helper.c 277.5 KB
Newer Older
B
bellard 已提交
1
#include "cpu.h"
2
#include "internals.h"
3
#include "exec/gdbstub.h"
4
#include "exec/helper-proto.h"
5
#include "qemu/host-utils.h"
6
#include "sysemu/arch_init.h"
7
#include "sysemu/sysemu.h"
8
#include "qemu/bitops.h"
9
#include "qemu/crc32c.h"
P
Paolo Bonzini 已提交
10
#include "exec/cpu_ldst.h"
11
#include "arm_ldst.h"
12
#include <zlib.h> /* For crc32 */
13
#include "exec/semihost.h"
P
Peter Maydell 已提交
14

15
#ifndef CONFIG_USER_ONLY
16 17 18 19
static inline bool get_phys_addr(CPUARMState *env, target_ulong address,
                                 int access_type, ARMMMUIdx mmu_idx,
                                 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
                                 target_ulong *page_size, uint32_t *fsr);
20 21 22 23 24

/* Definitions for the PMCCNTR and PMCR registers */
#define PMCRD   0x8
#define PMCRC   0x4
#define PMCRE   0x1
25 26
#endif

27
static int vfp_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg)
P
pbrook 已提交
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53
{
    int nregs;

    /* VFP data registers are always little-endian.  */
    nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16;
    if (reg < nregs) {
        stfq_le_p(buf, env->vfp.regs[reg]);
        return 8;
    }
    if (arm_feature(env, ARM_FEATURE_NEON)) {
        /* Aliases for Q regs.  */
        nregs += 16;
        if (reg < nregs) {
            stfq_le_p(buf, env->vfp.regs[(reg - 32) * 2]);
            stfq_le_p(buf + 8, env->vfp.regs[(reg - 32) * 2 + 1]);
            return 16;
        }
    }
    switch (reg - nregs) {
    case 0: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSID]); return 4;
    case 1: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSCR]); return 4;
    case 2: stl_p(buf, env->vfp.xregs[ARM_VFP_FPEXC]); return 4;
    }
    return 0;
}

54
static int vfp_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg)
P
pbrook 已提交
55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73
{
    int nregs;

    nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16;
    if (reg < nregs) {
        env->vfp.regs[reg] = ldfq_le_p(buf);
        return 8;
    }
    if (arm_feature(env, ARM_FEATURE_NEON)) {
        nregs += 16;
        if (reg < nregs) {
            env->vfp.regs[(reg - 32) * 2] = ldfq_le_p(buf);
            env->vfp.regs[(reg - 32) * 2 + 1] = ldfq_le_p(buf + 8);
            return 16;
        }
    }
    switch (reg - nregs) {
    case 0: env->vfp.xregs[ARM_VFP_FPSID] = ldl_p(buf); return 4;
    case 1: env->vfp.xregs[ARM_VFP_FPSCR] = ldl_p(buf); return 4;
74
    case 2: env->vfp.xregs[ARM_VFP_FPEXC] = ldl_p(buf) & (1 << 30); return 4;
P
pbrook 已提交
75 76 77 78
    }
    return 0;
}

79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120
static int aarch64_fpu_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg)
{
    switch (reg) {
    case 0 ... 31:
        /* 128 bit FP register */
        stfq_le_p(buf, env->vfp.regs[reg * 2]);
        stfq_le_p(buf + 8, env->vfp.regs[reg * 2 + 1]);
        return 16;
    case 32:
        /* FPSR */
        stl_p(buf, vfp_get_fpsr(env));
        return 4;
    case 33:
        /* FPCR */
        stl_p(buf, vfp_get_fpcr(env));
        return 4;
    default:
        return 0;
    }
}

static int aarch64_fpu_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg)
{
    switch (reg) {
    case 0 ... 31:
        /* 128 bit FP register */
        env->vfp.regs[reg * 2] = ldfq_le_p(buf);
        env->vfp.regs[reg * 2 + 1] = ldfq_le_p(buf + 8);
        return 16;
    case 32:
        /* FPSR */
        vfp_set_fpsr(env, ldl_p(buf));
        return 4;
    case 33:
        /* FPCR */
        vfp_set_fpcr(env, ldl_p(buf));
        return 4;
    default:
        return 0;
    }
}

121
static uint64_t raw_read(CPUARMState *env, const ARMCPRegInfo *ri)
122
{
123
    assert(ri->fieldoffset);
124
    if (cpreg_field_is_64bit(ri)) {
125
        return CPREG_FIELD64(env, ri);
126
    } else {
127
        return CPREG_FIELD32(env, ri);
128
    }
129 130
}

131 132
static void raw_write(CPUARMState *env, const ARMCPRegInfo *ri,
                      uint64_t value)
133
{
134
    assert(ri->fieldoffset);
135
    if (cpreg_field_is_64bit(ri)) {
136 137 138 139
        CPREG_FIELD64(env, ri) = value;
    } else {
        CPREG_FIELD32(env, ri) = value;
    }
140 141
}

F
Fabian Aggeler 已提交
142 143 144 145 146
static void *raw_ptr(CPUARMState *env, const ARMCPRegInfo *ri)
{
    return (char *)env + ri->fieldoffset;
}

147
uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri)
148
{
149
    /* Raw read of a coprocessor register (as needed for migration, etc). */
150
    if (ri->type & ARM_CP_CONST) {
151
        return ri->resetvalue;
152
    } else if (ri->raw_readfn) {
153
        return ri->raw_readfn(env, ri);
154
    } else if (ri->readfn) {
155
        return ri->readfn(env, ri);
156
    } else {
157
        return raw_read(env, ri);
158 159 160
    }
}

161
static void write_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri,
162
                             uint64_t v)
163 164 165 166 167 168 169
{
    /* Raw write of a coprocessor register (as needed for migration, etc).
     * Note that constant registers are treated as write-ignored; the
     * caller should check for success by whether a readback gives the
     * value written.
     */
    if (ri->type & ARM_CP_CONST) {
170
        return;
171
    } else if (ri->raw_writefn) {
172
        ri->raw_writefn(env, ri, v);
173
    } else if (ri->writefn) {
174
        ri->writefn(env, ri, v);
175
    } else {
176
        raw_write(env, ri, v);
177 178 179
    }
}

180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200
static bool raw_accessors_invalid(const ARMCPRegInfo *ri)
{
   /* Return true if the regdef would cause an assertion if you called
    * read_raw_cp_reg() or write_raw_cp_reg() on it (ie if it is a
    * program bug for it not to have the NO_RAW flag).
    * NB that returning false here doesn't necessarily mean that calling
    * read/write_raw_cp_reg() is safe, because we can't distinguish "has
    * read/write access functions which are safe for raw use" from "has
    * read/write access functions which have side effects but has forgotten
    * to provide raw access functions".
    * The tests here line up with the conditions in read/write_raw_cp_reg()
    * and assertions in raw_read()/raw_write().
    */
    if ((ri->type & ARM_CP_CONST) ||
        ri->fieldoffset ||
        ((ri->raw_writefn || ri->writefn) && (ri->raw_readfn || ri->readfn))) {
        return false;
    }
    return true;
}

201 202 203 204 205 206 207 208 209
bool write_cpustate_to_list(ARMCPU *cpu)
{
    /* Write the coprocessor state from cpu->env to the (index,value) list. */
    int i;
    bool ok = true;

    for (i = 0; i < cpu->cpreg_array_len; i++) {
        uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
        const ARMCPRegInfo *ri;
210

211
        ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
212 213 214 215
        if (!ri) {
            ok = false;
            continue;
        }
216
        if (ri->type & ARM_CP_NO_RAW) {
217 218
            continue;
        }
219
        cpu->cpreg_values[i] = read_raw_cp_reg(&cpu->env, ri);
220 221 222 223 224 225 226 227 228 229 230 231 232 233
    }
    return ok;
}

bool write_list_to_cpustate(ARMCPU *cpu)
{
    int i;
    bool ok = true;

    for (i = 0; i < cpu->cpreg_array_len; i++) {
        uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
        uint64_t v = cpu->cpreg_values[i];
        const ARMCPRegInfo *ri;

234
        ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
235 236 237 238
        if (!ri) {
            ok = false;
            continue;
        }
239
        if (ri->type & ARM_CP_NO_RAW) {
240 241 242 243 244 245
            continue;
        }
        /* Write value and confirm it reads back as written
         * (to catch read-only registers and partially read-only
         * registers where the incoming migration value doesn't match)
         */
246 247
        write_raw_cp_reg(&cpu->env, ri, v);
        if (read_raw_cp_reg(&cpu->env, ri) != v) {
248 249 250 251 252 253 254 255 256 257 258 259 260
            ok = false;
        }
    }
    return ok;
}

static void add_cpreg_to_list(gpointer key, gpointer opaque)
{
    ARMCPU *cpu = opaque;
    uint64_t regidx;
    const ARMCPRegInfo *ri;

    regidx = *(uint32_t *)key;
261
    ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
262

263
    if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) {
264 265 266 267 268 269 270 271 272 273 274 275 276
        cpu->cpreg_indexes[cpu->cpreg_array_len] = cpreg_to_kvm_id(regidx);
        /* The value array need not be initialized at this point */
        cpu->cpreg_array_len++;
    }
}

static void count_cpreg(gpointer key, gpointer opaque)
{
    ARMCPU *cpu = opaque;
    uint64_t regidx;
    const ARMCPRegInfo *ri;

    regidx = *(uint32_t *)key;
277
    ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
278

279
    if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) {
280 281 282 283 284 285
        cpu->cpreg_array_len++;
    }
}

static gint cpreg_key_compare(gconstpointer a, gconstpointer b)
{
286 287
    uint64_t aidx = cpreg_to_kvm_id(*(uint32_t *)a);
    uint64_t bidx = cpreg_to_kvm_id(*(uint32_t *)b);
288

289 290 291 292 293 294 295
    if (aidx > bidx) {
        return 1;
    }
    if (aidx < bidx) {
        return -1;
    }
    return 0;
296 297 298 299 300 301 302
}

void init_cpreg_list(ARMCPU *cpu)
{
    /* Initialise the cpreg_tuples[] array based on the cp_regs hash.
     * Note that we require cpreg_tuples[] to be sorted by key ID.
     */
303
    GList *keys;
304 305
    int arraylen;

306
    keys = g_hash_table_get_keys(cpu->cp_regs);
307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327
    keys = g_list_sort(keys, cpreg_key_compare);

    cpu->cpreg_array_len = 0;

    g_list_foreach(keys, count_cpreg, cpu);

    arraylen = cpu->cpreg_array_len;
    cpu->cpreg_indexes = g_new(uint64_t, arraylen);
    cpu->cpreg_values = g_new(uint64_t, arraylen);
    cpu->cpreg_vmstate_indexes = g_new(uint64_t, arraylen);
    cpu->cpreg_vmstate_values = g_new(uint64_t, arraylen);
    cpu->cpreg_vmstate_array_len = cpu->cpreg_array_len;
    cpu->cpreg_array_len = 0;

    g_list_foreach(keys, add_cpreg_to_list, cpu);

    assert(cpu->cpreg_array_len == arraylen);

    g_list_free(keys);
}

328
static void dacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
329
{
330 331
    ARMCPU *cpu = arm_env_get_cpu(env);

332
    raw_write(env, ri, value);
333
    tlb_flush(CPU(cpu), 1); /* Flush TLB as domain not tracked in TLB */
334 335
}

336
static void fcse_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
337
{
338 339
    ARMCPU *cpu = arm_env_get_cpu(env);

340
    if (raw_read(env, ri) != value) {
341 342 343
        /* Unlike real hardware the qemu TLB uses virtual addresses,
         * not modified virtual addresses, so this causes a TLB flush.
         */
344
        tlb_flush(CPU(cpu), 1);
345
        raw_write(env, ri, value);
346 347
    }
}
348 349 350

static void contextidr_write(CPUARMState *env, const ARMCPRegInfo *ri,
                             uint64_t value)
351
{
352 353
    ARMCPU *cpu = arm_env_get_cpu(env);

354
    if (raw_read(env, ri) != value && !arm_feature(env, ARM_FEATURE_MPU)
355
        && !extended_addresses_enabled(env)) {
356 357 358 359
        /* For VMSA (when not using the LPAE long descriptor page table
         * format) this register includes the ASID, so do a TLB flush.
         * For PMSA it is purely a process ID and no action is needed.
         */
360
        tlb_flush(CPU(cpu), 1);
361
    }
362
    raw_write(env, ri, value);
363 364
}

365 366
static void tlbiall_write(CPUARMState *env, const ARMCPRegInfo *ri,
                          uint64_t value)
367 368
{
    /* Invalidate all (TLBIALL) */
369 370 371
    ARMCPU *cpu = arm_env_get_cpu(env);

    tlb_flush(CPU(cpu), 1);
372 373
}

374 375
static void tlbimva_write(CPUARMState *env, const ARMCPRegInfo *ri,
                          uint64_t value)
376 377
{
    /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */
378 379 380
    ARMCPU *cpu = arm_env_get_cpu(env);

    tlb_flush_page(CPU(cpu), value & TARGET_PAGE_MASK);
381 382
}

383 384
static void tlbiasid_write(CPUARMState *env, const ARMCPRegInfo *ri,
                           uint64_t value)
385 386
{
    /* Invalidate by ASID (TLBIASID) */
387 388 389
    ARMCPU *cpu = arm_env_get_cpu(env);

    tlb_flush(CPU(cpu), value == 0);
390 391
}

392 393
static void tlbimvaa_write(CPUARMState *env, const ARMCPRegInfo *ri,
                           uint64_t value)
394 395
{
    /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */
396 397 398
    ARMCPU *cpu = arm_env_get_cpu(env);

    tlb_flush_page(CPU(cpu), value & TARGET_PAGE_MASK);
399 400
}

401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441
/* IS variants of TLB operations must affect all cores */
static void tlbiall_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
                             uint64_t value)
{
    CPUState *other_cs;

    CPU_FOREACH(other_cs) {
        tlb_flush(other_cs, 1);
    }
}

static void tlbiasid_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
                             uint64_t value)
{
    CPUState *other_cs;

    CPU_FOREACH(other_cs) {
        tlb_flush(other_cs, value == 0);
    }
}

static void tlbimva_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
                             uint64_t value)
{
    CPUState *other_cs;

    CPU_FOREACH(other_cs) {
        tlb_flush_page(other_cs, value & TARGET_PAGE_MASK);
    }
}

static void tlbimvaa_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
                             uint64_t value)
{
    CPUState *other_cs;

    CPU_FOREACH(other_cs) {
        tlb_flush_page(other_cs, value & TARGET_PAGE_MASK);
    }
}

442
static const ARMCPRegInfo cp_reginfo[] = {
443 444 445 446 447 448 449 450 451 452 453 454 455 456
    /* Define the secure and non-secure FCSE identifier CP registers
     * separately because there is no secure bank in V8 (no _EL3).  This allows
     * the secure register to be properly reset and migrated. There is also no
     * v8 EL1 version of the register so the non-secure instance stands alone.
     */
    { .name = "FCSEIDR(NS)",
      .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0,
      .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS,
      .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_ns),
      .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
    { .name = "FCSEIDR(S)",
      .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0,
      .access = PL1_RW, .secure = ARM_CP_SECSTATE_S,
      .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_s),
457
      .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
458 459 460 461 462 463 464
    /* Define the secure and non-secure context identifier CP registers
     * separately because there is no secure bank in V8 (no _EL3).  This allows
     * the secure register to be properly reset and migrated.  In the
     * non-secure case, the 32-bit register will have reset and migration
     * disabled during registration as it is handled by the 64-bit instance.
     */
    { .name = "CONTEXTIDR_EL1", .state = ARM_CP_STATE_BOTH,
465
      .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
466 467 468 469 470 471 472
      .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS,
      .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[1]),
      .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
    { .name = "CONTEXTIDR(S)", .state = ARM_CP_STATE_AA32,
      .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
      .access = PL1_RW, .secure = ARM_CP_SECSTATE_S,
      .fieldoffset = offsetof(CPUARMState, cp15.contextidr_s),
473
      .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
474 475 476 477 478 479 480 481
    REGINFO_SENTINEL
};

static const ARMCPRegInfo not_v8_cp_reginfo[] = {
    /* NB: Some of these registers exist in v8 but with more precise
     * definitions that don't use CP_ANY wildcards (mostly in v8_cp_reginfo[]).
     */
    /* MMU Domain access control / MPU write buffer control */
F
Fabian Aggeler 已提交
482 483 484 485 486 487
    { .name = "DACR",
      .cp = 15, .opc1 = CP_ANY, .crn = 3, .crm = CP_ANY, .opc2 = CP_ANY,
      .access = PL1_RW, .resetvalue = 0,
      .writefn = dacr_write, .raw_writefn = raw_write,
      .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s),
                             offsetoflow32(CPUARMState, cp15.dacr_ns) } },
488 489
    /* ARMv7 allocates a range of implementation defined TLB LOCKDOWN regs.
     * For v6 and v5, these mappings are overly broad.
490
     */
491 492 493 494 495 496 497
    { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 0,
      .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
    { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 1,
      .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
    { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 4,
      .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
    { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 8,
498
      .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
499 500 501 502
    /* Cache maintenance ops; some of this space may be overridden later. */
    { .name = "CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
      .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
      .type = ARM_CP_NOP | ARM_CP_OVERRIDE },
503 504 505
    REGINFO_SENTINEL
};

506 507 508 509 510 511 512 513 514 515 516 517 518 519 520
static const ARMCPRegInfo not_v6_cp_reginfo[] = {
    /* Not all pre-v6 cores implemented this WFI, so this is slightly
     * over-broad.
     */
    { .name = "WFI_v5", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = 2,
      .access = PL1_W, .type = ARM_CP_WFI },
    REGINFO_SENTINEL
};

static const ARMCPRegInfo not_v7_cp_reginfo[] = {
    /* Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which
     * is UNPREDICTABLE; we choose to NOP as most implementations do).
     */
    { .name = "WFI_v6", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
      .access = PL1_W, .type = ARM_CP_WFI },
521 522 523 524 525 526 527 528 529 530
    /* L1 cache lockdown. Not architectural in v6 and earlier but in practice
     * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and
     * OMAPCP will override this space.
     */
    { .name = "DLOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 0,
      .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_data),
      .resetvalue = 0 },
    { .name = "ILOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 1,
      .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_insn),
      .resetvalue = 0 },
531 532
    /* v6 doesn't have the cache ID registers but Linux reads them anyway */
    { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = CP_ANY,
533
      .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
534
      .resetvalue = 0 },
535 536 537 538 539 540 541
    /* We don't implement pre-v7 debug but most CPUs had at least a DBGDIDR;
     * implementing it as RAZ means the "debug architecture version" bits
     * will read as a reserved value, which should cause Linux to not try
     * to use the debug hardware.
     */
    { .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0,
      .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
542 543 544 545 546
    /* MMU TLB control. Note that the wildcarding means we cover not just
     * the unified TLB ops but also the dside/iside/inner-shareable variants.
     */
    { .name = "TLBIALL", .cp = 15, .crn = 8, .crm = CP_ANY,
      .opc1 = CP_ANY, .opc2 = 0, .access = PL1_W, .writefn = tlbiall_write,
547
      .type = ARM_CP_NO_RAW },
548 549
    { .name = "TLBIMVA", .cp = 15, .crn = 8, .crm = CP_ANY,
      .opc1 = CP_ANY, .opc2 = 1, .access = PL1_W, .writefn = tlbimva_write,
550
      .type = ARM_CP_NO_RAW },
551 552
    { .name = "TLBIASID", .cp = 15, .crn = 8, .crm = CP_ANY,
      .opc1 = CP_ANY, .opc2 = 2, .access = PL1_W, .writefn = tlbiasid_write,
553
      .type = ARM_CP_NO_RAW },
554 555
    { .name = "TLBIMVAA", .cp = 15, .crn = 8, .crm = CP_ANY,
      .opc1 = CP_ANY, .opc2 = 3, .access = PL1_W, .writefn = tlbimvaa_write,
556
      .type = ARM_CP_NO_RAW },
557 558 559 560
    { .name = "PRRR", .cp = 15, .crn = 10, .crm = 2,
      .opc1 = 0, .opc2 = 0, .access = PL1_RW, .type = ARM_CP_NOP },
    { .name = "NMRR", .cp = 15, .crn = 10, .crm = 2,
      .opc1 = 0, .opc2 = 1, .access = PL1_RW, .type = ARM_CP_NOP },
561 562 563
    REGINFO_SENTINEL
};

564 565
static void cpacr_write(CPUARMState *env, const ARMCPRegInfo *ri,
                        uint64_t value)
566
{
567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593
    uint32_t mask = 0;

    /* In ARMv8 most bits of CPACR_EL1 are RES0. */
    if (!arm_feature(env, ARM_FEATURE_V8)) {
        /* ARMv7 defines bits for unimplemented coprocessors as RAZ/WI.
         * ASEDIS [31] and D32DIS [30] are both UNK/SBZP without VFP.
         * TRCDIS [28] is RAZ/WI since we do not implement a trace macrocell.
         */
        if (arm_feature(env, ARM_FEATURE_VFP)) {
            /* VFP coprocessor: cp10 & cp11 [23:20] */
            mask |= (1 << 31) | (1 << 30) | (0xf << 20);

            if (!arm_feature(env, ARM_FEATURE_NEON)) {
                /* ASEDIS [31] bit is RAO/WI */
                value |= (1 << 31);
            }

            /* VFPv3 and upwards with NEON implement 32 double precision
             * registers (D0-D31).
             */
            if (!arm_feature(env, ARM_FEATURE_NEON) ||
                    !arm_feature(env, ARM_FEATURE_VFP3)) {
                /* D32DIS [30] is RAO/WI if D16-31 are not implemented. */
                value |= (1 << 30);
            }
        }
        value &= mask;
594
    }
595
    env->cp15.cpacr_el1 = value;
596 597
}

598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624
static CPAccessResult cpacr_access(CPUARMState *env, const ARMCPRegInfo *ri)
{
    if (arm_feature(env, ARM_FEATURE_V8)) {
        /* Check if CPACR accesses are to be trapped to EL2 */
        if (arm_current_el(env) == 1 &&
            (env->cp15.cptr_el[2] & CPTR_TCPAC) && !arm_is_secure(env)) {
            return CP_ACCESS_TRAP_EL2;
        /* Check if CPACR accesses are to be trapped to EL3 */
        } else if (arm_current_el(env) < 3 &&
                   (env->cp15.cptr_el[3] & CPTR_TCPAC)) {
            return CP_ACCESS_TRAP_EL3;
        }
    }

    return CP_ACCESS_OK;
}

static CPAccessResult cptr_access(CPUARMState *env, const ARMCPRegInfo *ri)
{
    /* Check if CPTR accesses are set to trap to EL3 */
    if (arm_current_el(env) == 2 && (env->cp15.cptr_el[3] & CPTR_TCPAC)) {
        return CP_ACCESS_TRAP_EL3;
    }

    return CP_ACCESS_OK;
}

625 626 627 628 629 630 631
static const ARMCPRegInfo v6_cp_reginfo[] = {
    /* prefetch by MVA in v6, NOP in v7 */
    { .name = "MVA_prefetch",
      .cp = 15, .crn = 7, .crm = 13, .opc1 = 0, .opc2 = 1,
      .access = PL1_W, .type = ARM_CP_NOP },
    { .name = "ISB", .cp = 15, .crn = 7, .crm = 5, .opc1 = 0, .opc2 = 4,
      .access = PL0_W, .type = ARM_CP_NOP },
632
    { .name = "DSB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 4,
633
      .access = PL0_W, .type = ARM_CP_NOP },
634
    { .name = "DMB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 5,
635
      .access = PL0_W, .type = ARM_CP_NOP },
636
    { .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 2,
637
      .access = PL1_RW,
F
Fabian Aggeler 已提交
638 639
      .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ifar_s),
                             offsetof(CPUARMState, cp15.ifar_ns) },
640 641 642 643 644 645
      .resetvalue = 0, },
    /* Watchpoint Fault Address Register : should actually only be present
     * for 1136, 1176, 11MPCore.
     */
    { .name = "WFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1,
      .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, },
646
    { .name = "CPACR", .state = ARM_CP_STATE_BOTH, .opc0 = 3,
647
      .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 2, .accessfn = cpacr_access,
648
      .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.cpacr_el1),
649
      .resetvalue = 0, .writefn = cpacr_write },
650 651 652
    REGINFO_SENTINEL
};

653
static CPAccessResult pmreg_access(CPUARMState *env, const ARMCPRegInfo *ri)
654
{
S
Stefan Weil 已提交
655
    /* Performance monitor registers user accessibility is controlled
656
     * by PMUSERENR.
657
     */
658
    if (arm_current_el(env) == 0 && !env->cp15.c9_pmuserenr) {
659
        return CP_ACCESS_TRAP;
660
    }
661
    return CP_ACCESS_OK;
662 663
}

664
#ifndef CONFIG_USER_ONLY
665 666 667 668 669 670 671 672 673 674 675 676

static inline bool arm_ccnt_enabled(CPUARMState *env)
{
    /* This does not support checking PMCCFILTR_EL0 register */

    if (!(env->cp15.c9_pmcr & PMCRE)) {
        return false;
    }

    return true;
}

677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693
void pmccntr_sync(CPUARMState *env)
{
    uint64_t temp_ticks;

    temp_ticks = muldiv64(qemu_clock_get_us(QEMU_CLOCK_VIRTUAL),
                          get_ticks_per_sec(), 1000000);

    if (env->cp15.c9_pmcr & PMCRD) {
        /* Increment once every 64 processor clock cycles */
        temp_ticks /= 64;
    }

    if (arm_ccnt_enabled(env)) {
        env->cp15.c15_ccnt = temp_ticks - env->cp15.c15_ccnt;
    }
}

694 695
static void pmcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
                       uint64_t value)
696
{
697
    pmccntr_sync(env);
698 699 700 701 702 703

    if (value & PMCRC) {
        /* The counter has been reset */
        env->cp15.c15_ccnt = 0;
    }

704 705 706
    /* only the DP, X, D and E bits are writable */
    env->cp15.c9_pmcr &= ~0x39;
    env->cp15.c9_pmcr |= (value & 0x39);
707

708
    pmccntr_sync(env);
709 710 711 712
}

static uint64_t pmccntr_read(CPUARMState *env, const ARMCPRegInfo *ri)
{
713
    uint64_t total_ticks;
714

715
    if (!arm_ccnt_enabled(env)) {
716 717 718 719
        /* Counter is disabled, do not change value */
        return env->cp15.c15_ccnt;
    }

720 721
    total_ticks = muldiv64(qemu_clock_get_us(QEMU_CLOCK_VIRTUAL),
                           get_ticks_per_sec(), 1000000);
722 723 724 725 726 727 728 729 730 731 732

    if (env->cp15.c9_pmcr & PMCRD) {
        /* Increment once every 64 processor clock cycles */
        total_ticks /= 64;
    }
    return total_ticks - env->cp15.c15_ccnt;
}

static void pmccntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
                        uint64_t value)
{
733
    uint64_t total_ticks;
734

735
    if (!arm_ccnt_enabled(env)) {
736 737 738 739 740
        /* Counter is disabled, set the absolute value */
        env->cp15.c15_ccnt = value;
        return;
    }

741 742
    total_ticks = muldiv64(qemu_clock_get_us(QEMU_CLOCK_VIRTUAL),
                           get_ticks_per_sec(), 1000000);
743 744 745 746 747 748

    if (env->cp15.c9_pmcr & PMCRD) {
        /* Increment once every 64 processor clock cycles */
        total_ticks /= 64;
    }
    env->cp15.c15_ccnt = total_ticks - value;
749
}
750 751 752 753 754 755 756 757 758

static void pmccntr_write32(CPUARMState *env, const ARMCPRegInfo *ri,
                            uint64_t value)
{
    uint64_t cur_val = pmccntr_read(env, NULL);

    pmccntr_write(env, ri, deposit64(cur_val, 0, 32, value));
}

759 760 761 762 763 764
#else /* CONFIG_USER_ONLY */

void pmccntr_sync(CPUARMState *env)
{
}

765
#endif
766

767 768 769 770 771 772 773 774
static void pmccfiltr_write(CPUARMState *env, const ARMCPRegInfo *ri,
                            uint64_t value)
{
    pmccntr_sync(env);
    env->cp15.pmccfiltr_el0 = value & 0x7E000000;
    pmccntr_sync(env);
}

775
static void pmcntenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
776 777 778 779 780 781
                            uint64_t value)
{
    value &= (1 << 31);
    env->cp15.c9_pmcnten |= value;
}

782 783
static void pmcntenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
                             uint64_t value)
784 785 786 787 788
{
    value &= (1 << 31);
    env->cp15.c9_pmcnten &= ~value;
}

789 790
static void pmovsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
                         uint64_t value)
791 792 793 794
{
    env->cp15.c9_pmovsr &= ~value;
}

795 796
static void pmxevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri,
                             uint64_t value)
797 798 799 800
{
    env->cp15.c9_pmxevtyper = value & 0xff;
}

801
static void pmuserenr_write(CPUARMState *env, const ARMCPRegInfo *ri,
802 803 804 805 806
                            uint64_t value)
{
    env->cp15.c9_pmuserenr = value & 1;
}

807 808
static void pmintenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
                             uint64_t value)
809 810 811 812 813 814
{
    /* We have no event counters so only the C bit can be changed */
    value &= (1 << 31);
    env->cp15.c9_pminten |= value;
}

815 816
static void pmintenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
                             uint64_t value)
817 818 819 820 821
{
    value &= (1 << 31);
    env->cp15.c9_pminten &= ~value;
}

822 823
static void vbar_write(CPUARMState *env, const ARMCPRegInfo *ri,
                       uint64_t value)
N
Nathan Rossi 已提交
824
{
825 826 827 828 829 830
    /* Note that even though the AArch64 view of this register has bits
     * [10:0] all RES0 we can only mask the bottom 5, to comply with the
     * architectural requirements for bits which are RES0 only in some
     * contexts. (ARMv8 would permit us to do no masking at all, but ARMv7
     * requires the bottom five bits to be RAZ/WI because they're UNK/SBZP.)
     */
831
    raw_write(env, ri, value & ~0x1FULL);
N
Nathan Rossi 已提交
832 833
}

E
Edgar E. Iglesias 已提交
834 835 836 837 838 839 840 841 842 843 844 845 846 847 848
static void scr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
{
    /* We only mask off bits that are RES0 both for AArch64 and AArch32.
     * For bits that vary between AArch32/64, code needs to check the
     * current execution mode before directly using the feature bit.
     */
    uint32_t valid_mask = SCR_AARCH64_MASK | SCR_AARCH32_MASK;

    if (!arm_feature(env, ARM_FEATURE_EL2)) {
        valid_mask &= ~SCR_HCE;

        /* On ARMv7, SMD (or SCD as it is called in v7) is only
         * supported if EL2 exists. The bit is UNK/SBZP when
         * EL2 is unavailable. In QEMU ARMv7, we force it to always zero
         * when EL2 is unavailable.
G
Greg Bellows 已提交
849
         * On ARMv8, this bit is always available.
E
Edgar E. Iglesias 已提交
850
         */
G
Greg Bellows 已提交
851 852
        if (arm_feature(env, ARM_FEATURE_V7) &&
            !arm_feature(env, ARM_FEATURE_V8)) {
E
Edgar E. Iglesias 已提交
853 854 855 856 857 858 859 860 861
            valid_mask &= ~SCR_SMD;
        }
    }

    /* Clear all-context RES0 bits.  */
    value &= valid_mask;
    raw_write(env, ri, value);
}

862
static uint64_t ccsidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
863 864
{
    ARMCPU *cpu = arm_env_get_cpu(env);
F
Fabian Aggeler 已提交
865 866 867 868 869 870 871 872

    /* Acquire the CSSELR index from the bank corresponding to the CCSIDR
     * bank
     */
    uint32_t index = A32_BANKED_REG_GET(env, csselr,
                                        ri->secure & ARM_CP_SECSTATE_S);

    return cpu->ccsidr[index];
873 874
}

875 876
static void csselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
                         uint64_t value)
877
{
878
    raw_write(env, ri, value & 0xf);
879 880
}

881 882 883 884 885 886 887 888 889 890 891 892 893 894 895
static uint64_t isr_read(CPUARMState *env, const ARMCPRegInfo *ri)
{
    CPUState *cs = ENV_GET_CPU(env);
    uint64_t ret = 0;

    if (cs->interrupt_request & CPU_INTERRUPT_HARD) {
        ret |= CPSR_I;
    }
    if (cs->interrupt_request & CPU_INTERRUPT_FIQ) {
        ret |= CPSR_F;
    }
    /* External aborts are not possible in QEMU so A bit is always clear */
    return ret;
}

896
static const ARMCPRegInfo v7_cp_reginfo[] = {
897 898 899
    /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */
    { .name = "NOP", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
      .access = PL1_W, .type = ARM_CP_NOP },
900 901 902 903 904 905 906 907 908 909 910 911
    /* Performance monitors are implementation defined in v7,
     * but with an ARM recommended set of registers, which we
     * follow (although we don't actually implement any counters)
     *
     * Performance registers fall into three categories:
     *  (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR)
     *  (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR)
     *  (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others)
     * For the cases controlled by PMUSERENR we must set .access to PL0_RW
     * or PL0_RO as appropriate and then check PMUSERENR in the helper fn.
     */
    { .name = "PMCNTENSET", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 1,
912
      .access = PL0_RW, .type = ARM_CP_ALIAS,
913
      .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten),
914 915 916
      .writefn = pmcntenset_write,
      .accessfn = pmreg_access,
      .raw_writefn = raw_write },
917 918 919 920 921
    { .name = "PMCNTENSET_EL0", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 1,
      .access = PL0_RW, .accessfn = pmreg_access,
      .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), .resetvalue = 0,
      .writefn = pmcntenset_write, .raw_writefn = raw_write },
922
    { .name = "PMCNTENCLR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 2,
923 924
      .access = PL0_RW,
      .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten),
925 926
      .accessfn = pmreg_access,
      .writefn = pmcntenclr_write,
927
      .type = ARM_CP_ALIAS },
928 929 930
    { .name = "PMCNTENCLR_EL0", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 2,
      .access = PL0_RW, .accessfn = pmreg_access,
931
      .type = ARM_CP_ALIAS,
932 933
      .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten),
      .writefn = pmcntenclr_write },
934 935
    { .name = "PMOVSR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 3,
      .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
936 937 938 939
      .accessfn = pmreg_access,
      .writefn = pmovsr_write,
      .raw_writefn = raw_write },
    /* Unimplemented so WI. */
940
    { .name = "PMSWINC", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 4,
941
      .access = PL0_W, .accessfn = pmreg_access, .type = ARM_CP_NOP },
942
    /* Since we don't implement any events, writing to PMSELR is UNPREDICTABLE.
943
     * We choose to RAZ/WI.
944 945
     */
    { .name = "PMSELR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 5,
946 947
      .access = PL0_RW, .type = ARM_CP_CONST, .resetvalue = 0,
      .accessfn = pmreg_access },
948
#ifndef CONFIG_USER_ONLY
949
    { .name = "PMCCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 0,
950
      .access = PL0_RW, .resetvalue = 0, .type = ARM_CP_IO,
951
      .readfn = pmccntr_read, .writefn = pmccntr_write32,
952
      .accessfn = pmreg_access },
953 954 955 956 957
    { .name = "PMCCNTR_EL0", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 0,
      .access = PL0_RW, .accessfn = pmreg_access,
      .type = ARM_CP_IO,
      .readfn = pmccntr_read, .writefn = pmccntr_write, },
958
#endif
959 960
    { .name = "PMCCFILTR_EL0", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 15, .opc2 = 7,
961
      .writefn = pmccfiltr_write,
962 963 964 965
      .access = PL0_RW, .accessfn = pmreg_access,
      .type = ARM_CP_IO,
      .fieldoffset = offsetof(CPUARMState, cp15.pmccfiltr_el0),
      .resetvalue = 0, },
966 967 968
    { .name = "PMXEVTYPER", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 1,
      .access = PL0_RW,
      .fieldoffset = offsetof(CPUARMState, cp15.c9_pmxevtyper),
969 970 971
      .accessfn = pmreg_access, .writefn = pmxevtyper_write,
      .raw_writefn = raw_write },
    /* Unimplemented, RAZ/WI. */
972
    { .name = "PMXEVCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 2,
973 974
      .access = PL0_RW, .type = ARM_CP_CONST, .resetvalue = 0,
      .accessfn = pmreg_access },
975 976 977 978
    { .name = "PMUSERENR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 0,
      .access = PL0_R | PL1_RW,
      .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr),
      .resetvalue = 0,
979
      .writefn = pmuserenr_write, .raw_writefn = raw_write },
980 981 982 983
    { .name = "PMINTENSET", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 1,
      .access = PL1_RW,
      .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
      .resetvalue = 0,
984
      .writefn = pmintenset_write, .raw_writefn = raw_write },
985
    { .name = "PMINTENCLR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 2,
986
      .access = PL1_RW, .type = ARM_CP_ALIAS,
987
      .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
988
      .writefn = pmintenclr_write, },
989 990
    { .name = "VBAR", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .crn = 12, .crm = 0, .opc1 = 0, .opc2 = 0,
N
Nathan Rossi 已提交
991
      .access = PL1_RW, .writefn = vbar_write,
G
Greg Bellows 已提交
992 993
      .bank_fieldoffsets = { offsetof(CPUARMState, cp15.vbar_s),
                             offsetof(CPUARMState, cp15.vbar_ns) },
N
Nathan Rossi 已提交
994
      .resetvalue = 0 },
995 996
    { .name = "CCSIDR", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 0,
997
      .access = PL1_R, .readfn = ccsidr_read, .type = ARM_CP_NO_RAW },
998 999
    { .name = "CSSELR", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 2, .opc2 = 0,
F
Fabian Aggeler 已提交
1000 1001 1002
      .access = PL1_RW, .writefn = csselr_write, .resetvalue = 0,
      .bank_fieldoffsets = { offsetof(CPUARMState, cp15.csselr_s),
                             offsetof(CPUARMState, cp15.csselr_ns) } },
1003 1004 1005
    /* Auxiliary ID register: this actually has an IMPDEF value but for now
     * just RAZ for all cores:
     */
1006 1007
    { .name = "AIDR", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 7,
1008
      .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
1009 1010 1011 1012 1013 1014 1015 1016 1017
    /* Auxiliary fault status registers: these also are IMPDEF, and we
     * choose to RAZ/WI for all cores.
     */
    { .name = "AFSR0_EL1", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 0,
      .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
    { .name = "AFSR1_EL1", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 1,
      .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
1018 1019 1020 1021 1022
    /* MAIR can just read-as-written because we don't implement caches
     * and so don't need to care about memory attributes.
     */
    { .name = "MAIR_EL1", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0,
G
Greg Bellows 已提交
1023
      .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[1]),
1024
      .resetvalue = 0 },
1025 1026 1027 1028
    { .name = "MAIR_EL3", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 2, .opc2 = 0,
      .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[3]),
      .resetvalue = 0 },
1029 1030 1031
    /* For non-long-descriptor page tables these are PRRR and NMRR;
     * regardless they still act as reads-as-written for QEMU.
     */
1032
     /* MAIR0/1 are defined separately from their 64-bit counterpart which
G
Greg Bellows 已提交
1033 1034 1035
      * allows them to assign the correct fieldoffset based on the endianness
      * handled in the field definitions.
      */
1036
    { .name = "MAIR0", .state = ARM_CP_STATE_AA32,
1037
      .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, .access = PL1_RW,
G
Greg Bellows 已提交
1038 1039
      .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair0_s),
                             offsetof(CPUARMState, cp15.mair0_ns) },
1040
      .resetfn = arm_cp_reset_ignore },
1041
    { .name = "MAIR1", .state = ARM_CP_STATE_AA32,
1042
      .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 1, .access = PL1_RW,
G
Greg Bellows 已提交
1043 1044
      .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair1_s),
                             offsetof(CPUARMState, cp15.mair1_ns) },
1045
      .resetfn = arm_cp_reset_ignore },
1046 1047
    { .name = "ISR_EL1", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 0,
1048
      .type = ARM_CP_NO_RAW, .access = PL1_R, .readfn = isr_read },
1049 1050
    /* 32 bit ITLB invalidates */
    { .name = "ITLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 0,
1051
      .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write },
1052
    { .name = "ITLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1,
1053
      .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
1054
    { .name = "ITLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 2,
1055
      .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write },
1056 1057
    /* 32 bit DTLB invalidates */
    { .name = "DTLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 0,
1058
      .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write },
1059
    { .name = "DTLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1,
1060
      .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
1061
    { .name = "DTLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 2,
1062
      .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write },
1063 1064
    /* 32 bit TLB invalidates */
    { .name = "TLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0,
1065
      .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write },
1066
    { .name = "TLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1,
1067
      .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
1068
    { .name = "TLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2,
1069
      .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write },
1070
    { .name = "TLBIMVAA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3,
1071
      .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimvaa_write },
1072 1073 1074 1075 1076 1077
    REGINFO_SENTINEL
};

static const ARMCPRegInfo v7mp_cp_reginfo[] = {
    /* 32 bit TLB invalidates, Inner Shareable */
    { .name = "TLBIALLIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0,
1078
      .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_is_write },
1079
    { .name = "TLBIMVAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1,
1080
      .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_is_write },
1081
    { .name = "TLBIASIDIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2,
1082
      .type = ARM_CP_NO_RAW, .access = PL1_W,
1083
      .writefn = tlbiasid_is_write },
1084
    { .name = "TLBIMVAAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3,
1085
      .type = ARM_CP_NO_RAW, .access = PL1_W,
1086
      .writefn = tlbimvaa_is_write },
1087 1088 1089
    REGINFO_SENTINEL
};

1090 1091
static void teecr_write(CPUARMState *env, const ARMCPRegInfo *ri,
                        uint64_t value)
1092 1093 1094 1095 1096
{
    value &= 1;
    env->teecr = value;
}

1097
static CPAccessResult teehbr_access(CPUARMState *env, const ARMCPRegInfo *ri)
1098
{
1099
    if (arm_current_el(env) == 0 && (env->teecr & 1)) {
1100
        return CP_ACCESS_TRAP;
1101
    }
1102
    return CP_ACCESS_OK;
1103 1104 1105 1106 1107 1108 1109 1110 1111
}

static const ARMCPRegInfo t2ee_cp_reginfo[] = {
    { .name = "TEECR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 6, .opc2 = 0,
      .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, teecr),
      .resetvalue = 0,
      .writefn = teecr_write },
    { .name = "TEEHBR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 6, .opc2 = 0,
      .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, teehbr),
1112
      .accessfn = teehbr_access, .resetvalue = 0 },
1113 1114 1115
    REGINFO_SENTINEL
};

1116
static const ARMCPRegInfo v6k_cp_reginfo[] = {
1117 1118 1119
    { .name = "TPIDR_EL0", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 3, .opc2 = 2, .crn = 13, .crm = 0,
      .access = PL0_RW,
1120
      .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[0]), .resetvalue = 0 },
1121 1122
    { .name = "TPIDRURW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 2,
      .access = PL0_RW,
1123 1124
      .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrurw_s),
                             offsetoflow32(CPUARMState, cp15.tpidrurw_ns) },
1125 1126 1127 1128
      .resetfn = arm_cp_reset_ignore },
    { .name = "TPIDRRO_EL0", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 3, .opc2 = 3, .crn = 13, .crm = 0,
      .access = PL0_R|PL1_W,
1129 1130
      .fieldoffset = offsetof(CPUARMState, cp15.tpidrro_el[0]),
      .resetvalue = 0},
1131 1132
    { .name = "TPIDRURO", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 3,
      .access = PL0_R|PL1_W,
1133 1134
      .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidruro_s),
                             offsetoflow32(CPUARMState, cp15.tpidruro_ns) },
1135
      .resetfn = arm_cp_reset_ignore },
1136
    { .name = "TPIDR_EL1", .state = ARM_CP_STATE_AA64,
1137
      .opc0 = 3, .opc1 = 0, .opc2 = 4, .crn = 13, .crm = 0,
1138
      .access = PL1_RW,
1139 1140 1141 1142 1143 1144
      .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[1]), .resetvalue = 0 },
    { .name = "TPIDRPRW", .opc1 = 0, .cp = 15, .crn = 13, .crm = 0, .opc2 = 4,
      .access = PL1_RW,
      .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrprw_s),
                             offsetoflow32(CPUARMState, cp15.tpidrprw_ns) },
      .resetvalue = 0 },
1145 1146 1147
    REGINFO_SENTINEL
};

1148 1149
#ifndef CONFIG_USER_ONLY

1150 1151 1152
static CPAccessResult gt_cntfrq_access(CPUARMState *env, const ARMCPRegInfo *ri)
{
    /* CNTFRQ: not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero */
1153
    if (arm_current_el(env) == 0 && !extract32(env->cp15.c14_cntkctl, 0, 2)) {
1154 1155 1156 1157 1158 1159 1160
        return CP_ACCESS_TRAP;
    }
    return CP_ACCESS_OK;
}

static CPAccessResult gt_counter_access(CPUARMState *env, int timeridx)
{
E
Edgar E. Iglesias 已提交
1161 1162 1163
    unsigned int cur_el = arm_current_el(env);
    bool secure = arm_is_secure(env);

1164
    /* CNT[PV]CT: not visible from PL0 if ELO[PV]CTEN is zero */
E
Edgar E. Iglesias 已提交
1165
    if (cur_el == 0 &&
1166 1167 1168
        !extract32(env->cp15.c14_cntkctl, timeridx, 1)) {
        return CP_ACCESS_TRAP;
    }
E
Edgar E. Iglesias 已提交
1169 1170 1171 1172 1173 1174

    if (arm_feature(env, ARM_FEATURE_EL2) &&
        timeridx == GTIMER_PHYS && !secure && cur_el < 2 &&
        !extract32(env->cp15.cnthctl_el2, 0, 1)) {
        return CP_ACCESS_TRAP_EL2;
    }
1175 1176 1177 1178 1179
    return CP_ACCESS_OK;
}

static CPAccessResult gt_timer_access(CPUARMState *env, int timeridx)
{
E
Edgar E. Iglesias 已提交
1180 1181 1182
    unsigned int cur_el = arm_current_el(env);
    bool secure = arm_is_secure(env);

1183 1184 1185
    /* CNT[PV]_CVAL, CNT[PV]_CTL, CNT[PV]_TVAL: not visible from PL0 if
     * EL0[PV]TEN is zero.
     */
E
Edgar E. Iglesias 已提交
1186
    if (cur_el == 0 &&
1187 1188 1189
        !extract32(env->cp15.c14_cntkctl, 9 - timeridx, 1)) {
        return CP_ACCESS_TRAP;
    }
E
Edgar E. Iglesias 已提交
1190 1191 1192 1193 1194 1195

    if (arm_feature(env, ARM_FEATURE_EL2) &&
        timeridx == GTIMER_PHYS && !secure && cur_el < 2 &&
        !extract32(env->cp15.cnthctl_el2, 1, 1)) {
        return CP_ACCESS_TRAP_EL2;
    }
1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220
    return CP_ACCESS_OK;
}

static CPAccessResult gt_pct_access(CPUARMState *env,
                                         const ARMCPRegInfo *ri)
{
    return gt_counter_access(env, GTIMER_PHYS);
}

static CPAccessResult gt_vct_access(CPUARMState *env,
                                         const ARMCPRegInfo *ri)
{
    return gt_counter_access(env, GTIMER_VIRT);
}

static CPAccessResult gt_ptimer_access(CPUARMState *env, const ARMCPRegInfo *ri)
{
    return gt_timer_access(env, GTIMER_PHYS);
}

static CPAccessResult gt_vtimer_access(CPUARMState *env, const ARMCPRegInfo *ri)
{
    return gt_timer_access(env, GTIMER_VIRT);
}

1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246
static CPAccessResult gt_stimer_access(CPUARMState *env,
                                       const ARMCPRegInfo *ri)
{
    /* The AArch64 register view of the secure physical timer is
     * always accessible from EL3, and configurably accessible from
     * Secure EL1.
     */
    switch (arm_current_el(env)) {
    case 1:
        if (!arm_is_secure(env)) {
            return CP_ACCESS_TRAP;
        }
        if (!(env->cp15.scr_el3 & SCR_ST)) {
            return CP_ACCESS_TRAP_EL3;
        }
        return CP_ACCESS_OK;
    case 0:
    case 2:
        return CP_ACCESS_TRAP;
    case 3:
        return CP_ACCESS_OK;
    default:
        g_assert_not_reached();
    }
}

1247 1248
static uint64_t gt_get_countervalue(CPUARMState *env)
{
1249
    return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / GTIMER_SCALE;
1250 1251 1252 1253 1254 1255 1256 1257 1258 1259
}

static void gt_recalc_timer(ARMCPU *cpu, int timeridx)
{
    ARMGenericTimer *gt = &cpu->env.cp15.c14_timer[timeridx];

    if (gt->ctl & 1) {
        /* Timer enabled: calculate and set current ISTATUS, irq, and
         * reset timer to when ISTATUS next has to change
         */
E
Edgar E. Iglesias 已提交
1260 1261
        uint64_t offset = timeridx == GTIMER_VIRT ?
                                      cpu->env.cp15.cntvoff_el2 : 0;
1262 1263
        uint64_t count = gt_get_countervalue(&cpu->env);
        /* Note that this must be unsigned 64 bit arithmetic: */
E
Edgar E. Iglesias 已提交
1264
        int istatus = count - offset >= gt->cval;
1265 1266 1267 1268 1269 1270 1271 1272 1273 1274
        uint64_t nexttick;

        gt->ctl = deposit32(gt->ctl, 2, 1, istatus);
        qemu_set_irq(cpu->gt_timer_outputs[timeridx],
                     (istatus && !(gt->ctl & 2)));
        if (istatus) {
            /* Next transition is when count rolls back over to zero */
            nexttick = UINT64_MAX;
        } else {
            /* Next transition is when we hit cval */
E
Edgar E. Iglesias 已提交
1275
            nexttick = gt->cval + offset;
1276 1277 1278 1279 1280 1281 1282 1283 1284
        }
        /* Note that the desired next expiry time might be beyond the
         * signed-64-bit range of a QEMUTimer -- in this case we just
         * set the timer for as far in the future as possible. When the
         * timer expires we will reset the timer for any remaining period.
         */
        if (nexttick > INT64_MAX / GTIMER_SCALE) {
            nexttick = INT64_MAX / GTIMER_SCALE;
        }
1285
        timer_mod(cpu->gt_timer[timeridx], nexttick);
1286 1287 1288 1289
    } else {
        /* Timer disabled: ISTATUS and timer output always clear */
        gt->ctl &= ~4;
        qemu_set_irq(cpu->gt_timer_outputs[timeridx], 0);
1290
        timer_del(cpu->gt_timer[timeridx]);
1291 1292 1293
    }
}

1294 1295
static void gt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri,
                           int timeridx)
1296 1297 1298
{
    ARMCPU *cpu = arm_env_get_cpu(env);

1299
    timer_del(cpu->gt_timer[timeridx]);
1300 1301
}

1302
static uint64_t gt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
1303
{
1304
    return gt_get_countervalue(env);
1305 1306
}

E
Edgar E. Iglesias 已提交
1307 1308 1309 1310 1311
static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
{
    return gt_get_countervalue(env) - env->cp15.cntvoff_el2;
}

1312
static void gt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1313
                          int timeridx,
1314
                          uint64_t value)
1315 1316 1317 1318
{
    env->cp15.c14_timer[timeridx].cval = value;
    gt_recalc_timer(arm_env_get_cpu(env), timeridx);
}
1319

1320 1321
static uint64_t gt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri,
                             int timeridx)
1322
{
E
Edgar E. Iglesias 已提交
1323
    uint64_t offset = timeridx == GTIMER_VIRT ? env->cp15.cntvoff_el2 : 0;
1324

1325
    return (uint32_t)(env->cp15.c14_timer[timeridx].cval -
E
Edgar E. Iglesias 已提交
1326
                      (gt_get_countervalue(env) - offset));
1327 1328
}

1329
static void gt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1330
                          int timeridx,
1331
                          uint64_t value)
1332
{
E
Edgar E. Iglesias 已提交
1333
    uint64_t offset = timeridx == GTIMER_VIRT ? env->cp15.cntvoff_el2 : 0;
1334

E
Edgar E. Iglesias 已提交
1335
    env->cp15.c14_timer[timeridx].cval = gt_get_countervalue(env) - offset +
1336
                                         sextract64(value, 0, 32);
1337 1338 1339
    gt_recalc_timer(arm_env_get_cpu(env), timeridx);
}

1340
static void gt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
1341
                         int timeridx,
1342
                         uint64_t value)
1343 1344 1345 1346
{
    ARMCPU *cpu = arm_env_get_cpu(env);
    uint32_t oldval = env->cp15.c14_timer[timeridx].ctl;

1347
    env->cp15.c14_timer[timeridx].ctl = deposit64(oldval, 0, 2, value);
1348 1349 1350
    if ((oldval ^ value) & 1) {
        /* Enable toggled */
        gt_recalc_timer(cpu, timeridx);
1351
    } else if ((oldval ^ value) & 2) {
1352 1353 1354 1355
        /* IMASK toggled: don't need to recalculate,
         * just set the interrupt line based on ISTATUS
         */
        qemu_set_irq(cpu->gt_timer_outputs[timeridx],
1356
                     (oldval & 4) && !(value & 2));
1357 1358 1359
    }
}

1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415
static void gt_phys_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
{
    gt_timer_reset(env, ri, GTIMER_PHYS);
}

static void gt_phys_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
                               uint64_t value)
{
    gt_cval_write(env, ri, GTIMER_PHYS, value);
}

static uint64_t gt_phys_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
{
    return gt_tval_read(env, ri, GTIMER_PHYS);
}

static void gt_phys_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
                               uint64_t value)
{
    gt_tval_write(env, ri, GTIMER_PHYS, value);
}

static void gt_phys_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
                              uint64_t value)
{
    gt_ctl_write(env, ri, GTIMER_PHYS, value);
}

static void gt_virt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
{
    gt_timer_reset(env, ri, GTIMER_VIRT);
}

static void gt_virt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
                               uint64_t value)
{
    gt_cval_write(env, ri, GTIMER_VIRT, value);
}

static uint64_t gt_virt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
{
    return gt_tval_read(env, ri, GTIMER_VIRT);
}

static void gt_virt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
                               uint64_t value)
{
    gt_tval_write(env, ri, GTIMER_VIRT, value);
}

static void gt_virt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
                              uint64_t value)
{
    gt_ctl_write(env, ri, GTIMER_VIRT, value);
}

E
Edgar E. Iglesias 已提交
1416 1417 1418 1419 1420 1421 1422 1423 1424
static void gt_cntvoff_write(CPUARMState *env, const ARMCPRegInfo *ri,
                              uint64_t value)
{
    ARMCPU *cpu = arm_env_get_cpu(env);

    raw_write(env, ri, value);
    gt_recalc_timer(cpu, GTIMER_VIRT);
}

1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452
static void gt_hyp_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
{
    gt_timer_reset(env, ri, GTIMER_HYP);
}

static void gt_hyp_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
                              uint64_t value)
{
    gt_cval_write(env, ri, GTIMER_HYP, value);
}

static uint64_t gt_hyp_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
{
    return gt_tval_read(env, ri, GTIMER_HYP);
}

static void gt_hyp_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
                              uint64_t value)
{
    gt_tval_write(env, ri, GTIMER_HYP, value);
}

static void gt_hyp_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
                              uint64_t value)
{
    gt_ctl_write(env, ri, GTIMER_HYP, value);
}

1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480
static void gt_sec_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
{
    gt_timer_reset(env, ri, GTIMER_SEC);
}

static void gt_sec_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
                              uint64_t value)
{
    gt_cval_write(env, ri, GTIMER_SEC, value);
}

static uint64_t gt_sec_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
{
    return gt_tval_read(env, ri, GTIMER_SEC);
}

static void gt_sec_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
                              uint64_t value)
{
    gt_tval_write(env, ri, GTIMER_SEC, value);
}

static void gt_sec_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
                              uint64_t value)
{
    gt_ctl_write(env, ri, GTIMER_SEC, value);
}

1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494
void arm_gt_ptimer_cb(void *opaque)
{
    ARMCPU *cpu = opaque;

    gt_recalc_timer(cpu, GTIMER_PHYS);
}

void arm_gt_vtimer_cb(void *opaque)
{
    ARMCPU *cpu = opaque;

    gt_recalc_timer(cpu, GTIMER_VIRT);
}

1495 1496 1497 1498 1499 1500 1501
void arm_gt_htimer_cb(void *opaque)
{
    ARMCPU *cpu = opaque;

    gt_recalc_timer(cpu, GTIMER_HYP);
}

1502 1503 1504 1505 1506 1507 1508
void arm_gt_stimer_cb(void *opaque)
{
    ARMCPU *cpu = opaque;

    gt_recalc_timer(cpu, GTIMER_SEC);
}

1509 1510 1511 1512 1513 1514
static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
    /* Note that CNTFRQ is purely reads-as-written for the benefit
     * of software; writing it doesn't actually change the timer frequency.
     * Our reset value matches the fixed frequency we implement the timer at.
     */
    { .name = "CNTFRQ", .cp = 15, .crn = 14, .crm = 0, .opc1 = 0, .opc2 = 0,
1515
      .type = ARM_CP_ALIAS,
1516 1517 1518 1519 1520 1521
      .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
      .fieldoffset = offsetoflow32(CPUARMState, cp15.c14_cntfrq),
    },
    { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0,
      .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
1522 1523 1524 1525
      .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq),
      .resetvalue = (1000 * 1000 * 1000) / GTIMER_SCALE,
    },
    /* overall control: mostly access permissions */
1526 1527
    { .name = "CNTKCTL", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .opc1 = 0, .crn = 14, .crm = 1, .opc2 = 0,
1528 1529 1530 1531 1532 1533
      .access = PL1_RW,
      .fieldoffset = offsetof(CPUARMState, cp15.c14_cntkctl),
      .resetvalue = 0,
    },
    /* per-timer control */
    { .name = "CNTP_CTL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
1534
      .secure = ARM_CP_SECSTATE_NS,
1535
      .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL1_RW | PL0_R,
1536 1537 1538
      .accessfn = gt_ptimer_access,
      .fieldoffset = offsetoflow32(CPUARMState,
                                   cp15.c14_timer[GTIMER_PHYS].ctl),
1539
      .writefn = gt_phys_ctl_write, .raw_writefn = raw_write,
1540
    },
1541 1542 1543 1544 1545 1546 1547 1548 1549
    { .name = "CNTP_CTL(S)",
      .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
      .secure = ARM_CP_SECSTATE_S,
      .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL1_RW | PL0_R,
      .accessfn = gt_ptimer_access,
      .fieldoffset = offsetoflow32(CPUARMState,
                                   cp15.c14_timer[GTIMER_SEC].ctl),
      .writefn = gt_sec_ctl_write, .raw_writefn = raw_write,
    },
1550 1551
    { .name = "CNTP_CTL_EL0", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 1,
1552
      .type = ARM_CP_IO, .access = PL1_RW | PL0_R,
1553
      .accessfn = gt_ptimer_access,
1554 1555
      .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl),
      .resetvalue = 0,
1556
      .writefn = gt_phys_ctl_write, .raw_writefn = raw_write,
1557 1558
    },
    { .name = "CNTV_CTL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 1,
1559
      .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL1_RW | PL0_R,
1560 1561 1562
      .accessfn = gt_vtimer_access,
      .fieldoffset = offsetoflow32(CPUARMState,
                                   cp15.c14_timer[GTIMER_VIRT].ctl),
1563
      .writefn = gt_virt_ctl_write, .raw_writefn = raw_write,
1564 1565 1566
    },
    { .name = "CNTV_CTL_EL0", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 1,
1567
      .type = ARM_CP_IO, .access = PL1_RW | PL0_R,
1568
      .accessfn = gt_vtimer_access,
1569 1570
      .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl),
      .resetvalue = 0,
1571
      .writefn = gt_virt_ctl_write, .raw_writefn = raw_write,
1572 1573 1574
    },
    /* TimerValue views: a 32 bit downcounting view of the underlying state */
    { .name = "CNTP_TVAL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
1575
      .secure = ARM_CP_SECSTATE_NS,
1576
      .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
1577
      .accessfn = gt_ptimer_access,
1578
      .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write,
1579
    },
1580 1581 1582 1583 1584 1585 1586
    { .name = "CNTP_TVAL(S)",
      .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
      .secure = ARM_CP_SECSTATE_S,
      .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
      .accessfn = gt_ptimer_access,
      .readfn = gt_sec_tval_read, .writefn = gt_sec_tval_write,
    },
1587 1588
    { .name = "CNTP_TVAL_EL0", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 0,
1589
      .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
1590 1591
      .accessfn = gt_ptimer_access, .resetfn = gt_phys_timer_reset,
      .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write,
1592
    },
1593
    { .name = "CNTV_TVAL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 0,
1594
      .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
1595
      .accessfn = gt_vtimer_access,
1596
      .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write,
1597
    },
1598 1599
    { .name = "CNTV_TVAL_EL0", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 0,
1600
      .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
1601 1602
      .accessfn = gt_vtimer_access, .resetfn = gt_virt_timer_reset,
      .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write,
1603
    },
1604 1605
    /* The counter itself */
    { .name = "CNTPCT", .cp = 15, .crm = 14, .opc1 = 0,
1606
      .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
1607
      .accessfn = gt_pct_access,
1608 1609 1610 1611
      .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore,
    },
    { .name = "CNTPCT_EL0", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 1,
1612
      .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
1613
      .accessfn = gt_pct_access, .readfn = gt_cnt_read,
1614 1615
    },
    { .name = "CNTVCT", .cp = 15, .crm = 14, .opc1 = 1,
1616
      .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
1617
      .accessfn = gt_vct_access,
E
Edgar E. Iglesias 已提交
1618
      .readfn = gt_virt_cnt_read, .resetfn = arm_cp_reset_ignore,
1619 1620 1621
    },
    { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2,
1622
      .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
1623
      .accessfn = gt_vct_access, .readfn = gt_virt_cnt_read,
1624 1625 1626
    },
    /* Comparison value, indicating when the timer goes off */
    { .name = "CNTP_CVAL", .cp = 15, .crm = 14, .opc1 = 2,
1627
      .secure = ARM_CP_SECSTATE_NS,
1628
      .access = PL1_RW | PL0_R,
1629
      .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
1630
      .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
1631
      .accessfn = gt_ptimer_access,
1632
      .writefn = gt_phys_cval_write, .raw_writefn = raw_write,
1633
    },
1634 1635 1636 1637 1638 1639 1640 1641
    { .name = "CNTP_CVAL(S)", .cp = 15, .crm = 14, .opc1 = 2,
      .secure = ARM_CP_SECSTATE_S,
      .access = PL1_RW | PL0_R,
      .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
      .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval),
      .accessfn = gt_ptimer_access,
      .writefn = gt_sec_cval_write, .raw_writefn = raw_write,
    },
1642 1643 1644 1645 1646
    { .name = "CNTP_CVAL_EL0", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 2,
      .access = PL1_RW | PL0_R,
      .type = ARM_CP_IO,
      .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
1647
      .resetvalue = 0, .accessfn = gt_ptimer_access,
1648
      .writefn = gt_phys_cval_write, .raw_writefn = raw_write,
1649 1650 1651
    },
    { .name = "CNTV_CVAL", .cp = 15, .crm = 14, .opc1 = 3,
      .access = PL1_RW | PL0_R,
1652
      .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
1653
      .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
1654
      .accessfn = gt_vtimer_access,
1655
      .writefn = gt_virt_cval_write, .raw_writefn = raw_write,
1656 1657 1658 1659 1660 1661 1662
    },
    { .name = "CNTV_CVAL_EL0", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 2,
      .access = PL1_RW | PL0_R,
      .type = ARM_CP_IO,
      .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
      .resetvalue = 0, .accessfn = gt_vtimer_access,
1663
      .writefn = gt_virt_cval_write, .raw_writefn = raw_write,
1664
    },
1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690
    /* Secure timer -- this is actually restricted to only EL3
     * and configurably Secure-EL1 via the accessfn.
     */
    { .name = "CNTPS_TVAL_EL1", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 0,
      .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW,
      .accessfn = gt_stimer_access,
      .readfn = gt_sec_tval_read,
      .writefn = gt_sec_tval_write,
      .resetfn = gt_sec_timer_reset,
    },
    { .name = "CNTPS_CTL_EL1", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 1,
      .type = ARM_CP_IO, .access = PL1_RW,
      .accessfn = gt_stimer_access,
      .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].ctl),
      .resetvalue = 0,
      .writefn = gt_sec_ctl_write, .raw_writefn = raw_write,
    },
    { .name = "CNTPS_CVAL_EL1", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 2,
      .type = ARM_CP_IO, .access = PL1_RW,
      .accessfn = gt_stimer_access,
      .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval),
      .writefn = gt_sec_cval_write, .raw_writefn = raw_write,
    },
1691 1692 1693 1694 1695
    REGINFO_SENTINEL
};

#else
/* In user-mode none of the generic timer registers are accessible,
1696
 * and their implementation depends on QEMU_CLOCK_VIRTUAL and qdev gpio outputs,
1697 1698
 * so instead just don't register any of them.
 */
1699 1700 1701 1702
static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
    REGINFO_SENTINEL
};

1703 1704
#endif

1705
static void par_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
1706
{
1707
    if (arm_feature(env, ARM_FEATURE_LPAE)) {
1708
        raw_write(env, ri, value);
1709
    } else if (arm_feature(env, ARM_FEATURE_V7)) {
1710
        raw_write(env, ri, value & 0xfffff6ff);
1711
    } else {
1712
        raw_write(env, ri, value & 0xfffff1ff);
1713 1714 1715 1716 1717
    }
}

#ifndef CONFIG_USER_ONLY
/* get_phys_addr() isn't present for user-mode-only targets */
1718

1719 1720 1721 1722 1723 1724
static CPAccessResult ats_access(CPUARMState *env, const ARMCPRegInfo *ri)
{
    if (ri->opc2 & 4) {
        /* Other states are only available with TrustZone; in
         * a non-TZ implementation these registers don't exist
         * at all, which is an Uncategorized trap. This underdecoding
1725
         * is safe because the reginfo is NO_RAW.
1726 1727 1728 1729 1730 1731
         */
        return CP_ACCESS_TRAP_UNCATEGORIZED;
    }
    return CP_ACCESS_OK;
}

1732
static uint64_t do_ats_write(CPUARMState *env, uint64_t value,
1733
                             int access_type, ARMMMUIdx mmu_idx)
1734
{
A
Avi Kivity 已提交
1735
    hwaddr phys_addr;
1736 1737
    target_ulong page_size;
    int prot;
1738 1739
    uint32_t fsr;
    bool ret;
F
Fabian Aggeler 已提交
1740
    uint64_t par64;
1741
    MemTxAttrs attrs = {};
1742

1743
    ret = get_phys_addr(env, value, access_type, mmu_idx,
1744
                        &phys_addr, &attrs, &prot, &page_size, &fsr);
1745
    if (extended_addresses_enabled(env)) {
1746
        /* fsr is a DFSR/IFSR value for the long descriptor
1747 1748 1749
         * translation table format, but with WnR always clear.
         * Convert it to a 64-bit PAR.
         */
F
Fabian Aggeler 已提交
1750
        par64 = (1 << 11); /* LPAE bit always set */
1751
        if (!ret) {
1752
            par64 |= phys_addr & ~0xfffULL;
1753 1754 1755
            if (!attrs.secure) {
                par64 |= (1 << 9); /* NS */
            }
1756
            /* We don't set the ATTR or SH fields in the PAR. */
1757
        } else {
1758
            par64 |= 1; /* F */
1759
            par64 |= (fsr & 0x3f) << 1; /* FS */
1760 1761 1762 1763
            /* Note that S2WLK and FSTAGE are always zero, because we don't
             * implement virtualization and therefore there can't be a stage 2
             * fault.
             */
1764 1765
        }
    } else {
1766
        /* fsr is a DFSR/IFSR value for the short descriptor
1767 1768 1769
         * translation table format (with WnR always clear).
         * Convert it to a 32-bit PAR.
         */
1770
        if (!ret) {
1771 1772 1773
            /* We do not set any attribute bits in the PAR */
            if (page_size == (1 << 24)
                && arm_feature(env, ARM_FEATURE_V7)) {
F
Fabian Aggeler 已提交
1774
                par64 = (phys_addr & 0xff000000) | (1 << 1);
1775
            } else {
F
Fabian Aggeler 已提交
1776
                par64 = phys_addr & 0xfffff000;
1777
            }
1778 1779 1780
            if (!attrs.secure) {
                par64 |= (1 << 9); /* NS */
            }
1781
        } else {
1782 1783
            par64 = ((fsr & (1 << 10)) >> 5) | ((fsr & (1 << 12)) >> 6) |
                    ((fsr & 0xf) << 1) | 1;
1784
        }
1785
    }
1786 1787 1788 1789 1790 1791 1792
    return par64;
}

static void ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
{
    int access_type = ri->opc2 & 1;
    uint64_t par64;
1793 1794 1795
    ARMMMUIdx mmu_idx;
    int el = arm_current_el(env);
    bool secure = arm_is_secure_below_el3(env);
1796

1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842
    switch (ri->opc2 & 6) {
    case 0:
        /* stage 1 current state PL1: ATS1CPR, ATS1CPW */
        switch (el) {
        case 3:
            mmu_idx = ARMMMUIdx_S1E3;
            break;
        case 2:
            mmu_idx = ARMMMUIdx_S1NSE1;
            break;
        case 1:
            mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S1NSE1;
            break;
        default:
            g_assert_not_reached();
        }
        break;
    case 2:
        /* stage 1 current state PL0: ATS1CUR, ATS1CUW */
        switch (el) {
        case 3:
            mmu_idx = ARMMMUIdx_S1SE0;
            break;
        case 2:
            mmu_idx = ARMMMUIdx_S1NSE0;
            break;
        case 1:
            mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S1NSE0;
            break;
        default:
            g_assert_not_reached();
        }
        break;
    case 4:
        /* stage 1+2 NonSecure PL1: ATS12NSOPR, ATS12NSOPW */
        mmu_idx = ARMMMUIdx_S12NSE1;
        break;
    case 6:
        /* stage 1+2 NonSecure PL0: ATS12NSOUR, ATS12NSOUW */
        mmu_idx = ARMMMUIdx_S12NSE0;
        break;
    default:
        g_assert_not_reached();
    }

    par64 = do_ats_write(env, value, access_type, mmu_idx);
F
Fabian Aggeler 已提交
1843 1844

    A32_BANKED_CURRENT_REG_SET(env, par, par64);
1845
}
1846 1847 1848 1849 1850

static void ats_write64(CPUARMState *env, const ARMCPRegInfo *ri,
                        uint64_t value)
{
    int access_type = ri->opc2 & 1;
1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881
    ARMMMUIdx mmu_idx;
    int secure = arm_is_secure_below_el3(env);

    switch (ri->opc2 & 6) {
    case 0:
        switch (ri->opc1) {
        case 0: /* AT S1E1R, AT S1E1W */
            mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S1NSE1;
            break;
        case 4: /* AT S1E2R, AT S1E2W */
            mmu_idx = ARMMMUIdx_S1E2;
            break;
        case 6: /* AT S1E3R, AT S1E3W */
            mmu_idx = ARMMMUIdx_S1E3;
            break;
        default:
            g_assert_not_reached();
        }
        break;
    case 2: /* AT S1E0R, AT S1E0W */
        mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S1NSE0;
        break;
    case 4: /* AT S12E1R, AT S12E1W */
        mmu_idx = ARMMMUIdx_S12NSE1;
        break;
    case 6: /* AT S12E0R, AT S12E0W */
        mmu_idx = ARMMMUIdx_S12NSE0;
        break;
    default:
        g_assert_not_reached();
    }
1882

1883
    env->cp15.par_el[1] = do_ats_write(env, value, access_type, mmu_idx);
1884
}
1885 1886 1887 1888 1889
#endif

static const ARMCPRegInfo vapa_cp_reginfo[] = {
    { .name = "PAR", .cp = 15, .crn = 7, .crm = 4, .opc1 = 0, .opc2 = 0,
      .access = PL1_RW, .resetvalue = 0,
F
Fabian Aggeler 已提交
1890 1891
      .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.par_s),
                             offsetoflow32(CPUARMState, cp15.par_ns) },
1892 1893 1894
      .writefn = par_write },
#ifndef CONFIG_USER_ONLY
    { .name = "ATS", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = CP_ANY,
1895
      .access = PL1_W, .accessfn = ats_access,
1896
      .writefn = ats_write, .type = ARM_CP_NO_RAW },
1897 1898 1899 1900
#endif
    REGINFO_SENTINEL
};

1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930
/* Return basic MPU access permission bits.  */
static uint32_t simple_mpu_ap_bits(uint32_t val)
{
    uint32_t ret;
    uint32_t mask;
    int i;
    ret = 0;
    mask = 3;
    for (i = 0; i < 16; i += 2) {
        ret |= (val >> i) & mask;
        mask <<= 2;
    }
    return ret;
}

/* Pad basic MPU access permission bits to extended format.  */
static uint32_t extended_mpu_ap_bits(uint32_t val)
{
    uint32_t ret;
    uint32_t mask;
    int i;
    ret = 0;
    mask = 3;
    for (i = 0; i < 16; i += 2) {
        ret |= (val & mask) << i;
        mask <<= 2;
    }
    return ret;
}

1931 1932
static void pmsav5_data_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
                                 uint64_t value)
1933
{
1934
    env->cp15.pmsav5_data_ap = extended_mpu_ap_bits(value);
1935 1936
}

1937
static uint64_t pmsav5_data_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
1938
{
1939
    return simple_mpu_ap_bits(env->cp15.pmsav5_data_ap);
1940 1941
}

1942 1943
static void pmsav5_insn_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
                                 uint64_t value)
1944
{
1945
    env->cp15.pmsav5_insn_ap = extended_mpu_ap_bits(value);
1946 1947
}

1948
static uint64_t pmsav5_insn_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
1949
{
1950
    return simple_mpu_ap_bits(env->cp15.pmsav5_insn_ap);
1951 1952
}

1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027
static uint64_t pmsav7_read(CPUARMState *env, const ARMCPRegInfo *ri)
{
    uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);

    if (!u32p) {
        return 0;
    }

    u32p += env->cp15.c6_rgnr;
    return *u32p;
}

static void pmsav7_write(CPUARMState *env, const ARMCPRegInfo *ri,
                         uint64_t value)
{
    ARMCPU *cpu = arm_env_get_cpu(env);
    uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);

    if (!u32p) {
        return;
    }

    u32p += env->cp15.c6_rgnr;
    tlb_flush(CPU(cpu), 1); /* Mappings may have changed - purge! */
    *u32p = value;
}

static void pmsav7_reset(CPUARMState *env, const ARMCPRegInfo *ri)
{
    ARMCPU *cpu = arm_env_get_cpu(env);
    uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);

    if (!u32p) {
        return;
    }

    memset(u32p, 0, sizeof(*u32p) * cpu->pmsav7_dregion);
}

static void pmsav7_rgnr_write(CPUARMState *env, const ARMCPRegInfo *ri,
                              uint64_t value)
{
    ARMCPU *cpu = arm_env_get_cpu(env);
    uint32_t nrgs = cpu->pmsav7_dregion;

    if (value >= nrgs) {
        qemu_log_mask(LOG_GUEST_ERROR,
                      "PMSAv7 RGNR write >= # supported regions, %" PRIu32
                      " > %" PRIu32 "\n", (uint32_t)value, nrgs);
        return;
    }

    raw_write(env, ri, value);
}

static const ARMCPRegInfo pmsav7_cp_reginfo[] = {
    { .name = "DRBAR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 0,
      .access = PL1_RW, .type = ARM_CP_NO_RAW,
      .fieldoffset = offsetof(CPUARMState, pmsav7.drbar),
      .readfn = pmsav7_read, .writefn = pmsav7_write, .resetfn = pmsav7_reset },
    { .name = "DRSR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 2,
      .access = PL1_RW, .type = ARM_CP_NO_RAW,
      .fieldoffset = offsetof(CPUARMState, pmsav7.drsr),
      .readfn = pmsav7_read, .writefn = pmsav7_write, .resetfn = pmsav7_reset },
    { .name = "DRACR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 4,
      .access = PL1_RW, .type = ARM_CP_NO_RAW,
      .fieldoffset = offsetof(CPUARMState, pmsav7.dracr),
      .readfn = pmsav7_read, .writefn = pmsav7_write, .resetfn = pmsav7_reset },
    { .name = "RGNR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 2, .opc2 = 0,
      .access = PL1_RW,
      .fieldoffset = offsetof(CPUARMState, cp15.c6_rgnr),
      .writefn = pmsav7_rgnr_write },
    REGINFO_SENTINEL
};

2028 2029
static const ARMCPRegInfo pmsav5_cp_reginfo[] = {
    { .name = "DATA_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
2030
      .access = PL1_RW, .type = ARM_CP_ALIAS,
2031
      .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
2032 2033
      .readfn = pmsav5_data_ap_read, .writefn = pmsav5_data_ap_write, },
    { .name = "INSN_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
2034
      .access = PL1_RW, .type = ARM_CP_ALIAS,
2035
      .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
2036 2037 2038
      .readfn = pmsav5_insn_ap_read, .writefn = pmsav5_insn_ap_write, },
    { .name = "DATA_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 2,
      .access = PL1_RW,
2039 2040
      .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
      .resetvalue = 0, },
2041 2042
    { .name = "INSN_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 3,
      .access = PL1_RW,
2043 2044
      .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
      .resetvalue = 0, },
2045 2046 2047 2048 2049 2050
    { .name = "DCACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
      .access = PL1_RW,
      .fieldoffset = offsetof(CPUARMState, cp15.c2_data), .resetvalue = 0, },
    { .name = "ICACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1,
      .access = PL1_RW,
      .fieldoffset = offsetof(CPUARMState, cp15.c2_insn), .resetvalue = 0, },
2051
    /* Protection region base and size registers */
2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075
    { .name = "946_PRBS0", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0,
      .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
      .fieldoffset = offsetof(CPUARMState, cp15.c6_region[0]) },
    { .name = "946_PRBS1", .cp = 15, .crn = 6, .crm = 1, .opc1 = 0,
      .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
      .fieldoffset = offsetof(CPUARMState, cp15.c6_region[1]) },
    { .name = "946_PRBS2", .cp = 15, .crn = 6, .crm = 2, .opc1 = 0,
      .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
      .fieldoffset = offsetof(CPUARMState, cp15.c6_region[2]) },
    { .name = "946_PRBS3", .cp = 15, .crn = 6, .crm = 3, .opc1 = 0,
      .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
      .fieldoffset = offsetof(CPUARMState, cp15.c6_region[3]) },
    { .name = "946_PRBS4", .cp = 15, .crn = 6, .crm = 4, .opc1 = 0,
      .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
      .fieldoffset = offsetof(CPUARMState, cp15.c6_region[4]) },
    { .name = "946_PRBS5", .cp = 15, .crn = 6, .crm = 5, .opc1 = 0,
      .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
      .fieldoffset = offsetof(CPUARMState, cp15.c6_region[5]) },
    { .name = "946_PRBS6", .cp = 15, .crn = 6, .crm = 6, .opc1 = 0,
      .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
      .fieldoffset = offsetof(CPUARMState, cp15.c6_region[6]) },
    { .name = "946_PRBS7", .cp = 15, .crn = 6, .crm = 7, .opc1 = 0,
      .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
      .fieldoffset = offsetof(CPUARMState, cp15.c6_region[7]) },
2076 2077 2078
    REGINFO_SENTINEL
};

2079 2080
static void vmsa_ttbcr_raw_write(CPUARMState *env, const ARMCPRegInfo *ri,
                                 uint64_t value)
2081
{
F
Fabian Aggeler 已提交
2082
    TCR *tcr = raw_ptr(env, ri);
2083 2084
    int maskshift = extract32(value, 0, 3);

2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098
    if (!arm_feature(env, ARM_FEATURE_V8)) {
        if (arm_feature(env, ARM_FEATURE_LPAE) && (value & TTBCR_EAE)) {
            /* Pre ARMv8 bits [21:19], [15:14] and [6:3] are UNK/SBZP when
             * using Long-desciptor translation table format */
            value &= ~((7 << 19) | (3 << 14) | (0xf << 3));
        } else if (arm_feature(env, ARM_FEATURE_EL3)) {
            /* In an implementation that includes the Security Extensions
             * TTBCR has additional fields PD0 [4] and PD1 [5] for
             * Short-descriptor translation table format.
             */
            value &= TTBCR_PD1 | TTBCR_PD0 | TTBCR_N;
        } else {
            value &= TTBCR_N;
        }
2099
    }
2100

F
Fabian Aggeler 已提交
2101 2102
    /* Update the masks corresponding to the the TCR bank being written
     * Note that we always calculate mask and base_mask, but
2103
     * they are only used for short-descriptor tables (ie if EAE is 0);
F
Fabian Aggeler 已提交
2104 2105
     * for long-descriptor tables the TCR fields are used differently
     * and the mask and base_mask values are meaningless.
2106
     */
F
Fabian Aggeler 已提交
2107 2108 2109
    tcr->raw_tcr = value;
    tcr->mask = ~(((uint32_t)0xffffffffu) >> maskshift);
    tcr->base_mask = ~((uint32_t)0x3fffu >> maskshift);
2110 2111
}

2112 2113
static void vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
                             uint64_t value)
2114
{
2115 2116
    ARMCPU *cpu = arm_env_get_cpu(env);

2117 2118 2119 2120
    if (arm_feature(env, ARM_FEATURE_LPAE)) {
        /* With LPAE the TTBCR could result in a change of ASID
         * via the TTBCR.A1 bit, so do a TLB flush.
         */
2121
        tlb_flush(CPU(cpu), 1);
2122
    }
2123
    vmsa_ttbcr_raw_write(env, ri, value);
2124 2125
}

2126 2127
static void vmsa_ttbcr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
{
F
Fabian Aggeler 已提交
2128 2129 2130 2131 2132 2133 2134 2135
    TCR *tcr = raw_ptr(env, ri);

    /* Reset both the TCR as well as the masks corresponding to the bank of
     * the TCR being reset.
     */
    tcr->raw_tcr = 0;
    tcr->mask = 0;
    tcr->base_mask = 0xffffc000u;
2136 2137
}

2138 2139 2140
static void vmsa_tcr_el1_write(CPUARMState *env, const ARMCPRegInfo *ri,
                               uint64_t value)
{
2141
    ARMCPU *cpu = arm_env_get_cpu(env);
F
Fabian Aggeler 已提交
2142
    TCR *tcr = raw_ptr(env, ri);
2143

2144
    /* For AArch64 the A1 bit could result in a change of ASID, so TLB flush. */
2145
    tlb_flush(CPU(cpu), 1);
F
Fabian Aggeler 已提交
2146
    tcr->raw_tcr = value;
2147 2148
}

2149 2150 2151 2152 2153 2154 2155
static void vmsa_ttbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
                            uint64_t value)
{
    /* 64 bit accesses to the TTBRs can change the ASID and so we
     * must flush the TLB.
     */
    if (cpreg_field_is_64bit(ri)) {
2156 2157 2158
        ARMCPU *cpu = arm_env_get_cpu(env);

        tlb_flush(CPU(cpu), 1);
2159 2160 2161 2162
    }
    raw_write(env, ri, value);
}

2163
static const ARMCPRegInfo vmsa_pmsa_cp_reginfo[] = {
2164
    { .name = "DFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
2165
      .access = PL1_RW, .type = ARM_CP_ALIAS,
F
Fabian Aggeler 已提交
2166
      .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dfsr_s),
2167
                             offsetoflow32(CPUARMState, cp15.dfsr_ns) }, },
2168
    { .name = "IFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
F
Fabian Aggeler 已提交
2169 2170 2171
      .access = PL1_RW, .resetvalue = 0,
      .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.ifsr_s),
                             offsetoflow32(CPUARMState, cp15.ifsr_ns) } },
2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183
    { .name = "DFAR", .cp = 15, .opc1 = 0, .crn = 6, .crm = 0, .opc2 = 0,
      .access = PL1_RW, .resetvalue = 0,
      .bank_fieldoffsets = { offsetof(CPUARMState, cp15.dfar_s),
                             offsetof(CPUARMState, cp15.dfar_ns) } },
    { .name = "FAR_EL1", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0,
      .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[1]),
      .resetvalue = 0, },
    REGINFO_SENTINEL
};

static const ARMCPRegInfo vmsa_cp_reginfo[] = {
2184 2185 2186
    { .name = "ESR_EL1", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .crn = 5, .crm = 2, .opc1 = 0, .opc2 = 0,
      .access = PL1_RW,
2187
      .fieldoffset = offsetof(CPUARMState, cp15.esr_el[1]), .resetvalue = 0, },
2188
    { .name = "TTBR0_EL1", .state = ARM_CP_STATE_BOTH,
F
Fabian Aggeler 已提交
2189 2190 2191 2192
      .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 0,
      .access = PL1_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0,
      .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s),
                             offsetof(CPUARMState, cp15.ttbr0_ns) } },
2193
    { .name = "TTBR1_EL1", .state = ARM_CP_STATE_BOTH,
F
Fabian Aggeler 已提交
2194 2195 2196 2197
      .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 1,
      .access = PL1_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0,
      .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s),
                             offsetof(CPUARMState, cp15.ttbr1_ns) } },
2198 2199 2200 2201
    { .name = "TCR_EL1", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
      .access = PL1_RW, .writefn = vmsa_tcr_el1_write,
      .resetfn = vmsa_ttbcr_reset, .raw_writefn = raw_write,
F
Fabian Aggeler 已提交
2202
      .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[1]) },
2203
    { .name = "TTBCR", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
2204
      .access = PL1_RW, .type = ARM_CP_ALIAS, .writefn = vmsa_ttbcr_write,
2205
      .raw_writefn = vmsa_ttbcr_raw_write,
F
Fabian Aggeler 已提交
2206 2207
      .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tcr_el[3]),
                             offsetoflow32(CPUARMState, cp15.tcr_el[1])} },
2208 2209 2210
    REGINFO_SENTINEL
};

2211 2212
static void omap_ticonfig_write(CPUARMState *env, const ARMCPRegInfo *ri,
                                uint64_t value)
2213 2214 2215 2216 2217 2218 2219
{
    env->cp15.c15_ticonfig = value & 0xe7;
    /* The OS_TYPE bit in this register changes the reported CPUID! */
    env->cp15.c0_cpuid = (value & (1 << 5)) ?
        ARM_CPUID_TI915T : ARM_CPUID_TI925T;
}

2220 2221
static void omap_threadid_write(CPUARMState *env, const ARMCPRegInfo *ri,
                                uint64_t value)
2222 2223 2224 2225
{
    env->cp15.c15_threadid = value & 0xffff;
}

2226 2227
static void omap_wfi_write(CPUARMState *env, const ARMCPRegInfo *ri,
                           uint64_t value)
2228 2229
{
    /* Wait-for-interrupt (deprecated) */
2230
    cpu_interrupt(CPU(arm_env_get_cpu(env)), CPU_INTERRUPT_HALT);
2231 2232
}

2233 2234
static void omap_cachemaint_write(CPUARMState *env, const ARMCPRegInfo *ri,
                                  uint64_t value)
2235 2236 2237 2238 2239 2240 2241 2242
{
    /* On OMAP there are registers indicating the max/min index of dcache lines
     * containing a dirty line; cache flush operations have to reset these.
     */
    env->cp15.c15_i_max = 0x000;
    env->cp15.c15_i_min = 0xff0;
}

2243 2244 2245
static const ARMCPRegInfo omap_cp_reginfo[] = {
    { .name = "DFSR", .cp = 15, .crn = 5, .crm = CP_ANY,
      .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_OVERRIDE,
2246
      .fieldoffset = offsetoflow32(CPUARMState, cp15.esr_el[1]),
2247
      .resetvalue = 0, },
2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265
    { .name = "", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0,
      .access = PL1_RW, .type = ARM_CP_NOP },
    { .name = "TICONFIG", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0,
      .access = PL1_RW,
      .fieldoffset = offsetof(CPUARMState, cp15.c15_ticonfig), .resetvalue = 0,
      .writefn = omap_ticonfig_write },
    { .name = "IMAX", .cp = 15, .crn = 15, .crm = 2, .opc1 = 0, .opc2 = 0,
      .access = PL1_RW,
      .fieldoffset = offsetof(CPUARMState, cp15.c15_i_max), .resetvalue = 0, },
    { .name = "IMIN", .cp = 15, .crn = 15, .crm = 3, .opc1 = 0, .opc2 = 0,
      .access = PL1_RW, .resetvalue = 0xff0,
      .fieldoffset = offsetof(CPUARMState, cp15.c15_i_min) },
    { .name = "THREADID", .cp = 15, .crn = 15, .crm = 4, .opc1 = 0, .opc2 = 0,
      .access = PL1_RW,
      .fieldoffset = offsetof(CPUARMState, cp15.c15_threadid), .resetvalue = 0,
      .writefn = omap_threadid_write },
    { .name = "TI925T_STATUS", .cp = 15, .crn = 15,
      .crm = 8, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
2266
      .type = ARM_CP_NO_RAW,
2267 2268 2269 2270 2271 2272
      .readfn = arm_cp_read_zero, .writefn = omap_wfi_write, },
    /* TODO: Peripheral port remap register:
     * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller
     * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff),
     * when MMU is off.
     */
2273
    { .name = "OMAP_CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
2274
      .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
2275
      .type = ARM_CP_OVERRIDE | ARM_CP_NO_RAW,
2276
      .writefn = omap_cachemaint_write },
2277 2278 2279
    { .name = "C9", .cp = 15, .crn = 9,
      .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW,
      .type = ARM_CP_CONST | ARM_CP_OVERRIDE, .resetvalue = 0 },
2280 2281 2282
    REGINFO_SENTINEL
};

2283 2284
static void xscale_cpar_write(CPUARMState *env, const ARMCPRegInfo *ri,
                              uint64_t value)
2285
{
2286
    env->cp15.c15_cpar = value & 0x3fff;
2287 2288 2289 2290 2291 2292 2293
}

static const ARMCPRegInfo xscale_cp_reginfo[] = {
    { .name = "XSCALE_CPAR",
      .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
      .fieldoffset = offsetof(CPUARMState, cp15.c15_cpar), .resetvalue = 0,
      .writefn = xscale_cpar_write, },
2294 2295 2296 2297
    { .name = "XSCALE_AUXCR",
      .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW,
      .fieldoffset = offsetof(CPUARMState, cp15.c1_xscaleauxcr),
      .resetvalue = 0, },
2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312
    /* XScale specific cache-lockdown: since we have no cache we NOP these
     * and hope the guest does not really rely on cache behaviour.
     */
    { .name = "XSCALE_LOCK_ICACHE_LINE",
      .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0,
      .access = PL1_W, .type = ARM_CP_NOP },
    { .name = "XSCALE_UNLOCK_ICACHE",
      .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1,
      .access = PL1_W, .type = ARM_CP_NOP },
    { .name = "XSCALE_DCACHE_LOCK",
      .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 0,
      .access = PL1_RW, .type = ARM_CP_NOP },
    { .name = "XSCALE_UNLOCK_DCACHE",
      .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 1,
      .access = PL1_W, .type = ARM_CP_NOP },
2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323
    REGINFO_SENTINEL
};

static const ARMCPRegInfo dummy_c15_cp_reginfo[] = {
    /* RAZ/WI the whole crn=15 space, when we don't have a more specific
     * implementation of this implementation-defined space.
     * Ideally this should eventually disappear in favour of actually
     * implementing the correct behaviour for all cores.
     */
    { .name = "C15_IMPDEF", .cp = 15, .crn = 15,
      .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
2324
      .access = PL1_RW,
2325
      .type = ARM_CP_CONST | ARM_CP_NO_RAW | ARM_CP_OVERRIDE,
2326
      .resetvalue = 0 },
2327 2328 2329
    REGINFO_SENTINEL
};

2330 2331 2332
static const ARMCPRegInfo cache_dirty_status_cp_reginfo[] = {
    /* Cache status: RAZ because we have no cache so it's always clean */
    { .name = "CDSR", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 6,
2333
      .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
2334
      .resetvalue = 0 },
2335 2336 2337 2338 2339 2340
    REGINFO_SENTINEL
};

static const ARMCPRegInfo cache_block_ops_cp_reginfo[] = {
    /* We never have a a block transfer operation in progress */
    { .name = "BXSR", .cp = 15, .crn = 7, .crm = 12, .opc1 = 0, .opc2 = 4,
2341
      .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
2342
      .resetvalue = 0 },
2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355
    /* The cache ops themselves: these all NOP for QEMU */
    { .name = "IICR", .cp = 15, .crm = 5, .opc1 = 0,
      .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
    { .name = "IDCR", .cp = 15, .crm = 6, .opc1 = 0,
      .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
    { .name = "CDCR", .cp = 15, .crm = 12, .opc1 = 0,
      .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
    { .name = "PIR", .cp = 15, .crm = 12, .opc1 = 1,
      .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
    { .name = "PDR", .cp = 15, .crm = 12, .opc1 = 2,
      .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
    { .name = "CIDCR", .cp = 15, .crm = 14, .opc1 = 0,
      .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
2356 2357 2358 2359 2360 2361 2362 2363
    REGINFO_SENTINEL
};

static const ARMCPRegInfo cache_test_clean_cp_reginfo[] = {
    /* The cache test-and-clean instructions always return (1 << 30)
     * to indicate that there are no dirty cache lines.
     */
    { .name = "TC_DCACHE", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 3,
2364
      .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
2365
      .resetvalue = (1 << 30) },
2366
    { .name = "TCI_DCACHE", .cp = 15, .crn = 7, .crm = 14, .opc1 = 0, .opc2 = 3,
2367
      .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
2368
      .resetvalue = (1 << 30) },
2369 2370 2371
    REGINFO_SENTINEL
};

2372 2373 2374 2375
static const ARMCPRegInfo strongarm_cp_reginfo[] = {
    /* Ignore ReadBuffer accesses */
    { .name = "C9_READBUFFER", .cp = 15, .crn = 9,
      .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
2376
      .access = PL1_RW, .resetvalue = 0,
2377
      .type = ARM_CP_CONST | ARM_CP_OVERRIDE | ARM_CP_NO_RAW },
2378 2379 2380
    REGINFO_SENTINEL
};

2381
static uint64_t mpidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
P
Peter Maydell 已提交
2382
{
2383 2384 2385
    ARMCPU *cpu = ARM_CPU(arm_env_get_cpu(env));
    uint64_t mpidr = cpu->mp_affinity;

P
Peter Maydell 已提交
2386
    if (arm_feature(env, ARM_FEATURE_V7MP)) {
2387
        mpidr |= (1U << 31);
P
Peter Maydell 已提交
2388 2389
        /* Cores which are uniprocessor (non-coherent)
         * but still implement the MP extensions set
2390
         * bit 30. (For instance, Cortex-R5).
P
Peter Maydell 已提交
2391
         */
2392 2393 2394
        if (cpu->mp_is_up) {
            mpidr |= (1u << 30);
        }
P
Peter Maydell 已提交
2395
    }
2396
    return mpidr;
P
Peter Maydell 已提交
2397 2398 2399
}

static const ARMCPRegInfo mpidr_cp_reginfo[] = {
2400 2401
    { .name = "MPIDR", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 5,
2402
      .access = PL1_R, .readfn = mpidr_read, .type = ARM_CP_NO_RAW },
P
Peter Maydell 已提交
2403 2404 2405
    REGINFO_SENTINEL
};

2406
static const ARMCPRegInfo lpae_cp_reginfo[] = {
2407
    /* NOP AMAIR0/1 */
2408 2409
    { .name = "AMAIR0", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 0,
2410
      .access = PL1_RW, .type = ARM_CP_CONST,
2411
      .resetvalue = 0 },
2412
    /* AMAIR1 is mapped to AMAIR_EL1[63:32] */
2413
    { .name = "AMAIR1", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 1,
2414
      .access = PL1_RW, .type = ARM_CP_CONST,
2415
      .resetvalue = 0 },
2416
    { .name = "PAR", .cp = 15, .crm = 7, .opc1 = 0,
F
Fabian Aggeler 已提交
2417 2418 2419
      .access = PL1_RW, .type = ARM_CP_64BIT, .resetvalue = 0,
      .bank_fieldoffsets = { offsetof(CPUARMState, cp15.par_s),
                             offsetof(CPUARMState, cp15.par_ns)} },
2420
    { .name = "TTBR0", .cp = 15, .crm = 2, .opc1 = 0,
2421
      .access = PL1_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
F
Fabian Aggeler 已提交
2422 2423
      .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s),
                             offsetof(CPUARMState, cp15.ttbr0_ns) },
2424
      .writefn = vmsa_ttbr_write, },
2425
    { .name = "TTBR1", .cp = 15, .crm = 2, .opc1 = 1,
2426
      .access = PL1_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
F
Fabian Aggeler 已提交
2427 2428
      .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s),
                             offsetof(CPUARMState, cp15.ttbr1_ns) },
2429
      .writefn = vmsa_ttbr_write, },
2430 2431 2432
    REGINFO_SENTINEL
};

2433
static uint64_t aa64_fpcr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2434
{
2435
    return vfp_get_fpcr(env);
2436 2437
}

2438 2439
static void aa64_fpcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
                            uint64_t value)
2440 2441 2442 2443
{
    vfp_set_fpcr(env, value);
}

2444
static uint64_t aa64_fpsr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2445
{
2446
    return vfp_get_fpsr(env);
2447 2448
}

2449 2450
static void aa64_fpsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
                            uint64_t value)
2451 2452 2453 2454
{
    vfp_set_fpsr(env, value);
}

2455 2456
static CPAccessResult aa64_daif_access(CPUARMState *env, const ARMCPRegInfo *ri)
{
2457
    if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UMA)) {
2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468
        return CP_ACCESS_TRAP;
    }
    return CP_ACCESS_OK;
}

static void aa64_daif_write(CPUARMState *env, const ARMCPRegInfo *ri,
                            uint64_t value)
{
    env->daif = value & PSTATE_DAIF;
}

2469 2470 2471 2472 2473 2474
static CPAccessResult aa64_cacheop_access(CPUARMState *env,
                                          const ARMCPRegInfo *ri)
{
    /* Cache invalidate/clean: NOP, but EL0 must UNDEF unless
     * SCTLR_EL1.UCI is set.
     */
2475
    if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UCI)) {
2476 2477 2478 2479 2480
        return CP_ACCESS_TRAP;
    }
    return CP_ACCESS_OK;
}

2481 2482 2483 2484
/* See: D4.7.2 TLB maintenance requirements and the TLB maintenance instructions
 * Page D4-1736 (DDI0487A.b)
 */

2485 2486 2487 2488
static void tlbi_aa64_va_write(CPUARMState *env, const ARMCPRegInfo *ri,
                               uint64_t value)
{
    /* Invalidate by VA (AArch64 version) */
2489
    ARMCPU *cpu = arm_env_get_cpu(env);
2490 2491
    uint64_t pageaddr = sextract64(value << 12, 0, 56);

2492
    tlb_flush_page(CPU(cpu), pageaddr);
2493 2494 2495 2496 2497 2498
}

static void tlbi_aa64_vaa_write(CPUARMState *env, const ARMCPRegInfo *ri,
                                uint64_t value)
{
    /* Invalidate by VA, all ASIDs (AArch64 version) */
2499
    ARMCPU *cpu = arm_env_get_cpu(env);
2500 2501
    uint64_t pageaddr = sextract64(value << 12, 0, 56);

2502
    tlb_flush_page(CPU(cpu), pageaddr);
2503 2504 2505 2506 2507 2508
}

static void tlbi_aa64_asid_write(CPUARMState *env, const ARMCPRegInfo *ri,
                                 uint64_t value)
{
    /* Invalidate by ASID (AArch64 version) */
2509
    ARMCPU *cpu = arm_env_get_cpu(env);
2510
    int asid = extract64(value, 48, 16);
2511
    tlb_flush(CPU(cpu), asid == 0);
2512 2513
}

2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546
static void tlbi_aa64_va_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
                                  uint64_t value)
{
    CPUState *other_cs;
    uint64_t pageaddr = sextract64(value << 12, 0, 56);

    CPU_FOREACH(other_cs) {
        tlb_flush_page(other_cs, pageaddr);
    }
}

static void tlbi_aa64_vaa_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
                                  uint64_t value)
{
    CPUState *other_cs;
    uint64_t pageaddr = sextract64(value << 12, 0, 56);

    CPU_FOREACH(other_cs) {
        tlb_flush_page(other_cs, pageaddr);
    }
}

static void tlbi_aa64_asid_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
                                  uint64_t value)
{
    CPUState *other_cs;
    int asid = extract64(value, 48, 16);

    CPU_FOREACH(other_cs) {
        tlb_flush(other_cs, asid == 0);
    }
}

2547 2548 2549 2550 2551
static CPAccessResult aa64_zva_access(CPUARMState *env, const ARMCPRegInfo *ri)
{
    /* We don't implement EL2, so the only control on DC ZVA is the
     * bit in the SCTLR which can prohibit access for EL0.
     */
2552
    if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_DZE)) {
2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563
        return CP_ACCESS_TRAP;
    }
    return CP_ACCESS_OK;
}

static uint64_t aa64_dczid_read(CPUARMState *env, const ARMCPRegInfo *ri)
{
    ARMCPU *cpu = arm_env_get_cpu(env);
    int dzp_bit = 1 << 4;

    /* DZP indicates whether DC ZVA access is allowed */
2564
    if (aa64_zva_access(env, NULL) == CP_ACCESS_OK) {
2565 2566 2567 2568 2569
        dzp_bit = 0;
    }
    return cpu->dcz_blocksize | dzp_bit;
}

2570 2571
static CPAccessResult sp_el0_access(CPUARMState *env, const ARMCPRegInfo *ri)
{
2572
    if (!(env->pstate & PSTATE_SP)) {
2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590
        /* Access to SP_EL0 is undefined if it's being used as
         * the stack pointer.
         */
        return CP_ACCESS_TRAP_UNCATEGORIZED;
    }
    return CP_ACCESS_OK;
}

static uint64_t spsel_read(CPUARMState *env, const ARMCPRegInfo *ri)
{
    return env->pstate & PSTATE_SP;
}

static void spsel_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val)
{
    update_spsel(env, val);
}

2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608
static void sctlr_write(CPUARMState *env, const ARMCPRegInfo *ri,
                        uint64_t value)
{
    ARMCPU *cpu = arm_env_get_cpu(env);

    if (raw_read(env, ri) == value) {
        /* Skip the TLB flush if nothing actually changed; Linux likes
         * to do a lot of pointless SCTLR writes.
         */
        return;
    }

    raw_write(env, ri, value);
    /* ??? Lots of these bits are not implemented.  */
    /* This may enable/disable the MMU, so do a TLB flush.  */
    tlb_flush(CPU(cpu), 1);
}

2609 2610 2611 2612 2613 2614 2615
static const ARMCPRegInfo v8_cp_reginfo[] = {
    /* Minimal set of EL0-visible registers. This will need to be expanded
     * significantly for system emulation of AArch64 CPUs.
     */
    { .name = "NZCV", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 2,
      .access = PL0_RW, .type = ARM_CP_NZCV },
2616 2617
    { .name = "DAIF", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 2,
2618
      .type = ARM_CP_NO_RAW,
2619 2620 2621
      .access = PL0_RW, .accessfn = aa64_daif_access,
      .fieldoffset = offsetof(CPUARMState, daif),
      .writefn = aa64_daif_write, .resetfn = arm_cp_reset_ignore },
2622 2623 2624 2625 2626 2627 2628 2629
    { .name = "FPCR", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 4,
      .access = PL0_RW, .readfn = aa64_fpcr_read, .writefn = aa64_fpcr_write },
    { .name = "FPSR", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 4,
      .access = PL0_RW, .readfn = aa64_fpsr_read, .writefn = aa64_fpsr_write },
    { .name = "DCZID_EL0", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 3, .opc2 = 7, .crn = 0, .crm = 0,
2630
      .access = PL0_R, .type = ARM_CP_NO_RAW,
2631 2632 2633 2634 2635 2636 2637 2638 2639
      .readfn = aa64_dczid_read },
    { .name = "DC_ZVA", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 1,
      .access = PL0_W, .type = ARM_CP_DC_ZVA,
#ifndef CONFIG_USER_ONLY
      /* Avoid overhead of an access check that always passes in user-mode */
      .accessfn = aa64_zva_access,
#endif
    },
2640 2641 2642
    { .name = "CURRENTEL", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 0, .opc2 = 2, .crn = 4, .crm = 2,
      .access = PL1_R, .type = ARM_CP_CURRENTEL },
2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677
    /* Cache ops: all NOPs since we don't emulate caches */
    { .name = "IC_IALLUIS", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
      .access = PL1_W, .type = ARM_CP_NOP },
    { .name = "IC_IALLU", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
      .access = PL1_W, .type = ARM_CP_NOP },
    { .name = "IC_IVAU", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 5, .opc2 = 1,
      .access = PL0_W, .type = ARM_CP_NOP,
      .accessfn = aa64_cacheop_access },
    { .name = "DC_IVAC", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
      .access = PL1_W, .type = ARM_CP_NOP },
    { .name = "DC_ISW", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
      .access = PL1_W, .type = ARM_CP_NOP },
    { .name = "DC_CVAC", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 1,
      .access = PL0_W, .type = ARM_CP_NOP,
      .accessfn = aa64_cacheop_access },
    { .name = "DC_CSW", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
      .access = PL1_W, .type = ARM_CP_NOP },
    { .name = "DC_CVAU", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 11, .opc2 = 1,
      .access = PL0_W, .type = ARM_CP_NOP,
      .accessfn = aa64_cacheop_access },
    { .name = "DC_CIVAC", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 1,
      .access = PL0_W, .type = ARM_CP_NOP,
      .accessfn = aa64_cacheop_access },
    { .name = "DC_CISW", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
      .access = PL1_W, .type = ARM_CP_NOP },
2678
    /* TLBI operations */
2679 2680 2681 2682 2683 2684 2685
    { .name = "TLBI_ALLE1", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4,
      .access = PL2_W, .type = ARM_CP_NO_RAW,
      .writefn = tlbiall_write },
    { .name = "TLBI_ALLE1IS", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4,
      .access = PL2_W, .type = ARM_CP_NO_RAW,
2686
      .writefn = tlbiall_is_write },
2687
    { .name = "TLBI_VMALLE1IS", .state = ARM_CP_STATE_AA64,
2688
      .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0,
2689
      .access = PL1_W, .type = ARM_CP_NO_RAW,
2690
      .writefn = tlbiall_is_write },
2691
    { .name = "TLBI_VAE1IS", .state = ARM_CP_STATE_AA64,
2692
      .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1,
2693
      .access = PL1_W, .type = ARM_CP_NO_RAW,
2694
      .writefn = tlbi_aa64_va_is_write },
2695
    { .name = "TLBI_ASIDE1IS", .state = ARM_CP_STATE_AA64,
2696
      .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2,
2697
      .access = PL1_W, .type = ARM_CP_NO_RAW,
2698
      .writefn = tlbi_aa64_asid_is_write },
2699
    { .name = "TLBI_VAAE1IS", .state = ARM_CP_STATE_AA64,
2700
      .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3,
2701
      .access = PL1_W, .type = ARM_CP_NO_RAW,
2702
      .writefn = tlbi_aa64_vaa_is_write },
2703
    { .name = "TLBI_VALE1IS", .state = ARM_CP_STATE_AA64,
2704
      .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5,
2705
      .access = PL1_W, .type = ARM_CP_NO_RAW,
2706
      .writefn = tlbi_aa64_va_is_write },
2707
    { .name = "TLBI_VAALE1IS", .state = ARM_CP_STATE_AA64,
2708
      .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7,
2709
      .access = PL1_W, .type = ARM_CP_NO_RAW,
2710
      .writefn = tlbi_aa64_vaa_is_write },
2711
    { .name = "TLBI_VMALLE1", .state = ARM_CP_STATE_AA64,
2712
      .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0,
2713
      .access = PL1_W, .type = ARM_CP_NO_RAW,
2714 2715
      .writefn = tlbiall_write },
    { .name = "TLBI_VAE1", .state = ARM_CP_STATE_AA64,
2716
      .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1,
2717
      .access = PL1_W, .type = ARM_CP_NO_RAW,
2718 2719
      .writefn = tlbi_aa64_va_write },
    { .name = "TLBI_ASIDE1", .state = ARM_CP_STATE_AA64,
2720
      .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2,
2721
      .access = PL1_W, .type = ARM_CP_NO_RAW,
2722 2723
      .writefn = tlbi_aa64_asid_write },
    { .name = "TLBI_VAAE1", .state = ARM_CP_STATE_AA64,
2724
      .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3,
2725
      .access = PL1_W, .type = ARM_CP_NO_RAW,
2726 2727
      .writefn = tlbi_aa64_vaa_write },
    { .name = "TLBI_VALE1", .state = ARM_CP_STATE_AA64,
2728
      .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5,
2729
      .access = PL1_W, .type = ARM_CP_NO_RAW,
2730 2731
      .writefn = tlbi_aa64_va_write },
    { .name = "TLBI_VAALE1", .state = ARM_CP_STATE_AA64,
2732
      .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7,
2733
      .access = PL1_W, .type = ARM_CP_NO_RAW,
2734
      .writefn = tlbi_aa64_vaa_write },
2735 2736 2737 2738
#ifndef CONFIG_USER_ONLY
    /* 64 bit address translation operations */
    { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 0,
2739
      .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
2740 2741
    { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 1,
2742
      .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
2743 2744
    { .name = "AT_S1E0R", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 2,
2745
      .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
2746 2747
    { .name = "AT_S1E0W", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 3,
2748
      .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
2749
#endif
2750
    /* TLB invalidate last level of translation table walk */
2751
    { .name = "TLBIMVALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5,
2752
      .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_is_write },
2753
    { .name = "TLBIMVAALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7,
2754
      .type = ARM_CP_NO_RAW, .access = PL1_W,
2755
      .writefn = tlbimvaa_is_write },
2756
    { .name = "TLBIMVAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5,
2757
      .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
2758
    { .name = "TLBIMVAAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7,
2759
      .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimvaa_write },
2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787
    /* 32 bit cache operations */
    { .name = "ICIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
      .type = ARM_CP_NOP, .access = PL1_W },
    { .name = "BPIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 6,
      .type = ARM_CP_NOP, .access = PL1_W },
    { .name = "ICIALLU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
      .type = ARM_CP_NOP, .access = PL1_W },
    { .name = "ICIMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 1,
      .type = ARM_CP_NOP, .access = PL1_W },
    { .name = "BPIALL", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 6,
      .type = ARM_CP_NOP, .access = PL1_W },
    { .name = "BPIMVA", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 7,
      .type = ARM_CP_NOP, .access = PL1_W },
    { .name = "DCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
      .type = ARM_CP_NOP, .access = PL1_W },
    { .name = "DCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
      .type = ARM_CP_NOP, .access = PL1_W },
    { .name = "DCCMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 1,
      .type = ARM_CP_NOP, .access = PL1_W },
    { .name = "DCCSW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
      .type = ARM_CP_NOP, .access = PL1_W },
    { .name = "DCCMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 11, .opc2 = 1,
      .type = ARM_CP_NOP, .access = PL1_W },
    { .name = "DCCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 1,
      .type = ARM_CP_NOP, .access = PL1_W },
    { .name = "DCCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
      .type = ARM_CP_NOP, .access = PL1_W },
    /* MMU Domain access control / MPU write buffer control */
F
Fabian Aggeler 已提交
2788 2789 2790 2791 2792
    { .name = "DACR", .cp = 15, .opc1 = 0, .crn = 3, .crm = 0, .opc2 = 0,
      .access = PL1_RW, .resetvalue = 0,
      .writefn = dacr_write, .raw_writefn = raw_write,
      .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s),
                             offsetoflow32(CPUARMState, cp15.dacr_ns) } },
2793
    { .name = "ELR_EL1", .state = ARM_CP_STATE_AA64,
2794
      .type = ARM_CP_ALIAS,
2795
      .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 1,
2796 2797
      .access = PL1_RW,
      .fieldoffset = offsetof(CPUARMState, elr_el[1]) },
2798
    { .name = "SPSR_EL1", .state = ARM_CP_STATE_AA64,
2799
      .type = ARM_CP_ALIAS,
2800
      .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 0,
2801
      .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, banked_spsr[1]) },
2802 2803 2804 2805 2806 2807 2808
    /* We rely on the access checks not allowing the guest to write to the
     * state field when SPSel indicates that it's being used as the stack
     * pointer.
     */
    { .name = "SP_EL0", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 1, .opc2 = 0,
      .access = PL1_RW, .accessfn = sp_el0_access,
2809
      .type = ARM_CP_ALIAS,
2810
      .fieldoffset = offsetof(CPUARMState, sp_el[0]) },
2811 2812
    { .name = "SP_EL1", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 1, .opc2 = 0,
2813
      .access = PL2_RW, .type = ARM_CP_ALIAS,
2814
      .fieldoffset = offsetof(CPUARMState, sp_el[1]) },
2815 2816
    { .name = "SPSel", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 0,
2817
      .type = ARM_CP_NO_RAW,
2818
      .access = PL1_RW, .readfn = spsel_read, .writefn = spsel_write },
2819 2820 2821
    REGINFO_SENTINEL
};

2822
/* Used to describe the behaviour of EL2 regs when EL2 does not exist.  */
2823
static const ARMCPRegInfo el3_no_el2_cp_reginfo[] = {
2824 2825 2826 2827
    { .name = "VBAR_EL2", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0,
      .access = PL2_RW,
      .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore },
E
Edgar E. Iglesias 已提交
2828
    { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64,
2829
      .type = ARM_CP_NO_RAW,
E
Edgar E. Iglesias 已提交
2830 2831 2832
      .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
      .access = PL2_RW,
      .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore },
2833 2834 2835
    { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2,
      .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
E
Edgar E. Iglesias 已提交
2836 2837 2838 2839 2840 2841 2842
    { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0,
      .access = PL2_RW, .type = ARM_CP_CONST,
      .resetvalue = 0 },
    { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
      .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1,
      .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
2843 2844 2845 2846 2847 2848 2849 2850
    { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0,
      .access = PL2_RW, .type = ARM_CP_CONST,
      .resetvalue = 0 },
    { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
      .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1,
      .access = PL2_RW, .type = ARM_CP_CONST,
      .resetvalue = 0 },
E
Edgar E. Iglesias 已提交
2851 2852 2853
    { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2,
      .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
E
Edgar E. Iglesias 已提交
2854 2855 2856
    { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0,
      .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
E
Edgar E. Iglesias 已提交
2857 2858 2859
    { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2,
      .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
E
Edgar E. Iglesias 已提交
2860 2861 2862 2863 2864 2865
    { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0,
      .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
    { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2,
      .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
      .resetvalue = 0 },
E
Edgar E. Iglesias 已提交
2866 2867 2868
    { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0,
      .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
E
Edgar E. Iglesias 已提交
2869 2870 2871 2872 2873 2874
    { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3,
      .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
    { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14,
      .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
      .resetvalue = 0 },
2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886
    { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2,
      .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
    { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14,
      .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
      .resetvalue = 0 },
    { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0,
      .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
    { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1,
      .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
2887 2888 2889
    REGINFO_SENTINEL
};

E
Edgar E. Iglesias 已提交
2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914
static void hcr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
{
    ARMCPU *cpu = arm_env_get_cpu(env);
    uint64_t valid_mask = HCR_MASK;

    if (arm_feature(env, ARM_FEATURE_EL3)) {
        valid_mask &= ~HCR_HCD;
    } else {
        valid_mask &= ~HCR_TSC;
    }

    /* Clear RES0 bits.  */
    value &= valid_mask;

    /* These bits change the MMU setup:
     * HCR_VM enables stage 2 translation
     * HCR_PTW forbids certain page-table setups
     * HCR_DC Disables stage1 and enables stage2 translation
     */
    if ((raw_read(env, ri) ^ value) & (HCR_VM | HCR_PTW | HCR_DC)) {
        tlb_flush(CPU(cpu), 1);
    }
    raw_write(env, ri, value);
}

2915
static const ARMCPRegInfo el2_cp_reginfo[] = {
E
Edgar E. Iglesias 已提交
2916 2917 2918 2919
    { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
      .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2),
      .writefn = hcr_write },
F
Fabian Aggeler 已提交
2920 2921 2922 2923 2924
    { .name = "DACR32_EL2", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 0, .opc2 = 0,
      .access = PL2_RW, .resetvalue = 0,
      .writefn = dacr_write, .raw_writefn = raw_write,
      .fieldoffset = offsetof(CPUARMState, cp15.dacr32_el2) },
2925
    { .name = "ELR_EL2", .state = ARM_CP_STATE_AA64,
2926
      .type = ARM_CP_ALIAS,
2927 2928 2929
      .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 1,
      .access = PL2_RW,
      .fieldoffset = offsetof(CPUARMState, elr_el[2]) },
2930
    { .name = "ESR_EL2", .state = ARM_CP_STATE_AA64,
2931
      .type = ARM_CP_ALIAS,
2932 2933
      .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0,
      .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[2]) },
F
Fabian Aggeler 已提交
2934 2935 2936 2937
    { .name = "IFSR32_EL2", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 0, .opc2 = 1,
      .access = PL2_RW, .resetvalue = 0,
      .fieldoffset = offsetof(CPUARMState, cp15.ifsr32_el2) },
2938 2939 2940
    { .name = "FAR_EL2", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0,
      .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[2]) },
2941
    { .name = "SPSR_EL2", .state = ARM_CP_STATE_AA64,
2942
      .type = ARM_CP_ALIAS,
2943 2944
      .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 0,
      .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, banked_spsr[6]) },
2945 2946 2947 2948 2949
    { .name = "VBAR_EL2", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0,
      .access = PL2_RW, .writefn = vbar_write,
      .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[2]),
      .resetvalue = 0 },
2950 2951
    { .name = "SP_EL2", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 1, .opc2 = 0,
2952
      .access = PL3_RW, .type = ARM_CP_ALIAS,
2953
      .fieldoffset = offsetof(CPUARMState, sp_el[2]) },
2954 2955 2956 2957
    { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2,
      .access = PL2_RW, .accessfn = cptr_access, .resetvalue = 0,
      .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[2]) },
E
Edgar E. Iglesias 已提交
2958 2959 2960 2961 2962 2963 2964 2965
    { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0,
      .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[2]),
      .resetvalue = 0 },
    { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
      .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1,
      .access = PL2_RW, .type = ARM_CP_ALIAS,
      .fieldoffset = offsetofhigh32(CPUARMState, cp15.mair_el[2]) },
2966 2967 2968 2969 2970 2971 2972 2973 2974
    { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0,
      .access = PL2_RW, .type = ARM_CP_CONST,
      .resetvalue = 0 },
    /* HAMAIR1 is mapped to AMAIR_EL2[63:32] */
    { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
      .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1,
      .access = PL2_RW, .type = ARM_CP_CONST,
      .resetvalue = 0 },
E
Edgar E. Iglesias 已提交
2975 2976 2977 2978 2979
    { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2,
      .access = PL2_RW, .writefn = vmsa_tcr_el1_write,
      .resetfn = vmsa_ttbcr_reset, .raw_writefn = raw_write,
      .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[2]) },
E
Edgar E. Iglesias 已提交
2980 2981 2982 2983
    { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0,
      .access = PL2_RW, .raw_writefn = raw_write, .writefn = sctlr_write,
      .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[2]) },
E
Edgar E. Iglesias 已提交
2984 2985 2986 2987
    { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2,
      .access = PL2_RW, .resetvalue = 0,
      .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[2]) },
E
Edgar E. Iglesias 已提交
2988 2989 2990 2991 2992 2993 2994
    { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0,
      .access = PL2_RW, .resetvalue = 0,
      .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) },
    { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2,
      .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
      .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) },
E
Edgar E. Iglesias 已提交
2995 2996 2997 2998
    { .name = "TLBI_ALLE2", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0,
      .type = ARM_CP_NO_RAW, .access = PL2_W,
      .writefn = tlbiall_write },
2999 3000 3001 3002 3003 3004 3005 3006
    { .name = "TLBI_VAE2", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1,
      .type = ARM_CP_NO_RAW, .access = PL2_W,
      .writefn = tlbi_aa64_vaa_write },
    { .name = "TLBI_VAE2IS", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1,
      .type = ARM_CP_NO_RAW, .access = PL2_W,
      .writefn = tlbi_aa64_vaa_write },
E
Edgar E. Iglesias 已提交
3007
#ifndef CONFIG_USER_ONLY
E
Edgar E. Iglesias 已提交
3008 3009 3010 3011 3012 3013 3014 3015
    { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0,
      /* ARMv7 requires bit 0 and 1 to reset to 1. ARMv8 defines the
       * reset values as IMPDEF. We choose to reset to 3 to comply with
       * both ARMv7 and ARMv8.
       */
      .access = PL2_RW, .resetvalue = 3,
      .fieldoffset = offsetof(CPUARMState, cp15.cnthctl_el2) },
E
Edgar E. Iglesias 已提交
3016 3017 3018 3019 3020 3021 3022 3023 3024
    { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3,
      .access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 0,
      .writefn = gt_cntvoff_write,
      .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) },
    { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14,
      .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS | ARM_CP_IO,
      .writefn = gt_cntvoff_write,
      .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) },
3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045
    { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2,
      .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval),
      .type = ARM_CP_IO, .access = PL2_RW,
      .writefn = gt_hyp_cval_write, .raw_writefn = raw_write },
    { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14,
      .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval),
      .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_IO,
      .writefn = gt_hyp_cval_write, .raw_writefn = raw_write },
    { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0,
      .type = ARM_CP_IO, .access = PL2_RW,
      .resetfn = gt_hyp_timer_reset,
      .readfn = gt_hyp_tval_read, .writefn = gt_hyp_tval_write },
    { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH,
      .type = ARM_CP_IO,
      .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1,
      .access = PL2_RW,
      .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].ctl),
      .resetvalue = 0,
      .writefn = gt_hyp_ctl_write, .raw_writefn = raw_write },
E
Edgar E. Iglesias 已提交
3046
#endif
3047 3048 3049
    REGINFO_SENTINEL
};

3050 3051 3052 3053 3054
static const ARMCPRegInfo el3_cp_reginfo[] = {
    { .name = "SCR_EL3", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 0,
      .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.scr_el3),
      .resetvalue = 0, .writefn = scr_write },
3055
    { .name = "SCR",  .type = ARM_CP_ALIAS,
3056 3057
      .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 0,
      .access = PL3_RW, .fieldoffset = offsetoflow32(CPUARMState, cp15.scr_el3),
3058
      .writefn = scr_write },
3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073
    { .name = "SDER32_EL3", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 1,
      .access = PL3_RW, .resetvalue = 0,
      .fieldoffset = offsetof(CPUARMState, cp15.sder) },
    { .name = "SDER",
      .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 1,
      .access = PL3_RW, .resetvalue = 0,
      .fieldoffset = offsetoflow32(CPUARMState, cp15.sder) },
      /* TODO: Implement NSACR trapping of secure EL1 accesses to EL3 */
    { .name = "NSACR", .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
      .access = PL3_W | PL1_R, .resetvalue = 0,
      .fieldoffset = offsetof(CPUARMState, cp15.nsacr) },
    { .name = "MVBAR", .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
      .access = PL3_RW, .writefn = vbar_write, .resetvalue = 0,
      .fieldoffset = offsetof(CPUARMState, cp15.mvbar) },
3074
    { .name = "SCTLR_EL3", .state = ARM_CP_STATE_AA64,
3075
      .type = ARM_CP_ALIAS, /* reset handled by AArch32 view */
3076 3077 3078
      .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 0,
      .access = PL3_RW, .raw_writefn = raw_write, .writefn = sctlr_write,
      .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[3]) },
F
Fabian Aggeler 已提交
3079 3080 3081 3082
    { .name = "TTBR0_EL3", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 0,
      .access = PL3_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0,
      .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[3]) },
F
Fabian Aggeler 已提交
3083 3084 3085 3086 3087
    { .name = "TCR_EL3", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 2,
      .access = PL3_RW, .writefn = vmsa_tcr_el1_write,
      .resetfn = vmsa_ttbcr_reset, .raw_writefn = raw_write,
      .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[3]) },
3088
    { .name = "ELR_EL3", .state = ARM_CP_STATE_AA64,
3089
      .type = ARM_CP_ALIAS,
3090 3091 3092
      .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 1,
      .access = PL3_RW,
      .fieldoffset = offsetof(CPUARMState, elr_el[3]) },
3093
    { .name = "ESR_EL3", .state = ARM_CP_STATE_AA64,
3094
      .type = ARM_CP_ALIAS,
3095 3096
      .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 2, .opc2 = 0,
      .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[3]) },
3097 3098 3099
    { .name = "FAR_EL3", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 0,
      .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[3]) },
3100
    { .name = "SPSR_EL3", .state = ARM_CP_STATE_AA64,
3101
      .type = ARM_CP_ALIAS,
3102 3103
      .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 0,
      .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, banked_spsr[7]) },
3104 3105 3106 3107 3108
    { .name = "VBAR_EL3", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 0,
      .access = PL3_RW, .writefn = vbar_write,
      .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[3]),
      .resetvalue = 0 },
3109 3110 3111 3112
    { .name = "CPTR_EL3", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 2,
      .access = PL3_RW, .accessfn = cptr_access, .resetvalue = 0,
      .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[3]) },
3113 3114 3115 3116
    { .name = "TPIDR_EL3", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 2,
      .access = PL3_RW, .resetvalue = 0,
      .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[3]) },
3117 3118 3119 3120
    { .name = "AMAIR_EL3", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 3, .opc2 = 0,
      .access = PL3_RW, .type = ARM_CP_CONST,
      .resetvalue = 0 },
3121 3122 3123
    REGINFO_SENTINEL
};

3124 3125 3126 3127 3128
static CPAccessResult ctr_el0_access(CPUARMState *env, const ARMCPRegInfo *ri)
{
    /* Only accessible in EL0 if SCTLR.UCT is set (and only in AArch64,
     * but the AArch32 CTR has its own reginfo struct)
     */
3129
    if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UCT)) {
3130 3131 3132 3133 3134
        return CP_ACCESS_TRAP;
    }
    return CP_ACCESS_OK;
}

3135 3136
static const ARMCPRegInfo debug_cp_reginfo[] = {
    /* DBGDRAR, DBGDSAR: always RAZ since we don't implement memory mapped
3137 3138 3139 3140
     * debug components. The AArch64 version of DBGDRAR is named MDRAR_EL1;
     * unlike DBGDRAR it is never accessible from EL0.
     * DBGDSAR is deprecated and must RAZ from v8 anyway, so it has no AArch64
     * accessor.
3141 3142 3143
     */
    { .name = "DBGDRAR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 0,
      .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
3144 3145 3146
    { .name = "MDRAR_EL1", .state = ARM_CP_STATE_AA64,
      .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0,
      .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
3147 3148
    { .name = "DBGDSAR", .cp = 14, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
      .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
3149
    /* Monitor debug system control register; the 32-bit alias is DBGDSCRext. */
3150 3151
    { .name = "MDSCR_EL1", .state = ARM_CP_STATE_BOTH,
      .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2,
3152 3153 3154
      .access = PL1_RW,
      .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1),
      .resetvalue = 0 },
3155 3156 3157 3158 3159
    /* MDCCSR_EL0, aka DBGDSCRint. This is a read-only mirror of MDSCR_EL1.
     * We don't implement the configurable EL0 access.
     */
    { .name = "MDCCSR_EL0", .state = ARM_CP_STATE_BOTH,
      .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0,
3160
      .type = ARM_CP_ALIAS,
3161
      .access = PL1_R,
3162
      .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1), },
3163
    /* We define a dummy WI OSLAR_EL1, because Linux writes to it. */
3164 3165
    { .name = "OSLAR_EL1", .state = ARM_CP_STATE_BOTH,
      .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 4,
3166
      .access = PL1_W, .type = ARM_CP_NOP },
3167 3168 3169 3170 3171 3172 3173 3174 3175 3176
    /* Dummy OSDLR_EL1: 32-bit Linux will read this */
    { .name = "OSDLR_EL1", .state = ARM_CP_STATE_BOTH,
      .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 4,
      .access = PL1_RW, .type = ARM_CP_NOP },
    /* Dummy DBGVCR: Linux wants to clear this on startup, but we don't
     * implement vector catch debug events yet.
     */
    { .name = "DBGVCR",
      .cp = 14, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0,
      .access = PL1_RW, .type = ARM_CP_NOP },
3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188
    REGINFO_SENTINEL
};

static const ARMCPRegInfo debug_lpae_cp_reginfo[] = {
    /* 64 bit access versions of the (dummy) debug registers */
    { .name = "DBGDRAR", .cp = 14, .crm = 1, .opc1 = 0,
      .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 },
    { .name = "DBGDSAR", .cp = 14, .crm = 2, .opc1 = 0,
      .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 },
    REGINFO_SENTINEL
};

3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313
void hw_watchpoint_update(ARMCPU *cpu, int n)
{
    CPUARMState *env = &cpu->env;
    vaddr len = 0;
    vaddr wvr = env->cp15.dbgwvr[n];
    uint64_t wcr = env->cp15.dbgwcr[n];
    int mask;
    int flags = BP_CPU | BP_STOP_BEFORE_ACCESS;

    if (env->cpu_watchpoint[n]) {
        cpu_watchpoint_remove_by_ref(CPU(cpu), env->cpu_watchpoint[n]);
        env->cpu_watchpoint[n] = NULL;
    }

    if (!extract64(wcr, 0, 1)) {
        /* E bit clear : watchpoint disabled */
        return;
    }

    switch (extract64(wcr, 3, 2)) {
    case 0:
        /* LSC 00 is reserved and must behave as if the wp is disabled */
        return;
    case 1:
        flags |= BP_MEM_READ;
        break;
    case 2:
        flags |= BP_MEM_WRITE;
        break;
    case 3:
        flags |= BP_MEM_ACCESS;
        break;
    }

    /* Attempts to use both MASK and BAS fields simultaneously are
     * CONSTRAINED UNPREDICTABLE; we opt to ignore BAS in this case,
     * thus generating a watchpoint for every byte in the masked region.
     */
    mask = extract64(wcr, 24, 4);
    if (mask == 1 || mask == 2) {
        /* Reserved values of MASK; we must act as if the mask value was
         * some non-reserved value, or as if the watchpoint were disabled.
         * We choose the latter.
         */
        return;
    } else if (mask) {
        /* Watchpoint covers an aligned area up to 2GB in size */
        len = 1ULL << mask;
        /* If masked bits in WVR are not zero it's CONSTRAINED UNPREDICTABLE
         * whether the watchpoint fires when the unmasked bits match; we opt
         * to generate the exceptions.
         */
        wvr &= ~(len - 1);
    } else {
        /* Watchpoint covers bytes defined by the byte address select bits */
        int bas = extract64(wcr, 5, 8);
        int basstart;

        if (bas == 0) {
            /* This must act as if the watchpoint is disabled */
            return;
        }

        if (extract64(wvr, 2, 1)) {
            /* Deprecated case of an only 4-aligned address. BAS[7:4] are
             * ignored, and BAS[3:0] define which bytes to watch.
             */
            bas &= 0xf;
        }
        /* The BAS bits are supposed to be programmed to indicate a contiguous
         * range of bytes. Otherwise it is CONSTRAINED UNPREDICTABLE whether
         * we fire for each byte in the word/doubleword addressed by the WVR.
         * We choose to ignore any non-zero bits after the first range of 1s.
         */
        basstart = ctz32(bas);
        len = cto32(bas >> basstart);
        wvr += basstart;
    }

    cpu_watchpoint_insert(CPU(cpu), wvr, len, flags,
                          &env->cpu_watchpoint[n]);
}

void hw_watchpoint_update_all(ARMCPU *cpu)
{
    int i;
    CPUARMState *env = &cpu->env;

    /* Completely clear out existing QEMU watchpoints and our array, to
     * avoid possible stale entries following migration load.
     */
    cpu_watchpoint_remove_all(CPU(cpu), BP_CPU);
    memset(env->cpu_watchpoint, 0, sizeof(env->cpu_watchpoint));

    for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_watchpoint); i++) {
        hw_watchpoint_update(cpu, i);
    }
}

static void dbgwvr_write(CPUARMState *env, const ARMCPRegInfo *ri,
                         uint64_t value)
{
    ARMCPU *cpu = arm_env_get_cpu(env);
    int i = ri->crm;

    /* Bits [63:49] are hardwired to the value of bit [48]; that is, the
     * register reads and behaves as if values written are sign extended.
     * Bits [1:0] are RES0.
     */
    value = sextract64(value, 0, 49) & ~3ULL;

    raw_write(env, ri, value);
    hw_watchpoint_update(cpu, i);
}

static void dbgwcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
                         uint64_t value)
{
    ARMCPU *cpu = arm_env_get_cpu(env);
    int i = ri->crm;

    raw_write(env, ri, value);
    hw_watchpoint_update(cpu, i);
}

3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431
void hw_breakpoint_update(ARMCPU *cpu, int n)
{
    CPUARMState *env = &cpu->env;
    uint64_t bvr = env->cp15.dbgbvr[n];
    uint64_t bcr = env->cp15.dbgbcr[n];
    vaddr addr;
    int bt;
    int flags = BP_CPU;

    if (env->cpu_breakpoint[n]) {
        cpu_breakpoint_remove_by_ref(CPU(cpu), env->cpu_breakpoint[n]);
        env->cpu_breakpoint[n] = NULL;
    }

    if (!extract64(bcr, 0, 1)) {
        /* E bit clear : watchpoint disabled */
        return;
    }

    bt = extract64(bcr, 20, 4);

    switch (bt) {
    case 4: /* unlinked address mismatch (reserved if AArch64) */
    case 5: /* linked address mismatch (reserved if AArch64) */
        qemu_log_mask(LOG_UNIMP,
                      "arm: address mismatch breakpoint types not implemented");
        return;
    case 0: /* unlinked address match */
    case 1: /* linked address match */
    {
        /* Bits [63:49] are hardwired to the value of bit [48]; that is,
         * we behave as if the register was sign extended. Bits [1:0] are
         * RES0. The BAS field is used to allow setting breakpoints on 16
         * bit wide instructions; it is CONSTRAINED UNPREDICTABLE whether
         * a bp will fire if the addresses covered by the bp and the addresses
         * covered by the insn overlap but the insn doesn't start at the
         * start of the bp address range. We choose to require the insn and
         * the bp to have the same address. The constraints on writing to
         * BAS enforced in dbgbcr_write mean we have only four cases:
         *  0b0000  => no breakpoint
         *  0b0011  => breakpoint on addr
         *  0b1100  => breakpoint on addr + 2
         *  0b1111  => breakpoint on addr
         * See also figure D2-3 in the v8 ARM ARM (DDI0487A.c).
         */
        int bas = extract64(bcr, 5, 4);
        addr = sextract64(bvr, 0, 49) & ~3ULL;
        if (bas == 0) {
            return;
        }
        if (bas == 0xc) {
            addr += 2;
        }
        break;
    }
    case 2: /* unlinked context ID match */
    case 8: /* unlinked VMID match (reserved if no EL2) */
    case 10: /* unlinked context ID and VMID match (reserved if no EL2) */
        qemu_log_mask(LOG_UNIMP,
                      "arm: unlinked context breakpoint types not implemented");
        return;
    case 9: /* linked VMID match (reserved if no EL2) */
    case 11: /* linked context ID and VMID match (reserved if no EL2) */
    case 3: /* linked context ID match */
    default:
        /* We must generate no events for Linked context matches (unless
         * they are linked to by some other bp/wp, which is handled in
         * updates for the linking bp/wp). We choose to also generate no events
         * for reserved values.
         */
        return;
    }

    cpu_breakpoint_insert(CPU(cpu), addr, flags, &env->cpu_breakpoint[n]);
}

void hw_breakpoint_update_all(ARMCPU *cpu)
{
    int i;
    CPUARMState *env = &cpu->env;

    /* Completely clear out existing QEMU breakpoints and our array, to
     * avoid possible stale entries following migration load.
     */
    cpu_breakpoint_remove_all(CPU(cpu), BP_CPU);
    memset(env->cpu_breakpoint, 0, sizeof(env->cpu_breakpoint));

    for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_breakpoint); i++) {
        hw_breakpoint_update(cpu, i);
    }
}

static void dbgbvr_write(CPUARMState *env, const ARMCPRegInfo *ri,
                         uint64_t value)
{
    ARMCPU *cpu = arm_env_get_cpu(env);
    int i = ri->crm;

    raw_write(env, ri, value);
    hw_breakpoint_update(cpu, i);
}

static void dbgbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
                         uint64_t value)
{
    ARMCPU *cpu = arm_env_get_cpu(env);
    int i = ri->crm;

    /* BAS[3] is a read-only copy of BAS[2], and BAS[1] a read-only
     * copy of BAS[0].
     */
    value = deposit64(value, 6, 1, extract64(value, 5, 1));
    value = deposit64(value, 8, 1, extract64(value, 7, 1));

    raw_write(env, ri, value);
    hw_breakpoint_update(cpu, i);
}

3432
static void define_debug_regs(ARMCPU *cpu)
3433
{
3434 3435
    /* Define v7 and v8 architectural debug registers.
     * These are just dummy implementations for now.
3436 3437
     */
    int i;
3438
    int wrps, brps, ctx_cmps;
3439 3440 3441 3442 3443
    ARMCPRegInfo dbgdidr = {
        .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0,
        .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = cpu->dbgdidr,
    };

3444
    /* Note that all these register fields hold "number of Xs minus 1". */
3445 3446
    brps = extract32(cpu->dbgdidr, 24, 4);
    wrps = extract32(cpu->dbgdidr, 28, 4);
3447 3448 3449
    ctx_cmps = extract32(cpu->dbgdidr, 20, 4);

    assert(ctx_cmps <= brps);
3450 3451 3452 3453 3454 3455 3456 3457

    /* The DBGDIDR and ID_AA64DFR0_EL1 define various properties
     * of the debug registers such as number of breakpoints;
     * check that if they both exist then they agree.
     */
    if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
        assert(extract32(cpu->id_aa64dfr0, 12, 4) == brps);
        assert(extract32(cpu->id_aa64dfr0, 20, 4) == wrps);
3458
        assert(extract32(cpu->id_aa64dfr0, 28, 4) == ctx_cmps);
3459
    }
3460

3461
    define_one_arm_cp_reg(cpu, &dbgdidr);
3462 3463 3464 3465 3466 3467
    define_arm_cp_regs(cpu, debug_cp_reginfo);

    if (arm_feature(&cpu->env, ARM_FEATURE_LPAE)) {
        define_arm_cp_regs(cpu, debug_lpae_cp_reginfo);
    }

3468
    for (i = 0; i < brps + 1; i++) {
3469
        ARMCPRegInfo dbgregs[] = {
3470 3471
            { .name = "DBGBVR", .state = ARM_CP_STATE_BOTH,
              .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 4,
3472
              .access = PL1_RW,
3473 3474 3475
              .fieldoffset = offsetof(CPUARMState, cp15.dbgbvr[i]),
              .writefn = dbgbvr_write, .raw_writefn = raw_write
            },
3476 3477
            { .name = "DBGBCR", .state = ARM_CP_STATE_BOTH,
              .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 5,
3478
              .access = PL1_RW,
3479 3480 3481
              .fieldoffset = offsetof(CPUARMState, cp15.dbgbcr[i]),
              .writefn = dbgbcr_write, .raw_writefn = raw_write
            },
3482 3483 3484 3485 3486 3487 3488
            REGINFO_SENTINEL
        };
        define_arm_cp_regs(cpu, dbgregs);
    }

    for (i = 0; i < wrps + 1; i++) {
        ARMCPRegInfo dbgregs[] = {
3489 3490
            { .name = "DBGWVR", .state = ARM_CP_STATE_BOTH,
              .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 6,
3491
              .access = PL1_RW,
3492 3493 3494
              .fieldoffset = offsetof(CPUARMState, cp15.dbgwvr[i]),
              .writefn = dbgwvr_write, .raw_writefn = raw_write
            },
3495 3496
            { .name = "DBGWCR", .state = ARM_CP_STATE_BOTH,
              .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 7,
3497
              .access = PL1_RW,
3498 3499 3500 3501
              .fieldoffset = offsetof(CPUARMState, cp15.dbgwcr[i]),
              .writefn = dbgwcr_write, .raw_writefn = raw_write
            },
            REGINFO_SENTINEL
3502 3503 3504 3505 3506
        };
        define_arm_cp_regs(cpu, dbgregs);
    }
}

3507 3508 3509 3510 3511 3512 3513 3514 3515
void register_cp_regs_for_features(ARMCPU *cpu)
{
    /* Register all the coprocessor registers based on feature bits */
    CPUARMState *env = &cpu->env;
    if (arm_feature(env, ARM_FEATURE_M)) {
        /* M profile has no coprocessor registers */
        return;
    }

3516
    define_arm_cp_regs(cpu, cp_reginfo);
3517 3518 3519 3520 3521 3522 3523
    if (!arm_feature(env, ARM_FEATURE_V8)) {
        /* Must go early as it is full of wildcards that may be
         * overridden by later definitions.
         */
        define_arm_cp_regs(cpu, not_v8_cp_reginfo);
    }

3524
    if (arm_feature(env, ARM_FEATURE_V6)) {
3525 3526
        /* The ID registers all have impdef reset values */
        ARMCPRegInfo v6_idregs[] = {
3527 3528 3529
            { .name = "ID_PFR0", .state = ARM_CP_STATE_BOTH,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0,
              .access = PL1_R, .type = ARM_CP_CONST,
3530
              .resetvalue = cpu->id_pfr0 },
3531 3532 3533
            { .name = "ID_PFR1", .state = ARM_CP_STATE_BOTH,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 1,
              .access = PL1_R, .type = ARM_CP_CONST,
3534
              .resetvalue = cpu->id_pfr1 },
3535 3536 3537
            { .name = "ID_DFR0", .state = ARM_CP_STATE_BOTH,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 2,
              .access = PL1_R, .type = ARM_CP_CONST,
3538
              .resetvalue = cpu->id_dfr0 },
3539 3540 3541
            { .name = "ID_AFR0", .state = ARM_CP_STATE_BOTH,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 3,
              .access = PL1_R, .type = ARM_CP_CONST,
3542
              .resetvalue = cpu->id_afr0 },
3543 3544 3545
            { .name = "ID_MMFR0", .state = ARM_CP_STATE_BOTH,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 4,
              .access = PL1_R, .type = ARM_CP_CONST,
3546
              .resetvalue = cpu->id_mmfr0 },
3547 3548 3549
            { .name = "ID_MMFR1", .state = ARM_CP_STATE_BOTH,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 5,
              .access = PL1_R, .type = ARM_CP_CONST,
3550
              .resetvalue = cpu->id_mmfr1 },
3551 3552 3553
            { .name = "ID_MMFR2", .state = ARM_CP_STATE_BOTH,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 6,
              .access = PL1_R, .type = ARM_CP_CONST,
3554
              .resetvalue = cpu->id_mmfr2 },
3555 3556 3557
            { .name = "ID_MMFR3", .state = ARM_CP_STATE_BOTH,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 7,
              .access = PL1_R, .type = ARM_CP_CONST,
3558
              .resetvalue = cpu->id_mmfr3 },
3559 3560 3561
            { .name = "ID_ISAR0", .state = ARM_CP_STATE_BOTH,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0,
              .access = PL1_R, .type = ARM_CP_CONST,
3562
              .resetvalue = cpu->id_isar0 },
3563 3564 3565
            { .name = "ID_ISAR1", .state = ARM_CP_STATE_BOTH,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 1,
              .access = PL1_R, .type = ARM_CP_CONST,
3566
              .resetvalue = cpu->id_isar1 },
3567 3568 3569
            { .name = "ID_ISAR2", .state = ARM_CP_STATE_BOTH,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2,
              .access = PL1_R, .type = ARM_CP_CONST,
3570
              .resetvalue = cpu->id_isar2 },
3571 3572 3573
            { .name = "ID_ISAR3", .state = ARM_CP_STATE_BOTH,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 3,
              .access = PL1_R, .type = ARM_CP_CONST,
3574
              .resetvalue = cpu->id_isar3 },
3575 3576 3577
            { .name = "ID_ISAR4", .state = ARM_CP_STATE_BOTH,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 4,
              .access = PL1_R, .type = ARM_CP_CONST,
3578
              .resetvalue = cpu->id_isar4 },
3579 3580 3581
            { .name = "ID_ISAR5", .state = ARM_CP_STATE_BOTH,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 5,
              .access = PL1_R, .type = ARM_CP_CONST,
3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592
              .resetvalue = cpu->id_isar5 },
            /* 6..7 are as yet unallocated and must RAZ */
            { .name = "ID_ISAR6", .cp = 15, .crn = 0, .crm = 2,
              .opc1 = 0, .opc2 = 6, .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = 0 },
            { .name = "ID_ISAR7", .cp = 15, .crn = 0, .crm = 2,
              .opc1 = 0, .opc2 = 7, .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = 0 },
            REGINFO_SENTINEL
        };
        define_arm_cp_regs(cpu, v6_idregs);
3593 3594 3595 3596
        define_arm_cp_regs(cpu, v6_cp_reginfo);
    } else {
        define_arm_cp_regs(cpu, not_v6_cp_reginfo);
    }
3597 3598 3599
    if (arm_feature(env, ARM_FEATURE_V6K)) {
        define_arm_cp_regs(cpu, v6k_cp_reginfo);
    }
3600 3601
    if (arm_feature(env, ARM_FEATURE_V7MP) &&
        !arm_feature(env, ARM_FEATURE_MPU)) {
3602 3603
        define_arm_cp_regs(cpu, v7mp_cp_reginfo);
    }
3604
    if (arm_feature(env, ARM_FEATURE_V7)) {
3605
        /* v7 performance monitor control register: same implementor
3606 3607
         * field as main ID register, and we implement only the cycle
         * count register.
3608
         */
3609
#ifndef CONFIG_USER_ONLY
3610 3611
        ARMCPRegInfo pmcr = {
            .name = "PMCR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 0,
3612
            .access = PL0_RW,
3613
            .type = ARM_CP_IO | ARM_CP_ALIAS,
3614
            .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcr),
3615 3616
            .accessfn = pmreg_access, .writefn = pmcr_write,
            .raw_writefn = raw_write,
3617
        };
3618 3619 3620 3621 3622 3623 3624 3625 3626
        ARMCPRegInfo pmcr64 = {
            .name = "PMCR_EL0", .state = ARM_CP_STATE_AA64,
            .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 0,
            .access = PL0_RW, .accessfn = pmreg_access,
            .type = ARM_CP_IO,
            .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcr),
            .resetvalue = cpu->midr & 0xff000000,
            .writefn = pmcr_write, .raw_writefn = raw_write,
        };
3627
        define_one_arm_cp_reg(cpu, &pmcr);
3628
        define_one_arm_cp_reg(cpu, &pmcr64);
3629
#endif
3630
        ARMCPRegInfo clidr = {
3631 3632
            .name = "CLIDR", .state = ARM_CP_STATE_BOTH,
            .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 1,
3633 3634 3635
            .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->clidr
        };
        define_one_arm_cp_reg(cpu, &clidr);
3636
        define_arm_cp_regs(cpu, v7_cp_reginfo);
3637
        define_debug_regs(cpu);
3638 3639
    } else {
        define_arm_cp_regs(cpu, not_v7_cp_reginfo);
3640
    }
3641
    if (arm_feature(env, ARM_FEATURE_V8)) {
3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654
        /* AArch64 ID registers, which all have impdef reset values */
        ARMCPRegInfo v8_idregs[] = {
            { .name = "ID_AA64PFR0_EL1", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 0,
              .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = cpu->id_aa64pfr0 },
            { .name = "ID_AA64PFR1_EL1", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 1,
              .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = cpu->id_aa64pfr1},
            { .name = "ID_AA64DFR0_EL1", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 0,
              .access = PL1_R, .type = ARM_CP_CONST,
S
Stefan Weil 已提交
3655
              /* We mask out the PMUVer field, because we don't currently
3656 3657 3658 3659 3660
               * implement the PMU. Not advertising it prevents the guest
               * from trying to use it and getting UNDEFs on registers we
               * don't implement.
               */
              .resetvalue = cpu->id_aa64dfr0 & ~0xf00 },
3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688
            { .name = "ID_AA64DFR1_EL1", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 1,
              .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = cpu->id_aa64dfr1 },
            { .name = "ID_AA64AFR0_EL1", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 4,
              .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = cpu->id_aa64afr0 },
            { .name = "ID_AA64AFR1_EL1", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 5,
              .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = cpu->id_aa64afr1 },
            { .name = "ID_AA64ISAR0_EL1", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 0,
              .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = cpu->id_aa64isar0 },
            { .name = "ID_AA64ISAR1_EL1", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 1,
              .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = cpu->id_aa64isar1 },
            { .name = "ID_AA64MMFR0_EL1", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0,
              .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = cpu->id_aa64mmfr0 },
            { .name = "ID_AA64MMFR1_EL1", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 1,
              .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = cpu->id_aa64mmfr1 },
3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700
            { .name = "MVFR0_EL1", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0,
              .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = cpu->mvfr0 },
            { .name = "MVFR1_EL1", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1,
              .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = cpu->mvfr1 },
            { .name = "MVFR2_EL1", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2,
              .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = cpu->mvfr2 },
3701 3702
            REGINFO_SENTINEL
        };
3703 3704 3705 3706 3707 3708 3709 3710 3711 3712
        /* RVBAR_EL1 is only implemented if EL1 is the highest EL */
        if (!arm_feature(env, ARM_FEATURE_EL3) &&
            !arm_feature(env, ARM_FEATURE_EL2)) {
            ARMCPRegInfo rvbar = {
                .name = "RVBAR_EL1", .state = ARM_CP_STATE_AA64,
                .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
                .type = ARM_CP_CONST, .access = PL1_R, .resetvalue = cpu->rvbar
            };
            define_one_arm_cp_reg(cpu, &rvbar);
        }
3713
        define_arm_cp_regs(cpu, v8_idregs);
3714 3715
        define_arm_cp_regs(cpu, v8_cp_reginfo);
    }
3716
    if (arm_feature(env, ARM_FEATURE_EL2)) {
3717
        define_arm_cp_regs(cpu, el2_cp_reginfo);
3718 3719 3720 3721 3722 3723 3724 3725 3726
        /* RVBAR_EL2 is only implemented if EL2 is the highest EL */
        if (!arm_feature(env, ARM_FEATURE_EL3)) {
            ARMCPRegInfo rvbar = {
                .name = "RVBAR_EL2", .state = ARM_CP_STATE_AA64,
                .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 1,
                .type = ARM_CP_CONST, .access = PL2_R, .resetvalue = cpu->rvbar
            };
            define_one_arm_cp_reg(cpu, &rvbar);
        }
3727 3728 3729 3730 3731
    } else {
        /* If EL2 is missing but higher ELs are enabled, we need to
         * register the no_el2 reginfos.
         */
        if (arm_feature(env, ARM_FEATURE_EL3)) {
3732
            define_arm_cp_regs(cpu, el3_no_el2_cp_reginfo);
3733
        }
3734
    }
3735
    if (arm_feature(env, ARM_FEATURE_EL3)) {
3736
        define_arm_cp_regs(cpu, el3_cp_reginfo);
3737 3738 3739 3740 3741 3742
        ARMCPRegInfo rvbar = {
            .name = "RVBAR_EL3", .state = ARM_CP_STATE_AA64,
            .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 1,
            .type = ARM_CP_CONST, .access = PL3_R, .resetvalue = cpu->rvbar
        };
        define_one_arm_cp_reg(cpu, &rvbar);
3743
    }
3744
    if (arm_feature(env, ARM_FEATURE_MPU)) {
3745 3746 3747 3748 3749 3750 3751 3752
        if (arm_feature(env, ARM_FEATURE_V6)) {
            /* PMSAv6 not implemented */
            assert(arm_feature(env, ARM_FEATURE_V7));
            define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo);
            define_arm_cp_regs(cpu, pmsav7_cp_reginfo);
        } else {
            define_arm_cp_regs(cpu, pmsav5_cp_reginfo);
        }
3753
    } else {
3754
        define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo);
3755 3756
        define_arm_cp_regs(cpu, vmsa_cp_reginfo);
    }
3757 3758 3759
    if (arm_feature(env, ARM_FEATURE_THUMB2EE)) {
        define_arm_cp_regs(cpu, t2ee_cp_reginfo);
    }
3760 3761 3762
    if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
        define_arm_cp_regs(cpu, generic_timer_cp_reginfo);
    }
3763 3764 3765
    if (arm_feature(env, ARM_FEATURE_VAPA)) {
        define_arm_cp_regs(cpu, vapa_cp_reginfo);
    }
3766 3767 3768 3769 3770 3771 3772 3773 3774
    if (arm_feature(env, ARM_FEATURE_CACHE_TEST_CLEAN)) {
        define_arm_cp_regs(cpu, cache_test_clean_cp_reginfo);
    }
    if (arm_feature(env, ARM_FEATURE_CACHE_DIRTY_REG)) {
        define_arm_cp_regs(cpu, cache_dirty_status_cp_reginfo);
    }
    if (arm_feature(env, ARM_FEATURE_CACHE_BLOCK_OPS)) {
        define_arm_cp_regs(cpu, cache_block_ops_cp_reginfo);
    }
3775 3776 3777
    if (arm_feature(env, ARM_FEATURE_OMAPCP)) {
        define_arm_cp_regs(cpu, omap_cp_reginfo);
    }
3778 3779 3780
    if (arm_feature(env, ARM_FEATURE_STRONGARM)) {
        define_arm_cp_regs(cpu, strongarm_cp_reginfo);
    }
3781 3782 3783 3784 3785 3786
    if (arm_feature(env, ARM_FEATURE_XSCALE)) {
        define_arm_cp_regs(cpu, xscale_cp_reginfo);
    }
    if (arm_feature(env, ARM_FEATURE_DUMMY_C15_REGS)) {
        define_arm_cp_regs(cpu, dummy_c15_cp_reginfo);
    }
3787 3788 3789
    if (arm_feature(env, ARM_FEATURE_LPAE)) {
        define_arm_cp_regs(cpu, lpae_cp_reginfo);
    }
3790 3791 3792 3793 3794
    /* Slightly awkwardly, the OMAP and StrongARM cores need all of
     * cp15 crn=0 to be writes-ignored, whereas for other cores they should
     * be read-only (ie write causes UNDEF exception).
     */
    {
3795 3796 3797
        ARMCPRegInfo id_pre_v8_midr_cp_reginfo[] = {
            /* Pre-v8 MIDR space.
             * Note that the MIDR isn't a simple constant register because
3798 3799
             * of the TI925 behaviour where writes to another register can
             * cause the MIDR value to change.
3800 3801 3802 3803
             *
             * Unimplemented registers in the c15 0 0 0 space default to
             * MIDR. Define MIDR first as this entire space, then CTR, TCMTR
             * and friends override accordingly.
3804 3805
             */
            { .name = "MIDR",
3806
              .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = CP_ANY,
3807
              .access = PL1_R, .resetvalue = cpu->midr,
3808
              .writefn = arm_cp_write_ignore, .raw_writefn = raw_write,
3809 3810
              .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
              .type = ARM_CP_OVERRIDE },
3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828
            /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */
            { .name = "DUMMY",
              .cp = 15, .crn = 0, .crm = 3, .opc1 = 0, .opc2 = CP_ANY,
              .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
            { .name = "DUMMY",
              .cp = 15, .crn = 0, .crm = 4, .opc1 = 0, .opc2 = CP_ANY,
              .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
            { .name = "DUMMY",
              .cp = 15, .crn = 0, .crm = 5, .opc1 = 0, .opc2 = CP_ANY,
              .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
            { .name = "DUMMY",
              .cp = 15, .crn = 0, .crm = 6, .opc1 = 0, .opc2 = CP_ANY,
              .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
            { .name = "DUMMY",
              .cp = 15, .crn = 0, .crm = 7, .opc1 = 0, .opc2 = CP_ANY,
              .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
            REGINFO_SENTINEL
        };
3829 3830 3831 3832
        ARMCPRegInfo id_v8_midr_cp_reginfo[] = {
            { .name = "MIDR_EL1", .state = ARM_CP_STATE_BOTH,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 0,
              .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->midr },
3833 3834 3835 3836 3837 3838 3839
            /* crn = 0 op1 = 0 crm = 0 op2 = 4,7 : AArch32 aliases of MIDR */
            { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST,
              .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4,
              .access = PL1_R, .resetvalue = cpu->midr },
            { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST,
              .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 7,
              .access = PL1_R, .resetvalue = cpu->midr },
3840 3841
            { .name = "REVIDR_EL1", .state = ARM_CP_STATE_BOTH,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 6,
3842
              .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->revidr },
3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859
            REGINFO_SENTINEL
        };
        ARMCPRegInfo id_cp_reginfo[] = {
            /* These are common to v8 and pre-v8 */
            { .name = "CTR",
              .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 1,
              .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
            { .name = "CTR_EL0", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 0, .crm = 0,
              .access = PL0_R, .accessfn = ctr_el0_access,
              .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
            /* TCMTR and TLBTR exist in v8 but have no 64-bit versions */
            { .name = "TCMTR",
              .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 2,
              .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
            REGINFO_SENTINEL
        };
3860 3861 3862 3863 3864 3865
        /* TLBTR is specific to VMSA */
        ARMCPRegInfo id_tlbtr_reginfo = {
              .name = "TLBTR",
              .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 3,
              .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0,
        };
3866 3867 3868 3869 3870 3871 3872
        /* MPUIR is specific to PMSA V6+ */
        ARMCPRegInfo id_mpuir_reginfo = {
              .name = "MPUIR",
              .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4,
              .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = cpu->pmsav7_dregion << 8
        };
3873 3874 3875 3876 3877 3878 3879 3880 3881
        ARMCPRegInfo crn0_wi_reginfo = {
            .name = "CRN0_WI", .cp = 15, .crn = 0, .crm = CP_ANY,
            .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_W,
            .type = ARM_CP_NOP | ARM_CP_OVERRIDE
        };
        if (arm_feature(env, ARM_FEATURE_OMAPCP) ||
            arm_feature(env, ARM_FEATURE_STRONGARM)) {
            ARMCPRegInfo *r;
            /* Register the blanket "writes ignored" value first to cover the
3882 3883 3884
             * whole space. Then update the specific ID registers to allow write
             * access, so that they ignore writes rather than causing them to
             * UNDEF.
3885 3886
             */
            define_one_arm_cp_reg(cpu, &crn0_wi_reginfo);
3887 3888 3889 3890
            for (r = id_pre_v8_midr_cp_reginfo;
                 r->type != ARM_CP_SENTINEL; r++) {
                r->access = PL1_RW;
            }
3891 3892 3893
            for (r = id_cp_reginfo; r->type != ARM_CP_SENTINEL; r++) {
                r->access = PL1_RW;
            }
3894
            id_tlbtr_reginfo.access = PL1_RW;
3895
            id_tlbtr_reginfo.access = PL1_RW;
3896
        }
3897 3898 3899 3900 3901
        if (arm_feature(env, ARM_FEATURE_V8)) {
            define_arm_cp_regs(cpu, id_v8_midr_cp_reginfo);
        } else {
            define_arm_cp_regs(cpu, id_pre_v8_midr_cp_reginfo);
        }
3902
        define_arm_cp_regs(cpu, id_cp_reginfo);
3903 3904
        if (!arm_feature(env, ARM_FEATURE_MPU)) {
            define_one_arm_cp_reg(cpu, &id_tlbtr_reginfo);
3905 3906
        } else if (arm_feature(env, ARM_FEATURE_V7)) {
            define_one_arm_cp_reg(cpu, &id_mpuir_reginfo);
3907
        }
3908 3909
    }

3910 3911 3912 3913
    if (arm_feature(env, ARM_FEATURE_MPIDR)) {
        define_arm_cp_regs(cpu, mpidr_cp_reginfo);
    }

3914 3915
    if (arm_feature(env, ARM_FEATURE_AUXCR)) {
        ARMCPRegInfo auxcr = {
3916 3917
            .name = "ACTLR_EL1", .state = ARM_CP_STATE_BOTH,
            .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 1,
3918 3919 3920 3921 3922 3923
            .access = PL1_RW, .type = ARM_CP_CONST,
            .resetvalue = cpu->reset_auxcr
        };
        define_one_arm_cp_reg(cpu, &auxcr);
    }

3924
    if (arm_feature(env, ARM_FEATURE_CBAR)) {
3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957
        if (arm_feature(env, ARM_FEATURE_AARCH64)) {
            /* 32 bit view is [31:18] 0...0 [43:32]. */
            uint32_t cbar32 = (extract64(cpu->reset_cbar, 18, 14) << 18)
                | extract64(cpu->reset_cbar, 32, 12);
            ARMCPRegInfo cbar_reginfo[] = {
                { .name = "CBAR",
                  .type = ARM_CP_CONST,
                  .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0,
                  .access = PL1_R, .resetvalue = cpu->reset_cbar },
                { .name = "CBAR_EL1", .state = ARM_CP_STATE_AA64,
                  .type = ARM_CP_CONST,
                  .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 3, .opc2 = 0,
                  .access = PL1_R, .resetvalue = cbar32 },
                REGINFO_SENTINEL
            };
            /* We don't implement a r/w 64 bit CBAR currently */
            assert(arm_feature(env, ARM_FEATURE_CBAR_RO));
            define_arm_cp_regs(cpu, cbar_reginfo);
        } else {
            ARMCPRegInfo cbar = {
                .name = "CBAR",
                .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0,
                .access = PL1_R|PL3_W, .resetvalue = cpu->reset_cbar,
                .fieldoffset = offsetof(CPUARMState,
                                        cp15.c15_config_base_address)
            };
            if (arm_feature(env, ARM_FEATURE_CBAR_RO)) {
                cbar.access = PL1_R;
                cbar.fieldoffset = 0;
                cbar.type = ARM_CP_CONST;
            }
            define_one_arm_cp_reg(cpu, &cbar);
        }
3958 3959
    }

3960 3961 3962
    /* Generic registers whose values depend on the implementation */
    {
        ARMCPRegInfo sctlr = {
3963
            .name = "SCTLR", .state = ARM_CP_STATE_BOTH,
3964 3965 3966 3967
            .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0,
            .access = PL1_RW,
            .bank_fieldoffsets = { offsetof(CPUARMState, cp15.sctlr_s),
                                   offsetof(CPUARMState, cp15.sctlr_ns) },
3968 3969
            .writefn = sctlr_write, .resetvalue = cpu->reset_sctlr,
            .raw_writefn = raw_write,
3970 3971 3972 3973 3974 3975 3976 3977 3978 3979
        };
        if (arm_feature(env, ARM_FEATURE_XSCALE)) {
            /* Normally we would always end the TB on an SCTLR write, but Linux
             * arch/arm/mach-pxa/sleep.S expects two instructions following
             * an MMU enable to execute from cache.  Imitate this behaviour.
             */
            sctlr.type |= ARM_CP_SUPPRESS_TB_END;
        }
        define_one_arm_cp_reg(cpu, &sctlr);
    }
3980 3981
}

3982
ARMCPU *cpu_arm_init(const char *cpu_model)
P
pbrook 已提交
3983
{
3984
    return ARM_CPU(cpu_generic_init(TYPE_ARM_CPU, cpu_model));
3985 3986 3987 3988
}

void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu)
{
3989
    CPUState *cs = CPU(cpu);
3990 3991
    CPUARMState *env = &cpu->env;

3992 3993 3994 3995 3996
    if (arm_feature(env, ARM_FEATURE_AARCH64)) {
        gdb_register_coprocessor(cs, aarch64_fpu_gdb_get_reg,
                                 aarch64_fpu_gdb_set_reg,
                                 34, "aarch64-fpu.xml", 0);
    } else if (arm_feature(env, ARM_FEATURE_NEON)) {
3997
        gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
P
pbrook 已提交
3998 3999
                                 51, "arm-neon.xml", 0);
    } else if (arm_feature(env, ARM_FEATURE_VFP3)) {
4000
        gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
P
pbrook 已提交
4001 4002
                                 35, "arm-vfp3.xml", 0);
    } else if (arm_feature(env, ARM_FEATURE_VFP)) {
4003
        gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
P
pbrook 已提交
4004 4005
                                 19, "arm-vfp.xml", 0);
    }
P
pbrook 已提交
4006 4007
}

4008 4009
/* Sort alphabetically by type name, except for "any". */
static gint arm_cpu_list_compare(gconstpointer a, gconstpointer b)
P
pbrook 已提交
4010
{
4011 4012 4013
    ObjectClass *class_a = (ObjectClass *)a;
    ObjectClass *class_b = (ObjectClass *)b;
    const char *name_a, *name_b;
P
pbrook 已提交
4014

4015 4016
    name_a = object_class_get_name(class_a);
    name_b = object_class_get_name(class_b);
A
Andreas Färber 已提交
4017
    if (strcmp(name_a, "any-" TYPE_ARM_CPU) == 0) {
4018
        return 1;
A
Andreas Färber 已提交
4019
    } else if (strcmp(name_b, "any-" TYPE_ARM_CPU) == 0) {
4020 4021 4022
        return -1;
    } else {
        return strcmp(name_a, name_b);
P
pbrook 已提交
4023 4024 4025
    }
}

4026
static void arm_cpu_list_entry(gpointer data, gpointer user_data)
P
pbrook 已提交
4027
{
4028
    ObjectClass *oc = data;
4029
    CPUListState *s = user_data;
A
Andreas Färber 已提交
4030 4031
    const char *typename;
    char *name;
P
pbrook 已提交
4032

A
Andreas Färber 已提交
4033 4034
    typename = object_class_get_name(oc);
    name = g_strndup(typename, strlen(typename) - strlen("-" TYPE_ARM_CPU));
4035
    (*s->cpu_fprintf)(s->file, "  %s\n",
A
Andreas Färber 已提交
4036 4037
                      name);
    g_free(name);
4038 4039 4040 4041
}

void arm_cpu_list(FILE *f, fprintf_function cpu_fprintf)
{
4042
    CPUListState s = {
4043 4044 4045 4046 4047 4048 4049 4050 4051 4052
        .file = f,
        .cpu_fprintf = cpu_fprintf,
    };
    GSList *list;

    list = object_class_get_list(TYPE_ARM_CPU, false);
    list = g_slist_sort(list, arm_cpu_list_compare);
    (*cpu_fprintf)(f, "Available CPUs:\n");
    g_slist_foreach(list, arm_cpu_list_entry, &s);
    g_slist_free(list);
4053 4054 4055 4056 4057 4058
#ifdef CONFIG_KVM
    /* The 'host' CPU type is dynamically registered only if KVM is
     * enabled, so we have to special-case it here:
     */
    (*cpu_fprintf)(f, "  host (only available in KVM mode)\n");
#endif
P
pbrook 已提交
4059 4060
}

4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091
static void arm_cpu_add_definition(gpointer data, gpointer user_data)
{
    ObjectClass *oc = data;
    CpuDefinitionInfoList **cpu_list = user_data;
    CpuDefinitionInfoList *entry;
    CpuDefinitionInfo *info;
    const char *typename;

    typename = object_class_get_name(oc);
    info = g_malloc0(sizeof(*info));
    info->name = g_strndup(typename,
                           strlen(typename) - strlen("-" TYPE_ARM_CPU));

    entry = g_malloc0(sizeof(*entry));
    entry->value = info;
    entry->next = *cpu_list;
    *cpu_list = entry;
}

CpuDefinitionInfoList *arch_query_cpu_definitions(Error **errp)
{
    CpuDefinitionInfoList *cpu_list = NULL;
    GSList *list;

    list = object_class_get_list(TYPE_ARM_CPU, false);
    g_slist_foreach(list, arm_cpu_add_definition, &cpu_list);
    g_slist_free(list);

    return cpu_list;
}

4092
static void add_cpreg_to_hashtable(ARMCPU *cpu, const ARMCPRegInfo *r,
4093
                                   void *opaque, int state, int secstate,
4094
                                   int crm, int opc1, int opc2)
4095 4096 4097 4098 4099 4100 4101
{
    /* Private utility function for define_one_arm_cp_reg_with_opaque():
     * add a single reginfo struct to the hash table.
     */
    uint32_t *key = g_new(uint32_t, 1);
    ARMCPRegInfo *r2 = g_memdup(r, sizeof(ARMCPRegInfo));
    int is64 = (r->type & ARM_CP_64BIT) ? 1 : 0;
4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112
    int ns = (secstate & ARM_CP_SECSTATE_NS) ? 1 : 0;

    /* Reset the secure state to the specific incoming state.  This is
     * necessary as the register may have been defined with both states.
     */
    r2->secure = secstate;

    if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) {
        /* Register is banked (using both entries in array).
         * Overwriting fieldoffset as the array is only used to define
         * banked registers but later only fieldoffset is used.
4113
         */
4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130
        r2->fieldoffset = r->bank_fieldoffsets[ns];
    }

    if (state == ARM_CP_STATE_AA32) {
        if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) {
            /* If the register is banked then we don't need to migrate or
             * reset the 32-bit instance in certain cases:
             *
             * 1) If the register has both 32-bit and 64-bit instances then we
             *    can count on the 64-bit instance taking care of the
             *    non-secure bank.
             * 2) If ARMv8 is enabled then we can count on a 64-bit version
             *    taking care of the secure bank.  This requires that separate
             *    32 and 64-bit definitions are provided.
             */
            if ((r->state == ARM_CP_STATE_BOTH && ns) ||
                (arm_feature(&cpu->env, ARM_FEATURE_V8) && !ns)) {
4131
                r2->type |= ARM_CP_ALIAS;
4132 4133 4134 4135 4136
            }
        } else if ((secstate != r->secure) && !ns) {
            /* The register is not banked so we only want to allow migration of
             * the non-secure instance.
             */
4137
            r2->type |= ARM_CP_ALIAS;
4138
        }
4139 4140 4141 4142 4143 4144 4145 4146

        if (r->state == ARM_CP_STATE_BOTH) {
            /* We assume it is a cp15 register if the .cp field is left unset.
             */
            if (r2->cp == 0) {
                r2->cp = 15;
            }

4147
#ifdef HOST_WORDS_BIGENDIAN
4148 4149 4150
            if (r2->fieldoffset) {
                r2->fieldoffset += sizeof(uint32_t);
            }
4151
#endif
4152
        }
4153 4154 4155 4156 4157
    }
    if (state == ARM_CP_STATE_AA64) {
        /* To allow abbreviation of ARMCPRegInfo
         * definitions, we treat cp == 0 as equivalent to
         * the value for "standard guest-visible sysreg".
4158 4159 4160
         * STATE_BOTH definitions are also always "standard
         * sysreg" in their AArch64 view (the .cp value may
         * be non-zero for the benefit of the AArch32 view).
4161
         */
4162
        if (r->cp == 0 || r->state == ARM_CP_STATE_BOTH) {
4163 4164 4165 4166 4167
            r2->cp = CP_REG_ARM64_SYSREG_CP;
        }
        *key = ENCODE_AA64_CP_REG(r2->cp, r2->crn, crm,
                                  r2->opc0, opc1, opc2);
    } else {
4168
        *key = ENCODE_CP_REG(r2->cp, is64, ns, r2->crn, crm, opc1, opc2);
4169
    }
4170 4171 4172
    if (opaque) {
        r2->opaque = opaque;
    }
4173 4174 4175 4176
    /* reginfo passed to helpers is correct for the actual access,
     * and is never ARM_CP_STATE_BOTH:
     */
    r2->state = state;
4177 4178 4179 4180 4181 4182 4183 4184
    /* Make sure reginfo passed to helpers for wildcarded regs
     * has the correct crm/opc1/opc2 for this reg, not CP_ANY:
     */
    r2->crm = crm;
    r2->opc1 = opc1;
    r2->opc2 = opc2;
    /* By convention, for wildcarded registers only the first
     * entry is used for migration; the others are marked as
4185
     * ALIAS so we don't try to transfer the register
4186
     * multiple times. Special registers (ie NOP/WFI) are
4187
     * never migratable and not even raw-accessible.
4188
     */
4189 4190 4191 4192
    if ((r->type & ARM_CP_SPECIAL)) {
        r2->type |= ARM_CP_NO_RAW;
    }
    if (((r->crm == CP_ANY) && crm != 0) ||
4193 4194
        ((r->opc1 == CP_ANY) && opc1 != 0) ||
        ((r->opc2 == CP_ANY) && opc2 != 0)) {
4195
        r2->type |= ARM_CP_ALIAS;
4196 4197
    }

4198 4199 4200 4201 4202 4203 4204 4205
    /* Check that raw accesses are either forbidden or handled. Note that
     * we can't assert this earlier because the setup of fieldoffset for
     * banked registers has to be done first.
     */
    if (!(r2->type & ARM_CP_NO_RAW)) {
        assert(!raw_accessors_invalid(r2));
    }

4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224
    /* Overriding of an existing definition must be explicitly
     * requested.
     */
    if (!(r->type & ARM_CP_OVERRIDE)) {
        ARMCPRegInfo *oldreg;
        oldreg = g_hash_table_lookup(cpu->cp_regs, key);
        if (oldreg && !(oldreg->type & ARM_CP_OVERRIDE)) {
            fprintf(stderr, "Register redefined: cp=%d %d bit "
                    "crn=%d crm=%d opc1=%d opc2=%d, "
                    "was %s, now %s\n", r2->cp, 32 + 32 * is64,
                    r2->crn, r2->crm, r2->opc1, r2->opc2,
                    oldreg->name, r2->name);
            g_assert_not_reached();
        }
    }
    g_hash_table_insert(cpu->cp_regs, key, r2);
}


4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238
void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
                                       const ARMCPRegInfo *r, void *opaque)
{
    /* Define implementations of coprocessor registers.
     * We store these in a hashtable because typically
     * there are less than 150 registers in a space which
     * is 16*16*16*8*8 = 262144 in size.
     * Wildcarding is supported for the crm, opc1 and opc2 fields.
     * If a register is defined twice then the second definition is
     * used, so this can be used to define some generic registers and
     * then override them with implementation specific variations.
     * At least one of the original and the second definition should
     * include ARM_CP_OVERRIDE in its type bits -- this is just a guard
     * against accidental use.
4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249
     *
     * The state field defines whether the register is to be
     * visible in the AArch32 or AArch64 execution state. If the
     * state is set to ARM_CP_STATE_BOTH then we synthesise a
     * reginfo structure for the AArch32 view, which sees the lower
     * 32 bits of the 64 bit register.
     *
     * Only registers visible in AArch64 may set r->opc0; opc0 cannot
     * be wildcarded. AArch64 registers are always considered to be 64
     * bits; the ARM_CP_64BIT* flag applies only to the AArch32 view of
     * the register, if any.
4250
     */
4251
    int crm, opc1, opc2, state;
4252 4253 4254 4255 4256 4257 4258 4259
    int crmmin = (r->crm == CP_ANY) ? 0 : r->crm;
    int crmmax = (r->crm == CP_ANY) ? 15 : r->crm;
    int opc1min = (r->opc1 == CP_ANY) ? 0 : r->opc1;
    int opc1max = (r->opc1 == CP_ANY) ? 7 : r->opc1;
    int opc2min = (r->opc2 == CP_ANY) ? 0 : r->opc2;
    int opc2max = (r->opc2 == CP_ANY) ? 7 : r->opc2;
    /* 64 bit registers have only CRm and Opc1 fields */
    assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn)));
4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305
    /* op0 only exists in the AArch64 encodings */
    assert((r->state != ARM_CP_STATE_AA32) || (r->opc0 == 0));
    /* AArch64 regs are all 64 bit so ARM_CP_64BIT is meaningless */
    assert((r->state != ARM_CP_STATE_AA64) || !(r->type & ARM_CP_64BIT));
    /* The AArch64 pseudocode CheckSystemAccess() specifies that op1
     * encodes a minimum access level for the register. We roll this
     * runtime check into our general permission check code, so check
     * here that the reginfo's specified permissions are strict enough
     * to encompass the generic architectural permission check.
     */
    if (r->state != ARM_CP_STATE_AA32) {
        int mask = 0;
        switch (r->opc1) {
        case 0: case 1: case 2:
            /* min_EL EL1 */
            mask = PL1_RW;
            break;
        case 3:
            /* min_EL EL0 */
            mask = PL0_RW;
            break;
        case 4:
            /* min_EL EL2 */
            mask = PL2_RW;
            break;
        case 5:
            /* unallocated encoding, so not possible */
            assert(false);
            break;
        case 6:
            /* min_EL EL3 */
            mask = PL3_RW;
            break;
        case 7:
            /* min_EL EL1, secure mode only (we don't check the latter) */
            mask = PL1_RW;
            break;
        default:
            /* broken reginfo with out-of-range opc1 */
            assert(false);
            break;
        }
        /* assert our permissions are not too lax (stricter is fine) */
        assert((r->access & ~mask) == 0);
    }

4306 4307 4308 4309 4310
    /* Check that the register definition has enough info to handle
     * reads and writes if they are permitted.
     */
    if (!(r->type & (ARM_CP_SPECIAL|ARM_CP_CONST))) {
        if (r->access & PL3_R) {
4311 4312 4313
            assert((r->fieldoffset ||
                   (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
                   r->readfn);
4314 4315
        }
        if (r->access & PL3_W) {
4316 4317 4318
            assert((r->fieldoffset ||
                   (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
                   r->writefn);
4319 4320 4321 4322 4323 4324 4325
        }
    }
    /* Bad type field probably means missing sentinel at end of reg list */
    assert(cptype_valid(r->type));
    for (crm = crmmin; crm <= crmmax; crm++) {
        for (opc1 = opc1min; opc1 <= opc1max; opc1++) {
            for (opc2 = opc2min; opc2 <= opc2max; opc2++) {
4326 4327 4328 4329 4330
                for (state = ARM_CP_STATE_AA32;
                     state <= ARM_CP_STATE_AA64; state++) {
                    if (r->state != state && r->state != ARM_CP_STATE_BOTH) {
                        continue;
                    }
4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356
                    if (state == ARM_CP_STATE_AA32) {
                        /* Under AArch32 CP registers can be common
                         * (same for secure and non-secure world) or banked.
                         */
                        switch (r->secure) {
                        case ARM_CP_SECSTATE_S:
                        case ARM_CP_SECSTATE_NS:
                            add_cpreg_to_hashtable(cpu, r, opaque, state,
                                                   r->secure, crm, opc1, opc2);
                            break;
                        default:
                            add_cpreg_to_hashtable(cpu, r, opaque, state,
                                                   ARM_CP_SECSTATE_S,
                                                   crm, opc1, opc2);
                            add_cpreg_to_hashtable(cpu, r, opaque, state,
                                                   ARM_CP_SECSTATE_NS,
                                                   crm, opc1, opc2);
                            break;
                        }
                    } else {
                        /* AArch64 registers get mapped to non-secure instance
                         * of AArch32 */
                        add_cpreg_to_hashtable(cpu, r, opaque, state,
                                               ARM_CP_SECSTATE_NS,
                                               crm, opc1, opc2);
                    }
4357
                }
4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372
            }
        }
    }
}

void define_arm_cp_regs_with_opaque(ARMCPU *cpu,
                                    const ARMCPRegInfo *regs, void *opaque)
{
    /* Define a whole list of registers */
    const ARMCPRegInfo *r;
    for (r = regs; r->type != ARM_CP_SENTINEL; r++) {
        define_one_arm_cp_reg_with_opaque(cpu, r, opaque);
    }
}

4373
const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp)
4374
{
4375
    return g_hash_table_lookup(cpregs, &encoded_cp);
4376 4377
}

4378 4379
void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
                         uint64_t value)
4380 4381 4382 4383
{
    /* Helper coprocessor write function for write-ignore registers */
}

4384
uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri)
4385 4386 4387 4388 4389
{
    /* Helper coprocessor write function for read-as-zero registers */
    return 0;
}

4390 4391 4392 4393 4394
void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque)
{
    /* Helper coprocessor reset function for do-nothing-on-reset registers */
}

4395
static int bad_mode_switch(CPUARMState *env, int mode)
4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409
{
    /* Return true if it is not valid for us to switch to
     * this CPU mode (ie all the UNPREDICTABLE cases in
     * the ARM ARM CPSRWriteByInstr pseudocode).
     */
    switch (mode) {
    case ARM_CPU_MODE_USR:
    case ARM_CPU_MODE_SYS:
    case ARM_CPU_MODE_SVC:
    case ARM_CPU_MODE_ABT:
    case ARM_CPU_MODE_UND:
    case ARM_CPU_MODE_IRQ:
    case ARM_CPU_MODE_FIQ:
        return 0;
4410 4411
    case ARM_CPU_MODE_MON:
        return !arm_is_secure(env);
4412 4413 4414 4415 4416
    default:
        return 1;
    }
}

4417 4418 4419
uint32_t cpsr_read(CPUARMState *env)
{
    int ZF;
P
pbrook 已提交
4420 4421
    ZF = (env->ZF == 0);
    return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) |
4422 4423 4424
        (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
        | (env->thumb << 5) | ((env->condexec_bits & 3) << 25)
        | ((env->condexec_bits & 0xfc) << 8)
4425
        | (env->GE << 16) | (env->daif & CPSR_AIF);
4426 4427 4428 4429
}

void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask)
{
4430 4431
    uint32_t changed_daif;

4432
    if (mask & CPSR_NZCV) {
P
pbrook 已提交
4433 4434
        env->ZF = (~val) & CPSR_Z;
        env->NF = val;
4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453
        env->CF = (val >> 29) & 1;
        env->VF = (val << 3) & 0x80000000;
    }
    if (mask & CPSR_Q)
        env->QF = ((val & CPSR_Q) != 0);
    if (mask & CPSR_T)
        env->thumb = ((val & CPSR_T) != 0);
    if (mask & CPSR_IT_0_1) {
        env->condexec_bits &= ~3;
        env->condexec_bits |= (val >> 25) & 3;
    }
    if (mask & CPSR_IT_2_7) {
        env->condexec_bits &= 3;
        env->condexec_bits |= (val >> 8) & 0xfc;
    }
    if (mask & CPSR_GE) {
        env->GE = (val >> 16) & 0xf;
    }

4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505
    /* In a V7 implementation that includes the security extensions but does
     * not include Virtualization Extensions the SCR.FW and SCR.AW bits control
     * whether non-secure software is allowed to change the CPSR_F and CPSR_A
     * bits respectively.
     *
     * In a V8 implementation, it is permitted for privileged software to
     * change the CPSR A/F bits regardless of the SCR.AW/FW bits.
     */
    if (!arm_feature(env, ARM_FEATURE_V8) &&
        arm_feature(env, ARM_FEATURE_EL3) &&
        !arm_feature(env, ARM_FEATURE_EL2) &&
        !arm_is_secure(env)) {

        changed_daif = (env->daif ^ val) & mask;

        if (changed_daif & CPSR_A) {
            /* Check to see if we are allowed to change the masking of async
             * abort exceptions from a non-secure state.
             */
            if (!(env->cp15.scr_el3 & SCR_AW)) {
                qemu_log_mask(LOG_GUEST_ERROR,
                              "Ignoring attempt to switch CPSR_A flag from "
                              "non-secure world with SCR.AW bit clear\n");
                mask &= ~CPSR_A;
            }
        }

        if (changed_daif & CPSR_F) {
            /* Check to see if we are allowed to change the masking of FIQ
             * exceptions from a non-secure state.
             */
            if (!(env->cp15.scr_el3 & SCR_FW)) {
                qemu_log_mask(LOG_GUEST_ERROR,
                              "Ignoring attempt to switch CPSR_F flag from "
                              "non-secure world with SCR.FW bit clear\n");
                mask &= ~CPSR_F;
            }

            /* Check whether non-maskable FIQ (NMFI) support is enabled.
             * If this bit is set software is not allowed to mask
             * FIQs, but is allowed to set CPSR_F to 0.
             */
            if ((A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_NMFI) &&
                (val & CPSR_F)) {
                qemu_log_mask(LOG_GUEST_ERROR,
                              "Ignoring attempt to enable CPSR_F flag "
                              "(non-maskable FIQ [NMFI] support enabled)\n");
                mask &= ~CPSR_F;
            }
        }
    }

4506 4507 4508
    env->daif &= ~(CPSR_AIF & mask);
    env->daif |= val & CPSR_AIF & mask;

4509
    if ((env->uncached_cpsr ^ val) & mask & CPSR_M) {
4510 4511 4512 4513 4514 4515 4516 4517 4518
        if (bad_mode_switch(env, val & CPSR_M)) {
            /* Attempt to switch to an invalid mode: this is UNPREDICTABLE.
             * We choose to ignore the attempt and leave the CPSR M field
             * untouched.
             */
            mask &= ~CPSR_M;
        } else {
            switch_mode(env, val & CPSR_M);
        }
4519 4520 4521 4522 4523
    }
    mask &= ~CACHED_CPSR_BITS;
    env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask);
}

P
pbrook 已提交
4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540
/* Sign/zero extend */
uint32_t HELPER(sxtb16)(uint32_t x)
{
    uint32_t res;
    res = (uint16_t)(int8_t)x;
    res |= (uint32_t)(int8_t)(x >> 16) << 16;
    return res;
}

uint32_t HELPER(uxtb16)(uint32_t x)
{
    uint32_t res;
    res = (uint16_t)(uint8_t)x;
    res |= (uint32_t)(uint8_t)(x >> 16) << 16;
    return res;
}

P
pbrook 已提交
4541 4542
uint32_t HELPER(clz)(uint32_t x)
{
4543
    return clz32(x);
P
pbrook 已提交
4544 4545
}

P
pbrook 已提交
4546 4547 4548 4549
int32_t HELPER(sdiv)(int32_t num, int32_t den)
{
    if (den == 0)
      return 0;
A
Aurelien Jarno 已提交
4550 4551
    if (num == INT_MIN && den == -1)
      return INT_MIN;
P
pbrook 已提交
4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576
    return num / den;
}

uint32_t HELPER(udiv)(uint32_t num, uint32_t den)
{
    if (den == 0)
      return 0;
    return num / den;
}

uint32_t HELPER(rbit)(uint32_t x)
{
    x =  ((x & 0xff000000) >> 24)
       | ((x & 0x00ff0000) >> 8)
       | ((x & 0x0000ff00) << 8)
       | ((x & 0x000000ff) << 24);
    x =  ((x & 0xf0f0f0f0) >> 4)
       | ((x & 0x0f0f0f0f) << 4);
    x =  ((x & 0x88888888) >> 3)
       | ((x & 0x44444444) >> 1)
       | ((x & 0x22222222) << 1)
       | ((x & 0x11111111) << 3);
    return x;
}

4577
#if defined(CONFIG_USER_ONLY)
B
bellard 已提交
4578

P
pbrook 已提交
4579
/* These should probably raise undefined insn exceptions.  */
4580
void HELPER(v7m_msr)(CPUARMState *env, uint32_t reg, uint32_t val)
P
pbrook 已提交
4581
{
4582 4583 4584
    ARMCPU *cpu = arm_env_get_cpu(env);

    cpu_abort(CPU(cpu), "v7m_msr %d\n", reg);
P
pbrook 已提交
4585 4586
}

4587
uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg)
P
pbrook 已提交
4588
{
4589 4590 4591
    ARMCPU *cpu = arm_env_get_cpu(env);

    cpu_abort(CPU(cpu), "v7m_mrs %d\n", reg);
P
pbrook 已提交
4592 4593 4594
    return 0;
}

4595
void switch_mode(CPUARMState *env, int mode)
B
bellard 已提交
4596
{
4597 4598 4599 4600 4601
    ARMCPU *cpu = arm_env_get_cpu(env);

    if (mode != ARM_CPU_MODE_USR) {
        cpu_abort(CPU(cpu), "Tried to switch out of user mode\n");
    }
B
bellard 已提交
4602 4603
}

4604
void HELPER(set_r13_banked)(CPUARMState *env, uint32_t mode, uint32_t val)
P
pbrook 已提交
4605
{
4606 4607 4608
    ARMCPU *cpu = arm_env_get_cpu(env);

    cpu_abort(CPU(cpu), "banked r13 write\n");
P
pbrook 已提交
4609 4610
}

4611
uint32_t HELPER(get_r13_banked)(CPUARMState *env, uint32_t mode)
P
pbrook 已提交
4612
{
4613 4614 4615
    ARMCPU *cpu = arm_env_get_cpu(env);

    cpu_abort(CPU(cpu), "banked r13 read\n");
P
pbrook 已提交
4616 4617 4618
    return 0;
}

4619 4620
uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
                                 uint32_t cur_el, bool secure)
4621 4622 4623 4624
{
    return 1;
}

4625 4626 4627 4628 4629
void aarch64_sync_64_to_32(CPUARMState *env)
{
    g_assert_not_reached();
}

B
bellard 已提交
4630 4631 4632
#else

/* Map CPU modes onto saved register banks.  */
4633
int bank_number(int mode)
B
bellard 已提交
4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648
{
    switch (mode) {
    case ARM_CPU_MODE_USR:
    case ARM_CPU_MODE_SYS:
        return 0;
    case ARM_CPU_MODE_SVC:
        return 1;
    case ARM_CPU_MODE_ABT:
        return 2;
    case ARM_CPU_MODE_UND:
        return 3;
    case ARM_CPU_MODE_IRQ:
        return 4;
    case ARM_CPU_MODE_FIQ:
        return 5;
4649 4650 4651 4652
    case ARM_CPU_MODE_HYP:
        return 6;
    case ARM_CPU_MODE_MON:
        return 7;
B
bellard 已提交
4653
    }
4654
    hw_error("bank number requested for bad CPSR mode value 0x%x\n", mode);
B
bellard 已提交
4655 4656
}

4657
void switch_mode(CPUARMState *env, int mode)
B
bellard 已提交
4658 4659 4660 4661 4662 4663 4664 4665 4666 4667
{
    int old_mode;
    int i;

    old_mode = env->uncached_cpsr & CPSR_M;
    if (mode == old_mode)
        return;

    if (old_mode == ARM_CPU_MODE_FIQ) {
        memcpy (env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t));
P
pbrook 已提交
4668
        memcpy (env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t));
B
bellard 已提交
4669 4670
    } else if (mode == ARM_CPU_MODE_FIQ) {
        memcpy (env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t));
P
pbrook 已提交
4671
        memcpy (env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t));
B
bellard 已提交
4672 4673
    }

4674
    i = bank_number(old_mode);
B
bellard 已提交
4675 4676 4677 4678
    env->banked_r13[i] = env->regs[13];
    env->banked_r14[i] = env->regs[14];
    env->banked_spsr[i] = env->spsr;

4679
    i = bank_number(mode);
B
bellard 已提交
4680 4681 4682 4683 4684
    env->regs[13] = env->banked_r13[i];
    env->regs[14] = env->banked_r14[i];
    env->spsr = env->banked_spsr[i];
}

4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743
/* Physical Interrupt Target EL Lookup Table
 *
 * [ From ARM ARM section G1.13.4 (Table G1-15) ]
 *
 * The below multi-dimensional table is used for looking up the target
 * exception level given numerous condition criteria.  Specifically, the
 * target EL is based on SCR and HCR routing controls as well as the
 * currently executing EL and secure state.
 *
 *    Dimensions:
 *    target_el_table[2][2][2][2][2][4]
 *                    |  |  |  |  |  +--- Current EL
 *                    |  |  |  |  +------ Non-secure(0)/Secure(1)
 *                    |  |  |  +--------- HCR mask override
 *                    |  |  +------------ SCR exec state control
 *                    |  +--------------- SCR mask override
 *                    +------------------ 32-bit(0)/64-bit(1) EL3
 *
 *    The table values are as such:
 *    0-3 = EL0-EL3
 *     -1 = Cannot occur
 *
 * The ARM ARM target EL table includes entries indicating that an "exception
 * is not taken".  The two cases where this is applicable are:
 *    1) An exception is taken from EL3 but the SCR does not have the exception
 *    routed to EL3.
 *    2) An exception is taken from EL2 but the HCR does not have the exception
 *    routed to EL2.
 * In these two cases, the below table contain a target of EL1.  This value is
 * returned as it is expected that the consumer of the table data will check
 * for "target EL >= current EL" to ensure the exception is not taken.
 *
 *            SCR     HCR
 *         64  EA     AMO                 From
 *        BIT IRQ     IMO      Non-secure         Secure
 *        EL3 FIQ  RW FMO   EL0 EL1 EL2 EL3   EL0 EL1 EL2 EL3
 */
const int8_t target_el_table[2][2][2][2][2][4] = {
    {{{{/* 0   0   0   0 */{ 1,  1,  2, -1 },{ 3, -1, -1,  3 },},
       {/* 0   0   0   1 */{ 2,  2,  2, -1 },{ 3, -1, -1,  3 },},},
      {{/* 0   0   1   0 */{ 1,  1,  2, -1 },{ 3, -1, -1,  3 },},
       {/* 0   0   1   1 */{ 2,  2,  2, -1 },{ 3, -1, -1,  3 },},},},
     {{{/* 0   1   0   0 */{ 3,  3,  3, -1 },{ 3, -1, -1,  3 },},
       {/* 0   1   0   1 */{ 3,  3,  3, -1 },{ 3, -1, -1,  3 },},},
      {{/* 0   1   1   0 */{ 3,  3,  3, -1 },{ 3, -1, -1,  3 },},
       {/* 0   1   1   1 */{ 3,  3,  3, -1 },{ 3, -1, -1,  3 },},},},},
    {{{{/* 1   0   0   0 */{ 1,  1,  2, -1 },{ 1,  1, -1,  1 },},
       {/* 1   0   0   1 */{ 2,  2,  2, -1 },{ 1,  1, -1,  1 },},},
      {{/* 1   0   1   0 */{ 1,  1,  1, -1 },{ 1,  1, -1,  1 },},
       {/* 1   0   1   1 */{ 2,  2,  2, -1 },{ 1,  1, -1,  1 },},},},
     {{{/* 1   1   0   0 */{ 3,  3,  3, -1 },{ 3,  3, -1,  3 },},
       {/* 1   1   0   1 */{ 3,  3,  3, -1 },{ 3,  3, -1,  3 },},},
      {{/* 1   1   1   0 */{ 3,  3,  3, -1 },{ 3,  3, -1,  3 },},
       {/* 1   1   1   1 */{ 3,  3,  3, -1 },{ 3,  3, -1,  3 },},},},},
};

/*
 * Determine the target EL for physical exceptions
 */
4744 4745
uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
                                 uint32_t cur_el, bool secure)
4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779
{
    CPUARMState *env = cs->env_ptr;
    int rw = ((env->cp15.scr_el3 & SCR_RW) == SCR_RW);
    int scr;
    int hcr;
    int target_el;
    int is64 = arm_el_is_aa64(env, 3);

    switch (excp_idx) {
    case EXCP_IRQ:
        scr = ((env->cp15.scr_el3 & SCR_IRQ) == SCR_IRQ);
        hcr = ((env->cp15.hcr_el2 & HCR_IMO) == HCR_IMO);
        break;
    case EXCP_FIQ:
        scr = ((env->cp15.scr_el3 & SCR_FIQ) == SCR_FIQ);
        hcr = ((env->cp15.hcr_el2 & HCR_FMO) == HCR_FMO);
        break;
    default:
        scr = ((env->cp15.scr_el3 & SCR_EA) == SCR_EA);
        hcr = ((env->cp15.hcr_el2 & HCR_AMO) == HCR_AMO);
        break;
    };

    /* If HCR.TGE is set then HCR is treated as being 1 */
    hcr |= ((env->cp15.hcr_el2 & HCR_TGE) == HCR_TGE);

    /* Perform a table-lookup for the target EL given the current state */
    target_el = target_el_table[is64][scr][rw][hcr][secure][cur_el];

    assert(target_el > 0);

    return target_el;
}

P
pbrook 已提交
4780 4781
static void v7m_push(CPUARMState *env, uint32_t val)
{
4782 4783
    CPUState *cs = CPU(arm_env_get_cpu(env));

P
pbrook 已提交
4784
    env->regs[13] -= 4;
4785
    stl_phys(cs->as, env->regs[13], val);
P
pbrook 已提交
4786 4787 4788 4789
}

static uint32_t v7m_pop(CPUARMState *env)
{
4790
    CPUState *cs = CPU(arm_env_get_cpu(env));
P
pbrook 已提交
4791
    uint32_t val;
4792

4793
    val = ldl_phys(cs->as, env->regs[13]);
P
pbrook 已提交
4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816
    env->regs[13] += 4;
    return val;
}

/* Switch to V7M main or process stack pointer.  */
static void switch_v7m_sp(CPUARMState *env, int process)
{
    uint32_t tmp;
    if (env->v7m.current_sp != process) {
        tmp = env->v7m.other_sp;
        env->v7m.other_sp = env->regs[13];
        env->regs[13] = tmp;
        env->v7m.current_sp = process;
    }
}

static void do_v7m_exception_exit(CPUARMState *env)
{
    uint32_t type;
    uint32_t xpsr;

    type = env->regs[15];
    if (env->v7m.exception != 0)
P
Paul Brook 已提交
4817
        armv7m_nvic_complete_irq(env->nvic, env->v7m.exception);
P
pbrook 已提交
4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828

    /* Switch to the target stack.  */
    switch_v7m_sp(env, (type & 4) != 0);
    /* Pop registers.  */
    env->regs[0] = v7m_pop(env);
    env->regs[1] = v7m_pop(env);
    env->regs[2] = v7m_pop(env);
    env->regs[3] = v7m_pop(env);
    env->regs[12] = v7m_pop(env);
    env->regs[14] = v7m_pop(env);
    env->regs[15] = v7m_pop(env);
4829 4830 4831 4832 4833 4834 4835 4836 4837 4838
    if (env->regs[15] & 1) {
        qemu_log_mask(LOG_GUEST_ERROR,
                      "M profile return from interrupt with misaligned "
                      "PC is UNPREDICTABLE\n");
        /* Actual hardware seems to ignore the lsbit, and there are several
         * RTOSes out there which incorrectly assume the r15 in the stack
         * frame should be a Thumb-style "lsbit indicates ARM/Thumb" value.
         */
        env->regs[15] &= ~1U;
    }
P
pbrook 已提交
4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850
    xpsr = v7m_pop(env);
    xpsr_write(env, xpsr, 0xfffffdff);
    /* Undo stack alignment.  */
    if (xpsr & 0x200)
        env->regs[13] |= 4;
    /* ??? The exception return type specifies Thread/Handler mode.  However
       this is also implied by the xPSR value. Not sure what to do
       if there is a mismatch.  */
    /* ??? Likewise for mismatches between the CONTROL register and the stack
       pointer.  */
}

4851
void arm_v7m_cpu_do_interrupt(CPUState *cs)
P
pbrook 已提交
4852
{
4853 4854
    ARMCPU *cpu = ARM_CPU(cs);
    CPUARMState *env = &cpu->env;
P
pbrook 已提交
4855 4856 4857 4858
    uint32_t xpsr = xpsr_read(env);
    uint32_t lr;
    uint32_t addr;

4859
    arm_log_exception(cs->exception_index);
4860

P
pbrook 已提交
4861 4862 4863 4864 4865 4866 4867 4868 4869 4870
    lr = 0xfffffff1;
    if (env->v7m.current_sp)
        lr |= 4;
    if (env->v7m.exception == 0)
        lr |= 8;

    /* For exceptions we just mark as pending on the NVIC, and let that
       handle it.  */
    /* TODO: Need to escalate if the current priority is higher than the
       one we're raising.  */
4871
    switch (cs->exception_index) {
P
pbrook 已提交
4872
    case EXCP_UDEF:
P
Paul Brook 已提交
4873
        armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE);
P
pbrook 已提交
4874 4875
        return;
    case EXCP_SWI:
4876
        /* The PC already points to the next instruction.  */
P
Paul Brook 已提交
4877
        armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SVC);
P
pbrook 已提交
4878 4879 4880
        return;
    case EXCP_PREFETCH_ABORT:
    case EXCP_DATA_ABORT:
4881 4882 4883
        /* TODO: if we implemented the MPU registers, this is where we
         * should set the MMFAR, etc from exception.fsr and exception.vaddress.
         */
P
Paul Brook 已提交
4884
        armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_MEM);
P
pbrook 已提交
4885 4886
        return;
    case EXCP_BKPT:
4887
        if (semihosting_enabled()) {
P
pbrook 已提交
4888
            int nr;
4889
            nr = arm_lduw_code(env, env->regs[15], env->bswap_code) & 0xff;
P
pbrook 已提交
4890 4891 4892
            if (nr == 0xab) {
                env->regs[15] += 2;
                env->regs[0] = do_arm_semihosting(env);
4893
                qemu_log_mask(CPU_LOG_INT, "...handled as semihosting call\n");
P
pbrook 已提交
4894 4895 4896
                return;
            }
        }
P
Paul Brook 已提交
4897
        armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_DEBUG);
P
pbrook 已提交
4898 4899
        return;
    case EXCP_IRQ:
P
Paul Brook 已提交
4900
        env->v7m.exception = armv7m_nvic_acknowledge_irq(env->nvic);
P
pbrook 已提交
4901 4902 4903 4904 4905
        break;
    case EXCP_EXCEPTION_EXIT:
        do_v7m_exception_exit(env);
        return;
    default:
4906
        cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
P
pbrook 已提交
4907 4908 4909 4910 4911 4912 4913
        return; /* Never happens.  Keep compiler happy.  */
    }

    /* Align stack pointer.  */
    /* ??? Should only do this if Configuration Control Register
       STACKALIGN bit is set.  */
    if (env->regs[13] & 4) {
P
pbrook 已提交
4914
        env->regs[13] -= 4;
P
pbrook 已提交
4915 4916
        xpsr |= 0x200;
    }
B
balrog 已提交
4917
    /* Switch to the handler mode.  */
P
pbrook 已提交
4918 4919 4920 4921 4922 4923 4924 4925 4926
    v7m_push(env, xpsr);
    v7m_push(env, env->regs[15]);
    v7m_push(env, env->regs[14]);
    v7m_push(env, env->regs[12]);
    v7m_push(env, env->regs[3]);
    v7m_push(env, env->regs[2]);
    v7m_push(env, env->regs[1]);
    v7m_push(env, env->regs[0]);
    switch_v7m_sp(env, 0);
4927 4928
    /* Clear IT bits */
    env->condexec_bits = 0;
P
pbrook 已提交
4929
    env->regs[14] = lr;
4930
    addr = ldl_phys(cs->as, env->v7m.vecbase + env->v7m.exception * 4);
P
pbrook 已提交
4931 4932 4933 4934
    env->regs[15] = addr & 0xfffffffe;
    env->thumb = addr & 1;
}

4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140
/* Function used to synchronize QEMU's AArch64 register set with AArch32
 * register set.  This is necessary when switching between AArch32 and AArch64
 * execution state.
 */
void aarch64_sync_32_to_64(CPUARMState *env)
{
    int i;
    uint32_t mode = env->uncached_cpsr & CPSR_M;

    /* We can blanket copy R[0:7] to X[0:7] */
    for (i = 0; i < 8; i++) {
        env->xregs[i] = env->regs[i];
    }

    /* Unless we are in FIQ mode, x8-x12 come from the user registers r8-r12.
     * Otherwise, they come from the banked user regs.
     */
    if (mode == ARM_CPU_MODE_FIQ) {
        for (i = 8; i < 13; i++) {
            env->xregs[i] = env->usr_regs[i - 8];
        }
    } else {
        for (i = 8; i < 13; i++) {
            env->xregs[i] = env->regs[i];
        }
    }

    /* Registers x13-x23 are the various mode SP and FP registers. Registers
     * r13 and r14 are only copied if we are in that mode, otherwise we copy
     * from the mode banked register.
     */
    if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) {
        env->xregs[13] = env->regs[13];
        env->xregs[14] = env->regs[14];
    } else {
        env->xregs[13] = env->banked_r13[bank_number(ARM_CPU_MODE_USR)];
        /* HYP is an exception in that it is copied from r14 */
        if (mode == ARM_CPU_MODE_HYP) {
            env->xregs[14] = env->regs[14];
        } else {
            env->xregs[14] = env->banked_r14[bank_number(ARM_CPU_MODE_USR)];
        }
    }

    if (mode == ARM_CPU_MODE_HYP) {
        env->xregs[15] = env->regs[13];
    } else {
        env->xregs[15] = env->banked_r13[bank_number(ARM_CPU_MODE_HYP)];
    }

    if (mode == ARM_CPU_MODE_IRQ) {
        env->xregs[16] = env->regs[13];
        env->xregs[17] = env->regs[14];
    } else {
        env->xregs[16] = env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)];
        env->xregs[17] = env->banked_r14[bank_number(ARM_CPU_MODE_IRQ)];
    }

    if (mode == ARM_CPU_MODE_SVC) {
        env->xregs[18] = env->regs[13];
        env->xregs[19] = env->regs[14];
    } else {
        env->xregs[18] = env->banked_r13[bank_number(ARM_CPU_MODE_SVC)];
        env->xregs[19] = env->banked_r14[bank_number(ARM_CPU_MODE_SVC)];
    }

    if (mode == ARM_CPU_MODE_ABT) {
        env->xregs[20] = env->regs[13];
        env->xregs[21] = env->regs[14];
    } else {
        env->xregs[20] = env->banked_r13[bank_number(ARM_CPU_MODE_ABT)];
        env->xregs[21] = env->banked_r14[bank_number(ARM_CPU_MODE_ABT)];
    }

    if (mode == ARM_CPU_MODE_UND) {
        env->xregs[22] = env->regs[13];
        env->xregs[23] = env->regs[14];
    } else {
        env->xregs[22] = env->banked_r13[bank_number(ARM_CPU_MODE_UND)];
        env->xregs[23] = env->banked_r14[bank_number(ARM_CPU_MODE_UND)];
    }

    /* Registers x24-x30 are mapped to r8-r14 in FIQ mode.  If we are in FIQ
     * mode, then we can copy from r8-r14.  Otherwise, we copy from the
     * FIQ bank for r8-r14.
     */
    if (mode == ARM_CPU_MODE_FIQ) {
        for (i = 24; i < 31; i++) {
            env->xregs[i] = env->regs[i - 16];   /* X[24:30] <- R[8:14] */
        }
    } else {
        for (i = 24; i < 29; i++) {
            env->xregs[i] = env->fiq_regs[i - 24];
        }
        env->xregs[29] = env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)];
        env->xregs[30] = env->banked_r14[bank_number(ARM_CPU_MODE_FIQ)];
    }

    env->pc = env->regs[15];
}

/* Function used to synchronize QEMU's AArch32 register set with AArch64
 * register set.  This is necessary when switching between AArch32 and AArch64
 * execution state.
 */
void aarch64_sync_64_to_32(CPUARMState *env)
{
    int i;
    uint32_t mode = env->uncached_cpsr & CPSR_M;

    /* We can blanket copy X[0:7] to R[0:7] */
    for (i = 0; i < 8; i++) {
        env->regs[i] = env->xregs[i];
    }

    /* Unless we are in FIQ mode, r8-r12 come from the user registers x8-x12.
     * Otherwise, we copy x8-x12 into the banked user regs.
     */
    if (mode == ARM_CPU_MODE_FIQ) {
        for (i = 8; i < 13; i++) {
            env->usr_regs[i - 8] = env->xregs[i];
        }
    } else {
        for (i = 8; i < 13; i++) {
            env->regs[i] = env->xregs[i];
        }
    }

    /* Registers r13 & r14 depend on the current mode.
     * If we are in a given mode, we copy the corresponding x registers to r13
     * and r14.  Otherwise, we copy the x register to the banked r13 and r14
     * for the mode.
     */
    if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) {
        env->regs[13] = env->xregs[13];
        env->regs[14] = env->xregs[14];
    } else {
        env->banked_r13[bank_number(ARM_CPU_MODE_USR)] = env->xregs[13];

        /* HYP is an exception in that it does not have its own banked r14 but
         * shares the USR r14
         */
        if (mode == ARM_CPU_MODE_HYP) {
            env->regs[14] = env->xregs[14];
        } else {
            env->banked_r14[bank_number(ARM_CPU_MODE_USR)] = env->xregs[14];
        }
    }

    if (mode == ARM_CPU_MODE_HYP) {
        env->regs[13] = env->xregs[15];
    } else {
        env->banked_r13[bank_number(ARM_CPU_MODE_HYP)] = env->xregs[15];
    }

    if (mode == ARM_CPU_MODE_IRQ) {
        env->regs[13] = env->xregs[16];
        env->regs[14] = env->xregs[17];
    } else {
        env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[16];
        env->banked_r14[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[17];
    }

    if (mode == ARM_CPU_MODE_SVC) {
        env->regs[13] = env->xregs[18];
        env->regs[14] = env->xregs[19];
    } else {
        env->banked_r13[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[18];
        env->banked_r14[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[19];
    }

    if (mode == ARM_CPU_MODE_ABT) {
        env->regs[13] = env->xregs[20];
        env->regs[14] = env->xregs[21];
    } else {
        env->banked_r13[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[20];
        env->banked_r14[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[21];
    }

    if (mode == ARM_CPU_MODE_UND) {
        env->regs[13] = env->xregs[22];
        env->regs[14] = env->xregs[23];
    } else {
        env->banked_r13[bank_number(ARM_CPU_MODE_UND)] = env->xregs[22];
        env->banked_r14[bank_number(ARM_CPU_MODE_UND)] = env->xregs[23];
    }

    /* Registers x24-x30 are mapped to r8-r14 in FIQ mode.  If we are in FIQ
     * mode, then we can copy to r8-r14.  Otherwise, we copy to the
     * FIQ bank for r8-r14.
     */
    if (mode == ARM_CPU_MODE_FIQ) {
        for (i = 24; i < 31; i++) {
            env->regs[i - 16] = env->xregs[i];   /* X[24:30] -> R[8:14] */
        }
    } else {
        for (i = 24; i < 29; i++) {
            env->fiq_regs[i - 24] = env->xregs[i];
        }
        env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[29];
        env->banked_r14[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[30];
    }

    env->regs[15] = env->pc;
}

B
bellard 已提交
5141
/* Handle a CPU exception.  */
5142
void arm_cpu_do_interrupt(CPUState *cs)
B
bellard 已提交
5143
{
5144 5145
    ARMCPU *cpu = ARM_CPU(cs);
    CPUARMState *env = &cpu->env;
B
bellard 已提交
5146 5147 5148 5149
    uint32_t addr;
    uint32_t mask;
    int new_mode;
    uint32_t offset;
5150
    uint32_t moe;
B
bellard 已提交
5151

5152 5153
    assert(!IS_M(env));

5154
    arm_log_exception(cs->exception_index);
5155

5156 5157 5158 5159 5160 5161
    if (arm_is_psci_call(cpu, cs->exception_index)) {
        arm_handle_psci_call(cpu);
        qemu_log_mask(CPU_LOG_INT, "...handled as PSCI call\n");
        return;
    }

5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186
    /* If this is a debug exception we must update the DBGDSCR.MOE bits */
    switch (env->exception.syndrome >> ARM_EL_EC_SHIFT) {
    case EC_BREAKPOINT:
    case EC_BREAKPOINT_SAME_EL:
        moe = 1;
        break;
    case EC_WATCHPOINT:
    case EC_WATCHPOINT_SAME_EL:
        moe = 10;
        break;
    case EC_AA32_BKPT:
        moe = 3;
        break;
    case EC_VECTORCATCH:
        moe = 5;
        break;
    default:
        moe = 0;
        break;
    }

    if (moe) {
        env->cp15.mdscr_el1 = deposit64(env->cp15.mdscr_el1, 2, 4, moe);
    }

B
bellard 已提交
5187
    /* TODO: Vectored interrupt controller.  */
5188
    switch (cs->exception_index) {
B
bellard 已提交
5189 5190 5191 5192 5193 5194 5195 5196 5197 5198
    case EXCP_UDEF:
        new_mode = ARM_CPU_MODE_UND;
        addr = 0x04;
        mask = CPSR_I;
        if (env->thumb)
            offset = 2;
        else
            offset = 4;
        break;
    case EXCP_SWI:
5199
        if (semihosting_enabled()) {
5200 5201
            /* Check for semihosting interrupt.  */
            if (env->thumb) {
5202 5203
                mask = arm_lduw_code(env, env->regs[15] - 2, env->bswap_code)
                    & 0xff;
5204
            } else {
5205
                mask = arm_ldl_code(env, env->regs[15] - 4, env->bswap_code)
P
Paul Brook 已提交
5206
                    & 0xffffff;
5207 5208 5209 5210 5211 5212 5213
            }
            /* Only intercept calls from privileged modes, to provide some
               semblance of security.  */
            if (((mask == 0x123456 && !env->thumb)
                    || (mask == 0xab && env->thumb))
                  && (env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR) {
                env->regs[0] = do_arm_semihosting(env);
5214
                qemu_log_mask(CPU_LOG_INT, "...handled as semihosting call\n");
5215 5216 5217
                return;
            }
        }
B
bellard 已提交
5218 5219 5220
        new_mode = ARM_CPU_MODE_SVC;
        addr = 0x08;
        mask = CPSR_I;
5221
        /* The PC already points to the next instruction.  */
B
bellard 已提交
5222 5223
        offset = 0;
        break;
P
pbrook 已提交
5224
    case EXCP_BKPT:
P
pbrook 已提交
5225
        /* See if this is a semihosting syscall.  */
5226
        if (env->thumb && semihosting_enabled()) {
5227
            mask = arm_lduw_code(env, env->regs[15], env->bswap_code) & 0xff;
P
pbrook 已提交
5228 5229 5230 5231
            if (mask == 0xab
                  && (env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR) {
                env->regs[15] += 2;
                env->regs[0] = do_arm_semihosting(env);
5232
                qemu_log_mask(CPU_LOG_INT, "...handled as semihosting call\n");
P
pbrook 已提交
5233 5234 5235
                return;
            }
        }
5236
        env->exception.fsr = 2;
P
pbrook 已提交
5237 5238
        /* Fall through to prefetch abort.  */
    case EXCP_PREFETCH_ABORT:
F
Fabian Aggeler 已提交
5239
        A32_BANKED_CURRENT_REG_SET(env, ifsr, env->exception.fsr);
F
Fabian Aggeler 已提交
5240
        A32_BANKED_CURRENT_REG_SET(env, ifar, env->exception.vaddress);
5241
        qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x IFAR 0x%x\n",
F
Fabian Aggeler 已提交
5242
                      env->exception.fsr, (uint32_t)env->exception.vaddress);
B
bellard 已提交
5243 5244 5245 5246 5247 5248
        new_mode = ARM_CPU_MODE_ABT;
        addr = 0x0c;
        mask = CPSR_A | CPSR_I;
        offset = 4;
        break;
    case EXCP_DATA_ABORT:
F
Fabian Aggeler 已提交
5249
        A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr);
F
Fabian Aggeler 已提交
5250
        A32_BANKED_CURRENT_REG_SET(env, dfar, env->exception.vaddress);
5251
        qemu_log_mask(CPU_LOG_INT, "...with DFSR 0x%x DFAR 0x%x\n",
F
Fabian Aggeler 已提交
5252
                      env->exception.fsr,
5253
                      (uint32_t)env->exception.vaddress);
B
bellard 已提交
5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264
        new_mode = ARM_CPU_MODE_ABT;
        addr = 0x10;
        mask = CPSR_A | CPSR_I;
        offset = 8;
        break;
    case EXCP_IRQ:
        new_mode = ARM_CPU_MODE_IRQ;
        addr = 0x18;
        /* Disable IRQ and imprecise data aborts.  */
        mask = CPSR_A | CPSR_I;
        offset = 4;
5265 5266 5267 5268 5269
        if (env->cp15.scr_el3 & SCR_IRQ) {
            /* IRQ routed to monitor mode */
            new_mode = ARM_CPU_MODE_MON;
            mask |= CPSR_F;
        }
B
bellard 已提交
5270 5271 5272 5273 5274 5275
        break;
    case EXCP_FIQ:
        new_mode = ARM_CPU_MODE_FIQ;
        addr = 0x1c;
        /* Disable FIQ, IRQ and imprecise data aborts.  */
        mask = CPSR_A | CPSR_I | CPSR_F;
5276 5277 5278 5279
        if (env->cp15.scr_el3 & SCR_FIQ) {
            /* FIQ routed to monitor mode */
            new_mode = ARM_CPU_MODE_MON;
        }
B
bellard 已提交
5280 5281
        offset = 4;
        break;
5282 5283 5284 5285 5286 5287
    case EXCP_SMC:
        new_mode = ARM_CPU_MODE_MON;
        addr = 0x08;
        mask = CPSR_A | CPSR_I | CPSR_F;
        offset = 0;
        break;
B
bellard 已提交
5288
    default:
5289
        cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
B
bellard 已提交
5290 5291
        return; /* Never happens.  Keep compiler happy.  */
    }
F
Fabian Aggeler 已提交
5292 5293 5294

    if (new_mode == ARM_CPU_MODE_MON) {
        addr += env->cp15.mvbar;
5295
    } else if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) {
F
Fabian Aggeler 已提交
5296
        /* High vectors. When enabled, base address cannot be remapped. */
B
bellard 已提交
5297
        addr += 0xffff0000;
N
Nathan Rossi 已提交
5298 5299 5300
    } else {
        /* ARM v7 architectures provide a vector base address register to remap
         * the interrupt vector table.
F
Fabian Aggeler 已提交
5301
         * This register is only followed in non-monitor mode, and is banked.
N
Nathan Rossi 已提交
5302 5303
         * Note: only bits 31:5 are valid.
         */
G
Greg Bellows 已提交
5304
        addr += A32_BANKED_CURRENT_REG_GET(env, vbar);
B
bellard 已提交
5305
    }
5306 5307 5308 5309 5310

    if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
        env->cp15.scr_el3 &= ~SCR_NS;
    }

B
bellard 已提交
5311
    switch_mode (env, new_mode);
5312 5313 5314 5315
    /* For exceptions taken to AArch32 we must clear the SS bit in both
     * PSTATE and in the old-state value we save to SPSR_<mode>, so zero it now.
     */
    env->uncached_cpsr &= ~PSTATE_SS;
B
bellard 已提交
5316
    env->spsr = cpsr_read(env);
P
pbrook 已提交
5317 5318
    /* Clear IT bits.  */
    env->condexec_bits = 0;
5319
    /* Switch to the new mode, and to the correct instruction set.  */
5320
    env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode;
5321
    env->daif |= mask;
5322 5323 5324
    /* this is a lie, as the was no c1_sys on V4T/V5, but who cares
     * and we should just guard the thumb mode on V4 */
    if (arm_feature(env, ARM_FEATURE_V4T)) {
5325
        env->thumb = (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_TE) != 0;
5326
    }
B
bellard 已提交
5327 5328
    env->regs[14] = env->regs[15] + offset;
    env->regs[15] = addr;
5329
    cs->interrupt_request |= CPU_INTERRUPT_EXITTB;
B
bellard 已提交
5330 5331
}

5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352

/* Return the exception level which controls this address translation regime */
static inline uint32_t regime_el(CPUARMState *env, ARMMMUIdx mmu_idx)
{
    switch (mmu_idx) {
    case ARMMMUIdx_S2NS:
    case ARMMMUIdx_S1E2:
        return 2;
    case ARMMMUIdx_S1E3:
        return 3;
    case ARMMMUIdx_S1SE0:
        return arm_el_is_aa64(env, 3) ? 1 : 3;
    case ARMMMUIdx_S1SE1:
    case ARMMMUIdx_S1NSE0:
    case ARMMMUIdx_S1NSE1:
        return 1;
    default:
        g_assert_not_reached();
    }
}

5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372
/* Return true if this address translation regime is secure */
static inline bool regime_is_secure(CPUARMState *env, ARMMMUIdx mmu_idx)
{
    switch (mmu_idx) {
    case ARMMMUIdx_S12NSE0:
    case ARMMMUIdx_S12NSE1:
    case ARMMMUIdx_S1NSE0:
    case ARMMMUIdx_S1NSE1:
    case ARMMMUIdx_S1E2:
    case ARMMMUIdx_S2NS:
        return false;
    case ARMMMUIdx_S1E3:
    case ARMMMUIdx_S1SE0:
    case ARMMMUIdx_S1SE1:
        return true;
    default:
        g_assert_not_reached();
    }
}

5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398
/* Return the SCTLR value which controls this address translation regime */
static inline uint32_t regime_sctlr(CPUARMState *env, ARMMMUIdx mmu_idx)
{
    return env->cp15.sctlr_el[regime_el(env, mmu_idx)];
}

/* Return true if the specified stage of address translation is disabled */
static inline bool regime_translation_disabled(CPUARMState *env,
                                               ARMMMUIdx mmu_idx)
{
    if (mmu_idx == ARMMMUIdx_S2NS) {
        return (env->cp15.hcr_el2 & HCR_VM) == 0;
    }
    return (regime_sctlr(env, mmu_idx) & SCTLR_M) == 0;
}

/* Return the TCR controlling this translation regime */
static inline TCR *regime_tcr(CPUARMState *env, ARMMMUIdx mmu_idx)
{
    if (mmu_idx == ARMMMUIdx_S2NS) {
        /* TODO: return VTCR_EL2 */
        g_assert_not_reached();
    }
    return &env->cp15.tcr_el[regime_el(env, mmu_idx)];
}

5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413
/* Return the TTBR associated with this translation regime */
static inline uint64_t regime_ttbr(CPUARMState *env, ARMMMUIdx mmu_idx,
                                   int ttbrn)
{
    if (mmu_idx == ARMMMUIdx_S2NS) {
        /* TODO: return VTTBR_EL2 */
        g_assert_not_reached();
    }
    if (ttbrn == 0) {
        return env->cp15.ttbr0_el[regime_el(env, mmu_idx)];
    } else {
        return env->cp15.ttbr1_el[regime_el(env, mmu_idx)];
    }
}

5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442
/* Return true if the translation regime is using LPAE format page tables */
static inline bool regime_using_lpae_format(CPUARMState *env,
                                            ARMMMUIdx mmu_idx)
{
    int el = regime_el(env, mmu_idx);
    if (el == 2 || arm_el_is_aa64(env, el)) {
        return true;
    }
    if (arm_feature(env, ARM_FEATURE_LPAE)
        && (regime_tcr(env, mmu_idx)->raw_tcr & TTBCR_EAE)) {
        return true;
    }
    return false;
}

static inline bool regime_is_user(CPUARMState *env, ARMMMUIdx mmu_idx)
{
    switch (mmu_idx) {
    case ARMMMUIdx_S1SE0:
    case ARMMMUIdx_S1NSE0:
        return true;
    default:
        return false;
    case ARMMMUIdx_S12NSE0:
    case ARMMMUIdx_S12NSE1:
        g_assert_not_reached();
    }
}

5443 5444
/* Translate section/page access permissions to page
 * R/W protection flags
5445 5446 5447 5448 5449
 *
 * @env:         CPUARMState
 * @mmu_idx:     MMU index indicating required translation regime
 * @ap:          The 3-bit access permissions (AP[2:0])
 * @domain_prot: The 2-bit domain access permissions
5450 5451 5452 5453
 */
static inline int ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx,
                                int ap, int domain_prot)
{
5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475
    bool is_user = regime_is_user(env, mmu_idx);

    if (domain_prot == 3) {
        return PAGE_READ | PAGE_WRITE;
    }

    switch (ap) {
    case 0:
        if (arm_feature(env, ARM_FEATURE_V7)) {
            return 0;
        }
        switch (regime_sctlr(env, mmu_idx) & (SCTLR_S | SCTLR_R)) {
        case SCTLR_S:
            return is_user ? 0 : PAGE_READ;
        case SCTLR_R:
            return PAGE_READ;
        default:
            return 0;
        }
    case 1:
        return is_user ? 0 : PAGE_READ | PAGE_WRITE;
    case 2:
5476
        if (is_user) {
5477
            return PAGE_READ;
5478
        } else {
5479
            return PAGE_READ | PAGE_WRITE;
5480
        }
5481 5482 5483 5484 5485
    case 3:
        return PAGE_READ | PAGE_WRITE;
    case 4: /* Reserved.  */
        return 0;
    case 5:
5486
        return is_user ? 0 : PAGE_READ;
5487
    case 6:
5488
        return PAGE_READ;
5489
    case 7:
5490
        if (!arm_feature(env, ARM_FEATURE_V6K)) {
5491
            return 0;
5492
        }
5493
        return PAGE_READ;
5494
    default:
5495
        g_assert_not_reached();
5496
    }
B
bellard 已提交
5497 5498
}

5499 5500 5501 5502
/* Translate section/page access permissions to page
 * R/W protection flags.
 *
 * @ap:      The 2-bit simple AP (AP[2:1])
5503
 * @is_user: TRUE if accessing from PL0
5504
 */
5505
static inline int simple_ap_to_rw_prot_is_user(int ap, bool is_user)
5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520
{
    switch (ap) {
    case 0:
        return is_user ? 0 : PAGE_READ | PAGE_WRITE;
    case 1:
        return PAGE_READ | PAGE_WRITE;
    case 2:
        return is_user ? 0 : PAGE_READ;
    case 3:
        return PAGE_READ;
    default:
        g_assert_not_reached();
    }
}

5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607
static inline int
simple_ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, int ap)
{
    return simple_ap_to_rw_prot_is_user(ap, regime_is_user(env, mmu_idx));
}

/* Translate section/page access permissions to protection flags
 *
 * @env:     CPUARMState
 * @mmu_idx: MMU index indicating required translation regime
 * @is_aa64: TRUE if AArch64
 * @ap:      The 2-bit simple AP (AP[2:1])
 * @ns:      NS (non-secure) bit
 * @xn:      XN (execute-never) bit
 * @pxn:     PXN (privileged execute-never) bit
 */
static int get_S1prot(CPUARMState *env, ARMMMUIdx mmu_idx, bool is_aa64,
                      int ap, int ns, int xn, int pxn)
{
    bool is_user = regime_is_user(env, mmu_idx);
    int prot_rw, user_rw;
    bool have_wxn;
    int wxn = 0;

    assert(mmu_idx != ARMMMUIdx_S2NS);

    user_rw = simple_ap_to_rw_prot_is_user(ap, true);
    if (is_user) {
        prot_rw = user_rw;
    } else {
        prot_rw = simple_ap_to_rw_prot_is_user(ap, false);
    }

    if (ns && arm_is_secure(env) && (env->cp15.scr_el3 & SCR_SIF)) {
        return prot_rw;
    }

    /* TODO have_wxn should be replaced with
     *   ARM_FEATURE_V8 || (ARM_FEATURE_V7 && ARM_FEATURE_EL2)
     * when ARM_FEATURE_EL2 starts getting set. For now we assume all LPAE
     * compatible processors have EL2, which is required for [U]WXN.
     */
    have_wxn = arm_feature(env, ARM_FEATURE_LPAE);

    if (have_wxn) {
        wxn = regime_sctlr(env, mmu_idx) & SCTLR_WXN;
    }

    if (is_aa64) {
        switch (regime_el(env, mmu_idx)) {
        case 1:
            if (!is_user) {
                xn = pxn || (user_rw & PAGE_WRITE);
            }
            break;
        case 2:
        case 3:
            break;
        }
    } else if (arm_feature(env, ARM_FEATURE_V7)) {
        switch (regime_el(env, mmu_idx)) {
        case 1:
        case 3:
            if (is_user) {
                xn = xn || !(user_rw & PAGE_READ);
            } else {
                int uwxn = 0;
                if (have_wxn) {
                    uwxn = regime_sctlr(env, mmu_idx) & SCTLR_UWXN;
                }
                xn = xn || !(prot_rw & PAGE_READ) || pxn ||
                     (uwxn && (user_rw & PAGE_WRITE));
            }
            break;
        case 2:
            break;
        }
    } else {
        xn = wxn = 0;
    }

    if (xn || (wxn && (prot_rw & PAGE_WRITE))) {
        return prot_rw;
    }
    return prot_rw | PAGE_EXEC;
}

5608 5609
static bool get_level1_table_address(CPUARMState *env, ARMMMUIdx mmu_idx,
                                     uint32_t *table, uint32_t address)
5610
{
5611 5612
    /* Note that we can only get here for an AArch32 PL0/PL1 lookup */
    TCR *tcr = regime_tcr(env, mmu_idx);
F
Fabian Aggeler 已提交
5613 5614 5615

    if (address & tcr->mask) {
        if (tcr->raw_tcr & TTBCR_PD1) {
5616 5617 5618
            /* Translation table walk disabled for TTBR1 */
            return false;
        }
5619
        *table = regime_ttbr(env, mmu_idx, 1) & 0xffffc000;
5620
    } else {
F
Fabian Aggeler 已提交
5621
        if (tcr->raw_tcr & TTBCR_PD0) {
5622 5623 5624
            /* Translation table walk disabled for TTBR0 */
            return false;
        }
5625
        *table = regime_ttbr(env, mmu_idx, 0) & tcr->base_mask;
5626 5627 5628
    }
    *table |= (address >> 18) & 0x3ffc;
    return true;
5629 5630
}

5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653
/* All loads done in the course of a page table walk go through here.
 * TODO: rather than ignoring errors from physical memory reads (which
 * are external aborts in ARM terminology) we should propagate this
 * error out so that we can turn it into a Data Abort if this walk
 * was being done for a CPU load/store or an address translation instruction
 * (but not if it was for a debug access).
 */
static uint32_t arm_ldl_ptw(CPUState *cs, hwaddr addr, bool is_secure)
{
    MemTxAttrs attrs = {};

    attrs.secure = is_secure;
    return address_space_ldl(cs->as, addr, attrs, NULL);
}

static uint64_t arm_ldq_ptw(CPUState *cs, hwaddr addr, bool is_secure)
{
    MemTxAttrs attrs = {};

    attrs.secure = is_secure;
    return address_space_ldq(cs->as, addr, attrs, NULL);
}

5654 5655 5656 5657
static bool get_phys_addr_v5(CPUARMState *env, uint32_t address,
                             int access_type, ARMMMUIdx mmu_idx,
                             hwaddr *phys_ptr, int *prot,
                             target_ulong *page_size, uint32_t *fsr)
B
bellard 已提交
5658
{
5659
    CPUState *cs = CPU(arm_env_get_cpu(env));
B
bellard 已提交
5660 5661 5662 5663 5664
    int code;
    uint32_t table;
    uint32_t desc;
    int type;
    int ap;
5665
    int domain = 0;
5666
    int domain_prot;
A
Avi Kivity 已提交
5667
    hwaddr phys_addr;
5668
    uint32_t dacr;
B
bellard 已提交
5669

P
pbrook 已提交
5670 5671
    /* Pagetable walk.  */
    /* Lookup l1 descriptor.  */
5672
    if (!get_level1_table_address(env, mmu_idx, &table, address)) {
5673 5674 5675 5676
        /* Section translation fault if page walk is disabled by PD0 or PD1 */
        code = 5;
        goto do_fault;
    }
5677
    desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx));
P
pbrook 已提交
5678
    type = (desc & 3);
5679
    domain = (desc >> 5) & 0x0f;
5680 5681 5682 5683 5684 5685
    if (regime_el(env, mmu_idx) == 1) {
        dacr = env->cp15.dacr_ns;
    } else {
        dacr = env->cp15.dacr_s;
    }
    domain_prot = (dacr >> (domain * 2)) & 3;
P
pbrook 已提交
5686
    if (type == 0) {
5687
        /* Section translation fault.  */
P
pbrook 已提交
5688 5689 5690
        code = 5;
        goto do_fault;
    }
5691
    if (domain_prot == 0 || domain_prot == 2) {
P
pbrook 已提交
5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702
        if (type == 2)
            code = 9; /* Section domain fault.  */
        else
            code = 11; /* Page domain fault.  */
        goto do_fault;
    }
    if (type == 2) {
        /* 1Mb section.  */
        phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
        ap = (desc >> 10) & 3;
        code = 13;
P
Paul Brook 已提交
5703
        *page_size = 1024 * 1024;
P
pbrook 已提交
5704 5705
    } else {
        /* Lookup l2 entry.  */
5706 5707 5708 5709 5710 5711 5712
        if (type == 1) {
            /* Coarse pagetable.  */
            table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
        } else {
            /* Fine pagetable.  */
            table = (desc & 0xfffff000) | ((address >> 8) & 0xffc);
        }
5713
        desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx));
P
pbrook 已提交
5714 5715 5716 5717 5718 5719 5720
        switch (desc & 3) {
        case 0: /* Page translation fault.  */
            code = 7;
            goto do_fault;
        case 1: /* 64k page.  */
            phys_addr = (desc & 0xffff0000) | (address & 0xffff);
            ap = (desc >> (4 + ((address >> 13) & 6))) & 3;
P
Paul Brook 已提交
5721
            *page_size = 0x10000;
P
pbrook 已提交
5722
            break;
P
pbrook 已提交
5723 5724
        case 2: /* 4k page.  */
            phys_addr = (desc & 0xfffff000) | (address & 0xfff);
5725
            ap = (desc >> (4 + ((address >> 9) & 6))) & 3;
P
Paul Brook 已提交
5726
            *page_size = 0x1000;
P
pbrook 已提交
5727
            break;
5728
        case 3: /* 1k page, or ARMv6/XScale "extended small (4k) page" */
5729
            if (type == 1) {
5730 5731 5732
                /* ARMv6/XScale extended small page format */
                if (arm_feature(env, ARM_FEATURE_XSCALE)
                    || arm_feature(env, ARM_FEATURE_V6)) {
5733
                    phys_addr = (desc & 0xfffff000) | (address & 0xfff);
5734
                    *page_size = 0x1000;
5735
                } else {
5736 5737 5738
                    /* UNPREDICTABLE in ARMv5; we choose to take a
                     * page translation fault.
                     */
5739 5740 5741 5742 5743
                    code = 7;
                    goto do_fault;
                }
            } else {
                phys_addr = (desc & 0xfffffc00) | (address & 0x3ff);
5744
                *page_size = 0x400;
5745
            }
P
pbrook 已提交
5746
            ap = (desc >> 4) & 3;
P
pbrook 已提交
5747 5748
            break;
        default:
P
pbrook 已提交
5749 5750
            /* Never happens, but compiler isn't smart enough to tell.  */
            abort();
P
pbrook 已提交
5751
        }
P
pbrook 已提交
5752 5753
        code = 15;
    }
5754 5755 5756
    *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot);
    *prot |= *prot ? PAGE_EXEC : 0;
    if (!(*prot & (1 << access_type))) {
P
pbrook 已提交
5757 5758 5759 5760
        /* Access permission fault.  */
        goto do_fault;
    }
    *phys_ptr = phys_addr;
5761
    return false;
P
pbrook 已提交
5762
do_fault:
5763 5764
    *fsr = code | (domain << 4);
    return true;
P
pbrook 已提交
5765 5766
}

5767 5768 5769 5770
static bool get_phys_addr_v6(CPUARMState *env, uint32_t address,
                             int access_type, ARMMMUIdx mmu_idx,
                             hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
                             target_ulong *page_size, uint32_t *fsr)
P
pbrook 已提交
5771
{
5772
    CPUState *cs = CPU(arm_env_get_cpu(env));
P
pbrook 已提交
5773 5774 5775 5776
    int code;
    uint32_t table;
    uint32_t desc;
    uint32_t xn;
5777
    uint32_t pxn = 0;
P
pbrook 已提交
5778 5779
    int type;
    int ap;
5780
    int domain = 0;
5781
    int domain_prot;
A
Avi Kivity 已提交
5782
    hwaddr phys_addr;
5783
    uint32_t dacr;
5784
    bool ns;
P
pbrook 已提交
5785 5786 5787

    /* Pagetable walk.  */
    /* Lookup l1 descriptor.  */
5788
    if (!get_level1_table_address(env, mmu_idx, &table, address)) {
5789 5790 5791 5792
        /* Section translation fault if page walk is disabled by PD0 or PD1 */
        code = 5;
        goto do_fault;
    }
5793
    desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx));
P
pbrook 已提交
5794
    type = (desc & 3);
5795 5796 5797 5798
    if (type == 0 || (type == 3 && !arm_feature(env, ARM_FEATURE_PXN))) {
        /* Section translation fault, or attempt to use the encoding
         * which is Reserved on implementations without PXN.
         */
P
pbrook 已提交
5799 5800
        code = 5;
        goto do_fault;
5801 5802 5803
    }
    if ((type == 1) || !(desc & (1 << 18))) {
        /* Page or Section.  */
5804
        domain = (desc >> 5) & 0x0f;
P
pbrook 已提交
5805
    }
5806 5807 5808 5809 5810 5811
    if (regime_el(env, mmu_idx) == 1) {
        dacr = env->cp15.dacr_ns;
    } else {
        dacr = env->cp15.dacr_s;
    }
    domain_prot = (dacr >> (domain * 2)) & 3;
5812
    if (domain_prot == 0 || domain_prot == 2) {
5813
        if (type != 1) {
P
pbrook 已提交
5814
            code = 9; /* Section domain fault.  */
5815
        } else {
P
pbrook 已提交
5816
            code = 11; /* Page domain fault.  */
5817
        }
P
pbrook 已提交
5818 5819
        goto do_fault;
    }
5820
    if (type != 1) {
P
pbrook 已提交
5821 5822 5823
        if (desc & (1 << 18)) {
            /* Supersection.  */
            phys_addr = (desc & 0xff000000) | (address & 0x00ffffff);
5824 5825
            phys_addr |= (uint64_t)extract32(desc, 20, 4) << 32;
            phys_addr |= (uint64_t)extract32(desc, 5, 4) << 36;
P
Paul Brook 已提交
5826
            *page_size = 0x1000000;
B
bellard 已提交
5827
        } else {
P
pbrook 已提交
5828 5829
            /* Section.  */
            phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
P
Paul Brook 已提交
5830
            *page_size = 0x100000;
B
bellard 已提交
5831
        }
P
pbrook 已提交
5832 5833
        ap = ((desc >> 10) & 3) | ((desc >> 13) & 4);
        xn = desc & (1 << 4);
5834
        pxn = desc & 1;
P
pbrook 已提交
5835
        code = 13;
5836
        ns = extract32(desc, 19, 1);
P
pbrook 已提交
5837
    } else {
5838 5839 5840
        if (arm_feature(env, ARM_FEATURE_PXN)) {
            pxn = (desc >> 2) & 1;
        }
5841
        ns = extract32(desc, 3, 1);
P
pbrook 已提交
5842 5843
        /* Lookup l2 entry.  */
        table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
5844
        desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx));
P
pbrook 已提交
5845 5846 5847 5848
        ap = ((desc >> 4) & 3) | ((desc >> 7) & 4);
        switch (desc & 3) {
        case 0: /* Page translation fault.  */
            code = 7;
B
bellard 已提交
5849
            goto do_fault;
P
pbrook 已提交
5850 5851 5852
        case 1: /* 64k page.  */
            phys_addr = (desc & 0xffff0000) | (address & 0xffff);
            xn = desc & (1 << 15);
P
Paul Brook 已提交
5853
            *page_size = 0x10000;
P
pbrook 已提交
5854 5855 5856 5857
            break;
        case 2: case 3: /* 4k page.  */
            phys_addr = (desc & 0xfffff000) | (address & 0xfff);
            xn = desc & 1;
P
Paul Brook 已提交
5858
            *page_size = 0x1000;
P
pbrook 已提交
5859 5860 5861 5862
            break;
        default:
            /* Never happens, but compiler isn't smart enough to tell.  */
            abort();
B
bellard 已提交
5863
        }
P
pbrook 已提交
5864 5865
        code = 15;
    }
5866
    if (domain_prot == 3) {
5867 5868
        *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
    } else {
5869
        if (pxn && !regime_is_user(env, mmu_idx)) {
5870 5871
            xn = 1;
        }
5872 5873
        if (xn && access_type == 2)
            goto do_fault;
P
pbrook 已提交
5874

5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885
        if (arm_feature(env, ARM_FEATURE_V6K) &&
                (regime_sctlr(env, mmu_idx) & SCTLR_AFE)) {
            /* The simplified model uses AP[0] as an access control bit.  */
            if ((ap & 1) == 0) {
                /* Access flag fault.  */
                code = (code == 15) ? 6 : 3;
                goto do_fault;
            }
            *prot = simple_ap_to_rw_prot(env, mmu_idx, ap >> 1);
        } else {
            *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot);
5886
        }
5887 5888 5889 5890
        if (*prot && !xn) {
            *prot |= PAGE_EXEC;
        }
        if (!(*prot & (1 << access_type))) {
5891 5892 5893
            /* Access permission fault.  */
            goto do_fault;
        }
5894
    }
5895 5896 5897 5898 5899 5900 5901
    if (ns) {
        /* The NS bit will (as required by the architecture) have no effect if
         * the CPU doesn't support TZ or this is a non-secure translation
         * regime, because the attribute will already be non-secure.
         */
        attrs->secure = false;
    }
P
pbrook 已提交
5902
    *phys_ptr = phys_addr;
5903
    return false;
B
bellard 已提交
5904
do_fault:
5905 5906
    *fsr = code | (domain << 4);
    return true;
B
bellard 已提交
5907 5908
}

5909 5910 5911 5912 5913 5914 5915 5916 5917
/* Fault type for long-descriptor MMU fault reporting; this corresponds
 * to bits [5..2] in the STATUS field in long-format DFSR/IFSR.
 */
typedef enum {
    translation_fault = 1,
    access_fault = 2,
    permission_fault = 3,
} MMUFaultType;

5918 5919 5920 5921
static bool get_phys_addr_lpae(CPUARMState *env, target_ulong address,
                               int access_type, ARMMMUIdx mmu_idx,
                               hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot,
                               target_ulong *page_size_ptr, uint32_t *fsr)
5922
{
5923
    CPUState *cs = CPU(arm_env_get_cpu(env));
5924 5925 5926 5927
    /* Read an LPAE long-descriptor translation table. */
    MMUFaultType fault_type = translation_fault;
    uint32_t level = 1;
    uint32_t epd;
5928 5929
    int32_t tsz;
    uint32_t tg;
5930 5931
    uint64_t ttbr;
    int ttbr_select;
5932
    hwaddr descaddr, descmask;
5933 5934 5935
    uint32_t tableattrs;
    target_ulong page_size;
    uint32_t attrs;
5936 5937 5938
    int32_t granule_sz = 9;
    int32_t va_size = 32;
    int32_t tbi = 0;
5939
    TCR *tcr = regime_tcr(env, mmu_idx);
5940
    int ap, ns, xn, pxn;
5941 5942
    uint32_t el = regime_el(env, mmu_idx);
    bool ttbr1_valid = true;
5943 5944

    /* TODO:
5945 5946 5947 5948
     * This code does not handle the different format TCR for VTCR_EL2.
     * This code also does not support shareability levels.
     * Attribute and permission bit handling should also be checked when adding
     * support for those page table walks.
5949
     */
5950
    if (arm_el_is_aa64(env, el)) {
5951
        va_size = 64;
5952 5953 5954 5955 5956 5957 5958 5959 5960
        if (el > 1) {
            tbi = extract64(tcr->raw_tcr, 20, 1);
        } else {
            if (extract64(address, 55, 1)) {
                tbi = extract64(tcr->raw_tcr, 38, 1);
            } else {
                tbi = extract64(tcr->raw_tcr, 37, 1);
            }
        }
5961
        tbi *= 8;
5962 5963 5964 5965 5966 5967 5968

        /* If we are in 64-bit EL2 or EL3 then there is no TTBR1, so mark it
         * invalid.
         */
        if (el > 1) {
            ttbr1_valid = false;
        }
5969
    }
5970 5971 5972 5973 5974 5975

    /* Determine whether this address is in the region controlled by
     * TTBR0 or TTBR1 (or if it is in neither region and should fault).
     * This is a Non-secure PL0/1 stage 1 translation, so controlled by
     * TTBCR/TTBR0/TTBR1 in accordance with ARM ARM DDI0406C table B-32:
     */
F
Fabian Aggeler 已提交
5976
    uint32_t t0sz = extract32(tcr->raw_tcr, 0, 6);
5977
    if (va_size == 64) {
5978 5979 5980
        t0sz = MIN(t0sz, 39);
        t0sz = MAX(t0sz, 16);
    }
F
Fabian Aggeler 已提交
5981
    uint32_t t1sz = extract32(tcr->raw_tcr, 16, 6);
5982
    if (va_size == 64) {
5983 5984 5985 5986
        t1sz = MIN(t1sz, 39);
        t1sz = MAX(t1sz, 16);
    }
    if (t0sz && !extract64(address, va_size - t0sz, t0sz - tbi)) {
5987 5988
        /* there is a ttbr0 region and we are in it (high bits all zero) */
        ttbr_select = 0;
5989 5990
    } else if (ttbr1_valid && t1sz &&
               !extract64(~address, va_size - t1sz, t1sz - tbi)) {
5991 5992 5993 5994 5995
        /* there is a ttbr1 region and we are in it (high bits all one) */
        ttbr_select = 1;
    } else if (!t0sz) {
        /* ttbr0 region is "everything not in the ttbr1 region" */
        ttbr_select = 0;
5996
    } else if (!t1sz && ttbr1_valid) {
5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012
        /* ttbr1 region is "everything not in the ttbr0 region" */
        ttbr_select = 1;
    } else {
        /* in the gap between the two regions, this is a Translation fault */
        fault_type = translation_fault;
        goto do_fault;
    }

    /* Note that QEMU ignores shareability and cacheability attributes,
     * so we don't need to do anything with the SH, ORGN, IRGN fields
     * in the TTBCR.  Similarly, TTBCR:A1 selects whether we get the
     * ASID from TTBR0 or TTBR1, but QEMU's TLB doesn't currently
     * implement any ASID-like capability so we can ignore it (instead
     * we will always flush the TLB any time the ASID is changed).
     */
    if (ttbr_select == 0) {
6013
        ttbr = regime_ttbr(env, mmu_idx, 0);
F
Fabian Aggeler 已提交
6014
        epd = extract32(tcr->raw_tcr, 7, 1);
6015
        tsz = t0sz;
6016

F
Fabian Aggeler 已提交
6017
        tg = extract32(tcr->raw_tcr, 14, 2);
6018 6019 6020 6021 6022 6023
        if (tg == 1) { /* 64KB pages */
            granule_sz = 13;
        }
        if (tg == 2) { /* 16KB pages */
            granule_sz = 11;
        }
6024
    } else {
6025 6026 6027
        /* We should only be here if TTBR1 is valid */
        assert(ttbr1_valid);

6028
        ttbr = regime_ttbr(env, mmu_idx, 1);
F
Fabian Aggeler 已提交
6029
        epd = extract32(tcr->raw_tcr, 23, 1);
6030
        tsz = t1sz;
6031

F
Fabian Aggeler 已提交
6032
        tg = extract32(tcr->raw_tcr, 30, 2);
6033 6034 6035 6036 6037 6038
        if (tg == 3)  { /* 64KB pages */
            granule_sz = 13;
        }
        if (tg == 1) { /* 16KB pages */
            granule_sz = 11;
        }
6039 6040
    }

6041 6042 6043 6044
    /* Here we should have set up all the parameters for the translation:
     * va_size, ttbr, epd, tsz, granule_sz, tbi
     */

6045
    if (epd) {
6046 6047 6048
        /* Translation table walk disabled => Translation fault on TLB miss
         * Note: This is always 0 on 64-bit EL2 and EL3.
         */
6049 6050 6051
        goto do_fault;
    }

6052 6053 6054 6055 6056 6057 6058 6059 6060 6061
    /* The starting level depends on the virtual address size (which can be
     * up to 48 bits) and the translation granule size. It indicates the number
     * of strides (granule_sz bits at a time) needed to consume the bits
     * of the input address. In the pseudocode this is:
     *  level = 4 - RoundUp((inputsize - grainsize) / stride)
     * where their 'inputsize' is our 'va_size - tsz', 'grainsize' is
     * our 'granule_sz + 3' and 'stride' is our 'granule_sz'.
     * Applying the usual "rounded up m/n is (m+n-1)/n" and simplifying:
     *     = 4 - (va_size - tsz - granule_sz - 3 + granule_sz - 1) / granule_sz
     *     = 4 - (va_size - tsz - 4) / granule_sz;
6062
     */
6063
    level = 4 - (va_size - tsz - 4) / granule_sz;
6064 6065 6066 6067 6068

    /* Clear the vaddr bits which aren't part of the within-region address,
     * so that we don't have to special case things when calculating the
     * first descriptor address.
     */
6069 6070 6071 6072 6073
    if (tsz) {
        address &= (1ULL << (va_size - tsz)) - 1;
    }

    descmask = (1ULL << (granule_sz + 3)) - 1;
6074 6075

    /* Now we can extract the actual base address from the TTBR */
6076 6077
    descaddr = extract64(ttbr, 0, 48);
    descaddr &= ~((1ULL << (va_size - tsz - (granule_sz * (4 - level)))) - 1);
6078

6079 6080 6081 6082 6083 6084
    /* Secure accesses start with the page table in secure memory and
     * can be downgraded to non-secure at any step. Non-secure accesses
     * remain non-secure. We implement this by just ORing in the NSTable/NS
     * bits at each step.
     */
    tableattrs = regime_is_secure(env, mmu_idx) ? 0 : (1 << 4);
6085 6086
    for (;;) {
        uint64_t descriptor;
6087
        bool nstable;
6088

6089 6090
        descaddr |= (address >> (granule_sz * (4 - level))) & descmask;
        descaddr &= ~7ULL;
6091 6092
        nstable = extract32(tableattrs, 4, 1);
        descriptor = arm_ldq_ptw(cs, descaddr, !nstable);
6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113
        if (!(descriptor & 1) ||
            (!(descriptor & 2) && (level == 3))) {
            /* Invalid, or the Reserved level 3 encoding */
            goto do_fault;
        }
        descaddr = descriptor & 0xfffffff000ULL;

        if ((descriptor & 2) && (level < 3)) {
            /* Table entry. The top five bits are attributes which  may
             * propagate down through lower levels of the table (and
             * which are all arranged so that 0 means "no effect", so
             * we can gather them up by ORing in the bits at each level).
             */
            tableattrs |= extract64(descriptor, 59, 5);
            level++;
            continue;
        }
        /* Block entry at level 1 or 2, or page entry at level 3.
         * These are basically the same thing, although the number
         * of bits we pull in from the vaddr varies.
         */
6114
        page_size = (1ULL << ((granule_sz * (4 - level)) + 3));
6115 6116
        descaddr |= (address & (page_size - 1));
        /* Extract attributes from the descriptor and merge with table attrs */
6117 6118
        attrs = extract64(descriptor, 2, 10)
            | (extract64(descriptor, 52, 12) << 10);
6119 6120 6121 6122 6123 6124 6125 6126
        attrs |= extract32(tableattrs, 0, 2) << 11; /* XN, PXN */
        attrs |= extract32(tableattrs, 3, 1) << 5; /* APTable[1] => AP[2] */
        /* The sense of AP[1] vs APTable[0] is reversed, as APTable[0] == 1
         * means "force PL1 access only", which means forcing AP[1] to 0.
         */
        if (extract32(tableattrs, 2, 1)) {
            attrs &= ~(1 << 4);
        }
6127
        attrs |= nstable << 3; /* NS */
6128 6129 6130 6131 6132 6133 6134 6135 6136 6137
        break;
    }
    /* Here descaddr is the final physical address, and attributes
     * are all in attrs.
     */
    fault_type = access_fault;
    if ((attrs & (1 << 8)) == 0) {
        /* Access flag */
        goto do_fault;
    }
6138 6139 6140 6141 6142 6143 6144 6145

    ap = extract32(attrs, 4, 2);
    ns = extract32(attrs, 3, 1);
    xn = extract32(attrs, 12, 1);
    pxn = extract32(attrs, 11, 1);

    *prot = get_S1prot(env, mmu_idx, va_size == 64, ap, ns, xn, pxn);

6146
    fault_type = permission_fault;
6147
    if (!(*prot & (1 << access_type))) {
6148 6149 6150
        goto do_fault;
    }

6151 6152 6153 6154 6155 6156 6157
    if (ns) {
        /* The NS bit will (as required by the architecture) have no effect if
         * the CPU doesn't support TZ or this is a non-secure translation
         * regime, because the attribute will already be non-secure.
         */
        txattrs->secure = false;
    }
6158 6159
    *phys_ptr = descaddr;
    *page_size_ptr = page_size;
6160
    return false;
6161 6162 6163

do_fault:
    /* Long-descriptor format IFSR/DFSR value */
6164 6165
    *fsr = (1 << 9) | (fault_type << 2) | level;
    return true;
6166 6167
}

6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328
static inline void get_phys_addr_pmsav7_default(CPUARMState *env,
                                                ARMMMUIdx mmu_idx,
                                                int32_t address, int *prot)
{
    *prot = PAGE_READ | PAGE_WRITE;
    switch (address) {
    case 0xF0000000 ... 0xFFFFFFFF:
        if (regime_sctlr(env, mmu_idx) & SCTLR_V) { /* hivecs execing is ok */
            *prot |= PAGE_EXEC;
        }
        break;
    case 0x00000000 ... 0x7FFFFFFF:
        *prot |= PAGE_EXEC;
        break;
    }

}

static bool get_phys_addr_pmsav7(CPUARMState *env, uint32_t address,
                                 int access_type, ARMMMUIdx mmu_idx,
                                 hwaddr *phys_ptr, int *prot, uint32_t *fsr)
{
    ARMCPU *cpu = arm_env_get_cpu(env);
    int n;
    bool is_user = regime_is_user(env, mmu_idx);

    *phys_ptr = address;
    *prot = 0;

    if (regime_translation_disabled(env, mmu_idx)) { /* MPU disabled */
        get_phys_addr_pmsav7_default(env, mmu_idx, address, prot);
    } else { /* MPU enabled */
        for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) {
            /* region search */
            uint32_t base = env->pmsav7.drbar[n];
            uint32_t rsize = extract32(env->pmsav7.drsr[n], 1, 5);
            uint32_t rmask;
            bool srdis = false;

            if (!(env->pmsav7.drsr[n] & 0x1)) {
                continue;
            }

            if (!rsize) {
                qemu_log_mask(LOG_GUEST_ERROR, "DRSR.Rsize field can not be 0");
                continue;
            }
            rsize++;
            rmask = (1ull << rsize) - 1;

            if (base & rmask) {
                qemu_log_mask(LOG_GUEST_ERROR, "DRBAR %" PRIx32 " misaligned "
                              "to DRSR region size, mask = %" PRIx32,
                              base, rmask);
                continue;
            }

            if (address < base || address > base + rmask) {
                continue;
            }

            /* Region matched */

            if (rsize >= 8) { /* no subregions for regions < 256 bytes */
                int i, snd;
                uint32_t srdis_mask;

                rsize -= 3; /* sub region size (power of 2) */
                snd = ((address - base) >> rsize) & 0x7;
                srdis = extract32(env->pmsav7.drsr[n], snd + 8, 1);

                srdis_mask = srdis ? 0x3 : 0x0;
                for (i = 2; i <= 8 && rsize < TARGET_PAGE_BITS; i *= 2) {
                    /* This will check in groups of 2, 4 and then 8, whether
                     * the subregion bits are consistent. rsize is incremented
                     * back up to give the region size, considering consistent
                     * adjacent subregions as one region. Stop testing if rsize
                     * is already big enough for an entire QEMU page.
                     */
                    int snd_rounded = snd & ~(i - 1);
                    uint32_t srdis_multi = extract32(env->pmsav7.drsr[n],
                                                     snd_rounded + 8, i);
                    if (srdis_mask ^ srdis_multi) {
                        break;
                    }
                    srdis_mask = (srdis_mask << i) | srdis_mask;
                    rsize++;
                }
            }
            if (rsize < TARGET_PAGE_BITS) {
                qemu_log_mask(LOG_UNIMP, "No support for MPU (sub)region"
                              "alignment of %" PRIu32 " bits. Minimum is %d\n",
                              rsize, TARGET_PAGE_BITS);
                continue;
            }
            if (srdis) {
                continue;
            }
            break;
        }

        if (n == -1) { /* no hits */
            if (cpu->pmsav7_dregion &&
                (is_user || !(regime_sctlr(env, mmu_idx) & SCTLR_BR))) {
                /* background fault */
                *fsr = 0;
                return true;
            }
            get_phys_addr_pmsav7_default(env, mmu_idx, address, prot);
        } else { /* a MPU hit! */
            uint32_t ap = extract32(env->pmsav7.dracr[n], 8, 3);

            if (is_user) { /* User mode AP bit decoding */
                switch (ap) {
                case 0:
                case 1:
                case 5:
                    break; /* no access */
                case 3:
                    *prot |= PAGE_WRITE;
                    /* fall through */
                case 2:
                case 6:
                    *prot |= PAGE_READ | PAGE_EXEC;
                    break;
                default:
                    qemu_log_mask(LOG_GUEST_ERROR,
                                  "Bad value for AP bits in DRACR %"
                                  PRIx32 "\n", ap);
                }
            } else { /* Priv. mode AP bits decoding */
                switch (ap) {
                case 0:
                    break; /* no access */
                case 1:
                case 2:
                case 3:
                    *prot |= PAGE_WRITE;
                    /* fall through */
                case 5:
                case 6:
                    *prot |= PAGE_READ | PAGE_EXEC;
                    break;
                default:
                    qemu_log_mask(LOG_GUEST_ERROR,
                                  "Bad value for AP bits in DRACR %"
                                  PRIx32 "\n", ap);
                }
            }

            /* execute never */
            if (env->pmsav7.dracr[n] & (1 << 12)) {
                *prot &= ~PAGE_EXEC;
            }
        }
    }

    *fsr = 0x00d; /* Permission fault */
    return !(*prot & (1 << access_type));
}

6329 6330 6331
static bool get_phys_addr_pmsav5(CPUARMState *env, uint32_t address,
                                 int access_type, ARMMMUIdx mmu_idx,
                                 hwaddr *phys_ptr, int *prot, uint32_t *fsr)
P
pbrook 已提交
6332 6333 6334 6335
{
    int n;
    uint32_t mask;
    uint32_t base;
6336
    bool is_user = regime_is_user(env, mmu_idx);
P
pbrook 已提交
6337 6338 6339

    *phys_ptr = address;
    for (n = 7; n >= 0; n--) {
6340
        base = env->cp15.c6_region[n];
6341
        if ((base & 1) == 0) {
6342
            continue;
6343
        }
6344 6345 6346 6347
        mask = 1 << ((base >> 1) & 0x1f);
        /* Keep this shift separate from the above to avoid an
           (undefined) << 32.  */
        mask = (mask << 1) - 1;
6348
        if (((base ^ address) & ~mask) == 0) {
6349
            break;
6350
        }
P
pbrook 已提交
6351
    }
6352
    if (n < 0) {
6353 6354
        *fsr = 2;
        return true;
6355
    }
P
pbrook 已提交
6356 6357

    if (access_type == 2) {
6358
        mask = env->cp15.pmsav5_insn_ap;
P
pbrook 已提交
6359
    } else {
6360
        mask = env->cp15.pmsav5_data_ap;
P
pbrook 已提交
6361 6362 6363 6364
    }
    mask = (mask >> (n * 4)) & 0xf;
    switch (mask) {
    case 0:
6365 6366
        *fsr = 1;
        return true;
P
pbrook 已提交
6367
    case 1:
6368
        if (is_user) {
6369 6370
            *fsr = 1;
            return true;
6371
        }
6372 6373
        *prot = PAGE_READ | PAGE_WRITE;
        break;
P
pbrook 已提交
6374
    case 2:
6375
        *prot = PAGE_READ;
6376
        if (!is_user) {
6377
            *prot |= PAGE_WRITE;
6378
        }
6379
        break;
P
pbrook 已提交
6380
    case 3:
6381 6382
        *prot = PAGE_READ | PAGE_WRITE;
        break;
P
pbrook 已提交
6383
    case 5:
6384
        if (is_user) {
6385 6386
            *fsr = 1;
            return true;
6387
        }
6388 6389
        *prot = PAGE_READ;
        break;
P
pbrook 已提交
6390
    case 6:
6391 6392
        *prot = PAGE_READ;
        break;
P
pbrook 已提交
6393
    default:
6394
        /* Bad permission.  */
6395 6396
        *fsr = 1;
        return true;
P
pbrook 已提交
6397
    }
6398
    *prot |= PAGE_EXEC;
6399
    return false;
P
pbrook 已提交
6400 6401
}

6402 6403 6404 6405 6406 6407
/* get_phys_addr - get the physical address for this virtual address
 *
 * Find the physical address corresponding to the given virtual address,
 * by doing a translation table walk on MMU based systems or using the
 * MPU state on MPU based systems.
 *
6408 6409
 * Returns false if the translation was successful. Otherwise, phys_ptr, attrs,
 * prot and page_size may not be filled in, and the populated fsr value provides
6410 6411 6412 6413
 * information on why the translation aborted, in the format of a
 * DFSR/IFSR fault register, with the following caveats:
 *  * we honour the short vs long DFSR format differences.
 *  * the WnR bit is never set (the caller must do this).
6414
 *  * for PSMAv5 based systems we don't bother to return a full FSR format
6415 6416 6417 6418 6419
 *    value.
 *
 * @env: CPUARMState
 * @address: virtual address to get physical address for
 * @access_type: 0 for read, 1 for write, 2 for execute
6420
 * @mmu_idx: MMU index indicating required translation regime
6421
 * @phys_ptr: set to the physical address corresponding to the virtual address
6422
 * @attrs: set to the memory transaction attributes to use
6423 6424
 * @prot: set to the permissions for the page containing phys_ptr
 * @page_size: set to the size of the page containing phys_ptr
6425
 * @fsr: set to the DFSR/IFSR value on failure
6426
 */
6427 6428 6429 6430
static inline bool get_phys_addr(CPUARMState *env, target_ulong address,
                                 int access_type, ARMMMUIdx mmu_idx,
                                 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
                                 target_ulong *page_size, uint32_t *fsr)
P
pbrook 已提交
6431
{
6432 6433
    if (mmu_idx == ARMMMUIdx_S12NSE0 || mmu_idx == ARMMMUIdx_S12NSE1) {
        /* TODO: when we support EL2 we should here call ourselves recursively
6434 6435 6436
         * to do the stage 1 and then stage 2 translations. The arm_ld*_ptw
         * functions will also need changing to perform ARMMMUIdx_S2NS loads
         * rather than direct physical memory loads when appropriate.
6437 6438 6439 6440 6441
         * For non-EL2 CPUs a stage1+stage2 translation is just stage 1.
         */
        assert(!arm_feature(env, ARM_FEATURE_EL2));
        mmu_idx += ARMMMUIdx_S1NSE0;
    }
6442

6443 6444 6445 6446 6447
    /* The page table entries may downgrade secure to non-secure, but
     * cannot upgrade an non-secure translation regime's attributes
     * to secure.
     */
    attrs->secure = regime_is_secure(env, mmu_idx);
6448
    attrs->user = regime_is_user(env, mmu_idx);
6449

6450 6451 6452 6453 6454 6455 6456 6457 6458 6459
    /* Fast Context Switch Extension. This doesn't exist at all in v8.
     * In v7 and earlier it affects all stage 1 translations.
     */
    if (address < 0x02000000 && mmu_idx != ARMMMUIdx_S2NS
        && !arm_feature(env, ARM_FEATURE_V8)) {
        if (regime_el(env, mmu_idx) == 3) {
            address += env->cp15.fcseidr_s;
        } else {
            address += env->cp15.fcseidr_ns;
        }
6460
    }
P
pbrook 已提交
6461

6462 6463 6464 6465 6466 6467 6468 6469 6470 6471
    /* pmsav7 has special handling for when MPU is disabled so call it before
     * the common MMU/MPU disabled check below.
     */
    if (arm_feature(env, ARM_FEATURE_MPU) &&
        arm_feature(env, ARM_FEATURE_V7)) {
        *page_size = TARGET_PAGE_SIZE;
        return get_phys_addr_pmsav7(env, address, access_type, mmu_idx,
                                    phys_ptr, prot, fsr);
    }

6472
    if (regime_translation_disabled(env, mmu_idx)) {
P
pbrook 已提交
6473 6474
        /* MMU/MPU disabled.  */
        *phys_ptr = address;
6475
        *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
P
Paul Brook 已提交
6476
        *page_size = TARGET_PAGE_SIZE;
P
pbrook 已提交
6477
        return 0;
6478 6479 6480
    }

    if (arm_feature(env, ARM_FEATURE_MPU)) {
6481
        /* Pre-v7 MPU */
P
Paul Brook 已提交
6482
        *page_size = TARGET_PAGE_SIZE;
6483 6484
        return get_phys_addr_pmsav5(env, address, access_type, mmu_idx,
                                    phys_ptr, prot, fsr);
6485 6486 6487 6488
    }

    if (regime_using_lpae_format(env, mmu_idx)) {
        return get_phys_addr_lpae(env, address, access_type, mmu_idx, phys_ptr,
6489
                                  attrs, prot, page_size, fsr);
6490 6491
    } else if (regime_sctlr(env, mmu_idx) & SCTLR_XP) {
        return get_phys_addr_v6(env, address, access_type, mmu_idx, phys_ptr,
6492
                                attrs, prot, page_size, fsr);
P
pbrook 已提交
6493
    } else {
6494
        return get_phys_addr_v5(env, address, access_type, mmu_idx, phys_ptr,
6495
                                prot, page_size, fsr);
P
pbrook 已提交
6496 6497 6498
    }
}

6499
/* Walk the page table and (if the mapping exists) add the page
6500 6501
 * to the TLB. Return false on success, or true on failure. Populate
 * fsr with ARM DFSR/IFSR fault register format value on failure.
6502
 */
6503 6504
bool arm_tlb_fill(CPUState *cs, vaddr address,
                  int access_type, int mmu_idx, uint32_t *fsr)
B
bellard 已提交
6505
{
6506 6507
    ARMCPU *cpu = ARM_CPU(cs);
    CPUARMState *env = &cpu->env;
A
Avi Kivity 已提交
6508
    hwaddr phys_addr;
P
Paul Brook 已提交
6509
    target_ulong page_size;
B
bellard 已提交
6510
    int prot;
6511
    int ret;
6512
    MemTxAttrs attrs = {};
B
bellard 已提交
6513

6514
    ret = get_phys_addr(env, address, access_type, mmu_idx, &phys_addr,
6515 6516
                        &attrs, &prot, &page_size, fsr);
    if (!ret) {
B
bellard 已提交
6517
        /* Map a single [sub]page.  */
6518 6519
        phys_addr &= TARGET_PAGE_MASK;
        address &= TARGET_PAGE_MASK;
6520 6521
        tlb_set_page_with_attrs(cs, address, phys_addr, attrs,
                                prot, mmu_idx, page_size);
P
Paul Brook 已提交
6522
        return 0;
B
bellard 已提交
6523 6524
    }

6525
    return ret;
B
bellard 已提交
6526 6527
}

6528
hwaddr arm_cpu_get_phys_page_debug(CPUState *cs, vaddr addr)
B
bellard 已提交
6529
{
6530
    ARMCPU *cpu = ARM_CPU(cs);
6531
    CPUARMState *env = &cpu->env;
A
Avi Kivity 已提交
6532
    hwaddr phys_addr;
P
Paul Brook 已提交
6533
    target_ulong page_size;
B
bellard 已提交
6534
    int prot;
6535 6536
    bool ret;
    uint32_t fsr;
6537
    MemTxAttrs attrs = {};
B
bellard 已提交
6538

6539
    ret = get_phys_addr(env, addr, 0, cpu_mmu_index(env), &phys_addr,
6540
                        &attrs, &prot, &page_size, &fsr);
B
bellard 已提交
6541

6542
    if (ret) {
B
bellard 已提交
6543
        return -1;
6544
    }
B
bellard 已提交
6545 6546 6547 6548

    return phys_addr;
}

6549
void HELPER(set_r13_banked)(CPUARMState *env, uint32_t mode, uint32_t val)
P
pbrook 已提交
6550
{
6551 6552 6553
    if ((env->uncached_cpsr & CPSR_M) == mode) {
        env->regs[13] = val;
    } else {
6554
        env->banked_r13[bank_number(mode)] = val;
6555
    }
P
pbrook 已提交
6556 6557
}

6558
uint32_t HELPER(get_r13_banked)(CPUARMState *env, uint32_t mode)
P
pbrook 已提交
6559
{
6560 6561 6562
    if ((env->uncached_cpsr & CPSR_M) == mode) {
        return env->regs[13];
    } else {
6563
        return env->banked_r13[bank_number(mode)];
6564
    }
P
pbrook 已提交
6565 6566
}

6567
uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg)
P
pbrook 已提交
6568
{
6569 6570
    ARMCPU *cpu = arm_env_get_cpu(env);

P
pbrook 已提交
6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590
    switch (reg) {
    case 0: /* APSR */
        return xpsr_read(env) & 0xf8000000;
    case 1: /* IAPSR */
        return xpsr_read(env) & 0xf80001ff;
    case 2: /* EAPSR */
        return xpsr_read(env) & 0xff00fc00;
    case 3: /* xPSR */
        return xpsr_read(env) & 0xff00fdff;
    case 5: /* IPSR */
        return xpsr_read(env) & 0x000001ff;
    case 6: /* EPSR */
        return xpsr_read(env) & 0x0700fc00;
    case 7: /* IEPSR */
        return xpsr_read(env) & 0x0700edff;
    case 8: /* MSP */
        return env->v7m.current_sp ? env->v7m.other_sp : env->regs[13];
    case 9: /* PSP */
        return env->v7m.current_sp ? env->regs[13] : env->v7m.other_sp;
    case 16: /* PRIMASK */
6591
        return (env->daif & PSTATE_I) != 0;
6592 6593
    case 17: /* BASEPRI */
    case 18: /* BASEPRI_MAX */
P
pbrook 已提交
6594
        return env->v7m.basepri;
6595
    case 19: /* FAULTMASK */
6596
        return (env->daif & PSTATE_F) != 0;
P
pbrook 已提交
6597 6598 6599 6600
    case 20: /* CONTROL */
        return env->v7m.control;
    default:
        /* ??? For debugging only.  */
6601
        cpu_abort(CPU(cpu), "Unimplemented system register read (%d)\n", reg);
P
pbrook 已提交
6602 6603 6604 6605
        return 0;
    }
}

6606
void HELPER(v7m_msr)(CPUARMState *env, uint32_t reg, uint32_t val)
P
pbrook 已提交
6607
{
6608 6609
    ARMCPU *cpu = arm_env_get_cpu(env);

P
pbrook 已提交
6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644
    switch (reg) {
    case 0: /* APSR */
        xpsr_write(env, val, 0xf8000000);
        break;
    case 1: /* IAPSR */
        xpsr_write(env, val, 0xf8000000);
        break;
    case 2: /* EAPSR */
        xpsr_write(env, val, 0xfe00fc00);
        break;
    case 3: /* xPSR */
        xpsr_write(env, val, 0xfe00fc00);
        break;
    case 5: /* IPSR */
        /* IPSR bits are readonly.  */
        break;
    case 6: /* EPSR */
        xpsr_write(env, val, 0x0600fc00);
        break;
    case 7: /* IEPSR */
        xpsr_write(env, val, 0x0600fc00);
        break;
    case 8: /* MSP */
        if (env->v7m.current_sp)
            env->v7m.other_sp = val;
        else
            env->regs[13] = val;
        break;
    case 9: /* PSP */
        if (env->v7m.current_sp)
            env->regs[13] = val;
        else
            env->v7m.other_sp = val;
        break;
    case 16: /* PRIMASK */
6645 6646 6647 6648 6649
        if (val & 1) {
            env->daif |= PSTATE_I;
        } else {
            env->daif &= ~PSTATE_I;
        }
P
pbrook 已提交
6650
        break;
6651
    case 17: /* BASEPRI */
P
pbrook 已提交
6652 6653
        env->v7m.basepri = val & 0xff;
        break;
6654
    case 18: /* BASEPRI_MAX */
P
pbrook 已提交
6655 6656 6657 6658
        val &= 0xff;
        if (val != 0 && (val < env->v7m.basepri || env->v7m.basepri == 0))
            env->v7m.basepri = val;
        break;
6659
    case 19: /* FAULTMASK */
6660 6661 6662 6663 6664
        if (val & 1) {
            env->daif |= PSTATE_F;
        } else {
            env->daif &= ~PSTATE_F;
        }
6665
        break;
P
pbrook 已提交
6666 6667 6668 6669 6670 6671
    case 20: /* CONTROL */
        env->v7m.control = val & 3;
        switch_v7m_sp(env, (val & 2) != 0);
        break;
    default:
        /* ??? For debugging only.  */
6672
        cpu_abort(CPU(cpu), "Unimplemented system register write (%d)\n", reg);
P
pbrook 已提交
6673 6674 6675 6676
        return;
    }
}

B
bellard 已提交
6677
#endif
P
pbrook 已提交
6678

6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703
void HELPER(dc_zva)(CPUARMState *env, uint64_t vaddr_in)
{
    /* Implement DC ZVA, which zeroes a fixed-length block of memory.
     * Note that we do not implement the (architecturally mandated)
     * alignment fault for attempts to use this on Device memory
     * (which matches the usual QEMU behaviour of not implementing either
     * alignment faults or any memory attribute handling).
     */

    ARMCPU *cpu = arm_env_get_cpu(env);
    uint64_t blocklen = 4 << cpu->dcz_blocksize;
    uint64_t vaddr = vaddr_in & ~(blocklen - 1);

#ifndef CONFIG_USER_ONLY
    {
        /* Slightly awkwardly, QEMU's TARGET_PAGE_SIZE may be less than
         * the block size so we might have to do more than one TLB lookup.
         * We know that in fact for any v8 CPU the page size is at least 4K
         * and the block size must be 2K or less, but TARGET_PAGE_SIZE is only
         * 1K as an artefact of legacy v5 subpage support being present in the
         * same QEMU executable.
         */
        int maxidx = DIV_ROUND_UP(blocklen, TARGET_PAGE_SIZE);
        void *hostaddr[maxidx];
        int try, i;
6704 6705
        unsigned mmu_idx = cpu_mmu_index(env);
        TCGMemOpIdx oi = make_memop_idx(MO_UB, mmu_idx);
6706 6707 6708 6709 6710 6711

        for (try = 0; try < 2; try++) {

            for (i = 0; i < maxidx; i++) {
                hostaddr[i] = tlb_vaddr_to_host(env,
                                                vaddr + TARGET_PAGE_SIZE * i,
6712
                                                1, mmu_idx);
6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732
                if (!hostaddr[i]) {
                    break;
                }
            }
            if (i == maxidx) {
                /* If it's all in the TLB it's fair game for just writing to;
                 * we know we don't need to update dirty status, etc.
                 */
                for (i = 0; i < maxidx - 1; i++) {
                    memset(hostaddr[i], 0, TARGET_PAGE_SIZE);
                }
                memset(hostaddr[i], 0, blocklen - (i * TARGET_PAGE_SIZE));
                return;
            }
            /* OK, try a store and see if we can populate the tlb. This
             * might cause an exception if the memory isn't writable,
             * in which case we will longjmp out of here. We must for
             * this purpose use the actual register value passed to us
             * so that we get the fault address right.
             */
6733
            helper_ret_stb_mmu(env, vaddr_in, 0, oi, GETRA());
6734 6735 6736 6737
            /* Now we can populate the other TLB entries, if any */
            for (i = 0; i < maxidx; i++) {
                uint64_t va = vaddr + TARGET_PAGE_SIZE * i;
                if (va != (vaddr_in & TARGET_PAGE_MASK)) {
6738
                    helper_ret_stb_mmu(env, va, 0, oi, GETRA());
6739 6740 6741 6742 6743 6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754
                }
            }
        }

        /* Slow path (probably attempt to do this to an I/O device or
         * similar, or clearing of a block of code we have translations
         * cached for). Just do a series of byte writes as the architecture
         * demands. It's not worth trying to use a cpu_physical_memory_map(),
         * memset(), unmap() sequence here because:
         *  + we'd need to account for the blocksize being larger than a page
         *  + the direct-RAM access case is almost always going to be dealt
         *    with in the fastpath code above, so there's no speed benefit
         *  + we would have to deal with the map returning NULL because the
         *    bounce buffer was in use
         */
        for (i = 0; i < blocklen; i++) {
6755
            helper_ret_stb_mmu(env, vaddr + i, 0, oi, GETRA());
6756 6757 6758 6759 6760 6761 6762
        }
    }
#else
    memset(g2h(vaddr), 0, blocklen);
#endif
}

P
pbrook 已提交
6763 6764 6765 6766 6767 6768
/* Note that signed overflow is undefined in C.  The following routines are
   careful to use unsigned types where modulo arithmetic is required.
   Failure to do so _will_ break on newer gcc.  */

/* Signed saturating arithmetic.  */

A
aurel32 已提交
6769
/* Perform 16-bit signed saturating addition.  */
P
pbrook 已提交
6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783
static inline uint16_t add16_sat(uint16_t a, uint16_t b)
{
    uint16_t res;

    res = a + b;
    if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) {
        if (a & 0x8000)
            res = 0x8000;
        else
            res = 0x7fff;
    }
    return res;
}

A
aurel32 已提交
6784
/* Perform 8-bit signed saturating addition.  */
P
pbrook 已提交
6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798
static inline uint8_t add8_sat(uint8_t a, uint8_t b)
{
    uint8_t res;

    res = a + b;
    if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) {
        if (a & 0x80)
            res = 0x80;
        else
            res = 0x7f;
    }
    return res;
}

A
aurel32 已提交
6799
/* Perform 16-bit signed saturating subtraction.  */
P
pbrook 已提交
6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813
static inline uint16_t sub16_sat(uint16_t a, uint16_t b)
{
    uint16_t res;

    res = a - b;
    if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) {
        if (a & 0x8000)
            res = 0x8000;
        else
            res = 0x7fff;
    }
    return res;
}

A
aurel32 已提交
6814
/* Perform 8-bit signed saturating subtraction.  */
P
pbrook 已提交
6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836 6837
static inline uint8_t sub8_sat(uint8_t a, uint8_t b)
{
    uint8_t res;

    res = a - b;
    if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) {
        if (a & 0x80)
            res = 0x80;
        else
            res = 0x7f;
    }
    return res;
}

#define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16);
#define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16);
#define ADD8(a, b, n)  RESULT(add8_sat(a, b), n, 8);
#define SUB8(a, b, n)  RESULT(sub8_sat(a, b), n, 8);
#define PFX q

#include "op_addsub.h"

/* Unsigned saturating arithmetic.  */
P
pbrook 已提交
6838
static inline uint16_t add16_usat(uint16_t a, uint16_t b)
P
pbrook 已提交
6839 6840 6841 6842 6843 6844 6845 6846
{
    uint16_t res;
    res = a + b;
    if (res < a)
        res = 0xffff;
    return res;
}

P
pbrook 已提交
6847
static inline uint16_t sub16_usat(uint16_t a, uint16_t b)
P
pbrook 已提交
6848
{
6849
    if (a > b)
P
pbrook 已提交
6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865
        return a - b;
    else
        return 0;
}

static inline uint8_t add8_usat(uint8_t a, uint8_t b)
{
    uint8_t res;
    res = a + b;
    if (res < a)
        res = 0xff;
    return res;
}

static inline uint8_t sub8_usat(uint8_t a, uint8_t b)
{
6866
    if (a > b)
P
pbrook 已提交
6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880 6881 6882
        return a - b;
    else
        return 0;
}

#define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16);
#define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16);
#define ADD8(a, b, n)  RESULT(add8_usat(a, b), n, 8);
#define SUB8(a, b, n)  RESULT(sub8_usat(a, b), n, 8);
#define PFX uq

#include "op_addsub.h"

/* Signed modulo arithmetic.  */
#define SARITH16(a, b, n, op) do { \
    int32_t sum; \
6883
    sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \
P
pbrook 已提交
6884 6885 6886 6887 6888 6889 6890
    RESULT(sum, n, 16); \
    if (sum >= 0) \
        ge |= 3 << (n * 2); \
    } while(0)

#define SARITH8(a, b, n, op) do { \
    int32_t sum; \
6891
    sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \
P
pbrook 已提交
6892 6893 6894 6895 6896 6897 6898 6899 6900 6901 6902 6903 6904 6905 6906 6907 6908 6909 6910 6911
    RESULT(sum, n, 8); \
    if (sum >= 0) \
        ge |= 1 << n; \
    } while(0)


#define ADD16(a, b, n) SARITH16(a, b, n, +)
#define SUB16(a, b, n) SARITH16(a, b, n, -)
#define ADD8(a, b, n)  SARITH8(a, b, n, +)
#define SUB8(a, b, n)  SARITH8(a, b, n, -)
#define PFX s
#define ARITH_GE

#include "op_addsub.h"

/* Unsigned modulo arithmetic.  */
#define ADD16(a, b, n) do { \
    uint32_t sum; \
    sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \
    RESULT(sum, n, 16); \
6912
    if ((sum >> 16) == 1) \
P
pbrook 已提交
6913 6914 6915 6916 6917 6918 6919
        ge |= 3 << (n * 2); \
    } while(0)

#define ADD8(a, b, n) do { \
    uint32_t sum; \
    sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \
    RESULT(sum, n, 8); \
6920 6921
    if ((sum >> 8) == 1) \
        ge |= 1 << n; \
P
pbrook 已提交
6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935 6936
    } while(0)

#define SUB16(a, b, n) do { \
    uint32_t sum; \
    sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \
    RESULT(sum, n, 16); \
    if ((sum >> 16) == 0) \
        ge |= 3 << (n * 2); \
    } while(0)

#define SUB8(a, b, n) do { \
    uint32_t sum; \
    sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \
    RESULT(sum, n, 8); \
    if ((sum >> 8) == 0) \
6937
        ge |= 1 << n; \
P
pbrook 已提交
6938 6939 6940 6941 6942 6943 6944 6945 6946 6947 6948 6949 6950 6951 6952 6953 6954 6955 6956 6957 6958 6959 6960 6961 6962 6963 6964 6965 6966 6967 6968 6969 6970 6971 6972 6973 6974 6975 6976 6977 6978 6979 6980 6981 6982 6983 6984 6985 6986 6987 6988 6989 6990 6991 6992 6993 6994 6995 6996 6997 6998 6999 7000 7001 7002 7003 7004 7005 7006
    } while(0)

#define PFX u
#define ARITH_GE

#include "op_addsub.h"

/* Halved signed arithmetic.  */
#define ADD16(a, b, n) \
  RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16)
#define SUB16(a, b, n) \
  RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16)
#define ADD8(a, b, n) \
  RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8)
#define SUB8(a, b, n) \
  RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8)
#define PFX sh

#include "op_addsub.h"

/* Halved unsigned arithmetic.  */
#define ADD16(a, b, n) \
  RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16)
#define SUB16(a, b, n) \
  RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16)
#define ADD8(a, b, n) \
  RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8)
#define SUB8(a, b, n) \
  RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8)
#define PFX uh

#include "op_addsub.h"

static inline uint8_t do_usad(uint8_t a, uint8_t b)
{
    if (a > b)
        return a - b;
    else
        return b - a;
}

/* Unsigned sum of absolute byte differences.  */
uint32_t HELPER(usad8)(uint32_t a, uint32_t b)
{
    uint32_t sum;
    sum = do_usad(a, b);
    sum += do_usad(a >> 8, b >> 8);
    sum += do_usad(a >> 16, b >>16);
    sum += do_usad(a >> 24, b >> 24);
    return sum;
}

/* For ARMv6 SEL instruction.  */
uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b)
{
    uint32_t mask;

    mask = 0;
    if (flags & 1)
        mask |= 0xff;
    if (flags & 2)
        mask |= 0xff00;
    if (flags & 4)
        mask |= 0xff0000;
    if (flags & 8)
        mask |= 0xff000000;
    return (a & mask) | (b & ~mask);
}

7007 7008
/* VFP support.  We follow the convention used for VFP instructions:
   Single precision routines have a "s" suffix, double precision a
P
pbrook 已提交
7009 7010 7011 7012 7013 7014 7015 7016 7017 7018 7019 7020 7021
   "d" suffix.  */

/* Convert host exception flags to vfp form.  */
static inline int vfp_exceptbits_from_host(int host_bits)
{
    int target_bits = 0;

    if (host_bits & float_flag_invalid)
        target_bits |= 1;
    if (host_bits & float_flag_divbyzero)
        target_bits |= 2;
    if (host_bits & float_flag_overflow)
        target_bits |= 4;
7022
    if (host_bits & (float_flag_underflow | float_flag_output_denormal))
P
pbrook 已提交
7023 7024 7025
        target_bits |= 8;
    if (host_bits & float_flag_inexact)
        target_bits |= 0x10;
7026 7027
    if (host_bits & float_flag_input_denormal)
        target_bits |= 0x80;
P
pbrook 已提交
7028 7029 7030
    return target_bits;
}

7031
uint32_t HELPER(vfp_get_fpscr)(CPUARMState *env)
P
pbrook 已提交
7032 7033 7034 7035 7036 7037 7038 7039
{
    int i;
    uint32_t fpscr;

    fpscr = (env->vfp.xregs[ARM_VFP_FPSCR] & 0xffc8ffff)
            | (env->vfp.vec_len << 16)
            | (env->vfp.vec_stride << 20);
    i = get_float_exception_flags(&env->vfp.fp_status);
7040
    i |= get_float_exception_flags(&env->vfp.standard_fp_status);
P
pbrook 已提交
7041 7042 7043 7044
    fpscr |= vfp_exceptbits_from_host(i);
    return fpscr;
}

7045
uint32_t vfp_get_fpscr(CPUARMState *env)
7046 7047 7048 7049
{
    return HELPER(vfp_get_fpscr)(env);
}

P
pbrook 已提交
7050 7051 7052 7053 7054 7055 7056 7057 7058 7059 7060 7061 7062 7063 7064
/* Convert vfp exception flags to target form.  */
static inline int vfp_exceptbits_to_host(int target_bits)
{
    int host_bits = 0;

    if (target_bits & 1)
        host_bits |= float_flag_invalid;
    if (target_bits & 2)
        host_bits |= float_flag_divbyzero;
    if (target_bits & 4)
        host_bits |= float_flag_overflow;
    if (target_bits & 8)
        host_bits |= float_flag_underflow;
    if (target_bits & 0x10)
        host_bits |= float_flag_inexact;
7065 7066
    if (target_bits & 0x80)
        host_bits |= float_flag_input_denormal;
P
pbrook 已提交
7067 7068 7069
    return host_bits;
}

7070
void HELPER(vfp_set_fpscr)(CPUARMState *env, uint32_t val)
P
pbrook 已提交
7071 7072 7073 7074 7075 7076 7077 7078 7079 7080 7081 7082 7083
{
    int i;
    uint32_t changed;

    changed = env->vfp.xregs[ARM_VFP_FPSCR];
    env->vfp.xregs[ARM_VFP_FPSCR] = (val & 0xffc8ffff);
    env->vfp.vec_len = (val >> 16) & 7;
    env->vfp.vec_stride = (val >> 20) & 3;

    changed ^= val;
    if (changed & (3 << 22)) {
        i = (val >> 22) & 3;
        switch (i) {
7084
        case FPROUNDING_TIEEVEN:
P
pbrook 已提交
7085 7086
            i = float_round_nearest_even;
            break;
7087
        case FPROUNDING_POSINF:
P
pbrook 已提交
7088 7089
            i = float_round_up;
            break;
7090
        case FPROUNDING_NEGINF:
P
pbrook 已提交
7091 7092
            i = float_round_down;
            break;
7093
        case FPROUNDING_ZERO:
P
pbrook 已提交
7094 7095 7096 7097 7098
            i = float_round_to_zero;
            break;
        }
        set_float_rounding_mode(i, &env->vfp.fp_status);
    }
7099
    if (changed & (1 << 24)) {
7100
        set_flush_to_zero((val & (1 << 24)) != 0, &env->vfp.fp_status);
7101 7102
        set_flush_inputs_to_zero((val & (1 << 24)) != 0, &env->vfp.fp_status);
    }
P
pbrook 已提交
7103 7104
    if (changed & (1 << 25))
        set_default_nan_mode((val & (1 << 25)) != 0, &env->vfp.fp_status);
P
pbrook 已提交
7105

7106
    i = vfp_exceptbits_to_host(val);
P
pbrook 已提交
7107
    set_float_exception_flags(i, &env->vfp.fp_status);
7108
    set_float_exception_flags(0, &env->vfp.standard_fp_status);
P
pbrook 已提交
7109 7110
}

7111
void vfp_set_fpscr(CPUARMState *env, uint32_t val)
7112 7113 7114 7115
{
    HELPER(vfp_set_fpscr)(env, val);
}

P
pbrook 已提交
7116 7117 7118
#define VFP_HELPER(name, p) HELPER(glue(glue(vfp_,name),p))

#define VFP_BINOP(name) \
7119
float32 VFP_HELPER(name, s)(float32 a, float32 b, void *fpstp) \
P
pbrook 已提交
7120
{ \
7121 7122
    float_status *fpst = fpstp; \
    return float32_ ## name(a, b, fpst); \
P
pbrook 已提交
7123
} \
7124
float64 VFP_HELPER(name, d)(float64 a, float64 b, void *fpstp) \
P
pbrook 已提交
7125
{ \
7126 7127
    float_status *fpst = fpstp; \
    return float64_ ## name(a, b, fpst); \
P
pbrook 已提交
7128 7129 7130 7131 7132
}
VFP_BINOP(add)
VFP_BINOP(sub)
VFP_BINOP(mul)
VFP_BINOP(div)
7133 7134 7135 7136
VFP_BINOP(min)
VFP_BINOP(max)
VFP_BINOP(minnum)
VFP_BINOP(maxnum)
P
pbrook 已提交
7137 7138 7139 7140 7141 7142 7143 7144 7145
#undef VFP_BINOP

float32 VFP_HELPER(neg, s)(float32 a)
{
    return float32_chs(a);
}

float64 VFP_HELPER(neg, d)(float64 a)
{
7146
    return float64_chs(a);
P
pbrook 已提交
7147 7148 7149 7150 7151 7152 7153 7154 7155
}

float32 VFP_HELPER(abs, s)(float32 a)
{
    return float32_abs(a);
}

float64 VFP_HELPER(abs, d)(float64 a)
{
7156
    return float64_abs(a);
P
pbrook 已提交
7157 7158
}

7159
float32 VFP_HELPER(sqrt, s)(float32 a, CPUARMState *env)
P
pbrook 已提交
7160 7161 7162 7163
{
    return float32_sqrt(a, &env->vfp.fp_status);
}

7164
float64 VFP_HELPER(sqrt, d)(float64 a, CPUARMState *env)
P
pbrook 已提交
7165 7166 7167 7168 7169 7170
{
    return float64_sqrt(a, &env->vfp.fp_status);
}

/* XXX: check quiet/signaling case */
#define DO_VFP_cmp(p, type) \
7171
void VFP_HELPER(cmp, p)(type a, type b, CPUARMState *env)  \
P
pbrook 已提交
7172 7173 7174 7175 7176 7177 7178 7179 7180 7181 7182
{ \
    uint32_t flags; \
    switch(type ## _compare_quiet(a, b, &env->vfp.fp_status)) { \
    case 0: flags = 0x6; break; \
    case -1: flags = 0x8; break; \
    case 1: flags = 0x2; break; \
    default: case 2: flags = 0x3; break; \
    } \
    env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
        | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
} \
7183
void VFP_HELPER(cmpe, p)(type a, type b, CPUARMState *env) \
P
pbrook 已提交
7184 7185 7186 7187 7188 7189 7190 7191 7192 7193 7194 7195 7196 7197 7198
{ \
    uint32_t flags; \
    switch(type ## _compare(a, b, &env->vfp.fp_status)) { \
    case 0: flags = 0x6; break; \
    case -1: flags = 0x8; break; \
    case 1: flags = 0x2; break; \
    default: case 2: flags = 0x3; break; \
    } \
    env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
        | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
}
DO_VFP_cmp(s, float32)
DO_VFP_cmp(d, float64)
#undef DO_VFP_cmp

7199
/* Integer to float and float to integer conversions */
P
pbrook 已提交
7200

7201 7202 7203 7204
#define CONV_ITOF(name, fsz, sign) \
    float##fsz HELPER(name)(uint32_t x, void *fpstp) \
{ \
    float_status *fpst = fpstp; \
7205
    return sign##int32_to_##float##fsz((sign##int32_t)x, fpst); \
P
pbrook 已提交
7206 7207
}

7208 7209 7210 7211 7212 7213 7214 7215 7216
#define CONV_FTOI(name, fsz, sign, round) \
uint32_t HELPER(name)(float##fsz x, void *fpstp) \
{ \
    float_status *fpst = fpstp; \
    if (float##fsz##_is_any_nan(x)) { \
        float_raise(float_flag_invalid, fpst); \
        return 0; \
    } \
    return float##fsz##_to_##sign##int32##round(x, fpst); \
P
pbrook 已提交
7217 7218
}

7219 7220 7221 7222
#define FLOAT_CONVS(name, p, fsz, sign) \
CONV_ITOF(vfp_##name##to##p, fsz, sign) \
CONV_FTOI(vfp_to##name##p, fsz, sign, ) \
CONV_FTOI(vfp_to##name##z##p, fsz, sign, _round_to_zero)
P
pbrook 已提交
7223

7224 7225 7226 7227
FLOAT_CONVS(si, s, 32, )
FLOAT_CONVS(si, d, 64, )
FLOAT_CONVS(ui, s, 32, u)
FLOAT_CONVS(ui, d, 64, u)
P
pbrook 已提交
7228

7229 7230 7231
#undef CONV_ITOF
#undef CONV_FTOI
#undef FLOAT_CONVS
P
pbrook 已提交
7232 7233

/* floating point conversion */
7234
float64 VFP_HELPER(fcvtd, s)(float32 x, CPUARMState *env)
P
pbrook 已提交
7235
{
7236 7237 7238 7239 7240
    float64 r = float32_to_float64(x, &env->vfp.fp_status);
    /* ARM requires that S<->D conversion of any kind of NaN generates
     * a quiet NaN by forcing the most significant frac bit to 1.
     */
    return float64_maybe_silence_nan(r);
P
pbrook 已提交
7241 7242
}

7243
float32 VFP_HELPER(fcvts, d)(float64 x, CPUARMState *env)
P
pbrook 已提交
7244
{
7245 7246 7247 7248 7249
    float32 r =  float64_to_float32(x, &env->vfp.fp_status);
    /* ARM requires that S<->D conversion of any kind of NaN generates
     * a quiet NaN by forcing the most significant frac bit to 1.
     */
    return float32_maybe_silence_nan(r);
P
pbrook 已提交
7250 7251 7252
}

/* VFP3 fixed point conversion.  */
7253
#define VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \
7254 7255
float##fsz HELPER(vfp_##name##to##p)(uint##isz##_t  x, uint32_t shift, \
                                     void *fpstp) \
P
pbrook 已提交
7256
{ \
7257
    float_status *fpst = fpstp; \
7258
    float##fsz tmp; \
7259
    tmp = itype##_to_##float##fsz(x, fpst); \
7260
    return float##fsz##_scalbn(tmp, -(int)shift, fpst); \
7261 7262
}

7263 7264 7265 7266 7267
/* Notice that we want only input-denormal exception flags from the
 * scalbn operation: the other possible flags (overflow+inexact if
 * we overflow to infinity, output-denormal) aren't correct for the
 * complete scale-and-convert operation.
 */
7268 7269 7270 7271
#define VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, round) \
uint##isz##_t HELPER(vfp_to##name##p##round)(float##fsz x, \
                                             uint32_t shift, \
                                             void *fpstp) \
P
pbrook 已提交
7272
{ \
7273
    float_status *fpst = fpstp; \
7274
    int old_exc_flags = get_float_exception_flags(fpst); \
7275 7276
    float##fsz tmp; \
    if (float##fsz##_is_any_nan(x)) { \
7277
        float_raise(float_flag_invalid, fpst); \
7278
        return 0; \
7279
    } \
7280
    tmp = float##fsz##_scalbn(x, shift, fpst); \
7281 7282 7283
    old_exc_flags |= get_float_exception_flags(fpst) \
        & float_flag_input_denormal; \
    set_float_exception_flags(old_exc_flags, fpst); \
7284
    return float##fsz##_to_##itype##round(tmp, fpst); \
7285 7286
}

7287 7288
#define VFP_CONV_FIX(name, p, fsz, isz, itype)                   \
VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype)                     \
7289 7290 7291 7292 7293 7294
VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, _round_to_zero) \
VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, )

#define VFP_CONV_FIX_A64(name, p, fsz, isz, itype)               \
VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype)                     \
VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, )
7295

7296 7297
VFP_CONV_FIX(sh, d, 64, 64, int16)
VFP_CONV_FIX(sl, d, 64, 64, int32)
7298
VFP_CONV_FIX_A64(sq, d, 64, 64, int64)
7299 7300
VFP_CONV_FIX(uh, d, 64, 64, uint16)
VFP_CONV_FIX(ul, d, 64, 64, uint32)
7301
VFP_CONV_FIX_A64(uq, d, 64, 64, uint64)
7302 7303
VFP_CONV_FIX(sh, s, 32, 32, int16)
VFP_CONV_FIX(sl, s, 32, 32, int32)
7304
VFP_CONV_FIX_A64(sq, s, 32, 64, int64)
7305 7306
VFP_CONV_FIX(uh, s, 32, 32, uint16)
VFP_CONV_FIX(ul, s, 32, 32, uint32)
7307
VFP_CONV_FIX_A64(uq, s, 32, 64, uint64)
P
pbrook 已提交
7308
#undef VFP_CONV_FIX
7309 7310
#undef VFP_CONV_FIX_FLOAT
#undef VFP_CONV_FLOAT_FIX_ROUND
P
pbrook 已提交
7311

7312 7313 7314 7315 7316 7317 7318 7319 7320 7321 7322 7323 7324
/* Set the current fp rounding mode and return the old one.
 * The argument is a softfloat float_round_ value.
 */
uint32_t HELPER(set_rmode)(uint32_t rmode, CPUARMState *env)
{
    float_status *fp_status = &env->vfp.fp_status;

    uint32_t prev_rmode = get_float_rounding_mode(fp_status);
    set_float_rounding_mode(rmode, fp_status);

    return prev_rmode;
}

7325 7326 7327 7328 7329 7330 7331 7332 7333 7334 7335 7336 7337 7338 7339 7340 7341
/* Set the current fp rounding mode in the standard fp status and return
 * the old one. This is for NEON instructions that need to change the
 * rounding mode but wish to use the standard FPSCR values for everything
 * else. Always set the rounding mode back to the correct value after
 * modifying it.
 * The argument is a softfloat float_round_ value.
 */
uint32_t HELPER(set_neon_rmode)(uint32_t rmode, CPUARMState *env)
{
    float_status *fp_status = &env->vfp.standard_fp_status;

    uint32_t prev_rmode = get_float_rounding_mode(fp_status);
    set_float_rounding_mode(rmode, fp_status);

    return prev_rmode;
}

P
Paul Brook 已提交
7342
/* Half precision conversions.  */
7343
static float32 do_fcvt_f16_to_f32(uint32_t a, CPUARMState *env, float_status *s)
P
Paul Brook 已提交
7344 7345
{
    int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
7346 7347 7348 7349 7350
    float32 r = float16_to_float32(make_float16(a), ieee, s);
    if (ieee) {
        return float32_maybe_silence_nan(r);
    }
    return r;
P
Paul Brook 已提交
7351 7352
}

7353
static uint32_t do_fcvt_f32_to_f16(float32 a, CPUARMState *env, float_status *s)
P
Paul Brook 已提交
7354 7355
{
    int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
7356 7357 7358 7359 7360
    float16 r = float32_to_float16(a, ieee, s);
    if (ieee) {
        r = float16_maybe_silence_nan(r);
    }
    return float16_val(r);
P
Paul Brook 已提交
7361 7362
}

7363
float32 HELPER(neon_fcvt_f16_to_f32)(uint32_t a, CPUARMState *env)
7364 7365 7366 7367
{
    return do_fcvt_f16_to_f32(a, env, &env->vfp.standard_fp_status);
}

7368
uint32_t HELPER(neon_fcvt_f32_to_f16)(float32 a, CPUARMState *env)
7369 7370 7371 7372
{
    return do_fcvt_f32_to_f16(a, env, &env->vfp.standard_fp_status);
}

7373
float32 HELPER(vfp_fcvt_f16_to_f32)(uint32_t a, CPUARMState *env)
7374 7375 7376 7377
{
    return do_fcvt_f16_to_f32(a, env, &env->vfp.fp_status);
}

7378
uint32_t HELPER(vfp_fcvt_f32_to_f16)(float32 a, CPUARMState *env)
7379 7380 7381 7382
{
    return do_fcvt_f32_to_f16(a, env, &env->vfp.fp_status);
}

7383 7384 7385 7386 7387 7388 7389 7390 7391 7392 7393 7394 7395 7396 7397 7398 7399 7400 7401 7402
float64 HELPER(vfp_fcvt_f16_to_f64)(uint32_t a, CPUARMState *env)
{
    int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
    float64 r = float16_to_float64(make_float16(a), ieee, &env->vfp.fp_status);
    if (ieee) {
        return float64_maybe_silence_nan(r);
    }
    return r;
}

uint32_t HELPER(vfp_fcvt_f64_to_f16)(float64 a, CPUARMState *env)
{
    int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
    float16 r = float64_to_float16(a, ieee, &env->vfp.fp_status);
    if (ieee) {
        r = float16_maybe_silence_nan(r);
    }
    return float16_val(r);
}

7403
#define float32_two make_float32(0x40000000)
7404 7405
#define float32_three make_float32(0x40400000)
#define float32_one_point_five make_float32(0x3fc00000)
7406

7407
float32 HELPER(recps_f32)(float32 a, float32 b, CPUARMState *env)
P
pbrook 已提交
7408
{
7409 7410 7411
    float_status *s = &env->vfp.standard_fp_status;
    if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) ||
        (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) {
7412 7413 7414
        if (!(float32_is_zero(a) || float32_is_zero(b))) {
            float_raise(float_flag_input_denormal, s);
        }
7415 7416 7417
        return float32_two;
    }
    return float32_sub(float32_two, float32_mul(a, b, s), s);
P
pbrook 已提交
7418 7419
}

7420
float32 HELPER(rsqrts_f32)(float32 a, float32 b, CPUARMState *env)
P
pbrook 已提交
7421
{
7422
    float_status *s = &env->vfp.standard_fp_status;
7423 7424 7425
    float32 product;
    if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) ||
        (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) {
7426 7427 7428
        if (!(float32_is_zero(a) || float32_is_zero(b))) {
            float_raise(float_flag_input_denormal, s);
        }
7429
        return float32_one_point_five;
7430
    }
7431 7432
    product = float32_mul(a, b, s);
    return float32_div(float32_sub(float32_three, product, s), float32_two, s);
P
pbrook 已提交
7433 7434
}

P
pbrook 已提交
7435 7436
/* NEON helpers.  */

7437 7438 7439 7440
/* Constants 256 and 512 are used in some helpers; we avoid relying on
 * int->float conversions at run-time.  */
#define float64_256 make_float64(0x4070000000000000LL)
#define float64_512 make_float64(0x4080000000000000LL)
7441 7442
#define float32_maxnorm make_float32(0x7f7fffff)
#define float64_maxnorm make_float64(0x7fefffffffffffffLL)
7443

7444 7445 7446 7447
/* Reciprocal functions
 *
 * The algorithm that must be used to calculate the estimate
 * is specified by the ARM ARM, see FPRecipEstimate()
7448
 */
7449 7450

static float64 recip_estimate(float64 a, float_status *real_fp_status)
7451
{
7452 7453 7454
    /* These calculations mustn't set any fp exception flags,
     * so we use a local copy of the fp_status.
     */
7455
    float_status dummy_status = *real_fp_status;
7456
    float_status *s = &dummy_status;
7457 7458 7459 7460 7461 7462 7463 7464 7465 7466 7467 7468 7469 7470 7471 7472 7473 7474 7475
    /* q = (int)(a * 512.0) */
    float64 q = float64_mul(float64_512, a, s);
    int64_t q_int = float64_to_int64_round_to_zero(q, s);

    /* r = 1.0 / (((double)q + 0.5) / 512.0) */
    q = int64_to_float64(q_int, s);
    q = float64_add(q, float64_half, s);
    q = float64_div(q, float64_512, s);
    q = float64_div(float64_one, q, s);

    /* s = (int)(256.0 * r + 0.5) */
    q = float64_mul(q, float64_256, s);
    q = float64_add(q, float64_half, s);
    q_int = float64_to_int64_round_to_zero(q, s);

    /* return (double)s / 256.0 */
    return float64_div(int64_to_float64(q_int, s), float64_256, s);
}

7476 7477
/* Common wrapper to call recip_estimate */
static float64 call_recip_estimate(float64 num, int off, float_status *fpst)
P
pbrook 已提交
7478
{
7479 7480 7481 7482 7483
    uint64_t val64 = float64_val(num);
    uint64_t frac = extract64(val64, 0, 52);
    int64_t exp = extract64(val64, 52, 11);
    uint64_t sbit;
    float64 scaled, estimate;
7484

7485 7486 7487 7488 7489 7490 7491 7492 7493
    /* Generate the scaled number for the estimate function */
    if (exp == 0) {
        if (extract64(frac, 51, 1) == 0) {
            exp = -1;
            frac = extract64(frac, 0, 50) << 2;
        } else {
            frac = extract64(frac, 0, 51) << 1;
        }
    }
7494

7495 7496 7497 7498 7499 7500 7501 7502 7503 7504 7505 7506 7507 7508 7509 7510 7511 7512 7513 7514 7515 7516 7517 7518 7519 7520 7521 7522 7523 7524 7525 7526 7527 7528 7529 7530 7531 7532 7533 7534 7535 7536 7537 7538 7539 7540 7541 7542 7543 7544 7545 7546 7547 7548 7549 7550
    /* scaled = '0' : '01111111110' : fraction<51:44> : Zeros(44); */
    scaled = make_float64((0x3feULL << 52)
                          | extract64(frac, 44, 8) << 44);

    estimate = recip_estimate(scaled, fpst);

    /* Build new result */
    val64 = float64_val(estimate);
    sbit = 0x8000000000000000ULL & val64;
    exp = off - exp;
    frac = extract64(val64, 0, 52);

    if (exp == 0) {
        frac = 1ULL << 51 | extract64(frac, 1, 51);
    } else if (exp == -1) {
        frac = 1ULL << 50 | extract64(frac, 2, 50);
        exp = 0;
    }

    return make_float64(sbit | (exp << 52) | frac);
}

static bool round_to_inf(float_status *fpst, bool sign_bit)
{
    switch (fpst->float_rounding_mode) {
    case float_round_nearest_even: /* Round to Nearest */
        return true;
    case float_round_up: /* Round to +Inf */
        return !sign_bit;
    case float_round_down: /* Round to -Inf */
        return sign_bit;
    case float_round_to_zero: /* Round to Zero */
        return false;
    }

    g_assert_not_reached();
}

float32 HELPER(recpe_f32)(float32 input, void *fpstp)
{
    float_status *fpst = fpstp;
    float32 f32 = float32_squash_input_denormal(input, fpst);
    uint32_t f32_val = float32_val(f32);
    uint32_t f32_sbit = 0x80000000ULL & f32_val;
    int32_t f32_exp = extract32(f32_val, 23, 8);
    uint32_t f32_frac = extract32(f32_val, 0, 23);
    float64 f64, r64;
    uint64_t r64_val;
    int64_t r64_exp;
    uint64_t r64_frac;

    if (float32_is_any_nan(f32)) {
        float32 nan = f32;
        if (float32_is_signaling_nan(f32)) {
            float_raise(float_flag_invalid, fpst);
            nan = float32_maybe_silence_nan(f32);
7551
        }
7552 7553
        if (fpst->default_nan_mode) {
            nan =  float32_default_nan;
7554
        }
7555 7556 7557 7558 7559 7560 7561 7562 7563 7564 7565 7566 7567 7568 7569 7570 7571
        return nan;
    } else if (float32_is_infinity(f32)) {
        return float32_set_sign(float32_zero, float32_is_neg(f32));
    } else if (float32_is_zero(f32)) {
        float_raise(float_flag_divbyzero, fpst);
        return float32_set_sign(float32_infinity, float32_is_neg(f32));
    } else if ((f32_val & ~(1ULL << 31)) < (1ULL << 21)) {
        /* Abs(value) < 2.0^-128 */
        float_raise(float_flag_overflow | float_flag_inexact, fpst);
        if (round_to_inf(fpst, f32_sbit)) {
            return float32_set_sign(float32_infinity, float32_is_neg(f32));
        } else {
            return float32_set_sign(float32_maxnorm, float32_is_neg(f32));
        }
    } else if (f32_exp >= 253 && fpst->flush_to_zero) {
        float_raise(float_flag_underflow, fpst);
        return float32_set_sign(float32_zero, float32_is_neg(f32));
7572 7573 7574
    }


7575 7576 7577 7578 7579 7580 7581 7582 7583 7584 7585 7586 7587 7588 7589 7590 7591 7592 7593 7594 7595 7596 7597 7598 7599 7600 7601 7602 7603 7604 7605 7606 7607 7608 7609 7610 7611 7612 7613 7614 7615 7616 7617 7618 7619 7620 7621 7622
    f64 = make_float64(((int64_t)(f32_exp) << 52) | (int64_t)(f32_frac) << 29);
    r64 = call_recip_estimate(f64, 253, fpst);
    r64_val = float64_val(r64);
    r64_exp = extract64(r64_val, 52, 11);
    r64_frac = extract64(r64_val, 0, 52);

    /* result = sign : result_exp<7:0> : fraction<51:29>; */
    return make_float32(f32_sbit |
                        (r64_exp & 0xff) << 23 |
                        extract64(r64_frac, 29, 24));
}

float64 HELPER(recpe_f64)(float64 input, void *fpstp)
{
    float_status *fpst = fpstp;
    float64 f64 = float64_squash_input_denormal(input, fpst);
    uint64_t f64_val = float64_val(f64);
    uint64_t f64_sbit = 0x8000000000000000ULL & f64_val;
    int64_t f64_exp = extract64(f64_val, 52, 11);
    float64 r64;
    uint64_t r64_val;
    int64_t r64_exp;
    uint64_t r64_frac;

    /* Deal with any special cases */
    if (float64_is_any_nan(f64)) {
        float64 nan = f64;
        if (float64_is_signaling_nan(f64)) {
            float_raise(float_flag_invalid, fpst);
            nan = float64_maybe_silence_nan(f64);
        }
        if (fpst->default_nan_mode) {
            nan =  float64_default_nan;
        }
        return nan;
    } else if (float64_is_infinity(f64)) {
        return float64_set_sign(float64_zero, float64_is_neg(f64));
    } else if (float64_is_zero(f64)) {
        float_raise(float_flag_divbyzero, fpst);
        return float64_set_sign(float64_infinity, float64_is_neg(f64));
    } else if ((f64_val & ~(1ULL << 63)) < (1ULL << 50)) {
        /* Abs(value) < 2.0^-1024 */
        float_raise(float_flag_overflow | float_flag_inexact, fpst);
        if (round_to_inf(fpst, f64_sbit)) {
            return float64_set_sign(float64_infinity, float64_is_neg(f64));
        } else {
            return float64_set_sign(float64_maxnorm, float64_is_neg(f64));
        }
7623
    } else if (f64_exp >= 2045 && fpst->flush_to_zero) {
7624 7625 7626
        float_raise(float_flag_underflow, fpst);
        return float64_set_sign(float64_zero, float64_is_neg(f64));
    }
7627

7628 7629 7630 7631
    r64 = call_recip_estimate(f64, 2045, fpst);
    r64_val = float64_val(r64);
    r64_exp = extract64(r64_val, 52, 11);
    r64_frac = extract64(r64_val, 0, 52);
7632

7633 7634 7635 7636
    /* result = sign : result_exp<10:0> : fraction<51:0> */
    return make_float64(f64_sbit |
                        ((r64_exp & 0x7ff) << 52) |
                        r64_frac);
P
pbrook 已提交
7637 7638
}

7639 7640 7641
/* The algorithm that must be used to calculate the estimate
 * is specified by the ARM ARM.
 */
7642
static float64 recip_sqrt_estimate(float64 a, float_status *real_fp_status)
7643
{
7644 7645 7646
    /* These calculations mustn't set any fp exception flags,
     * so we use a local copy of the fp_status.
     */
7647
    float_status dummy_status = *real_fp_status;
7648
    float_status *s = &dummy_status;
7649 7650 7651 7652 7653 7654 7655 7656 7657 7658 7659 7660 7661 7662 7663 7664 7665 7666 7667 7668 7669 7670 7671 7672 7673 7674 7675 7676 7677 7678 7679 7680 7681 7682 7683 7684 7685 7686 7687 7688 7689 7690 7691 7692 7693
    float64 q;
    int64_t q_int;

    if (float64_lt(a, float64_half, s)) {
        /* range 0.25 <= a < 0.5 */

        /* a in units of 1/512 rounded down */
        /* q0 = (int)(a * 512.0);  */
        q = float64_mul(float64_512, a, s);
        q_int = float64_to_int64_round_to_zero(q, s);

        /* reciprocal root r */
        /* r = 1.0 / sqrt(((double)q0 + 0.5) / 512.0);  */
        q = int64_to_float64(q_int, s);
        q = float64_add(q, float64_half, s);
        q = float64_div(q, float64_512, s);
        q = float64_sqrt(q, s);
        q = float64_div(float64_one, q, s);
    } else {
        /* range 0.5 <= a < 1.0 */

        /* a in units of 1/256 rounded down */
        /* q1 = (int)(a * 256.0); */
        q = float64_mul(float64_256, a, s);
        int64_t q_int = float64_to_int64_round_to_zero(q, s);

        /* reciprocal root r */
        /* r = 1.0 /sqrt(((double)q1 + 0.5) / 256); */
        q = int64_to_float64(q_int, s);
        q = float64_add(q, float64_half, s);
        q = float64_div(q, float64_256, s);
        q = float64_sqrt(q, s);
        q = float64_div(float64_one, q, s);
    }
    /* r in units of 1/256 rounded to nearest */
    /* s = (int)(256.0 * r + 0.5); */

    q = float64_mul(q, float64_256,s );
    q = float64_add(q, float64_half, s);
    q_int = float64_to_int64_round_to_zero(q, s);

    /* return (double)s / 256.0;*/
    return float64_div(int64_to_float64(q_int, s), float64_256, s);
}

7694
float32 HELPER(rsqrte_f32)(float32 input, void *fpstp)
P
pbrook 已提交
7695
{
7696 7697 7698 7699 7700 7701 7702 7703
    float_status *s = fpstp;
    float32 f32 = float32_squash_input_denormal(input, s);
    uint32_t val = float32_val(f32);
    uint32_t f32_sbit = 0x80000000 & val;
    int32_t f32_exp = extract32(val, 23, 8);
    uint32_t f32_frac = extract32(val, 0, 23);
    uint64_t f64_frac;
    uint64_t val64;
7704 7705 7706
    int result_exp;
    float64 f64;

7707 7708 7709
    if (float32_is_any_nan(f32)) {
        float32 nan = f32;
        if (float32_is_signaling_nan(f32)) {
7710
            float_raise(float_flag_invalid, s);
7711
            nan = float32_maybe_silence_nan(f32);
7712
        }
7713 7714
        if (s->default_nan_mode) {
            nan =  float32_default_nan;
7715
        }
7716 7717
        return nan;
    } else if (float32_is_zero(f32)) {
7718
        float_raise(float_flag_divbyzero, s);
7719 7720
        return float32_set_sign(float32_infinity, float32_is_neg(f32));
    } else if (float32_is_neg(f32)) {
7721 7722
        float_raise(float_flag_invalid, s);
        return float32_default_nan;
7723
    } else if (float32_is_infinity(f32)) {
7724 7725 7726
        return float32_zero;
    }

7727
    /* Scale and normalize to a double-precision value between 0.25 and 1.0,
7728
     * preserving the parity of the exponent.  */
7729 7730 7731 7732 7733 7734 7735 7736 7737 7738 7739 7740

    f64_frac = ((uint64_t) f32_frac) << 29;
    if (f32_exp == 0) {
        while (extract64(f64_frac, 51, 1) == 0) {
            f64_frac = f64_frac << 1;
            f32_exp = f32_exp-1;
        }
        f64_frac = extract64(f64_frac, 0, 51) << 1;
    }

    if (extract64(f32_exp, 0, 1) == 0) {
        f64 = make_float64(((uint64_t) f32_sbit) << 32
7741
                           | (0x3feULL << 52)
7742
                           | f64_frac);
7743
    } else {
7744
        f64 = make_float64(((uint64_t) f32_sbit) << 32
7745
                           | (0x3fdULL << 52)
7746
                           | f64_frac);
7747 7748
    }

7749
    result_exp = (380 - f32_exp) / 2;
7750

7751
    f64 = recip_sqrt_estimate(f64, s);
7752 7753 7754

    val64 = float64_val(f64);

7755
    val = ((result_exp & 0xff) << 23)
7756 7757
        | ((val64 >> 29)  & 0x7fffff);
    return make_float32(val);
P
pbrook 已提交
7758 7759
}

7760 7761 7762 7763 7764 7765 7766 7767 7768 7769 7770 7771 7772 7773 7774 7775 7776 7777 7778 7779 7780 7781 7782 7783 7784 7785 7786 7787 7788 7789 7790 7791 7792 7793 7794 7795 7796 7797 7798 7799 7800 7801 7802 7803 7804 7805 7806 7807 7808 7809 7810 7811 7812 7813 7814 7815 7816 7817 7818 7819 7820 7821 7822
float64 HELPER(rsqrte_f64)(float64 input, void *fpstp)
{
    float_status *s = fpstp;
    float64 f64 = float64_squash_input_denormal(input, s);
    uint64_t val = float64_val(f64);
    uint64_t f64_sbit = 0x8000000000000000ULL & val;
    int64_t f64_exp = extract64(val, 52, 11);
    uint64_t f64_frac = extract64(val, 0, 52);
    int64_t result_exp;
    uint64_t result_frac;

    if (float64_is_any_nan(f64)) {
        float64 nan = f64;
        if (float64_is_signaling_nan(f64)) {
            float_raise(float_flag_invalid, s);
            nan = float64_maybe_silence_nan(f64);
        }
        if (s->default_nan_mode) {
            nan =  float64_default_nan;
        }
        return nan;
    } else if (float64_is_zero(f64)) {
        float_raise(float_flag_divbyzero, s);
        return float64_set_sign(float64_infinity, float64_is_neg(f64));
    } else if (float64_is_neg(f64)) {
        float_raise(float_flag_invalid, s);
        return float64_default_nan;
    } else if (float64_is_infinity(f64)) {
        return float64_zero;
    }

    /* Scale and normalize to a double-precision value between 0.25 and 1.0,
     * preserving the parity of the exponent.  */

    if (f64_exp == 0) {
        while (extract64(f64_frac, 51, 1) == 0) {
            f64_frac = f64_frac << 1;
            f64_exp = f64_exp - 1;
        }
        f64_frac = extract64(f64_frac, 0, 51) << 1;
    }

    if (extract64(f64_exp, 0, 1) == 0) {
        f64 = make_float64(f64_sbit
                           | (0x3feULL << 52)
                           | f64_frac);
    } else {
        f64 = make_float64(f64_sbit
                           | (0x3fdULL << 52)
                           | f64_frac);
    }

    result_exp = (3068 - f64_exp) / 2;

    f64 = recip_sqrt_estimate(f64, s);

    result_frac = extract64(float64_val(f64), 0, 52);

    return make_float64(f64_sbit |
                        ((result_exp & 0x7ff) << 52) |
                        result_frac);
}

7823
uint32_t HELPER(recpe_u32)(uint32_t a, void *fpstp)
P
pbrook 已提交
7824
{
7825
    float_status *s = fpstp;
7826 7827 7828 7829 7830 7831 7832 7833 7834
    float64 f64;

    if ((a & 0x80000000) == 0) {
        return 0xffffffff;
    }

    f64 = make_float64((0x3feULL << 52)
                       | ((int64_t)(a & 0x7fffffff) << 21));

7835
    f64 = recip_estimate(f64, s);
7836 7837

    return 0x80000000 | ((float64_val(f64) >> 21) & 0x7fffffff);
P
pbrook 已提交
7838 7839
}

7840
uint32_t HELPER(rsqrte_u32)(uint32_t a, void *fpstp)
P
pbrook 已提交
7841
{
7842
    float_status *fpst = fpstp;
7843 7844 7845 7846 7847 7848 7849 7850 7851 7852 7853 7854 7855 7856
    float64 f64;

    if ((a & 0xc0000000) == 0) {
        return 0xffffffff;
    }

    if (a & 0x80000000) {
        f64 = make_float64((0x3feULL << 52)
                           | ((uint64_t)(a & 0x7fffffff) << 21));
    } else { /* bits 31-30 == '01' */
        f64 = make_float64((0x3fdULL << 52)
                           | ((uint64_t)(a & 0x3fffffff) << 22));
    }

7857
    f64 = recip_sqrt_estimate(f64, fpst);
7858 7859

    return 0x80000000 | ((float64_val(f64) >> 21) & 0x7fffffff);
P
pbrook 已提交
7860
}
7861

7862 7863 7864 7865 7866 7867 7868 7869 7870 7871 7872 7873
/* VFPv4 fused multiply-accumulate */
float32 VFP_HELPER(muladd, s)(float32 a, float32 b, float32 c, void *fpstp)
{
    float_status *fpst = fpstp;
    return float32_muladd(a, b, c, 0, fpst);
}

float64 VFP_HELPER(muladd, d)(float64 a, float64 b, float64 c, void *fpstp)
{
    float_status *fpst = fpstp;
    return float64_muladd(a, b, c, 0, fpst);
}
7874 7875 7876 7877 7878 7879 7880 7881 7882 7883 7884 7885 7886 7887 7888 7889 7890 7891 7892 7893 7894 7895 7896 7897 7898 7899 7900 7901 7902 7903 7904 7905 7906 7907 7908 7909 7910 7911 7912 7913 7914 7915 7916 7917 7918

/* ARMv8 round to integral */
float32 HELPER(rints_exact)(float32 x, void *fp_status)
{
    return float32_round_to_int(x, fp_status);
}

float64 HELPER(rintd_exact)(float64 x, void *fp_status)
{
    return float64_round_to_int(x, fp_status);
}

float32 HELPER(rints)(float32 x, void *fp_status)
{
    int old_flags = get_float_exception_flags(fp_status), new_flags;
    float32 ret;

    ret = float32_round_to_int(x, fp_status);

    /* Suppress any inexact exceptions the conversion produced */
    if (!(old_flags & float_flag_inexact)) {
        new_flags = get_float_exception_flags(fp_status);
        set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status);
    }

    return ret;
}

float64 HELPER(rintd)(float64 x, void *fp_status)
{
    int old_flags = get_float_exception_flags(fp_status), new_flags;
    float64 ret;

    ret = float64_round_to_int(x, fp_status);

    new_flags = get_float_exception_flags(fp_status);

    /* Suppress any inexact exceptions the conversion produced */
    if (!(old_flags & float_flag_inexact)) {
        new_flags = get_float_exception_flags(fp_status);
        set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status);
    }

    return ret;
}
7919 7920 7921 7922 7923 7924 7925 7926 7927 7928 7929 7930 7931 7932 7933 7934 7935 7936 7937 7938 7939 7940 7941 7942 7943 7944 7945 7946

/* Convert ARM rounding mode to softfloat */
int arm_rmode_to_sf(int rmode)
{
    switch (rmode) {
    case FPROUNDING_TIEAWAY:
        rmode = float_round_ties_away;
        break;
    case FPROUNDING_ODD:
        /* FIXME: add support for TIEAWAY and ODD */
        qemu_log_mask(LOG_UNIMP, "arm: unimplemented rounding mode: %d\n",
                      rmode);
    case FPROUNDING_TIEEVEN:
    default:
        rmode = float_round_nearest_even;
        break;
    case FPROUNDING_POSINF:
        rmode = float_round_up;
        break;
    case FPROUNDING_NEGINF:
        rmode = float_round_down;
        break;
    case FPROUNDING_ZERO:
        rmode = float_round_to_zero;
        break;
    }
    return rmode;
}
7947

7948 7949 7950 7951
/* CRC helpers.
 * The upper bytes of val (above the number specified by 'bytes') must have
 * been zeroed out by the caller.
 */
7952 7953 7954 7955
uint32_t HELPER(crc32)(uint32_t acc, uint32_t val, uint32_t bytes)
{
    uint8_t buf[4];

7956
    stl_le_p(buf, val);
7957 7958 7959 7960 7961 7962 7963 7964 7965

    /* zlib crc32 converts the accumulator and output to one's complement.  */
    return crc32(acc ^ 0xffffffff, buf, bytes) ^ 0xffffffff;
}

uint32_t HELPER(crc32c)(uint32_t acc, uint32_t val, uint32_t bytes)
{
    uint8_t buf[4];

7966
    stl_le_p(buf, val);
7967 7968 7969 7970

    /* Linux crc32c converts the output to one's complement.  */
    return crc32c(acc, buf, bytes) ^ 0xffffffff;
}