp15.c6_region[5]) },
    { .name = "946_PRBS6", .cp = 15, .crn = 6, .crm = 6, .opc1 = 0,
      .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
      .fieldoffset = offsetof(CPUARMState, cp15.c6_region[6]) },
    { .name = "946_PRBS7", .cp = 15, .crn = 6, .crm = 7, .opc1 = 0,
      .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
      .fieldoffset = offsetof(CPUARMState, cp15.c6_region[7]) },
1341 1342 1343
    REGINFO_SENTINEL
};

1344 1345
static void vmsa_ttbcr_raw_write(CPUARMState *env, const ARMCPRegInfo *ri,
                                 uint64_t value)
1346
{
1347 1348
    int maskshift = extract32(value, 0, 3);

1349
    if (arm_feature(env, ARM_FEATURE_LPAE) && (value & (1 << 31))) {
1350 1351 1352 1353 1354 1355 1356 1357 1358
        value &= ~((7 << 19) | (3 << 14) | (0xf << 3));
    } else {
        value &= 7;
    }
    /* Note that we always calculate c2_mask and c2_base_mask, but
     * they are only used for short-descriptor tables (ie if EAE is 0);
     * for long-descriptor tables the TTBCR fields are used differently
     * and the c2_mask and c2_base_mask values are meaningless.
     */
1359
    env->cp15.c2_control = value;
1360 1361
    env->cp15.c2_mask = ~(((uint32_t)0xffffffffu) >> maskshift);
    env->cp15.c2_base_mask = ~((uint32_t)0x3fffu >> maskshift);
1362 1363
}

1364 1365
static void vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
                             uint64_t value)
1366
{
1367 1368
    ARMCPU *cpu = arm_env_get_cpu(env);

1369 1370 1371 1372
    if (arm_feature(env, ARM_FEATURE_LPAE)) {
        /* With LPAE the TTBCR could result in a change of ASID
         * via the TTBCR.A1 bit, so do a TLB flush.
         */
1373
        tlb_flush(CPU(cpu), 1);
1374
    }
1375
    vmsa_ttbcr_raw_write(env, ri, value);
1376 1377
}

1378 1379 1380 1381 1382 1383 1384
static void vmsa_ttbcr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
{
    env->cp15.c2_base_mask = 0xffffc000u;
    env->cp15.c2_control = 0;
    env->cp15.c2_mask = 0;
}

1385 1386 1387
static void vmsa_tcr_el1_write(CPUARMState *env, const ARMCPRegInfo *ri,
                               uint64_t value)
{
1388 1389
    ARMCPU *cpu = arm_env_get_cpu(env);

1390
    /* For AArch64 the A1 bit could result in a change of ASID, so TLB flush. */
1391
    tlb_flush(CPU(cpu), 1);
1392 1393 1394
    env->cp15.c2_control = value;
}

1395 1396 1397 1398 1399 1400 1401
static void vmsa_ttbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
                            uint64_t value)
{
    /* 64 bit accesses to the TTBRs can change the ASID and so we
     * must flush the TLB.
     */
    if (cpreg_field_is_64bit(ri)) {
1402 1403 1404
        ARMCPU *cpu = arm_env_get_cpu(env);

        tlb_flush(CPU(cpu), 1);
1405 1406 1407 1408
    }
    raw_write(env, ri, value);
}

1409 1410 1411 1412 1413 1414 1415
static const ARMCPRegInfo vmsa_cp_reginfo[] = {
    { .name = "DFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
      .access = PL1_RW,
      .fieldoffset = offsetof(CPUARMState, cp15.c5_data), .resetvalue = 0, },
    { .name = "IFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
      .access = PL1_RW,
      .fieldoffset = offsetof(CPUARMState, cp15.c5_insn), .resetvalue = 0, },
1416 1417 1418 1419 1420 1421 1422 1423
    { .name = "TTBR0_EL1", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
      .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el1),
      .writefn = vmsa_ttbr_write, .resetvalue = 0 },
    { .name = "TTBR1_EL1", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1,
      .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.ttbr1_el1),
      .writefn = vmsa_ttbr_write, .resetvalue = 0 },
1424 1425 1426 1427
    { .name = "TCR_EL1", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
      .access = PL1_RW, .writefn = vmsa_tcr_el1_write,
      .resetfn = vmsa_ttbcr_reset, .raw_writefn = raw_write,
1428
      .fieldoffset = offsetof(CPUARMState, cp15.c2_control) },
1429 1430 1431 1432
    { .name = "TTBCR", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
      .access = PL1_RW, .type = ARM_CP_NO_MIGRATE, .writefn = vmsa_ttbcr_write,
      .resetfn = arm_cp_reset_ignore, .raw_writefn = vmsa_ttbcr_raw_write,
      .fieldoffset = offsetoflow32(CPUARMState, cp15.c2_control) },
1433 1434 1435
    { .name = "DFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0,
      .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c6_data),
      .resetvalue = 0, },
1436 1437 1438
    REGINFO_SENTINEL
};

1439 1440
static void omap_ticonfig_write(CPUARMState *env, const ARMCPRegInfo *ri,
                                uint64_t value)
1441 1442 1443 1444 1445 1446 1447
{
    env->cp15.c15_ticonfig = value & 0xe7;
    /* The OS_TYPE bit in this register changes the reported CPUID! */
    env->cp15.c0_cpuid = (value & (1 << 5)) ?
        ARM_CPUID_TI915T : ARM_CPUID_TI925T;
}

1448 1449
static void omap_threadid_write(CPUARMState *env, const ARMCPRegInfo *ri,
                                uint64_t value)
1450 1451 1452 1453
{
    env->cp15.c15_threadid = value & 0xffff;
}

1454 1455
static void omap_wfi_write(CPUARMState *env, const ARMCPRegInfo *ri,
                           uint64_t value)
1456 1457
{
    /* Wait-for-interrupt (deprecated) */
1458
    cpu_interrupt(CPU(arm_env_get_cpu(env)), CPU_INTERRUPT_HALT);
1459 1460
}

1461 1462
static void omap_cachemaint_write(CPUARMState *env, const ARMCPRegInfo *ri,
                                  uint64_t value)
1463 1464 1465 1466 1467 1468 1469 1470
{
    /* On OMAP there are registers indicating the max/min index of dcache lines
     * containing a dirty line; cache flush operations have to reset these.
     */
    env->cp15.c15_i_max = 0x000;
    env->cp15.c15_i_min = 0xff0;
}

1471 1472 1473 1474
static const ARMCPRegInfo omap_cp_reginfo[] = {
    { .name = "DFSR", .cp = 15, .crn = 5, .crm = CP_ANY,
      .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_OVERRIDE,
      .fieldoffset = offsetof(CPUARMState, cp15.c5_data), .resetvalue = 0, },
1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492
    { .name = "", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0,
      .access = PL1_RW, .type = ARM_CP_NOP },
    { .name = "TICONFIG", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0,
      .access = PL1_RW,
      .fieldoffset = offsetof(CPUARMState, cp15.c15_ticonfig), .resetvalue = 0,
      .writefn = omap_ticonfig_write },
    { .name = "IMAX", .cp = 15, .crn = 15, .crm = 2, .opc1 = 0, .opc2 = 0,
      .access = PL1_RW,
      .fieldoffset = offsetof(CPUARMState, cp15.c15_i_max), .resetvalue = 0, },
    { .name = "IMIN", .cp = 15, .crn = 15, .crm = 3, .opc1 = 0, .opc2 = 0,
      .access = PL1_RW, .resetvalue = 0xff0,
      .fieldoffset = offsetof(CPUARMState, cp15.c15_i_min) },
    { .name = "THREADID", .cp = 15, .crn = 15, .crm = 4, .opc1 = 0, .opc2 = 0,
      .access = PL1_RW,
      .fieldoffset = offsetof(CPUARMState, cp15.c15_threadid), .resetvalue = 0,
      .writefn = omap_threadid_write },
    { .name = "TI925T_STATUS", .cp = 15, .crn = 15,
      .crm = 8, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
1493
      .type = ARM_CP_NO_MIGRATE,
1494 1495 1496 1497 1498 1499
      .readfn = arm_cp_read_zero, .writefn = omap_wfi_write, },
    /* TODO: Peripheral port remap register:
     * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller
     * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff),
     * when MMU is off.
     */
1500
    { .name = "OMAP_CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
1501 1502
      .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
      .type = ARM_CP_OVERRIDE | ARM_CP_NO_MIGRATE,
1503
      .writefn = omap_cachemaint_write },
1504 1505 1506
    { .name = "C9", .cp = 15, .crn = 9,
      .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW,
      .type = ARM_CP_CONST | ARM_CP_OVERRIDE, .resetvalue = 0 },
1507 1508 1509
    REGINFO_SENTINEL
};

1510 1511
static void xscale_cpar_write(CPUARMState *env, const ARMCPRegInfo *ri,
                              uint64_t value)
1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525
{
    value &= 0x3fff;
    if (env->cp15.c15_cpar != value) {
        /* Changes cp0 to cp13 behavior, so needs a TB flush.  */
        tb_flush(env);
        env->cp15.c15_cpar = value;
    }
}

static const ARMCPRegInfo xscale_cp_reginfo[] = {
    { .name = "XSCALE_CPAR",
      .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
      .fieldoffset = offsetof(CPUARMState, cp15.c15_cpar), .resetvalue = 0,
      .writefn = xscale_cpar_write, },
1526 1527 1528 1529
    { .name = "XSCALE_AUXCR",
      .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW,
      .fieldoffset = offsetof(CPUARMState, cp15.c1_xscaleauxcr),
      .resetvalue = 0, },
1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540
    REGINFO_SENTINEL
};

static const ARMCPRegInfo dummy_c15_cp_reginfo[] = {
    /* RAZ/WI the whole crn=15 space, when we don't have a more specific
     * implementation of this implementation-defined space.
     * Ideally this should eventually disappear in favour of actually
     * implementing the correct behaviour for all cores.
     */
    { .name = "C15_IMPDEF", .cp = 15, .crn = 15,
      .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
1541 1542
      .access = PL1_RW,
      .type = ARM_CP_CONST | ARM_CP_NO_MIGRATE | ARM_CP_OVERRIDE,
1543
      .resetvalue = 0 },
1544 1545 1546
    REGINFO_SENTINEL
};

1547 1548 1549
static const ARMCPRegInfo cache_dirty_status_cp_reginfo[] = {
    /* Cache status: RAZ because we have no cache so it's always clean */
    { .name = "CDSR", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 6,
1550 1551
      .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_MIGRATE,
      .resetvalue = 0 },
1552 1553 1554 1555 1556 1557
    REGINFO_SENTINEL
};

static const ARMCPRegInfo cache_block_ops_cp_reginfo[] = {
    /* We never have a a block transfer operation in progress */
    { .name = "BXSR", .cp = 15, .crn = 7, .crm = 12, .opc1 = 0, .opc2 = 4,
1558 1559
      .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_MIGRATE,
      .resetvalue = 0 },
1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572
    /* The cache ops themselves: these all NOP for QEMU */
    { .name = "IICR", .cp = 15, .crm = 5, .opc1 = 0,
      .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
    { .name = "IDCR", .cp = 15, .crm = 6, .opc1 = 0,
      .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
    { .name = "CDCR", .cp = 15, .crm = 12, .opc1 = 0,
      .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
    { .name = "PIR", .cp = 15, .crm = 12, .opc1 = 1,
      .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
    { .name = "PDR", .cp = 15, .crm = 12, .opc1 = 2,
      .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
    { .name = "CIDCR", .cp = 15, .crm = 14, .opc1 = 0,
      .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
1573 1574 1575 1576 1577 1578 1579 1580
    REGINFO_SENTINEL
};

static const ARMCPRegInfo cache_test_clean_cp_reginfo[] = {
    /* The cache test-and-clean instructions always return (1 << 30)
     * to indicate that there are no dirty cache lines.
     */
    { .name = "TC_DCACHE", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 3,
1581 1582
      .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_MIGRATE,
      .resetvalue = (1 << 30) },
1583
    { .name = "TCI_DCACHE", .cp = 15, .crn = 7, .crm = 14, .opc1 = 0, .opc2 = 3,
1584 1585
      .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_MIGRATE,
      .resetvalue = (1 << 30) },
1586 1587 1588
    REGINFO_SENTINEL
};

1589 1590 1591 1592
static const ARMCPRegInfo strongarm_cp_reginfo[] = {
    /* Ignore ReadBuffer accesses */
    { .name = "C9_READBUFFER", .cp = 15, .crn = 9,
      .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
1593 1594
      .access = PL1_RW, .resetvalue = 0,
      .type = ARM_CP_CONST | ARM_CP_OVERRIDE | ARM_CP_NO_MIGRATE },
1595 1596 1597
    REGINFO_SENTINEL
};

1598
static uint64_t mpidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
P
Peter Maydell 已提交
1599
{
1600 1601
    CPUState *cs = CPU(arm_env_get_cpu(env));
    uint32_t mpidr = cs->cpu_index;
1602 1603
    /* We don't support setting cluster ID ([8..11]) (known as Aff1
     * in later ARM ARM versions), or any of the higher affinity level fields,
P
Peter Maydell 已提交
1604 1605 1606
     * so these bits always RAZ.
     */
    if (arm_feature(env, ARM_FEATURE_V7MP)) {
1607
        mpidr |= (1U << 31);
P
Peter Maydell 已提交
1608 1609 1610 1611 1612 1613
        /* Cores which are uniprocessor (non-coherent)
         * but still implement the MP extensions set
         * bit 30. (For instance, A9UP.) However we do
         * not currently model any of those cores.
         */
    }
1614
    return mpidr;
P
Peter Maydell 已提交
1615 1616 1617
}

static const ARMCPRegInfo mpidr_cp_reginfo[] = {
1618 1619
    { .name = "MPIDR", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 5,
1620
      .access = PL1_R, .readfn = mpidr_read, .type = ARM_CP_NO_MIGRATE },
P
Peter Maydell 已提交
1621 1622 1623
    REGINFO_SENTINEL
};

1624
static uint64_t par64_read(CPUARMState *env, const ARMCPRegInfo *ri)
1625
{
1626
    return ((uint64_t)env->cp15.c7_par_hi << 32) | env->cp15.c7_par;
1627 1628
}

1629 1630
static void par64_write(CPUARMState *env, const ARMCPRegInfo *ri,
                        uint64_t value)
1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641
{
    env->cp15.c7_par_hi = value >> 32;
    env->cp15.c7_par = value;
}

static void par64_reset(CPUARMState *env, const ARMCPRegInfo *ri)
{
    env->cp15.c7_par_hi = 0;
    env->cp15.c7_par = 0;
}

1642
static const ARMCPRegInfo lpae_cp_reginfo[] = {
1643
    /* NOP AMAIR0/1: the override is because these clash with the rather
1644 1645
     * broadly specified TLB_LOCKDOWN entry in the generic cp_reginfo.
     */
1646 1647
    { .name = "AMAIR0", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 0,
1648 1649
      .access = PL1_RW, .type = ARM_CP_CONST | ARM_CP_OVERRIDE,
      .resetvalue = 0 },
1650
    /* AMAIR1 is mapped to AMAIR_EL1[63:32] */
1651 1652 1653
    { .name = "AMAIR1", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 1,
      .access = PL1_RW, .type = ARM_CP_CONST | ARM_CP_OVERRIDE,
      .resetvalue = 0 },
1654 1655 1656 1657 1658
    /* 64 bit access versions of the (dummy) debug registers */
    { .name = "DBGDRAR", .cp = 14, .crm = 1, .opc1 = 0,
      .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 },
    { .name = "DBGDSAR", .cp = 14, .crm = 2, .opc1 = 0,
      .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 },
1659 1660 1661 1662
    { .name = "PAR", .cp = 15, .crm = 7, .opc1 = 0,
      .access = PL1_RW, .type = ARM_CP_64BIT,
      .readfn = par64_read, .writefn = par64_write, .resetfn = par64_reset },
    { .name = "TTBR0", .cp = 15, .crm = 2, .opc1 = 0,
1663 1664 1665
      .access = PL1_RW, .type = ARM_CP_64BIT | ARM_CP_NO_MIGRATE,
      .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el1),
      .writefn = vmsa_ttbr_write, .resetfn = arm_cp_reset_ignore },
1666
    { .name = "TTBR1", .cp = 15, .crm = 2, .opc1 = 1,
1667 1668 1669
      .access = PL1_RW, .type = ARM_CP_64BIT | ARM_CP_NO_MIGRATE,
      .fieldoffset = offsetof(CPUARMState, cp15.ttbr1_el1),
      .writefn = vmsa_ttbr_write, .resetfn = arm_cp_reset_ignore },
1670 1671 1672
    REGINFO_SENTINEL
};

1673
static uint64_t aa64_fpcr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1674
{
1675
    return vfp_get_fpcr(env);
1676 1677
}

1678 1679
static void aa64_fpcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
                            uint64_t value)
1680 1681 1682 1683
{
    vfp_set_fpcr(env, value);
}

1684
static uint64_t aa64_fpsr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1685
{
1686
    return vfp_get_fpsr(env);
1687 1688
}

1689 1690
static void aa64_fpsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
                            uint64_t value)
1691 1692 1693 1694
{
    vfp_set_fpsr(env, value);
}

1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708
static CPAccessResult aa64_daif_access(CPUARMState *env, const ARMCPRegInfo *ri)
{
    if (arm_current_pl(env) == 0 && !(env->cp15.c1_sys & SCTLR_UMA)) {
        return CP_ACCESS_TRAP;
    }
    return CP_ACCESS_OK;
}

static void aa64_daif_write(CPUARMState *env, const ARMCPRegInfo *ri,
                            uint64_t value)
{
    env->daif = value & PSTATE_DAIF;
}

1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720
static CPAccessResult aa64_cacheop_access(CPUARMState *env,
                                          const ARMCPRegInfo *ri)
{
    /* Cache invalidate/clean: NOP, but EL0 must UNDEF unless
     * SCTLR_EL1.UCI is set.
     */
    if (arm_current_pl(env) == 0 && !(env->cp15.c1_sys & SCTLR_UCI)) {
        return CP_ACCESS_TRAP;
    }
    return CP_ACCESS_OK;
}

1721 1722 1723 1724
static void tlbi_aa64_va_write(CPUARMState *env, const ARMCPRegInfo *ri,
                               uint64_t value)
{
    /* Invalidate by VA (AArch64 version) */
1725
    ARMCPU *cpu = arm_env_get_cpu(env);
1726
    uint64_t pageaddr = value << 12;
1727
    tlb_flush_page(CPU(cpu), pageaddr);
1728 1729 1730 1731 1732 1733
}

static void tlbi_aa64_vaa_write(CPUARMState *env, const ARMCPRegInfo *ri,
                                uint64_t value)
{
    /* Invalidate by VA, all ASIDs (AArch64 version) */
1734
    ARMCPU *cpu = arm_env_get_cpu(env);
1735
    uint64_t pageaddr = value << 12;
1736
    tlb_flush_page(CPU(cpu), pageaddr);
1737 1738 1739 1740 1741 1742
}

static void tlbi_aa64_asid_write(CPUARMState *env, const ARMCPRegInfo *ri,
                                 uint64_t value)
{
    /* Invalidate by ASID (AArch64 version) */
1743
    ARMCPU *cpu = arm_env_get_cpu(env);
1744
    int asid = extract64(value, 48, 16);
1745
    tlb_flush(CPU(cpu), asid == 0);
1746 1747
}

1748 1749 1750 1751 1752 1753 1754
static const ARMCPRegInfo v8_cp_reginfo[] = {
    /* Minimal set of EL0-visible registers. This will need to be expanded
     * significantly for system emulation of AArch64 CPUs.
     */
    { .name = "NZCV", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 2,
      .access = PL0_RW, .type = ARM_CP_NZCV },
1755 1756 1757 1758 1759 1760
    { .name = "DAIF", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 2,
      .type = ARM_CP_NO_MIGRATE,
      .access = PL0_RW, .accessfn = aa64_daif_access,
      .fieldoffset = offsetof(CPUARMState, daif),
      .writefn = aa64_daif_write, .resetfn = arm_cp_reset_ignore },
1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773
    { .name = "FPCR", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 4,
      .access = PL0_RW, .readfn = aa64_fpcr_read, .writefn = aa64_fpcr_write },
    { .name = "FPSR", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 4,
      .access = PL0_RW, .readfn = aa64_fpsr_read, .writefn = aa64_fpsr_write },
    /* Prohibit use of DC ZVA. OPTME: implement DC ZVA and allow its use.
     * For system mode the DZP bit here will need to be computed, not constant.
     */
    { .name = "DCZID_EL0", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 3, .opc2 = 7, .crn = 0, .crm = 0,
      .access = PL0_R, .type = ARM_CP_CONST,
      .resetvalue = 0x10 },
1774 1775 1776
    { .name = "CURRENTEL", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 0, .opc2 = 2, .crn = 4, .crm = 2,
      .access = PL1_R, .type = ARM_CP_CURRENTEL },
1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811
    /* Cache ops: all NOPs since we don't emulate caches */
    { .name = "IC_IALLUIS", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
      .access = PL1_W, .type = ARM_CP_NOP },
    { .name = "IC_IALLU", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
      .access = PL1_W, .type = ARM_CP_NOP },
    { .name = "IC_IVAU", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 5, .opc2 = 1,
      .access = PL0_W, .type = ARM_CP_NOP,
      .accessfn = aa64_cacheop_access },
    { .name = "DC_IVAC", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
      .access = PL1_W, .type = ARM_CP_NOP },
    { .name = "DC_ISW", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
      .access = PL1_W, .type = ARM_CP_NOP },
    { .name = "DC_CVAC", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 1,
      .access = PL0_W, .type = ARM_CP_NOP,
      .accessfn = aa64_cacheop_access },
    { .name = "DC_CSW", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
      .access = PL1_W, .type = ARM_CP_NOP },
    { .name = "DC_CVAU", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 11, .opc2 = 1,
      .access = PL0_W, .type = ARM_CP_NOP,
      .accessfn = aa64_cacheop_access },
    { .name = "DC_CIVAC", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 1,
      .access = PL0_W, .type = ARM_CP_NOP,
      .accessfn = aa64_cacheop_access },
    { .name = "DC_CISW", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
      .access = PL1_W, .type = ARM_CP_NOP },
1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860
    /* TLBI operations */
    { .name = "TLBI_VMALLE1IS", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc2 = 0, .crn = 8, .crm = 3, .opc2 = 0,
      .access = PL1_W, .type = ARM_CP_NO_MIGRATE,
      .writefn = tlbiall_write },
    { .name = "TLBI_VAE1IS", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc2 = 0, .crn = 8, .crm = 3, .opc2 = 1,
      .access = PL1_W, .type = ARM_CP_NO_MIGRATE,
      .writefn = tlbi_aa64_va_write },
    { .name = "TLBI_ASIDE1IS", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc2 = 0, .crn = 8, .crm = 3, .opc2 = 2,
      .access = PL1_W, .type = ARM_CP_NO_MIGRATE,
      .writefn = tlbi_aa64_asid_write },
    { .name = "TLBI_VAAE1IS", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc2 = 0, .crn = 8, .crm = 3, .opc2 = 3,
      .access = PL1_W, .type = ARM_CP_NO_MIGRATE,
      .writefn = tlbi_aa64_vaa_write },
    { .name = "TLBI_VALE1IS", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc2 = 0, .crn = 8, .crm = 3, .opc2 = 5,
      .access = PL1_W, .type = ARM_CP_NO_MIGRATE,
      .writefn = tlbi_aa64_va_write },
    { .name = "TLBI_VAALE1IS", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc2 = 0, .crn = 8, .crm = 3, .opc2 = 7,
      .access = PL1_W, .type = ARM_CP_NO_MIGRATE,
      .writefn = tlbi_aa64_vaa_write },
    { .name = "TLBI_VMALLE1", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc2 = 0, .crn = 8, .crm = 7, .opc2 = 0,
      .access = PL1_W, .type = ARM_CP_NO_MIGRATE,
      .writefn = tlbiall_write },
    { .name = "TLBI_VAE1", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc2 = 0, .crn = 8, .crm = 7, .opc2 = 1,
      .access = PL1_W, .type = ARM_CP_NO_MIGRATE,
      .writefn = tlbi_aa64_va_write },
    { .name = "TLBI_ASIDE1", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc2 = 0, .crn = 8, .crm = 7, .opc2 = 2,
      .access = PL1_W, .type = ARM_CP_NO_MIGRATE,
      .writefn = tlbi_aa64_asid_write },
    { .name = "TLBI_VAAE1", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc2 = 0, .crn = 8, .crm = 7, .opc2 = 3,
      .access = PL1_W, .type = ARM_CP_NO_MIGRATE,
      .writefn = tlbi_aa64_vaa_write },
    { .name = "TLBI_VALE1", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc2 = 0, .crn = 8, .crm = 7, .opc2 = 5,
      .access = PL1_W, .type = ARM_CP_NO_MIGRATE,
      .writefn = tlbi_aa64_va_write },
    { .name = "TLBI_VAALE1", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc2 = 0, .crn = 8, .crm = 7, .opc2 = 7,
      .access = PL1_W, .type = ARM_CP_NO_MIGRATE,
      .writefn = tlbi_aa64_vaa_write },
1861 1862 1863 1864 1865 1866
    /* Dummy implementation of monitor debug system control register:
     * we don't support debug.
     */
    { .name = "MDSCR_EL1", .state = ARM_CP_STATE_AA64,
      .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2,
      .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
1867 1868 1869 1870
    /* We define a dummy WI OSLAR_EL1, because Linux writes to it. */
    { .name = "OSLAR_EL1", .state = ARM_CP_STATE_AA64,
      .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 4,
      .access = PL1_W, .type = ARM_CP_NOP },
1871 1872 1873
    REGINFO_SENTINEL
};

1874 1875
static void sctlr_write(CPUARMState *env, const ARMCPRegInfo *ri,
                        uint64_t value)
1876
{
1877 1878
    ARMCPU *cpu = arm_env_get_cpu(env);

1879 1880 1881
    env->cp15.c1_sys = value;
    /* ??? Lots of these bits are not implemented.  */
    /* This may enable/disable the MMU, so do a TLB flush.  */
1882
    tlb_flush(CPU(cpu), 1);
1883 1884
}

1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895
static CPAccessResult ctr_el0_access(CPUARMState *env, const ARMCPRegInfo *ri)
{
    /* Only accessible in EL0 if SCTLR.UCT is set (and only in AArch64,
     * but the AArch32 CTR has its own reginfo struct)
     */
    if (arm_current_pl(env) == 0 && !(env->cp15.c1_sys & SCTLR_UCT)) {
        return CP_ACCESS_TRAP;
    }
    return CP_ACCESS_OK;
}

1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926
static void define_aarch64_debug_regs(ARMCPU *cpu)
{
    /* Define breakpoint and watchpoint registers. These do nothing
     * but read as written, for now.
     */
    int i;

    for (i = 0; i < 16; i++) {
        ARMCPRegInfo dbgregs[] = {
            { .name = "DBGBVR", .state = ARM_CP_STATE_AA64,
              .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 4,
              .access = PL1_RW,
              .fieldoffset = offsetof(CPUARMState, cp15.dbgbvr[i]) },
            { .name = "DBGBCR", .state = ARM_CP_STATE_AA64,
              .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 5,
              .access = PL1_RW,
              .fieldoffset = offsetof(CPUARMState, cp15.dbgbcr[i]) },
            { .name = "DBGWVR", .state = ARM_CP_STATE_AA64,
              .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 6,
              .access = PL1_RW,
              .fieldoffset = offsetof(CPUARMState, cp15.dbgwvr[i]) },
            { .name = "DBGWCR", .state = ARM_CP_STATE_AA64,
              .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 7,
              .access = PL1_RW,
              .fieldoffset = offsetof(CPUARMState, cp15.dbgwcr[i]) },
               REGINFO_SENTINEL
        };
        define_arm_cp_regs(cpu, dbgregs);
    }
}

1927 1928 1929 1930 1931 1932 1933 1934 1935
void register_cp_regs_for_features(ARMCPU *cpu)
{
    /* Register all the coprocessor registers based on feature bits */
    CPUARMState *env = &cpu->env;
    if (arm_feature(env, ARM_FEATURE_M)) {
        /* M profile has no coprocessor registers */
        return;
    }

1936
    define_arm_cp_regs(cpu, cp_reginfo);
1937
    if (arm_feature(env, ARM_FEATURE_V6)) {
1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991
        /* The ID registers all have impdef reset values */
        ARMCPRegInfo v6_idregs[] = {
            { .name = "ID_PFR0", .cp = 15, .crn = 0, .crm = 1,
              .opc1 = 0, .opc2 = 0, .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = cpu->id_pfr0 },
            { .name = "ID_PFR1", .cp = 15, .crn = 0, .crm = 1,
              .opc1 = 0, .opc2 = 1, .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = cpu->id_pfr1 },
            { .name = "ID_DFR0", .cp = 15, .crn = 0, .crm = 1,
              .opc1 = 0, .opc2 = 2, .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = cpu->id_dfr0 },
            { .name = "ID_AFR0", .cp = 15, .crn = 0, .crm = 1,
              .opc1 = 0, .opc2 = 3, .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = cpu->id_afr0 },
            { .name = "ID_MMFR0", .cp = 15, .crn = 0, .crm = 1,
              .opc1 = 0, .opc2 = 4, .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = cpu->id_mmfr0 },
            { .name = "ID_MMFR1", .cp = 15, .crn = 0, .crm = 1,
              .opc1 = 0, .opc2 = 5, .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = cpu->id_mmfr1 },
            { .name = "ID_MMFR2", .cp = 15, .crn = 0, .crm = 1,
              .opc1 = 0, .opc2 = 6, .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = cpu->id_mmfr2 },
            { .name = "ID_MMFR3", .cp = 15, .crn = 0, .crm = 1,
              .opc1 = 0, .opc2 = 7, .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = cpu->id_mmfr3 },
            { .name = "ID_ISAR0", .cp = 15, .crn = 0, .crm = 2,
              .opc1 = 0, .opc2 = 0, .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = cpu->id_isar0 },
            { .name = "ID_ISAR1", .cp = 15, .crn = 0, .crm = 2,
              .opc1 = 0, .opc2 = 1, .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = cpu->id_isar1 },
            { .name = "ID_ISAR2", .cp = 15, .crn = 0, .crm = 2,
              .opc1 = 0, .opc2 = 2, .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = cpu->id_isar2 },
            { .name = "ID_ISAR3", .cp = 15, .crn = 0, .crm = 2,
              .opc1 = 0, .opc2 = 3, .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = cpu->id_isar3 },
            { .name = "ID_ISAR4", .cp = 15, .crn = 0, .crm = 2,
              .opc1 = 0, .opc2 = 4, .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = cpu->id_isar4 },
            { .name = "ID_ISAR5", .cp = 15, .crn = 0, .crm = 2,
              .opc1 = 0, .opc2 = 5, .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = cpu->id_isar5 },
            /* 6..7 are as yet unallocated and must RAZ */
            { .name = "ID_ISAR6", .cp = 15, .crn = 0, .crm = 2,
              .opc1 = 0, .opc2 = 6, .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = 0 },
            { .name = "ID_ISAR7", .cp = 15, .crn = 0, .crm = 2,
              .opc1 = 0, .opc2 = 7, .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = 0 },
            REGINFO_SENTINEL
        };
        define_arm_cp_regs(cpu, v6_idregs);
1992 1993 1994 1995
        define_arm_cp_regs(cpu, v6_cp_reginfo);
    } else {
        define_arm_cp_regs(cpu, not_v6_cp_reginfo);
    }
1996 1997 1998
    if (arm_feature(env, ARM_FEATURE_V6K)) {
        define_arm_cp_regs(cpu, v6k_cp_reginfo);
    }
1999
    if (arm_feature(env, ARM_FEATURE_V7)) {
2000
        /* v7 performance monitor control register: same implementor
2001 2002
         * field as main ID register, and we implement only the cycle
         * count register.
2003
         */
2004
#ifndef CONFIG_USER_ONLY
2005 2006 2007
        ARMCPRegInfo pmcr = {
            .name = "PMCR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 0,
            .access = PL0_RW, .resetvalue = cpu->midr & 0xff000000,
2008
            .type = ARM_CP_IO,
2009
            .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcr),
2010 2011
            .accessfn = pmreg_access, .writefn = pmcr_write,
            .raw_writefn = raw_write,
2012
        };
2013 2014
        define_one_arm_cp_reg(cpu, &pmcr);
#endif
2015
        ARMCPRegInfo clidr = {
2016 2017
            .name = "CLIDR", .state = ARM_CP_STATE_BOTH,
            .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 1,
2018 2019 2020
            .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->clidr
        };
        define_one_arm_cp_reg(cpu, &clidr);
2021
        define_arm_cp_regs(cpu, v7_cp_reginfo);
2022 2023
    } else {
        define_arm_cp_regs(cpu, not_v7_cp_reginfo);
2024
    }
2025
    if (arm_feature(env, ARM_FEATURE_V8)) {
2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070
        /* AArch64 ID registers, which all have impdef reset values */
        ARMCPRegInfo v8_idregs[] = {
            { .name = "ID_AA64PFR0_EL1", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 0,
              .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = cpu->id_aa64pfr0 },
            { .name = "ID_AA64PFR1_EL1", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 1,
              .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = cpu->id_aa64pfr1},
            { .name = "ID_AA64DFR0_EL1", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 0,
              .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = cpu->id_aa64dfr0 },
            { .name = "ID_AA64DFR1_EL1", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 1,
              .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = cpu->id_aa64dfr1 },
            { .name = "ID_AA64AFR0_EL1", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 4,
              .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = cpu->id_aa64afr0 },
            { .name = "ID_AA64AFR1_EL1", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 5,
              .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = cpu->id_aa64afr1 },
            { .name = "ID_AA64ISAR0_EL1", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 0,
              .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = cpu->id_aa64isar0 },
            { .name = "ID_AA64ISAR1_EL1", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 1,
              .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = cpu->id_aa64isar1 },
            { .name = "ID_AA64MMFR0_EL1", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0,
              .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = cpu->id_aa64mmfr0 },
            { .name = "ID_AA64MMFR1_EL1", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 1,
              .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = cpu->id_aa64mmfr1 },
            REGINFO_SENTINEL
        };
        define_arm_cp_regs(cpu, v8_idregs);
2071
        define_arm_cp_regs(cpu, v8_cp_reginfo);
2072
        define_aarch64_debug_regs(cpu);
2073
    }
2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084
    if (arm_feature(env, ARM_FEATURE_MPU)) {
        /* These are the MPU registers prior to PMSAv6. Any new
         * PMSA core later than the ARM946 will require that we
         * implement the PMSAv6 or PMSAv7 registers, which are
         * completely different.
         */
        assert(!arm_feature(env, ARM_FEATURE_V6));
        define_arm_cp_regs(cpu, pmsav5_cp_reginfo);
    } else {
        define_arm_cp_regs(cpu, vmsa_cp_reginfo);
    }
2085 2086 2087
    if (arm_feature(env, ARM_FEATURE_THUMB2EE)) {
        define_arm_cp_regs(cpu, t2ee_cp_reginfo);
    }
2088 2089 2090
    if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
        define_arm_cp_regs(cpu, generic_timer_cp_reginfo);
    }
2091 2092 2093
    if (arm_feature(env, ARM_FEATURE_VAPA)) {
        define_arm_cp_regs(cpu, vapa_cp_reginfo);
    }
2094 2095 2096 2097 2098 2099 2100 2101 2102
    if (arm_feature(env, ARM_FEATURE_CACHE_TEST_CLEAN)) {
        define_arm_cp_regs(cpu, cache_test_clean_cp_reginfo);
    }
    if (arm_feature(env, ARM_FEATURE_CACHE_DIRTY_REG)) {
        define_arm_cp_regs(cpu, cache_dirty_status_cp_reginfo);
    }
    if (arm_feature(env, ARM_FEATURE_CACHE_BLOCK_OPS)) {
        define_arm_cp_regs(cpu, cache_block_ops_cp_reginfo);
    }
2103 2104 2105
    if (arm_feature(env, ARM_FEATURE_OMAPCP)) {
        define_arm_cp_regs(cpu, omap_cp_reginfo);
    }
2106 2107 2108
    if (arm_feature(env, ARM_FEATURE_STRONGARM)) {
        define_arm_cp_regs(cpu, strongarm_cp_reginfo);
    }
2109 2110 2111 2112 2113 2114
    if (arm_feature(env, ARM_FEATURE_XSCALE)) {
        define_arm_cp_regs(cpu, xscale_cp_reginfo);
    }
    if (arm_feature(env, ARM_FEATURE_DUMMY_C15_REGS)) {
        define_arm_cp_regs(cpu, dummy_c15_cp_reginfo);
    }
2115 2116 2117
    if (arm_feature(env, ARM_FEATURE_LPAE)) {
        define_arm_cp_regs(cpu, lpae_cp_reginfo);
    }
2118 2119 2120 2121 2122 2123 2124 2125 2126
    /* Slightly awkwardly, the OMAP and StrongARM cores need all of
     * cp15 crn=0 to be writes-ignored, whereas for other cores they should
     * be read-only (ie write causes UNDEF exception).
     */
    {
        ARMCPRegInfo id_cp_reginfo[] = {
            /* Note that the MIDR isn't a simple constant register because
             * of the TI925 behaviour where writes to another register can
             * cause the MIDR value to change.
2127 2128 2129 2130
             *
             * Unimplemented registers in the c15 0 0 0 space default to
             * MIDR. Define MIDR first as this entire space, then CTR, TCMTR
             * and friends override accordingly.
2131 2132
             */
            { .name = "MIDR",
2133
              .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = CP_ANY,
2134
              .access = PL1_R, .resetvalue = cpu->midr,
2135
              .writefn = arm_cp_write_ignore, .raw_writefn = raw_write,
2136 2137
              .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
              .type = ARM_CP_OVERRIDE },
2138 2139 2140
            { .name = "MIDR_EL1", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 0, .opc2 = 0, .crn = 0, .crm = 0,
              .access = PL1_R, .resetvalue = cpu->midr, .type = ARM_CP_CONST },
2141 2142 2143
            { .name = "CTR",
              .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 1,
              .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
2144 2145 2146 2147
            { .name = "CTR_EL0", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 0, .crm = 0,
              .access = PL0_R, .accessfn = ctr_el0_access,
              .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180
            { .name = "TCMTR",
              .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 2,
              .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
            { .name = "TLBTR",
              .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 3,
              .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
            /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */
            { .name = "DUMMY",
              .cp = 15, .crn = 0, .crm = 3, .opc1 = 0, .opc2 = CP_ANY,
              .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
            { .name = "DUMMY",
              .cp = 15, .crn = 0, .crm = 4, .opc1 = 0, .opc2 = CP_ANY,
              .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
            { .name = "DUMMY",
              .cp = 15, .crn = 0, .crm = 5, .opc1 = 0, .opc2 = CP_ANY,
              .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
            { .name = "DUMMY",
              .cp = 15, .crn = 0, .crm = 6, .opc1 = 0, .opc2 = CP_ANY,
              .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
            { .name = "DUMMY",
              .cp = 15, .crn = 0, .crm = 7, .opc1 = 0, .opc2 = CP_ANY,
              .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
            REGINFO_SENTINEL
        };
        ARMCPRegInfo crn0_wi_reginfo = {
            .name = "CRN0_WI", .cp = 15, .crn = 0, .crm = CP_ANY,
            .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_W,
            .type = ARM_CP_NOP | ARM_CP_OVERRIDE
        };
        if (arm_feature(env, ARM_FEATURE_OMAPCP) ||
            arm_feature(env, ARM_FEATURE_STRONGARM)) {
            ARMCPRegInfo *r;
            /* Register the blanket "writes ignored" value first to cover the
2181 2182 2183
             * whole space. Then update the specific ID registers to allow write
             * access, so that they ignore writes rather than causing them to
             * UNDEF.
2184 2185 2186 2187 2188 2189
             */
            define_one_arm_cp_reg(cpu, &crn0_wi_reginfo);
            for (r = id_cp_reginfo; r->type != ARM_CP_SENTINEL; r++) {
                r->access = PL1_RW;
            }
        }
2190
        define_arm_cp_regs(cpu, id_cp_reginfo);
2191 2192
    }

2193 2194 2195 2196
    if (arm_feature(env, ARM_FEATURE_MPIDR)) {
        define_arm_cp_regs(cpu, mpidr_cp_reginfo);
    }

2197 2198 2199 2200 2201 2202 2203 2204 2205
    if (arm_feature(env, ARM_FEATURE_AUXCR)) {
        ARMCPRegInfo auxcr = {
            .name = "AUXCR", .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1,
            .access = PL1_RW, .type = ARM_CP_CONST,
            .resetvalue = cpu->reset_auxcr
        };
        define_one_arm_cp_reg(cpu, &auxcr);
    }

2206 2207 2208 2209 2210 2211 2212 2213 2214
    if (arm_feature(env, ARM_FEATURE_CBAR)) {
        ARMCPRegInfo cbar = {
            .name = "CBAR", .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0,
            .access = PL1_R|PL3_W, .resetvalue = cpu->reset_cbar,
            .fieldoffset = offsetof(CPUARMState, cp15.c15_config_base_address)
        };
        define_one_arm_cp_reg(cpu, &cbar);
    }

2215 2216 2217
    /* Generic registers whose values depend on the implementation */
    {
        ARMCPRegInfo sctlr = {
2218 2219
            .name = "SCTLR", .state = ARM_CP_STATE_BOTH,
            .opc0 = 3, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 0,
2220
            .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c1_sys),
2221 2222
            .writefn = sctlr_write, .resetvalue = cpu->reset_sctlr,
            .raw_writefn = raw_write,
2223 2224 2225 2226 2227 2228 2229 2230 2231 2232
        };
        if (arm_feature(env, ARM_FEATURE_XSCALE)) {
            /* Normally we would always end the TB on an SCTLR write, but Linux
             * arch/arm/mach-pxa/sleep.S expects two instructions following
             * an MMU enable to execute from cache.  Imitate this behaviour.
             */
            sctlr.type |= ARM_CP_SUPPRESS_TB_END;
        }
        define_one_arm_cp_reg(cpu, &sctlr);
    }
2233 2234
}

2235
ARMCPU *cpu_arm_init(const char *cpu_model)
P
pbrook 已提交
2236
{
2237
    return ARM_CPU(cpu_generic_init(TYPE_ARM_CPU, cpu_model));
2238 2239 2240 2241
}

void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu)
{
2242
    CPUState *cs = CPU(cpu);
2243 2244
    CPUARMState *env = &cpu->env;

2245 2246 2247 2248 2249
    if (arm_feature(env, ARM_FEATURE_AARCH64)) {
        gdb_register_coprocessor(cs, aarch64_fpu_gdb_get_reg,
                                 aarch64_fpu_gdb_set_reg,
                                 34, "aarch64-fpu.xml", 0);
    } else if (arm_feature(env, ARM_FEATURE_NEON)) {
2250
        gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
P
pbrook 已提交
2251 2252
                                 51, "arm-neon.xml", 0);
    } else if (arm_feature(env, ARM_FEATURE_VFP3)) {
2253
        gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
P
pbrook 已提交
2254 2255
                                 35, "arm-vfp3.xml", 0);
    } else if (arm_feature(env, ARM_FEATURE_VFP)) {
2256
        gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
P
pbrook 已提交
2257 2258
                                 19, "arm-vfp.xml", 0);
    }
P
pbrook 已提交
2259 2260
}

2261 2262
/* Sort alphabetically by type name, except for "any". */
static gint arm_cpu_list_compare(gconstpointer a, gconstpointer b)
P
pbrook 已提交
2263
{
2264 2265 2266
    ObjectClass *class_a = (ObjectClass *)a;
    ObjectClass *class_b = (ObjectClass *)b;
    const char *name_a, *name_b;
P
pbrook 已提交
2267

2268 2269
    name_a = object_class_get_name(class_a);
    name_b = object_class_get_name(class_b);
A
Andreas Färber 已提交
2270
    if (strcmp(name_a, "any-" TYPE_ARM_CPU) == 0) {
2271
        return 1;
A
Andreas Färber 已提交
2272
    } else if (strcmp(name_b, "any-" TYPE_ARM_CPU) == 0) {
2273 2274 2275
        return -1;
    } else {
        return strcmp(name_a, name_b);
P
pbrook 已提交
2276 2277 2278
    }
}

2279
static void arm_cpu_list_entry(gpointer data, gpointer user_data)
P
pbrook 已提交
2280
{
2281
    ObjectClass *oc = data;
2282
    CPUListState *s = user_data;
A
Andreas Färber 已提交
2283 2284
    const char *typename;
    char *name;
P
pbrook 已提交
2285

A
Andreas Färber 已提交
2286 2287
    typename = object_class_get_name(oc);
    name = g_strndup(typename, strlen(typename) - strlen("-" TYPE_ARM_CPU));
2288
    (*s->cpu_fprintf)(s->file, "  %s\n",
A
Andreas Färber 已提交
2289 2290
                      name);
    g_free(name);
2291 2292 2293 2294
}

void arm_cpu_list(FILE *f, fprintf_function cpu_fprintf)
{
2295
    CPUListState s = {
2296 2297 2298 2299 2300 2301 2302 2303 2304 2305
        .file = f,
        .cpu_fprintf = cpu_fprintf,
    };
    GSList *list;

    list = object_class_get_list(TYPE_ARM_CPU, false);
    list = g_slist_sort(list, arm_cpu_list_compare);
    (*cpu_fprintf)(f, "Available CPUs:\n");
    g_slist_foreach(list, arm_cpu_list_entry, &s);
    g_slist_free(list);
2306 2307 2308 2309 2310 2311
#ifdef CONFIG_KVM
    /* The 'host' CPU type is dynamically registered only if KVM is
     * enabled, so we have to special-case it here:
     */
    (*cpu_fprintf)(f, "  host (only available in KVM mode)\n");
#endif
P
pbrook 已提交
2312 2313
}

2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344
static void arm_cpu_add_definition(gpointer data, gpointer user_data)
{
    ObjectClass *oc = data;
    CpuDefinitionInfoList **cpu_list = user_data;
    CpuDefinitionInfoList *entry;
    CpuDefinitionInfo *info;
    const char *typename;

    typename = object_class_get_name(oc);
    info = g_malloc0(sizeof(*info));
    info->name = g_strndup(typename,
                           strlen(typename) - strlen("-" TYPE_ARM_CPU));

    entry = g_malloc0(sizeof(*entry));
    entry->value = info;
    entry->next = *cpu_list;
    *cpu_list = entry;
}

CpuDefinitionInfoList *arch_query_cpu_definitions(Error **errp)
{
    CpuDefinitionInfoList *cpu_list = NULL;
    GSList *list;

    list = object_class_get_list(TYPE_ARM_CPU, false);
    g_slist_foreach(list, arm_cpu_add_definition, &cpu_list);
    g_slist_free(list);

    return cpu_list;
}

2345
static void add_cpreg_to_hashtable(ARMCPU *cpu, const ARMCPRegInfo *r,
2346 2347
                                   void *opaque, int state,
                                   int crm, int opc1, int opc2)
2348 2349 2350 2351 2352 2353 2354
{
    /* Private utility function for define_one_arm_cp_reg_with_opaque():
     * add a single reginfo struct to the hash table.
     */
    uint32_t *key = g_new(uint32_t, 1);
    ARMCPRegInfo *r2 = g_memdup(r, sizeof(ARMCPRegInfo));
    int is64 = (r->type & ARM_CP_64BIT) ? 1 : 0;
2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382
    if (r->state == ARM_CP_STATE_BOTH && state == ARM_CP_STATE_AA32) {
        /* The AArch32 view of a shared register sees the lower 32 bits
         * of a 64 bit backing field. It is not migratable as the AArch64
         * view handles that. AArch64 also handles reset.
         * We assume it is a cp15 register.
         */
        r2->cp = 15;
        r2->type |= ARM_CP_NO_MIGRATE;
        r2->resetfn = arm_cp_reset_ignore;
#ifdef HOST_WORDS_BIGENDIAN
        if (r2->fieldoffset) {
            r2->fieldoffset += sizeof(uint32_t);
        }
#endif
    }
    if (state == ARM_CP_STATE_AA64) {
        /* To allow abbreviation of ARMCPRegInfo
         * definitions, we treat cp == 0 as equivalent to
         * the value for "standard guest-visible sysreg".
         */
        if (r->cp == 0) {
            r2->cp = CP_REG_ARM64_SYSREG_CP;
        }
        *key = ENCODE_AA64_CP_REG(r2->cp, r2->crn, crm,
                                  r2->opc0, opc1, opc2);
    } else {
        *key = ENCODE_CP_REG(r2->cp, is64, r2->crn, crm, opc1, opc2);
    }
2383 2384 2385
    if (opaque) {
        r2->opaque = opaque;
    }
2386 2387 2388 2389
    /* reginfo passed to helpers is correct for the actual access,
     * and is never ARM_CP_STATE_BOTH:
     */
    r2->state = state;
2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427
    /* Make sure reginfo passed to helpers for wildcarded regs
     * has the correct crm/opc1/opc2 for this reg, not CP_ANY:
     */
    r2->crm = crm;
    r2->opc1 = opc1;
    r2->opc2 = opc2;
    /* By convention, for wildcarded registers only the first
     * entry is used for migration; the others are marked as
     * NO_MIGRATE so we don't try to transfer the register
     * multiple times. Special registers (ie NOP/WFI) are
     * never migratable.
     */
    if ((r->type & ARM_CP_SPECIAL) ||
        ((r->crm == CP_ANY) && crm != 0) ||
        ((r->opc1 == CP_ANY) && opc1 != 0) ||
        ((r->opc2 == CP_ANY) && opc2 != 0)) {
        r2->type |= ARM_CP_NO_MIGRATE;
    }

    /* Overriding of an existing definition must be explicitly
     * requested.
     */
    if (!(r->type & ARM_CP_OVERRIDE)) {
        ARMCPRegInfo *oldreg;
        oldreg = g_hash_table_lookup(cpu->cp_regs, key);
        if (oldreg && !(oldreg->type & ARM_CP_OVERRIDE)) {
            fprintf(stderr, "Register redefined: cp=%d %d bit "
                    "crn=%d crm=%d opc1=%d opc2=%d, "
                    "was %s, now %s\n", r2->cp, 32 + 32 * is64,
                    r2->crn, r2->crm, r2->opc1, r2->opc2,
                    oldreg->name, r2->name);
            g_assert_not_reached();
        }
    }
    g_hash_table_insert(cpu->cp_regs, key, r2);
}


2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441
void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
                                       const ARMCPRegInfo *r, void *opaque)
{
    /* Define implementations of coprocessor registers.
     * We store these in a hashtable because typically
     * there are less than 150 registers in a space which
     * is 16*16*16*8*8 = 262144 in size.
     * Wildcarding is supported for the crm, opc1 and opc2 fields.
     * If a register is defined twice then the second definition is
     * used, so this can be used to define some generic registers and
     * then override them with implementation specific variations.
     * At least one of the original and the second definition should
     * include ARM_CP_OVERRIDE in its type bits -- this is just a guard
     * against accidental use.
2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452
     *
     * The state field defines whether the register is to be
     * visible in the AArch32 or AArch64 execution state. If the
     * state is set to ARM_CP_STATE_BOTH then we synthesise a
     * reginfo structure for the AArch32 view, which sees the lower
     * 32 bits of the 64 bit register.
     *
     * Only registers visible in AArch64 may set r->opc0; opc0 cannot
     * be wildcarded. AArch64 registers are always considered to be 64
     * bits; the ARM_CP_64BIT* flag applies only to the AArch32 view of
     * the register, if any.
2453
     */
2454
    int crm, opc1, opc2, state;
2455 2456 2457 2458 2459 2460 2461 2462
    int crmmin = (r->crm == CP_ANY) ? 0 : r->crm;
    int crmmax = (r->crm == CP_ANY) ? 15 : r->crm;
    int opc1min = (r->opc1 == CP_ANY) ? 0 : r->opc1;
    int opc1max = (r->opc1 == CP_ANY) ? 7 : r->opc1;
    int opc2min = (r->opc2 == CP_ANY) ? 0 : r->opc2;
    int opc2max = (r->opc2 == CP_ANY) ? 7 : r->opc2;
    /* 64 bit registers have only CRm and Opc1 fields */
    assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn)));
2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508
    /* op0 only exists in the AArch64 encodings */
    assert((r->state != ARM_CP_STATE_AA32) || (r->opc0 == 0));
    /* AArch64 regs are all 64 bit so ARM_CP_64BIT is meaningless */
    assert((r->state != ARM_CP_STATE_AA64) || !(r->type & ARM_CP_64BIT));
    /* The AArch64 pseudocode CheckSystemAccess() specifies that op1
     * encodes a minimum access level for the register. We roll this
     * runtime check into our general permission check code, so check
     * here that the reginfo's specified permissions are strict enough
     * to encompass the generic architectural permission check.
     */
    if (r->state != ARM_CP_STATE_AA32) {
        int mask = 0;
        switch (r->opc1) {
        case 0: case 1: case 2:
            /* min_EL EL1 */
            mask = PL1_RW;
            break;
        case 3:
            /* min_EL EL0 */
            mask = PL0_RW;
            break;
        case 4:
            /* min_EL EL2 */
            mask = PL2_RW;
            break;
        case 5:
            /* unallocated encoding, so not possible */
            assert(false);
            break;
        case 6:
            /* min_EL EL3 */
            mask = PL3_RW;
            break;
        case 7:
            /* min_EL EL1, secure mode only (we don't check the latter) */
            mask = PL1_RW;
            break;
        default:
            /* broken reginfo with out-of-range opc1 */
            assert(false);
            break;
        }
        /* assert our permissions are not too lax (stricter is fine) */
        assert((r->access & ~mask) == 0);
    }

2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524
    /* Check that the register definition has enough info to handle
     * reads and writes if they are permitted.
     */
    if (!(r->type & (ARM_CP_SPECIAL|ARM_CP_CONST))) {
        if (r->access & PL3_R) {
            assert(r->fieldoffset || r->readfn);
        }
        if (r->access & PL3_W) {
            assert(r->fieldoffset || r->writefn);
        }
    }
    /* Bad type field probably means missing sentinel at end of reg list */
    assert(cptype_valid(r->type));
    for (crm = crmmin; crm <= crmmax; crm++) {
        for (opc1 = opc1min; opc1 <= opc1max; opc1++) {
            for (opc2 = opc2min; opc2 <= opc2max; opc2++) {
2525 2526 2527 2528 2529 2530 2531 2532
                for (state = ARM_CP_STATE_AA32;
                     state <= ARM_CP_STATE_AA64; state++) {
                    if (r->state != state && r->state != ARM_CP_STATE_BOTH) {
                        continue;
                    }
                    add_cpreg_to_hashtable(cpu, r, opaque, state,
                                           crm, opc1, opc2);
                }
2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547
            }
        }
    }
}

void define_arm_cp_regs_with_opaque(ARMCPU *cpu,
                                    const ARMCPRegInfo *regs, void *opaque)
{
    /* Define a whole list of registers */
    const ARMCPRegInfo *r;
    for (r = regs; r->type != ARM_CP_SENTINEL; r++) {
        define_one_arm_cp_reg_with_opaque(cpu, r, opaque);
    }
}

2548
const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp)
2549
{
2550
    return g_hash_table_lookup(cpregs, &encoded_cp);
2551 2552
}

2553 2554
void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
                         uint64_t value)
2555 2556 2557 2558
{
    /* Helper coprocessor write function for write-ignore registers */
}

2559
uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri)
2560 2561 2562 2563 2564
{
    /* Helper coprocessor write function for read-as-zero registers */
    return 0;
}

2565 2566 2567 2568 2569
void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque)
{
    /* Helper coprocessor reset function for do-nothing-on-reset registers */
}

2570
static int bad_mode_switch(CPUARMState *env, int mode)
2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589
{
    /* Return true if it is not valid for us to switch to
     * this CPU mode (ie all the UNPREDICTABLE cases in
     * the ARM ARM CPSRWriteByInstr pseudocode).
     */
    switch (mode) {
    case ARM_CPU_MODE_USR:
    case ARM_CPU_MODE_SYS:
    case ARM_CPU_MODE_SVC:
    case ARM_CPU_MODE_ABT:
    case ARM_CPU_MODE_UND:
    case ARM_CPU_MODE_IRQ:
    case ARM_CPU_MODE_FIQ:
        return 0;
    default:
        return 1;
    }
}

2590 2591 2592
uint32_t cpsr_read(CPUARMState *env)
{
    int ZF;
P
pbrook 已提交
2593 2594
    ZF = (env->ZF == 0);
    return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) |
2595 2596 2597
        (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
        | (env->thumb << 5) | ((env->condexec_bits & 3) << 25)
        | ((env->condexec_bits & 0xfc) << 8)
2598
        | (env->GE << 16) | (env->daif & CPSR_AIF);
2599 2600 2601 2602 2603
}

void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask)
{
    if (mask & CPSR_NZCV) {
P
pbrook 已提交
2604 2605
        env->ZF = (~val) & CPSR_Z;
        env->NF = val;
2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624
        env->CF = (val >> 29) & 1;
        env->VF = (val << 3) & 0x80000000;
    }
    if (mask & CPSR_Q)
        env->QF = ((val & CPSR_Q) != 0);
    if (mask & CPSR_T)
        env->thumb = ((val & CPSR_T) != 0);
    if (mask & CPSR_IT_0_1) {
        env->condexec_bits &= ~3;
        env->condexec_bits |= (val >> 25) & 3;
    }
    if (mask & CPSR_IT_2_7) {
        env->condexec_bits &= 3;
        env->condexec_bits |= (val >> 8) & 0xfc;
    }
    if (mask & CPSR_GE) {
        env->GE = (val >> 16) & 0xf;
    }

2625 2626 2627
    env->daif &= ~(CPSR_AIF & mask);
    env->daif |= val & CPSR_AIF & mask;

2628
    if ((env->uncached_cpsr ^ val) & mask & CPSR_M) {
2629 2630 2631 2632 2633 2634 2635 2636 2637
        if (bad_mode_switch(env, val & CPSR_M)) {
            /* Attempt to switch to an invalid mode: this is UNPREDICTABLE.
             * We choose to ignore the attempt and leave the CPSR M field
             * untouched.
             */
            mask &= ~CPSR_M;
        } else {
            switch_mode(env, val & CPSR_M);
        }
2638 2639 2640 2641 2642
    }
    mask &= ~CACHED_CPSR_BITS;
    env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask);
}

P
pbrook 已提交
2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659
/* Sign/zero extend */
uint32_t HELPER(sxtb16)(uint32_t x)
{
    uint32_t res;
    res = (uint16_t)(int8_t)x;
    res |= (uint32_t)(int8_t)(x >> 16) << 16;
    return res;
}

uint32_t HELPER(uxtb16)(uint32_t x)
{
    uint32_t res;
    res = (uint16_t)(uint8_t)x;
    res |= (uint32_t)(uint8_t)(x >> 16) << 16;
    return res;
}

P
pbrook 已提交
2660 2661
uint32_t HELPER(clz)(uint32_t x)
{
2662
    return clz32(x);
P
pbrook 已提交
2663 2664
}

P
pbrook 已提交
2665 2666 2667 2668
int32_t HELPER(sdiv)(int32_t num, int32_t den)
{
    if (den == 0)
      return 0;
A
Aurelien Jarno 已提交
2669 2670
    if (num == INT_MIN && den == -1)
      return INT_MIN;
P
pbrook 已提交
2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695
    return num / den;
}

uint32_t HELPER(udiv)(uint32_t num, uint32_t den)
{
    if (den == 0)
      return 0;
    return num / den;
}

uint32_t HELPER(rbit)(uint32_t x)
{
    x =  ((x & 0xff000000) >> 24)
       | ((x & 0x00ff0000) >> 8)
       | ((x & 0x0000ff00) << 8)
       | ((x & 0x000000ff) << 24);
    x =  ((x & 0xf0f0f0f0) >> 4)
       | ((x & 0x0f0f0f0f) << 4);
    x =  ((x & 0x88888888) >> 3)
       | ((x & 0x44444444) >> 1)
       | ((x & 0x22222222) << 1)
       | ((x & 0x11111111) << 3);
    return x;
}

2696
#if defined(CONFIG_USER_ONLY)
B
bellard 已提交
2697

2698
void arm_cpu_do_interrupt(CPUState *cs)
B
bellard 已提交
2699
{
2700
    cs->exception_index = -1;
B
bellard 已提交
2701 2702
}

2703 2704
int arm_cpu_handle_mmu_fault(CPUState *cs, vaddr address, int rw,
                             int mmu_idx)
B
bellard 已提交
2705
{
2706 2707 2708
    ARMCPU *cpu = ARM_CPU(cs);
    CPUARMState *env = &cpu->env;

2709
    env->exception.vaddress = address;
B
bellard 已提交
2710
    if (rw == 2) {
2711
        cs->exception_index = EXCP_PREFETCH_ABORT;
B
bellard 已提交
2712
    } else {
2713
        cs->exception_index = EXCP_DATA_ABORT;
B
bellard 已提交
2714 2715 2716 2717
    }
    return 1;
}

P
pbrook 已提交
2718
/* These should probably raise undefined insn exceptions.  */
2719
void HELPER(v7m_msr)(CPUARMState *env, uint32_t reg, uint32_t val)
P
pbrook 已提交
2720
{
2721 2722 2723
    ARMCPU *cpu = arm_env_get_cpu(env);

    cpu_abort(CPU(cpu), "v7m_msr %d\n", reg);
P
pbrook 已提交
2724 2725
}

2726
uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg)
P
pbrook 已提交
2727
{
2728 2729 2730
    ARMCPU *cpu = arm_env_get_cpu(env);

    cpu_abort(CPU(cpu), "v7m_mrs %d\n", reg);
P
pbrook 已提交
2731 2732 2733
    return 0;
}

2734
void switch_mode(CPUARMState *env, int mode)
B
bellard 已提交
2735
{
2736 2737 2738 2739 2740
    ARMCPU *cpu = arm_env_get_cpu(env);

    if (mode != ARM_CPU_MODE_USR) {
        cpu_abort(CPU(cpu), "Tried to switch out of user mode\n");
    }
B
bellard 已提交
2741 2742
}

2743
void HELPER(set_r13_banked)(CPUARMState *env, uint32_t mode, uint32_t val)
P
pbrook 已提交
2744
{
2745 2746 2747
    ARMCPU *cpu = arm_env_get_cpu(env);

    cpu_abort(CPU(cpu), "banked r13 write\n");
P
pbrook 已提交
2748 2749
}

2750
uint32_t HELPER(get_r13_banked)(CPUARMState *env, uint32_t mode)
P
pbrook 已提交
2751
{
2752 2753 2754
    ARMCPU *cpu = arm_env_get_cpu(env);

    cpu_abort(CPU(cpu), "banked r13 read\n");
P
pbrook 已提交
2755 2756 2757
    return 0;
}

B
bellard 已提交
2758 2759 2760
#else

/* Map CPU modes onto saved register banks.  */
2761
int bank_number(int mode)
B
bellard 已提交
2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777
{
    switch (mode) {
    case ARM_CPU_MODE_USR:
    case ARM_CPU_MODE_SYS:
        return 0;
    case ARM_CPU_MODE_SVC:
        return 1;
    case ARM_CPU_MODE_ABT:
        return 2;
    case ARM_CPU_MODE_UND:
        return 3;
    case ARM_CPU_MODE_IRQ:
        return 4;
    case ARM_CPU_MODE_FIQ:
        return 5;
    }
2778
    hw_error("bank number requested for bad CPSR mode value 0x%x\n", mode);
B
bellard 已提交
2779 2780
}

2781
void switch_mode(CPUARMState *env, int mode)
B
bellard 已提交
2782 2783 2784 2785 2786 2787 2788 2789 2790 2791
{
    int old_mode;
    int i;

    old_mode = env->uncached_cpsr & CPSR_M;
    if (mode == old_mode)
        return;

    if (old_mode == ARM_CPU_MODE_FIQ) {
        memcpy (env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t));
P
pbrook 已提交
2792
        memcpy (env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t));
B
bellard 已提交
2793 2794
    } else if (mode == ARM_CPU_MODE_FIQ) {
        memcpy (env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t));
P
pbrook 已提交
2795
        memcpy (env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t));
B
bellard 已提交
2796 2797
    }

2798
    i = bank_number(old_mode);
B
bellard 已提交
2799 2800 2801 2802
    env->banked_r13[i] = env->regs[13];
    env->banked_r14[i] = env->regs[14];
    env->banked_spsr[i] = env->spsr;

2803
    i = bank_number(mode);
B
bellard 已提交
2804 2805 2806 2807 2808
    env->regs[13] = env->banked_r13[i];
    env->regs[14] = env->banked_r14[i];
    env->spsr = env->banked_spsr[i];
}

P
pbrook 已提交
2809 2810
static void v7m_push(CPUARMState *env, uint32_t val)
{
2811 2812
    CPUState *cs = CPU(arm_env_get_cpu(env));

P
pbrook 已提交
2813
    env->regs[13] -= 4;
2814
    stl_phys(cs->as, env->regs[13], val);
P
pbrook 已提交
2815 2816 2817 2818
}

static uint32_t v7m_pop(CPUARMState *env)
{
2819
    CPUState *cs = CPU(arm_env_get_cpu(env));
P
pbrook 已提交
2820
    uint32_t val;
2821

2822
    val = ldl_phys(cs->as, env->regs[13]);
P
pbrook 已提交
2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845
    env->regs[13] += 4;
    return val;
}

/* Switch to V7M main or process stack pointer.  */
static void switch_v7m_sp(CPUARMState *env, int process)
{
    uint32_t tmp;
    if (env->v7m.current_sp != process) {
        tmp = env->v7m.other_sp;
        env->v7m.other_sp = env->regs[13];
        env->regs[13] = tmp;
        env->v7m.current_sp = process;
    }
}

static void do_v7m_exception_exit(CPUARMState *env)
{
    uint32_t type;
    uint32_t xpsr;

    type = env->regs[15];
    if (env->v7m.exception != 0)
P
Paul Brook 已提交
2846
        armv7m_nvic_complete_irq(env->nvic, env->v7m.exception);
P
pbrook 已提交
2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869

    /* Switch to the target stack.  */
    switch_v7m_sp(env, (type & 4) != 0);
    /* Pop registers.  */
    env->regs[0] = v7m_pop(env);
    env->regs[1] = v7m_pop(env);
    env->regs[2] = v7m_pop(env);
    env->regs[3] = v7m_pop(env);
    env->regs[12] = v7m_pop(env);
    env->regs[14] = v7m_pop(env);
    env->regs[15] = v7m_pop(env);
    xpsr = v7m_pop(env);
    xpsr_write(env, xpsr, 0xfffffdff);
    /* Undo stack alignment.  */
    if (xpsr & 0x200)
        env->regs[13] |= 4;
    /* ??? The exception return type specifies Thread/Handler mode.  However
       this is also implied by the xPSR value. Not sure what to do
       if there is a mismatch.  */
    /* ??? Likewise for mismatches between the CONTROL register and the stack
       pointer.  */
}

2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900
/* Exception names for debug logging; note that not all of these
 * precisely correspond to architectural exceptions.
 */
static const char * const excnames[] = {
    [EXCP_UDEF] = "Undefined Instruction",
    [EXCP_SWI] = "SVC",
    [EXCP_PREFETCH_ABORT] = "Prefetch Abort",
    [EXCP_DATA_ABORT] = "Data Abort",
    [EXCP_IRQ] = "IRQ",
    [EXCP_FIQ] = "FIQ",
    [EXCP_BKPT] = "Breakpoint",
    [EXCP_EXCEPTION_EXIT] = "QEMU v7M exception exit",
    [EXCP_KERNEL_TRAP] = "QEMU intercept of kernel commpage",
    [EXCP_STREX] = "QEMU intercept of STREX",
};

static inline void arm_log_exception(int idx)
{
    if (qemu_loglevel_mask(CPU_LOG_INT)) {
        const char *exc = NULL;

        if (idx >= 0 && idx < ARRAY_SIZE(excnames)) {
            exc = excnames[idx];
        }
        if (!exc) {
            exc = "unknown";
        }
        qemu_log_mask(CPU_LOG_INT, "Taking exception %d [%s]\n", idx, exc);
    }
}

2901
void arm_v7m_cpu_do_interrupt(CPUState *cs)
P
pbrook 已提交
2902
{
2903 2904
    ARMCPU *cpu = ARM_CPU(cs);
    CPUARMState *env = &cpu->env;
P
pbrook 已提交
2905 2906 2907 2908
    uint32_t xpsr = xpsr_read(env);
    uint32_t lr;
    uint32_t addr;

2909
    arm_log_exception(cs->exception_index);
2910

P
pbrook 已提交
2911 2912 2913 2914 2915 2916 2917 2918 2919 2920
    lr = 0xfffffff1;
    if (env->v7m.current_sp)
        lr |= 4;
    if (env->v7m.exception == 0)
        lr |= 8;

    /* For exceptions we just mark as pending on the NVIC, and let that
       handle it.  */
    /* TODO: Need to escalate if the current priority is higher than the
       one we're raising.  */
2921
    switch (cs->exception_index) {
P
pbrook 已提交
2922
    case EXCP_UDEF:
P
Paul Brook 已提交
2923
        armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE);
P
pbrook 已提交
2924 2925
        return;
    case EXCP_SWI:
2926
        /* The PC already points to the next instruction.  */
P
Paul Brook 已提交
2927
        armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SVC);
P
pbrook 已提交
2928 2929 2930
        return;
    case EXCP_PREFETCH_ABORT:
    case EXCP_DATA_ABORT:
2931 2932 2933
        /* TODO: if we implemented the MPU registers, this is where we
         * should set the MMFAR, etc from exception.fsr and exception.vaddress.
         */
P
Paul Brook 已提交
2934
        armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_MEM);
P
pbrook 已提交
2935 2936
        return;
    case EXCP_BKPT:
P
pbrook 已提交
2937 2938
        if (semihosting_enabled) {
            int nr;
2939
            nr = arm_lduw_code(env, env->regs[15], env->bswap_code) & 0xff;
P
pbrook 已提交
2940 2941 2942
            if (nr == 0xab) {
                env->regs[15] += 2;
                env->regs[0] = do_arm_semihosting(env);
2943
                qemu_log_mask(CPU_LOG_INT, "...handled as semihosting call\n");
P
pbrook 已提交
2944 2945 2946
                return;
            }
        }
P
Paul Brook 已提交
2947
        armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_DEBUG);
P
pbrook 已提交
2948 2949
        return;
    case EXCP_IRQ:
P
Paul Brook 已提交
2950
        env->v7m.exception = armv7m_nvic_acknowledge_irq(env->nvic);
P
pbrook 已提交
2951 2952 2953 2954 2955
        break;
    case EXCP_EXCEPTION_EXIT:
        do_v7m_exception_exit(env);
        return;
    default:
2956
        cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
P
pbrook 已提交
2957 2958 2959 2960 2961 2962 2963
        return; /* Never happens.  Keep compiler happy.  */
    }

    /* Align stack pointer.  */
    /* ??? Should only do this if Configuration Control Register
       STACKALIGN bit is set.  */
    if (env->regs[13] & 4) {
P
pbrook 已提交
2964
        env->regs[13] -= 4;
P
pbrook 已提交
2965 2966
        xpsr |= 0x200;
    }
B
balrog 已提交
2967
    /* Switch to the handler mode.  */
P
pbrook 已提交
2968 2969 2970 2971 2972 2973 2974 2975 2976
    v7m_push(env, xpsr);
    v7m_push(env, env->regs[15]);
    v7m_push(env, env->regs[14]);
    v7m_push(env, env->regs[12]);
    v7m_push(env, env->regs[3]);
    v7m_push(env, env->regs[2]);
    v7m_push(env, env->regs[1]);
    v7m_push(env, env->regs[0]);
    switch_v7m_sp(env, 0);
2977 2978
    /* Clear IT bits */
    env->condexec_bits = 0;
P
pbrook 已提交
2979
    env->regs[14] = lr;
2980
    addr = ldl_phys(cs->as, env->v7m.vecbase + env->v7m.exception * 4);
P
pbrook 已提交
2981 2982 2983 2984
    env->regs[15] = addr & 0xfffffffe;
    env->thumb = addr & 1;
}

B
bellard 已提交
2985
/* Handle a CPU exception.  */
2986
void arm_cpu_do_interrupt(CPUState *cs)
B
bellard 已提交
2987
{
2988 2989
    ARMCPU *cpu = ARM_CPU(cs);
    CPUARMState *env = &cpu->env;
B
bellard 已提交
2990 2991 2992 2993 2994
    uint32_t addr;
    uint32_t mask;
    int new_mode;
    uint32_t offset;

2995 2996
    assert(!IS_M(env));

2997
    arm_log_exception(cs->exception_index);
2998

B
bellard 已提交
2999
    /* TODO: Vectored interrupt controller.  */
3000
    switch (cs->exception_index) {
B
bellard 已提交
3001 3002 3003 3004 3005 3006 3007 3008 3009 3010
    case EXCP_UDEF:
        new_mode = ARM_CPU_MODE_UND;
        addr = 0x04;
        mask = CPSR_I;
        if (env->thumb)
            offset = 2;
        else
            offset = 4;
        break;
    case EXCP_SWI:
3011 3012 3013
        if (semihosting_enabled) {
            /* Check for semihosting interrupt.  */
            if (env->thumb) {
3014 3015
                mask = arm_lduw_code(env, env->regs[15] - 2, env->bswap_code)
                    & 0xff;
3016
            } else {
3017
                mask = arm_ldl_code(env, env->regs[15] - 4, env->bswap_code)
P
Paul Brook 已提交
3018
                    & 0xffffff;
3019 3020 3021 3022 3023 3024 3025
            }
            /* Only intercept calls from privileged modes, to provide some
               semblance of security.  */
            if (((mask == 0x123456 && !env->thumb)
                    || (mask == 0xab && env->thumb))
                  && (env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR) {
                env->regs[0] = do_arm_semihosting(env);
3026
                qemu_log_mask(CPU_LOG_INT, "...handled as semihosting call\n");
3027 3028 3029
                return;
            }
        }
B
bellard 已提交
3030 3031 3032
        new_mode = ARM_CPU_MODE_SVC;
        addr = 0x08;
        mask = CPSR_I;
3033
        /* The PC already points to the next instruction.  */
B
bellard 已提交
3034 3035
        offset = 0;
        break;
P
pbrook 已提交
3036
    case EXCP_BKPT:
P
pbrook 已提交
3037
        /* See if this is a semihosting syscall.  */
P
pbrook 已提交
3038
        if (env->thumb && semihosting_enabled) {
3039
            mask = arm_lduw_code(env, env->regs[15], env->bswap_code) & 0xff;
P
pbrook 已提交
3040 3041 3042 3043
            if (mask == 0xab
                  && (env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR) {
                env->regs[15] += 2;
                env->regs[0] = do_arm_semihosting(env);
3044
                qemu_log_mask(CPU_LOG_INT, "...handled as semihosting call\n");
P
pbrook 已提交
3045 3046 3047
                return;
            }
        }
3048
        env->exception.fsr = 2;
P
pbrook 已提交
3049 3050
        /* Fall through to prefetch abort.  */
    case EXCP_PREFETCH_ABORT:
3051 3052
        env->cp15.c5_insn = env->exception.fsr;
        env->cp15.c6_insn = env->exception.vaddress;
3053 3054
        qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x IFAR 0x%x\n",
                      env->cp15.c5_insn, env->cp15.c6_insn);
B
bellard 已提交
3055 3056 3057 3058 3059 3060
        new_mode = ARM_CPU_MODE_ABT;
        addr = 0x0c;
        mask = CPSR_A | CPSR_I;
        offset = 4;
        break;
    case EXCP_DATA_ABORT:
3061 3062
        env->cp15.c5_data = env->exception.fsr;
        env->cp15.c6_data = env->exception.vaddress;
3063 3064
        qemu_log_mask(CPU_LOG_INT, "...with DFSR 0x%x DFAR 0x%x\n",
                      env->cp15.c5_data, env->cp15.c6_data);
B
bellard 已提交
3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084
        new_mode = ARM_CPU_MODE_ABT;
        addr = 0x10;
        mask = CPSR_A | CPSR_I;
        offset = 8;
        break;
    case EXCP_IRQ:
        new_mode = ARM_CPU_MODE_IRQ;
        addr = 0x18;
        /* Disable IRQ and imprecise data aborts.  */
        mask = CPSR_A | CPSR_I;
        offset = 4;
        break;
    case EXCP_FIQ:
        new_mode = ARM_CPU_MODE_FIQ;
        addr = 0x1c;
        /* Disable FIQ, IRQ and imprecise data aborts.  */
        mask = CPSR_A | CPSR_I | CPSR_F;
        offset = 4;
        break;
    default:
3085
        cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
B
bellard 已提交
3086 3087 3088
        return; /* Never happens.  Keep compiler happy.  */
    }
    /* High vectors.  */
3089
    if (env->cp15.c1_sys & SCTLR_V) {
N
Nathan Rossi 已提交
3090
        /* when enabled, base address cannot be remapped.  */
B
bellard 已提交
3091
        addr += 0xffff0000;
N
Nathan Rossi 已提交
3092 3093 3094 3095 3096 3097 3098 3099 3100
    } else {
        /* ARM v7 architectures provide a vector base address register to remap
         * the interrupt vector table.
         * This register is only followed in non-monitor mode, and has a secure
         * and un-secure copy. Since the cpu is always in a un-secure operation
         * and is never in monitor mode this feature is always active.
         * Note: only bits 31:5 are valid.
         */
        addr += env->cp15.c12_vbar;
B
bellard 已提交
3101 3102 3103
    }
    switch_mode (env, new_mode);
    env->spsr = cpsr_read(env);
P
pbrook 已提交
3104 3105
    /* Clear IT bits.  */
    env->condexec_bits = 0;
3106
    /* Switch to the new mode, and to the correct instruction set.  */
3107
    env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode;
3108
    env->daif |= mask;
3109 3110 3111
    /* this is a lie, as the was no c1_sys on V4T/V5, but who cares
     * and we should just guard the thumb mode on V4 */
    if (arm_feature(env, ARM_FEATURE_V4T)) {
3112
        env->thumb = (env->cp15.c1_sys & SCTLR_TE) != 0;
3113
    }
B
bellard 已提交
3114 3115
    env->regs[14] = env->regs[15] + offset;
    env->regs[15] = addr;
3116
    cs->interrupt_request |= CPU_INTERRUPT_EXITTB;
B
bellard 已提交
3117 3118 3119 3120 3121
}

/* Check section/page access permissions.
   Returns the page protection flags, or zero if the access is not
   permitted.  */
3122
static inline int check_ap(CPUARMState *env, int ap, int domain_prot,
3123
                           int access_type, int is_user)
B
bellard 已提交
3124
{
P
pbrook 已提交
3125 3126
  int prot_ro;

3127
  if (domain_prot == 3) {
B
bellard 已提交
3128
    return PAGE_READ | PAGE_WRITE;
3129
  }
B
bellard 已提交
3130

P
pbrook 已提交
3131 3132 3133 3134 3135
  if (access_type == 1)
      prot_ro = 0;
  else
      prot_ro = PAGE_READ;

B
bellard 已提交
3136 3137
  switch (ap) {
  case 0:
3138 3139 3140
      if (arm_feature(env, ARM_FEATURE_V7)) {
          return 0;
      }
P
pbrook 已提交
3141
      if (access_type == 1)
B
bellard 已提交
3142
          return 0;
3143 3144
      switch (env->cp15.c1_sys & (SCTLR_S | SCTLR_R)) {
      case SCTLR_S:
B
bellard 已提交
3145
          return is_user ? 0 : PAGE_READ;
3146
      case SCTLR_R:
B
bellard 已提交
3147 3148 3149 3150 3151 3152 3153 3154
          return PAGE_READ;
      default:
          return 0;
      }
  case 1:
      return is_user ? 0 : PAGE_READ | PAGE_WRITE;
  case 2:
      if (is_user)
P
pbrook 已提交
3155
          return prot_ro;
B
bellard 已提交
3156 3157 3158 3159
      else
          return PAGE_READ | PAGE_WRITE;
  case 3:
      return PAGE_READ | PAGE_WRITE;
P
pbrook 已提交
3160
  case 4: /* Reserved.  */
P
pbrook 已提交
3161 3162 3163 3164 3165
      return 0;
  case 5:
      return is_user ? 0 : prot_ro;
  case 6:
      return prot_ro;
P
pbrook 已提交
3166
  case 7:
3167
      if (!arm_feature (env, ARM_FEATURE_V6K))
P
pbrook 已提交
3168 3169
          return 0;
      return prot_ro;
B
bellard 已提交
3170 3171 3172 3173 3174
  default:
      abort();
  }
}

3175
static uint32_t get_level1_table_address(CPUARMState *env, uint32_t address)
3176 3177 3178 3179
{
    uint32_t table;

    if (address & env->cp15.c2_mask)
3180
        table = env->cp15.ttbr1_el1 & 0xffffc000;
3181
    else
3182
        table = env->cp15.ttbr0_el1 & env->cp15.c2_base_mask;
3183 3184 3185 3186 3187

    table |= (address >> 18) & 0x3ffc;
    return table;
}

3188
static int get_phys_addr_v5(CPUARMState *env, uint32_t address, int access_type,
A
Avi Kivity 已提交
3189
                            int is_user, hwaddr *phys_ptr,
3190
                            int *prot, target_ulong *page_size)
B
bellard 已提交
3191
{
3192
    CPUState *cs = CPU(arm_env_get_cpu(env));
B
bellard 已提交
3193 3194 3195 3196 3197 3198
    int code;
    uint32_t table;
    uint32_t desc;
    int type;
    int ap;
    int domain;
3199
    int domain_prot;
A
Avi Kivity 已提交
3200
    hwaddr phys_addr;
B
bellard 已提交
3201

P
pbrook 已提交
3202 3203
    /* Pagetable walk.  */
    /* Lookup l1 descriptor.  */
3204
    table = get_level1_table_address(env, address);
3205
    desc = ldl_phys(cs->as, table);
P
pbrook 已提交
3206
    type = (desc & 3);
3207 3208
    domain = (desc >> 5) & 0x0f;
    domain_prot = (env->cp15.c3 >> (domain * 2)) & 3;
P
pbrook 已提交
3209
    if (type == 0) {
3210
        /* Section translation fault.  */
P
pbrook 已提交
3211 3212 3213
        code = 5;
        goto do_fault;
    }
3214
    if (domain_prot == 0 || domain_prot == 2) {
P
pbrook 已提交
3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225
        if (type == 2)
            code = 9; /* Section domain fault.  */
        else
            code = 11; /* Page domain fault.  */
        goto do_fault;
    }
    if (type == 2) {
        /* 1Mb section.  */
        phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
        ap = (desc >> 10) & 3;
        code = 13;
P
Paul Brook 已提交
3226
        *page_size = 1024 * 1024;
P
pbrook 已提交
3227 3228 3229 3230 3231 3232 3233 3234 3235
    } else {
        /* Lookup l2 entry.  */
	if (type == 1) {
	    /* Coarse pagetable.  */
	    table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
	} else {
	    /* Fine pagetable.  */
	    table = (desc & 0xfffff000) | ((address >> 8) & 0xffc);
	}
3236
        desc = ldl_phys(cs->as, table);
P
pbrook 已提交
3237 3238 3239 3240 3241 3242 3243
        switch (desc & 3) {
        case 0: /* Page translation fault.  */
            code = 7;
            goto do_fault;
        case 1: /* 64k page.  */
            phys_addr = (desc & 0xffff0000) | (address & 0xffff);
            ap = (desc >> (4 + ((address >> 13) & 6))) & 3;
P
Paul Brook 已提交
3244
            *page_size = 0x10000;
P
pbrook 已提交
3245
            break;
P
pbrook 已提交
3246 3247
        case 2: /* 4k page.  */
            phys_addr = (desc & 0xfffff000) | (address & 0xfff);
3248
            ap = (desc >> (4 + ((address >> 9) & 6))) & 3;
P
Paul Brook 已提交
3249
            *page_size = 0x1000;
P
pbrook 已提交
3250
            break;
P
pbrook 已提交
3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263
        case 3: /* 1k page.  */
	    if (type == 1) {
		if (arm_feature(env, ARM_FEATURE_XSCALE)) {
		    phys_addr = (desc & 0xfffff000) | (address & 0xfff);
		} else {
		    /* Page translation fault.  */
		    code = 7;
		    goto do_fault;
		}
	    } else {
		phys_addr = (desc & 0xfffffc00) | (address & 0x3ff);
	    }
            ap = (desc >> 4) & 3;
P
Paul Brook 已提交
3264
            *page_size = 0x400;
P
pbrook 已提交
3265 3266
            break;
        default:
P
pbrook 已提交
3267 3268
            /* Never happens, but compiler isn't smart enough to tell.  */
            abort();
P
pbrook 已提交
3269
        }
P
pbrook 已提交
3270 3271
        code = 15;
    }
3272
    *prot = check_ap(env, ap, domain_prot, access_type, is_user);
P
pbrook 已提交
3273 3274 3275 3276
    if (!*prot) {
        /* Access permission fault.  */
        goto do_fault;
    }
3277
    *prot |= PAGE_EXEC;
P
pbrook 已提交
3278 3279 3280 3281 3282 3283
    *phys_ptr = phys_addr;
    return 0;
do_fault:
    return code | (domain << 4);
}

3284
static int get_phys_addr_v6(CPUARMState *env, uint32_t address, int access_type,
A
Avi Kivity 已提交
3285
                            int is_user, hwaddr *phys_ptr,
3286
                            int *prot, target_ulong *page_size)
P
pbrook 已提交
3287
{
3288
    CPUState *cs = CPU(arm_env_get_cpu(env));
P
pbrook 已提交
3289 3290 3291 3292
    int code;
    uint32_t table;
    uint32_t desc;
    uint32_t xn;
3293
    uint32_t pxn = 0;
P
pbrook 已提交
3294 3295
    int type;
    int ap;
3296
    int domain = 0;
3297
    int domain_prot;
A
Avi Kivity 已提交
3298
    hwaddr phys_addr;
P
pbrook 已提交
3299 3300 3301

    /* Pagetable walk.  */
    /* Lookup l1 descriptor.  */
3302
    table = get_level1_table_address(env, address);
3303
    desc = ldl_phys(cs->as, table);
P
pbrook 已提交
3304
    type = (desc & 3);
3305 3306 3307 3308
    if (type == 0 || (type == 3 && !arm_feature(env, ARM_FEATURE_PXN))) {
        /* Section translation fault, or attempt to use the encoding
         * which is Reserved on implementations without PXN.
         */
P
pbrook 已提交
3309 3310
        code = 5;
        goto do_fault;
3311 3312 3313
    }
    if ((type == 1) || !(desc & (1 << 18))) {
        /* Page or Section.  */
3314
        domain = (desc >> 5) & 0x0f;
P
pbrook 已提交
3315
    }
3316 3317
    domain_prot = (env->cp15.c3 >> (domain * 2)) & 3;
    if (domain_prot == 0 || domain_prot == 2) {
3318
        if (type != 1) {
P
pbrook 已提交
3319
            code = 9; /* Section domain fault.  */
3320
        } else {
P
pbrook 已提交
3321
            code = 11; /* Page domain fault.  */
3322
        }
P
pbrook 已提交
3323 3324
        goto do_fault;
    }
3325
    if (type != 1) {
P
pbrook 已提交
3326 3327 3328
        if (desc & (1 << 18)) {
            /* Supersection.  */
            phys_addr = (desc & 0xff000000) | (address & 0x00ffffff);
P
Paul Brook 已提交
3329
            *page_size = 0x1000000;
B
bellard 已提交
3330
        } else {
P
pbrook 已提交
3331 3332
            /* Section.  */
            phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
P
Paul Brook 已提交
3333
            *page_size = 0x100000;
B
bellard 已提交
3334
        }
P
pbrook 已提交
3335 3336
        ap = ((desc >> 10) & 3) | ((desc >> 13) & 4);
        xn = desc & (1 << 4);
3337
        pxn = desc & 1;
P
pbrook 已提交
3338 3339
        code = 13;
    } else {
3340 3341 3342
        if (arm_feature(env, ARM_FEATURE_PXN)) {
            pxn = (desc >> 2) & 1;
        }
P
pbrook 已提交
3343 3344
        /* Lookup l2 entry.  */
        table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
3345
        desc = ldl_phys(cs->as, table);
P
pbrook 已提交
3346 3347 3348 3349
        ap = ((desc >> 4) & 3) | ((desc >> 7) & 4);
        switch (desc & 3) {
        case 0: /* Page translation fault.  */
            code = 7;
B
bellard 已提交
3350
            goto do_fault;
P
pbrook 已提交
3351 3352 3353
        case 1: /* 64k page.  */
            phys_addr = (desc & 0xffff0000) | (address & 0xffff);
            xn = desc & (1 << 15);
P
Paul Brook 已提交
3354
            *page_size = 0x10000;
P
pbrook 已提交
3355 3356 3357 3358
            break;
        case 2: case 3: /* 4k page.  */
            phys_addr = (desc & 0xfffff000) | (address & 0xfff);
            xn = desc & 1;
P
Paul Brook 已提交
3359
            *page_size = 0x1000;
P
pbrook 已提交
3360 3361 3362 3363
            break;
        default:
            /* Never happens, but compiler isn't smart enough to tell.  */
            abort();
B
bellard 已提交
3364
        }
P
pbrook 已提交
3365 3366
        code = 15;
    }
3367
    if (domain_prot == 3) {
3368 3369
        *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
    } else {
3370 3371 3372
        if (pxn && !is_user) {
            xn = 1;
        }
3373 3374
        if (xn && access_type == 2)
            goto do_fault;
P
pbrook 已提交
3375

3376
        /* The simplified model uses AP[0] as an access control bit.  */
3377
        if ((env->cp15.c1_sys & SCTLR_AFE) && (ap & 1) == 0) {
3378 3379 3380 3381
            /* Access flag fault.  */
            code = (code == 15) ? 6 : 3;
            goto do_fault;
        }
3382
        *prot = check_ap(env, ap, domain_prot, access_type, is_user);
3383 3384 3385 3386 3387 3388 3389
        if (!*prot) {
            /* Access permission fault.  */
            goto do_fault;
        }
        if (!xn) {
            *prot |= PAGE_EXEC;
        }
3390
    }
P
pbrook 已提交
3391
    *phys_ptr = phys_addr;
B
bellard 已提交
3392 3393 3394 3395 3396
    return 0;
do_fault:
    return code | (domain << 4);
}

3397 3398 3399 3400 3401 3402 3403 3404 3405
/* Fault type for long-descriptor MMU fault reporting; this corresponds
 * to bits [5..2] in the STATUS field in long-format DFSR/IFSR.
 */
typedef enum {
    translation_fault = 1,
    access_fault = 2,
    permission_fault = 3,
} MMUFaultType;

3406
static int get_phys_addr_lpae(CPUARMState *env, target_ulong address,
3407
                              int access_type, int is_user,
A
Avi Kivity 已提交
3408
                              hwaddr *phys_ptr, int *prot,
3409 3410
                              target_ulong *page_size_ptr)
{
3411
    CPUState *cs = CPU(arm_env_get_cpu(env));
3412 3413 3414 3415
    /* Read an LPAE long-descriptor translation table. */
    MMUFaultType fault_type = translation_fault;
    uint32_t level = 1;
    uint32_t epd;
3416 3417
    int32_t tsz;
    uint32_t tg;
3418 3419
    uint64_t ttbr;
    int ttbr_select;
3420
    hwaddr descaddr, descmask;
3421 3422 3423
    uint32_t tableattrs;
    target_ulong page_size;
    uint32_t attrs;
3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435
    int32_t granule_sz = 9;
    int32_t va_size = 32;
    int32_t tbi = 0;

    if (arm_el_is_aa64(env, 1)) {
        va_size = 64;
        if (extract64(address, 55, 1))
            tbi = extract64(env->cp15.c2_control, 38, 1);
        else
            tbi = extract64(env->cp15.c2_control, 37, 1);
        tbi *= 8;
    }
3436 3437 3438 3439 3440 3441

    /* Determine whether this address is in the region controlled by
     * TTBR0 or TTBR1 (or if it is in neither region and should fault).
     * This is a Non-secure PL0/1 stage 1 translation, so controlled by
     * TTBCR/TTBR0/TTBR1 in accordance with ARM ARM DDI0406C table B-32:
     */
3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452
    uint32_t t0sz = extract32(env->cp15.c2_control, 0, 6);
    if (arm_el_is_aa64(env, 1)) {
        t0sz = MIN(t0sz, 39);
        t0sz = MAX(t0sz, 16);
    }
    uint32_t t1sz = extract32(env->cp15.c2_control, 16, 6);
    if (arm_el_is_aa64(env, 1)) {
        t1sz = MIN(t1sz, 39);
        t1sz = MAX(t1sz, 16);
    }
    if (t0sz && !extract64(address, va_size - t0sz, t0sz - tbi)) {
3453 3454
        /* there is a ttbr0 region and we are in it (high bits all zero) */
        ttbr_select = 0;
3455
    } else if (t1sz && !extract64(~address, va_size - t1sz, t1sz - tbi)) {
3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477
        /* there is a ttbr1 region and we are in it (high bits all one) */
        ttbr_select = 1;
    } else if (!t0sz) {
        /* ttbr0 region is "everything not in the ttbr1 region" */
        ttbr_select = 0;
    } else if (!t1sz) {
        /* ttbr1 region is "everything not in the ttbr0 region" */
        ttbr_select = 1;
    } else {
        /* in the gap between the two regions, this is a Translation fault */
        fault_type = translation_fault;
        goto do_fault;
    }

    /* Note that QEMU ignores shareability and cacheability attributes,
     * so we don't need to do anything with the SH, ORGN, IRGN fields
     * in the TTBCR.  Similarly, TTBCR:A1 selects whether we get the
     * ASID from TTBR0 or TTBR1, but QEMU's TLB doesn't currently
     * implement any ASID-like capability so we can ignore it (instead
     * we will always flush the TLB any time the ASID is changed).
     */
    if (ttbr_select == 0) {
3478
        ttbr = env->cp15.ttbr0_el1;
3479 3480
        epd = extract32(env->cp15.c2_control, 7, 1);
        tsz = t0sz;
3481 3482 3483 3484 3485 3486 3487 3488

        tg = extract32(env->cp15.c2_control, 14, 2);
        if (tg == 1) { /* 64KB pages */
            granule_sz = 13;
        }
        if (tg == 2) { /* 16KB pages */
            granule_sz = 11;
        }
3489
    } else {
3490
        ttbr = env->cp15.ttbr1_el1;
3491 3492
        epd = extract32(env->cp15.c2_control, 23, 1);
        tsz = t1sz;
3493 3494 3495 3496 3497 3498 3499 3500

        tg = extract32(env->cp15.c2_control, 30, 2);
        if (tg == 3)  { /* 64KB pages */
            granule_sz = 13;
        }
        if (tg == 1) { /* 16KB pages */
            granule_sz = 11;
        }
3501 3502 3503 3504 3505 3506 3507
    }

    if (epd) {
        /* Translation table walk disabled => Translation fault on TLB miss */
        goto do_fault;
    }

3508 3509
    /* The starting level depends on the virtual address size which can be
     * up to 48-bits and the translation granule size.
3510
     */
3511 3512 3513 3514
    if ((va_size - tsz) > (granule_sz * 4 + 3)) {
        level = 0;
    } else if ((va_size - tsz) > (granule_sz * 3 + 3)) {
        level = 1;
3515
    } else {
3516
        level = 2;
3517 3518 3519 3520 3521 3522
    }

    /* Clear the vaddr bits which aren't part of the within-region address,
     * so that we don't have to special case things when calculating the
     * first descriptor address.
     */
3523 3524 3525 3526 3527
    if (tsz) {
        address &= (1ULL << (va_size - tsz)) - 1;
    }

    descmask = (1ULL << (granule_sz + 3)) - 1;
3528 3529

    /* Now we can extract the actual base address from the TTBR */
3530 3531
    descaddr = extract64(ttbr, 0, 48);
    descaddr &= ~((1ULL << (va_size - tsz - (granule_sz * (4 - level)))) - 1);
3532 3533 3534 3535 3536

    tableattrs = 0;
    for (;;) {
        uint64_t descriptor;

3537 3538
        descaddr |= (address >> (granule_sz * (4 - level))) & descmask;
        descaddr &= ~7ULL;
3539
        descriptor = ldq_phys(cs->as, descaddr);
3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560
        if (!(descriptor & 1) ||
            (!(descriptor & 2) && (level == 3))) {
            /* Invalid, or the Reserved level 3 encoding */
            goto do_fault;
        }
        descaddr = descriptor & 0xfffffff000ULL;

        if ((descriptor & 2) && (level < 3)) {
            /* Table entry. The top five bits are attributes which  may
             * propagate down through lower levels of the table (and
             * which are all arranged so that 0 means "no effect", so
             * we can gather them up by ORing in the bits at each level).
             */
            tableattrs |= extract64(descriptor, 59, 5);
            level++;
            continue;
        }
        /* Block entry at level 1 or 2, or page entry at level 3.
         * These are basically the same thing, although the number
         * of bits we pull in from the vaddr varies.
         */
3561
        page_size = (1 << ((granule_sz * (4 - level)) + 3));
3562 3563
        descaddr |= (address & (page_size - 1));
        /* Extract attributes from the descriptor and merge with table attrs */
3564 3565 3566 3567 3568 3569 3570
        if (arm_feature(env, ARM_FEATURE_V8)) {
            attrs = extract64(descriptor, 2, 10)
                | (extract64(descriptor, 53, 11) << 10);
        } else {
            attrs = extract64(descriptor, 2, 10)
                | (extract64(descriptor, 52, 12) << 10);
        }
3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619
        attrs |= extract32(tableattrs, 0, 2) << 11; /* XN, PXN */
        attrs |= extract32(tableattrs, 3, 1) << 5; /* APTable[1] => AP[2] */
        /* The sense of AP[1] vs APTable[0] is reversed, as APTable[0] == 1
         * means "force PL1 access only", which means forcing AP[1] to 0.
         */
        if (extract32(tableattrs, 2, 1)) {
            attrs &= ~(1 << 4);
        }
        /* Since we're always in the Non-secure state, NSTable is ignored. */
        break;
    }
    /* Here descaddr is the final physical address, and attributes
     * are all in attrs.
     */
    fault_type = access_fault;
    if ((attrs & (1 << 8)) == 0) {
        /* Access flag */
        goto do_fault;
    }
    fault_type = permission_fault;
    if (is_user && !(attrs & (1 << 4))) {
        /* Unprivileged access not enabled */
        goto do_fault;
    }
    *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
    if (attrs & (1 << 12) || (!is_user && (attrs & (1 << 11)))) {
        /* XN or PXN */
        if (access_type == 2) {
            goto do_fault;
        }
        *prot &= ~PAGE_EXEC;
    }
    if (attrs & (1 << 5)) {
        /* Write access forbidden */
        if (access_type == 1) {
            goto do_fault;
        }
        *prot &= ~PAGE_WRITE;
    }

    *phys_ptr = descaddr;
    *page_size_ptr = page_size;
    return 0;

do_fault:
    /* Long-descriptor format IFSR/DFSR value */
    return (1 << 9) | (fault_type << 2) | level;
}

3620 3621
static int get_phys_addr_mpu(CPUARMState *env, uint32_t address,
                             int access_type, int is_user,
A
Avi Kivity 已提交
3622
                             hwaddr *phys_ptr, int *prot)
P
pbrook 已提交
3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676
{
    int n;
    uint32_t mask;
    uint32_t base;

    *phys_ptr = address;
    for (n = 7; n >= 0; n--) {
	base = env->cp15.c6_region[n];
	if ((base & 1) == 0)
	    continue;
	mask = 1 << ((base >> 1) & 0x1f);
	/* Keep this shift separate from the above to avoid an
	   (undefined) << 32.  */
	mask = (mask << 1) - 1;
	if (((base ^ address) & ~mask) == 0)
	    break;
    }
    if (n < 0)
	return 2;

    if (access_type == 2) {
	mask = env->cp15.c5_insn;
    } else {
	mask = env->cp15.c5_data;
    }
    mask = (mask >> (n * 4)) & 0xf;
    switch (mask) {
    case 0:
	return 1;
    case 1:
	if (is_user)
	  return 1;
	*prot = PAGE_READ | PAGE_WRITE;
	break;
    case 2:
	*prot = PAGE_READ;
	if (!is_user)
	    *prot |= PAGE_WRITE;
	break;
    case 3:
	*prot = PAGE_READ | PAGE_WRITE;
	break;
    case 5:
	if (is_user)
	    return 1;
	*prot = PAGE_READ;
	break;
    case 6:
	*prot = PAGE_READ;
	break;
    default:
	/* Bad permission.  */
	return 1;
    }
3677
    *prot |= PAGE_EXEC;
P
pbrook 已提交
3678 3679 3680
    return 0;
}

3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703
/* get_phys_addr - get the physical address for this virtual address
 *
 * Find the physical address corresponding to the given virtual address,
 * by doing a translation table walk on MMU based systems or using the
 * MPU state on MPU based systems.
 *
 * Returns 0 if the translation was successful. Otherwise, phys_ptr,
 * prot and page_size are not filled in, and the return value provides
 * information on why the translation aborted, in the format of a
 * DFSR/IFSR fault register, with the following caveats:
 *  * we honour the short vs long DFSR format differences.
 *  * the WnR bit is never set (the caller must do this).
 *  * for MPU based systems we don't bother to return a full FSR format
 *    value.
 *
 * @env: CPUARMState
 * @address: virtual address to get physical address for
 * @access_type: 0 for read, 1 for write, 2 for execute
 * @is_user: 0 for privileged access, 1 for user
 * @phys_ptr: set to the physical address corresponding to the virtual address
 * @prot: set to the permissions for the page containing phys_ptr
 * @page_size: set to the size of the page containing phys_ptr
 */
3704
static inline int get_phys_addr(CPUARMState *env, target_ulong address,
P
pbrook 已提交
3705
                                int access_type, int is_user,
A
Avi Kivity 已提交
3706
                                hwaddr *phys_ptr, int *prot,
P
Paul Brook 已提交
3707
                                target_ulong *page_size)
P
pbrook 已提交
3708 3709 3710 3711 3712
{
    /* Fast Context Switch Extension.  */
    if (address < 0x02000000)
        address += env->cp15.c13_fcse;

3713
    if ((env->cp15.c1_sys & SCTLR_M) == 0) {
P
pbrook 已提交
3714 3715
        /* MMU/MPU disabled.  */
        *phys_ptr = address;
3716
        *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
P
Paul Brook 已提交
3717
        *page_size = TARGET_PAGE_SIZE;
P
pbrook 已提交
3718 3719
        return 0;
    } else if (arm_feature(env, ARM_FEATURE_MPU)) {
P
Paul Brook 已提交
3720
        *page_size = TARGET_PAGE_SIZE;
P
pbrook 已提交
3721 3722
	return get_phys_addr_mpu(env, address, access_type, is_user, phys_ptr,
				 prot);
3723 3724 3725
    } else if (extended_addresses_enabled(env)) {
        return get_phys_addr_lpae(env, address, access_type, is_user, phys_ptr,
                                  prot, page_size);
3726
    } else if (env->cp15.c1_sys & SCTLR_XP) {
P
pbrook 已提交
3727
        return get_phys_addr_v6(env, address, access_type, is_user, phys_ptr,
P
Paul Brook 已提交
3728
                                prot, page_size);
P
pbrook 已提交
3729 3730
    } else {
        return get_phys_addr_v5(env, address, access_type, is_user, phys_ptr,
P
Paul Brook 已提交
3731
                                prot, page_size);
P
pbrook 已提交
3732 3733 3734
    }
}

3735 3736
int arm_cpu_handle_mmu_fault(CPUState *cs, vaddr address,
                             int access_type, int mmu_idx)
B
bellard 已提交
3737
{
3738 3739
    ARMCPU *cpu = ARM_CPU(cs);
    CPUARMState *env = &cpu->env;
A
Avi Kivity 已提交
3740
    hwaddr phys_addr;
P
Paul Brook 已提交
3741
    target_ulong page_size;
B
bellard 已提交
3742
    int prot;
3743
    int ret, is_user;
3744 3745
    uint32_t syn;
    bool same_el = (arm_current_pl(env) != 0);
B
bellard 已提交
3746

3747
    is_user = mmu_idx == MMU_USER_IDX;
P
Paul Brook 已提交
3748 3749
    ret = get_phys_addr(env, address, access_type, is_user, &phys_addr, &prot,
                        &page_size);
B
bellard 已提交
3750 3751
    if (ret == 0) {
        /* Map a single [sub]page.  */
A
Avi Kivity 已提交
3752
        phys_addr &= ~(hwaddr)0x3ff;
3753
        address &= ~(target_ulong)0x3ff;
3754
        tlb_set_page(cs, address, phys_addr, prot, mmu_idx, page_size);
P
Paul Brook 已提交
3755
        return 0;
B
bellard 已提交
3756 3757
    }

3758 3759 3760 3761 3762 3763
    /* AArch64 syndrome does not have an LPAE bit */
    syn = ret & ~(1 << 9);

    /* For insn and data aborts we assume there is no instruction syndrome
     * information; this is always true for exceptions reported to EL1.
     */
B
bellard 已提交
3764
    if (access_type == 2) {
3765
        syn = syn_insn_abort(same_el, 0, 0, syn);
3766
        cs->exception_index = EXCP_PREFETCH_ABORT;
B
bellard 已提交
3767
    } else {
3768
        syn = syn_data_abort(same_el, 0, 0, 0, access_type == 1, syn);
3769 3770 3771
        if (access_type == 1 && arm_feature(env, ARM_FEATURE_V6)) {
            ret |= (1 << 11);
        }
3772
        cs->exception_index = EXCP_DATA_ABORT;
B
bellard 已提交
3773
    }
3774 3775

    env->exception.syndrome = syn;
3776 3777
    env->exception.vaddress = address;
    env->exception.fsr = ret;
B
bellard 已提交
3778 3779 3780
    return 1;
}

3781
hwaddr arm_cpu_get_phys_page_debug(CPUState *cs, vaddr addr)
B
bellard 已提交
3782
{
3783
    ARMCPU *cpu = ARM_CPU(cs);
A
Avi Kivity 已提交
3784
    hwaddr phys_addr;
P
Paul Brook 已提交
3785
    target_ulong page_size;
B
bellard 已提交
3786 3787 3788
    int prot;
    int ret;

3789
    ret = get_phys_addr(&cpu->env, addr, 0, 0, &phys_addr, &prot, &page_size);
B
bellard 已提交
3790

3791
    if (ret != 0) {
B
bellard 已提交
3792
        return -1;
3793
    }
B
bellard 已提交
3794 3795 3796 3797

    return phys_addr;
}

3798
void HELPER(set_r13_banked)(CPUARMState *env, uint32_t mode, uint32_t val)
P
pbrook 已提交
3799
{
3800 3801 3802
    if ((env->uncached_cpsr & CPSR_M) == mode) {
        env->regs[13] = val;
    } else {
3803
        env->banked_r13[bank_number(mode)] = val;
3804
    }
P
pbrook 已提交
3805 3806
}

3807
uint32_t HELPER(get_r13_banked)(CPUARMState *env, uint32_t mode)
P
pbrook 已提交
3808
{
3809 3810 3811
    if ((env->uncached_cpsr & CPSR_M) == mode) {
        return env->regs[13];
    } else {
3812
        return env->banked_r13[bank_number(mode)];
3813
    }
P
pbrook 已提交
3814 3815
}

3816
uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg)
P
pbrook 已提交
3817
{
3818 3819
    ARMCPU *cpu = arm_env_get_cpu(env);

P
pbrook 已提交
3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839
    switch (reg) {
    case 0: /* APSR */
        return xpsr_read(env) & 0xf8000000;
    case 1: /* IAPSR */
        return xpsr_read(env) & 0xf80001ff;
    case 2: /* EAPSR */
        return xpsr_read(env) & 0xff00fc00;
    case 3: /* xPSR */
        return xpsr_read(env) & 0xff00fdff;
    case 5: /* IPSR */
        return xpsr_read(env) & 0x000001ff;
    case 6: /* EPSR */
        return xpsr_read(env) & 0x0700fc00;
    case 7: /* IEPSR */
        return xpsr_read(env) & 0x0700edff;
    case 8: /* MSP */
        return env->v7m.current_sp ? env->v7m.other_sp : env->regs[13];
    case 9: /* PSP */
        return env->v7m.current_sp ? env->regs[13] : env->v7m.other_sp;
    case 16: /* PRIMASK */
3840
        return (env->daif & PSTATE_I) != 0;
3841 3842
    case 17: /* BASEPRI */
    case 18: /* BASEPRI_MAX */
P
pbrook 已提交
3843
        return env->v7m.basepri;
3844
    case 19: /* FAULTMASK */
3845
        return (env->daif & PSTATE_F) != 0;
P
pbrook 已提交
3846 3847 3848 3849
    case 20: /* CONTROL */
        return env->v7m.control;
    default:
        /* ??? For debugging only.  */
3850
        cpu_abort(CPU(cpu), "Unimplemented system register read (%d)\n", reg);
P
pbrook 已提交
3851 3852 3853 3854
        return 0;
    }
}

3855
void HELPER(v7m_msr)(CPUARMState *env, uint32_t reg, uint32_t val)
P
pbrook 已提交
3856
{
3857 3858
    ARMCPU *cpu = arm_env_get_cpu(env);

P
pbrook 已提交
3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893
    switch (reg) {
    case 0: /* APSR */
        xpsr_write(env, val, 0xf8000000);
        break;
    case 1: /* IAPSR */
        xpsr_write(env, val, 0xf8000000);
        break;
    case 2: /* EAPSR */
        xpsr_write(env, val, 0xfe00fc00);
        break;
    case 3: /* xPSR */
        xpsr_write(env, val, 0xfe00fc00);
        break;
    case 5: /* IPSR */
        /* IPSR bits are readonly.  */
        break;
    case 6: /* EPSR */
        xpsr_write(env, val, 0x0600fc00);
        break;
    case 7: /* IEPSR */
        xpsr_write(env, val, 0x0600fc00);
        break;
    case 8: /* MSP */
        if (env->v7m.current_sp)
            env->v7m.other_sp = val;
        else
            env->regs[13] = val;
        break;
    case 9: /* PSP */
        if (env->v7m.current_sp)
            env->regs[13] = val;
        else
            env->v7m.other_sp = val;
        break;
    case 16: /* PRIMASK */
3894 3895 3896 3897 3898
        if (val & 1) {
            env->daif |= PSTATE_I;
        } else {
            env->daif &= ~PSTATE_I;
        }
P
pbrook 已提交
3899
        break;
3900
    case 17: /* BASEPRI */
P
pbrook 已提交
3901 3902
        env->v7m.basepri = val & 0xff;
        break;
3903
    case 18: /* BASEPRI_MAX */
P
pbrook 已提交
3904 3905 3906 3907
        val &= 0xff;
        if (val != 0 && (val < env->v7m.basepri || env->v7m.basepri == 0))
            env->v7m.basepri = val;
        break;
3908
    case 19: /* FAULTMASK */
3909 3910 3911 3912 3913
        if (val & 1) {
            env->daif |= PSTATE_F;
        } else {
            env->daif &= ~PSTATE_F;
        }
3914
        break;
P
pbrook 已提交
3915 3916 3917 3918 3919 3920
    case 20: /* CONTROL */
        env->v7m.control = val & 3;
        switch_v7m_sp(env, (val & 2) != 0);
        break;
    default:
        /* ??? For debugging only.  */
3921
        cpu_abort(CPU(cpu), "Unimplemented system register write (%d)\n", reg);
P
pbrook 已提交
3922 3923 3924 3925
        return;
    }
}

B
bellard 已提交
3926
#endif
P
pbrook 已提交
3927 3928 3929 3930 3931 3932 3933

/* Note that signed overflow is undefined in C.  The following routines are
   careful to use unsigned types where modulo arithmetic is required.
   Failure to do so _will_ break on newer gcc.  */

/* Signed saturating arithmetic.  */

A
aurel32 已提交
3934
/* Perform 16-bit signed saturating addition.  */
P
pbrook 已提交
3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948
static inline uint16_t add16_sat(uint16_t a, uint16_t b)
{
    uint16_t res;

    res = a + b;
    if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) {
        if (a & 0x8000)
            res = 0x8000;
        else
            res = 0x7fff;
    }
    return res;
}

A
aurel32 已提交
3949
/* Perform 8-bit signed saturating addition.  */
P
pbrook 已提交
3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963
static inline uint8_t add8_sat(uint8_t a, uint8_t b)
{
    uint8_t res;

    res = a + b;
    if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) {
        if (a & 0x80)
            res = 0x80;
        else
            res = 0x7f;
    }
    return res;
}

A
aurel32 已提交
3964
/* Perform 16-bit signed saturating subtraction.  */
P
pbrook 已提交
3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978
static inline uint16_t sub16_sat(uint16_t a, uint16_t b)
{
    uint16_t res;

    res = a - b;
    if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) {
        if (a & 0x8000)
            res = 0x8000;
        else
            res = 0x7fff;
    }
    return res;
}

A
aurel32 已提交
3979
/* Perform 8-bit signed saturating subtraction.  */
P
pbrook 已提交
3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002
static inline uint8_t sub8_sat(uint8_t a, uint8_t b)
{
    uint8_t res;

    res = a - b;
    if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) {
        if (a & 0x80)
            res = 0x80;
        else
            res = 0x7f;
    }
    return res;
}

#define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16);
#define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16);
#define ADD8(a, b, n)  RESULT(add8_sat(a, b), n, 8);
#define SUB8(a, b, n)  RESULT(sub8_sat(a, b), n, 8);
#define PFX q

#include "op_addsub.h"

/* Unsigned saturating arithmetic.  */
P
pbrook 已提交
4003
static inline uint16_t add16_usat(uint16_t a, uint16_t b)
P
pbrook 已提交
4004 4005 4006 4007 4008 4009 4010 4011
{
    uint16_t res;
    res = a + b;
    if (res < a)
        res = 0xffff;
    return res;
}

P
pbrook 已提交
4012
static inline uint16_t sub16_usat(uint16_t a, uint16_t b)
P
pbrook 已提交
4013
{
4014
    if (a > b)
P
pbrook 已提交
4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030
        return a - b;
    else
        return 0;
}

static inline uint8_t add8_usat(uint8_t a, uint8_t b)
{
    uint8_t res;
    res = a + b;
    if (res < a)
        res = 0xff;
    return res;
}

static inline uint8_t sub8_usat(uint8_t a, uint8_t b)
{
4031
    if (a > b)
P
pbrook 已提交
4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047
        return a - b;
    else
        return 0;
}

#define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16);
#define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16);
#define ADD8(a, b, n)  RESULT(add8_usat(a, b), n, 8);
#define SUB8(a, b, n)  RESULT(sub8_usat(a, b), n, 8);
#define PFX uq

#include "op_addsub.h"

/* Signed modulo arithmetic.  */
#define SARITH16(a, b, n, op) do { \
    int32_t sum; \
4048
    sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \
P
pbrook 已提交
4049 4050 4051 4052 4053 4054 4055
    RESULT(sum, n, 16); \
    if (sum >= 0) \
        ge |= 3 << (n * 2); \
    } while(0)

#define SARITH8(a, b, n, op) do { \
    int32_t sum; \
4056
    sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \
P
pbrook 已提交
4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076
    RESULT(sum, n, 8); \
    if (sum >= 0) \
        ge |= 1 << n; \
    } while(0)


#define ADD16(a, b, n) SARITH16(a, b, n, +)
#define SUB16(a, b, n) SARITH16(a, b, n, -)
#define ADD8(a, b, n)  SARITH8(a, b, n, +)
#define SUB8(a, b, n)  SARITH8(a, b, n, -)
#define PFX s
#define ARITH_GE

#include "op_addsub.h"

/* Unsigned modulo arithmetic.  */
#define ADD16(a, b, n) do { \
    uint32_t sum; \
    sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \
    RESULT(sum, n, 16); \
4077
    if ((sum >> 16) == 1) \
P
pbrook 已提交
4078 4079 4080 4081 4082 4083 4084
        ge |= 3 << (n * 2); \
    } while(0)

#define ADD8(a, b, n) do { \
    uint32_t sum; \
    sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \
    RESULT(sum, n, 8); \
4085 4086
    if ((sum >> 8) == 1) \
        ge |= 1 << n; \
P
pbrook 已提交
4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101
    } while(0)

#define SUB16(a, b, n) do { \
    uint32_t sum; \
    sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \
    RESULT(sum, n, 16); \
    if ((sum >> 16) == 0) \
        ge |= 3 << (n * 2); \
    } while(0)

#define SUB8(a, b, n) do { \
    uint32_t sum; \
    sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \
    RESULT(sum, n, 8); \
    if ((sum >> 8) == 0) \
4102
        ge |= 1 << n; \
P
pbrook 已提交
4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171
    } while(0)

#define PFX u
#define ARITH_GE

#include "op_addsub.h"

/* Halved signed arithmetic.  */
#define ADD16(a, b, n) \
  RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16)
#define SUB16(a, b, n) \
  RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16)
#define ADD8(a, b, n) \
  RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8)
#define SUB8(a, b, n) \
  RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8)
#define PFX sh

#include "op_addsub.h"

/* Halved unsigned arithmetic.  */
#define ADD16(a, b, n) \
  RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16)
#define SUB16(a, b, n) \
  RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16)
#define ADD8(a, b, n) \
  RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8)
#define SUB8(a, b, n) \
  RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8)
#define PFX uh

#include "op_addsub.h"

static inline uint8_t do_usad(uint8_t a, uint8_t b)
{
    if (a > b)
        return a - b;
    else
        return b - a;
}

/* Unsigned sum of absolute byte differences.  */
uint32_t HELPER(usad8)(uint32_t a, uint32_t b)
{
    uint32_t sum;
    sum = do_usad(a, b);
    sum += do_usad(a >> 8, b >> 8);
    sum += do_usad(a >> 16, b >>16);
    sum += do_usad(a >> 24, b >> 24);
    return sum;
}

/* For ARMv6 SEL instruction.  */
uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b)
{
    uint32_t mask;

    mask = 0;
    if (flags & 1)
        mask |= 0xff;
    if (flags & 2)
        mask |= 0xff00;
    if (flags & 4)
        mask |= 0xff0000;
    if (flags & 8)
        mask |= 0xff000000;
    return (a & mask) | (b & ~mask);
}

4172 4173
/* VFP support.  We follow the convention used for VFP instructions:
   Single precision routines have a "s" suffix, double precision a
P
pbrook 已提交
4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186
   "d" suffix.  */

/* Convert host exception flags to vfp form.  */
static inline int vfp_exceptbits_from_host(int host_bits)
{
    int target_bits = 0;

    if (host_bits & float_flag_invalid)
        target_bits |= 1;
    if (host_bits & float_flag_divbyzero)
        target_bits |= 2;
    if (host_bits & float_flag_overflow)
        target_bits |= 4;
4187
    if (host_bits & (float_flag_underflow | float_flag_output_denormal))
P
pbrook 已提交
4188 4189 4190
        target_bits |= 8;
    if (host_bits & float_flag_inexact)
        target_bits |= 0x10;
4191 4192
    if (host_bits & float_flag_input_denormal)
        target_bits |= 0x80;
P
pbrook 已提交
4193 4194 4195
    return target_bits;
}

4196
uint32_t HELPER(vfp_get_fpscr)(CPUARMState *env)
P
pbrook 已提交
4197 4198 4199 4200 4201 4202 4203 4204
{
    int i;
    uint32_t fpscr;

    fpscr = (env->vfp.xregs[ARM_VFP_FPSCR] & 0xffc8ffff)
            | (env->vfp.vec_len << 16)
            | (env->vfp.vec_stride << 20);
    i = get_float_exception_flags(&env->vfp.fp_status);
4205
    i |= get_float_exception_flags(&env->vfp.standard_fp_status);
P
pbrook 已提交
4206 4207 4208 4209
    fpscr |= vfp_exceptbits_from_host(i);
    return fpscr;
}

4210
uint32_t vfp_get_fpscr(CPUARMState *env)
4211 4212 4213 4214
{
    return HELPER(vfp_get_fpscr)(env);
}

P
pbrook 已提交
4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229
/* Convert vfp exception flags to target form.  */
static inline int vfp_exceptbits_to_host(int target_bits)
{
    int host_bits = 0;

    if (target_bits & 1)
        host_bits |= float_flag_invalid;
    if (target_bits & 2)
        host_bits |= float_flag_divbyzero;
    if (target_bits & 4)
        host_bits |= float_flag_overflow;
    if (target_bits & 8)
        host_bits |= float_flag_underflow;
    if (target_bits & 0x10)
        host_bits |= float_flag_inexact;
4230 4231
    if (target_bits & 0x80)
        host_bits |= float_flag_input_denormal;
P
pbrook 已提交
4232 4233 4234
    return host_bits;
}

4235
void HELPER(vfp_set_fpscr)(CPUARMState *env, uint32_t val)
P
pbrook 已提交
4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248
{
    int i;
    uint32_t changed;

    changed = env->vfp.xregs[ARM_VFP_FPSCR];
    env->vfp.xregs[ARM_VFP_FPSCR] = (val & 0xffc8ffff);
    env->vfp.vec_len = (val >> 16) & 7;
    env->vfp.vec_stride = (val >> 20) & 3;

    changed ^= val;
    if (changed & (3 << 22)) {
        i = (val >> 22) & 3;
        switch (i) {
4249
        case FPROUNDING_TIEEVEN:
P
pbrook 已提交
4250 4251
            i = float_round_nearest_even;
            break;
4252
        case FPROUNDING_POSINF:
P
pbrook 已提交
4253 4254
            i = float_round_up;
            break;
4255
        case FPROUNDING_NEGINF:
P
pbrook 已提交
4256 4257
            i = float_round_down;
            break;
4258
        case FPROUNDING_ZERO:
P
pbrook 已提交
4259 4260 4261 4262 4263
            i = float_round_to_zero;
            break;
        }
        set_float_rounding_mode(i, &env->vfp.fp_status);
    }
4264
    if (changed & (1 << 24)) {
4265
        set_flush_to_zero((val & (1 << 24)) != 0, &env->vfp.fp_status);
4266 4267
        set_flush_inputs_to_zero((val & (1 << 24)) != 0, &env->vfp.fp_status);
    }
P
pbrook 已提交
4268 4269
    if (changed & (1 << 25))
        set_default_nan_mode((val & (1 << 25)) != 0, &env->vfp.fp_status);
P
pbrook 已提交
4270

4271
    i = vfp_exceptbits_to_host(val);
P
pbrook 已提交
4272
    set_float_exception_flags(i, &env->vfp.fp_status);
4273
    set_float_exception_flags(0, &env->vfp.standard_fp_status);
P
pbrook 已提交
4274 4275
}

4276
void vfp_set_fpscr(CPUARMState *env, uint32_t val)
4277 4278 4279 4280
{
    HELPER(vfp_set_fpscr)(env, val);
}

P
pbrook 已提交
4281 4282 4283
#define VFP_HELPER(name, p) HELPER(glue(glue(vfp_,name),p))

#define VFP_BINOP(name) \
4284
float32 VFP_HELPER(name, s)(float32 a, float32 b, void *fpstp) \
P
pbrook 已提交
4285
{ \
4286 4287
    float_status *fpst = fpstp; \
    return float32_ ## name(a, b, fpst); \
P
pbrook 已提交
4288
} \
4289
float64 VFP_HELPER(name, d)(float64 a, float64 b, void *fpstp) \
P
pbrook 已提交
4290
{ \
4291 4292
    float_status *fpst = fpstp; \
    return float64_ ## name(a, b, fpst); \
P
pbrook 已提交
4293 4294 4295 4296 4297
}
VFP_BINOP(add)
VFP_BINOP(sub)
VFP_BINOP(mul)
VFP_BINOP(div)
4298 4299 4300 4301
VFP_BINOP(min)
VFP_BINOP(max)
VFP_BINOP(minnum)
VFP_BINOP(maxnum)
P
pbrook 已提交
4302 4303 4304 4305 4306 4307 4308 4309 4310
#undef VFP_BINOP

float32 VFP_HELPER(neg, s)(float32 a)
{
    return float32_chs(a);
}

float64 VFP_HELPER(neg, d)(float64 a)
{
4311
    return float64_chs(a);
P
pbrook 已提交
4312 4313 4314 4315 4316 4317 4318 4319 4320
}

float32 VFP_HELPER(abs, s)(float32 a)
{
    return float32_abs(a);
}

float64 VFP_HELPER(abs, d)(float64 a)
{
4321
    return float64_abs(a);
P
pbrook 已提交
4322 4323
}

4324
float32 VFP_HELPER(sqrt, s)(float32 a, CPUARMState *env)
P
pbrook 已提交
4325 4326 4327 4328
{
    return float32_sqrt(a, &env->vfp.fp_status);
}

4329
float64 VFP_HELPER(sqrt, d)(float64 a, CPUARMState *env)
P
pbrook 已提交
4330 4331 4332 4333 4334 4335
{
    return float64_sqrt(a, &env->vfp.fp_status);
}

/* XXX: check quiet/signaling case */
#define DO_VFP_cmp(p, type) \
4336
void VFP_HELPER(cmp, p)(type a, type b, CPUARMState *env)  \
P
pbrook 已提交
4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347
{ \
    uint32_t flags; \
    switch(type ## _compare_quiet(a, b, &env->vfp.fp_status)) { \
    case 0: flags = 0x6; break; \
    case -1: flags = 0x8; break; \
    case 1: flags = 0x2; break; \
    default: case 2: flags = 0x3; break; \
    } \
    env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
        | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
} \
4348
void VFP_HELPER(cmpe, p)(type a, type b, CPUARMState *env) \
P
pbrook 已提交
4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363
{ \
    uint32_t flags; \
    switch(type ## _compare(a, b, &env->vfp.fp_status)) { \
    case 0: flags = 0x6; break; \
    case -1: flags = 0x8; break; \
    case 1: flags = 0x2; break; \
    default: case 2: flags = 0x3; break; \
    } \
    env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
        | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
}
DO_VFP_cmp(s, float32)
DO_VFP_cmp(d, float64)
#undef DO_VFP_cmp

4364
/* Integer to float and float to integer conversions */
P
pbrook 已提交
4365

4366 4367 4368 4369
#define CONV_ITOF(name, fsz, sign) \
    float##fsz HELPER(name)(uint32_t x, void *fpstp) \
{ \
    float_status *fpst = fpstp; \
4370
    return sign##int32_to_##float##fsz((sign##int32_t)x, fpst); \
P
pbrook 已提交
4371 4372
}

4373 4374 4375 4376 4377 4378 4379 4380 4381
#define CONV_FTOI(name, fsz, sign, round) \
uint32_t HELPER(name)(float##fsz x, void *fpstp) \
{ \
    float_status *fpst = fpstp; \
    if (float##fsz##_is_any_nan(x)) { \
        float_raise(float_flag_invalid, fpst); \
        return 0; \
    } \
    return float##fsz##_to_##sign##int32##round(x, fpst); \
P
pbrook 已提交
4382 4383
}

4384 4385 4386 4387
#define FLOAT_CONVS(name, p, fsz, sign) \
CONV_ITOF(vfp_##name##to##p, fsz, sign) \
CONV_FTOI(vfp_to##name##p, fsz, sign, ) \
CONV_FTOI(vfp_to##name##z##p, fsz, sign, _round_to_zero)
P
pbrook 已提交
4388

4389 4390 4391 4392
FLOAT_CONVS(si, s, 32, )
FLOAT_CONVS(si, d, 64, )
FLOAT_CONVS(ui, s, 32, u)
FLOAT_CONVS(ui, d, 64, u)
P
pbrook 已提交
4393

4394 4395 4396
#undef CONV_ITOF
#undef CONV_FTOI
#undef FLOAT_CONVS
P
pbrook 已提交
4397 4398

/* floating point conversion */
4399
float64 VFP_HELPER(fcvtd, s)(float32 x, CPUARMState *env)
P
pbrook 已提交
4400
{
4401 4402 4403 4404 4405
    float64 r = float32_to_float64(x, &env->vfp.fp_status);
    /* ARM requires that S<->D conversion of any kind of NaN generates
     * a quiet NaN by forcing the most significant frac bit to 1.
     */
    return float64_maybe_silence_nan(r);
P
pbrook 已提交
4406 4407
}

4408
float32 VFP_HELPER(fcvts, d)(float64 x, CPUARMState *env)
P
pbrook 已提交
4409
{
4410 4411 4412 4413 4414
    float32 r =  float64_to_float32(x, &env->vfp.fp_status);
    /* ARM requires that S<->D conversion of any kind of NaN generates
     * a quiet NaN by forcing the most significant frac bit to 1.
     */
    return float32_maybe_silence_nan(r);
P
pbrook 已提交
4415 4416 4417
}

/* VFP3 fixed point conversion.  */
4418
#define VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \
4419 4420
float##fsz HELPER(vfp_##name##to##p)(uint##isz##_t  x, uint32_t shift, \
                                     void *fpstp) \
P
pbrook 已提交
4421
{ \
4422
    float_status *fpst = fpstp; \
4423
    float##fsz tmp; \
4424
    tmp = itype##_to_##float##fsz(x, fpst); \
4425
    return float##fsz##_scalbn(tmp, -(int)shift, fpst); \
4426 4427
}

4428 4429 4430 4431 4432
/* Notice that we want only input-denormal exception flags from the
 * scalbn operation: the other possible flags (overflow+inexact if
 * we overflow to infinity, output-denormal) aren't correct for the
 * complete scale-and-convert operation.
 */
4433 4434 4435 4436
#define VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, round) \
uint##isz##_t HELPER(vfp_to##name##p##round)(float##fsz x, \
                                             uint32_t shift, \
                                             void *fpstp) \
P
pbrook 已提交
4437
{ \
4438
    float_status *fpst = fpstp; \
4439
    int old_exc_flags = get_float_exception_flags(fpst); \
4440 4441
    float##fsz tmp; \
    if (float##fsz##_is_any_nan(x)) { \
4442
        float_raise(float_flag_invalid, fpst); \
4443
        return 0; \
4444
    } \
4445
    tmp = float##fsz##_scalbn(x, shift, fpst); \
4446 4447 4448
    old_exc_flags |= get_float_exception_flags(fpst) \
        & float_flag_input_denormal; \
    set_float_exception_flags(old_exc_flags, fpst); \
4449
    return float##fsz##_to_##itype##round(tmp, fpst); \
4450 4451
}

4452 4453
#define VFP_CONV_FIX(name, p, fsz, isz, itype)                   \
VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype)                     \
4454 4455 4456 4457 4458 4459
VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, _round_to_zero) \
VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, )

#define VFP_CONV_FIX_A64(name, p, fsz, isz, itype)               \
VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype)                     \
VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, )
4460

4461 4462
VFP_CONV_FIX(sh, d, 64, 64, int16)
VFP_CONV_FIX(sl, d, 64, 64, int32)
4463
VFP_CONV_FIX_A64(sq, d, 64, 64, int64)
4464 4465
VFP_CONV_FIX(uh, d, 64, 64, uint16)
VFP_CONV_FIX(ul, d, 64, 64, uint32)
4466
VFP_CONV_FIX_A64(uq, d, 64, 64, uint64)
4467 4468
VFP_CONV_FIX(sh, s, 32, 32, int16)
VFP_CONV_FIX(sl, s, 32, 32, int32)
4469
VFP_CONV_FIX_A64(sq, s, 32, 64, int64)
4470 4471
VFP_CONV_FIX(uh, s, 32, 32, uint16)
VFP_CONV_FIX(ul, s, 32, 32, uint32)
4472
VFP_CONV_FIX_A64(uq, s, 32, 64, uint64)
P
pbrook 已提交
4473
#undef VFP_CONV_FIX
4474 4475
#undef VFP_CONV_FIX_FLOAT
#undef VFP_CONV_FLOAT_FIX_ROUND
P
pbrook 已提交
4476

4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489
/* Set the current fp rounding mode and return the old one.
 * The argument is a softfloat float_round_ value.
 */
uint32_t HELPER(set_rmode)(uint32_t rmode, CPUARMState *env)
{
    float_status *fp_status = &env->vfp.fp_status;

    uint32_t prev_rmode = get_float_rounding_mode(fp_status);
    set_float_rounding_mode(rmode, fp_status);

    return prev_rmode;
}

4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506
/* Set the current fp rounding mode in the standard fp status and return
 * the old one. This is for NEON instructions that need to change the
 * rounding mode but wish to use the standard FPSCR values for everything
 * else. Always set the rounding mode back to the correct value after
 * modifying it.
 * The argument is a softfloat float_round_ value.
 */
uint32_t HELPER(set_neon_rmode)(uint32_t rmode, CPUARMState *env)
{
    float_status *fp_status = &env->vfp.standard_fp_status;

    uint32_t prev_rmode = get_float_rounding_mode(fp_status);
    set_float_rounding_mode(rmode, fp_status);

    return prev_rmode;
}

P
Paul Brook 已提交
4507
/* Half precision conversions.  */
4508
static float32 do_fcvt_f16_to_f32(uint32_t a, CPUARMState *env, float_status *s)
P
Paul Brook 已提交
4509 4510
{
    int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
4511 4512 4513 4514 4515
    float32 r = float16_to_float32(make_float16(a), ieee, s);
    if (ieee) {
        return float32_maybe_silence_nan(r);
    }
    return r;
P
Paul Brook 已提交
4516 4517
}

4518
static uint32_t do_fcvt_f32_to_f16(float32 a, CPUARMState *env, float_status *s)
P
Paul Brook 已提交
4519 4520
{
    int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
4521 4522 4523 4524 4525
    float16 r = float32_to_float16(a, ieee, s);
    if (ieee) {
        r = float16_maybe_silence_nan(r);
    }
    return float16_val(r);
P
Paul Brook 已提交
4526 4527
}

4528
float32 HELPER(neon_fcvt_f16_to_f32)(uint32_t a, CPUARMState *env)
4529 4530 4531 4532
{
    return do_fcvt_f16_to_f32(a, env, &env->vfp.standard_fp_status);
}

4533
uint32_t HELPER(neon_fcvt_f32_to_f16)(float32 a, CPUARMState *env)
4534 4535 4536 4537
{
    return do_fcvt_f32_to_f16(a, env, &env->vfp.standard_fp_status);
}

4538
float32 HELPER(vfp_fcvt_f16_to_f32)(uint32_t a, CPUARMState *env)
4539 4540 4541 4542
{
    return do_fcvt_f16_to_f32(a, env, &env->vfp.fp_status);
}

4543
uint32_t HELPER(vfp_fcvt_f32_to_f16)(float32 a, CPUARMState *env)
4544 4545 4546 4547
{
    return do_fcvt_f32_to_f16(a, env, &env->vfp.fp_status);
}

4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567
float64 HELPER(vfp_fcvt_f16_to_f64)(uint32_t a, CPUARMState *env)
{
    int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
    float64 r = float16_to_float64(make_float16(a), ieee, &env->vfp.fp_status);
    if (ieee) {
        return float64_maybe_silence_nan(r);
    }
    return r;
}

uint32_t HELPER(vfp_fcvt_f64_to_f16)(float64 a, CPUARMState *env)
{
    int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
    float16 r = float64_to_float16(a, ieee, &env->vfp.fp_status);
    if (ieee) {
        r = float16_maybe_silence_nan(r);
    }
    return float16_val(r);
}

4568
#define float32_two make_float32(0x40000000)
4569 4570
#define float32_three make_float32(0x40400000)
#define float32_one_point_five make_float32(0x3fc00000)
4571

4572
float32 HELPER(recps_f32)(float32 a, float32 b, CPUARMState *env)
P
pbrook 已提交
4573
{
4574 4575 4576
    float_status *s = &env->vfp.standard_fp_status;
    if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) ||
        (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) {
4577 4578 4579
        if (!(float32_is_zero(a) || float32_is_zero(b))) {
            float_raise(float_flag_input_denormal, s);
        }
4580 4581 4582
        return float32_two;
    }
    return float32_sub(float32_two, float32_mul(a, b, s), s);
P
pbrook 已提交
4583 4584
}

4585
float32 HELPER(rsqrts_f32)(float32 a, float32 b, CPUARMState *env)
P
pbrook 已提交
4586
{
4587
    float_status *s = &env->vfp.standard_fp_status;
4588 4589 4590
    float32 product;
    if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) ||
        (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) {
4591 4592 4593
        if (!(float32_is_zero(a) || float32_is_zero(b))) {
            float_raise(float_flag_input_denormal, s);
        }
4594
        return float32_one_point_five;
4595
    }
4596 4597
    product = float32_mul(a, b, s);
    return float32_div(float32_sub(float32_three, product, s), float32_two, s);
P
pbrook 已提交
4598 4599
}

P
pbrook 已提交
4600 4601
/* NEON helpers.  */

4602 4603 4604 4605
/* Constants 256 and 512 are used in some helpers; we avoid relying on
 * int->float conversions at run-time.  */
#define float64_256 make_float64(0x4070000000000000LL)
#define float64_512 make_float64(0x4080000000000000LL)
4606 4607
#define float32_maxnorm make_float32(0x7f7fffff)
#define float64_maxnorm make_float64(0x7fefffffffffffffLL)
4608

4609 4610 4611 4612
/* Reciprocal functions
 *
 * The algorithm that must be used to calculate the estimate
 * is specified by the ARM ARM, see FPRecipEstimate()
4613
 */
4614 4615

static float64 recip_estimate(float64 a, float_status *real_fp_status)
4616
{
4617 4618 4619
    /* These calculations mustn't set any fp exception flags,
     * so we use a local copy of the fp_status.
     */
4620
    float_status dummy_status = *real_fp_status;
4621
    float_status *s = &dummy_status;
4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640
    /* q = (int)(a * 512.0) */
    float64 q = float64_mul(float64_512, a, s);
    int64_t q_int = float64_to_int64_round_to_zero(q, s);

    /* r = 1.0 / (((double)q + 0.5) / 512.0) */
    q = int64_to_float64(q_int, s);
    q = float64_add(q, float64_half, s);
    q = float64_div(q, float64_512, s);
    q = float64_div(float64_one, q, s);

    /* s = (int)(256.0 * r + 0.5) */
    q = float64_mul(q, float64_256, s);
    q = float64_add(q, float64_half, s);
    q_int = float64_to_int64_round_to_zero(q, s);

    /* return (double)s / 256.0 */
    return float64_div(int64_to_float64(q_int, s), float64_256, s);
}

4641 4642
/* Common wrapper to call recip_estimate */
static float64 call_recip_estimate(float64 num, int off, float_status *fpst)
P
pbrook 已提交
4643
{
4644 4645 4646 4647 4648
    uint64_t val64 = float64_val(num);
    uint64_t frac = extract64(val64, 0, 52);
    int64_t exp = extract64(val64, 52, 11);
    uint64_t sbit;
    float64 scaled, estimate;
4649

4650 4651 4652 4653 4654 4655 4656 4657 4658
    /* Generate the scaled number for the estimate function */
    if (exp == 0) {
        if (extract64(frac, 51, 1) == 0) {
            exp = -1;
            frac = extract64(frac, 0, 50) << 2;
        } else {
            frac = extract64(frac, 0, 51) << 1;
        }
    }
4659

4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715
    /* scaled = '0' : '01111111110' : fraction<51:44> : Zeros(44); */
    scaled = make_float64((0x3feULL << 52)
                          | extract64(frac, 44, 8) << 44);

    estimate = recip_estimate(scaled, fpst);

    /* Build new result */
    val64 = float64_val(estimate);
    sbit = 0x8000000000000000ULL & val64;
    exp = off - exp;
    frac = extract64(val64, 0, 52);

    if (exp == 0) {
        frac = 1ULL << 51 | extract64(frac, 1, 51);
    } else if (exp == -1) {
        frac = 1ULL << 50 | extract64(frac, 2, 50);
        exp = 0;
    }

    return make_float64(sbit | (exp << 52) | frac);
}

static bool round_to_inf(float_status *fpst, bool sign_bit)
{
    switch (fpst->float_rounding_mode) {
    case float_round_nearest_even: /* Round to Nearest */
        return true;
    case float_round_up: /* Round to +Inf */
        return !sign_bit;
    case float_round_down: /* Round to -Inf */
        return sign_bit;
    case float_round_to_zero: /* Round to Zero */
        return false;
    }

    g_assert_not_reached();
}

float32 HELPER(recpe_f32)(float32 input, void *fpstp)
{
    float_status *fpst = fpstp;
    float32 f32 = float32_squash_input_denormal(input, fpst);
    uint32_t f32_val = float32_val(f32);
    uint32_t f32_sbit = 0x80000000ULL & f32_val;
    int32_t f32_exp = extract32(f32_val, 23, 8);
    uint32_t f32_frac = extract32(f32_val, 0, 23);
    float64 f64, r64;
    uint64_t r64_val;
    int64_t r64_exp;
    uint64_t r64_frac;

    if (float32_is_any_nan(f32)) {
        float32 nan = f32;
        if (float32_is_signaling_nan(f32)) {
            float_raise(float_flag_invalid, fpst);
            nan = float32_maybe_silence_nan(f32);
4716
        }
4717 4718
        if (fpst->default_nan_mode) {
            nan =  float32_default_nan;
4719
        }
4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736
        return nan;
    } else if (float32_is_infinity(f32)) {
        return float32_set_sign(float32_zero, float32_is_neg(f32));
    } else if (float32_is_zero(f32)) {
        float_raise(float_flag_divbyzero, fpst);
        return float32_set_sign(float32_infinity, float32_is_neg(f32));
    } else if ((f32_val & ~(1ULL << 31)) < (1ULL << 21)) {
        /* Abs(value) < 2.0^-128 */
        float_raise(float_flag_overflow | float_flag_inexact, fpst);
        if (round_to_inf(fpst, f32_sbit)) {
            return float32_set_sign(float32_infinity, float32_is_neg(f32));
        } else {
            return float32_set_sign(float32_maxnorm, float32_is_neg(f32));
        }
    } else if (f32_exp >= 253 && fpst->flush_to_zero) {
        float_raise(float_flag_underflow, fpst);
        return float32_set_sign(float32_zero, float32_is_neg(f32));
4737 4738 4739
    }


4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791
    f64 = make_float64(((int64_t)(f32_exp) << 52) | (int64_t)(f32_frac) << 29);
    r64 = call_recip_estimate(f64, 253, fpst);
    r64_val = float64_val(r64);
    r64_exp = extract64(r64_val, 52, 11);
    r64_frac = extract64(r64_val, 0, 52);

    /* result = sign : result_exp<7:0> : fraction<51:29>; */
    return make_float32(f32_sbit |
                        (r64_exp & 0xff) << 23 |
                        extract64(r64_frac, 29, 24));
}

float64 HELPER(recpe_f64)(float64 input, void *fpstp)
{
    float_status *fpst = fpstp;
    float64 f64 = float64_squash_input_denormal(input, fpst);
    uint64_t f64_val = float64_val(f64);
    uint64_t f64_sbit = 0x8000000000000000ULL & f64_val;
    int64_t f64_exp = extract64(f64_val, 52, 11);
    float64 r64;
    uint64_t r64_val;
    int64_t r64_exp;
    uint64_t r64_frac;

    /* Deal with any special cases */
    if (float64_is_any_nan(f64)) {
        float64 nan = f64;
        if (float64_is_signaling_nan(f64)) {
            float_raise(float_flag_invalid, fpst);
            nan = float64_maybe_silence_nan(f64);
        }
        if (fpst->default_nan_mode) {
            nan =  float64_default_nan;
        }
        return nan;
    } else if (float64_is_infinity(f64)) {
        return float64_set_sign(float64_zero, float64_is_neg(f64));
    } else if (float64_is_zero(f64)) {
        float_raise(float_flag_divbyzero, fpst);
        return float64_set_sign(float64_infinity, float64_is_neg(f64));
    } else if ((f64_val & ~(1ULL << 63)) < (1ULL << 50)) {
        /* Abs(value) < 2.0^-1024 */
        float_raise(float_flag_overflow | float_flag_inexact, fpst);
        if (round_to_inf(fpst, f64_sbit)) {
            return float64_set_sign(float64_infinity, float64_is_neg(f64));
        } else {
            return float64_set_sign(float64_maxnorm, float64_is_neg(f64));
        }
    } else if (f64_exp >= 1023 && fpst->flush_to_zero) {
        float_raise(float_flag_underflow, fpst);
        return float64_set_sign(float64_zero, float64_is_neg(f64));
    }
4792

4793 4794 4795 4796
    r64 = call_recip_estimate(f64, 2045, fpst);
    r64_val = float64_val(r64);
    r64_exp = extract64(r64_val, 52, 11);
    r64_frac = extract64(r64_val, 0, 52);
4797

4798 4799 4800 4801
    /* result = sign : result_exp<10:0> : fraction<51:0> */
    return make_float64(f64_sbit |
                        ((r64_exp & 0x7ff) << 52) |
                        r64_frac);
P
pbrook 已提交
4802 4803
}

4804 4805 4806
/* The algorithm that must be used to calculate the estimate
 * is specified by the ARM ARM.
 */
4807
static float64 recip_sqrt_estimate(float64 a, float_status *real_fp_status)
4808
{
4809 4810 4811
    /* These calculations mustn't set any fp exception flags,
     * so we use a local copy of the fp_status.
     */
4812
    float_status dummy_status = *real_fp_status;
4813
    float_status *s = &dummy_status;
4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858
    float64 q;
    int64_t q_int;

    if (float64_lt(a, float64_half, s)) {
        /* range 0.25 <= a < 0.5 */

        /* a in units of 1/512 rounded down */
        /* q0 = (int)(a * 512.0);  */
        q = float64_mul(float64_512, a, s);
        q_int = float64_to_int64_round_to_zero(q, s);

        /* reciprocal root r */
        /* r = 1.0 / sqrt(((double)q0 + 0.5) / 512.0);  */
        q = int64_to_float64(q_int, s);
        q = float64_add(q, float64_half, s);
        q = float64_div(q, float64_512, s);
        q = float64_sqrt(q, s);
        q = float64_div(float64_one, q, s);
    } else {
        /* range 0.5 <= a < 1.0 */

        /* a in units of 1/256 rounded down */
        /* q1 = (int)(a * 256.0); */
        q = float64_mul(float64_256, a, s);
        int64_t q_int = float64_to_int64_round_to_zero(q, s);

        /* reciprocal root r */
        /* r = 1.0 /sqrt(((double)q1 + 0.5) / 256); */
        q = int64_to_float64(q_int, s);
        q = float64_add(q, float64_half, s);
        q = float64_div(q, float64_256, s);
        q = float64_sqrt(q, s);
        q = float64_div(float64_one, q, s);
    }
    /* r in units of 1/256 rounded to nearest */
    /* s = (int)(256.0 * r + 0.5); */

    q = float64_mul(q, float64_256,s );
    q = float64_add(q, float64_half, s);
    q_int = float64_to_int64_round_to_zero(q, s);

    /* return (double)s / 256.0;*/
    return float64_div(int64_to_float64(q_int, s), float64_256, s);
}

4859
float32 HELPER(rsqrte_f32)(float32 input, void *fpstp)
P
pbrook 已提交
4860
{
4861 4862 4863 4864 4865 4866 4867 4868
    float_status *s = fpstp;
    float32 f32 = float32_squash_input_denormal(input, s);
    uint32_t val = float32_val(f32);
    uint32_t f32_sbit = 0x80000000 & val;
    int32_t f32_exp = extract32(val, 23, 8);
    uint32_t f32_frac = extract32(val, 0, 23);
    uint64_t f64_frac;
    uint64_t val64;
4869 4870 4871
    int result_exp;
    float64 f64;

4872 4873 4874
    if (float32_is_any_nan(f32)) {
        float32 nan = f32;
        if (float32_is_signaling_nan(f32)) {
4875
            float_raise(float_flag_invalid, s);
4876
            nan = float32_maybe_silence_nan(f32);
4877
        }
4878 4879
        if (s->default_nan_mode) {
            nan =  float32_default_nan;
4880
        }
4881 4882
        return nan;
    } else if (float32_is_zero(f32)) {
4883
        float_raise(float_flag_divbyzero, s);
4884 4885
        return float32_set_sign(float32_infinity, float32_is_neg(f32));
    } else if (float32_is_neg(f32)) {
4886 4887
        float_raise(float_flag_invalid, s);
        return float32_default_nan;
4888
    } else if (float32_is_infinity(f32)) {
4889 4890 4891
        return float32_zero;
    }

4892
    /* Scale and normalize to a double-precision value between 0.25 and 1.0,
4893
     * preserving the parity of the exponent.  */
4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905

    f64_frac = ((uint64_t) f32_frac) << 29;
    if (f32_exp == 0) {
        while (extract64(f64_frac, 51, 1) == 0) {
            f64_frac = f64_frac << 1;
            f32_exp = f32_exp-1;
        }
        f64_frac = extract64(f64_frac, 0, 51) << 1;
    }

    if (extract64(f32_exp, 0, 1) == 0) {
        f64 = make_float64(((uint64_t) f32_sbit) << 32
4906
                           | (0x3feULL << 52)
4907
                           | f64_frac);
4908
    } else {
4909
        f64 = make_float64(((uint64_t) f32_sbit) << 32
4910
                           | (0x3fdULL << 52)
4911
                           | f64_frac);
4912 4913
    }

4914
    result_exp = (380 - f32_exp) / 2;
4915

4916
    f64 = recip_sqrt_estimate(f64, s);
4917 4918 4919

    val64 = float64_val(f64);

4920
    val = ((result_exp & 0xff) << 23)
4921 4922
        | ((val64 >> 29)  & 0x7fffff);
    return make_float32(val);
P
pbrook 已提交
4923 4924
}

4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987
float64 HELPER(rsqrte_f64)(float64 input, void *fpstp)
{
    float_status *s = fpstp;
    float64 f64 = float64_squash_input_denormal(input, s);
    uint64_t val = float64_val(f64);
    uint64_t f64_sbit = 0x8000000000000000ULL & val;
    int64_t f64_exp = extract64(val, 52, 11);
    uint64_t f64_frac = extract64(val, 0, 52);
    int64_t result_exp;
    uint64_t result_frac;

    if (float64_is_any_nan(f64)) {
        float64 nan = f64;
        if (float64_is_signaling_nan(f64)) {
            float_raise(float_flag_invalid, s);
            nan = float64_maybe_silence_nan(f64);
        }
        if (s->default_nan_mode) {
            nan =  float64_default_nan;
        }
        return nan;
    } else if (float64_is_zero(f64)) {
        float_raise(float_flag_divbyzero, s);
        return float64_set_sign(float64_infinity, float64_is_neg(f64));
    } else if (float64_is_neg(f64)) {
        float_raise(float_flag_invalid, s);
        return float64_default_nan;
    } else if (float64_is_infinity(f64)) {
        return float64_zero;
    }

    /* Scale and normalize to a double-precision value between 0.25 and 1.0,
     * preserving the parity of the exponent.  */

    if (f64_exp == 0) {
        while (extract64(f64_frac, 51, 1) == 0) {
            f64_frac = f64_frac << 1;
            f64_exp = f64_exp - 1;
        }
        f64_frac = extract64(f64_frac, 0, 51) << 1;
    }

    if (extract64(f64_exp, 0, 1) == 0) {
        f64 = make_float64(f64_sbit
                           | (0x3feULL << 52)
                           | f64_frac);
    } else {
        f64 = make_float64(f64_sbit
                           | (0x3fdULL << 52)
                           | f64_frac);
    }

    result_exp = (3068 - f64_exp) / 2;

    f64 = recip_sqrt_estimate(f64, s);

    result_frac = extract64(float64_val(f64), 0, 52);

    return make_float64(f64_sbit |
                        ((result_exp & 0x7ff) << 52) |
                        result_frac);
}

4988
uint32_t HELPER(recpe_u32)(uint32_t a, void *fpstp)
P
pbrook 已提交
4989
{
4990
    float_status *s = fpstp;
4991 4992 4993 4994 4995 4996 4997 4998 4999
    float64 f64;

    if ((a & 0x80000000) == 0) {
        return 0xffffffff;
    }

    f64 = make_float64((0x3feULL << 52)
                       | ((int64_t)(a & 0x7fffffff) << 21));

5000
    f64 = recip_estimate(f64, s);
5001 5002

    return 0x80000000 | ((float64_val(f64) >> 21) & 0x7fffffff);
P
pbrook 已提交
5003 5004
}

5005
uint32_t HELPER(rsqrte_u32)(uint32_t a, void *fpstp)
P
pbrook 已提交
5006
{
5007
    float_status *fpst = fpstp;
5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021
    float64 f64;

    if ((a & 0xc0000000) == 0) {
        return 0xffffffff;
    }

    if (a & 0x80000000) {
        f64 = make_float64((0x3feULL << 52)
                           | ((uint64_t)(a & 0x7fffffff) << 21));
    } else { /* bits 31-30 == '01' */
        f64 = make_float64((0x3fdULL << 52)
                           | ((uint64_t)(a & 0x3fffffff) << 22));
    }

5022
    f64 = recip_sqrt_estimate(f64, fpst);
5023 5024

    return 0x80000000 | ((float64_val(f64) >> 21) & 0x7fffffff);
P
pbrook 已提交
5025
}
5026

5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038
/* VFPv4 fused multiply-accumulate */
float32 VFP_HELPER(muladd, s)(float32 a, float32 b, float32 c, void *fpstp)
{
    float_status *fpst = fpstp;
    return float32_muladd(a, b, c, 0, fpst);
}

float64 VFP_HELPER(muladd, d)(float64 a, float64 b, float64 c, void *fpstp)
{
    float_status *fpst = fpstp;
    return float64_muladd(a, b, c, 0, fpst);
}
5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083

/* ARMv8 round to integral */
float32 HELPER(rints_exact)(float32 x, void *fp_status)
{
    return float32_round_to_int(x, fp_status);
}

float64 HELPER(rintd_exact)(float64 x, void *fp_status)
{
    return float64_round_to_int(x, fp_status);
}

float32 HELPER(rints)(float32 x, void *fp_status)
{
    int old_flags = get_float_exception_flags(fp_status), new_flags;
    float32 ret;

    ret = float32_round_to_int(x, fp_status);

    /* Suppress any inexact exceptions the conversion produced */
    if (!(old_flags & float_flag_inexact)) {
        new_flags = get_float_exception_flags(fp_status);
        set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status);
    }

    return ret;
}

float64 HELPER(rintd)(float64 x, void *fp_status)
{
    int old_flags = get_float_exception_flags(fp_status), new_flags;
    float64 ret;

    ret = float64_round_to_int(x, fp_status);

    new_flags = get_float_exception_flags(fp_status);

    /* Suppress any inexact exceptions the conversion produced */
    if (!(old_flags & float_flag_inexact)) {
        new_flags = get_float_exception_flags(fp_status);
        set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status);
    }

    return ret;
}
5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111

/* Convert ARM rounding mode to softfloat */
int arm_rmode_to_sf(int rmode)
{
    switch (rmode) {
    case FPROUNDING_TIEAWAY:
        rmode = float_round_ties_away;
        break;
    case FPROUNDING_ODD:
        /* FIXME: add support for TIEAWAY and ODD */
        qemu_log_mask(LOG_UNIMP, "arm: unimplemented rounding mode: %d\n",
                      rmode);
    case FPROUNDING_TIEEVEN:
    default:
        rmode = float_round_nearest_even;
        break;
    case FPROUNDING_POSINF:
        rmode = float_round_up;
        break;
    case FPROUNDING_NEGINF:
        rmode = float_round_down;
        break;
    case FPROUNDING_ZERO:
        rmode = float_round_to_zero;
        break;
    }
    return rmode;
}
5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148

static void crc_init_buffer(uint8_t *buf, uint32_t val, uint32_t bytes)
{
    memset(buf, 0, 4);

    if (bytes == 1) {
        buf[0] = val & 0xff;
    } else if (bytes == 2) {
        buf[0] = val & 0xff;
        buf[1] = (val >> 8) & 0xff;
    } else {
        buf[0] = val & 0xff;
        buf[1] = (val >> 8) & 0xff;
        buf[2] = (val >> 16) & 0xff;
        buf[3] = (val >> 24) & 0xff;
    }
}

uint32_t HELPER(crc32)(uint32_t acc, uint32_t val, uint32_t bytes)
{
    uint8_t buf[4];

    crc_init_buffer(buf, val, bytes);

    /* zlib crc32 converts the accumulator and output to one's complement.  */
    return crc32(acc ^ 0xffffffff, buf, bytes) ^ 0xffffffff;
}

uint32_t HELPER(crc32c)(uint32_t acc, uint32_t val, uint32_t bytes)
{
    uint8_t buf[4];

    crc_init_buffer(buf, val, bytes);

    /* Linux crc32c converts the output to one's complement.  */
    return crc32c(acc, buf, bytes) ^ 0xffffffff;
}