helper.c 252.1 KB
Newer Older
B
bellard 已提交
1
#include "cpu.h"
2
#include "internals.h"
3
#include "exec/gdbstub.h"
4
#include "exec/helper-proto.h"
5
#include "qemu/host-utils.h"
6
#include "sysemu/arch_init.h"
7
#include "sysemu/sysemu.h"
8
#include "qemu/bitops.h"
9
#include "qemu/crc32c.h"
P
Paolo Bonzini 已提交
10
#include "exec/cpu_ldst.h"
11
#include "arm_ldst.h"
12
#include <zlib.h> /* For crc32 */
P
Peter Maydell 已提交
13

14
#ifndef CONFIG_USER_ONLY
15
static inline int get_phys_addr(CPUARMState *env, target_ulong address,
16
                                int access_type, ARMMMUIdx mmu_idx,
17
                                hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
18
                                target_ulong *page_size);
19 20 21 22 23

/* Definitions for the PMCCNTR and PMCR registers */
#define PMCRD   0x8
#define PMCRC   0x4
#define PMCRE   0x1
24 25
#endif

26
static int vfp_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg)
P
pbrook 已提交
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52
{
    int nregs;

    /* VFP data registers are always little-endian.  */
    nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16;
    if (reg < nregs) {
        stfq_le_p(buf, env->vfp.regs[reg]);
        return 8;
    }
    if (arm_feature(env, ARM_FEATURE_NEON)) {
        /* Aliases for Q regs.  */
        nregs += 16;
        if (reg < nregs) {
            stfq_le_p(buf, env->vfp.regs[(reg - 32) * 2]);
            stfq_le_p(buf + 8, env->vfp.regs[(reg - 32) * 2 + 1]);
            return 16;
        }
    }
    switch (reg - nregs) {
    case 0: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSID]); return 4;
    case 1: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSCR]); return 4;
    case 2: stl_p(buf, env->vfp.xregs[ARM_VFP_FPEXC]); return 4;
    }
    return 0;
}

53
static int vfp_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg)
P
pbrook 已提交
54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72
{
    int nregs;

    nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16;
    if (reg < nregs) {
        env->vfp.regs[reg] = ldfq_le_p(buf);
        return 8;
    }
    if (arm_feature(env, ARM_FEATURE_NEON)) {
        nregs += 16;
        if (reg < nregs) {
            env->vfp.regs[(reg - 32) * 2] = ldfq_le_p(buf);
            env->vfp.regs[(reg - 32) * 2 + 1] = ldfq_le_p(buf + 8);
            return 16;
        }
    }
    switch (reg - nregs) {
    case 0: env->vfp.xregs[ARM_VFP_FPSID] = ldl_p(buf); return 4;
    case 1: env->vfp.xregs[ARM_VFP_FPSCR] = ldl_p(buf); return 4;
73
    case 2: env->vfp.xregs[ARM_VFP_FPEXC] = ldl_p(buf) & (1 << 30); return 4;
P
pbrook 已提交
74 75 76 77
    }
    return 0;
}

78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119
static int aarch64_fpu_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg)
{
    switch (reg) {
    case 0 ... 31:
        /* 128 bit FP register */
        stfq_le_p(buf, env->vfp.regs[reg * 2]);
        stfq_le_p(buf + 8, env->vfp.regs[reg * 2 + 1]);
        return 16;
    case 32:
        /* FPSR */
        stl_p(buf, vfp_get_fpsr(env));
        return 4;
    case 33:
        /* FPCR */
        stl_p(buf, vfp_get_fpcr(env));
        return 4;
    default:
        return 0;
    }
}

static int aarch64_fpu_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg)
{
    switch (reg) {
    case 0 ... 31:
        /* 128 bit FP register */
        env->vfp.regs[reg * 2] = ldfq_le_p(buf);
        env->vfp.regs[reg * 2 + 1] = ldfq_le_p(buf + 8);
        return 16;
    case 32:
        /* FPSR */
        vfp_set_fpsr(env, ldl_p(buf));
        return 4;
    case 33:
        /* FPCR */
        vfp_set_fpcr(env, ldl_p(buf));
        return 4;
    default:
        return 0;
    }
}

120
static uint64_t raw_read(CPUARMState *env, const ARMCPRegInfo *ri)
121
{
122
    assert(ri->fieldoffset);
123
    if (cpreg_field_is_64bit(ri)) {
124
        return CPREG_FIELD64(env, ri);
125
    } else {
126
        return CPREG_FIELD32(env, ri);
127
    }
128 129
}

130 131
static void raw_write(CPUARMState *env, const ARMCPRegInfo *ri,
                      uint64_t value)
132
{
133
    assert(ri->fieldoffset);
134
    if (cpreg_field_is_64bit(ri)) {
135 136 137 138
        CPREG_FIELD64(env, ri) = value;
    } else {
        CPREG_FIELD32(env, ri) = value;
    }
139 140
}

F
Fabian Aggeler 已提交
141 142 143 144 145
static void *raw_ptr(CPUARMState *env, const ARMCPRegInfo *ri)
{
    return (char *)env + ri->fieldoffset;
}

146
static uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri)
147
{
148
    /* Raw read of a coprocessor register (as needed for migration, etc). */
149
    if (ri->type & ARM_CP_CONST) {
150
        return ri->resetvalue;
151
    } else if (ri->raw_readfn) {
152
        return ri->raw_readfn(env, ri);
153
    } else if (ri->readfn) {
154
        return ri->readfn(env, ri);
155
    } else {
156
        return raw_read(env, ri);
157 158 159
    }
}

160
static void write_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri,
161
                             uint64_t v)
162 163 164 165 166 167 168
{
    /* Raw write of a coprocessor register (as needed for migration, etc).
     * Note that constant registers are treated as write-ignored; the
     * caller should check for success by whether a readback gives the
     * value written.
     */
    if (ri->type & ARM_CP_CONST) {
169
        return;
170
    } else if (ri->raw_writefn) {
171
        ri->raw_writefn(env, ri, v);
172
    } else if (ri->writefn) {
173
        ri->writefn(env, ri, v);
174
    } else {
175
        raw_write(env, ri, v);
176 177 178
    }
}

179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199
static bool raw_accessors_invalid(const ARMCPRegInfo *ri)
{
   /* Return true if the regdef would cause an assertion if you called
    * read_raw_cp_reg() or write_raw_cp_reg() on it (ie if it is a
    * program bug for it not to have the NO_RAW flag).
    * NB that returning false here doesn't necessarily mean that calling
    * read/write_raw_cp_reg() is safe, because we can't distinguish "has
    * read/write access functions which are safe for raw use" from "has
    * read/write access functions which have side effects but has forgotten
    * to provide raw access functions".
    * The tests here line up with the conditions in read/write_raw_cp_reg()
    * and assertions in raw_read()/raw_write().
    */
    if ((ri->type & ARM_CP_CONST) ||
        ri->fieldoffset ||
        ((ri->raw_writefn || ri->writefn) && (ri->raw_readfn || ri->readfn))) {
        return false;
    }
    return true;
}

200 201 202 203 204 205 206 207 208
bool write_cpustate_to_list(ARMCPU *cpu)
{
    /* Write the coprocessor state from cpu->env to the (index,value) list. */
    int i;
    bool ok = true;

    for (i = 0; i < cpu->cpreg_array_len; i++) {
        uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
        const ARMCPRegInfo *ri;
209

210
        ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
211 212 213 214
        if (!ri) {
            ok = false;
            continue;
        }
215
        if (ri->type & ARM_CP_NO_RAW) {
216 217
            continue;
        }
218
        cpu->cpreg_values[i] = read_raw_cp_reg(&cpu->env, ri);
219 220 221 222 223 224 225 226 227 228 229 230 231 232
    }
    return ok;
}

bool write_list_to_cpustate(ARMCPU *cpu)
{
    int i;
    bool ok = true;

    for (i = 0; i < cpu->cpreg_array_len; i++) {
        uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
        uint64_t v = cpu->cpreg_values[i];
        const ARMCPRegInfo *ri;

233
        ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
234 235 236 237
        if (!ri) {
            ok = false;
            continue;
        }
238
        if (ri->type & ARM_CP_NO_RAW) {
239 240 241 242 243 244
            continue;
        }
        /* Write value and confirm it reads back as written
         * (to catch read-only registers and partially read-only
         * registers where the incoming migration value doesn't match)
         */
245 246
        write_raw_cp_reg(&cpu->env, ri, v);
        if (read_raw_cp_reg(&cpu->env, ri) != v) {
247 248 249 250 251 252 253 254 255 256 257 258 259
            ok = false;
        }
    }
    return ok;
}

static void add_cpreg_to_list(gpointer key, gpointer opaque)
{
    ARMCPU *cpu = opaque;
    uint64_t regidx;
    const ARMCPRegInfo *ri;

    regidx = *(uint32_t *)key;
260
    ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
261

262
    if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) {
263 264 265 266 267 268 269 270 271 272 273 274 275
        cpu->cpreg_indexes[cpu->cpreg_array_len] = cpreg_to_kvm_id(regidx);
        /* The value array need not be initialized at this point */
        cpu->cpreg_array_len++;
    }
}

static void count_cpreg(gpointer key, gpointer opaque)
{
    ARMCPU *cpu = opaque;
    uint64_t regidx;
    const ARMCPRegInfo *ri;

    regidx = *(uint32_t *)key;
276
    ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
277

278
    if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) {
279 280 281 282 283 284
        cpu->cpreg_array_len++;
    }
}

static gint cpreg_key_compare(gconstpointer a, gconstpointer b)
{
285 286
    uint64_t aidx = cpreg_to_kvm_id(*(uint32_t *)a);
    uint64_t bidx = cpreg_to_kvm_id(*(uint32_t *)b);
287

288 289 290 291 292 293 294
    if (aidx > bidx) {
        return 1;
    }
    if (aidx < bidx) {
        return -1;
    }
    return 0;
295 296
}

297 298 299 300 301 302 303
static void cpreg_make_keylist(gpointer key, gpointer value, gpointer udata)
{
    GList **plist = udata;

    *plist = g_list_prepend(*plist, key);
}

304 305 306 307 308
void init_cpreg_list(ARMCPU *cpu)
{
    /* Initialise the cpreg_tuples[] array based on the cp_regs hash.
     * Note that we require cpreg_tuples[] to be sorted by key ID.
     */
309
    GList *keys = NULL;
310 311
    int arraylen;

312 313
    g_hash_table_foreach(cpu->cp_regs, cpreg_make_keylist, &keys);

314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334
    keys = g_list_sort(keys, cpreg_key_compare);

    cpu->cpreg_array_len = 0;

    g_list_foreach(keys, count_cpreg, cpu);

    arraylen = cpu->cpreg_array_len;
    cpu->cpreg_indexes = g_new(uint64_t, arraylen);
    cpu->cpreg_values = g_new(uint64_t, arraylen);
    cpu->cpreg_vmstate_indexes = g_new(uint64_t, arraylen);
    cpu->cpreg_vmstate_values = g_new(uint64_t, arraylen);
    cpu->cpreg_vmstate_array_len = cpu->cpreg_array_len;
    cpu->cpreg_array_len = 0;

    g_list_foreach(keys, add_cpreg_to_list, cpu);

    assert(cpu->cpreg_array_len == arraylen);

    g_list_free(keys);
}

335
static void dacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
336
{
337 338
    ARMCPU *cpu = arm_env_get_cpu(env);

339
    raw_write(env, ri, value);
340
    tlb_flush(CPU(cpu), 1); /* Flush TLB as domain not tracked in TLB */
341 342
}

343
static void fcse_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
344
{
345 346
    ARMCPU *cpu = arm_env_get_cpu(env);

347
    if (raw_read(env, ri) != value) {
348 349 350
        /* Unlike real hardware the qemu TLB uses virtual addresses,
         * not modified virtual addresses, so this causes a TLB flush.
         */
351
        tlb_flush(CPU(cpu), 1);
352
        raw_write(env, ri, value);
353 354
    }
}
355 356 357

static void contextidr_write(CPUARMState *env, const ARMCPRegInfo *ri,
                             uint64_t value)
358
{
359 360
    ARMCPU *cpu = arm_env_get_cpu(env);

361
    if (raw_read(env, ri) != value && !arm_feature(env, ARM_FEATURE_MPU)
362
        && !extended_addresses_enabled(env)) {
363 364 365 366
        /* For VMSA (when not using the LPAE long descriptor page table
         * format) this register includes the ASID, so do a TLB flush.
         * For PMSA it is purely a process ID and no action is needed.
         */
367
        tlb_flush(CPU(cpu), 1);
368
    }
369
    raw_write(env, ri, value);
370 371
}

372 373
static void tlbiall_write(CPUARMState *env, const ARMCPRegInfo *ri,
                          uint64_t value)
374 375
{
    /* Invalidate all (TLBIALL) */
376 377 378
    ARMCPU *cpu = arm_env_get_cpu(env);

    tlb_flush(CPU(cpu), 1);
379 380
}

381 382
static void tlbimva_write(CPUARMState *env, const ARMCPRegInfo *ri,
                          uint64_t value)
383 384
{
    /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */
385 386 387
    ARMCPU *cpu = arm_env_get_cpu(env);

    tlb_flush_page(CPU(cpu), value & TARGET_PAGE_MASK);
388 389
}

390 391
static void tlbiasid_write(CPUARMState *env, const ARMCPRegInfo *ri,
                           uint64_t value)
392 393
{
    /* Invalidate by ASID (TLBIASID) */
394 395 396
    ARMCPU *cpu = arm_env_get_cpu(env);

    tlb_flush(CPU(cpu), value == 0);
397 398
}

399 400
static void tlbimvaa_write(CPUARMState *env, const ARMCPRegInfo *ri,
                           uint64_t value)
401 402
{
    /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */
403 404 405
    ARMCPU *cpu = arm_env_get_cpu(env);

    tlb_flush_page(CPU(cpu), value & TARGET_PAGE_MASK);
406 407
}

408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448
/* IS variants of TLB operations must affect all cores */
static void tlbiall_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
                             uint64_t value)
{
    CPUState *other_cs;

    CPU_FOREACH(other_cs) {
        tlb_flush(other_cs, 1);
    }
}

static void tlbiasid_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
                             uint64_t value)
{
    CPUState *other_cs;

    CPU_FOREACH(other_cs) {
        tlb_flush(other_cs, value == 0);
    }
}

static void tlbimva_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
                             uint64_t value)
{
    CPUState *other_cs;

    CPU_FOREACH(other_cs) {
        tlb_flush_page(other_cs, value & TARGET_PAGE_MASK);
    }
}

static void tlbimvaa_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
                             uint64_t value)
{
    CPUState *other_cs;

    CPU_FOREACH(other_cs) {
        tlb_flush_page(other_cs, value & TARGET_PAGE_MASK);
    }
}

449
static const ARMCPRegInfo cp_reginfo[] = {
450 451 452 453 454 455 456 457 458 459 460 461 462 463
    /* Define the secure and non-secure FCSE identifier CP registers
     * separately because there is no secure bank in V8 (no _EL3).  This allows
     * the secure register to be properly reset and migrated. There is also no
     * v8 EL1 version of the register so the non-secure instance stands alone.
     */
    { .name = "FCSEIDR(NS)",
      .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0,
      .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS,
      .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_ns),
      .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
    { .name = "FCSEIDR(S)",
      .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0,
      .access = PL1_RW, .secure = ARM_CP_SECSTATE_S,
      .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_s),
464
      .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
465 466 467 468 469 470 471
    /* Define the secure and non-secure context identifier CP registers
     * separately because there is no secure bank in V8 (no _EL3).  This allows
     * the secure register to be properly reset and migrated.  In the
     * non-secure case, the 32-bit register will have reset and migration
     * disabled during registration as it is handled by the 64-bit instance.
     */
    { .name = "CONTEXTIDR_EL1", .state = ARM_CP_STATE_BOTH,
472
      .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
473 474 475 476 477 478 479
      .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS,
      .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[1]),
      .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
    { .name = "CONTEXTIDR(S)", .state = ARM_CP_STATE_AA32,
      .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
      .access = PL1_RW, .secure = ARM_CP_SECSTATE_S,
      .fieldoffset = offsetof(CPUARMState, cp15.contextidr_s),
480
      .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
481 482 483 484 485 486 487 488
    REGINFO_SENTINEL
};

static const ARMCPRegInfo not_v8_cp_reginfo[] = {
    /* NB: Some of these registers exist in v8 but with more precise
     * definitions that don't use CP_ANY wildcards (mostly in v8_cp_reginfo[]).
     */
    /* MMU Domain access control / MPU write buffer control */
F
Fabian Aggeler 已提交
489 490 491 492 493 494
    { .name = "DACR",
      .cp = 15, .opc1 = CP_ANY, .crn = 3, .crm = CP_ANY, .opc2 = CP_ANY,
      .access = PL1_RW, .resetvalue = 0,
      .writefn = dacr_write, .raw_writefn = raw_write,
      .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s),
                             offsetoflow32(CPUARMState, cp15.dacr_ns) } },
495 496 497 498 499
    /* ??? This covers not just the impdef TLB lockdown registers but also
     * some v7VMSA registers relating to TEX remap, so it is overly broad.
     */
    { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = CP_ANY,
      .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
500 501 502 503
    /* Cache maintenance ops; some of this space may be overridden later. */
    { .name = "CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
      .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
      .type = ARM_CP_NOP | ARM_CP_OVERRIDE },
504 505 506
    REGINFO_SENTINEL
};

507 508 509 510 511 512 513 514 515 516 517 518 519 520 521
static const ARMCPRegInfo not_v6_cp_reginfo[] = {
    /* Not all pre-v6 cores implemented this WFI, so this is slightly
     * over-broad.
     */
    { .name = "WFI_v5", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = 2,
      .access = PL1_W, .type = ARM_CP_WFI },
    REGINFO_SENTINEL
};

static const ARMCPRegInfo not_v7_cp_reginfo[] = {
    /* Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which
     * is UNPREDICTABLE; we choose to NOP as most implementations do).
     */
    { .name = "WFI_v6", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
      .access = PL1_W, .type = ARM_CP_WFI },
522 523 524 525 526 527 528 529 530 531
    /* L1 cache lockdown. Not architectural in v6 and earlier but in practice
     * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and
     * OMAPCP will override this space.
     */
    { .name = "DLOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 0,
      .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_data),
      .resetvalue = 0 },
    { .name = "ILOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 1,
      .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_insn),
      .resetvalue = 0 },
532 533
    /* v6 doesn't have the cache ID registers but Linux reads them anyway */
    { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = CP_ANY,
534
      .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
535
      .resetvalue = 0 },
536 537 538 539 540 541 542
    /* We don't implement pre-v7 debug but most CPUs had at least a DBGDIDR;
     * implementing it as RAZ means the "debug architecture version" bits
     * will read as a reserved value, which should cause Linux to not try
     * to use the debug hardware.
     */
    { .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0,
      .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
543 544 545 546 547
    /* MMU TLB control. Note that the wildcarding means we cover not just
     * the unified TLB ops but also the dside/iside/inner-shareable variants.
     */
    { .name = "TLBIALL", .cp = 15, .crn = 8, .crm = CP_ANY,
      .opc1 = CP_ANY, .opc2 = 0, .access = PL1_W, .writefn = tlbiall_write,
548
      .type = ARM_CP_NO_RAW },
549 550
    { .name = "TLBIMVA", .cp = 15, .crn = 8, .crm = CP_ANY,
      .opc1 = CP_ANY, .opc2 = 1, .access = PL1_W, .writefn = tlbimva_write,
551
      .type = ARM_CP_NO_RAW },
552 553
    { .name = "TLBIASID", .cp = 15, .crn = 8, .crm = CP_ANY,
      .opc1 = CP_ANY, .opc2 = 2, .access = PL1_W, .writefn = tlbiasid_write,
554
      .type = ARM_CP_NO_RAW },
555 556
    { .name = "TLBIMVAA", .cp = 15, .crn = 8, .crm = CP_ANY,
      .opc1 = CP_ANY, .opc2 = 3, .access = PL1_W, .writefn = tlbimvaa_write,
557
      .type = ARM_CP_NO_RAW },
558 559 560
    REGINFO_SENTINEL
};

561 562
static void cpacr_write(CPUARMState *env, const ARMCPRegInfo *ri,
                        uint64_t value)
563
{
564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590
    uint32_t mask = 0;

    /* In ARMv8 most bits of CPACR_EL1 are RES0. */
    if (!arm_feature(env, ARM_FEATURE_V8)) {
        /* ARMv7 defines bits for unimplemented coprocessors as RAZ/WI.
         * ASEDIS [31] and D32DIS [30] are both UNK/SBZP without VFP.
         * TRCDIS [28] is RAZ/WI since we do not implement a trace macrocell.
         */
        if (arm_feature(env, ARM_FEATURE_VFP)) {
            /* VFP coprocessor: cp10 & cp11 [23:20] */
            mask |= (1 << 31) | (1 << 30) | (0xf << 20);

            if (!arm_feature(env, ARM_FEATURE_NEON)) {
                /* ASEDIS [31] bit is RAO/WI */
                value |= (1 << 31);
            }

            /* VFPv3 and upwards with NEON implement 32 double precision
             * registers (D0-D31).
             */
            if (!arm_feature(env, ARM_FEATURE_NEON) ||
                    !arm_feature(env, ARM_FEATURE_VFP3)) {
                /* D32DIS [30] is RAO/WI if D16-31 are not implemented. */
                value |= (1 << 30);
            }
        }
        value &= mask;
591
    }
592
    env->cp15.cpacr_el1 = value;
593 594
}

595 596 597 598 599 600 601
static const ARMCPRegInfo v6_cp_reginfo[] = {
    /* prefetch by MVA in v6, NOP in v7 */
    { .name = "MVA_prefetch",
      .cp = 15, .crn = 7, .crm = 13, .opc1 = 0, .opc2 = 1,
      .access = PL1_W, .type = ARM_CP_NOP },
    { .name = "ISB", .cp = 15, .crn = 7, .crm = 5, .opc1 = 0, .opc2 = 4,
      .access = PL0_W, .type = ARM_CP_NOP },
602
    { .name = "DSB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 4,
603
      .access = PL0_W, .type = ARM_CP_NOP },
604
    { .name = "DMB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 5,
605
      .access = PL0_W, .type = ARM_CP_NOP },
606
    { .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 2,
607
      .access = PL1_RW,
F
Fabian Aggeler 已提交
608 609
      .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ifar_s),
                             offsetof(CPUARMState, cp15.ifar_ns) },
610 611 612 613 614 615
      .resetvalue = 0, },
    /* Watchpoint Fault Address Register : should actually only be present
     * for 1136, 1176, 11MPCore.
     */
    { .name = "WFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1,
      .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, },
616 617
    { .name = "CPACR", .state = ARM_CP_STATE_BOTH, .opc0 = 3,
      .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 2,
618
      .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.cpacr_el1),
619
      .resetvalue = 0, .writefn = cpacr_write },
620 621 622
    REGINFO_SENTINEL
};

623
static CPAccessResult pmreg_access(CPUARMState *env, const ARMCPRegInfo *ri)
624
{
S
Stefan Weil 已提交
625
    /* Performance monitor registers user accessibility is controlled
626
     * by PMUSERENR.
627
     */
628
    if (arm_current_el(env) == 0 && !env->cp15.c9_pmuserenr) {
629
        return CP_ACCESS_TRAP;
630
    }
631
    return CP_ACCESS_OK;
632 633
}

634
#ifndef CONFIG_USER_ONLY
635 636 637 638 639 640 641 642 643 644 645 646

static inline bool arm_ccnt_enabled(CPUARMState *env)
{
    /* This does not support checking PMCCFILTR_EL0 register */

    if (!(env->cp15.c9_pmcr & PMCRE)) {
        return false;
    }

    return true;
}

647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663
void pmccntr_sync(CPUARMState *env)
{
    uint64_t temp_ticks;

    temp_ticks = muldiv64(qemu_clock_get_us(QEMU_CLOCK_VIRTUAL),
                          get_ticks_per_sec(), 1000000);

    if (env->cp15.c9_pmcr & PMCRD) {
        /* Increment once every 64 processor clock cycles */
        temp_ticks /= 64;
    }

    if (arm_ccnt_enabled(env)) {
        env->cp15.c15_ccnt = temp_ticks - env->cp15.c15_ccnt;
    }
}

664 665
static void pmcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
                       uint64_t value)
666
{
667
    pmccntr_sync(env);
668 669 670 671 672 673

    if (value & PMCRC) {
        /* The counter has been reset */
        env->cp15.c15_ccnt = 0;
    }

674 675 676
    /* only the DP, X, D and E bits are writable */
    env->cp15.c9_pmcr &= ~0x39;
    env->cp15.c9_pmcr |= (value & 0x39);
677

678
    pmccntr_sync(env);
679 680 681 682
}

static uint64_t pmccntr_read(CPUARMState *env, const ARMCPRegInfo *ri)
{
683
    uint64_t total_ticks;
684

685
    if (!arm_ccnt_enabled(env)) {
686 687 688 689
        /* Counter is disabled, do not change value */
        return env->cp15.c15_ccnt;
    }

690 691
    total_ticks = muldiv64(qemu_clock_get_us(QEMU_CLOCK_VIRTUAL),
                           get_ticks_per_sec(), 1000000);
692 693 694 695 696 697 698 699 700 701 702

    if (env->cp15.c9_pmcr & PMCRD) {
        /* Increment once every 64 processor clock cycles */
        total_ticks /= 64;
    }
    return total_ticks - env->cp15.c15_ccnt;
}

static void pmccntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
                        uint64_t value)
{
703
    uint64_t total_ticks;
704

705
    if (!arm_ccnt_enabled(env)) {
706 707 708 709 710
        /* Counter is disabled, set the absolute value */
        env->cp15.c15_ccnt = value;
        return;
    }

711 712
    total_ticks = muldiv64(qemu_clock_get_us(QEMU_CLOCK_VIRTUAL),
                           get_ticks_per_sec(), 1000000);
713 714 715 716 717 718

    if (env->cp15.c9_pmcr & PMCRD) {
        /* Increment once every 64 processor clock cycles */
        total_ticks /= 64;
    }
    env->cp15.c15_ccnt = total_ticks - value;
719
}
720 721 722 723 724 725 726 727 728

static void pmccntr_write32(CPUARMState *env, const ARMCPRegInfo *ri,
                            uint64_t value)
{
    uint64_t cur_val = pmccntr_read(env, NULL);

    pmccntr_write(env, ri, deposit64(cur_val, 0, 32, value));
}

729 730 731 732 733 734
#else /* CONFIG_USER_ONLY */

void pmccntr_sync(CPUARMState *env)
{
}

735
#endif
736

737 738 739 740 741 742 743 744
static void pmccfiltr_write(CPUARMState *env, const ARMCPRegInfo *ri,
                            uint64_t value)
{
    pmccntr_sync(env);
    env->cp15.pmccfiltr_el0 = value & 0x7E000000;
    pmccntr_sync(env);
}

745
static void pmcntenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
746 747 748 749 750 751
                            uint64_t value)
{
    value &= (1 << 31);
    env->cp15.c9_pmcnten |= value;
}

752 753
static void pmcntenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
                             uint64_t value)
754 755 756 757 758
{
    value &= (1 << 31);
    env->cp15.c9_pmcnten &= ~value;
}

759 760
static void pmovsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
                         uint64_t value)
761 762 763 764
{
    env->cp15.c9_pmovsr &= ~value;
}

765 766
static void pmxevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri,
                             uint64_t value)
767 768 769 770
{
    env->cp15.c9_pmxevtyper = value & 0xff;
}

771
static void pmuserenr_write(CPUARMState *env, const ARMCPRegInfo *ri,
772 773 774 775 776
                            uint64_t value)
{
    env->cp15.c9_pmuserenr = value & 1;
}

777 778
static void pmintenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
                             uint64_t value)
779 780 781 782 783 784
{
    /* We have no event counters so only the C bit can be changed */
    value &= (1 << 31);
    env->cp15.c9_pminten |= value;
}

785 786
static void pmintenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
                             uint64_t value)
787 788 789 790 791
{
    value &= (1 << 31);
    env->cp15.c9_pminten &= ~value;
}

792 793
static void vbar_write(CPUARMState *env, const ARMCPRegInfo *ri,
                       uint64_t value)
N
Nathan Rossi 已提交
794
{
795 796 797 798 799 800
    /* Note that even though the AArch64 view of this register has bits
     * [10:0] all RES0 we can only mask the bottom 5, to comply with the
     * architectural requirements for bits which are RES0 only in some
     * contexts. (ARMv8 would permit us to do no masking at all, but ARMv7
     * requires the bottom five bits to be RAZ/WI because they're UNK/SBZP.)
     */
801
    raw_write(env, ri, value & ~0x1FULL);
N
Nathan Rossi 已提交
802 803
}

E
Edgar E. Iglesias 已提交
804 805 806 807 808 809 810 811 812 813 814 815 816 817 818
static void scr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
{
    /* We only mask off bits that are RES0 both for AArch64 and AArch32.
     * For bits that vary between AArch32/64, code needs to check the
     * current execution mode before directly using the feature bit.
     */
    uint32_t valid_mask = SCR_AARCH64_MASK | SCR_AARCH32_MASK;

    if (!arm_feature(env, ARM_FEATURE_EL2)) {
        valid_mask &= ~SCR_HCE;

        /* On ARMv7, SMD (or SCD as it is called in v7) is only
         * supported if EL2 exists. The bit is UNK/SBZP when
         * EL2 is unavailable. In QEMU ARMv7, we force it to always zero
         * when EL2 is unavailable.
G
Greg Bellows 已提交
819
         * On ARMv8, this bit is always available.
E
Edgar E. Iglesias 已提交
820
         */
G
Greg Bellows 已提交
821 822
        if (arm_feature(env, ARM_FEATURE_V7) &&
            !arm_feature(env, ARM_FEATURE_V8)) {
E
Edgar E. Iglesias 已提交
823 824 825 826 827 828 829 830 831
            valid_mask &= ~SCR_SMD;
        }
    }

    /* Clear all-context RES0 bits.  */
    value &= valid_mask;
    raw_write(env, ri, value);
}

832
static uint64_t ccsidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
833 834
{
    ARMCPU *cpu = arm_env_get_cpu(env);
F
Fabian Aggeler 已提交
835 836 837 838 839 840 841 842

    /* Acquire the CSSELR index from the bank corresponding to the CCSIDR
     * bank
     */
    uint32_t index = A32_BANKED_REG_GET(env, csselr,
                                        ri->secure & ARM_CP_SECSTATE_S);

    return cpu->ccsidr[index];
843 844
}

845 846
static void csselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
                         uint64_t value)
847
{
848
    raw_write(env, ri, value & 0xf);
849 850
}

851 852 853 854 855 856 857 858 859 860 861 862 863 864 865
static uint64_t isr_read(CPUARMState *env, const ARMCPRegInfo *ri)
{
    CPUState *cs = ENV_GET_CPU(env);
    uint64_t ret = 0;

    if (cs->interrupt_request & CPU_INTERRUPT_HARD) {
        ret |= CPSR_I;
    }
    if (cs->interrupt_request & CPU_INTERRUPT_FIQ) {
        ret |= CPSR_F;
    }
    /* External aborts are not possible in QEMU so A bit is always clear */
    return ret;
}

866
static const ARMCPRegInfo v7_cp_reginfo[] = {
867 868 869
    /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */
    { .name = "NOP", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
      .access = PL1_W, .type = ARM_CP_NOP },
870 871 872 873 874 875 876 877 878 879 880 881
    /* Performance monitors are implementation defined in v7,
     * but with an ARM recommended set of registers, which we
     * follow (although we don't actually implement any counters)
     *
     * Performance registers fall into three categories:
     *  (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR)
     *  (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR)
     *  (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others)
     * For the cases controlled by PMUSERENR we must set .access to PL0_RW
     * or PL0_RO as appropriate and then check PMUSERENR in the helper fn.
     */
    { .name = "PMCNTENSET", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 1,
882
      .access = PL0_RW, .type = ARM_CP_ALIAS,
883
      .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten),
884 885 886
      .writefn = pmcntenset_write,
      .accessfn = pmreg_access,
      .raw_writefn = raw_write },
887 888 889 890 891
    { .name = "PMCNTENSET_EL0", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 1,
      .access = PL0_RW, .accessfn = pmreg_access,
      .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), .resetvalue = 0,
      .writefn = pmcntenset_write, .raw_writefn = raw_write },
892
    { .name = "PMCNTENCLR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 2,
893 894
      .access = PL0_RW,
      .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten),
895 896
      .accessfn = pmreg_access,
      .writefn = pmcntenclr_write,
897
      .type = ARM_CP_ALIAS },
898 899 900
    { .name = "PMCNTENCLR_EL0", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 2,
      .access = PL0_RW, .accessfn = pmreg_access,
901
      .type = ARM_CP_ALIAS,
902 903
      .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten),
      .writefn = pmcntenclr_write },
904 905
    { .name = "PMOVSR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 3,
      .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
906 907 908 909
      .accessfn = pmreg_access,
      .writefn = pmovsr_write,
      .raw_writefn = raw_write },
    /* Unimplemented so WI. */
910
    { .name = "PMSWINC", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 4,
911
      .access = PL0_W, .accessfn = pmreg_access, .type = ARM_CP_NOP },
912
    /* Since we don't implement any events, writing to PMSELR is UNPREDICTABLE.
913
     * We choose to RAZ/WI.
914 915
     */
    { .name = "PMSELR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 5,
916 917
      .access = PL0_RW, .type = ARM_CP_CONST, .resetvalue = 0,
      .accessfn = pmreg_access },
918
#ifndef CONFIG_USER_ONLY
919
    { .name = "PMCCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 0,
920
      .access = PL0_RW, .resetvalue = 0, .type = ARM_CP_IO,
921
      .readfn = pmccntr_read, .writefn = pmccntr_write32,
922
      .accessfn = pmreg_access },
923 924 925 926 927
    { .name = "PMCCNTR_EL0", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 0,
      .access = PL0_RW, .accessfn = pmreg_access,
      .type = ARM_CP_IO,
      .readfn = pmccntr_read, .writefn = pmccntr_write, },
928
#endif
929 930
    { .name = "PMCCFILTR_EL0", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 15, .opc2 = 7,
931
      .writefn = pmccfiltr_write,
932 933 934 935
      .access = PL0_RW, .accessfn = pmreg_access,
      .type = ARM_CP_IO,
      .fieldoffset = offsetof(CPUARMState, cp15.pmccfiltr_el0),
      .resetvalue = 0, },
936 937 938
    { .name = "PMXEVTYPER", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 1,
      .access = PL0_RW,
      .fieldoffset = offsetof(CPUARMState, cp15.c9_pmxevtyper),
939 940 941
      .accessfn = pmreg_access, .writefn = pmxevtyper_write,
      .raw_writefn = raw_write },
    /* Unimplemented, RAZ/WI. */
942
    { .name = "PMXEVCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 2,
943 944
      .access = PL0_RW, .type = ARM_CP_CONST, .resetvalue = 0,
      .accessfn = pmreg_access },
945 946 947 948
    { .name = "PMUSERENR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 0,
      .access = PL0_R | PL1_RW,
      .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr),
      .resetvalue = 0,
949
      .writefn = pmuserenr_write, .raw_writefn = raw_write },
950 951 952 953
    { .name = "PMINTENSET", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 1,
      .access = PL1_RW,
      .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
      .resetvalue = 0,
954
      .writefn = pmintenset_write, .raw_writefn = raw_write },
955
    { .name = "PMINTENCLR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 2,
956
      .access = PL1_RW, .type = ARM_CP_ALIAS,
957
      .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
958
      .resetvalue = 0, .writefn = pmintenclr_write, },
959 960
    { .name = "VBAR", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .crn = 12, .crm = 0, .opc1 = 0, .opc2 = 0,
N
Nathan Rossi 已提交
961
      .access = PL1_RW, .writefn = vbar_write,
G
Greg Bellows 已提交
962 963
      .bank_fieldoffsets = { offsetof(CPUARMState, cp15.vbar_s),
                             offsetof(CPUARMState, cp15.vbar_ns) },
N
Nathan Rossi 已提交
964
      .resetvalue = 0 },
965 966
    { .name = "CCSIDR", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 0,
967
      .access = PL1_R, .readfn = ccsidr_read, .type = ARM_CP_NO_RAW },
968 969
    { .name = "CSSELR", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 2, .opc2 = 0,
F
Fabian Aggeler 已提交
970 971 972
      .access = PL1_RW, .writefn = csselr_write, .resetvalue = 0,
      .bank_fieldoffsets = { offsetof(CPUARMState, cp15.csselr_s),
                             offsetof(CPUARMState, cp15.csselr_ns) } },
973 974 975
    /* Auxiliary ID register: this actually has an IMPDEF value but for now
     * just RAZ for all cores:
     */
976 977
    { .name = "AIDR", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 7,
978
      .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
979 980 981 982 983 984 985 986 987
    /* Auxiliary fault status registers: these also are IMPDEF, and we
     * choose to RAZ/WI for all cores.
     */
    { .name = "AFSR0_EL1", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 0,
      .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
    { .name = "AFSR1_EL1", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 1,
      .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
988 989 990 991 992
    /* MAIR can just read-as-written because we don't implement caches
     * and so don't need to care about memory attributes.
     */
    { .name = "MAIR_EL1", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0,
G
Greg Bellows 已提交
993
      .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[1]),
994 995 996 997 998 999
      .resetvalue = 0 },
    /* For non-long-descriptor page tables these are PRRR and NMRR;
     * regardless they still act as reads-as-written for QEMU.
     * The override is necessary because of the overly-broad TLB_LOCKDOWN
     * definition.
     */
1000
     /* MAIR0/1 are defined separately from their 64-bit counterpart which
G
Greg Bellows 已提交
1001 1002 1003
      * allows them to assign the correct fieldoffset based on the endianness
      * handled in the field definitions.
      */
1004 1005
    { .name = "MAIR0", .state = ARM_CP_STATE_AA32, .type = ARM_CP_OVERRIDE,
      .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, .access = PL1_RW,
G
Greg Bellows 已提交
1006 1007
      .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair0_s),
                             offsetof(CPUARMState, cp15.mair0_ns) },
1008 1009 1010
      .resetfn = arm_cp_reset_ignore },
    { .name = "MAIR1", .state = ARM_CP_STATE_AA32, .type = ARM_CP_OVERRIDE,
      .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 1, .access = PL1_RW,
G
Greg Bellows 已提交
1011 1012
      .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair1_s),
                             offsetof(CPUARMState, cp15.mair1_ns) },
1013
      .resetfn = arm_cp_reset_ignore },
1014 1015
    { .name = "ISR_EL1", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 0,
1016
      .type = ARM_CP_NO_RAW, .access = PL1_R, .readfn = isr_read },
1017 1018
    /* 32 bit ITLB invalidates */
    { .name = "ITLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 0,
1019
      .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write },
1020
    { .name = "ITLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1,
1021
      .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
1022
    { .name = "ITLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 2,
1023
      .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write },
1024 1025
    /* 32 bit DTLB invalidates */
    { .name = "DTLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 0,
1026
      .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write },
1027
    { .name = "DTLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1,
1028
      .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
1029
    { .name = "DTLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 2,
1030
      .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write },
1031 1032
    /* 32 bit TLB invalidates */
    { .name = "TLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0,
1033
      .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write },
1034
    { .name = "TLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1,
1035
      .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
1036
    { .name = "TLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2,
1037
      .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write },
1038
    { .name = "TLBIMVAA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3,
1039
      .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimvaa_write },
1040 1041 1042 1043 1044 1045
    REGINFO_SENTINEL
};

static const ARMCPRegInfo v7mp_cp_reginfo[] = {
    /* 32 bit TLB invalidates, Inner Shareable */
    { .name = "TLBIALLIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0,
1046
      .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_is_write },
1047
    { .name = "TLBIMVAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1,
1048
      .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_is_write },
1049
    { .name = "TLBIASIDIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2,
1050
      .type = ARM_CP_NO_RAW, .access = PL1_W,
1051
      .writefn = tlbiasid_is_write },
1052
    { .name = "TLBIMVAAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3,
1053
      .type = ARM_CP_NO_RAW, .access = PL1_W,
1054
      .writefn = tlbimvaa_is_write },
1055 1056 1057
    REGINFO_SENTINEL
};

1058 1059
static void teecr_write(CPUARMState *env, const ARMCPRegInfo *ri,
                        uint64_t value)
1060 1061 1062 1063 1064
{
    value &= 1;
    env->teecr = value;
}

1065
static CPAccessResult teehbr_access(CPUARMState *env, const ARMCPRegInfo *ri)
1066
{
1067
    if (arm_current_el(env) == 0 && (env->teecr & 1)) {
1068
        return CP_ACCESS_TRAP;
1069
    }
1070
    return CP_ACCESS_OK;
1071 1072 1073 1074 1075 1076 1077 1078 1079
}

static const ARMCPRegInfo t2ee_cp_reginfo[] = {
    { .name = "TEECR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 6, .opc2 = 0,
      .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, teecr),
      .resetvalue = 0,
      .writefn = teecr_write },
    { .name = "TEEHBR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 6, .opc2 = 0,
      .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, teehbr),
1080
      .accessfn = teehbr_access, .resetvalue = 0 },
1081 1082 1083
    REGINFO_SENTINEL
};

1084
static const ARMCPRegInfo v6k_cp_reginfo[] = {
1085 1086 1087
    { .name = "TPIDR_EL0", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 3, .opc2 = 2, .crn = 13, .crm = 0,
      .access = PL0_RW,
1088
      .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[0]), .resetvalue = 0 },
1089 1090
    { .name = "TPIDRURW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 2,
      .access = PL0_RW,
1091 1092
      .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrurw_s),
                             offsetoflow32(CPUARMState, cp15.tpidrurw_ns) },
1093 1094 1095 1096
      .resetfn = arm_cp_reset_ignore },
    { .name = "TPIDRRO_EL0", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 3, .opc2 = 3, .crn = 13, .crm = 0,
      .access = PL0_R|PL1_W,
1097 1098
      .fieldoffset = offsetof(CPUARMState, cp15.tpidrro_el[0]),
      .resetvalue = 0},
1099 1100
    { .name = "TPIDRURO", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 3,
      .access = PL0_R|PL1_W,
1101 1102
      .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidruro_s),
                             offsetoflow32(CPUARMState, cp15.tpidruro_ns) },
1103
      .resetfn = arm_cp_reset_ignore },
1104
    { .name = "TPIDR_EL1", .state = ARM_CP_STATE_AA64,
1105
      .opc0 = 3, .opc1 = 0, .opc2 = 4, .crn = 13, .crm = 0,
1106
      .access = PL1_RW,
1107 1108 1109 1110 1111 1112
      .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[1]), .resetvalue = 0 },
    { .name = "TPIDRPRW", .opc1 = 0, .cp = 15, .crn = 13, .crm = 0, .opc2 = 4,
      .access = PL1_RW,
      .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrprw_s),
                             offsetoflow32(CPUARMState, cp15.tpidrprw_ns) },
      .resetvalue = 0 },
1113 1114 1115
    REGINFO_SENTINEL
};

1116 1117
#ifndef CONFIG_USER_ONLY

1118 1119 1120
static CPAccessResult gt_cntfrq_access(CPUARMState *env, const ARMCPRegInfo *ri)
{
    /* CNTFRQ: not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero */
1121
    if (arm_current_el(env) == 0 && !extract32(env->cp15.c14_cntkctl, 0, 2)) {
1122 1123 1124 1125 1126 1127 1128 1129
        return CP_ACCESS_TRAP;
    }
    return CP_ACCESS_OK;
}

static CPAccessResult gt_counter_access(CPUARMState *env, int timeridx)
{
    /* CNT[PV]CT: not visible from PL0 if ELO[PV]CTEN is zero */
1130
    if (arm_current_el(env) == 0 &&
1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141
        !extract32(env->cp15.c14_cntkctl, timeridx, 1)) {
        return CP_ACCESS_TRAP;
    }
    return CP_ACCESS_OK;
}

static CPAccessResult gt_timer_access(CPUARMState *env, int timeridx)
{
    /* CNT[PV]_CVAL, CNT[PV]_CTL, CNT[PV]_TVAL: not visible from PL0 if
     * EL0[PV]TEN is zero.
     */
1142
    if (arm_current_el(env) == 0 &&
1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170
        !extract32(env->cp15.c14_cntkctl, 9 - timeridx, 1)) {
        return CP_ACCESS_TRAP;
    }
    return CP_ACCESS_OK;
}

static CPAccessResult gt_pct_access(CPUARMState *env,
                                         const ARMCPRegInfo *ri)
{
    return gt_counter_access(env, GTIMER_PHYS);
}

static CPAccessResult gt_vct_access(CPUARMState *env,
                                         const ARMCPRegInfo *ri)
{
    return gt_counter_access(env, GTIMER_VIRT);
}

static CPAccessResult gt_ptimer_access(CPUARMState *env, const ARMCPRegInfo *ri)
{
    return gt_timer_access(env, GTIMER_PHYS);
}

static CPAccessResult gt_vtimer_access(CPUARMState *env, const ARMCPRegInfo *ri)
{
    return gt_timer_access(env, GTIMER_VIRT);
}

1171 1172
static uint64_t gt_get_countervalue(CPUARMState *env)
{
1173
    return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / GTIMER_SCALE;
1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206
}

static void gt_recalc_timer(ARMCPU *cpu, int timeridx)
{
    ARMGenericTimer *gt = &cpu->env.cp15.c14_timer[timeridx];

    if (gt->ctl & 1) {
        /* Timer enabled: calculate and set current ISTATUS, irq, and
         * reset timer to when ISTATUS next has to change
         */
        uint64_t count = gt_get_countervalue(&cpu->env);
        /* Note that this must be unsigned 64 bit arithmetic: */
        int istatus = count >= gt->cval;
        uint64_t nexttick;

        gt->ctl = deposit32(gt->ctl, 2, 1, istatus);
        qemu_set_irq(cpu->gt_timer_outputs[timeridx],
                     (istatus && !(gt->ctl & 2)));
        if (istatus) {
            /* Next transition is when count rolls back over to zero */
            nexttick = UINT64_MAX;
        } else {
            /* Next transition is when we hit cval */
            nexttick = gt->cval;
        }
        /* Note that the desired next expiry time might be beyond the
         * signed-64-bit range of a QEMUTimer -- in this case we just
         * set the timer for as far in the future as possible. When the
         * timer expires we will reset the timer for any remaining period.
         */
        if (nexttick > INT64_MAX / GTIMER_SCALE) {
            nexttick = INT64_MAX / GTIMER_SCALE;
        }
1207
        timer_mod(cpu->gt_timer[timeridx], nexttick);
1208 1209 1210 1211
    } else {
        /* Timer disabled: ISTATUS and timer output always clear */
        gt->ctl &= ~4;
        qemu_set_irq(cpu->gt_timer_outputs[timeridx], 0);
1212
        timer_del(cpu->gt_timer[timeridx]);
1213 1214 1215 1216 1217 1218 1219 1220
    }
}

static void gt_cnt_reset(CPUARMState *env, const ARMCPRegInfo *ri)
{
    ARMCPU *cpu = arm_env_get_cpu(env);
    int timeridx = ri->opc1 & 1;

1221
    timer_del(cpu->gt_timer[timeridx]);
1222 1223
}

1224
static uint64_t gt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
1225
{
1226
    return gt_get_countervalue(env);
1227 1228
}

1229 1230
static void gt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
                          uint64_t value)
1231 1232 1233 1234 1235 1236
{
    int timeridx = ri->opc1 & 1;

    env->cp15.c14_timer[timeridx].cval = value;
    gt_recalc_timer(arm_env_get_cpu(env), timeridx);
}
1237 1238

static uint64_t gt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
1239 1240 1241
{
    int timeridx = ri->crm & 1;

1242 1243
    return (uint32_t)(env->cp15.c14_timer[timeridx].cval -
                      gt_get_countervalue(env));
1244 1245
}

1246 1247
static void gt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
                          uint64_t value)
1248 1249 1250 1251
{
    int timeridx = ri->crm & 1;

    env->cp15.c14_timer[timeridx].cval = gt_get_countervalue(env) +
1252
                                         sextract64(value, 0, 32);
1253 1254 1255
    gt_recalc_timer(arm_env_get_cpu(env), timeridx);
}

1256 1257
static void gt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
                         uint64_t value)
1258 1259 1260 1261 1262
{
    ARMCPU *cpu = arm_env_get_cpu(env);
    int timeridx = ri->crm & 1;
    uint32_t oldval = env->cp15.c14_timer[timeridx].ctl;

1263
    env->cp15.c14_timer[timeridx].ctl = deposit64(oldval, 0, 2, value);
1264 1265 1266
    if ((oldval ^ value) & 1) {
        /* Enable toggled */
        gt_recalc_timer(cpu, timeridx);
1267
    } else if ((oldval ^ value) & 2) {
1268 1269 1270 1271
        /* IMASK toggled: don't need to recalculate,
         * just set the interrupt line based on ISTATUS
         */
        qemu_set_irq(cpu->gt_timer_outputs[timeridx],
1272
                     (oldval & 4) && !(value & 2));
1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295
    }
}

void arm_gt_ptimer_cb(void *opaque)
{
    ARMCPU *cpu = opaque;

    gt_recalc_timer(cpu, GTIMER_PHYS);
}

void arm_gt_vtimer_cb(void *opaque)
{
    ARMCPU *cpu = opaque;

    gt_recalc_timer(cpu, GTIMER_VIRT);
}

static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
    /* Note that CNTFRQ is purely reads-as-written for the benefit
     * of software; writing it doesn't actually change the timer frequency.
     * Our reset value matches the fixed frequency we implement the timer at.
     */
    { .name = "CNTFRQ", .cp = 15, .crn = 14, .crm = 0, .opc1 = 0, .opc2 = 0,
1296
      .type = ARM_CP_ALIAS,
1297 1298 1299 1300 1301 1302 1303
      .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
      .fieldoffset = offsetoflow32(CPUARMState, cp15.c14_cntfrq),
      .resetfn = arm_cp_reset_ignore,
    },
    { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0,
      .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
1304 1305 1306 1307
      .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq),
      .resetvalue = (1000 * 1000 * 1000) / GTIMER_SCALE,
    },
    /* overall control: mostly access permissions */
1308 1309
    { .name = "CNTKCTL", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .opc1 = 0, .crn = 14, .crm = 1, .opc2 = 0,
1310 1311 1312 1313 1314 1315
      .access = PL1_RW,
      .fieldoffset = offsetof(CPUARMState, cp15.c14_cntkctl),
      .resetvalue = 0,
    },
    /* per-timer control */
    { .name = "CNTP_CTL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
1316
      .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL1_RW | PL0_R,
1317 1318 1319 1320 1321 1322 1323 1324
      .accessfn = gt_ptimer_access,
      .fieldoffset = offsetoflow32(CPUARMState,
                                   cp15.c14_timer[GTIMER_PHYS].ctl),
      .resetfn = arm_cp_reset_ignore,
      .writefn = gt_ctl_write, .raw_writefn = raw_write,
    },
    { .name = "CNTP_CTL_EL0", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 1,
1325
      .type = ARM_CP_IO, .access = PL1_RW | PL0_R,
1326
      .accessfn = gt_ptimer_access,
1327 1328
      .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl),
      .resetvalue = 0,
1329
      .writefn = gt_ctl_write, .raw_writefn = raw_write,
1330 1331
    },
    { .name = "CNTV_CTL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 1,
1332
      .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL1_RW | PL0_R,
1333 1334 1335 1336 1337 1338 1339 1340
      .accessfn = gt_vtimer_access,
      .fieldoffset = offsetoflow32(CPUARMState,
                                   cp15.c14_timer[GTIMER_VIRT].ctl),
      .resetfn = arm_cp_reset_ignore,
      .writefn = gt_ctl_write, .raw_writefn = raw_write,
    },
    { .name = "CNTV_CTL_EL0", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 1,
1341
      .type = ARM_CP_IO, .access = PL1_RW | PL0_R,
1342
      .accessfn = gt_vtimer_access,
1343 1344
      .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl),
      .resetvalue = 0,
1345
      .writefn = gt_ctl_write, .raw_writefn = raw_write,
1346 1347 1348
    },
    /* TimerValue views: a 32 bit downcounting view of the underlying state */
    { .name = "CNTP_TVAL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
1349
      .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
1350
      .accessfn = gt_ptimer_access,
1351 1352
      .readfn = gt_tval_read, .writefn = gt_tval_write,
    },
1353 1354
    { .name = "CNTP_TVAL_EL0", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 0,
1355
      .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
1356
      .accessfn = gt_ptimer_access,
1357 1358
      .readfn = gt_tval_read, .writefn = gt_tval_write,
    },
1359
    { .name = "CNTV_TVAL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 0,
1360
      .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
1361
      .accessfn = gt_vtimer_access,
1362 1363
      .readfn = gt_tval_read, .writefn = gt_tval_write,
    },
1364 1365
    { .name = "CNTV_TVAL_EL0", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 0,
1366
      .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
1367
      .accessfn = gt_vtimer_access,
1368 1369
      .readfn = gt_tval_read, .writefn = gt_tval_write,
    },
1370 1371
    /* The counter itself */
    { .name = "CNTPCT", .cp = 15, .crm = 14, .opc1 = 0,
1372
      .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
1373
      .accessfn = gt_pct_access,
1374 1375 1376 1377
      .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore,
    },
    { .name = "CNTPCT_EL0", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 1,
1378
      .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
1379
      .accessfn = gt_pct_access,
1380 1381 1382
      .readfn = gt_cnt_read, .resetfn = gt_cnt_reset,
    },
    { .name = "CNTVCT", .cp = 15, .crm = 14, .opc1 = 1,
1383
      .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
1384
      .accessfn = gt_vct_access,
1385 1386 1387 1388
      .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore,
    },
    { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2,
1389
      .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
1390
      .accessfn = gt_vct_access,
1391 1392 1393 1394 1395
      .readfn = gt_cnt_read, .resetfn = gt_cnt_reset,
    },
    /* Comparison value, indicating when the timer goes off */
    { .name = "CNTP_CVAL", .cp = 15, .crm = 14, .opc1 = 2,
      .access = PL1_RW | PL0_R,
1396
      .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
1397
      .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
1398 1399 1400 1401 1402 1403 1404 1405
      .accessfn = gt_ptimer_access, .resetfn = arm_cp_reset_ignore,
      .writefn = gt_cval_write, .raw_writefn = raw_write,
    },
    { .name = "CNTP_CVAL_EL0", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 2,
      .access = PL1_RW | PL0_R,
      .type = ARM_CP_IO,
      .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
1406
      .resetvalue = 0, .accessfn = gt_ptimer_access,
1407
      .writefn = gt_cval_write, .raw_writefn = raw_write,
1408 1409 1410
    },
    { .name = "CNTV_CVAL", .cp = 15, .crm = 14, .opc1 = 3,
      .access = PL1_RW | PL0_R,
1411
      .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
1412
      .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
1413 1414 1415 1416 1417 1418 1419 1420 1421
      .accessfn = gt_vtimer_access, .resetfn = arm_cp_reset_ignore,
      .writefn = gt_cval_write, .raw_writefn = raw_write,
    },
    { .name = "CNTV_CVAL_EL0", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 2,
      .access = PL1_RW | PL0_R,
      .type = ARM_CP_IO,
      .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
      .resetvalue = 0, .accessfn = gt_vtimer_access,
1422
      .writefn = gt_cval_write, .raw_writefn = raw_write,
1423 1424 1425 1426 1427 1428
    },
    REGINFO_SENTINEL
};

#else
/* In user-mode none of the generic timer registers are accessible,
1429
 * and their implementation depends on QEMU_CLOCK_VIRTUAL and qdev gpio outputs,
1430 1431
 * so instead just don't register any of them.
 */
1432 1433 1434 1435
static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
    REGINFO_SENTINEL
};

1436 1437
#endif

1438
static void par_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
1439
{
1440
    if (arm_feature(env, ARM_FEATURE_LPAE)) {
1441
        raw_write(env, ri, value);
1442
    } else if (arm_feature(env, ARM_FEATURE_V7)) {
1443
        raw_write(env, ri, value & 0xfffff6ff);
1444
    } else {
1445
        raw_write(env, ri, value & 0xfffff1ff);
1446 1447 1448 1449 1450
    }
}

#ifndef CONFIG_USER_ONLY
/* get_phys_addr() isn't present for user-mode-only targets */
1451

1452 1453 1454 1455 1456 1457
static CPAccessResult ats_access(CPUARMState *env, const ARMCPRegInfo *ri)
{
    if (ri->opc2 & 4) {
        /* Other states are only available with TrustZone; in
         * a non-TZ implementation these registers don't exist
         * at all, which is an Uncategorized trap. This underdecoding
1458
         * is safe because the reginfo is NO_RAW.
1459 1460 1461 1462 1463 1464
         */
        return CP_ACCESS_TRAP_UNCATEGORIZED;
    }
    return CP_ACCESS_OK;
}

1465
static uint64_t do_ats_write(CPUARMState *env, uint64_t value,
1466
                             int access_type, ARMMMUIdx mmu_idx)
1467
{
A
Avi Kivity 已提交
1468
    hwaddr phys_addr;
1469 1470
    target_ulong page_size;
    int prot;
1471
    int ret;
F
Fabian Aggeler 已提交
1472
    uint64_t par64;
1473
    MemTxAttrs attrs = {};
1474

1475
    ret = get_phys_addr(env, value, access_type, mmu_idx,
1476
                        &phys_addr, &attrs, &prot, &page_size);
1477 1478 1479 1480 1481
    if (extended_addresses_enabled(env)) {
        /* ret is a DFSR/IFSR value for the long descriptor
         * translation table format, but with WnR always clear.
         * Convert it to a 64-bit PAR.
         */
F
Fabian Aggeler 已提交
1482
        par64 = (1 << 11); /* LPAE bit always set */
1483 1484
        if (ret == 0) {
            par64 |= phys_addr & ~0xfffULL;
1485 1486 1487
            if (!attrs.secure) {
                par64 |= (1 << 9); /* NS */
            }
1488
            /* We don't set the ATTR or SH fields in the PAR. */
1489
        } else {
1490 1491 1492 1493 1494 1495
            par64 |= 1; /* F */
            par64 |= (ret & 0x3f) << 1; /* FS */
            /* Note that S2WLK and FSTAGE are always zero, because we don't
             * implement virtualization and therefore there can't be a stage 2
             * fault.
             */
1496 1497
        }
    } else {
1498 1499 1500 1501 1502 1503 1504 1505
        /* ret is a DFSR/IFSR value for the short descriptor
         * translation table format (with WnR always clear).
         * Convert it to a 32-bit PAR.
         */
        if (ret == 0) {
            /* We do not set any attribute bits in the PAR */
            if (page_size == (1 << 24)
                && arm_feature(env, ARM_FEATURE_V7)) {
F
Fabian Aggeler 已提交
1506
                par64 = (phys_addr & 0xff000000) | (1 << 1);
1507
            } else {
F
Fabian Aggeler 已提交
1508
                par64 = phys_addr & 0xfffff000;
1509
            }
1510 1511 1512
            if (!attrs.secure) {
                par64 |= (1 << 9); /* NS */
            }
1513
        } else {
F
Fabian Aggeler 已提交
1514 1515
            par64 = ((ret & (1 << 10)) >> 5) | ((ret & (1 << 12)) >> 6) |
                    ((ret & 0xf) << 1) | 1;
1516
        }
1517
    }
1518 1519 1520 1521 1522 1523 1524
    return par64;
}

static void ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
{
    int access_type = ri->opc2 & 1;
    uint64_t par64;
1525 1526 1527
    ARMMMUIdx mmu_idx;
    int el = arm_current_el(env);
    bool secure = arm_is_secure_below_el3(env);
1528

1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574
    switch (ri->opc2 & 6) {
    case 0:
        /* stage 1 current state PL1: ATS1CPR, ATS1CPW */
        switch (el) {
        case 3:
            mmu_idx = ARMMMUIdx_S1E3;
            break;
        case 2:
            mmu_idx = ARMMMUIdx_S1NSE1;
            break;
        case 1:
            mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S1NSE1;
            break;
        default:
            g_assert_not_reached();
        }
        break;
    case 2:
        /* stage 1 current state PL0: ATS1CUR, ATS1CUW */
        switch (el) {
        case 3:
            mmu_idx = ARMMMUIdx_S1SE0;
            break;
        case 2:
            mmu_idx = ARMMMUIdx_S1NSE0;
            break;
        case 1:
            mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S1NSE0;
            break;
        default:
            g_assert_not_reached();
        }
        break;
    case 4:
        /* stage 1+2 NonSecure PL1: ATS12NSOPR, ATS12NSOPW */
        mmu_idx = ARMMMUIdx_S12NSE1;
        break;
    case 6:
        /* stage 1+2 NonSecure PL0: ATS12NSOUR, ATS12NSOUW */
        mmu_idx = ARMMMUIdx_S12NSE0;
        break;
    default:
        g_assert_not_reached();
    }

    par64 = do_ats_write(env, value, access_type, mmu_idx);
F
Fabian Aggeler 已提交
1575 1576

    A32_BANKED_CURRENT_REG_SET(env, par, par64);
1577
}
1578 1579 1580 1581 1582

static void ats_write64(CPUARMState *env, const ARMCPRegInfo *ri,
                        uint64_t value)
{
    int access_type = ri->opc2 & 1;
1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613
    ARMMMUIdx mmu_idx;
    int secure = arm_is_secure_below_el3(env);

    switch (ri->opc2 & 6) {
    case 0:
        switch (ri->opc1) {
        case 0: /* AT S1E1R, AT S1E1W */
            mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S1NSE1;
            break;
        case 4: /* AT S1E2R, AT S1E2W */
            mmu_idx = ARMMMUIdx_S1E2;
            break;
        case 6: /* AT S1E3R, AT S1E3W */
            mmu_idx = ARMMMUIdx_S1E3;
            break;
        default:
            g_assert_not_reached();
        }
        break;
    case 2: /* AT S1E0R, AT S1E0W */
        mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S1NSE0;
        break;
    case 4: /* AT S12E1R, AT S12E1W */
        mmu_idx = ARMMMUIdx_S12NSE1;
        break;
    case 6: /* AT S12E0R, AT S12E0W */
        mmu_idx = ARMMMUIdx_S12NSE0;
        break;
    default:
        g_assert_not_reached();
    }
1614

1615
    env->cp15.par_el[1] = do_ats_write(env, value, access_type, mmu_idx);
1616
}
1617 1618 1619 1620 1621
#endif

static const ARMCPRegInfo vapa_cp_reginfo[] = {
    { .name = "PAR", .cp = 15, .crn = 7, .crm = 4, .opc1 = 0, .opc2 = 0,
      .access = PL1_RW, .resetvalue = 0,
F
Fabian Aggeler 已提交
1622 1623
      .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.par_s),
                             offsetoflow32(CPUARMState, cp15.par_ns) },
1624 1625 1626
      .writefn = par_write },
#ifndef CONFIG_USER_ONLY
    { .name = "ATS", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = CP_ANY,
1627
      .access = PL1_W, .accessfn = ats_access,
1628
      .writefn = ats_write, .type = ARM_CP_NO_RAW },
1629 1630 1631 1632
#endif
    REGINFO_SENTINEL
};

1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662
/* Return basic MPU access permission bits.  */
static uint32_t simple_mpu_ap_bits(uint32_t val)
{
    uint32_t ret;
    uint32_t mask;
    int i;
    ret = 0;
    mask = 3;
    for (i = 0; i < 16; i += 2) {
        ret |= (val >> i) & mask;
        mask <<= 2;
    }
    return ret;
}

/* Pad basic MPU access permission bits to extended format.  */
static uint32_t extended_mpu_ap_bits(uint32_t val)
{
    uint32_t ret;
    uint32_t mask;
    int i;
    ret = 0;
    mask = 3;
    for (i = 0; i < 16; i += 2) {
        ret |= (val & mask) << i;
        mask <<= 2;
    }
    return ret;
}

1663 1664
static void pmsav5_data_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
                                 uint64_t value)
1665
{
1666
    env->cp15.pmsav5_data_ap = extended_mpu_ap_bits(value);
1667 1668
}

1669
static uint64_t pmsav5_data_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
1670
{
1671
    return simple_mpu_ap_bits(env->cp15.pmsav5_data_ap);
1672 1673
}

1674 1675
static void pmsav5_insn_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
                                 uint64_t value)
1676
{
1677
    env->cp15.pmsav5_insn_ap = extended_mpu_ap_bits(value);
1678 1679
}

1680
static uint64_t pmsav5_insn_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
1681
{
1682
    return simple_mpu_ap_bits(env->cp15.pmsav5_insn_ap);
1683 1684 1685 1686
}

static const ARMCPRegInfo pmsav5_cp_reginfo[] = {
    { .name = "DATA_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
1687
      .access = PL1_RW, .type = ARM_CP_ALIAS,
1688 1689
      .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
      .resetvalue = 0,
1690 1691
      .readfn = pmsav5_data_ap_read, .writefn = pmsav5_data_ap_write, },
    { .name = "INSN_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
1692
      .access = PL1_RW, .type = ARM_CP_ALIAS,
1693 1694
      .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
      .resetvalue = 0,
1695 1696 1697
      .readfn = pmsav5_insn_ap_read, .writefn = pmsav5_insn_ap_write, },
    { .name = "DATA_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 2,
      .access = PL1_RW,
1698 1699
      .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
      .resetvalue = 0, },
1700 1701
    { .name = "INSN_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 3,
      .access = PL1_RW,
1702 1703
      .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
      .resetvalue = 0, },
1704 1705 1706 1707 1708 1709
    { .name = "DCACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
      .access = PL1_RW,
      .fieldoffset = offsetof(CPUARMState, cp15.c2_data), .resetvalue = 0, },
    { .name = "ICACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1,
      .access = PL1_RW,
      .fieldoffset = offsetof(CPUARMState, cp15.c2_insn), .resetvalue = 0, },
1710
    /* Protection region base and size registers */
1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734
    { .name = "946_PRBS0", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0,
      .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
      .fieldoffset = offsetof(CPUARMState, cp15.c6_region[0]) },
    { .name = "946_PRBS1", .cp = 15, .crn = 6, .crm = 1, .opc1 = 0,
      .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
      .fieldoffset = offsetof(CPUARMState, cp15.c6_region[1]) },
    { .name = "946_PRBS2", .cp = 15, .crn = 6, .crm = 2, .opc1 = 0,
      .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
      .fieldoffset = offsetof(CPUARMState, cp15.c6_region[2]) },
    { .name = "946_PRBS3", .cp = 15, .crn = 6, .crm = 3, .opc1 = 0,
      .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
      .fieldoffset = offsetof(CPUARMState, cp15.c6_region[3]) },
    { .name = "946_PRBS4", .cp = 15, .crn = 6, .crm = 4, .opc1 = 0,
      .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
      .fieldoffset = offsetof(CPUARMState, cp15.c6_region[4]) },
    { .name = "946_PRBS5", .cp = 15, .crn = 6, .crm = 5, .opc1 = 0,
      .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
      .fieldoffset = offsetof(CPUARMState, cp15.c6_region[5]) },
    { .name = "946_PRBS6", .cp = 15, .crn = 6, .crm = 6, .opc1 = 0,
      .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
      .fieldoffset = offsetof(CPUARMState, cp15.c6_region[6]) },
    { .name = "946_PRBS7", .cp = 15, .crn = 6, .crm = 7, .opc1 = 0,
      .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
      .fieldoffset = offsetof(CPUARMState, cp15.c6_region[7]) },
1735 1736 1737
    REGINFO_SENTINEL
};

1738 1739
static void vmsa_ttbcr_raw_write(CPUARMState *env, const ARMCPRegInfo *ri,
                                 uint64_t value)
1740
{
F
Fabian Aggeler 已提交
1741
    TCR *tcr = raw_ptr(env, ri);
1742 1743
    int maskshift = extract32(value, 0, 3);

1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757
    if (!arm_feature(env, ARM_FEATURE_V8)) {
        if (arm_feature(env, ARM_FEATURE_LPAE) && (value & TTBCR_EAE)) {
            /* Pre ARMv8 bits [21:19], [15:14] and [6:3] are UNK/SBZP when
             * using Long-desciptor translation table format */
            value &= ~((7 << 19) | (3 << 14) | (0xf << 3));
        } else if (arm_feature(env, ARM_FEATURE_EL3)) {
            /* In an implementation that includes the Security Extensions
             * TTBCR has additional fields PD0 [4] and PD1 [5] for
             * Short-descriptor translation table format.
             */
            value &= TTBCR_PD1 | TTBCR_PD0 | TTBCR_N;
        } else {
            value &= TTBCR_N;
        }
1758
    }
1759

F
Fabian Aggeler 已提交
1760 1761
    /* Update the masks corresponding to the the TCR bank being written
     * Note that we always calculate mask and base_mask, but
1762
     * they are only used for short-descriptor tables (ie if EAE is 0);
F
Fabian Aggeler 已提交
1763 1764
     * for long-descriptor tables the TCR fields are used differently
     * and the mask and base_mask values are meaningless.
1765
     */
F
Fabian Aggeler 已提交
1766 1767 1768
    tcr->raw_tcr = value;
    tcr->mask = ~(((uint32_t)0xffffffffu) >> maskshift);
    tcr->base_mask = ~((uint32_t)0x3fffu >> maskshift);
1769 1770
}

1771 1772
static void vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
                             uint64_t value)
1773
{
1774 1775
    ARMCPU *cpu = arm_env_get_cpu(env);

1776 1777 1778 1779
    if (arm_feature(env, ARM_FEATURE_LPAE)) {
        /* With LPAE the TTBCR could result in a change of ASID
         * via the TTBCR.A1 bit, so do a TLB flush.
         */
1780
        tlb_flush(CPU(cpu), 1);
1781
    }
1782
    vmsa_ttbcr_raw_write(env, ri, value);
1783 1784
}

1785 1786
static void vmsa_ttbcr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
{
F
Fabian Aggeler 已提交
1787 1788 1789 1790 1791 1792 1793 1794
    TCR *tcr = raw_ptr(env, ri);

    /* Reset both the TCR as well as the masks corresponding to the bank of
     * the TCR being reset.
     */
    tcr->raw_tcr = 0;
    tcr->mask = 0;
    tcr->base_mask = 0xffffc000u;
1795 1796
}

1797 1798 1799
static void vmsa_tcr_el1_write(CPUARMState *env, const ARMCPRegInfo *ri,
                               uint64_t value)
{
1800
    ARMCPU *cpu = arm_env_get_cpu(env);
F
Fabian Aggeler 已提交
1801
    TCR *tcr = raw_ptr(env, ri);
1802

1803
    /* For AArch64 the A1 bit could result in a change of ASID, so TLB flush. */
1804
    tlb_flush(CPU(cpu), 1);
F
Fabian Aggeler 已提交
1805
    tcr->raw_tcr = value;
1806 1807
}

1808 1809 1810 1811 1812 1813 1814
static void vmsa_ttbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
                            uint64_t value)
{
    /* 64 bit accesses to the TTBRs can change the ASID and so we
     * must flush the TLB.
     */
    if (cpreg_field_is_64bit(ri)) {
1815 1816 1817
        ARMCPU *cpu = arm_env_get_cpu(env);

        tlb_flush(CPU(cpu), 1);
1818 1819 1820 1821
    }
    raw_write(env, ri, value);
}

1822 1823
static const ARMCPRegInfo vmsa_cp_reginfo[] = {
    { .name = "DFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
1824
      .access = PL1_RW, .type = ARM_CP_ALIAS,
F
Fabian Aggeler 已提交
1825 1826
      .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dfsr_s),
                             offsetoflow32(CPUARMState, cp15.dfsr_ns) },
1827
      .resetfn = arm_cp_reset_ignore, },
1828
    { .name = "IFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
F
Fabian Aggeler 已提交
1829 1830 1831
      .access = PL1_RW, .resetvalue = 0,
      .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.ifsr_s),
                             offsetoflow32(CPUARMState, cp15.ifsr_ns) } },
1832 1833 1834
    { .name = "ESR_EL1", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .crn = 5, .crm = 2, .opc1 = 0, .opc2 = 0,
      .access = PL1_RW,
1835
      .fieldoffset = offsetof(CPUARMState, cp15.esr_el[1]), .resetvalue = 0, },
1836
    { .name = "TTBR0_EL1", .state = ARM_CP_STATE_BOTH,
F
Fabian Aggeler 已提交
1837 1838 1839 1840
      .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 0,
      .access = PL1_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0,
      .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s),
                             offsetof(CPUARMState, cp15.ttbr0_ns) } },
1841
    { .name = "TTBR1_EL1", .state = ARM_CP_STATE_BOTH,
F
Fabian Aggeler 已提交
1842 1843 1844 1845
      .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 1,
      .access = PL1_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0,
      .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s),
                             offsetof(CPUARMState, cp15.ttbr1_ns) } },
1846 1847 1848 1849
    { .name = "TCR_EL1", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
      .access = PL1_RW, .writefn = vmsa_tcr_el1_write,
      .resetfn = vmsa_ttbcr_reset, .raw_writefn = raw_write,
F
Fabian Aggeler 已提交
1850
      .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[1]) },
1851
    { .name = "TTBCR", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
1852
      .access = PL1_RW, .type = ARM_CP_ALIAS, .writefn = vmsa_ttbcr_write,
1853
      .resetfn = arm_cp_reset_ignore, .raw_writefn = vmsa_ttbcr_raw_write,
F
Fabian Aggeler 已提交
1854 1855
      .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tcr_el[3]),
                             offsetoflow32(CPUARMState, cp15.tcr_el[1])} },
F
Fabian Aggeler 已提交
1856
    { .name = "FAR_EL1", .state = ARM_CP_STATE_AA64,
1857
      .opc0 = 3, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0,
1858
      .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[1]),
1859
      .resetvalue = 0, },
F
Fabian Aggeler 已提交
1860 1861 1862 1863
    { .name = "DFAR", .cp = 15, .opc1 = 0, .crn = 6, .crm = 0, .opc2 = 0,
      .access = PL1_RW, .resetvalue = 0,
      .bank_fieldoffsets = { offsetof(CPUARMState, cp15.dfar_s),
                             offsetof(CPUARMState, cp15.dfar_ns) } },
1864 1865 1866
    REGINFO_SENTINEL
};

1867 1868
static void omap_ticonfig_write(CPUARMState *env, const ARMCPRegInfo *ri,
                                uint64_t value)
1869 1870 1871 1872 1873 1874 1875
{
    env->cp15.c15_ticonfig = value & 0xe7;
    /* The OS_TYPE bit in this register changes the reported CPUID! */
    env->cp15.c0_cpuid = (value & (1 << 5)) ?
        ARM_CPUID_TI915T : ARM_CPUID_TI925T;
}

1876 1877
static void omap_threadid_write(CPUARMState *env, const ARMCPRegInfo *ri,
                                uint64_t value)
1878 1879 1880 1881
{
    env->cp15.c15_threadid = value & 0xffff;
}

1882 1883
static void omap_wfi_write(CPUARMState *env, const ARMCPRegInfo *ri,
                           uint64_t value)
1884 1885
{
    /* Wait-for-interrupt (deprecated) */
1886
    cpu_interrupt(CPU(arm_env_get_cpu(env)), CPU_INTERRUPT_HALT);
1887 1888
}

1889 1890
static void omap_cachemaint_write(CPUARMState *env, const ARMCPRegInfo *ri,
                                  uint64_t value)
1891 1892 1893 1894 1895 1896 1897 1898
{
    /* On OMAP there are registers indicating the max/min index of dcache lines
     * containing a dirty line; cache flush operations have to reset these.
     */
    env->cp15.c15_i_max = 0x000;
    env->cp15.c15_i_min = 0xff0;
}

1899 1900 1901
static const ARMCPRegInfo omap_cp_reginfo[] = {
    { .name = "DFSR", .cp = 15, .crn = 5, .crm = CP_ANY,
      .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_OVERRIDE,
1902
      .fieldoffset = offsetoflow32(CPUARMState, cp15.esr_el[1]),
1903
      .resetvalue = 0, },
1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921
    { .name = "", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0,
      .access = PL1_RW, .type = ARM_CP_NOP },
    { .name = "TICONFIG", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0,
      .access = PL1_RW,
      .fieldoffset = offsetof(CPUARMState, cp15.c15_ticonfig), .resetvalue = 0,
      .writefn = omap_ticonfig_write },
    { .name = "IMAX", .cp = 15, .crn = 15, .crm = 2, .opc1 = 0, .opc2 = 0,
      .access = PL1_RW,
      .fieldoffset = offsetof(CPUARMState, cp15.c15_i_max), .resetvalue = 0, },
    { .name = "IMIN", .cp = 15, .crn = 15, .crm = 3, .opc1 = 0, .opc2 = 0,
      .access = PL1_RW, .resetvalue = 0xff0,
      .fieldoffset = offsetof(CPUARMState, cp15.c15_i_min) },
    { .name = "THREADID", .cp = 15, .crn = 15, .crm = 4, .opc1 = 0, .opc2 = 0,
      .access = PL1_RW,
      .fieldoffset = offsetof(CPUARMState, cp15.c15_threadid), .resetvalue = 0,
      .writefn = omap_threadid_write },
    { .name = "TI925T_STATUS", .cp = 15, .crn = 15,
      .crm = 8, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
1922
      .type = ARM_CP_NO_RAW,
1923 1924 1925 1926 1927 1928
      .readfn = arm_cp_read_zero, .writefn = omap_wfi_write, },
    /* TODO: Peripheral port remap register:
     * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller
     * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff),
     * when MMU is off.
     */
1929
    { .name = "OMAP_CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
1930
      .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
1931
      .type = ARM_CP_OVERRIDE | ARM_CP_NO_RAW,
1932
      .writefn = omap_cachemaint_write },
1933 1934 1935
    { .name = "C9", .cp = 15, .crn = 9,
      .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW,
      .type = ARM_CP_CONST | ARM_CP_OVERRIDE, .resetvalue = 0 },
1936 1937 1938
    REGINFO_SENTINEL
};

1939 1940
static void xscale_cpar_write(CPUARMState *env, const ARMCPRegInfo *ri,
                              uint64_t value)
1941
{
1942
    env->cp15.c15_cpar = value & 0x3fff;
1943 1944 1945 1946 1947 1948 1949
}

static const ARMCPRegInfo xscale_cp_reginfo[] = {
    { .name = "XSCALE_CPAR",
      .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
      .fieldoffset = offsetof(CPUARMState, cp15.c15_cpar), .resetvalue = 0,
      .writefn = xscale_cpar_write, },
1950 1951 1952 1953
    { .name = "XSCALE_AUXCR",
      .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW,
      .fieldoffset = offsetof(CPUARMState, cp15.c1_xscaleauxcr),
      .resetvalue = 0, },
1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968
    /* XScale specific cache-lockdown: since we have no cache we NOP these
     * and hope the guest does not really rely on cache behaviour.
     */
    { .name = "XSCALE_LOCK_ICACHE_LINE",
      .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0,
      .access = PL1_W, .type = ARM_CP_NOP },
    { .name = "XSCALE_UNLOCK_ICACHE",
      .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1,
      .access = PL1_W, .type = ARM_CP_NOP },
    { .name = "XSCALE_DCACHE_LOCK",
      .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 0,
      .access = PL1_RW, .type = ARM_CP_NOP },
    { .name = "XSCALE_UNLOCK_DCACHE",
      .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 1,
      .access = PL1_W, .type = ARM_CP_NOP },
1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979
    REGINFO_SENTINEL
};

static const ARMCPRegInfo dummy_c15_cp_reginfo[] = {
    /* RAZ/WI the whole crn=15 space, when we don't have a more specific
     * implementation of this implementation-defined space.
     * Ideally this should eventually disappear in favour of actually
     * implementing the correct behaviour for all cores.
     */
    { .name = "C15_IMPDEF", .cp = 15, .crn = 15,
      .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
1980
      .access = PL1_RW,
1981
      .type = ARM_CP_CONST | ARM_CP_NO_RAW | ARM_CP_OVERRIDE,
1982
      .resetvalue = 0 },
1983 1984 1985
    REGINFO_SENTINEL
};

1986 1987 1988
static const ARMCPRegInfo cache_dirty_status_cp_reginfo[] = {
    /* Cache status: RAZ because we have no cache so it's always clean */
    { .name = "CDSR", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 6,
1989
      .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
1990
      .resetvalue = 0 },
1991 1992 1993 1994 1995 1996
    REGINFO_SENTINEL
};

static const ARMCPRegInfo cache_block_ops_cp_reginfo[] = {
    /* We never have a a block transfer operation in progress */
    { .name = "BXSR", .cp = 15, .crn = 7, .crm = 12, .opc1 = 0, .opc2 = 4,
1997
      .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
1998
      .resetvalue = 0 },
1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011
    /* The cache ops themselves: these all NOP for QEMU */
    { .name = "IICR", .cp = 15, .crm = 5, .opc1 = 0,
      .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
    { .name = "IDCR", .cp = 15, .crm = 6, .opc1 = 0,
      .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
    { .name = "CDCR", .cp = 15, .crm = 12, .opc1 = 0,
      .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
    { .name = "PIR", .cp = 15, .crm = 12, .opc1 = 1,
      .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
    { .name = "PDR", .cp = 15, .crm = 12, .opc1 = 2,
      .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
    { .name = "CIDCR", .cp = 15, .crm = 14, .opc1 = 0,
      .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
2012 2013 2014 2015 2016 2017 2018 2019
    REGINFO_SENTINEL
};

static const ARMCPRegInfo cache_test_clean_cp_reginfo[] = {
    /* The cache test-and-clean instructions always return (1 << 30)
     * to indicate that there are no dirty cache lines.
     */
    { .name = "TC_DCACHE", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 3,
2020
      .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
2021
      .resetvalue = (1 << 30) },
2022
    { .name = "TCI_DCACHE", .cp = 15, .crn = 7, .crm = 14, .opc1 = 0, .opc2 = 3,
2023
      .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
2024
      .resetvalue = (1 << 30) },
2025 2026 2027
    REGINFO_SENTINEL
};

2028 2029 2030 2031
static const ARMCPRegInfo strongarm_cp_reginfo[] = {
    /* Ignore ReadBuffer accesses */
    { .name = "C9_READBUFFER", .cp = 15, .crn = 9,
      .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
2032
      .access = PL1_RW, .resetvalue = 0,
2033
      .type = ARM_CP_CONST | ARM_CP_OVERRIDE | ARM_CP_NO_RAW },
2034 2035 2036
    REGINFO_SENTINEL
};

2037
static uint64_t mpidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
P
Peter Maydell 已提交
2038
{
2039 2040
    CPUState *cs = CPU(arm_env_get_cpu(env));
    uint32_t mpidr = cs->cpu_index;
2041 2042
    /* We don't support setting cluster ID ([8..11]) (known as Aff1
     * in later ARM ARM versions), or any of the higher affinity level fields,
P
Peter Maydell 已提交
2043 2044 2045
     * so these bits always RAZ.
     */
    if (arm_feature(env, ARM_FEATURE_V7MP)) {
2046
        mpidr |= (1U << 31);
P
Peter Maydell 已提交
2047 2048 2049 2050 2051 2052
        /* Cores which are uniprocessor (non-coherent)
         * but still implement the MP extensions set
         * bit 30. (For instance, A9UP.) However we do
         * not currently model any of those cores.
         */
    }
2053
    return mpidr;
P
Peter Maydell 已提交
2054 2055 2056
}

static const ARMCPRegInfo mpidr_cp_reginfo[] = {
2057 2058
    { .name = "MPIDR", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 5,
2059
      .access = PL1_R, .readfn = mpidr_read, .type = ARM_CP_NO_RAW },
P
Peter Maydell 已提交
2060 2061 2062
    REGINFO_SENTINEL
};

2063
static const ARMCPRegInfo lpae_cp_reginfo[] = {
2064
    /* NOP AMAIR0/1: the override is because these clash with the rather
2065 2066
     * broadly specified TLB_LOCKDOWN entry in the generic cp_reginfo.
     */
2067 2068
    { .name = "AMAIR0", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 0,
2069 2070
      .access = PL1_RW, .type = ARM_CP_CONST | ARM_CP_OVERRIDE,
      .resetvalue = 0 },
2071
    /* AMAIR1 is mapped to AMAIR_EL1[63:32] */
2072 2073 2074
    { .name = "AMAIR1", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 1,
      .access = PL1_RW, .type = ARM_CP_CONST | ARM_CP_OVERRIDE,
      .resetvalue = 0 },
2075
    { .name = "PAR", .cp = 15, .crm = 7, .opc1 = 0,
F
Fabian Aggeler 已提交
2076 2077 2078
      .access = PL1_RW, .type = ARM_CP_64BIT, .resetvalue = 0,
      .bank_fieldoffsets = { offsetof(CPUARMState, cp15.par_s),
                             offsetof(CPUARMState, cp15.par_ns)} },
2079
    { .name = "TTBR0", .cp = 15, .crm = 2, .opc1 = 0,
2080
      .access = PL1_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
F
Fabian Aggeler 已提交
2081 2082
      .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s),
                             offsetof(CPUARMState, cp15.ttbr0_ns) },
2083
      .writefn = vmsa_ttbr_write, .resetfn = arm_cp_reset_ignore },
2084
    { .name = "TTBR1", .cp = 15, .crm = 2, .opc1 = 1,
2085
      .access = PL1_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
F
Fabian Aggeler 已提交
2086 2087
      .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s),
                             offsetof(CPUARMState, cp15.ttbr1_ns) },
2088
      .writefn = vmsa_ttbr_write, .resetfn = arm_cp_reset_ignore },
2089 2090 2091
    REGINFO_SENTINEL
};

2092
static uint64_t aa64_fpcr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2093
{
2094
    return vfp_get_fpcr(env);
2095 2096
}

2097 2098
static void aa64_fpcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
                            uint64_t value)
2099 2100 2101 2102
{
    vfp_set_fpcr(env, value);
}

2103
static uint64_t aa64_fpsr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2104
{
2105
    return vfp_get_fpsr(env);
2106 2107
}

2108 2109
static void aa64_fpsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
                            uint64_t value)
2110 2111 2112 2113
{
    vfp_set_fpsr(env, value);
}

2114 2115
static CPAccessResult aa64_daif_access(CPUARMState *env, const ARMCPRegInfo *ri)
{
2116
    if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UMA)) {
2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127
        return CP_ACCESS_TRAP;
    }
    return CP_ACCESS_OK;
}

static void aa64_daif_write(CPUARMState *env, const ARMCPRegInfo *ri,
                            uint64_t value)
{
    env->daif = value & PSTATE_DAIF;
}

2128 2129 2130 2131 2132 2133
static CPAccessResult aa64_cacheop_access(CPUARMState *env,
                                          const ARMCPRegInfo *ri)
{
    /* Cache invalidate/clean: NOP, but EL0 must UNDEF unless
     * SCTLR_EL1.UCI is set.
     */
2134
    if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UCI)) {
2135 2136 2137 2138 2139
        return CP_ACCESS_TRAP;
    }
    return CP_ACCESS_OK;
}

2140 2141 2142 2143
/* See: D4.7.2 TLB maintenance requirements and the TLB maintenance instructions
 * Page D4-1736 (DDI0487A.b)
 */

2144 2145 2146 2147
static void tlbi_aa64_va_write(CPUARMState *env, const ARMCPRegInfo *ri,
                               uint64_t value)
{
    /* Invalidate by VA (AArch64 version) */
2148
    ARMCPU *cpu = arm_env_get_cpu(env);
2149 2150
    uint64_t pageaddr = sextract64(value << 12, 0, 56);

2151
    tlb_flush_page(CPU(cpu), pageaddr);
2152 2153 2154 2155 2156 2157
}

static void tlbi_aa64_vaa_write(CPUARMState *env, const ARMCPRegInfo *ri,
                                uint64_t value)
{
    /* Invalidate by VA, all ASIDs (AArch64 version) */
2158
    ARMCPU *cpu = arm_env_get_cpu(env);
2159 2160
    uint64_t pageaddr = sextract64(value << 12, 0, 56);

2161
    tlb_flush_page(CPU(cpu), pageaddr);
2162 2163 2164 2165 2166 2167
}

static void tlbi_aa64_asid_write(CPUARMState *env, const ARMCPRegInfo *ri,
                                 uint64_t value)
{
    /* Invalidate by ASID (AArch64 version) */
2168
    ARMCPU *cpu = arm_env_get_cpu(env);
2169
    int asid = extract64(value, 48, 16);
2170
    tlb_flush(CPU(cpu), asid == 0);
2171 2172
}

2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205
static void tlbi_aa64_va_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
                                  uint64_t value)
{
    CPUState *other_cs;
    uint64_t pageaddr = sextract64(value << 12, 0, 56);

    CPU_FOREACH(other_cs) {
        tlb_flush_page(other_cs, pageaddr);
    }
}

static void tlbi_aa64_vaa_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
                                  uint64_t value)
{
    CPUState *other_cs;
    uint64_t pageaddr = sextract64(value << 12, 0, 56);

    CPU_FOREACH(other_cs) {
        tlb_flush_page(other_cs, pageaddr);
    }
}

static void tlbi_aa64_asid_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
                                  uint64_t value)
{
    CPUState *other_cs;
    int asid = extract64(value, 48, 16);

    CPU_FOREACH(other_cs) {
        tlb_flush(other_cs, asid == 0);
    }
}

2206 2207 2208 2209 2210
static CPAccessResult aa64_zva_access(CPUARMState *env, const ARMCPRegInfo *ri)
{
    /* We don't implement EL2, so the only control on DC ZVA is the
     * bit in the SCTLR which can prohibit access for EL0.
     */
2211
    if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_DZE)) {
2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222
        return CP_ACCESS_TRAP;
    }
    return CP_ACCESS_OK;
}

static uint64_t aa64_dczid_read(CPUARMState *env, const ARMCPRegInfo *ri)
{
    ARMCPU *cpu = arm_env_get_cpu(env);
    int dzp_bit = 1 << 4;

    /* DZP indicates whether DC ZVA access is allowed */
2223
    if (aa64_zva_access(env, NULL) == CP_ACCESS_OK) {
2224 2225 2226 2227 2228
        dzp_bit = 0;
    }
    return cpu->dcz_blocksize | dzp_bit;
}

2229 2230
static CPAccessResult sp_el0_access(CPUARMState *env, const ARMCPRegInfo *ri)
{
2231
    if (!(env->pstate & PSTATE_SP)) {
2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249
        /* Access to SP_EL0 is undefined if it's being used as
         * the stack pointer.
         */
        return CP_ACCESS_TRAP_UNCATEGORIZED;
    }
    return CP_ACCESS_OK;
}

static uint64_t spsel_read(CPUARMState *env, const ARMCPRegInfo *ri)
{
    return env->pstate & PSTATE_SP;
}

static void spsel_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val)
{
    update_spsel(env, val);
}

2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267
static void sctlr_write(CPUARMState *env, const ARMCPRegInfo *ri,
                        uint64_t value)
{
    ARMCPU *cpu = arm_env_get_cpu(env);

    if (raw_read(env, ri) == value) {
        /* Skip the TLB flush if nothing actually changed; Linux likes
         * to do a lot of pointless SCTLR writes.
         */
        return;
    }

    raw_write(env, ri, value);
    /* ??? Lots of these bits are not implemented.  */
    /* This may enable/disable the MMU, so do a TLB flush.  */
    tlb_flush(CPU(cpu), 1);
}

2268 2269 2270 2271 2272 2273 2274
static const ARMCPRegInfo v8_cp_reginfo[] = {
    /* Minimal set of EL0-visible registers. This will need to be expanded
     * significantly for system emulation of AArch64 CPUs.
     */
    { .name = "NZCV", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 2,
      .access = PL0_RW, .type = ARM_CP_NZCV },
2275 2276
    { .name = "DAIF", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 2,
2277
      .type = ARM_CP_NO_RAW,
2278 2279 2280
      .access = PL0_RW, .accessfn = aa64_daif_access,
      .fieldoffset = offsetof(CPUARMState, daif),
      .writefn = aa64_daif_write, .resetfn = arm_cp_reset_ignore },
2281 2282 2283 2284 2285 2286 2287 2288
    { .name = "FPCR", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 4,
      .access = PL0_RW, .readfn = aa64_fpcr_read, .writefn = aa64_fpcr_write },
    { .name = "FPSR", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 4,
      .access = PL0_RW, .readfn = aa64_fpsr_read, .writefn = aa64_fpsr_write },
    { .name = "DCZID_EL0", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 3, .opc2 = 7, .crn = 0, .crm = 0,
2289
      .access = PL0_R, .type = ARM_CP_NO_RAW,
2290 2291 2292 2293 2294 2295 2296 2297 2298
      .readfn = aa64_dczid_read },
    { .name = "DC_ZVA", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 1,
      .access = PL0_W, .type = ARM_CP_DC_ZVA,
#ifndef CONFIG_USER_ONLY
      /* Avoid overhead of an access check that always passes in user-mode */
      .accessfn = aa64_zva_access,
#endif
    },
2299 2300 2301
    { .name = "CURRENTEL", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 0, .opc2 = 2, .crn = 4, .crm = 2,
      .access = PL1_R, .type = ARM_CP_CURRENTEL },
2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336
    /* Cache ops: all NOPs since we don't emulate caches */
    { .name = "IC_IALLUIS", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
      .access = PL1_W, .type = ARM_CP_NOP },
    { .name = "IC_IALLU", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
      .access = PL1_W, .type = ARM_CP_NOP },
    { .name = "IC_IVAU", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 5, .opc2 = 1,
      .access = PL0_W, .type = ARM_CP_NOP,
      .accessfn = aa64_cacheop_access },
    { .name = "DC_IVAC", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
      .access = PL1_W, .type = ARM_CP_NOP },
    { .name = "DC_ISW", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
      .access = PL1_W, .type = ARM_CP_NOP },
    { .name = "DC_CVAC", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 1,
      .access = PL0_W, .type = ARM_CP_NOP,
      .accessfn = aa64_cacheop_access },
    { .name = "DC_CSW", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
      .access = PL1_W, .type = ARM_CP_NOP },
    { .name = "DC_CVAU", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 11, .opc2 = 1,
      .access = PL0_W, .type = ARM_CP_NOP,
      .accessfn = aa64_cacheop_access },
    { .name = "DC_CIVAC", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 1,
      .access = PL0_W, .type = ARM_CP_NOP,
      .accessfn = aa64_cacheop_access },
    { .name = "DC_CISW", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
      .access = PL1_W, .type = ARM_CP_NOP },
2337 2338
    /* TLBI operations */
    { .name = "TLBI_VMALLE1IS", .state = ARM_CP_STATE_AA64,
2339
      .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0,
2340
      .access = PL1_W, .type = ARM_CP_NO_RAW,
2341
      .writefn = tlbiall_is_write },
2342
    { .name = "TLBI_VAE1IS", .state = ARM_CP_STATE_AA64,
2343
      .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1,
2344
      .access = PL1_W, .type = ARM_CP_NO_RAW,
2345
      .writefn = tlbi_aa64_va_is_write },
2346
    { .name = "TLBI_ASIDE1IS", .state = ARM_CP_STATE_AA64,
2347
      .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2,
2348
      .access = PL1_W, .type = ARM_CP_NO_RAW,
2349
      .writefn = tlbi_aa64_asid_is_write },
2350
    { .name = "TLBI_VAAE1IS", .state = ARM_CP_STATE_AA64,
2351
      .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3,
2352
      .access = PL1_W, .type = ARM_CP_NO_RAW,
2353
      .writefn = tlbi_aa64_vaa_is_write },
2354
    { .name = "TLBI_VALE1IS", .state = ARM_CP_STATE_AA64,
2355
      .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5,
2356
      .access = PL1_W, .type = ARM_CP_NO_RAW,
2357
      .writefn = tlbi_aa64_va_is_write },
2358
    { .name = "TLBI_VAALE1IS", .state = ARM_CP_STATE_AA64,
2359
      .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7,
2360
      .access = PL1_W, .type = ARM_CP_NO_RAW,
2361
      .writefn = tlbi_aa64_vaa_is_write },
2362
    { .name = "TLBI_VMALLE1", .state = ARM_CP_STATE_AA64,
2363
      .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0,
2364
      .access = PL1_W, .type = ARM_CP_NO_RAW,
2365 2366
      .writefn = tlbiall_write },
    { .name = "TLBI_VAE1", .state = ARM_CP_STATE_AA64,
2367
      .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1,
2368
      .access = PL1_W, .type = ARM_CP_NO_RAW,
2369 2370
      .writefn = tlbi_aa64_va_write },
    { .name = "TLBI_ASIDE1", .state = ARM_CP_STATE_AA64,
2371
      .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2,
2372
      .access = PL1_W, .type = ARM_CP_NO_RAW,
2373 2374
      .writefn = tlbi_aa64_asid_write },
    { .name = "TLBI_VAAE1", .state = ARM_CP_STATE_AA64,
2375
      .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3,
2376
      .access = PL1_W, .type = ARM_CP_NO_RAW,
2377 2378
      .writefn = tlbi_aa64_vaa_write },
    { .name = "TLBI_VALE1", .state = ARM_CP_STATE_AA64,
2379
      .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5,
2380
      .access = PL1_W, .type = ARM_CP_NO_RAW,
2381 2382
      .writefn = tlbi_aa64_va_write },
    { .name = "TLBI_VAALE1", .state = ARM_CP_STATE_AA64,
2383
      .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7,
2384
      .access = PL1_W, .type = ARM_CP_NO_RAW,
2385
      .writefn = tlbi_aa64_vaa_write },
2386 2387 2388 2389
#ifndef CONFIG_USER_ONLY
    /* 64 bit address translation operations */
    { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 0,
2390
      .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
2391 2392
    { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 1,
2393
      .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
2394 2395
    { .name = "AT_S1E0R", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 2,
2396
      .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
2397 2398
    { .name = "AT_S1E0W", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 3,
2399
      .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
2400
#endif
2401
    /* TLB invalidate last level of translation table walk */
2402
    { .name = "TLBIMVALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5,
2403
      .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_is_write },
2404
    { .name = "TLBIMVAALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7,
2405
      .type = ARM_CP_NO_RAW, .access = PL1_W,
2406
      .writefn = tlbimvaa_is_write },
2407
    { .name = "TLBIMVAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5,
2408
      .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
2409
    { .name = "TLBIMVAAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7,
2410
      .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimvaa_write },
2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438
    /* 32 bit cache operations */
    { .name = "ICIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
      .type = ARM_CP_NOP, .access = PL1_W },
    { .name = "BPIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 6,
      .type = ARM_CP_NOP, .access = PL1_W },
    { .name = "ICIALLU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
      .type = ARM_CP_NOP, .access = PL1_W },
    { .name = "ICIMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 1,
      .type = ARM_CP_NOP, .access = PL1_W },
    { .name = "BPIALL", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 6,
      .type = ARM_CP_NOP, .access = PL1_W },
    { .name = "BPIMVA", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 7,
      .type = ARM_CP_NOP, .access = PL1_W },
    { .name = "DCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
      .type = ARM_CP_NOP, .access = PL1_W },
    { .name = "DCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
      .type = ARM_CP_NOP, .access = PL1_W },
    { .name = "DCCMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 1,
      .type = ARM_CP_NOP, .access = PL1_W },
    { .name = "DCCSW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
      .type = ARM_CP_NOP, .access = PL1_W },
    { .name = "DCCMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 11, .opc2 = 1,
      .type = ARM_CP_NOP, .access = PL1_W },
    { .name = "DCCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 1,
      .type = ARM_CP_NOP, .access = PL1_W },
    { .name = "DCCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
      .type = ARM_CP_NOP, .access = PL1_W },
    /* MMU Domain access control / MPU write buffer control */
F
Fabian Aggeler 已提交
2439 2440 2441 2442 2443
    { .name = "DACR", .cp = 15, .opc1 = 0, .crn = 3, .crm = 0, .opc2 = 0,
      .access = PL1_RW, .resetvalue = 0,
      .writefn = dacr_write, .raw_writefn = raw_write,
      .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s),
                             offsetoflow32(CPUARMState, cp15.dacr_ns) } },
2444
    { .name = "ELR_EL1", .state = ARM_CP_STATE_AA64,
2445
      .type = ARM_CP_ALIAS,
2446
      .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 1,
2447 2448
      .access = PL1_RW,
      .fieldoffset = offsetof(CPUARMState, elr_el[1]) },
2449
    { .name = "SPSR_EL1", .state = ARM_CP_STATE_AA64,
2450
      .type = ARM_CP_ALIAS,
2451
      .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 0,
2452
      .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, banked_spsr[1]) },
2453 2454 2455 2456 2457 2458 2459
    /* We rely on the access checks not allowing the guest to write to the
     * state field when SPSel indicates that it's being used as the stack
     * pointer.
     */
    { .name = "SP_EL0", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 1, .opc2 = 0,
      .access = PL1_RW, .accessfn = sp_el0_access,
2460
      .type = ARM_CP_ALIAS,
2461
      .fieldoffset = offsetof(CPUARMState, sp_el[0]) },
2462 2463
    { .name = "SP_EL1", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 1, .opc2 = 0,
2464
      .access = PL2_RW, .type = ARM_CP_ALIAS,
2465
      .fieldoffset = offsetof(CPUARMState, sp_el[1]) },
2466 2467
    { .name = "SPSel", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 0,
2468
      .type = ARM_CP_NO_RAW,
2469
      .access = PL1_RW, .readfn = spsel_read, .writefn = spsel_write },
2470 2471 2472
    REGINFO_SENTINEL
};

2473 2474 2475 2476 2477 2478
/* Used to describe the behaviour of EL2 regs when EL2 does not exist.  */
static const ARMCPRegInfo v8_el3_no_el2_cp_reginfo[] = {
    { .name = "VBAR_EL2", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0,
      .access = PL2_RW,
      .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore },
E
Edgar E. Iglesias 已提交
2479
    { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64,
2480
      .type = ARM_CP_NO_RAW,
E
Edgar E. Iglesias 已提交
2481 2482 2483
      .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
      .access = PL2_RW,
      .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore },
2484 2485 2486
    REGINFO_SENTINEL
};

E
Edgar E. Iglesias 已提交
2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511
static void hcr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
{
    ARMCPU *cpu = arm_env_get_cpu(env);
    uint64_t valid_mask = HCR_MASK;

    if (arm_feature(env, ARM_FEATURE_EL3)) {
        valid_mask &= ~HCR_HCD;
    } else {
        valid_mask &= ~HCR_TSC;
    }

    /* Clear RES0 bits.  */
    value &= valid_mask;

    /* These bits change the MMU setup:
     * HCR_VM enables stage 2 translation
     * HCR_PTW forbids certain page-table setups
     * HCR_DC Disables stage1 and enables stage2 translation
     */
    if ((raw_read(env, ri) ^ value) & (HCR_VM | HCR_PTW | HCR_DC)) {
        tlb_flush(CPU(cpu), 1);
    }
    raw_write(env, ri, value);
}

2512
static const ARMCPRegInfo v8_el2_cp_reginfo[] = {
E
Edgar E. Iglesias 已提交
2513 2514 2515 2516
    { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
      .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2),
      .writefn = hcr_write },
F
Fabian Aggeler 已提交
2517 2518 2519 2520 2521
    { .name = "DACR32_EL2", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 0, .opc2 = 0,
      .access = PL2_RW, .resetvalue = 0,
      .writefn = dacr_write, .raw_writefn = raw_write,
      .fieldoffset = offsetof(CPUARMState, cp15.dacr32_el2) },
2522
    { .name = "ELR_EL2", .state = ARM_CP_STATE_AA64,
2523
      .type = ARM_CP_ALIAS,
2524 2525 2526
      .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 1,
      .access = PL2_RW,
      .fieldoffset = offsetof(CPUARMState, elr_el[2]) },
2527
    { .name = "ESR_EL2", .state = ARM_CP_STATE_AA64,
2528
      .type = ARM_CP_ALIAS,
2529 2530
      .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0,
      .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[2]) },
F
Fabian Aggeler 已提交
2531 2532 2533 2534
    { .name = "IFSR32_EL2", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 0, .opc2 = 1,
      .access = PL2_RW, .resetvalue = 0,
      .fieldoffset = offsetof(CPUARMState, cp15.ifsr32_el2) },
2535 2536 2537
    { .name = "FAR_EL2", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0,
      .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[2]) },
2538
    { .name = "SPSR_EL2", .state = ARM_CP_STATE_AA64,
2539
      .type = ARM_CP_ALIAS,
2540 2541
      .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 0,
      .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, banked_spsr[6]) },
2542 2543 2544 2545 2546
    { .name = "VBAR_EL2", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0,
      .access = PL2_RW, .writefn = vbar_write,
      .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[2]),
      .resetvalue = 0 },
2547 2548
    { .name = "SP_EL2", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 1, .opc2 = 0,
2549
      .access = PL3_RW, .type = ARM_CP_ALIAS,
2550
      .fieldoffset = offsetof(CPUARMState, sp_el[2]) },
2551 2552 2553
    REGINFO_SENTINEL
};

2554 2555 2556 2557 2558
static const ARMCPRegInfo el3_cp_reginfo[] = {
    { .name = "SCR_EL3", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 0,
      .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.scr_el3),
      .resetvalue = 0, .writefn = scr_write },
2559
    { .name = "SCR",  .type = ARM_CP_ALIAS,
2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577
      .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 0,
      .access = PL3_RW, .fieldoffset = offsetoflow32(CPUARMState, cp15.scr_el3),
      .resetfn = arm_cp_reset_ignore, .writefn = scr_write },
    { .name = "SDER32_EL3", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 1,
      .access = PL3_RW, .resetvalue = 0,
      .fieldoffset = offsetof(CPUARMState, cp15.sder) },
    { .name = "SDER",
      .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 1,
      .access = PL3_RW, .resetvalue = 0,
      .fieldoffset = offsetoflow32(CPUARMState, cp15.sder) },
      /* TODO: Implement NSACR trapping of secure EL1 accesses to EL3 */
    { .name = "NSACR", .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
      .access = PL3_W | PL1_R, .resetvalue = 0,
      .fieldoffset = offsetof(CPUARMState, cp15.nsacr) },
    { .name = "MVBAR", .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
      .access = PL3_RW, .writefn = vbar_write, .resetvalue = 0,
      .fieldoffset = offsetof(CPUARMState, cp15.mvbar) },
2578 2579 2580 2581
    { .name = "SCTLR_EL3", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 0,
      .access = PL3_RW, .raw_writefn = raw_write, .writefn = sctlr_write,
      .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[3]) },
F
Fabian Aggeler 已提交
2582 2583 2584 2585
    { .name = "TTBR0_EL3", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 0,
      .access = PL3_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0,
      .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[3]) },
F
Fabian Aggeler 已提交
2586 2587 2588 2589 2590
    { .name = "TCR_EL3", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 2,
      .access = PL3_RW, .writefn = vmsa_tcr_el1_write,
      .resetfn = vmsa_ttbcr_reset, .raw_writefn = raw_write,
      .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[3]) },
2591
    { .name = "ELR_EL3", .state = ARM_CP_STATE_AA64,
2592
      .type = ARM_CP_ALIAS,
2593 2594 2595
      .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 1,
      .access = PL3_RW,
      .fieldoffset = offsetof(CPUARMState, elr_el[3]) },
2596
    { .name = "ESR_EL3", .state = ARM_CP_STATE_AA64,
2597
      .type = ARM_CP_ALIAS,
2598 2599
      .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 2, .opc2 = 0,
      .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[3]) },
2600 2601 2602
    { .name = "FAR_EL3", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 0,
      .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[3]) },
2603
    { .name = "SPSR_EL3", .state = ARM_CP_STATE_AA64,
2604
      .type = ARM_CP_ALIAS,
2605 2606
      .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 0,
      .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, banked_spsr[7]) },
2607 2608 2609 2610 2611
    { .name = "VBAR_EL3", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 0,
      .access = PL3_RW, .writefn = vbar_write,
      .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[3]),
      .resetvalue = 0 },
2612 2613 2614
    REGINFO_SENTINEL
};

2615 2616 2617 2618 2619
static CPAccessResult ctr_el0_access(CPUARMState *env, const ARMCPRegInfo *ri)
{
    /* Only accessible in EL0 if SCTLR.UCT is set (and only in AArch64,
     * but the AArch32 CTR has its own reginfo struct)
     */
2620
    if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UCT)) {
2621 2622 2623 2624 2625
        return CP_ACCESS_TRAP;
    }
    return CP_ACCESS_OK;
}

2626 2627
static const ARMCPRegInfo debug_cp_reginfo[] = {
    /* DBGDRAR, DBGDSAR: always RAZ since we don't implement memory mapped
2628 2629 2630 2631
     * debug components. The AArch64 version of DBGDRAR is named MDRAR_EL1;
     * unlike DBGDRAR it is never accessible from EL0.
     * DBGDSAR is deprecated and must RAZ from v8 anyway, so it has no AArch64
     * accessor.
2632 2633 2634
     */
    { .name = "DBGDRAR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 0,
      .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
2635 2636 2637
    { .name = "MDRAR_EL1", .state = ARM_CP_STATE_AA64,
      .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0,
      .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
2638 2639
    { .name = "DBGDSAR", .cp = 14, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
      .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
2640
    /* Monitor debug system control register; the 32-bit alias is DBGDSCRext. */
2641 2642
    { .name = "MDSCR_EL1", .state = ARM_CP_STATE_BOTH,
      .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2,
2643 2644 2645
      .access = PL1_RW,
      .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1),
      .resetvalue = 0 },
2646 2647 2648 2649 2650
    /* MDCCSR_EL0, aka DBGDSCRint. This is a read-only mirror of MDSCR_EL1.
     * We don't implement the configurable EL0 access.
     */
    { .name = "MDCCSR_EL0", .state = ARM_CP_STATE_BOTH,
      .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0,
2651
      .type = ARM_CP_ALIAS,
2652 2653 2654
      .access = PL1_R,
      .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1),
      .resetfn = arm_cp_reset_ignore },
2655
    /* We define a dummy WI OSLAR_EL1, because Linux writes to it. */
2656 2657
    { .name = "OSLAR_EL1", .state = ARM_CP_STATE_BOTH,
      .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 4,
2658
      .access = PL1_W, .type = ARM_CP_NOP },
2659 2660 2661 2662 2663 2664 2665 2666 2667 2668
    /* Dummy OSDLR_EL1: 32-bit Linux will read this */
    { .name = "OSDLR_EL1", .state = ARM_CP_STATE_BOTH,
      .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 4,
      .access = PL1_RW, .type = ARM_CP_NOP },
    /* Dummy DBGVCR: Linux wants to clear this on startup, but we don't
     * implement vector catch debug events yet.
     */
    { .name = "DBGVCR",
      .cp = 14, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0,
      .access = PL1_RW, .type = ARM_CP_NOP },
2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680
    REGINFO_SENTINEL
};

static const ARMCPRegInfo debug_lpae_cp_reginfo[] = {
    /* 64 bit access versions of the (dummy) debug registers */
    { .name = "DBGDRAR", .cp = 14, .crm = 1, .opc1 = 0,
      .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 },
    { .name = "DBGDSAR", .cp = 14, .crm = 2, .opc1 = 0,
      .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 },
    REGINFO_SENTINEL
};

2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805
void hw_watchpoint_update(ARMCPU *cpu, int n)
{
    CPUARMState *env = &cpu->env;
    vaddr len = 0;
    vaddr wvr = env->cp15.dbgwvr[n];
    uint64_t wcr = env->cp15.dbgwcr[n];
    int mask;
    int flags = BP_CPU | BP_STOP_BEFORE_ACCESS;

    if (env->cpu_watchpoint[n]) {
        cpu_watchpoint_remove_by_ref(CPU(cpu), env->cpu_watchpoint[n]);
        env->cpu_watchpoint[n] = NULL;
    }

    if (!extract64(wcr, 0, 1)) {
        /* E bit clear : watchpoint disabled */
        return;
    }

    switch (extract64(wcr, 3, 2)) {
    case 0:
        /* LSC 00 is reserved and must behave as if the wp is disabled */
        return;
    case 1:
        flags |= BP_MEM_READ;
        break;
    case 2:
        flags |= BP_MEM_WRITE;
        break;
    case 3:
        flags |= BP_MEM_ACCESS;
        break;
    }

    /* Attempts to use both MASK and BAS fields simultaneously are
     * CONSTRAINED UNPREDICTABLE; we opt to ignore BAS in this case,
     * thus generating a watchpoint for every byte in the masked region.
     */
    mask = extract64(wcr, 24, 4);
    if (mask == 1 || mask == 2) {
        /* Reserved values of MASK; we must act as if the mask value was
         * some non-reserved value, or as if the watchpoint were disabled.
         * We choose the latter.
         */
        return;
    } else if (mask) {
        /* Watchpoint covers an aligned area up to 2GB in size */
        len = 1ULL << mask;
        /* If masked bits in WVR are not zero it's CONSTRAINED UNPREDICTABLE
         * whether the watchpoint fires when the unmasked bits match; we opt
         * to generate the exceptions.
         */
        wvr &= ~(len - 1);
    } else {
        /* Watchpoint covers bytes defined by the byte address select bits */
        int bas = extract64(wcr, 5, 8);
        int basstart;

        if (bas == 0) {
            /* This must act as if the watchpoint is disabled */
            return;
        }

        if (extract64(wvr, 2, 1)) {
            /* Deprecated case of an only 4-aligned address. BAS[7:4] are
             * ignored, and BAS[3:0] define which bytes to watch.
             */
            bas &= 0xf;
        }
        /* The BAS bits are supposed to be programmed to indicate a contiguous
         * range of bytes. Otherwise it is CONSTRAINED UNPREDICTABLE whether
         * we fire for each byte in the word/doubleword addressed by the WVR.
         * We choose to ignore any non-zero bits after the first range of 1s.
         */
        basstart = ctz32(bas);
        len = cto32(bas >> basstart);
        wvr += basstart;
    }

    cpu_watchpoint_insert(CPU(cpu), wvr, len, flags,
                          &env->cpu_watchpoint[n]);
}

void hw_watchpoint_update_all(ARMCPU *cpu)
{
    int i;
    CPUARMState *env = &cpu->env;

    /* Completely clear out existing QEMU watchpoints and our array, to
     * avoid possible stale entries following migration load.
     */
    cpu_watchpoint_remove_all(CPU(cpu), BP_CPU);
    memset(env->cpu_watchpoint, 0, sizeof(env->cpu_watchpoint));

    for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_watchpoint); i++) {
        hw_watchpoint_update(cpu, i);
    }
}

static void dbgwvr_write(CPUARMState *env, const ARMCPRegInfo *ri,
                         uint64_t value)
{
    ARMCPU *cpu = arm_env_get_cpu(env);
    int i = ri->crm;

    /* Bits [63:49] are hardwired to the value of bit [48]; that is, the
     * register reads and behaves as if values written are sign extended.
     * Bits [1:0] are RES0.
     */
    value = sextract64(value, 0, 49) & ~3ULL;

    raw_write(env, ri, value);
    hw_watchpoint_update(cpu, i);
}

static void dbgwcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
                         uint64_t value)
{
    ARMCPU *cpu = arm_env_get_cpu(env);
    int i = ri->crm;

    raw_write(env, ri, value);
    hw_watchpoint_update(cpu, i);
}

2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923
void hw_breakpoint_update(ARMCPU *cpu, int n)
{
    CPUARMState *env = &cpu->env;
    uint64_t bvr = env->cp15.dbgbvr[n];
    uint64_t bcr = env->cp15.dbgbcr[n];
    vaddr addr;
    int bt;
    int flags = BP_CPU;

    if (env->cpu_breakpoint[n]) {
        cpu_breakpoint_remove_by_ref(CPU(cpu), env->cpu_breakpoint[n]);
        env->cpu_breakpoint[n] = NULL;
    }

    if (!extract64(bcr, 0, 1)) {
        /* E bit clear : watchpoint disabled */
        return;
    }

    bt = extract64(bcr, 20, 4);

    switch (bt) {
    case 4: /* unlinked address mismatch (reserved if AArch64) */
    case 5: /* linked address mismatch (reserved if AArch64) */
        qemu_log_mask(LOG_UNIMP,
                      "arm: address mismatch breakpoint types not implemented");
        return;
    case 0: /* unlinked address match */
    case 1: /* linked address match */
    {
        /* Bits [63:49] are hardwired to the value of bit [48]; that is,
         * we behave as if the register was sign extended. Bits [1:0] are
         * RES0. The BAS field is used to allow setting breakpoints on 16
         * bit wide instructions; it is CONSTRAINED UNPREDICTABLE whether
         * a bp will fire if the addresses covered by the bp and the addresses
         * covered by the insn overlap but the insn doesn't start at the
         * start of the bp address range. We choose to require the insn and
         * the bp to have the same address. The constraints on writing to
         * BAS enforced in dbgbcr_write mean we have only four cases:
         *  0b0000  => no breakpoint
         *  0b0011  => breakpoint on addr
         *  0b1100  => breakpoint on addr + 2
         *  0b1111  => breakpoint on addr
         * See also figure D2-3 in the v8 ARM ARM (DDI0487A.c).
         */
        int bas = extract64(bcr, 5, 4);
        addr = sextract64(bvr, 0, 49) & ~3ULL;
        if (bas == 0) {
            return;
        }
        if (bas == 0xc) {
            addr += 2;
        }
        break;
    }
    case 2: /* unlinked context ID match */
    case 8: /* unlinked VMID match (reserved if no EL2) */
    case 10: /* unlinked context ID and VMID match (reserved if no EL2) */
        qemu_log_mask(LOG_UNIMP,
                      "arm: unlinked context breakpoint types not implemented");
        return;
    case 9: /* linked VMID match (reserved if no EL2) */
    case 11: /* linked context ID and VMID match (reserved if no EL2) */
    case 3: /* linked context ID match */
    default:
        /* We must generate no events for Linked context matches (unless
         * they are linked to by some other bp/wp, which is handled in
         * updates for the linking bp/wp). We choose to also generate no events
         * for reserved values.
         */
        return;
    }

    cpu_breakpoint_insert(CPU(cpu), addr, flags, &env->cpu_breakpoint[n]);
}

void hw_breakpoint_update_all(ARMCPU *cpu)
{
    int i;
    CPUARMState *env = &cpu->env;

    /* Completely clear out existing QEMU breakpoints and our array, to
     * avoid possible stale entries following migration load.
     */
    cpu_breakpoint_remove_all(CPU(cpu), BP_CPU);
    memset(env->cpu_breakpoint, 0, sizeof(env->cpu_breakpoint));

    for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_breakpoint); i++) {
        hw_breakpoint_update(cpu, i);
    }
}

static void dbgbvr_write(CPUARMState *env, const ARMCPRegInfo *ri,
                         uint64_t value)
{
    ARMCPU *cpu = arm_env_get_cpu(env);
    int i = ri->crm;

    raw_write(env, ri, value);
    hw_breakpoint_update(cpu, i);
}

static void dbgbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
                         uint64_t value)
{
    ARMCPU *cpu = arm_env_get_cpu(env);
    int i = ri->crm;

    /* BAS[3] is a read-only copy of BAS[2], and BAS[1] a read-only
     * copy of BAS[0].
     */
    value = deposit64(value, 6, 1, extract64(value, 5, 1));
    value = deposit64(value, 8, 1, extract64(value, 7, 1));

    raw_write(env, ri, value);
    hw_breakpoint_update(cpu, i);
}

2924
static void define_debug_regs(ARMCPU *cpu)
2925
{
2926 2927
    /* Define v7 and v8 architectural debug registers.
     * These are just dummy implementations for now.
2928 2929
     */
    int i;
2930
    int wrps, brps, ctx_cmps;
2931 2932 2933 2934 2935
    ARMCPRegInfo dbgdidr = {
        .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0,
        .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = cpu->dbgdidr,
    };

2936
    /* Note that all these register fields hold "number of Xs minus 1". */
2937 2938
    brps = extract32(cpu->dbgdidr, 24, 4);
    wrps = extract32(cpu->dbgdidr, 28, 4);
2939 2940 2941
    ctx_cmps = extract32(cpu->dbgdidr, 20, 4);

    assert(ctx_cmps <= brps);
2942 2943 2944 2945 2946 2947 2948 2949

    /* The DBGDIDR and ID_AA64DFR0_EL1 define various properties
     * of the debug registers such as number of breakpoints;
     * check that if they both exist then they agree.
     */
    if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
        assert(extract32(cpu->id_aa64dfr0, 12, 4) == brps);
        assert(extract32(cpu->id_aa64dfr0, 20, 4) == wrps);
2950
        assert(extract32(cpu->id_aa64dfr0, 28, 4) == ctx_cmps);
2951
    }
2952

2953
    define_one_arm_cp_reg(cpu, &dbgdidr);
2954 2955 2956 2957 2958 2959
    define_arm_cp_regs(cpu, debug_cp_reginfo);

    if (arm_feature(&cpu->env, ARM_FEATURE_LPAE)) {
        define_arm_cp_regs(cpu, debug_lpae_cp_reginfo);
    }

2960
    for (i = 0; i < brps + 1; i++) {
2961
        ARMCPRegInfo dbgregs[] = {
2962 2963
            { .name = "DBGBVR", .state = ARM_CP_STATE_BOTH,
              .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 4,
2964
              .access = PL1_RW,
2965 2966 2967
              .fieldoffset = offsetof(CPUARMState, cp15.dbgbvr[i]),
              .writefn = dbgbvr_write, .raw_writefn = raw_write
            },
2968 2969
            { .name = "DBGBCR", .state = ARM_CP_STATE_BOTH,
              .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 5,
2970
              .access = PL1_RW,
2971 2972 2973
              .fieldoffset = offsetof(CPUARMState, cp15.dbgbcr[i]),
              .writefn = dbgbcr_write, .raw_writefn = raw_write
            },
2974 2975 2976 2977 2978 2979 2980
            REGINFO_SENTINEL
        };
        define_arm_cp_regs(cpu, dbgregs);
    }

    for (i = 0; i < wrps + 1; i++) {
        ARMCPRegInfo dbgregs[] = {
2981 2982
            { .name = "DBGWVR", .state = ARM_CP_STATE_BOTH,
              .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 6,
2983
              .access = PL1_RW,
2984 2985 2986
              .fieldoffset = offsetof(CPUARMState, cp15.dbgwvr[i]),
              .writefn = dbgwvr_write, .raw_writefn = raw_write
            },
2987 2988
            { .name = "DBGWCR", .state = ARM_CP_STATE_BOTH,
              .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 7,
2989
              .access = PL1_RW,
2990 2991 2992 2993
              .fieldoffset = offsetof(CPUARMState, cp15.dbgwcr[i]),
              .writefn = dbgwcr_write, .raw_writefn = raw_write
            },
            REGINFO_SENTINEL
2994 2995 2996 2997 2998
        };
        define_arm_cp_regs(cpu, dbgregs);
    }
}

2999 3000 3001 3002 3003 3004 3005 3006 3007
void register_cp_regs_for_features(ARMCPU *cpu)
{
    /* Register all the coprocessor registers based on feature bits */
    CPUARMState *env = &cpu->env;
    if (arm_feature(env, ARM_FEATURE_M)) {
        /* M profile has no coprocessor registers */
        return;
    }

3008
    define_arm_cp_regs(cpu, cp_reginfo);
3009 3010 3011 3012 3013 3014 3015
    if (!arm_feature(env, ARM_FEATURE_V8)) {
        /* Must go early as it is full of wildcards that may be
         * overridden by later definitions.
         */
        define_arm_cp_regs(cpu, not_v8_cp_reginfo);
    }

3016
    if (arm_feature(env, ARM_FEATURE_V6)) {
3017 3018
        /* The ID registers all have impdef reset values */
        ARMCPRegInfo v6_idregs[] = {
3019 3020 3021
            { .name = "ID_PFR0", .state = ARM_CP_STATE_BOTH,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0,
              .access = PL1_R, .type = ARM_CP_CONST,
3022
              .resetvalue = cpu->id_pfr0 },
3023 3024 3025
            { .name = "ID_PFR1", .state = ARM_CP_STATE_BOTH,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 1,
              .access = PL1_R, .type = ARM_CP_CONST,
3026
              .resetvalue = cpu->id_pfr1 },
3027 3028 3029
            { .name = "ID_DFR0", .state = ARM_CP_STATE_BOTH,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 2,
              .access = PL1_R, .type = ARM_CP_CONST,
3030
              .resetvalue = cpu->id_dfr0 },
3031 3032 3033
            { .name = "ID_AFR0", .state = ARM_CP_STATE_BOTH,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 3,
              .access = PL1_R, .type = ARM_CP_CONST,
3034
              .resetvalue = cpu->id_afr0 },
3035 3036 3037
            { .name = "ID_MMFR0", .state = ARM_CP_STATE_BOTH,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 4,
              .access = PL1_R, .type = ARM_CP_CONST,
3038
              .resetvalue = cpu->id_mmfr0 },
3039 3040 3041
            { .name = "ID_MMFR1", .state = ARM_CP_STATE_BOTH,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 5,
              .access = PL1_R, .type = ARM_CP_CONST,
3042
              .resetvalue = cpu->id_mmfr1 },
3043 3044 3045
            { .name = "ID_MMFR2", .state = ARM_CP_STATE_BOTH,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 6,
              .access = PL1_R, .type = ARM_CP_CONST,
3046
              .resetvalue = cpu->id_mmfr2 },
3047 3048 3049
            { .name = "ID_MMFR3", .state = ARM_CP_STATE_BOTH,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 7,
              .access = PL1_R, .type = ARM_CP_CONST,
3050
              .resetvalue = cpu->id_mmfr3 },
3051 3052 3053
            { .name = "ID_ISAR0", .state = ARM_CP_STATE_BOTH,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0,
              .access = PL1_R, .type = ARM_CP_CONST,
3054
              .resetvalue = cpu->id_isar0 },
3055 3056 3057
            { .name = "ID_ISAR1", .state = ARM_CP_STATE_BOTH,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 1,
              .access = PL1_R, .type = ARM_CP_CONST,
3058
              .resetvalue = cpu->id_isar1 },
3059 3060 3061
            { .name = "ID_ISAR2", .state = ARM_CP_STATE_BOTH,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2,
              .access = PL1_R, .type = ARM_CP_CONST,
3062
              .resetvalue = cpu->id_isar2 },
3063 3064 3065
            { .name = "ID_ISAR3", .state = ARM_CP_STATE_BOTH,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 3,
              .access = PL1_R, .type = ARM_CP_CONST,
3066
              .resetvalue = cpu->id_isar3 },
3067 3068 3069
            { .name = "ID_ISAR4", .state = ARM_CP_STATE_BOTH,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 4,
              .access = PL1_R, .type = ARM_CP_CONST,
3070
              .resetvalue = cpu->id_isar4 },
3071 3072 3073
            { .name = "ID_ISAR5", .state = ARM_CP_STATE_BOTH,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 5,
              .access = PL1_R, .type = ARM_CP_CONST,
3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084
              .resetvalue = cpu->id_isar5 },
            /* 6..7 are as yet unallocated and must RAZ */
            { .name = "ID_ISAR6", .cp = 15, .crn = 0, .crm = 2,
              .opc1 = 0, .opc2 = 6, .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = 0 },
            { .name = "ID_ISAR7", .cp = 15, .crn = 0, .crm = 2,
              .opc1 = 0, .opc2 = 7, .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = 0 },
            REGINFO_SENTINEL
        };
        define_arm_cp_regs(cpu, v6_idregs);
3085 3086 3087 3088
        define_arm_cp_regs(cpu, v6_cp_reginfo);
    } else {
        define_arm_cp_regs(cpu, not_v6_cp_reginfo);
    }
3089 3090 3091
    if (arm_feature(env, ARM_FEATURE_V6K)) {
        define_arm_cp_regs(cpu, v6k_cp_reginfo);
    }
3092 3093 3094
    if (arm_feature(env, ARM_FEATURE_V7MP)) {
        define_arm_cp_regs(cpu, v7mp_cp_reginfo);
    }
3095
    if (arm_feature(env, ARM_FEATURE_V7)) {
3096
        /* v7 performance monitor control register: same implementor
3097 3098
         * field as main ID register, and we implement only the cycle
         * count register.
3099
         */
3100
#ifndef CONFIG_USER_ONLY
3101 3102
        ARMCPRegInfo pmcr = {
            .name = "PMCR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 0,
3103
            .access = PL0_RW,
3104
            .type = ARM_CP_IO | ARM_CP_ALIAS,
3105
            .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcr),
3106 3107
            .accessfn = pmreg_access, .writefn = pmcr_write,
            .raw_writefn = raw_write,
3108
        };
3109 3110 3111 3112 3113 3114 3115 3116 3117
        ARMCPRegInfo pmcr64 = {
            .name = "PMCR_EL0", .state = ARM_CP_STATE_AA64,
            .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 0,
            .access = PL0_RW, .accessfn = pmreg_access,
            .type = ARM_CP_IO,
            .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcr),
            .resetvalue = cpu->midr & 0xff000000,
            .writefn = pmcr_write, .raw_writefn = raw_write,
        };
3118
        define_one_arm_cp_reg(cpu, &pmcr);
3119
        define_one_arm_cp_reg(cpu, &pmcr64);
3120
#endif
3121
        ARMCPRegInfo clidr = {
3122 3123
            .name = "CLIDR", .state = ARM_CP_STATE_BOTH,
            .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 1,
3124 3125 3126
            .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->clidr
        };
        define_one_arm_cp_reg(cpu, &clidr);
3127
        define_arm_cp_regs(cpu, v7_cp_reginfo);
3128
        define_debug_regs(cpu);
3129 3130
    } else {
        define_arm_cp_regs(cpu, not_v7_cp_reginfo);
3131
    }
3132
    if (arm_feature(env, ARM_FEATURE_V8)) {
3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145
        /* AArch64 ID registers, which all have impdef reset values */
        ARMCPRegInfo v8_idregs[] = {
            { .name = "ID_AA64PFR0_EL1", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 0,
              .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = cpu->id_aa64pfr0 },
            { .name = "ID_AA64PFR1_EL1", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 1,
              .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = cpu->id_aa64pfr1},
            { .name = "ID_AA64DFR0_EL1", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 0,
              .access = PL1_R, .type = ARM_CP_CONST,
S
Stefan Weil 已提交
3146
              /* We mask out the PMUVer field, because we don't currently
3147 3148 3149 3150 3151
               * implement the PMU. Not advertising it prevents the guest
               * from trying to use it and getting UNDEFs on registers we
               * don't implement.
               */
              .resetvalue = cpu->id_aa64dfr0 & ~0xf00 },
3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179
            { .name = "ID_AA64DFR1_EL1", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 1,
              .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = cpu->id_aa64dfr1 },
            { .name = "ID_AA64AFR0_EL1", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 4,
              .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = cpu->id_aa64afr0 },
            { .name = "ID_AA64AFR1_EL1", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 5,
              .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = cpu->id_aa64afr1 },
            { .name = "ID_AA64ISAR0_EL1", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 0,
              .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = cpu->id_aa64isar0 },
            { .name = "ID_AA64ISAR1_EL1", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 1,
              .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = cpu->id_aa64isar1 },
            { .name = "ID_AA64MMFR0_EL1", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0,
              .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = cpu->id_aa64mmfr0 },
            { .name = "ID_AA64MMFR1_EL1", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 1,
              .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = cpu->id_aa64mmfr1 },
3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191
            { .name = "MVFR0_EL1", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0,
              .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = cpu->mvfr0 },
            { .name = "MVFR1_EL1", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1,
              .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = cpu->mvfr1 },
            { .name = "MVFR2_EL1", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2,
              .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = cpu->mvfr2 },
3192 3193
            REGINFO_SENTINEL
        };
3194 3195 3196 3197 3198 3199 3200 3201 3202 3203
        /* RVBAR_EL1 is only implemented if EL1 is the highest EL */
        if (!arm_feature(env, ARM_FEATURE_EL3) &&
            !arm_feature(env, ARM_FEATURE_EL2)) {
            ARMCPRegInfo rvbar = {
                .name = "RVBAR_EL1", .state = ARM_CP_STATE_AA64,
                .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
                .type = ARM_CP_CONST, .access = PL1_R, .resetvalue = cpu->rvbar
            };
            define_one_arm_cp_reg(cpu, &rvbar);
        }
3204
        define_arm_cp_regs(cpu, v8_idregs);
3205 3206
        define_arm_cp_regs(cpu, v8_cp_reginfo);
    }
3207 3208
    if (arm_feature(env, ARM_FEATURE_EL2)) {
        define_arm_cp_regs(cpu, v8_el2_cp_reginfo);
3209 3210 3211 3212 3213 3214 3215 3216 3217
        /* RVBAR_EL2 is only implemented if EL2 is the highest EL */
        if (!arm_feature(env, ARM_FEATURE_EL3)) {
            ARMCPRegInfo rvbar = {
                .name = "RVBAR_EL2", .state = ARM_CP_STATE_AA64,
                .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 1,
                .type = ARM_CP_CONST, .access = PL2_R, .resetvalue = cpu->rvbar
            };
            define_one_arm_cp_reg(cpu, &rvbar);
        }
3218 3219 3220 3221 3222 3223 3224
    } else {
        /* If EL2 is missing but higher ELs are enabled, we need to
         * register the no_el2 reginfos.
         */
        if (arm_feature(env, ARM_FEATURE_EL3)) {
            define_arm_cp_regs(cpu, v8_el3_no_el2_cp_reginfo);
        }
3225
    }
3226
    if (arm_feature(env, ARM_FEATURE_EL3)) {
3227
        define_arm_cp_regs(cpu, el3_cp_reginfo);
3228 3229 3230 3231 3232 3233
        ARMCPRegInfo rvbar = {
            .name = "RVBAR_EL3", .state = ARM_CP_STATE_AA64,
            .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 1,
            .type = ARM_CP_CONST, .access = PL3_R, .resetvalue = cpu->rvbar
        };
        define_one_arm_cp_reg(cpu, &rvbar);
3234
    }
3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245
    if (arm_feature(env, ARM_FEATURE_MPU)) {
        /* These are the MPU registers prior to PMSAv6. Any new
         * PMSA core later than the ARM946 will require that we
         * implement the PMSAv6 or PMSAv7 registers, which are
         * completely different.
         */
        assert(!arm_feature(env, ARM_FEATURE_V6));
        define_arm_cp_regs(cpu, pmsav5_cp_reginfo);
    } else {
        define_arm_cp_regs(cpu, vmsa_cp_reginfo);
    }
3246 3247 3248
    if (arm_feature(env, ARM_FEATURE_THUMB2EE)) {
        define_arm_cp_regs(cpu, t2ee_cp_reginfo);
    }
3249 3250 3251
    if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
        define_arm_cp_regs(cpu, generic_timer_cp_reginfo);
    }
3252 3253 3254
    if (arm_feature(env, ARM_FEATURE_VAPA)) {
        define_arm_cp_regs(cpu, vapa_cp_reginfo);
    }
3255 3256 3257 3258 3259 3260 3261 3262 3263
    if (arm_feature(env, ARM_FEATURE_CACHE_TEST_CLEAN)) {
        define_arm_cp_regs(cpu, cache_test_clean_cp_reginfo);
    }
    if (arm_feature(env, ARM_FEATURE_CACHE_DIRTY_REG)) {
        define_arm_cp_regs(cpu, cache_dirty_status_cp_reginfo);
    }
    if (arm_feature(env, ARM_FEATURE_CACHE_BLOCK_OPS)) {
        define_arm_cp_regs(cpu, cache_block_ops_cp_reginfo);
    }
3264 3265 3266
    if (arm_feature(env, ARM_FEATURE_OMAPCP)) {
        define_arm_cp_regs(cpu, omap_cp_reginfo);
    }
3267 3268 3269
    if (arm_feature(env, ARM_FEATURE_STRONGARM)) {
        define_arm_cp_regs(cpu, strongarm_cp_reginfo);
    }
3270 3271 3272 3273 3274 3275
    if (arm_feature(env, ARM_FEATURE_XSCALE)) {
        define_arm_cp_regs(cpu, xscale_cp_reginfo);
    }
    if (arm_feature(env, ARM_FEATURE_DUMMY_C15_REGS)) {
        define_arm_cp_regs(cpu, dummy_c15_cp_reginfo);
    }
3276 3277 3278
    if (arm_feature(env, ARM_FEATURE_LPAE)) {
        define_arm_cp_regs(cpu, lpae_cp_reginfo);
    }
3279 3280 3281 3282 3283
    /* Slightly awkwardly, the OMAP and StrongARM cores need all of
     * cp15 crn=0 to be writes-ignored, whereas for other cores they should
     * be read-only (ie write causes UNDEF exception).
     */
    {
3284 3285 3286
        ARMCPRegInfo id_pre_v8_midr_cp_reginfo[] = {
            /* Pre-v8 MIDR space.
             * Note that the MIDR isn't a simple constant register because
3287 3288
             * of the TI925 behaviour where writes to another register can
             * cause the MIDR value to change.
3289 3290 3291 3292
             *
             * Unimplemented registers in the c15 0 0 0 space default to
             * MIDR. Define MIDR first as this entire space, then CTR, TCMTR
             * and friends override accordingly.
3293 3294
             */
            { .name = "MIDR",
3295
              .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = CP_ANY,
3296
              .access = PL1_R, .resetvalue = cpu->midr,
3297
              .writefn = arm_cp_write_ignore, .raw_writefn = raw_write,
3298 3299
              .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
              .type = ARM_CP_OVERRIDE },
3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317
            /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */
            { .name = "DUMMY",
              .cp = 15, .crn = 0, .crm = 3, .opc1 = 0, .opc2 = CP_ANY,
              .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
            { .name = "DUMMY",
              .cp = 15, .crn = 0, .crm = 4, .opc1 = 0, .opc2 = CP_ANY,
              .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
            { .name = "DUMMY",
              .cp = 15, .crn = 0, .crm = 5, .opc1 = 0, .opc2 = CP_ANY,
              .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
            { .name = "DUMMY",
              .cp = 15, .crn = 0, .crm = 6, .opc1 = 0, .opc2 = CP_ANY,
              .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
            { .name = "DUMMY",
              .cp = 15, .crn = 0, .crm = 7, .opc1 = 0, .opc2 = CP_ANY,
              .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
            REGINFO_SENTINEL
        };
3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348
        ARMCPRegInfo id_v8_midr_cp_reginfo[] = {
            /* v8 MIDR -- the wildcard isn't necessary, and nor is the
             * variable-MIDR TI925 behaviour. Instead we have a single
             * (strictly speaking IMPDEF) alias of the MIDR, REVIDR.
             */
            { .name = "MIDR_EL1", .state = ARM_CP_STATE_BOTH,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 0,
              .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->midr },
            { .name = "REVIDR_EL1", .state = ARM_CP_STATE_BOTH,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 6,
              .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->midr },
            REGINFO_SENTINEL
        };
        ARMCPRegInfo id_cp_reginfo[] = {
            /* These are common to v8 and pre-v8 */
            { .name = "CTR",
              .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 1,
              .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
            { .name = "CTR_EL0", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 0, .crm = 0,
              .access = PL0_R, .accessfn = ctr_el0_access,
              .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
            /* TCMTR and TLBTR exist in v8 but have no 64-bit versions */
            { .name = "TCMTR",
              .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 2,
              .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
            { .name = "TLBTR",
              .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 3,
              .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
            REGINFO_SENTINEL
        };
3349 3350 3351 3352 3353 3354 3355 3356 3357
        ARMCPRegInfo crn0_wi_reginfo = {
            .name = "CRN0_WI", .cp = 15, .crn = 0, .crm = CP_ANY,
            .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_W,
            .type = ARM_CP_NOP | ARM_CP_OVERRIDE
        };
        if (arm_feature(env, ARM_FEATURE_OMAPCP) ||
            arm_feature(env, ARM_FEATURE_STRONGARM)) {
            ARMCPRegInfo *r;
            /* Register the blanket "writes ignored" value first to cover the
3358 3359 3360
             * whole space. Then update the specific ID registers to allow write
             * access, so that they ignore writes rather than causing them to
             * UNDEF.
3361 3362
             */
            define_one_arm_cp_reg(cpu, &crn0_wi_reginfo);
3363 3364 3365 3366
            for (r = id_pre_v8_midr_cp_reginfo;
                 r->type != ARM_CP_SENTINEL; r++) {
                r->access = PL1_RW;
            }
3367 3368 3369 3370
            for (r = id_cp_reginfo; r->type != ARM_CP_SENTINEL; r++) {
                r->access = PL1_RW;
            }
        }
3371 3372 3373 3374 3375
        if (arm_feature(env, ARM_FEATURE_V8)) {
            define_arm_cp_regs(cpu, id_v8_midr_cp_reginfo);
        } else {
            define_arm_cp_regs(cpu, id_pre_v8_midr_cp_reginfo);
        }
3376
        define_arm_cp_regs(cpu, id_cp_reginfo);
3377 3378
    }

3379 3380 3381 3382
    if (arm_feature(env, ARM_FEATURE_MPIDR)) {
        define_arm_cp_regs(cpu, mpidr_cp_reginfo);
    }

3383 3384
    if (arm_feature(env, ARM_FEATURE_AUXCR)) {
        ARMCPRegInfo auxcr = {
3385 3386
            .name = "ACTLR_EL1", .state = ARM_CP_STATE_BOTH,
            .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 1,
3387 3388 3389 3390 3391 3392
            .access = PL1_RW, .type = ARM_CP_CONST,
            .resetvalue = cpu->reset_auxcr
        };
        define_one_arm_cp_reg(cpu, &auxcr);
    }

3393
    if (arm_feature(env, ARM_FEATURE_CBAR)) {
3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426
        if (arm_feature(env, ARM_FEATURE_AARCH64)) {
            /* 32 bit view is [31:18] 0...0 [43:32]. */
            uint32_t cbar32 = (extract64(cpu->reset_cbar, 18, 14) << 18)
                | extract64(cpu->reset_cbar, 32, 12);
            ARMCPRegInfo cbar_reginfo[] = {
                { .name = "CBAR",
                  .type = ARM_CP_CONST,
                  .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0,
                  .access = PL1_R, .resetvalue = cpu->reset_cbar },
                { .name = "CBAR_EL1", .state = ARM_CP_STATE_AA64,
                  .type = ARM_CP_CONST,
                  .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 3, .opc2 = 0,
                  .access = PL1_R, .resetvalue = cbar32 },
                REGINFO_SENTINEL
            };
            /* We don't implement a r/w 64 bit CBAR currently */
            assert(arm_feature(env, ARM_FEATURE_CBAR_RO));
            define_arm_cp_regs(cpu, cbar_reginfo);
        } else {
            ARMCPRegInfo cbar = {
                .name = "CBAR",
                .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0,
                .access = PL1_R|PL3_W, .resetvalue = cpu->reset_cbar,
                .fieldoffset = offsetof(CPUARMState,
                                        cp15.c15_config_base_address)
            };
            if (arm_feature(env, ARM_FEATURE_CBAR_RO)) {
                cbar.access = PL1_R;
                cbar.fieldoffset = 0;
                cbar.type = ARM_CP_CONST;
            }
            define_one_arm_cp_reg(cpu, &cbar);
        }
3427 3428
    }

3429 3430 3431
    /* Generic registers whose values depend on the implementation */
    {
        ARMCPRegInfo sctlr = {
3432
            .name = "SCTLR", .state = ARM_CP_STATE_BOTH,
3433 3434 3435 3436
            .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0,
            .access = PL1_RW,
            .bank_fieldoffsets = { offsetof(CPUARMState, cp15.sctlr_s),
                                   offsetof(CPUARMState, cp15.sctlr_ns) },
3437 3438
            .writefn = sctlr_write, .resetvalue = cpu->reset_sctlr,
            .raw_writefn = raw_write,
3439 3440 3441 3442 3443 3444 3445 3446 3447 3448
        };
        if (arm_feature(env, ARM_FEATURE_XSCALE)) {
            /* Normally we would always end the TB on an SCTLR write, but Linux
             * arch/arm/mach-pxa/sleep.S expects two instructions following
             * an MMU enable to execute from cache.  Imitate this behaviour.
             */
            sctlr.type |= ARM_CP_SUPPRESS_TB_END;
        }
        define_one_arm_cp_reg(cpu, &sctlr);
    }
3449 3450
}

3451
ARMCPU *cpu_arm_init(const char *cpu_model)
P
pbrook 已提交
3452
{
3453
    return ARM_CPU(cpu_generic_init(TYPE_ARM_CPU, cpu_model));
3454 3455 3456 3457
}

void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu)
{
3458
    CPUState *cs = CPU(cpu);
3459 3460
    CPUARMState *env = &cpu->env;

3461 3462 3463 3464 3465
    if (arm_feature(env, ARM_FEATURE_AARCH64)) {
        gdb_register_coprocessor(cs, aarch64_fpu_gdb_get_reg,
                                 aarch64_fpu_gdb_set_reg,
                                 34, "aarch64-fpu.xml", 0);
    } else if (arm_feature(env, ARM_FEATURE_NEON)) {
3466
        gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
P
pbrook 已提交
3467 3468
                                 51, "arm-neon.xml", 0);
    } else if (arm_feature(env, ARM_FEATURE_VFP3)) {
3469
        gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
P
pbrook 已提交
3470 3471
                                 35, "arm-vfp3.xml", 0);
    } else if (arm_feature(env, ARM_FEATURE_VFP)) {
3472
        gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
P
pbrook 已提交
3473 3474
                                 19, "arm-vfp.xml", 0);
    }
P
pbrook 已提交
3475 3476
}

3477 3478
/* Sort alphabetically by type name, except for "any". */
static gint arm_cpu_list_compare(gconstpointer a, gconstpointer b)
P
pbrook 已提交
3479
{
3480 3481 3482
    ObjectClass *class_a = (ObjectClass *)a;
    ObjectClass *class_b = (ObjectClass *)b;
    const char *name_a, *name_b;
P
pbrook 已提交
3483

3484 3485
    name_a = object_class_get_name(class_a);
    name_b = object_class_get_name(class_b);
A
Andreas Färber 已提交
3486
    if (strcmp(name_a, "any-" TYPE_ARM_CPU) == 0) {
3487
        return 1;
A
Andreas Färber 已提交
3488
    } else if (strcmp(name_b, "any-" TYPE_ARM_CPU) == 0) {
3489 3490 3491
        return -1;
    } else {
        return strcmp(name_a, name_b);
P
pbrook 已提交
3492 3493 3494
    }
}

3495
static void arm_cpu_list_entry(gpointer data, gpointer user_data)
P
pbrook 已提交
3496
{
3497
    ObjectClass *oc = data;
3498
    CPUListState *s = user_data;
A
Andreas Färber 已提交
3499 3500
    const char *typename;
    char *name;
P
pbrook 已提交
3501

A
Andreas Färber 已提交
3502 3503
    typename = object_class_get_name(oc);
    name = g_strndup(typename, strlen(typename) - strlen("-" TYPE_ARM_CPU));
3504
    (*s->cpu_fprintf)(s->file, "  %s\n",
A
Andreas Färber 已提交
3505 3506
                      name);
    g_free(name);
3507 3508 3509 3510
}

void arm_cpu_list(FILE *f, fprintf_function cpu_fprintf)
{
3511
    CPUListState s = {
3512 3513 3514 3515 3516 3517 3518 3519 3520 3521
        .file = f,
        .cpu_fprintf = cpu_fprintf,
    };
    GSList *list;

    list = object_class_get_list(TYPE_ARM_CPU, false);
    list = g_slist_sort(list, arm_cpu_list_compare);
    (*cpu_fprintf)(f, "Available CPUs:\n");
    g_slist_foreach(list, arm_cpu_list_entry, &s);
    g_slist_free(list);
3522 3523 3524 3525 3526 3527
#ifdef CONFIG_KVM
    /* The 'host' CPU type is dynamically registered only if KVM is
     * enabled, so we have to special-case it here:
     */
    (*cpu_fprintf)(f, "  host (only available in KVM mode)\n");
#endif
P
pbrook 已提交
3528 3529
}

3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560
static void arm_cpu_add_definition(gpointer data, gpointer user_data)
{
    ObjectClass *oc = data;
    CpuDefinitionInfoList **cpu_list = user_data;
    CpuDefinitionInfoList *entry;
    CpuDefinitionInfo *info;
    const char *typename;

    typename = object_class_get_name(oc);
    info = g_malloc0(sizeof(*info));
    info->name = g_strndup(typename,
                           strlen(typename) - strlen("-" TYPE_ARM_CPU));

    entry = g_malloc0(sizeof(*entry));
    entry->value = info;
    entry->next = *cpu_list;
    *cpu_list = entry;
}

CpuDefinitionInfoList *arch_query_cpu_definitions(Error **errp)
{
    CpuDefinitionInfoList *cpu_list = NULL;
    GSList *list;

    list = object_class_get_list(TYPE_ARM_CPU, false);
    g_slist_foreach(list, arm_cpu_add_definition, &cpu_list);
    g_slist_free(list);

    return cpu_list;
}

3561
static void add_cpreg_to_hashtable(ARMCPU *cpu, const ARMCPRegInfo *r,
3562
                                   void *opaque, int state, int secstate,
3563
                                   int crm, int opc1, int opc2)
3564 3565 3566 3567 3568 3569 3570
{
    /* Private utility function for define_one_arm_cp_reg_with_opaque():
     * add a single reginfo struct to the hash table.
     */
    uint32_t *key = g_new(uint32_t, 1);
    ARMCPRegInfo *r2 = g_memdup(r, sizeof(ARMCPRegInfo));
    int is64 = (r->type & ARM_CP_64BIT) ? 1 : 0;
3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581
    int ns = (secstate & ARM_CP_SECSTATE_NS) ? 1 : 0;

    /* Reset the secure state to the specific incoming state.  This is
     * necessary as the register may have been defined with both states.
     */
    r2->secure = secstate;

    if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) {
        /* Register is banked (using both entries in array).
         * Overwriting fieldoffset as the array is only used to define
         * banked registers but later only fieldoffset is used.
3582
         */
3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599
        r2->fieldoffset = r->bank_fieldoffsets[ns];
    }

    if (state == ARM_CP_STATE_AA32) {
        if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) {
            /* If the register is banked then we don't need to migrate or
             * reset the 32-bit instance in certain cases:
             *
             * 1) If the register has both 32-bit and 64-bit instances then we
             *    can count on the 64-bit instance taking care of the
             *    non-secure bank.
             * 2) If ARMv8 is enabled then we can count on a 64-bit version
             *    taking care of the secure bank.  This requires that separate
             *    32 and 64-bit definitions are provided.
             */
            if ((r->state == ARM_CP_STATE_BOTH && ns) ||
                (arm_feature(&cpu->env, ARM_FEATURE_V8) && !ns)) {
3600
                r2->type |= ARM_CP_ALIAS;
3601 3602 3603 3604 3605 3606
                r2->resetfn = arm_cp_reset_ignore;
            }
        } else if ((secstate != r->secure) && !ns) {
            /* The register is not banked so we only want to allow migration of
             * the non-secure instance.
             */
3607
            r2->type |= ARM_CP_ALIAS;
3608
            r2->resetfn = arm_cp_reset_ignore;
3609
        }
3610 3611 3612 3613 3614 3615 3616 3617

        if (r->state == ARM_CP_STATE_BOTH) {
            /* We assume it is a cp15 register if the .cp field is left unset.
             */
            if (r2->cp == 0) {
                r2->cp = 15;
            }

3618
#ifdef HOST_WORDS_BIGENDIAN
3619 3620 3621
            if (r2->fieldoffset) {
                r2->fieldoffset += sizeof(uint32_t);
            }
3622
#endif
3623
        }
3624 3625 3626 3627 3628
    }
    if (state == ARM_CP_STATE_AA64) {
        /* To allow abbreviation of ARMCPRegInfo
         * definitions, we treat cp == 0 as equivalent to
         * the value for "standard guest-visible sysreg".
3629 3630 3631
         * STATE_BOTH definitions are also always "standard
         * sysreg" in their AArch64 view (the .cp value may
         * be non-zero for the benefit of the AArch32 view).
3632
         */
3633
        if (r->cp == 0 || r->state == ARM_CP_STATE_BOTH) {
3634 3635 3636 3637 3638
            r2->cp = CP_REG_ARM64_SYSREG_CP;
        }
        *key = ENCODE_AA64_CP_REG(r2->cp, r2->crn, crm,
                                  r2->opc0, opc1, opc2);
    } else {
3639
        *key = ENCODE_CP_REG(r2->cp, is64, ns, r2->crn, crm, opc1, opc2);
3640
    }
3641 3642 3643
    if (opaque) {
        r2->opaque = opaque;
    }
3644 3645 3646 3647
    /* reginfo passed to helpers is correct for the actual access,
     * and is never ARM_CP_STATE_BOTH:
     */
    r2->state = state;
3648 3649 3650 3651 3652 3653 3654 3655
    /* Make sure reginfo passed to helpers for wildcarded regs
     * has the correct crm/opc1/opc2 for this reg, not CP_ANY:
     */
    r2->crm = crm;
    r2->opc1 = opc1;
    r2->opc2 = opc2;
    /* By convention, for wildcarded registers only the first
     * entry is used for migration; the others are marked as
3656
     * ALIAS so we don't try to transfer the register
3657
     * multiple times. Special registers (ie NOP/WFI) are
3658
     * never migratable and not even raw-accessible.
3659
     */
3660 3661 3662 3663
    if ((r->type & ARM_CP_SPECIAL)) {
        r2->type |= ARM_CP_NO_RAW;
    }
    if (((r->crm == CP_ANY) && crm != 0) ||
3664 3665
        ((r->opc1 == CP_ANY) && opc1 != 0) ||
        ((r->opc2 == CP_ANY) && opc2 != 0)) {
3666
        r2->type |= ARM_CP_ALIAS;
3667 3668
    }

3669 3670 3671 3672 3673 3674 3675 3676
    /* Check that raw accesses are either forbidden or handled. Note that
     * we can't assert this earlier because the setup of fieldoffset for
     * banked registers has to be done first.
     */
    if (!(r2->type & ARM_CP_NO_RAW)) {
        assert(!raw_accessors_invalid(r2));
    }

3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695
    /* Overriding of an existing definition must be explicitly
     * requested.
     */
    if (!(r->type & ARM_CP_OVERRIDE)) {
        ARMCPRegInfo *oldreg;
        oldreg = g_hash_table_lookup(cpu->cp_regs, key);
        if (oldreg && !(oldreg->type & ARM_CP_OVERRIDE)) {
            fprintf(stderr, "Register redefined: cp=%d %d bit "
                    "crn=%d crm=%d opc1=%d opc2=%d, "
                    "was %s, now %s\n", r2->cp, 32 + 32 * is64,
                    r2->crn, r2->crm, r2->opc1, r2->opc2,
                    oldreg->name, r2->name);
            g_assert_not_reached();
        }
    }
    g_hash_table_insert(cpu->cp_regs, key, r2);
}


3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709
void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
                                       const ARMCPRegInfo *r, void *opaque)
{
    /* Define implementations of coprocessor registers.
     * We store these in a hashtable because typically
     * there are less than 150 registers in a space which
     * is 16*16*16*8*8 = 262144 in size.
     * Wildcarding is supported for the crm, opc1 and opc2 fields.
     * If a register is defined twice then the second definition is
     * used, so this can be used to define some generic registers and
     * then override them with implementation specific variations.
     * At least one of the original and the second definition should
     * include ARM_CP_OVERRIDE in its type bits -- this is just a guard
     * against accidental use.
3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720
     *
     * The state field defines whether the register is to be
     * visible in the AArch32 or AArch64 execution state. If the
     * state is set to ARM_CP_STATE_BOTH then we synthesise a
     * reginfo structure for the AArch32 view, which sees the lower
     * 32 bits of the 64 bit register.
     *
     * Only registers visible in AArch64 may set r->opc0; opc0 cannot
     * be wildcarded. AArch64 registers are always considered to be 64
     * bits; the ARM_CP_64BIT* flag applies only to the AArch32 view of
     * the register, if any.
3721
     */
3722
    int crm, opc1, opc2, state;
3723 3724 3725 3726 3727 3728 3729 3730
    int crmmin = (r->crm == CP_ANY) ? 0 : r->crm;
    int crmmax = (r->crm == CP_ANY) ? 15 : r->crm;
    int opc1min = (r->opc1 == CP_ANY) ? 0 : r->opc1;
    int opc1max = (r->opc1 == CP_ANY) ? 7 : r->opc1;
    int opc2min = (r->opc2 == CP_ANY) ? 0 : r->opc2;
    int opc2max = (r->opc2 == CP_ANY) ? 7 : r->opc2;
    /* 64 bit registers have only CRm and Opc1 fields */
    assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn)));
3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776
    /* op0 only exists in the AArch64 encodings */
    assert((r->state != ARM_CP_STATE_AA32) || (r->opc0 == 0));
    /* AArch64 regs are all 64 bit so ARM_CP_64BIT is meaningless */
    assert((r->state != ARM_CP_STATE_AA64) || !(r->type & ARM_CP_64BIT));
    /* The AArch64 pseudocode CheckSystemAccess() specifies that op1
     * encodes a minimum access level for the register. We roll this
     * runtime check into our general permission check code, so check
     * here that the reginfo's specified permissions are strict enough
     * to encompass the generic architectural permission check.
     */
    if (r->state != ARM_CP_STATE_AA32) {
        int mask = 0;
        switch (r->opc1) {
        case 0: case 1: case 2:
            /* min_EL EL1 */
            mask = PL1_RW;
            break;
        case 3:
            /* min_EL EL0 */
            mask = PL0_RW;
            break;
        case 4:
            /* min_EL EL2 */
            mask = PL2_RW;
            break;
        case 5:
            /* unallocated encoding, so not possible */
            assert(false);
            break;
        case 6:
            /* min_EL EL3 */
            mask = PL3_RW;
            break;
        case 7:
            /* min_EL EL1, secure mode only (we don't check the latter) */
            mask = PL1_RW;
            break;
        default:
            /* broken reginfo with out-of-range opc1 */
            assert(false);
            break;
        }
        /* assert our permissions are not too lax (stricter is fine) */
        assert((r->access & ~mask) == 0);
    }

3777 3778 3779 3780 3781
    /* Check that the register definition has enough info to handle
     * reads and writes if they are permitted.
     */
    if (!(r->type & (ARM_CP_SPECIAL|ARM_CP_CONST))) {
        if (r->access & PL3_R) {
3782 3783 3784
            assert((r->fieldoffset ||
                   (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
                   r->readfn);
3785 3786
        }
        if (r->access & PL3_W) {
3787 3788 3789
            assert((r->fieldoffset ||
                   (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
                   r->writefn);
3790 3791 3792 3793 3794 3795 3796
        }
    }
    /* Bad type field probably means missing sentinel at end of reg list */
    assert(cptype_valid(r->type));
    for (crm = crmmin; crm <= crmmax; crm++) {
        for (opc1 = opc1min; opc1 <= opc1max; opc1++) {
            for (opc2 = opc2min; opc2 <= opc2max; opc2++) {
3797 3798 3799 3800 3801
                for (state = ARM_CP_STATE_AA32;
                     state <= ARM_CP_STATE_AA64; state++) {
                    if (r->state != state && r->state != ARM_CP_STATE_BOTH) {
                        continue;
                    }
3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827
                    if (state == ARM_CP_STATE_AA32) {
                        /* Under AArch32 CP registers can be common
                         * (same for secure and non-secure world) or banked.
                         */
                        switch (r->secure) {
                        case ARM_CP_SECSTATE_S:
                        case ARM_CP_SECSTATE_NS:
                            add_cpreg_to_hashtable(cpu, r, opaque, state,
                                                   r->secure, crm, opc1, opc2);
                            break;
                        default:
                            add_cpreg_to_hashtable(cpu, r, opaque, state,
                                                   ARM_CP_SECSTATE_S,
                                                   crm, opc1, opc2);
                            add_cpreg_to_hashtable(cpu, r, opaque, state,
                                                   ARM_CP_SECSTATE_NS,
                                                   crm, opc1, opc2);
                            break;
                        }
                    } else {
                        /* AArch64 registers get mapped to non-secure instance
                         * of AArch32 */
                        add_cpreg_to_hashtable(cpu, r, opaque, state,
                                               ARM_CP_SECSTATE_NS,
                                               crm, opc1, opc2);
                    }
3828
                }
3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843
            }
        }
    }
}

void define_arm_cp_regs_with_opaque(ARMCPU *cpu,
                                    const ARMCPRegInfo *regs, void *opaque)
{
    /* Define a whole list of registers */
    const ARMCPRegInfo *r;
    for (r = regs; r->type != ARM_CP_SENTINEL; r++) {
        define_one_arm_cp_reg_with_opaque(cpu, r, opaque);
    }
}

3844
const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp)
3845
{
3846
    return g_hash_table_lookup(cpregs, &encoded_cp);
3847 3848
}

3849 3850
void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
                         uint64_t value)
3851 3852 3853 3854
{
    /* Helper coprocessor write function for write-ignore registers */
}

3855
uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri)
3856 3857 3858 3859 3860
{
    /* Helper coprocessor write function for read-as-zero registers */
    return 0;
}

3861 3862 3863 3864 3865
void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque)
{
    /* Helper coprocessor reset function for do-nothing-on-reset registers */
}

3866
static int bad_mode_switch(CPUARMState *env, int mode)
3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880
{
    /* Return true if it is not valid for us to switch to
     * this CPU mode (ie all the UNPREDICTABLE cases in
     * the ARM ARM CPSRWriteByInstr pseudocode).
     */
    switch (mode) {
    case ARM_CPU_MODE_USR:
    case ARM_CPU_MODE_SYS:
    case ARM_CPU_MODE_SVC:
    case ARM_CPU_MODE_ABT:
    case ARM_CPU_MODE_UND:
    case ARM_CPU_MODE_IRQ:
    case ARM_CPU_MODE_FIQ:
        return 0;
3881 3882
    case ARM_CPU_MODE_MON:
        return !arm_is_secure(env);
3883 3884 3885 3886 3887
    default:
        return 1;
    }
}

3888 3889 3890
uint32_t cpsr_read(CPUARMState *env)
{
    int ZF;
P
pbrook 已提交
3891 3892
    ZF = (env->ZF == 0);
    return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) |
3893 3894 3895
        (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
        | (env->thumb << 5) | ((env->condexec_bits & 3) << 25)
        | ((env->condexec_bits & 0xfc) << 8)
3896
        | (env->GE << 16) | (env->daif & CPSR_AIF);
3897 3898 3899 3900
}

void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask)
{
3901 3902
    uint32_t changed_daif;

3903
    if (mask & CPSR_NZCV) {
P
pbrook 已提交
3904 3905
        env->ZF = (~val) & CPSR_Z;
        env->NF = val;
3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924
        env->CF = (val >> 29) & 1;
        env->VF = (val << 3) & 0x80000000;
    }
    if (mask & CPSR_Q)
        env->QF = ((val & CPSR_Q) != 0);
    if (mask & CPSR_T)
        env->thumb = ((val & CPSR_T) != 0);
    if (mask & CPSR_IT_0_1) {
        env->condexec_bits &= ~3;
        env->condexec_bits |= (val >> 25) & 3;
    }
    if (mask & CPSR_IT_2_7) {
        env->condexec_bits &= 3;
        env->condexec_bits |= (val >> 8) & 0xfc;
    }
    if (mask & CPSR_GE) {
        env->GE = (val >> 16) & 0xf;
    }

3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976
    /* In a V7 implementation that includes the security extensions but does
     * not include Virtualization Extensions the SCR.FW and SCR.AW bits control
     * whether non-secure software is allowed to change the CPSR_F and CPSR_A
     * bits respectively.
     *
     * In a V8 implementation, it is permitted for privileged software to
     * change the CPSR A/F bits regardless of the SCR.AW/FW bits.
     */
    if (!arm_feature(env, ARM_FEATURE_V8) &&
        arm_feature(env, ARM_FEATURE_EL3) &&
        !arm_feature(env, ARM_FEATURE_EL2) &&
        !arm_is_secure(env)) {

        changed_daif = (env->daif ^ val) & mask;

        if (changed_daif & CPSR_A) {
            /* Check to see if we are allowed to change the masking of async
             * abort exceptions from a non-secure state.
             */
            if (!(env->cp15.scr_el3 & SCR_AW)) {
                qemu_log_mask(LOG_GUEST_ERROR,
                              "Ignoring attempt to switch CPSR_A flag from "
                              "non-secure world with SCR.AW bit clear\n");
                mask &= ~CPSR_A;
            }
        }

        if (changed_daif & CPSR_F) {
            /* Check to see if we are allowed to change the masking of FIQ
             * exceptions from a non-secure state.
             */
            if (!(env->cp15.scr_el3 & SCR_FW)) {
                qemu_log_mask(LOG_GUEST_ERROR,
                              "Ignoring attempt to switch CPSR_F flag from "
                              "non-secure world with SCR.FW bit clear\n");
                mask &= ~CPSR_F;
            }

            /* Check whether non-maskable FIQ (NMFI) support is enabled.
             * If this bit is set software is not allowed to mask
             * FIQs, but is allowed to set CPSR_F to 0.
             */
            if ((A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_NMFI) &&
                (val & CPSR_F)) {
                qemu_log_mask(LOG_GUEST_ERROR,
                              "Ignoring attempt to enable CPSR_F flag "
                              "(non-maskable FIQ [NMFI] support enabled)\n");
                mask &= ~CPSR_F;
            }
        }
    }

3977 3978 3979
    env->daif &= ~(CPSR_AIF & mask);
    env->daif |= val & CPSR_AIF & mask;

3980
    if ((env->uncached_cpsr ^ val) & mask & CPSR_M) {
3981 3982 3983 3984 3985 3986 3987 3988 3989
        if (bad_mode_switch(env, val & CPSR_M)) {
            /* Attempt to switch to an invalid mode: this is UNPREDICTABLE.
             * We choose to ignore the attempt and leave the CPSR M field
             * untouched.
             */
            mask &= ~CPSR_M;
        } else {
            switch_mode(env, val & CPSR_M);
        }
3990 3991 3992 3993 3994
    }
    mask &= ~CACHED_CPSR_BITS;
    env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask);
}

P
pbrook 已提交
3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011
/* Sign/zero extend */
uint32_t HELPER(sxtb16)(uint32_t x)
{
    uint32_t res;
    res = (uint16_t)(int8_t)x;
    res |= (uint32_t)(int8_t)(x >> 16) << 16;
    return res;
}

uint32_t HELPER(uxtb16)(uint32_t x)
{
    uint32_t res;
    res = (uint16_t)(uint8_t)x;
    res |= (uint32_t)(uint8_t)(x >> 16) << 16;
    return res;
}

P
pbrook 已提交
4012 4013
uint32_t HELPER(clz)(uint32_t x)
{
4014
    return clz32(x);
P
pbrook 已提交
4015 4016
}

P
pbrook 已提交
4017 4018 4019 4020
int32_t HELPER(sdiv)(int32_t num, int32_t den)
{
    if (den == 0)
      return 0;
A
Aurelien Jarno 已提交
4021 4022
    if (num == INT_MIN && den == -1)
      return INT_MIN;
P
pbrook 已提交
4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047
    return num / den;
}

uint32_t HELPER(udiv)(uint32_t num, uint32_t den)
{
    if (den == 0)
      return 0;
    return num / den;
}

uint32_t HELPER(rbit)(uint32_t x)
{
    x =  ((x & 0xff000000) >> 24)
       | ((x & 0x00ff0000) >> 8)
       | ((x & 0x0000ff00) << 8)
       | ((x & 0x000000ff) << 24);
    x =  ((x & 0xf0f0f0f0) >> 4)
       | ((x & 0x0f0f0f0f) << 4);
    x =  ((x & 0x88888888) >> 3)
       | ((x & 0x44444444) >> 1)
       | ((x & 0x22222222) << 1)
       | ((x & 0x11111111) << 3);
    return x;
}

4048
#if defined(CONFIG_USER_ONLY)
B
bellard 已提交
4049

4050 4051
int arm_cpu_handle_mmu_fault(CPUState *cs, vaddr address, int rw,
                             int mmu_idx)
B
bellard 已提交
4052
{
4053 4054 4055
    ARMCPU *cpu = ARM_CPU(cs);
    CPUARMState *env = &cpu->env;

4056
    env->exception.vaddress = address;
B
bellard 已提交
4057
    if (rw == 2) {
4058
        cs->exception_index = EXCP_PREFETCH_ABORT;
B
bellard 已提交
4059
    } else {
4060
        cs->exception_index = EXCP_DATA_ABORT;
B
bellard 已提交
4061 4062 4063 4064
    }
    return 1;
}

P
pbrook 已提交
4065
/* These should probably raise undefined insn exceptions.  */
4066
void HELPER(v7m_msr)(CPUARMState *env, uint32_t reg, uint32_t val)
P
pbrook 已提交
4067
{
4068 4069 4070
    ARMCPU *cpu = arm_env_get_cpu(env);

    cpu_abort(CPU(cpu), "v7m_msr %d\n", reg);
P
pbrook 已提交
4071 4072
}

4073
uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg)
P
pbrook 已提交
4074
{
4075 4076 4077
    ARMCPU *cpu = arm_env_get_cpu(env);

    cpu_abort(CPU(cpu), "v7m_mrs %d\n", reg);
P
pbrook 已提交
4078 4079 4080
    return 0;
}

4081
void switch_mode(CPUARMState *env, int mode)
B
bellard 已提交
4082
{
4083 4084 4085 4086 4087
    ARMCPU *cpu = arm_env_get_cpu(env);

    if (mode != ARM_CPU_MODE_USR) {
        cpu_abort(CPU(cpu), "Tried to switch out of user mode\n");
    }
B
bellard 已提交
4088 4089
}

4090
void HELPER(set_r13_banked)(CPUARMState *env, uint32_t mode, uint32_t val)
P
pbrook 已提交
4091
{
4092 4093 4094
    ARMCPU *cpu = arm_env_get_cpu(env);

    cpu_abort(CPU(cpu), "banked r13 write\n");
P
pbrook 已提交
4095 4096
}

4097
uint32_t HELPER(get_r13_banked)(CPUARMState *env, uint32_t mode)
P
pbrook 已提交
4098
{
4099 4100 4101
    ARMCPU *cpu = arm_env_get_cpu(env);

    cpu_abort(CPU(cpu), "banked r13 read\n");
P
pbrook 已提交
4102 4103 4104
    return 0;
}

4105 4106 4107 4108 4109
unsigned int arm_excp_target_el(CPUState *cs, unsigned int excp_idx)
{
    return 1;
}

4110 4111 4112 4113 4114
void aarch64_sync_64_to_32(CPUARMState *env)
{
    g_assert_not_reached();
}

B
bellard 已提交
4115 4116 4117
#else

/* Map CPU modes onto saved register banks.  */
4118
int bank_number(int mode)
B
bellard 已提交
4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133
{
    switch (mode) {
    case ARM_CPU_MODE_USR:
    case ARM_CPU_MODE_SYS:
        return 0;
    case ARM_CPU_MODE_SVC:
        return 1;
    case ARM_CPU_MODE_ABT:
        return 2;
    case ARM_CPU_MODE_UND:
        return 3;
    case ARM_CPU_MODE_IRQ:
        return 4;
    case ARM_CPU_MODE_FIQ:
        return 5;
4134 4135 4136 4137
    case ARM_CPU_MODE_HYP:
        return 6;
    case ARM_CPU_MODE_MON:
        return 7;
B
bellard 已提交
4138
    }
4139
    hw_error("bank number requested for bad CPSR mode value 0x%x\n", mode);
B
bellard 已提交
4140 4141
}

4142
void switch_mode(CPUARMState *env, int mode)
B
bellard 已提交
4143 4144 4145 4146 4147 4148 4149 4150 4151 4152
{
    int old_mode;
    int i;

    old_mode = env->uncached_cpsr & CPSR_M;
    if (mode == old_mode)
        return;

    if (old_mode == ARM_CPU_MODE_FIQ) {
        memcpy (env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t));
P
pbrook 已提交
4153
        memcpy (env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t));
B
bellard 已提交
4154 4155
    } else if (mode == ARM_CPU_MODE_FIQ) {
        memcpy (env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t));
P
pbrook 已提交
4156
        memcpy (env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t));
B
bellard 已提交
4157 4158
    }

4159
    i = bank_number(old_mode);
B
bellard 已提交
4160 4161 4162 4163
    env->banked_r13[i] = env->regs[13];
    env->banked_r14[i] = env->regs[14];
    env->banked_spsr[i] = env->spsr;

4164
    i = bank_number(mode);
B
bellard 已提交
4165 4166 4167 4168 4169
    env->regs[13] = env->banked_r13[i];
    env->regs[14] = env->banked_r14[i];
    env->spsr = env->banked_spsr[i];
}

4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264
/* Physical Interrupt Target EL Lookup Table
 *
 * [ From ARM ARM section G1.13.4 (Table G1-15) ]
 *
 * The below multi-dimensional table is used for looking up the target
 * exception level given numerous condition criteria.  Specifically, the
 * target EL is based on SCR and HCR routing controls as well as the
 * currently executing EL and secure state.
 *
 *    Dimensions:
 *    target_el_table[2][2][2][2][2][4]
 *                    |  |  |  |  |  +--- Current EL
 *                    |  |  |  |  +------ Non-secure(0)/Secure(1)
 *                    |  |  |  +--------- HCR mask override
 *                    |  |  +------------ SCR exec state control
 *                    |  +--------------- SCR mask override
 *                    +------------------ 32-bit(0)/64-bit(1) EL3
 *
 *    The table values are as such:
 *    0-3 = EL0-EL3
 *     -1 = Cannot occur
 *
 * The ARM ARM target EL table includes entries indicating that an "exception
 * is not taken".  The two cases where this is applicable are:
 *    1) An exception is taken from EL3 but the SCR does not have the exception
 *    routed to EL3.
 *    2) An exception is taken from EL2 but the HCR does not have the exception
 *    routed to EL2.
 * In these two cases, the below table contain a target of EL1.  This value is
 * returned as it is expected that the consumer of the table data will check
 * for "target EL >= current EL" to ensure the exception is not taken.
 *
 *            SCR     HCR
 *         64  EA     AMO                 From
 *        BIT IRQ     IMO      Non-secure         Secure
 *        EL3 FIQ  RW FMO   EL0 EL1 EL2 EL3   EL0 EL1 EL2 EL3
 */
const int8_t target_el_table[2][2][2][2][2][4] = {
    {{{{/* 0   0   0   0 */{ 1,  1,  2, -1 },{ 3, -1, -1,  3 },},
       {/* 0   0   0   1 */{ 2,  2,  2, -1 },{ 3, -1, -1,  3 },},},
      {{/* 0   0   1   0 */{ 1,  1,  2, -1 },{ 3, -1, -1,  3 },},
       {/* 0   0   1   1 */{ 2,  2,  2, -1 },{ 3, -1, -1,  3 },},},},
     {{{/* 0   1   0   0 */{ 3,  3,  3, -1 },{ 3, -1, -1,  3 },},
       {/* 0   1   0   1 */{ 3,  3,  3, -1 },{ 3, -1, -1,  3 },},},
      {{/* 0   1   1   0 */{ 3,  3,  3, -1 },{ 3, -1, -1,  3 },},
       {/* 0   1   1   1 */{ 3,  3,  3, -1 },{ 3, -1, -1,  3 },},},},},
    {{{{/* 1   0   0   0 */{ 1,  1,  2, -1 },{ 1,  1, -1,  1 },},
       {/* 1   0   0   1 */{ 2,  2,  2, -1 },{ 1,  1, -1,  1 },},},
      {{/* 1   0   1   0 */{ 1,  1,  1, -1 },{ 1,  1, -1,  1 },},
       {/* 1   0   1   1 */{ 2,  2,  2, -1 },{ 1,  1, -1,  1 },},},},
     {{{/* 1   1   0   0 */{ 3,  3,  3, -1 },{ 3,  3, -1,  3 },},
       {/* 1   1   0   1 */{ 3,  3,  3, -1 },{ 3,  3, -1,  3 },},},
      {{/* 1   1   1   0 */{ 3,  3,  3, -1 },{ 3,  3, -1,  3 },},
       {/* 1   1   1   1 */{ 3,  3,  3, -1 },{ 3,  3, -1,  3 },},},},},
};

/*
 * Determine the target EL for physical exceptions
 */
static inline uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
                                        uint32_t cur_el, bool secure)
{
    CPUARMState *env = cs->env_ptr;
    int rw = ((env->cp15.scr_el3 & SCR_RW) == SCR_RW);
    int scr;
    int hcr;
    int target_el;
    int is64 = arm_el_is_aa64(env, 3);

    switch (excp_idx) {
    case EXCP_IRQ:
        scr = ((env->cp15.scr_el3 & SCR_IRQ) == SCR_IRQ);
        hcr = ((env->cp15.hcr_el2 & HCR_IMO) == HCR_IMO);
        break;
    case EXCP_FIQ:
        scr = ((env->cp15.scr_el3 & SCR_FIQ) == SCR_FIQ);
        hcr = ((env->cp15.hcr_el2 & HCR_FMO) == HCR_FMO);
        break;
    default:
        scr = ((env->cp15.scr_el3 & SCR_EA) == SCR_EA);
        hcr = ((env->cp15.hcr_el2 & HCR_AMO) == HCR_AMO);
        break;
    };

    /* If HCR.TGE is set then HCR is treated as being 1 */
    hcr |= ((env->cp15.hcr_el2 & HCR_TGE) == HCR_TGE);

    /* Perform a table-lookup for the target EL given the current state */
    target_el = target_el_table[is64][scr][rw][hcr][secure][cur_el];

    assert(target_el > 0);

    return target_el;
}

4265 4266 4267 4268 4269
/*
 * Determine the target EL for a given exception type.
 */
unsigned int arm_excp_target_el(CPUState *cs, unsigned int excp_idx)
{
4270 4271
    ARMCPU *cpu = ARM_CPU(cs);
    CPUARMState *env = &cpu->env;
4272
    unsigned int cur_el = arm_current_el(env);
4273
    unsigned int target_el;
4274
    bool secure = arm_is_secure(env);
4275 4276 4277

    switch (excp_idx) {
    case EXCP_HVC:
4278
    case EXCP_HYP_TRAP:
4279 4280
        target_el = 2;
        break;
4281 4282 4283
    case EXCP_SMC:
        target_el = 3;
        break;
4284 4285
    case EXCP_FIQ:
    case EXCP_IRQ:
4286
        target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure);
4287
        break;
4288 4289 4290 4291
    case EXCP_VIRQ:
    case EXCP_VFIQ:
        target_el = 1;
        break;
4292 4293 4294 4295 4296
    default:
        target_el = MAX(cur_el, 1);
        break;
    }
    return target_el;
4297 4298
}

P
pbrook 已提交
4299 4300
static void v7m_push(CPUARMState *env, uint32_t val)
{
4301 4302
    CPUState *cs = CPU(arm_env_get_cpu(env));

P
pbrook 已提交
4303
    env->regs[13] -= 4;
4304
    stl_phys(cs->as, env->regs[13], val);
P
pbrook 已提交
4305 4306 4307 4308
}

static uint32_t v7m_pop(CPUARMState *env)
{
4309
    CPUState *cs = CPU(arm_env_get_cpu(env));
P
pbrook 已提交
4310
    uint32_t val;
4311

4312
    val = ldl_phys(cs->as, env->regs[13]);
P
pbrook 已提交
4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335
    env->regs[13] += 4;
    return val;
}

/* Switch to V7M main or process stack pointer.  */
static void switch_v7m_sp(CPUARMState *env, int process)
{
    uint32_t tmp;
    if (env->v7m.current_sp != process) {
        tmp = env->v7m.other_sp;
        env->v7m.other_sp = env->regs[13];
        env->regs[13] = tmp;
        env->v7m.current_sp = process;
    }
}

static void do_v7m_exception_exit(CPUARMState *env)
{
    uint32_t type;
    uint32_t xpsr;

    type = env->regs[15];
    if (env->v7m.exception != 0)
P
Paul Brook 已提交
4336
        armv7m_nvic_complete_irq(env->nvic, env->v7m.exception);
P
pbrook 已提交
4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347

    /* Switch to the target stack.  */
    switch_v7m_sp(env, (type & 4) != 0);
    /* Pop registers.  */
    env->regs[0] = v7m_pop(env);
    env->regs[1] = v7m_pop(env);
    env->regs[2] = v7m_pop(env);
    env->regs[3] = v7m_pop(env);
    env->regs[12] = v7m_pop(env);
    env->regs[14] = v7m_pop(env);
    env->regs[15] = v7m_pop(env);
4348 4349 4350 4351 4352 4353 4354 4355 4356 4357
    if (env->regs[15] & 1) {
        qemu_log_mask(LOG_GUEST_ERROR,
                      "M profile return from interrupt with misaligned "
                      "PC is UNPREDICTABLE\n");
        /* Actual hardware seems to ignore the lsbit, and there are several
         * RTOSes out there which incorrectly assume the r15 in the stack
         * frame should be a Thumb-style "lsbit indicates ARM/Thumb" value.
         */
        env->regs[15] &= ~1U;
    }
P
pbrook 已提交
4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369
    xpsr = v7m_pop(env);
    xpsr_write(env, xpsr, 0xfffffdff);
    /* Undo stack alignment.  */
    if (xpsr & 0x200)
        env->regs[13] |= 4;
    /* ??? The exception return type specifies Thread/Handler mode.  However
       this is also implied by the xPSR value. Not sure what to do
       if there is a mismatch.  */
    /* ??? Likewise for mismatches between the CONTROL register and the stack
       pointer.  */
}

4370
void arm_v7m_cpu_do_interrupt(CPUState *cs)
P
pbrook 已提交
4371
{
4372 4373
    ARMCPU *cpu = ARM_CPU(cs);
    CPUARMState *env = &cpu->env;
P
pbrook 已提交
4374 4375 4376 4377
    uint32_t xpsr = xpsr_read(env);
    uint32_t lr;
    uint32_t addr;

4378
    arm_log_exception(cs->exception_index);
4379

P
pbrook 已提交
4380 4381 4382 4383 4384 4385 4386 4387 4388 4389
    lr = 0xfffffff1;
    if (env->v7m.current_sp)
        lr |= 4;
    if (env->v7m.exception == 0)
        lr |= 8;

    /* For exceptions we just mark as pending on the NVIC, and let that
       handle it.  */
    /* TODO: Need to escalate if the current priority is higher than the
       one we're raising.  */
4390
    switch (cs->exception_index) {
P
pbrook 已提交
4391
    case EXCP_UDEF:
P
Paul Brook 已提交
4392
        armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE);
P
pbrook 已提交
4393 4394
        return;
    case EXCP_SWI:
4395
        /* The PC already points to the next instruction.  */
P
Paul Brook 已提交
4396
        armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SVC);
P
pbrook 已提交
4397 4398 4399
        return;
    case EXCP_PREFETCH_ABORT:
    case EXCP_DATA_ABORT:
4400 4401 4402
        /* TODO: if we implemented the MPU registers, this is where we
         * should set the MMFAR, etc from exception.fsr and exception.vaddress.
         */
P
Paul Brook 已提交
4403
        armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_MEM);
P
pbrook 已提交
4404 4405
        return;
    case EXCP_BKPT:
P
pbrook 已提交
4406 4407
        if (semihosting_enabled) {
            int nr;
4408
            nr = arm_lduw_code(env, env->regs[15], env->bswap_code) & 0xff;
P
pbrook 已提交
4409 4410 4411
            if (nr == 0xab) {
                env->regs[15] += 2;
                env->regs[0] = do_arm_semihosting(env);
4412
                qemu_log_mask(CPU_LOG_INT, "...handled as semihosting call\n");
P
pbrook 已提交
4413 4414 4415
                return;
            }
        }
P
Paul Brook 已提交
4416
        armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_DEBUG);
P
pbrook 已提交
4417 4418
        return;
    case EXCP_IRQ:
P
Paul Brook 已提交
4419
        env->v7m.exception = armv7m_nvic_acknowledge_irq(env->nvic);
P
pbrook 已提交
4420 4421 4422 4423 4424
        break;
    case EXCP_EXCEPTION_EXIT:
        do_v7m_exception_exit(env);
        return;
    default:
4425
        cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
P
pbrook 已提交
4426 4427 4428 4429 4430 4431 4432
        return; /* Never happens.  Keep compiler happy.  */
    }

    /* Align stack pointer.  */
    /* ??? Should only do this if Configuration Control Register
       STACKALIGN bit is set.  */
    if (env->regs[13] & 4) {
P
pbrook 已提交
4433
        env->regs[13] -= 4;
P
pbrook 已提交
4434 4435
        xpsr |= 0x200;
    }
B
balrog 已提交
4436
    /* Switch to the handler mode.  */
P
pbrook 已提交
4437 4438 4439 4440 4441 4442 4443 4444 4445
    v7m_push(env, xpsr);
    v7m_push(env, env->regs[15]);
    v7m_push(env, env->regs[14]);
    v7m_push(env, env->regs[12]);
    v7m_push(env, env->regs[3]);
    v7m_push(env, env->regs[2]);
    v7m_push(env, env->regs[1]);
    v7m_push(env, env->regs[0]);
    switch_v7m_sp(env, 0);
4446 4447
    /* Clear IT bits */
    env->condexec_bits = 0;
P
pbrook 已提交
4448
    env->regs[14] = lr;
4449
    addr = ldl_phys(cs->as, env->v7m.vecbase + env->v7m.exception * 4);
P
pbrook 已提交
4450 4451 4452 4453
    env->regs[15] = addr & 0xfffffffe;
    env->thumb = addr & 1;
}

4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659
/* Function used to synchronize QEMU's AArch64 register set with AArch32
 * register set.  This is necessary when switching between AArch32 and AArch64
 * execution state.
 */
void aarch64_sync_32_to_64(CPUARMState *env)
{
    int i;
    uint32_t mode = env->uncached_cpsr & CPSR_M;

    /* We can blanket copy R[0:7] to X[0:7] */
    for (i = 0; i < 8; i++) {
        env->xregs[i] = env->regs[i];
    }

    /* Unless we are in FIQ mode, x8-x12 come from the user registers r8-r12.
     * Otherwise, they come from the banked user regs.
     */
    if (mode == ARM_CPU_MODE_FIQ) {
        for (i = 8; i < 13; i++) {
            env->xregs[i] = env->usr_regs[i - 8];
        }
    } else {
        for (i = 8; i < 13; i++) {
            env->xregs[i] = env->regs[i];
        }
    }

    /* Registers x13-x23 are the various mode SP and FP registers. Registers
     * r13 and r14 are only copied if we are in that mode, otherwise we copy
     * from the mode banked register.
     */
    if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) {
        env->xregs[13] = env->regs[13];
        env->xregs[14] = env->regs[14];
    } else {
        env->xregs[13] = env->banked_r13[bank_number(ARM_CPU_MODE_USR)];
        /* HYP is an exception in that it is copied from r14 */
        if (mode == ARM_CPU_MODE_HYP) {
            env->xregs[14] = env->regs[14];
        } else {
            env->xregs[14] = env->banked_r14[bank_number(ARM_CPU_MODE_USR)];
        }
    }

    if (mode == ARM_CPU_MODE_HYP) {
        env->xregs[15] = env->regs[13];
    } else {
        env->xregs[15] = env->banked_r13[bank_number(ARM_CPU_MODE_HYP)];
    }

    if (mode == ARM_CPU_MODE_IRQ) {
        env->xregs[16] = env->regs[13];
        env->xregs[17] = env->regs[14];
    } else {
        env->xregs[16] = env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)];
        env->xregs[17] = env->banked_r14[bank_number(ARM_CPU_MODE_IRQ)];
    }

    if (mode == ARM_CPU_MODE_SVC) {
        env->xregs[18] = env->regs[13];
        env->xregs[19] = env->regs[14];
    } else {
        env->xregs[18] = env->banked_r13[bank_number(ARM_CPU_MODE_SVC)];
        env->xregs[19] = env->banked_r14[bank_number(ARM_CPU_MODE_SVC)];
    }

    if (mode == ARM_CPU_MODE_ABT) {
        env->xregs[20] = env->regs[13];
        env->xregs[21] = env->regs[14];
    } else {
        env->xregs[20] = env->banked_r13[bank_number(ARM_CPU_MODE_ABT)];
        env->xregs[21] = env->banked_r14[bank_number(ARM_CPU_MODE_ABT)];
    }

    if (mode == ARM_CPU_MODE_UND) {
        env->xregs[22] = env->regs[13];
        env->xregs[23] = env->regs[14];
    } else {
        env->xregs[22] = env->banked_r13[bank_number(ARM_CPU_MODE_UND)];
        env->xregs[23] = env->banked_r14[bank_number(ARM_CPU_MODE_UND)];
    }

    /* Registers x24-x30 are mapped to r8-r14 in FIQ mode.  If we are in FIQ
     * mode, then we can copy from r8-r14.  Otherwise, we copy from the
     * FIQ bank for r8-r14.
     */
    if (mode == ARM_CPU_MODE_FIQ) {
        for (i = 24; i < 31; i++) {
            env->xregs[i] = env->regs[i - 16];   /* X[24:30] <- R[8:14] */
        }
    } else {
        for (i = 24; i < 29; i++) {
            env->xregs[i] = env->fiq_regs[i - 24];
        }
        env->xregs[29] = env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)];
        env->xregs[30] = env->banked_r14[bank_number(ARM_CPU_MODE_FIQ)];
    }

    env->pc = env->regs[15];
}

/* Function used to synchronize QEMU's AArch32 register set with AArch64
 * register set.  This is necessary when switching between AArch32 and AArch64
 * execution state.
 */
void aarch64_sync_64_to_32(CPUARMState *env)
{
    int i;
    uint32_t mode = env->uncached_cpsr & CPSR_M;

    /* We can blanket copy X[0:7] to R[0:7] */
    for (i = 0; i < 8; i++) {
        env->regs[i] = env->xregs[i];
    }

    /* Unless we are in FIQ mode, r8-r12 come from the user registers x8-x12.
     * Otherwise, we copy x8-x12 into the banked user regs.
     */
    if (mode == ARM_CPU_MODE_FIQ) {
        for (i = 8; i < 13; i++) {
            env->usr_regs[i - 8] = env->xregs[i];
        }
    } else {
        for (i = 8; i < 13; i++) {
            env->regs[i] = env->xregs[i];
        }
    }

    /* Registers r13 & r14 depend on the current mode.
     * If we are in a given mode, we copy the corresponding x registers to r13
     * and r14.  Otherwise, we copy the x register to the banked r13 and r14
     * for the mode.
     */
    if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) {
        env->regs[13] = env->xregs[13];
        env->regs[14] = env->xregs[14];
    } else {
        env->banked_r13[bank_number(ARM_CPU_MODE_USR)] = env->xregs[13];

        /* HYP is an exception in that it does not have its own banked r14 but
         * shares the USR r14
         */
        if (mode == ARM_CPU_MODE_HYP) {
            env->regs[14] = env->xregs[14];
        } else {
            env->banked_r14[bank_number(ARM_CPU_MODE_USR)] = env->xregs[14];
        }
    }

    if (mode == ARM_CPU_MODE_HYP) {
        env->regs[13] = env->xregs[15];
    } else {
        env->banked_r13[bank_number(ARM_CPU_MODE_HYP)] = env->xregs[15];
    }

    if (mode == ARM_CPU_MODE_IRQ) {
        env->regs[13] = env->xregs[16];
        env->regs[14] = env->xregs[17];
    } else {
        env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[16];
        env->banked_r14[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[17];
    }

    if (mode == ARM_CPU_MODE_SVC) {
        env->regs[13] = env->xregs[18];
        env->regs[14] = env->xregs[19];
    } else {
        env->banked_r13[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[18];
        env->banked_r14[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[19];
    }

    if (mode == ARM_CPU_MODE_ABT) {
        env->regs[13] = env->xregs[20];
        env->regs[14] = env->xregs[21];
    } else {
        env->banked_r13[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[20];
        env->banked_r14[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[21];
    }

    if (mode == ARM_CPU_MODE_UND) {
        env->regs[13] = env->xregs[22];
        env->regs[14] = env->xregs[23];
    } else {
        env->banked_r13[bank_number(ARM_CPU_MODE_UND)] = env->xregs[22];
        env->banked_r14[bank_number(ARM_CPU_MODE_UND)] = env->xregs[23];
    }

    /* Registers x24-x30 are mapped to r8-r14 in FIQ mode.  If we are in FIQ
     * mode, then we can copy to r8-r14.  Otherwise, we copy to the
     * FIQ bank for r8-r14.
     */
    if (mode == ARM_CPU_MODE_FIQ) {
        for (i = 24; i < 31; i++) {
            env->regs[i - 16] = env->xregs[i];   /* X[24:30] -> R[8:14] */
        }
    } else {
        for (i = 24; i < 29; i++) {
            env->fiq_regs[i - 24] = env->xregs[i];
        }
        env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[29];
        env->banked_r14[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[30];
    }

    env->regs[15] = env->pc;
}

B
bellard 已提交
4660
/* Handle a CPU exception.  */
4661
void arm_cpu_do_interrupt(CPUState *cs)
B
bellard 已提交
4662
{
4663 4664
    ARMCPU *cpu = ARM_CPU(cs);
    CPUARMState *env = &cpu->env;
B
bellard 已提交
4665 4666 4667 4668
    uint32_t addr;
    uint32_t mask;
    int new_mode;
    uint32_t offset;
4669
    uint32_t moe;
B
bellard 已提交
4670

4671 4672
    assert(!IS_M(env));

4673
    arm_log_exception(cs->exception_index);
4674

4675 4676 4677 4678 4679 4680
    if (arm_is_psci_call(cpu, cs->exception_index)) {
        arm_handle_psci_call(cpu);
        qemu_log_mask(CPU_LOG_INT, "...handled as PSCI call\n");
        return;
    }

4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705
    /* If this is a debug exception we must update the DBGDSCR.MOE bits */
    switch (env->exception.syndrome >> ARM_EL_EC_SHIFT) {
    case EC_BREAKPOINT:
    case EC_BREAKPOINT_SAME_EL:
        moe = 1;
        break;
    case EC_WATCHPOINT:
    case EC_WATCHPOINT_SAME_EL:
        moe = 10;
        break;
    case EC_AA32_BKPT:
        moe = 3;
        break;
    case EC_VECTORCATCH:
        moe = 5;
        break;
    default:
        moe = 0;
        break;
    }

    if (moe) {
        env->cp15.mdscr_el1 = deposit64(env->cp15.mdscr_el1, 2, 4, moe);
    }

B
bellard 已提交
4706
    /* TODO: Vectored interrupt controller.  */
4707
    switch (cs->exception_index) {
B
bellard 已提交
4708 4709 4710 4711 4712 4713 4714 4715 4716 4717
    case EXCP_UDEF:
        new_mode = ARM_CPU_MODE_UND;
        addr = 0x04;
        mask = CPSR_I;
        if (env->thumb)
            offset = 2;
        else
            offset = 4;
        break;
    case EXCP_SWI:
4718 4719 4720
        if (semihosting_enabled) {
            /* Check for semihosting interrupt.  */
            if (env->thumb) {
4721 4722
                mask = arm_lduw_code(env, env->regs[15] - 2, env->bswap_code)
                    & 0xff;
4723
            } else {
4724
                mask = arm_ldl_code(env, env->regs[15] - 4, env->bswap_code)
P
Paul Brook 已提交
4725
                    & 0xffffff;
4726 4727 4728 4729 4730 4731 4732
            }
            /* Only intercept calls from privileged modes, to provide some
               semblance of security.  */
            if (((mask == 0x123456 && !env->thumb)
                    || (mask == 0xab && env->thumb))
                  && (env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR) {
                env->regs[0] = do_arm_semihosting(env);
4733
                qemu_log_mask(CPU_LOG_INT, "...handled as semihosting call\n");
4734 4735 4736
                return;
            }
        }
B
bellard 已提交
4737 4738 4739
        new_mode = ARM_CPU_MODE_SVC;
        addr = 0x08;
        mask = CPSR_I;
4740
        /* The PC already points to the next instruction.  */
B
bellard 已提交
4741 4742
        offset = 0;
        break;
P
pbrook 已提交
4743
    case EXCP_BKPT:
P
pbrook 已提交
4744
        /* See if this is a semihosting syscall.  */
P
pbrook 已提交
4745
        if (env->thumb && semihosting_enabled) {
4746
            mask = arm_lduw_code(env, env->regs[15], env->bswap_code) & 0xff;
P
pbrook 已提交
4747 4748 4749 4750
            if (mask == 0xab
                  && (env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR) {
                env->regs[15] += 2;
                env->regs[0] = do_arm_semihosting(env);
4751
                qemu_log_mask(CPU_LOG_INT, "...handled as semihosting call\n");
P
pbrook 已提交
4752 4753 4754
                return;
            }
        }
4755
        env->exception.fsr = 2;
P
pbrook 已提交
4756 4757
        /* Fall through to prefetch abort.  */
    case EXCP_PREFETCH_ABORT:
F
Fabian Aggeler 已提交
4758
        A32_BANKED_CURRENT_REG_SET(env, ifsr, env->exception.fsr);
F
Fabian Aggeler 已提交
4759
        A32_BANKED_CURRENT_REG_SET(env, ifar, env->exception.vaddress);
4760
        qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x IFAR 0x%x\n",
F
Fabian Aggeler 已提交
4761
                      env->exception.fsr, (uint32_t)env->exception.vaddress);
B
bellard 已提交
4762 4763 4764 4765 4766 4767
        new_mode = ARM_CPU_MODE_ABT;
        addr = 0x0c;
        mask = CPSR_A | CPSR_I;
        offset = 4;
        break;
    case EXCP_DATA_ABORT:
F
Fabian Aggeler 已提交
4768
        A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr);
F
Fabian Aggeler 已提交
4769
        A32_BANKED_CURRENT_REG_SET(env, dfar, env->exception.vaddress);
4770
        qemu_log_mask(CPU_LOG_INT, "...with DFSR 0x%x DFAR 0x%x\n",
F
Fabian Aggeler 已提交
4771
                      env->exception.fsr,
4772
                      (uint32_t)env->exception.vaddress);
B
bellard 已提交
4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783
        new_mode = ARM_CPU_MODE_ABT;
        addr = 0x10;
        mask = CPSR_A | CPSR_I;
        offset = 8;
        break;
    case EXCP_IRQ:
        new_mode = ARM_CPU_MODE_IRQ;
        addr = 0x18;
        /* Disable IRQ and imprecise data aborts.  */
        mask = CPSR_A | CPSR_I;
        offset = 4;
4784 4785 4786 4787 4788
        if (env->cp15.scr_el3 & SCR_IRQ) {
            /* IRQ routed to monitor mode */
            new_mode = ARM_CPU_MODE_MON;
            mask |= CPSR_F;
        }
B
bellard 已提交
4789 4790 4791 4792 4793 4794
        break;
    case EXCP_FIQ:
        new_mode = ARM_CPU_MODE_FIQ;
        addr = 0x1c;
        /* Disable FIQ, IRQ and imprecise data aborts.  */
        mask = CPSR_A | CPSR_I | CPSR_F;
4795 4796 4797 4798
        if (env->cp15.scr_el3 & SCR_FIQ) {
            /* FIQ routed to monitor mode */
            new_mode = ARM_CPU_MODE_MON;
        }
B
bellard 已提交
4799 4800
        offset = 4;
        break;
4801 4802 4803 4804 4805 4806
    case EXCP_SMC:
        new_mode = ARM_CPU_MODE_MON;
        addr = 0x08;
        mask = CPSR_A | CPSR_I | CPSR_F;
        offset = 0;
        break;
B
bellard 已提交
4807
    default:
4808
        cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
B
bellard 已提交
4809 4810
        return; /* Never happens.  Keep compiler happy.  */
    }
F
Fabian Aggeler 已提交
4811 4812 4813

    if (new_mode == ARM_CPU_MODE_MON) {
        addr += env->cp15.mvbar;
4814
    } else if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) {
F
Fabian Aggeler 已提交
4815
        /* High vectors. When enabled, base address cannot be remapped. */
B
bellard 已提交
4816
        addr += 0xffff0000;
N
Nathan Rossi 已提交
4817 4818 4819
    } else {
        /* ARM v7 architectures provide a vector base address register to remap
         * the interrupt vector table.
F
Fabian Aggeler 已提交
4820
         * This register is only followed in non-monitor mode, and is banked.
N
Nathan Rossi 已提交
4821 4822
         * Note: only bits 31:5 are valid.
         */
G
Greg Bellows 已提交
4823
        addr += A32_BANKED_CURRENT_REG_GET(env, vbar);
B
bellard 已提交
4824
    }
4825 4826 4827 4828 4829

    if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
        env->cp15.scr_el3 &= ~SCR_NS;
    }

B
bellard 已提交
4830
    switch_mode (env, new_mode);
4831 4832 4833 4834
    /* For exceptions taken to AArch32 we must clear the SS bit in both
     * PSTATE and in the old-state value we save to SPSR_<mode>, so zero it now.
     */
    env->uncached_cpsr &= ~PSTATE_SS;
B
bellard 已提交
4835
    env->spsr = cpsr_read(env);
P
pbrook 已提交
4836 4837
    /* Clear IT bits.  */
    env->condexec_bits = 0;
4838
    /* Switch to the new mode, and to the correct instruction set.  */
4839
    env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode;
4840
    env->daif |= mask;
4841 4842 4843
    /* this is a lie, as the was no c1_sys on V4T/V5, but who cares
     * and we should just guard the thumb mode on V4 */
    if (arm_feature(env, ARM_FEATURE_V4T)) {
4844
        env->thumb = (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_TE) != 0;
4845
    }
B
bellard 已提交
4846 4847
    env->regs[14] = env->regs[15] + offset;
    env->regs[15] = addr;
4848
    cs->interrupt_request |= CPU_INTERRUPT_EXITTB;
B
bellard 已提交
4849 4850
}

4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871

/* Return the exception level which controls this address translation regime */
static inline uint32_t regime_el(CPUARMState *env, ARMMMUIdx mmu_idx)
{
    switch (mmu_idx) {
    case ARMMMUIdx_S2NS:
    case ARMMMUIdx_S1E2:
        return 2;
    case ARMMMUIdx_S1E3:
        return 3;
    case ARMMMUIdx_S1SE0:
        return arm_el_is_aa64(env, 3) ? 1 : 3;
    case ARMMMUIdx_S1SE1:
    case ARMMMUIdx_S1NSE0:
    case ARMMMUIdx_S1NSE1:
        return 1;
    default:
        g_assert_not_reached();
    }
}

4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891
/* Return true if this address translation regime is secure */
static inline bool regime_is_secure(CPUARMState *env, ARMMMUIdx mmu_idx)
{
    switch (mmu_idx) {
    case ARMMMUIdx_S12NSE0:
    case ARMMMUIdx_S12NSE1:
    case ARMMMUIdx_S1NSE0:
    case ARMMMUIdx_S1NSE1:
    case ARMMMUIdx_S1E2:
    case ARMMMUIdx_S2NS:
        return false;
    case ARMMMUIdx_S1E3:
    case ARMMMUIdx_S1SE0:
    case ARMMMUIdx_S1SE1:
        return true;
    default:
        g_assert_not_reached();
    }
}

4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917
/* Return the SCTLR value which controls this address translation regime */
static inline uint32_t regime_sctlr(CPUARMState *env, ARMMMUIdx mmu_idx)
{
    return env->cp15.sctlr_el[regime_el(env, mmu_idx)];
}

/* Return true if the specified stage of address translation is disabled */
static inline bool regime_translation_disabled(CPUARMState *env,
                                               ARMMMUIdx mmu_idx)
{
    if (mmu_idx == ARMMMUIdx_S2NS) {
        return (env->cp15.hcr_el2 & HCR_VM) == 0;
    }
    return (regime_sctlr(env, mmu_idx) & SCTLR_M) == 0;
}

/* Return the TCR controlling this translation regime */
static inline TCR *regime_tcr(CPUARMState *env, ARMMMUIdx mmu_idx)
{
    if (mmu_idx == ARMMMUIdx_S2NS) {
        /* TODO: return VTCR_EL2 */
        g_assert_not_reached();
    }
    return &env->cp15.tcr_el[regime_el(env, mmu_idx)];
}

4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932
/* Return the TTBR associated with this translation regime */
static inline uint64_t regime_ttbr(CPUARMState *env, ARMMMUIdx mmu_idx,
                                   int ttbrn)
{
    if (mmu_idx == ARMMMUIdx_S2NS) {
        /* TODO: return VTTBR_EL2 */
        g_assert_not_reached();
    }
    if (ttbrn == 0) {
        return env->cp15.ttbr0_el[regime_el(env, mmu_idx)];
    } else {
        return env->cp15.ttbr1_el[regime_el(env, mmu_idx)];
    }
}

4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961
/* Return true if the translation regime is using LPAE format page tables */
static inline bool regime_using_lpae_format(CPUARMState *env,
                                            ARMMMUIdx mmu_idx)
{
    int el = regime_el(env, mmu_idx);
    if (el == 2 || arm_el_is_aa64(env, el)) {
        return true;
    }
    if (arm_feature(env, ARM_FEATURE_LPAE)
        && (regime_tcr(env, mmu_idx)->raw_tcr & TTBCR_EAE)) {
        return true;
    }
    return false;
}

static inline bool regime_is_user(CPUARMState *env, ARMMMUIdx mmu_idx)
{
    switch (mmu_idx) {
    case ARMMMUIdx_S1SE0:
    case ARMMMUIdx_S1NSE0:
        return true;
    default:
        return false;
    case ARMMMUIdx_S12NSE0:
    case ARMMMUIdx_S12NSE1:
        g_assert_not_reached();
    }
}

4962 4963
/* Translate section/page access permissions to page
 * R/W protection flags
4964 4965 4966 4967 4968
 *
 * @env:         CPUARMState
 * @mmu_idx:     MMU index indicating required translation regime
 * @ap:          The 3-bit access permissions (AP[2:0])
 * @domain_prot: The 2-bit domain access permissions
4969 4970 4971 4972
 */
static inline int ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx,
                                int ap, int domain_prot)
{
4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994
    bool is_user = regime_is_user(env, mmu_idx);

    if (domain_prot == 3) {
        return PAGE_READ | PAGE_WRITE;
    }

    switch (ap) {
    case 0:
        if (arm_feature(env, ARM_FEATURE_V7)) {
            return 0;
        }
        switch (regime_sctlr(env, mmu_idx) & (SCTLR_S | SCTLR_R)) {
        case SCTLR_S:
            return is_user ? 0 : PAGE_READ;
        case SCTLR_R:
            return PAGE_READ;
        default:
            return 0;
        }
    case 1:
        return is_user ? 0 : PAGE_READ | PAGE_WRITE;
    case 2:
4995
        if (is_user) {
4996
            return PAGE_READ;
4997
        } else {
4998
            return PAGE_READ | PAGE_WRITE;
4999
        }
5000 5001 5002 5003 5004
    case 3:
        return PAGE_READ | PAGE_WRITE;
    case 4: /* Reserved.  */
        return 0;
    case 5:
5005
        return is_user ? 0 : PAGE_READ;
5006
    case 6:
5007
        return PAGE_READ;
5008
    case 7:
5009
        if (!arm_feature(env, ARM_FEATURE_V6K)) {
5010
            return 0;
5011
        }
5012
        return PAGE_READ;
5013
    default:
5014
        g_assert_not_reached();
5015
    }
B
bellard 已提交
5016 5017
}

5018 5019 5020 5021
/* Translate section/page access permissions to page
 * R/W protection flags.
 *
 * @ap:      The 2-bit simple AP (AP[2:1])
5022
 * @is_user: TRUE if accessing from PL0
5023
 */
5024
static inline int simple_ap_to_rw_prot_is_user(int ap, bool is_user)
5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039
{
    switch (ap) {
    case 0:
        return is_user ? 0 : PAGE_READ | PAGE_WRITE;
    case 1:
        return PAGE_READ | PAGE_WRITE;
    case 2:
        return is_user ? 0 : PAGE_READ;
    case 3:
        return PAGE_READ;
    default:
        g_assert_not_reached();
    }
}

5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126
static inline int
simple_ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, int ap)
{
    return simple_ap_to_rw_prot_is_user(ap, regime_is_user(env, mmu_idx));
}

/* Translate section/page access permissions to protection flags
 *
 * @env:     CPUARMState
 * @mmu_idx: MMU index indicating required translation regime
 * @is_aa64: TRUE if AArch64
 * @ap:      The 2-bit simple AP (AP[2:1])
 * @ns:      NS (non-secure) bit
 * @xn:      XN (execute-never) bit
 * @pxn:     PXN (privileged execute-never) bit
 */
static int get_S1prot(CPUARMState *env, ARMMMUIdx mmu_idx, bool is_aa64,
                      int ap, int ns, int xn, int pxn)
{
    bool is_user = regime_is_user(env, mmu_idx);
    int prot_rw, user_rw;
    bool have_wxn;
    int wxn = 0;

    assert(mmu_idx != ARMMMUIdx_S2NS);

    user_rw = simple_ap_to_rw_prot_is_user(ap, true);
    if (is_user) {
        prot_rw = user_rw;
    } else {
        prot_rw = simple_ap_to_rw_prot_is_user(ap, false);
    }

    if (ns && arm_is_secure(env) && (env->cp15.scr_el3 & SCR_SIF)) {
        return prot_rw;
    }

    /* TODO have_wxn should be replaced with
     *   ARM_FEATURE_V8 || (ARM_FEATURE_V7 && ARM_FEATURE_EL2)
     * when ARM_FEATURE_EL2 starts getting set. For now we assume all LPAE
     * compatible processors have EL2, which is required for [U]WXN.
     */
    have_wxn = arm_feature(env, ARM_FEATURE_LPAE);

    if (have_wxn) {
        wxn = regime_sctlr(env, mmu_idx) & SCTLR_WXN;
    }

    if (is_aa64) {
        switch (regime_el(env, mmu_idx)) {
        case 1:
            if (!is_user) {
                xn = pxn || (user_rw & PAGE_WRITE);
            }
            break;
        case 2:
        case 3:
            break;
        }
    } else if (arm_feature(env, ARM_FEATURE_V7)) {
        switch (regime_el(env, mmu_idx)) {
        case 1:
        case 3:
            if (is_user) {
                xn = xn || !(user_rw & PAGE_READ);
            } else {
                int uwxn = 0;
                if (have_wxn) {
                    uwxn = regime_sctlr(env, mmu_idx) & SCTLR_UWXN;
                }
                xn = xn || !(prot_rw & PAGE_READ) || pxn ||
                     (uwxn && (user_rw & PAGE_WRITE));
            }
            break;
        case 2:
            break;
        }
    } else {
        xn = wxn = 0;
    }

    if (xn || (wxn && (prot_rw & PAGE_WRITE))) {
        return prot_rw;
    }
    return prot_rw | PAGE_EXEC;
}

5127 5128
static bool get_level1_table_address(CPUARMState *env, ARMMMUIdx mmu_idx,
                                     uint32_t *table, uint32_t address)
5129
{
5130 5131
    /* Note that we can only get here for an AArch32 PL0/PL1 lookup */
    TCR *tcr = regime_tcr(env, mmu_idx);
F
Fabian Aggeler 已提交
5132 5133 5134

    if (address & tcr->mask) {
        if (tcr->raw_tcr & TTBCR_PD1) {
5135 5136 5137
            /* Translation table walk disabled for TTBR1 */
            return false;
        }
5138
        *table = regime_ttbr(env, mmu_idx, 1) & 0xffffc000;
5139
    } else {
F
Fabian Aggeler 已提交
5140
        if (tcr->raw_tcr & TTBCR_PD0) {
5141 5142 5143
            /* Translation table walk disabled for TTBR0 */
            return false;
        }
5144
        *table = regime_ttbr(env, mmu_idx, 0) & tcr->base_mask;
5145 5146 5147
    }
    *table |= (address >> 18) & 0x3ffc;
    return true;
5148 5149
}

5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172
/* All loads done in the course of a page table walk go through here.
 * TODO: rather than ignoring errors from physical memory reads (which
 * are external aborts in ARM terminology) we should propagate this
 * error out so that we can turn it into a Data Abort if this walk
 * was being done for a CPU load/store or an address translation instruction
 * (but not if it was for a debug access).
 */
static uint32_t arm_ldl_ptw(CPUState *cs, hwaddr addr, bool is_secure)
{
    MemTxAttrs attrs = {};

    attrs.secure = is_secure;
    return address_space_ldl(cs->as, addr, attrs, NULL);
}

static uint64_t arm_ldq_ptw(CPUState *cs, hwaddr addr, bool is_secure)
{
    MemTxAttrs attrs = {};

    attrs.secure = is_secure;
    return address_space_ldq(cs->as, addr, attrs, NULL);
}

5173
static int get_phys_addr_v5(CPUARMState *env, uint32_t address, int access_type,
5174
                            ARMMMUIdx mmu_idx, hwaddr *phys_ptr,
5175
                            int *prot, target_ulong *page_size)
B
bellard 已提交
5176
{
5177
    CPUState *cs = CPU(arm_env_get_cpu(env));
B
bellard 已提交
5178 5179 5180 5181 5182
    int code;
    uint32_t table;
    uint32_t desc;
    int type;
    int ap;
5183
    int domain = 0;
5184
    int domain_prot;
A
Avi Kivity 已提交
5185
    hwaddr phys_addr;
5186
    uint32_t dacr;
B
bellard 已提交
5187

P
pbrook 已提交
5188 5189
    /* Pagetable walk.  */
    /* Lookup l1 descriptor.  */
5190
    if (!get_level1_table_address(env, mmu_idx, &table, address)) {
5191 5192 5193 5194
        /* Section translation fault if page walk is disabled by PD0 or PD1 */
        code = 5;
        goto do_fault;
    }
5195
    desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx));
P
pbrook 已提交
5196
    type = (desc & 3);
5197
    domain = (desc >> 5) & 0x0f;
5198 5199 5200 5201 5202 5203
    if (regime_el(env, mmu_idx) == 1) {
        dacr = env->cp15.dacr_ns;
    } else {
        dacr = env->cp15.dacr_s;
    }
    domain_prot = (dacr >> (domain * 2)) & 3;
P
pbrook 已提交
5204
    if (type == 0) {
5205
        /* Section translation fault.  */
P
pbrook 已提交
5206 5207 5208
        code = 5;
        goto do_fault;
    }
5209
    if (domain_prot == 0 || domain_prot == 2) {
P
pbrook 已提交
5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220
        if (type == 2)
            code = 9; /* Section domain fault.  */
        else
            code = 11; /* Page domain fault.  */
        goto do_fault;
    }
    if (type == 2) {
        /* 1Mb section.  */
        phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
        ap = (desc >> 10) & 3;
        code = 13;
P
Paul Brook 已提交
5221
        *page_size = 1024 * 1024;
P
pbrook 已提交
5222 5223
    } else {
        /* Lookup l2 entry.  */
5224 5225 5226 5227 5228 5229 5230
        if (type == 1) {
            /* Coarse pagetable.  */
            table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
        } else {
            /* Fine pagetable.  */
            table = (desc & 0xfffff000) | ((address >> 8) & 0xffc);
        }
5231
        desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx));
P
pbrook 已提交
5232 5233 5234 5235 5236 5237 5238
        switch (desc & 3) {
        case 0: /* Page translation fault.  */
            code = 7;
            goto do_fault;
        case 1: /* 64k page.  */
            phys_addr = (desc & 0xffff0000) | (address & 0xffff);
            ap = (desc >> (4 + ((address >> 13) & 6))) & 3;
P
Paul Brook 已提交
5239
            *page_size = 0x10000;
P
pbrook 已提交
5240
            break;
P
pbrook 已提交
5241 5242
        case 2: /* 4k page.  */
            phys_addr = (desc & 0xfffff000) | (address & 0xfff);
5243
            ap = (desc >> (4 + ((address >> 9) & 6))) & 3;
P
Paul Brook 已提交
5244
            *page_size = 0x1000;
P
pbrook 已提交
5245
            break;
P
pbrook 已提交
5246
        case 3: /* 1k page.  */
5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257
            if (type == 1) {
                if (arm_feature(env, ARM_FEATURE_XSCALE)) {
                    phys_addr = (desc & 0xfffff000) | (address & 0xfff);
                } else {
                    /* Page translation fault.  */
                    code = 7;
                    goto do_fault;
                }
            } else {
                phys_addr = (desc & 0xfffffc00) | (address & 0x3ff);
            }
P
pbrook 已提交
5258
            ap = (desc >> 4) & 3;
P
Paul Brook 已提交
5259
            *page_size = 0x400;
P
pbrook 已提交
5260 5261
            break;
        default:
P
pbrook 已提交
5262 5263
            /* Never happens, but compiler isn't smart enough to tell.  */
            abort();
P
pbrook 已提交
5264
        }
P
pbrook 已提交
5265 5266
        code = 15;
    }
5267 5268 5269
    *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot);
    *prot |= *prot ? PAGE_EXEC : 0;
    if (!(*prot & (1 << access_type))) {
P
pbrook 已提交
5270 5271 5272 5273 5274 5275 5276 5277 5278
        /* Access permission fault.  */
        goto do_fault;
    }
    *phys_ptr = phys_addr;
    return 0;
do_fault:
    return code | (domain << 4);
}

5279
static int get_phys_addr_v6(CPUARMState *env, uint32_t address, int access_type,
5280
                            ARMMMUIdx mmu_idx, hwaddr *phys_ptr,
5281
                            MemTxAttrs *attrs,
5282
                            int *prot, target_ulong *page_size)
P
pbrook 已提交
5283
{
5284
    CPUState *cs = CPU(arm_env_get_cpu(env));
P
pbrook 已提交
5285 5286 5287 5288
    int code;
    uint32_t table;
    uint32_t desc;
    uint32_t xn;
5289
    uint32_t pxn = 0;
P
pbrook 已提交
5290 5291
    int type;
    int ap;
5292
    int domain = 0;
5293
    int domain_prot;
A
Avi Kivity 已提交
5294
    hwaddr phys_addr;
5295
    uint32_t dacr;
5296
    bool ns;
P
pbrook 已提交
5297 5298 5299

    /* Pagetable walk.  */
    /* Lookup l1 descriptor.  */
5300
    if (!get_level1_table_address(env, mmu_idx, &table, address)) {
5301 5302 5303 5304
        /* Section translation fault if page walk is disabled by PD0 or PD1 */
        code = 5;
        goto do_fault;
    }
5305
    desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx));
P
pbrook 已提交
5306
    type = (desc & 3);
5307 5308 5309 5310
    if (type == 0 || (type == 3 && !arm_feature(env, ARM_FEATURE_PXN))) {
        /* Section translation fault, or attempt to use the encoding
         * which is Reserved on implementations without PXN.
         */
P
pbrook 已提交
5311 5312
        code = 5;
        goto do_fault;
5313 5314 5315
    }
    if ((type == 1) || !(desc & (1 << 18))) {
        /* Page or Section.  */
5316
        domain = (desc >> 5) & 0x0f;
P
pbrook 已提交
5317
    }
5318 5319 5320 5321 5322 5323
    if (regime_el(env, mmu_idx) == 1) {
        dacr = env->cp15.dacr_ns;
    } else {
        dacr = env->cp15.dacr_s;
    }
    domain_prot = (dacr >> (domain * 2)) & 3;
5324
    if (domain_prot == 0 || domain_prot == 2) {
5325
        if (type != 1) {
P
pbrook 已提交
5326
            code = 9; /* Section domain fault.  */
5327
        } else {
P
pbrook 已提交
5328
            code = 11; /* Page domain fault.  */
5329
        }
P
pbrook 已提交
5330 5331
        goto do_fault;
    }
5332
    if (type != 1) {
P
pbrook 已提交
5333 5334 5335
        if (desc & (1 << 18)) {
            /* Supersection.  */
            phys_addr = (desc & 0xff000000) | (address & 0x00ffffff);
P
Paul Brook 已提交
5336
            *page_size = 0x1000000;
B
bellard 已提交
5337
        } else {
P
pbrook 已提交
5338 5339
            /* Section.  */
            phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
P
Paul Brook 已提交
5340
            *page_size = 0x100000;
B
bellard 已提交
5341
        }
P
pbrook 已提交
5342 5343
        ap = ((desc >> 10) & 3) | ((desc >> 13) & 4);
        xn = desc & (1 << 4);
5344
        pxn = desc & 1;
P
pbrook 已提交
5345
        code = 13;
5346
        ns = extract32(desc, 19, 1);
P
pbrook 已提交
5347
    } else {
5348 5349 5350
        if (arm_feature(env, ARM_FEATURE_PXN)) {
            pxn = (desc >> 2) & 1;
        }
5351
        ns = extract32(desc, 3, 1);
P
pbrook 已提交
5352 5353
        /* Lookup l2 entry.  */
        table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
5354
        desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx));
P
pbrook 已提交
5355 5356 5357 5358
        ap = ((desc >> 4) & 3) | ((desc >> 7) & 4);
        switch (desc & 3) {
        case 0: /* Page translation fault.  */
            code = 7;
B
bellard 已提交
5359
            goto do_fault;
P
pbrook 已提交
5360 5361 5362
        case 1: /* 64k page.  */
            phys_addr = (desc & 0xffff0000) | (address & 0xffff);
            xn = desc & (1 << 15);
P
Paul Brook 已提交
5363
            *page_size = 0x10000;
P
pbrook 已提交
5364 5365 5366 5367
            break;
        case 2: case 3: /* 4k page.  */
            phys_addr = (desc & 0xfffff000) | (address & 0xfff);
            xn = desc & 1;
P
Paul Brook 已提交
5368
            *page_size = 0x1000;
P
pbrook 已提交
5369 5370 5371 5372
            break;
        default:
            /* Never happens, but compiler isn't smart enough to tell.  */
            abort();
B
bellard 已提交
5373
        }
P
pbrook 已提交
5374 5375
        code = 15;
    }
5376
    if (domain_prot == 3) {
5377 5378
        *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
    } else {
5379
        if (pxn && !regime_is_user(env, mmu_idx)) {
5380 5381
            xn = 1;
        }
5382 5383
        if (xn && access_type == 2)
            goto do_fault;
P
pbrook 已提交
5384

5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395
        if (arm_feature(env, ARM_FEATURE_V6K) &&
                (regime_sctlr(env, mmu_idx) & SCTLR_AFE)) {
            /* The simplified model uses AP[0] as an access control bit.  */
            if ((ap & 1) == 0) {
                /* Access flag fault.  */
                code = (code == 15) ? 6 : 3;
                goto do_fault;
            }
            *prot = simple_ap_to_rw_prot(env, mmu_idx, ap >> 1);
        } else {
            *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot);
5396
        }
5397 5398 5399 5400
        if (*prot && !xn) {
            *prot |= PAGE_EXEC;
        }
        if (!(*prot & (1 << access_type))) {
5401 5402 5403
            /* Access permission fault.  */
            goto do_fault;
        }
5404
    }
5405 5406 5407 5408 5409 5410 5411
    if (ns) {
        /* The NS bit will (as required by the architecture) have no effect if
         * the CPU doesn't support TZ or this is a non-secure translation
         * regime, because the attribute will already be non-secure.
         */
        attrs->secure = false;
    }
P
pbrook 已提交
5412
    *phys_ptr = phys_addr;
B
bellard 已提交
5413 5414 5415 5416 5417
    return 0;
do_fault:
    return code | (domain << 4);
}

5418 5419 5420 5421 5422 5423 5424 5425 5426
/* Fault type for long-descriptor MMU fault reporting; this corresponds
 * to bits [5..2] in the STATUS field in long-format DFSR/IFSR.
 */
typedef enum {
    translation_fault = 1,
    access_fault = 2,
    permission_fault = 3,
} MMUFaultType;

5427
static int get_phys_addr_lpae(CPUARMState *env, target_ulong address,
5428
                              int access_type, ARMMMUIdx mmu_idx,
5429
                              hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot,
5430 5431
                              target_ulong *page_size_ptr)
{
5432
    CPUState *cs = CPU(arm_env_get_cpu(env));
5433 5434 5435 5436
    /* Read an LPAE long-descriptor translation table. */
    MMUFaultType fault_type = translation_fault;
    uint32_t level = 1;
    uint32_t epd;
5437 5438
    int32_t tsz;
    uint32_t tg;
5439 5440
    uint64_t ttbr;
    int ttbr_select;
5441
    hwaddr descaddr, descmask;
5442 5443 5444
    uint32_t tableattrs;
    target_ulong page_size;
    uint32_t attrs;
5445 5446 5447
    int32_t granule_sz = 9;
    int32_t va_size = 32;
    int32_t tbi = 0;
5448
    TCR *tcr = regime_tcr(env, mmu_idx);
5449
    int ap, ns, xn, pxn;
5450 5451
    uint32_t el = regime_el(env, mmu_idx);
    bool ttbr1_valid = true;
5452 5453

    /* TODO:
5454 5455 5456 5457
     * This code does not handle the different format TCR for VTCR_EL2.
     * This code also does not support shareability levels.
     * Attribute and permission bit handling should also be checked when adding
     * support for those page table walks.
5458
     */
5459
    if (arm_el_is_aa64(env, el)) {
5460
        va_size = 64;
5461 5462 5463 5464 5465 5466 5467 5468 5469
        if (el > 1) {
            tbi = extract64(tcr->raw_tcr, 20, 1);
        } else {
            if (extract64(address, 55, 1)) {
                tbi = extract64(tcr->raw_tcr, 38, 1);
            } else {
                tbi = extract64(tcr->raw_tcr, 37, 1);
            }
        }
5470
        tbi *= 8;
5471 5472 5473 5474 5475 5476 5477

        /* If we are in 64-bit EL2 or EL3 then there is no TTBR1, so mark it
         * invalid.
         */
        if (el > 1) {
            ttbr1_valid = false;
        }
5478
    }
5479 5480 5481 5482 5483 5484

    /* Determine whether this address is in the region controlled by
     * TTBR0 or TTBR1 (or if it is in neither region and should fault).
     * This is a Non-secure PL0/1 stage 1 translation, so controlled by
     * TTBCR/TTBR0/TTBR1 in accordance with ARM ARM DDI0406C table B-32:
     */
F
Fabian Aggeler 已提交
5485
    uint32_t t0sz = extract32(tcr->raw_tcr, 0, 6);
5486
    if (va_size == 64) {
5487 5488 5489
        t0sz = MIN(t0sz, 39);
        t0sz = MAX(t0sz, 16);
    }
F
Fabian Aggeler 已提交
5490
    uint32_t t1sz = extract32(tcr->raw_tcr, 16, 6);
5491
    if (va_size == 64) {
5492 5493 5494 5495
        t1sz = MIN(t1sz, 39);
        t1sz = MAX(t1sz, 16);
    }
    if (t0sz && !extract64(address, va_size - t0sz, t0sz - tbi)) {
5496 5497
        /* there is a ttbr0 region and we are in it (high bits all zero) */
        ttbr_select = 0;
5498 5499
    } else if (ttbr1_valid && t1sz &&
               !extract64(~address, va_size - t1sz, t1sz - tbi)) {
5500 5501 5502 5503 5504
        /* there is a ttbr1 region and we are in it (high bits all one) */
        ttbr_select = 1;
    } else if (!t0sz) {
        /* ttbr0 region is "everything not in the ttbr1 region" */
        ttbr_select = 0;
5505
    } else if (!t1sz && ttbr1_valid) {
5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521
        /* ttbr1 region is "everything not in the ttbr0 region" */
        ttbr_select = 1;
    } else {
        /* in the gap between the two regions, this is a Translation fault */
        fault_type = translation_fault;
        goto do_fault;
    }

    /* Note that QEMU ignores shareability and cacheability attributes,
     * so we don't need to do anything with the SH, ORGN, IRGN fields
     * in the TTBCR.  Similarly, TTBCR:A1 selects whether we get the
     * ASID from TTBR0 or TTBR1, but QEMU's TLB doesn't currently
     * implement any ASID-like capability so we can ignore it (instead
     * we will always flush the TLB any time the ASID is changed).
     */
    if (ttbr_select == 0) {
5522
        ttbr = regime_ttbr(env, mmu_idx, 0);
F
Fabian Aggeler 已提交
5523
        epd = extract32(tcr->raw_tcr, 7, 1);
5524
        tsz = t0sz;
5525

F
Fabian Aggeler 已提交
5526
        tg = extract32(tcr->raw_tcr, 14, 2);
5527 5528 5529 5530 5531 5532
        if (tg == 1) { /* 64KB pages */
            granule_sz = 13;
        }
        if (tg == 2) { /* 16KB pages */
            granule_sz = 11;
        }
5533
    } else {
5534 5535 5536
        /* We should only be here if TTBR1 is valid */
        assert(ttbr1_valid);

5537
        ttbr = regime_ttbr(env, mmu_idx, 1);
F
Fabian Aggeler 已提交
5538
        epd = extract32(tcr->raw_tcr, 23, 1);
5539
        tsz = t1sz;
5540

F
Fabian Aggeler 已提交
5541
        tg = extract32(tcr->raw_tcr, 30, 2);
5542 5543 5544 5545 5546 5547
        if (tg == 3)  { /* 64KB pages */
            granule_sz = 13;
        }
        if (tg == 1) { /* 16KB pages */
            granule_sz = 11;
        }
5548 5549
    }

5550 5551 5552 5553
    /* Here we should have set up all the parameters for the translation:
     * va_size, ttbr, epd, tsz, granule_sz, tbi
     */

5554
    if (epd) {
5555 5556 5557
        /* Translation table walk disabled => Translation fault on TLB miss
         * Note: This is always 0 on 64-bit EL2 and EL3.
         */
5558 5559 5560
        goto do_fault;
    }

5561 5562 5563 5564 5565 5566 5567 5568 5569 5570
    /* The starting level depends on the virtual address size (which can be
     * up to 48 bits) and the translation granule size. It indicates the number
     * of strides (granule_sz bits at a time) needed to consume the bits
     * of the input address. In the pseudocode this is:
     *  level = 4 - RoundUp((inputsize - grainsize) / stride)
     * where their 'inputsize' is our 'va_size - tsz', 'grainsize' is
     * our 'granule_sz + 3' and 'stride' is our 'granule_sz'.
     * Applying the usual "rounded up m/n is (m+n-1)/n" and simplifying:
     *     = 4 - (va_size - tsz - granule_sz - 3 + granule_sz - 1) / granule_sz
     *     = 4 - (va_size - tsz - 4) / granule_sz;
5571
     */
5572
    level = 4 - (va_size - tsz - 4) / granule_sz;
5573 5574 5575 5576 5577

    /* Clear the vaddr bits which aren't part of the within-region address,
     * so that we don't have to special case things when calculating the
     * first descriptor address.
     */
5578 5579 5580 5581 5582
    if (tsz) {
        address &= (1ULL << (va_size - tsz)) - 1;
    }

    descmask = (1ULL << (granule_sz + 3)) - 1;
5583 5584

    /* Now we can extract the actual base address from the TTBR */
5585 5586
    descaddr = extract64(ttbr, 0, 48);
    descaddr &= ~((1ULL << (va_size - tsz - (granule_sz * (4 - level)))) - 1);
5587

5588 5589 5590 5591 5592 5593
    /* Secure accesses start with the page table in secure memory and
     * can be downgraded to non-secure at any step. Non-secure accesses
     * remain non-secure. We implement this by just ORing in the NSTable/NS
     * bits at each step.
     */
    tableattrs = regime_is_secure(env, mmu_idx) ? 0 : (1 << 4);
5594 5595
    for (;;) {
        uint64_t descriptor;
5596
        bool nstable;
5597

5598 5599
        descaddr |= (address >> (granule_sz * (4 - level))) & descmask;
        descaddr &= ~7ULL;
5600 5601
        nstable = extract32(tableattrs, 4, 1);
        descriptor = arm_ldq_ptw(cs, descaddr, !nstable);
5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622
        if (!(descriptor & 1) ||
            (!(descriptor & 2) && (level == 3))) {
            /* Invalid, or the Reserved level 3 encoding */
            goto do_fault;
        }
        descaddr = descriptor & 0xfffffff000ULL;

        if ((descriptor & 2) && (level < 3)) {
            /* Table entry. The top five bits are attributes which  may
             * propagate down through lower levels of the table (and
             * which are all arranged so that 0 means "no effect", so
             * we can gather them up by ORing in the bits at each level).
             */
            tableattrs |= extract64(descriptor, 59, 5);
            level++;
            continue;
        }
        /* Block entry at level 1 or 2, or page entry at level 3.
         * These are basically the same thing, although the number
         * of bits we pull in from the vaddr varies.
         */
5623
        page_size = (1ULL << ((granule_sz * (4 - level)) + 3));
5624 5625
        descaddr |= (address & (page_size - 1));
        /* Extract attributes from the descriptor and merge with table attrs */
5626 5627
        attrs = extract64(descriptor, 2, 10)
            | (extract64(descriptor, 52, 12) << 10);
5628 5629 5630 5631 5632 5633 5634 5635
        attrs |= extract32(tableattrs, 0, 2) << 11; /* XN, PXN */
        attrs |= extract32(tableattrs, 3, 1) << 5; /* APTable[1] => AP[2] */
        /* The sense of AP[1] vs APTable[0] is reversed, as APTable[0] == 1
         * means "force PL1 access only", which means forcing AP[1] to 0.
         */
        if (extract32(tableattrs, 2, 1)) {
            attrs &= ~(1 << 4);
        }
5636
        attrs |= nstable << 3; /* NS */
5637 5638 5639 5640 5641 5642 5643 5644 5645 5646
        break;
    }
    /* Here descaddr is the final physical address, and attributes
     * are all in attrs.
     */
    fault_type = access_fault;
    if ((attrs & (1 << 8)) == 0) {
        /* Access flag */
        goto do_fault;
    }
5647 5648 5649 5650 5651 5652 5653 5654

    ap = extract32(attrs, 4, 2);
    ns = extract32(attrs, 3, 1);
    xn = extract32(attrs, 12, 1);
    pxn = extract32(attrs, 11, 1);

    *prot = get_S1prot(env, mmu_idx, va_size == 64, ap, ns, xn, pxn);

5655
    fault_type = permission_fault;
5656
    if (!(*prot & (1 << access_type))) {
5657 5658 5659
        goto do_fault;
    }

5660 5661 5662 5663 5664 5665 5666
    if (ns) {
        /* The NS bit will (as required by the architecture) have no effect if
         * the CPU doesn't support TZ or this is a non-secure translation
         * regime, because the attribute will already be non-secure.
         */
        txattrs->secure = false;
    }
5667 5668 5669 5670 5671 5672 5673 5674 5675
    *phys_ptr = descaddr;
    *page_size_ptr = page_size;
    return 0;

do_fault:
    /* Long-descriptor format IFSR/DFSR value */
    return (1 << 9) | (fault_type << 2) | level;
}

5676
static int get_phys_addr_mpu(CPUARMState *env, uint32_t address,
5677
                             int access_type, ARMMMUIdx mmu_idx,
A
Avi Kivity 已提交
5678
                             hwaddr *phys_ptr, int *prot)
P
pbrook 已提交
5679 5680 5681 5682
{
    int n;
    uint32_t mask;
    uint32_t base;
5683
    bool is_user = regime_is_user(env, mmu_idx);
P
pbrook 已提交
5684 5685 5686

    *phys_ptr = address;
    for (n = 7; n >= 0; n--) {
5687
        base = env->cp15.c6_region[n];
5688
        if ((base & 1) == 0) {
5689
            continue;
5690
        }
5691 5692 5693 5694
        mask = 1 << ((base >> 1) & 0x1f);
        /* Keep this shift separate from the above to avoid an
           (undefined) << 32.  */
        mask = (mask << 1) - 1;
5695
        if (((base ^ address) & ~mask) == 0) {
5696
            break;
5697
        }
P
pbrook 已提交
5698
    }
5699
    if (n < 0) {
5700
        return 2;
5701
    }
P
pbrook 已提交
5702 5703

    if (access_type == 2) {
5704
        mask = env->cp15.pmsav5_insn_ap;
P
pbrook 已提交
5705
    } else {
5706
        mask = env->cp15.pmsav5_data_ap;
P
pbrook 已提交
5707 5708 5709 5710
    }
    mask = (mask >> (n * 4)) & 0xf;
    switch (mask) {
    case 0:
5711
        return 1;
P
pbrook 已提交
5712
    case 1:
5713 5714 5715
        if (is_user) {
            return 1;
        }
5716 5717
        *prot = PAGE_READ | PAGE_WRITE;
        break;
P
pbrook 已提交
5718
    case 2:
5719
        *prot = PAGE_READ;
5720
        if (!is_user) {
5721
            *prot |= PAGE_WRITE;
5722
        }
5723
        break;
P
pbrook 已提交
5724
    case 3:
5725 5726
        *prot = PAGE_READ | PAGE_WRITE;
        break;
P
pbrook 已提交
5727
    case 5:
5728
        if (is_user) {
5729
            return 1;
5730
        }
5731 5732
        *prot = PAGE_READ;
        break;
P
pbrook 已提交
5733
    case 6:
5734 5735
        *prot = PAGE_READ;
        break;
P
pbrook 已提交
5736
    default:
5737 5738
        /* Bad permission.  */
        return 1;
P
pbrook 已提交
5739
    }
5740
    *prot |= PAGE_EXEC;
P
pbrook 已提交
5741 5742 5743
    return 0;
}

5744 5745 5746 5747 5748 5749
/* get_phys_addr - get the physical address for this virtual address
 *
 * Find the physical address corresponding to the given virtual address,
 * by doing a translation table walk on MMU based systems or using the
 * MPU state on MPU based systems.
 *
5750 5751
 * Returns 0 if the translation was successful. Otherwise, phys_ptr, attrs,
 * prot and page_size may not be filled in, and the return value provides
5752 5753 5754 5755 5756 5757 5758 5759 5760 5761
 * information on why the translation aborted, in the format of a
 * DFSR/IFSR fault register, with the following caveats:
 *  * we honour the short vs long DFSR format differences.
 *  * the WnR bit is never set (the caller must do this).
 *  * for MPU based systems we don't bother to return a full FSR format
 *    value.
 *
 * @env: CPUARMState
 * @address: virtual address to get physical address for
 * @access_type: 0 for read, 1 for write, 2 for execute
5762
 * @mmu_idx: MMU index indicating required translation regime
5763
 * @phys_ptr: set to the physical address corresponding to the virtual address
5764
 * @attrs: set to the memory transaction attributes to use
5765 5766 5767
 * @prot: set to the permissions for the page containing phys_ptr
 * @page_size: set to the size of the page containing phys_ptr
 */
5768
static inline int get_phys_addr(CPUARMState *env, target_ulong address,
5769
                                int access_type, ARMMMUIdx mmu_idx,
5770
                                hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
P
Paul Brook 已提交
5771
                                target_ulong *page_size)
P
pbrook 已提交
5772
{
5773 5774
    if (mmu_idx == ARMMMUIdx_S12NSE0 || mmu_idx == ARMMMUIdx_S12NSE1) {
        /* TODO: when we support EL2 we should here call ourselves recursively
5775 5776 5777
         * to do the stage 1 and then stage 2 translations. The arm_ld*_ptw
         * functions will also need changing to perform ARMMMUIdx_S2NS loads
         * rather than direct physical memory loads when appropriate.
5778 5779 5780 5781 5782
         * For non-EL2 CPUs a stage1+stage2 translation is just stage 1.
         */
        assert(!arm_feature(env, ARM_FEATURE_EL2));
        mmu_idx += ARMMMUIdx_S1NSE0;
    }
5783

5784 5785 5786 5787 5788
    /* The page table entries may downgrade secure to non-secure, but
     * cannot upgrade an non-secure translation regime's attributes
     * to secure.
     */
    attrs->secure = regime_is_secure(env, mmu_idx);
5789
    attrs->user = regime_is_user(env, mmu_idx);
5790

5791 5792 5793 5794 5795 5796 5797 5798 5799 5800
    /* Fast Context Switch Extension. This doesn't exist at all in v8.
     * In v7 and earlier it affects all stage 1 translations.
     */
    if (address < 0x02000000 && mmu_idx != ARMMMUIdx_S2NS
        && !arm_feature(env, ARM_FEATURE_V8)) {
        if (regime_el(env, mmu_idx) == 3) {
            address += env->cp15.fcseidr_s;
        } else {
            address += env->cp15.fcseidr_ns;
        }
5801
    }
P
pbrook 已提交
5802

5803
    if (regime_translation_disabled(env, mmu_idx)) {
P
pbrook 已提交
5804 5805
        /* MMU/MPU disabled.  */
        *phys_ptr = address;
5806
        *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
P
Paul Brook 已提交
5807
        *page_size = TARGET_PAGE_SIZE;
P
pbrook 已提交
5808
        return 0;
5809 5810 5811
    }

    if (arm_feature(env, ARM_FEATURE_MPU)) {
P
Paul Brook 已提交
5812
        *page_size = TARGET_PAGE_SIZE;
5813 5814 5815 5816 5817 5818
        return get_phys_addr_mpu(env, address, access_type, mmu_idx, phys_ptr,
                                 prot);
    }

    if (regime_using_lpae_format(env, mmu_idx)) {
        return get_phys_addr_lpae(env, address, access_type, mmu_idx, phys_ptr,
5819
                                  attrs, prot, page_size);
5820 5821
    } else if (regime_sctlr(env, mmu_idx) & SCTLR_XP) {
        return get_phys_addr_v6(env, address, access_type, mmu_idx, phys_ptr,
5822
                                attrs, prot, page_size);
P
pbrook 已提交
5823
    } else {
5824
        return get_phys_addr_v5(env, address, access_type, mmu_idx, phys_ptr,
P
Paul Brook 已提交
5825
                                prot, page_size);
P
pbrook 已提交
5826 5827 5828
    }
}

5829 5830
int arm_cpu_handle_mmu_fault(CPUState *cs, vaddr address,
                             int access_type, int mmu_idx)
B
bellard 已提交
5831
{
5832 5833
    ARMCPU *cpu = ARM_CPU(cs);
    CPUARMState *env = &cpu->env;
A
Avi Kivity 已提交
5834
    hwaddr phys_addr;
P
Paul Brook 已提交
5835
    target_ulong page_size;
B
bellard 已提交
5836
    int prot;
5837
    int ret;
5838
    uint32_t syn;
5839
    bool same_el = (arm_current_el(env) != 0);
5840
    MemTxAttrs attrs = {};
B
bellard 已提交
5841

5842 5843
    ret = get_phys_addr(env, address, access_type, mmu_idx, &phys_addr,
                        &attrs, &prot, &page_size);
B
bellard 已提交
5844 5845
    if (ret == 0) {
        /* Map a single [sub]page.  */
5846 5847
        phys_addr &= TARGET_PAGE_MASK;
        address &= TARGET_PAGE_MASK;
5848 5849
        tlb_set_page_with_attrs(cs, address, phys_addr, attrs,
                                prot, mmu_idx, page_size);
P
Paul Brook 已提交
5850
        return 0;
B
bellard 已提交
5851 5852
    }

5853 5854 5855 5856 5857 5858
    /* AArch64 syndrome does not have an LPAE bit */
    syn = ret & ~(1 << 9);

    /* For insn and data aborts we assume there is no instruction syndrome
     * information; this is always true for exceptions reported to EL1.
     */
B
bellard 已提交
5859
    if (access_type == 2) {
5860
        syn = syn_insn_abort(same_el, 0, 0, syn);
5861
        cs->exception_index = EXCP_PREFETCH_ABORT;
B
bellard 已提交
5862
    } else {
5863
        syn = syn_data_abort(same_el, 0, 0, 0, access_type == 1, syn);
5864 5865 5866
        if (access_type == 1 && arm_feature(env, ARM_FEATURE_V6)) {
            ret |= (1 << 11);
        }
5867
        cs->exception_index = EXCP_DATA_ABORT;
B
bellard 已提交
5868
    }
5869 5870

    env->exception.syndrome = syn;
5871 5872
    env->exception.vaddress = address;
    env->exception.fsr = ret;
B
bellard 已提交
5873 5874 5875
    return 1;
}

5876
hwaddr arm_cpu_get_phys_page_debug(CPUState *cs, vaddr addr)
B
bellard 已提交
5877
{
5878
    ARMCPU *cpu = ARM_CPU(cs);
5879
    CPUARMState *env = &cpu->env;
A
Avi Kivity 已提交
5880
    hwaddr phys_addr;
P
Paul Brook 已提交
5881
    target_ulong page_size;
B
bellard 已提交
5882 5883
    int prot;
    int ret;
5884
    MemTxAttrs attrs = {};
B
bellard 已提交
5885

5886
    ret = get_phys_addr(env, addr, 0, cpu_mmu_index(env), &phys_addr,
5887
                        &attrs, &prot, &page_size);
B
bellard 已提交
5888

5889
    if (ret != 0) {
B
bellard 已提交
5890
        return -1;
5891
    }
B
bellard 已提交
5892 5893 5894 5895

    return phys_addr;
}

5896
void HELPER(set_r13_banked)(CPUARMState *env, uint32_t mode, uint32_t val)
P
pbrook 已提交
5897
{
5898 5899 5900
    if ((env->uncached_cpsr & CPSR_M) == mode) {
        env->regs[13] = val;
    } else {
5901
        env->banked_r13[bank_number(mode)] = val;
5902
    }
P
pbrook 已提交
5903 5904
}

5905
uint32_t HELPER(get_r13_banked)(CPUARMState *env, uint32_t mode)
P
pbrook 已提交
5906
{
5907 5908 5909
    if ((env->uncached_cpsr & CPSR_M) == mode) {
        return env->regs[13];
    } else {
5910
        return env->banked_r13[bank_number(mode)];
5911
    }
P
pbrook 已提交
5912 5913
}

5914
uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg)
P
pbrook 已提交
5915
{
5916 5917
    ARMCPU *cpu = arm_env_get_cpu(env);

P
pbrook 已提交
5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937
    switch (reg) {
    case 0: /* APSR */
        return xpsr_read(env) & 0xf8000000;
    case 1: /* IAPSR */
        return xpsr_read(env) & 0xf80001ff;
    case 2: /* EAPSR */
        return xpsr_read(env) & 0xff00fc00;
    case 3: /* xPSR */
        return xpsr_read(env) & 0xff00fdff;
    case 5: /* IPSR */
        return xpsr_read(env) & 0x000001ff;
    case 6: /* EPSR */
        return xpsr_read(env) & 0x0700fc00;
    case 7: /* IEPSR */
        return xpsr_read(env) & 0x0700edff;
    case 8: /* MSP */
        return env->v7m.current_sp ? env->v7m.other_sp : env->regs[13];
    case 9: /* PSP */
        return env->v7m.current_sp ? env->regs[13] : env->v7m.other_sp;
    case 16: /* PRIMASK */
5938
        return (env->daif & PSTATE_I) != 0;
5939 5940
    case 17: /* BASEPRI */
    case 18: /* BASEPRI_MAX */
P
pbrook 已提交
5941
        return env->v7m.basepri;
5942
    case 19: /* FAULTMASK */
5943
        return (env->daif & PSTATE_F) != 0;
P
pbrook 已提交
5944 5945 5946 5947
    case 20: /* CONTROL */
        return env->v7m.control;
    default:
        /* ??? For debugging only.  */
5948
        cpu_abort(CPU(cpu), "Unimplemented system register read (%d)\n", reg);
P
pbrook 已提交
5949 5950 5951 5952
        return 0;
    }
}

5953
void HELPER(v7m_msr)(CPUARMState *env, uint32_t reg, uint32_t val)
P
pbrook 已提交
5954
{
5955 5956
    ARMCPU *cpu = arm_env_get_cpu(env);

P
pbrook 已提交
5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991
    switch (reg) {
    case 0: /* APSR */
        xpsr_write(env, val, 0xf8000000);
        break;
    case 1: /* IAPSR */
        xpsr_write(env, val, 0xf8000000);
        break;
    case 2: /* EAPSR */
        xpsr_write(env, val, 0xfe00fc00);
        break;
    case 3: /* xPSR */
        xpsr_write(env, val, 0xfe00fc00);
        break;
    case 5: /* IPSR */
        /* IPSR bits are readonly.  */
        break;
    case 6: /* EPSR */
        xpsr_write(env, val, 0x0600fc00);
        break;
    case 7: /* IEPSR */
        xpsr_write(env, val, 0x0600fc00);
        break;
    case 8: /* MSP */
        if (env->v7m.current_sp)
            env->v7m.other_sp = val;
        else
            env->regs[13] = val;
        break;
    case 9: /* PSP */
        if (env->v7m.current_sp)
            env->regs[13] = val;
        else
            env->v7m.other_sp = val;
        break;
    case 16: /* PRIMASK */
5992 5993 5994 5995 5996
        if (val & 1) {
            env->daif |= PSTATE_I;
        } else {
            env->daif &= ~PSTATE_I;
        }
P
pbrook 已提交
5997
        break;
5998
    case 17: /* BASEPRI */
P
pbrook 已提交
5999 6000
        env->v7m.basepri = val & 0xff;
        break;
6001
    case 18: /* BASEPRI_MAX */
P
pbrook 已提交
6002 6003 6004 6005
        val &= 0xff;
        if (val != 0 && (val < env->v7m.basepri || env->v7m.basepri == 0))
            env->v7m.basepri = val;
        break;
6006
    case 19: /* FAULTMASK */
6007 6008 6009 6010 6011
        if (val & 1) {
            env->daif |= PSTATE_F;
        } else {
            env->daif &= ~PSTATE_F;
        }
6012
        break;
P
pbrook 已提交
6013 6014 6015 6016 6017 6018
    case 20: /* CONTROL */
        env->v7m.control = val & 3;
        switch_v7m_sp(env, (val & 2) != 0);
        break;
    default:
        /* ??? For debugging only.  */
6019
        cpu_abort(CPU(cpu), "Unimplemented system register write (%d)\n", reg);
P
pbrook 已提交
6020 6021 6022 6023
        return;
    }
}

B
bellard 已提交
6024
#endif
P
pbrook 已提交
6025

6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050
void HELPER(dc_zva)(CPUARMState *env, uint64_t vaddr_in)
{
    /* Implement DC ZVA, which zeroes a fixed-length block of memory.
     * Note that we do not implement the (architecturally mandated)
     * alignment fault for attempts to use this on Device memory
     * (which matches the usual QEMU behaviour of not implementing either
     * alignment faults or any memory attribute handling).
     */

    ARMCPU *cpu = arm_env_get_cpu(env);
    uint64_t blocklen = 4 << cpu->dcz_blocksize;
    uint64_t vaddr = vaddr_in & ~(blocklen - 1);

#ifndef CONFIG_USER_ONLY
    {
        /* Slightly awkwardly, QEMU's TARGET_PAGE_SIZE may be less than
         * the block size so we might have to do more than one TLB lookup.
         * We know that in fact for any v8 CPU the page size is at least 4K
         * and the block size must be 2K or less, but TARGET_PAGE_SIZE is only
         * 1K as an artefact of legacy v5 subpage support being present in the
         * same QEMU executable.
         */
        int maxidx = DIV_ROUND_UP(blocklen, TARGET_PAGE_SIZE);
        void *hostaddr[maxidx];
        int try, i;
6051 6052
        unsigned mmu_idx = cpu_mmu_index(env);
        TCGMemOpIdx oi = make_memop_idx(MO_UB, mmu_idx);
6053 6054 6055 6056 6057 6058

        for (try = 0; try < 2; try++) {

            for (i = 0; i < maxidx; i++) {
                hostaddr[i] = tlb_vaddr_to_host(env,
                                                vaddr + TARGET_PAGE_SIZE * i,
6059
                                                1, mmu_idx);
6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079
                if (!hostaddr[i]) {
                    break;
                }
            }
            if (i == maxidx) {
                /* If it's all in the TLB it's fair game for just writing to;
                 * we know we don't need to update dirty status, etc.
                 */
                for (i = 0; i < maxidx - 1; i++) {
                    memset(hostaddr[i], 0, TARGET_PAGE_SIZE);
                }
                memset(hostaddr[i], 0, blocklen - (i * TARGET_PAGE_SIZE));
                return;
            }
            /* OK, try a store and see if we can populate the tlb. This
             * might cause an exception if the memory isn't writable,
             * in which case we will longjmp out of here. We must for
             * this purpose use the actual register value passed to us
             * so that we get the fault address right.
             */
6080
            helper_ret_stb_mmu(env, vaddr_in, 0, oi, GETRA());
6081 6082 6083 6084
            /* Now we can populate the other TLB entries, if any */
            for (i = 0; i < maxidx; i++) {
                uint64_t va = vaddr + TARGET_PAGE_SIZE * i;
                if (va != (vaddr_in & TARGET_PAGE_MASK)) {
6085
                    helper_ret_stb_mmu(env, va, 0, oi, GETRA());
6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101
                }
            }
        }

        /* Slow path (probably attempt to do this to an I/O device or
         * similar, or clearing of a block of code we have translations
         * cached for). Just do a series of byte writes as the architecture
         * demands. It's not worth trying to use a cpu_physical_memory_map(),
         * memset(), unmap() sequence here because:
         *  + we'd need to account for the blocksize being larger than a page
         *  + the direct-RAM access case is almost always going to be dealt
         *    with in the fastpath code above, so there's no speed benefit
         *  + we would have to deal with the map returning NULL because the
         *    bounce buffer was in use
         */
        for (i = 0; i < blocklen; i++) {
6102
            helper_ret_stb_mmu(env, vaddr + i, 0, oi, GETRA());
6103 6104 6105 6106 6107 6108 6109
        }
    }
#else
    memset(g2h(vaddr), 0, blocklen);
#endif
}

P
pbrook 已提交
6110 6111 6112 6113 6114 6115
/* Note that signed overflow is undefined in C.  The following routines are
   careful to use unsigned types where modulo arithmetic is required.
   Failure to do so _will_ break on newer gcc.  */

/* Signed saturating arithmetic.  */

A
aurel32 已提交
6116
/* Perform 16-bit signed saturating addition.  */
P
pbrook 已提交
6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130
static inline uint16_t add16_sat(uint16_t a, uint16_t b)
{
    uint16_t res;

    res = a + b;
    if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) {
        if (a & 0x8000)
            res = 0x8000;
        else
            res = 0x7fff;
    }
    return res;
}

A
aurel32 已提交
6131
/* Perform 8-bit signed saturating addition.  */
P
pbrook 已提交
6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145
static inline uint8_t add8_sat(uint8_t a, uint8_t b)
{
    uint8_t res;

    res = a + b;
    if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) {
        if (a & 0x80)
            res = 0x80;
        else
            res = 0x7f;
    }
    return res;
}

A
aurel32 已提交
6146
/* Perform 16-bit signed saturating subtraction.  */
P
pbrook 已提交
6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160
static inline uint16_t sub16_sat(uint16_t a, uint16_t b)
{
    uint16_t res;

    res = a - b;
    if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) {
        if (a & 0x8000)
            res = 0x8000;
        else
            res = 0x7fff;
    }
    return res;
}

A
aurel32 已提交
6161
/* Perform 8-bit signed saturating subtraction.  */
P
pbrook 已提交
6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184
static inline uint8_t sub8_sat(uint8_t a, uint8_t b)
{
    uint8_t res;

    res = a - b;
    if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) {
        if (a & 0x80)
            res = 0x80;
        else
            res = 0x7f;
    }
    return res;
}

#define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16);
#define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16);
#define ADD8(a, b, n)  RESULT(add8_sat(a, b), n, 8);
#define SUB8(a, b, n)  RESULT(sub8_sat(a, b), n, 8);
#define PFX q

#include "op_addsub.h"

/* Unsigned saturating arithmetic.  */
P
pbrook 已提交
6185
static inline uint16_t add16_usat(uint16_t a, uint16_t b)
P
pbrook 已提交
6186 6187 6188 6189 6190 6191 6192 6193
{
    uint16_t res;
    res = a + b;
    if (res < a)
        res = 0xffff;
    return res;
}

P
pbrook 已提交
6194
static inline uint16_t sub16_usat(uint16_t a, uint16_t b)
P
pbrook 已提交
6195
{
6196
    if (a > b)
P
pbrook 已提交
6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212
        return a - b;
    else
        return 0;
}

static inline uint8_t add8_usat(uint8_t a, uint8_t b)
{
    uint8_t res;
    res = a + b;
    if (res < a)
        res = 0xff;
    return res;
}

static inline uint8_t sub8_usat(uint8_t a, uint8_t b)
{
6213
    if (a > b)
P
pbrook 已提交
6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229
        return a - b;
    else
        return 0;
}

#define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16);
#define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16);
#define ADD8(a, b, n)  RESULT(add8_usat(a, b), n, 8);
#define SUB8(a, b, n)  RESULT(sub8_usat(a, b), n, 8);
#define PFX uq

#include "op_addsub.h"

/* Signed modulo arithmetic.  */
#define SARITH16(a, b, n, op) do { \
    int32_t sum; \
6230
    sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \
P
pbrook 已提交
6231 6232 6233 6234 6235 6236 6237
    RESULT(sum, n, 16); \
    if (sum >= 0) \
        ge |= 3 << (n * 2); \
    } while(0)

#define SARITH8(a, b, n, op) do { \
    int32_t sum; \
6238
    sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \
P
pbrook 已提交
6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258
    RESULT(sum, n, 8); \
    if (sum >= 0) \
        ge |= 1 << n; \
    } while(0)


#define ADD16(a, b, n) SARITH16(a, b, n, +)
#define SUB16(a, b, n) SARITH16(a, b, n, -)
#define ADD8(a, b, n)  SARITH8(a, b, n, +)
#define SUB8(a, b, n)  SARITH8(a, b, n, -)
#define PFX s
#define ARITH_GE

#include "op_addsub.h"

/* Unsigned modulo arithmetic.  */
#define ADD16(a, b, n) do { \
    uint32_t sum; \
    sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \
    RESULT(sum, n, 16); \
6259
    if ((sum >> 16) == 1) \
P
pbrook 已提交
6260 6261 6262 6263 6264 6265 6266
        ge |= 3 << (n * 2); \
    } while(0)

#define ADD8(a, b, n) do { \
    uint32_t sum; \
    sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \
    RESULT(sum, n, 8); \
6267 6268
    if ((sum >> 8) == 1) \
        ge |= 1 << n; \
P
pbrook 已提交
6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283
    } while(0)

#define SUB16(a, b, n) do { \
    uint32_t sum; \
    sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \
    RESULT(sum, n, 16); \
    if ((sum >> 16) == 0) \
        ge |= 3 << (n * 2); \
    } while(0)

#define SUB8(a, b, n) do { \
    uint32_t sum; \
    sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \
    RESULT(sum, n, 8); \
    if ((sum >> 8) == 0) \
6284
        ge |= 1 << n; \
P
pbrook 已提交
6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353
    } while(0)

#define PFX u
#define ARITH_GE

#include "op_addsub.h"

/* Halved signed arithmetic.  */
#define ADD16(a, b, n) \
  RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16)
#define SUB16(a, b, n) \
  RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16)
#define ADD8(a, b, n) \
  RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8)
#define SUB8(a, b, n) \
  RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8)
#define PFX sh

#include "op_addsub.h"

/* Halved unsigned arithmetic.  */
#define ADD16(a, b, n) \
  RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16)
#define SUB16(a, b, n) \
  RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16)
#define ADD8(a, b, n) \
  RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8)
#define SUB8(a, b, n) \
  RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8)
#define PFX uh

#include "op_addsub.h"

static inline uint8_t do_usad(uint8_t a, uint8_t b)
{
    if (a > b)
        return a - b;
    else
        return b - a;
}

/* Unsigned sum of absolute byte differences.  */
uint32_t HELPER(usad8)(uint32_t a, uint32_t b)
{
    uint32_t sum;
    sum = do_usad(a, b);
    sum += do_usad(a >> 8, b >> 8);
    sum += do_usad(a >> 16, b >>16);
    sum += do_usad(a >> 24, b >> 24);
    return sum;
}

/* For ARMv6 SEL instruction.  */
uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b)
{
    uint32_t mask;

    mask = 0;
    if (flags & 1)
        mask |= 0xff;
    if (flags & 2)
        mask |= 0xff00;
    if (flags & 4)
        mask |= 0xff0000;
    if (flags & 8)
        mask |= 0xff000000;
    return (a & mask) | (b & ~mask);
}

6354 6355
/* VFP support.  We follow the convention used for VFP instructions:
   Single precision routines have a "s" suffix, double precision a
P
pbrook 已提交
6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368
   "d" suffix.  */

/* Convert host exception flags to vfp form.  */
static inline int vfp_exceptbits_from_host(int host_bits)
{
    int target_bits = 0;

    if (host_bits & float_flag_invalid)
        target_bits |= 1;
    if (host_bits & float_flag_divbyzero)
        target_bits |= 2;
    if (host_bits & float_flag_overflow)
        target_bits |= 4;
6369
    if (host_bits & (float_flag_underflow | float_flag_output_denormal))
P
pbrook 已提交
6370 6371 6372
        target_bits |= 8;
    if (host_bits & float_flag_inexact)
        target_bits |= 0x10;
6373 6374
    if (host_bits & float_flag_input_denormal)
        target_bits |= 0x80;
P
pbrook 已提交
6375 6376 6377
    return target_bits;
}

6378
uint32_t HELPER(vfp_get_fpscr)(CPUARMState *env)
P
pbrook 已提交
6379 6380 6381 6382 6383 6384 6385 6386
{
    int i;
    uint32_t fpscr;

    fpscr = (env->vfp.xregs[ARM_VFP_FPSCR] & 0xffc8ffff)
            | (env->vfp.vec_len << 16)
            | (env->vfp.vec_stride << 20);
    i = get_float_exception_flags(&env->vfp.fp_status);
6387
    i |= get_float_exception_flags(&env->vfp.standard_fp_status);
P
pbrook 已提交
6388 6389 6390 6391
    fpscr |= vfp_exceptbits_from_host(i);
    return fpscr;
}

6392
uint32_t vfp_get_fpscr(CPUARMState *env)
6393 6394 6395 6396
{
    return HELPER(vfp_get_fpscr)(env);
}

P
pbrook 已提交
6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411
/* Convert vfp exception flags to target form.  */
static inline int vfp_exceptbits_to_host(int target_bits)
{
    int host_bits = 0;

    if (target_bits & 1)
        host_bits |= float_flag_invalid;
    if (target_bits & 2)
        host_bits |= float_flag_divbyzero;
    if (target_bits & 4)
        host_bits |= float_flag_overflow;
    if (target_bits & 8)
        host_bits |= float_flag_underflow;
    if (target_bits & 0x10)
        host_bits |= float_flag_inexact;
6412 6413
    if (target_bits & 0x80)
        host_bits |= float_flag_input_denormal;
P
pbrook 已提交
6414 6415 6416
    return host_bits;
}

6417
void HELPER(vfp_set_fpscr)(CPUARMState *env, uint32_t val)
P
pbrook 已提交
6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430
{
    int i;
    uint32_t changed;

    changed = env->vfp.xregs[ARM_VFP_FPSCR];
    env->vfp.xregs[ARM_VFP_FPSCR] = (val & 0xffc8ffff);
    env->vfp.vec_len = (val >> 16) & 7;
    env->vfp.vec_stride = (val >> 20) & 3;

    changed ^= val;
    if (changed & (3 << 22)) {
        i = (val >> 22) & 3;
        switch (i) {
6431
        case FPROUNDING_TIEEVEN:
P
pbrook 已提交
6432 6433
            i = float_round_nearest_even;
            break;
6434
        case FPROUNDING_POSINF:
P
pbrook 已提交
6435 6436
            i = float_round_up;
            break;
6437
        case FPROUNDING_NEGINF:
P
pbrook 已提交
6438 6439
            i = float_round_down;
            break;
6440
        case FPROUNDING_ZERO:
P
pbrook 已提交
6441 6442 6443 6444 6445
            i = float_round_to_zero;
            break;
        }
        set_float_rounding_mode(i, &env->vfp.fp_status);
    }
6446
    if (changed & (1 << 24)) {
6447
        set_flush_to_zero((val & (1 << 24)) != 0, &env->vfp.fp_status);
6448 6449
        set_flush_inputs_to_zero((val & (1 << 24)) != 0, &env->vfp.fp_status);
    }
P
pbrook 已提交
6450 6451
    if (changed & (1 << 25))
        set_default_nan_mode((val & (1 << 25)) != 0, &env->vfp.fp_status);
P
pbrook 已提交
6452

6453
    i = vfp_exceptbits_to_host(val);
P
pbrook 已提交
6454
    set_float_exception_flags(i, &env->vfp.fp_status);
6455
    set_float_exception_flags(0, &env->vfp.standard_fp_status);
P
pbrook 已提交
6456 6457
}

6458
void vfp_set_fpscr(CPUARMState *env, uint32_t val)
6459 6460 6461 6462
{
    HELPER(vfp_set_fpscr)(env, val);
}

P
pbrook 已提交
6463 6464 6465
#define VFP_HELPER(name, p) HELPER(glue(glue(vfp_,name),p))

#define VFP_BINOP(name) \
6466
float32 VFP_HELPER(name, s)(float32 a, float32 b, void *fpstp) \
P
pbrook 已提交
6467
{ \
6468 6469
    float_status *fpst = fpstp; \
    return float32_ ## name(a, b, fpst); \
P
pbrook 已提交
6470
} \
6471
float64 VFP_HELPER(name, d)(float64 a, float64 b, void *fpstp) \
P
pbrook 已提交
6472
{ \
6473 6474
    float_status *fpst = fpstp; \
    return float64_ ## name(a, b, fpst); \
P
pbrook 已提交
6475 6476 6477 6478 6479
}
VFP_BINOP(add)
VFP_BINOP(sub)
VFP_BINOP(mul)
VFP_BINOP(div)
6480 6481 6482 6483
VFP_BINOP(min)
VFP_BINOP(max)
VFP_BINOP(minnum)
VFP_BINOP(maxnum)
P
pbrook 已提交
6484 6485 6486 6487 6488 6489 6490 6491 6492
#undef VFP_BINOP

float32 VFP_HELPER(neg, s)(float32 a)
{
    return float32_chs(a);
}

float64 VFP_HELPER(neg, d)(float64 a)
{
6493
    return float64_chs(a);
P
pbrook 已提交
6494 6495 6496 6497 6498 6499 6500 6501 6502
}

float32 VFP_HELPER(abs, s)(float32 a)
{
    return float32_abs(a);
}

float64 VFP_HELPER(abs, d)(float64 a)
{
6503
    return float64_abs(a);
P
pbrook 已提交
6504 6505
}

6506
float32 VFP_HELPER(sqrt, s)(float32 a, CPUARMState *env)
P
pbrook 已提交
6507 6508 6509 6510
{
    return float32_sqrt(a, &env->vfp.fp_status);
}

6511
float64 VFP_HELPER(sqrt, d)(float64 a, CPUARMState *env)
P
pbrook 已提交
6512 6513 6514 6515 6516 6517
{
    return float64_sqrt(a, &env->vfp.fp_status);
}

/* XXX: check quiet/signaling case */
#define DO_VFP_cmp(p, type) \
6518
void VFP_HELPER(cmp, p)(type a, type b, CPUARMState *env)  \
P
pbrook 已提交
6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529
{ \
    uint32_t flags; \
    switch(type ## _compare_quiet(a, b, &env->vfp.fp_status)) { \
    case 0: flags = 0x6; break; \
    case -1: flags = 0x8; break; \
    case 1: flags = 0x2; break; \
    default: case 2: flags = 0x3; break; \
    } \
    env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
        | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
} \
6530
void VFP_HELPER(cmpe, p)(type a, type b, CPUARMState *env) \
P
pbrook 已提交
6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545
{ \
    uint32_t flags; \
    switch(type ## _compare(a, b, &env->vfp.fp_status)) { \
    case 0: flags = 0x6; break; \
    case -1: flags = 0x8; break; \
    case 1: flags = 0x2; break; \
    default: case 2: flags = 0x3; break; \
    } \
    env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
        | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
}
DO_VFP_cmp(s, float32)
DO_VFP_cmp(d, float64)
#undef DO_VFP_cmp

6546
/* Integer to float and float to integer conversions */
P
pbrook 已提交
6547

6548 6549 6550 6551
#define CONV_ITOF(name, fsz, sign) \
    float##fsz HELPER(name)(uint32_t x, void *fpstp) \
{ \
    float_status *fpst = fpstp; \
6552
    return sign##int32_to_##float##fsz((sign##int32_t)x, fpst); \
P
pbrook 已提交
6553 6554
}

6555 6556 6557 6558 6559 6560 6561 6562 6563
#define CONV_FTOI(name, fsz, sign, round) \
uint32_t HELPER(name)(float##fsz x, void *fpstp) \
{ \
    float_status *fpst = fpstp; \
    if (float##fsz##_is_any_nan(x)) { \
        float_raise(float_flag_invalid, fpst); \
        return 0; \
    } \
    return float##fsz##_to_##sign##int32##round(x, fpst); \
P
pbrook 已提交
6564 6565
}

6566 6567 6568 6569
#define FLOAT_CONVS(name, p, fsz, sign) \
CONV_ITOF(vfp_##name##to##p, fsz, sign) \
CONV_FTOI(vfp_to##name##p, fsz, sign, ) \
CONV_FTOI(vfp_to##name##z##p, fsz, sign, _round_to_zero)
P
pbrook 已提交
6570

6571 6572 6573 6574
FLOAT_CONVS(si, s, 32, )
FLOAT_CONVS(si, d, 64, )
FLOAT_CONVS(ui, s, 32, u)
FLOAT_CONVS(ui, d, 64, u)
P
pbrook 已提交
6575

6576 6577 6578
#undef CONV_ITOF
#undef CONV_FTOI
#undef FLOAT_CONVS
P
pbrook 已提交
6579 6580

/* floating point conversion */
6581
float64 VFP_HELPER(fcvtd, s)(float32 x, CPUARMState *env)
P
pbrook 已提交
6582
{
6583 6584 6585 6586 6587
    float64 r = float32_to_float64(x, &env->vfp.fp_status);
    /* ARM requires that S<->D conversion of any kind of NaN generates
     * a quiet NaN by forcing the most significant frac bit to 1.
     */
    return float64_maybe_silence_nan(r);
P
pbrook 已提交
6588 6589
}

6590
float32 VFP_HELPER(fcvts, d)(float64 x, CPUARMState *env)
P
pbrook 已提交
6591
{
6592 6593 6594 6595 6596
    float32 r =  float64_to_float32(x, &env->vfp.fp_status);
    /* ARM requires that S<->D conversion of any kind of NaN generates
     * a quiet NaN by forcing the most significant frac bit to 1.
     */
    return float32_maybe_silence_nan(r);
P
pbrook 已提交
6597 6598 6599
}

/* VFP3 fixed point conversion.  */
6600
#define VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \
6601 6602
float##fsz HELPER(vfp_##name##to##p)(uint##isz##_t  x, uint32_t shift, \
                                     void *fpstp) \
P
pbrook 已提交
6603
{ \
6604
    float_status *fpst = fpstp; \
6605
    float##fsz tmp; \
6606
    tmp = itype##_to_##float##fsz(x, fpst); \
6607
    return float##fsz##_scalbn(tmp, -(int)shift, fpst); \
6608 6609
}

6610 6611 6612 6613 6614
/* Notice that we want only input-denormal exception flags from the
 * scalbn operation: the other possible flags (overflow+inexact if
 * we overflow to infinity, output-denormal) aren't correct for the
 * complete scale-and-convert operation.
 */
6615 6616 6617 6618
#define VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, round) \
uint##isz##_t HELPER(vfp_to##name##p##round)(float##fsz x, \
                                             uint32_t shift, \
                                             void *fpstp) \
P
pbrook 已提交
6619
{ \
6620
    float_status *fpst = fpstp; \
6621
    int old_exc_flags = get_float_exception_flags(fpst); \
6622 6623
    float##fsz tmp; \
    if (float##fsz##_is_any_nan(x)) { \
6624
        float_raise(float_flag_invalid, fpst); \
6625
        return 0; \
6626
    } \
6627
    tmp = float##fsz##_scalbn(x, shift, fpst); \
6628 6629 6630
    old_exc_flags |= get_float_exception_flags(fpst) \
        & float_flag_input_denormal; \
    set_float_exception_flags(old_exc_flags, fpst); \
6631
    return float##fsz##_to_##itype##round(tmp, fpst); \
6632 6633
}

6634 6635
#define VFP_CONV_FIX(name, p, fsz, isz, itype)                   \
VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype)                     \
6636 6637 6638 6639 6640 6641
VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, _round_to_zero) \
VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, )

#define VFP_CONV_FIX_A64(name, p, fsz, isz, itype)               \
VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype)                     \
VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, )
6642

6643 6644
VFP_CONV_FIX(sh, d, 64, 64, int16)
VFP_CONV_FIX(sl, d, 64, 64, int32)
6645
VFP_CONV_FIX_A64(sq, d, 64, 64, int64)
6646 6647
VFP_CONV_FIX(uh, d, 64, 64, uint16)
VFP_CONV_FIX(ul, d, 64, 64, uint32)
6648
VFP_CONV_FIX_A64(uq, d, 64, 64, uint64)
6649 6650
VFP_CONV_FIX(sh, s, 32, 32, int16)
VFP_CONV_FIX(sl, s, 32, 32, int32)
6651
VFP_CONV_FIX_A64(sq, s, 32, 64, int64)
6652 6653
VFP_CONV_FIX(uh, s, 32, 32, uint16)
VFP_CONV_FIX(ul, s, 32, 32, uint32)
6654
VFP_CONV_FIX_A64(uq, s, 32, 64, uint64)
P
pbrook 已提交
6655
#undef VFP_CONV_FIX
6656 6657
#undef VFP_CONV_FIX_FLOAT
#undef VFP_CONV_FLOAT_FIX_ROUND
P
pbrook 已提交
6658

6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671
/* Set the current fp rounding mode and return the old one.
 * The argument is a softfloat float_round_ value.
 */
uint32_t HELPER(set_rmode)(uint32_t rmode, CPUARMState *env)
{
    float_status *fp_status = &env->vfp.fp_status;

    uint32_t prev_rmode = get_float_rounding_mode(fp_status);
    set_float_rounding_mode(rmode, fp_status);

    return prev_rmode;
}

6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688
/* Set the current fp rounding mode in the standard fp status and return
 * the old one. This is for NEON instructions that need to change the
 * rounding mode but wish to use the standard FPSCR values for everything
 * else. Always set the rounding mode back to the correct value after
 * modifying it.
 * The argument is a softfloat float_round_ value.
 */
uint32_t HELPER(set_neon_rmode)(uint32_t rmode, CPUARMState *env)
{
    float_status *fp_status = &env->vfp.standard_fp_status;

    uint32_t prev_rmode = get_float_rounding_mode(fp_status);
    set_float_rounding_mode(rmode, fp_status);

    return prev_rmode;
}

P
Paul Brook 已提交
6689
/* Half precision conversions.  */
6690
static float32 do_fcvt_f16_to_f32(uint32_t a, CPUARMState *env, float_status *s)
P
Paul Brook 已提交
6691 6692
{
    int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
6693 6694 6695 6696 6697
    float32 r = float16_to_float32(make_float16(a), ieee, s);
    if (ieee) {
        return float32_maybe_silence_nan(r);
    }
    return r;
P
Paul Brook 已提交
6698 6699
}

6700
static uint32_t do_fcvt_f32_to_f16(float32 a, CPUARMState *env, float_status *s)
P
Paul Brook 已提交
6701 6702
{
    int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
6703 6704 6705 6706 6707
    float16 r = float32_to_float16(a, ieee, s);
    if (ieee) {
        r = float16_maybe_silence_nan(r);
    }
    return float16_val(r);
P
Paul Brook 已提交
6708 6709
}

6710
float32 HELPER(neon_fcvt_f16_to_f32)(uint32_t a, CPUARMState *env)
6711 6712 6713 6714
{
    return do_fcvt_f16_to_f32(a, env, &env->vfp.standard_fp_status);
}

6715
uint32_t HELPER(neon_fcvt_f32_to_f16)(float32 a, CPUARMState *env)
6716 6717 6718 6719
{
    return do_fcvt_f32_to_f16(a, env, &env->vfp.standard_fp_status);
}

6720
float32 HELPER(vfp_fcvt_f16_to_f32)(uint32_t a, CPUARMState *env)
6721 6722 6723 6724
{
    return do_fcvt_f16_to_f32(a, env, &env->vfp.fp_status);
}

6725
uint32_t HELPER(vfp_fcvt_f32_to_f16)(float32 a, CPUARMState *env)
6726 6727 6728 6729
{
    return do_fcvt_f32_to_f16(a, env, &env->vfp.fp_status);
}

6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743 6744 6745 6746 6747 6748 6749
float64 HELPER(vfp_fcvt_f16_to_f64)(uint32_t a, CPUARMState *env)
{
    int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
    float64 r = float16_to_float64(make_float16(a), ieee, &env->vfp.fp_status);
    if (ieee) {
        return float64_maybe_silence_nan(r);
    }
    return r;
}

uint32_t HELPER(vfp_fcvt_f64_to_f16)(float64 a, CPUARMState *env)
{
    int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
    float16 r = float64_to_float16(a, ieee, &env->vfp.fp_status);
    if (ieee) {
        r = float16_maybe_silence_nan(r);
    }
    return float16_val(r);
}

6750
#define float32_two make_float32(0x40000000)
6751 6752
#define float32_three make_float32(0x40400000)
#define float32_one_point_five make_float32(0x3fc00000)
6753

6754
float32 HELPER(recps_f32)(float32 a, float32 b, CPUARMState *env)
P
pbrook 已提交
6755
{
6756 6757 6758
    float_status *s = &env->vfp.standard_fp_status;
    if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) ||
        (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) {
6759 6760 6761
        if (!(float32_is_zero(a) || float32_is_zero(b))) {
            float_raise(float_flag_input_denormal, s);
        }
6762 6763 6764
        return float32_two;
    }
    return float32_sub(float32_two, float32_mul(a, b, s), s);
P
pbrook 已提交
6765 6766
}

6767
float32 HELPER(rsqrts_f32)(float32 a, float32 b, CPUARMState *env)
P
pbrook 已提交
6768
{
6769
    float_status *s = &env->vfp.standard_fp_status;
6770 6771 6772
    float32 product;
    if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) ||
        (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) {
6773 6774 6775
        if (!(float32_is_zero(a) || float32_is_zero(b))) {
            float_raise(float_flag_input_denormal, s);
        }
6776
        return float32_one_point_five;
6777
    }
6778 6779
    product = float32_mul(a, b, s);
    return float32_div(float32_sub(float32_three, product, s), float32_two, s);
P
pbrook 已提交
6780 6781
}

P
pbrook 已提交
6782 6783
/* NEON helpers.  */

6784 6785 6786 6787
/* Constants 256 and 512 are used in some helpers; we avoid relying on
 * int->float conversions at run-time.  */
#define float64_256 make_float64(0x4070000000000000LL)
#define float64_512 make_float64(0x4080000000000000LL)
6788 6789
#define float32_maxnorm make_float32(0x7f7fffff)
#define float64_maxnorm make_float64(0x7fefffffffffffffLL)
6790

6791 6792 6793 6794
/* Reciprocal functions
 *
 * The algorithm that must be used to calculate the estimate
 * is specified by the ARM ARM, see FPRecipEstimate()
6795
 */
6796 6797

static float64 recip_estimate(float64 a, float_status *real_fp_status)
6798
{
6799 6800 6801
    /* These calculations mustn't set any fp exception flags,
     * so we use a local copy of the fp_status.
     */
6802
    float_status dummy_status = *real_fp_status;
6803
    float_status *s = &dummy_status;
6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822
    /* q = (int)(a * 512.0) */
    float64 q = float64_mul(float64_512, a, s);
    int64_t q_int = float64_to_int64_round_to_zero(q, s);

    /* r = 1.0 / (((double)q + 0.5) / 512.0) */
    q = int64_to_float64(q_int, s);
    q = float64_add(q, float64_half, s);
    q = float64_div(q, float64_512, s);
    q = float64_div(float64_one, q, s);

    /* s = (int)(256.0 * r + 0.5) */
    q = float64_mul(q, float64_256, s);
    q = float64_add(q, float64_half, s);
    q_int = float64_to_int64_round_to_zero(q, s);

    /* return (double)s / 256.0 */
    return float64_div(int64_to_float64(q_int, s), float64_256, s);
}

6823 6824
/* Common wrapper to call recip_estimate */
static float64 call_recip_estimate(float64 num, int off, float_status *fpst)
P
pbrook 已提交
6825
{
6826 6827 6828 6829 6830
    uint64_t val64 = float64_val(num);
    uint64_t frac = extract64(val64, 0, 52);
    int64_t exp = extract64(val64, 52, 11);
    uint64_t sbit;
    float64 scaled, estimate;
6831

6832 6833 6834 6835 6836 6837 6838 6839 6840
    /* Generate the scaled number for the estimate function */
    if (exp == 0) {
        if (extract64(frac, 51, 1) == 0) {
            exp = -1;
            frac = extract64(frac, 0, 50) << 2;
        } else {
            frac = extract64(frac, 0, 51) << 1;
        }
    }
6841

6842 6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897
    /* scaled = '0' : '01111111110' : fraction<51:44> : Zeros(44); */
    scaled = make_float64((0x3feULL << 52)
                          | extract64(frac, 44, 8) << 44);

    estimate = recip_estimate(scaled, fpst);

    /* Build new result */
    val64 = float64_val(estimate);
    sbit = 0x8000000000000000ULL & val64;
    exp = off - exp;
    frac = extract64(val64, 0, 52);

    if (exp == 0) {
        frac = 1ULL << 51 | extract64(frac, 1, 51);
    } else if (exp == -1) {
        frac = 1ULL << 50 | extract64(frac, 2, 50);
        exp = 0;
    }

    return make_float64(sbit | (exp << 52) | frac);
}

static bool round_to_inf(float_status *fpst, bool sign_bit)
{
    switch (fpst->float_rounding_mode) {
    case float_round_nearest_even: /* Round to Nearest */
        return true;
    case float_round_up: /* Round to +Inf */
        return !sign_bit;
    case float_round_down: /* Round to -Inf */
        return sign_bit;
    case float_round_to_zero: /* Round to Zero */
        return false;
    }

    g_assert_not_reached();
}

float32 HELPER(recpe_f32)(float32 input, void *fpstp)
{
    float_status *fpst = fpstp;
    float32 f32 = float32_squash_input_denormal(input, fpst);
    uint32_t f32_val = float32_val(f32);
    uint32_t f32_sbit = 0x80000000ULL & f32_val;
    int32_t f32_exp = extract32(f32_val, 23, 8);
    uint32_t f32_frac = extract32(f32_val, 0, 23);
    float64 f64, r64;
    uint64_t r64_val;
    int64_t r64_exp;
    uint64_t r64_frac;

    if (float32_is_any_nan(f32)) {
        float32 nan = f32;
        if (float32_is_signaling_nan(f32)) {
            float_raise(float_flag_invalid, fpst);
            nan = float32_maybe_silence_nan(f32);
6898
        }
6899 6900
        if (fpst->default_nan_mode) {
            nan =  float32_default_nan;
6901
        }
6902 6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913 6914 6915 6916 6917 6918
        return nan;
    } else if (float32_is_infinity(f32)) {
        return float32_set_sign(float32_zero, float32_is_neg(f32));
    } else if (float32_is_zero(f32)) {
        float_raise(float_flag_divbyzero, fpst);
        return float32_set_sign(float32_infinity, float32_is_neg(f32));
    } else if ((f32_val & ~(1ULL << 31)) < (1ULL << 21)) {
        /* Abs(value) < 2.0^-128 */
        float_raise(float_flag_overflow | float_flag_inexact, fpst);
        if (round_to_inf(fpst, f32_sbit)) {
            return float32_set_sign(float32_infinity, float32_is_neg(f32));
        } else {
            return float32_set_sign(float32_maxnorm, float32_is_neg(f32));
        }
    } else if (f32_exp >= 253 && fpst->flush_to_zero) {
        float_raise(float_flag_underflow, fpst);
        return float32_set_sign(float32_zero, float32_is_neg(f32));
6919 6920 6921
    }


6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938 6939 6940 6941 6942 6943 6944 6945 6946 6947 6948 6949 6950 6951 6952 6953 6954 6955 6956 6957 6958 6959 6960 6961 6962 6963 6964 6965 6966 6967 6968 6969
    f64 = make_float64(((int64_t)(f32_exp) << 52) | (int64_t)(f32_frac) << 29);
    r64 = call_recip_estimate(f64, 253, fpst);
    r64_val = float64_val(r64);
    r64_exp = extract64(r64_val, 52, 11);
    r64_frac = extract64(r64_val, 0, 52);

    /* result = sign : result_exp<7:0> : fraction<51:29>; */
    return make_float32(f32_sbit |
                        (r64_exp & 0xff) << 23 |
                        extract64(r64_frac, 29, 24));
}

float64 HELPER(recpe_f64)(float64 input, void *fpstp)
{
    float_status *fpst = fpstp;
    float64 f64 = float64_squash_input_denormal(input, fpst);
    uint64_t f64_val = float64_val(f64);
    uint64_t f64_sbit = 0x8000000000000000ULL & f64_val;
    int64_t f64_exp = extract64(f64_val, 52, 11);
    float64 r64;
    uint64_t r64_val;
    int64_t r64_exp;
    uint64_t r64_frac;

    /* Deal with any special cases */
    if (float64_is_any_nan(f64)) {
        float64 nan = f64;
        if (float64_is_signaling_nan(f64)) {
            float_raise(float_flag_invalid, fpst);
            nan = float64_maybe_silence_nan(f64);
        }
        if (fpst->default_nan_mode) {
            nan =  float64_default_nan;
        }
        return nan;
    } else if (float64_is_infinity(f64)) {
        return float64_set_sign(float64_zero, float64_is_neg(f64));
    } else if (float64_is_zero(f64)) {
        float_raise(float_flag_divbyzero, fpst);
        return float64_set_sign(float64_infinity, float64_is_neg(f64));
    } else if ((f64_val & ~(1ULL << 63)) < (1ULL << 50)) {
        /* Abs(value) < 2.0^-1024 */
        float_raise(float_flag_overflow | float_flag_inexact, fpst);
        if (round_to_inf(fpst, f64_sbit)) {
            return float64_set_sign(float64_infinity, float64_is_neg(f64));
        } else {
            return float64_set_sign(float64_maxnorm, float64_is_neg(f64));
        }
6970
    } else if (f64_exp >= 2045 && fpst->flush_to_zero) {
6971 6972 6973
        float_raise(float_flag_underflow, fpst);
        return float64_set_sign(float64_zero, float64_is_neg(f64));
    }
6974

6975 6976 6977 6978
    r64 = call_recip_estimate(f64, 2045, fpst);
    r64_val = float64_val(r64);
    r64_exp = extract64(r64_val, 52, 11);
    r64_frac = extract64(r64_val, 0, 52);
6979

6980 6981 6982 6983
    /* result = sign : result_exp<10:0> : fraction<51:0> */
    return make_float64(f64_sbit |
                        ((r64_exp & 0x7ff) << 52) |
                        r64_frac);
P
pbrook 已提交
6984 6985
}

6986 6987 6988
/* The algorithm that must be used to calculate the estimate
 * is specified by the ARM ARM.
 */
6989
static float64 recip_sqrt_estimate(float64 a, float_status *real_fp_status)
6990
{
6991 6992 6993
    /* These calculations mustn't set any fp exception flags,
     * so we use a local copy of the fp_status.
     */
6994
    float_status dummy_status = *real_fp_status;
6995
    float_status *s = &dummy_status;
6996 6997 6998 6999 7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013 7014 7015 7016 7017 7018 7019 7020 7021 7022 7023 7024 7025 7026 7027 7028 7029 7030 7031 7032 7033 7034 7035 7036 7037 7038 7039 7040
    float64 q;
    int64_t q_int;

    if (float64_lt(a, float64_half, s)) {
        /* range 0.25 <= a < 0.5 */

        /* a in units of 1/512 rounded down */
        /* q0 = (int)(a * 512.0);  */
        q = float64_mul(float64_512, a, s);
        q_int = float64_to_int64_round_to_zero(q, s);

        /* reciprocal root r */
        /* r = 1.0 / sqrt(((double)q0 + 0.5) / 512.0);  */
        q = int64_to_float64(q_int, s);
        q = float64_add(q, float64_half, s);
        q = float64_div(q, float64_512, s);
        q = float64_sqrt(q, s);
        q = float64_div(float64_one, q, s);
    } else {
        /* range 0.5 <= a < 1.0 */

        /* a in units of 1/256 rounded down */
        /* q1 = (int)(a * 256.0); */
        q = float64_mul(float64_256, a, s);
        int64_t q_int = float64_to_int64_round_to_zero(q, s);

        /* reciprocal root r */
        /* r = 1.0 /sqrt(((double)q1 + 0.5) / 256); */
        q = int64_to_float64(q_int, s);
        q = float64_add(q, float64_half, s);
        q = float64_div(q, float64_256, s);
        q = float64_sqrt(q, s);
        q = float64_div(float64_one, q, s);
    }
    /* r in units of 1/256 rounded to nearest */
    /* s = (int)(256.0 * r + 0.5); */

    q = float64_mul(q, float64_256,s );
    q = float64_add(q, float64_half, s);
    q_int = float64_to_int64_round_to_zero(q, s);

    /* return (double)s / 256.0;*/
    return float64_div(int64_to_float64(q_int, s), float64_256, s);
}

7041
float32 HELPER(rsqrte_f32)(float32 input, void *fpstp)
P
pbrook 已提交
7042
{
7043 7044 7045 7046 7047 7048 7049 7050
    float_status *s = fpstp;
    float32 f32 = float32_squash_input_denormal(input, s);
    uint32_t val = float32_val(f32);
    uint32_t f32_sbit = 0x80000000 & val;
    int32_t f32_exp = extract32(val, 23, 8);
    uint32_t f32_frac = extract32(val, 0, 23);
    uint64_t f64_frac;
    uint64_t val64;
7051 7052 7053
    int result_exp;
    float64 f64;

7054 7055 7056
    if (float32_is_any_nan(f32)) {
        float32 nan = f32;
        if (float32_is_signaling_nan(f32)) {
7057
            float_raise(float_flag_invalid, s);
7058
            nan = float32_maybe_silence_nan(f32);
7059
        }
7060 7061
        if (s->default_nan_mode) {
            nan =  float32_default_nan;
7062
        }
7063 7064
        return nan;
    } else if (float32_is_zero(f32)) {
7065
        float_raise(float_flag_divbyzero, s);
7066 7067
        return float32_set_sign(float32_infinity, float32_is_neg(f32));
    } else if (float32_is_neg(f32)) {
7068 7069
        float_raise(float_flag_invalid, s);
        return float32_default_nan;
7070
    } else if (float32_is_infinity(f32)) {
7071 7072 7073
        return float32_zero;
    }

7074
    /* Scale and normalize to a double-precision value between 0.25 and 1.0,
7075
     * preserving the parity of the exponent.  */
7076 7077 7078 7079 7080 7081 7082 7083 7084 7085 7086 7087

    f64_frac = ((uint64_t) f32_frac) << 29;
    if (f32_exp == 0) {
        while (extract64(f64_frac, 51, 1) == 0) {
            f64_frac = f64_frac << 1;
            f32_exp = f32_exp-1;
        }
        f64_frac = extract64(f64_frac, 0, 51) << 1;
    }

    if (extract64(f32_exp, 0, 1) == 0) {
        f64 = make_float64(((uint64_t) f32_sbit) << 32
7088
                           | (0x3feULL << 52)
7089
                           | f64_frac);
7090
    } else {
7091
        f64 = make_float64(((uint64_t) f32_sbit) << 32
7092
                           | (0x3fdULL << 52)
7093
                           | f64_frac);
7094 7095
    }

7096
    result_exp = (380 - f32_exp) / 2;
7097

7098
    f64 = recip_sqrt_estimate(f64, s);
7099 7100 7101

    val64 = float64_val(f64);

7102
    val = ((result_exp & 0xff) << 23)
7103 7104
        | ((val64 >> 29)  & 0x7fffff);
    return make_float32(val);
P
pbrook 已提交
7105 7106
}

7107 7108 7109 7110 7111 7112 7113 7114 7115 7116 7117 7118 7119 7120 7121 7122 7123 7124 7125 7126 7127 7128 7129 7130 7131 7132 7133 7134 7135 7136 7137 7138 7139 7140 7141 7142 7143 7144 7145 7146 7147 7148 7149 7150 7151 7152 7153 7154 7155 7156 7157 7158 7159 7160 7161 7162 7163 7164 7165 7166 7167 7168 7169
float64 HELPER(rsqrte_f64)(float64 input, void *fpstp)
{
    float_status *s = fpstp;
    float64 f64 = float64_squash_input_denormal(input, s);
    uint64_t val = float64_val(f64);
    uint64_t f64_sbit = 0x8000000000000000ULL & val;
    int64_t f64_exp = extract64(val, 52, 11);
    uint64_t f64_frac = extract64(val, 0, 52);
    int64_t result_exp;
    uint64_t result_frac;

    if (float64_is_any_nan(f64)) {
        float64 nan = f64;
        if (float64_is_signaling_nan(f64)) {
            float_raise(float_flag_invalid, s);
            nan = float64_maybe_silence_nan(f64);
        }
        if (s->default_nan_mode) {
            nan =  float64_default_nan;
        }
        return nan;
    } else if (float64_is_zero(f64)) {
        float_raise(float_flag_divbyzero, s);
        return float64_set_sign(float64_infinity, float64_is_neg(f64));
    } else if (float64_is_neg(f64)) {
        float_raise(float_flag_invalid, s);
        return float64_default_nan;
    } else if (float64_is_infinity(f64)) {
        return float64_zero;
    }

    /* Scale and normalize to a double-precision value between 0.25 and 1.0,
     * preserving the parity of the exponent.  */

    if (f64_exp == 0) {
        while (extract64(f64_frac, 51, 1) == 0) {
            f64_frac = f64_frac << 1;
            f64_exp = f64_exp - 1;
        }
        f64_frac = extract64(f64_frac, 0, 51) << 1;
    }

    if (extract64(f64_exp, 0, 1) == 0) {
        f64 = make_float64(f64_sbit
                           | (0x3feULL << 52)
                           | f64_frac);
    } else {
        f64 = make_float64(f64_sbit
                           | (0x3fdULL << 52)
                           | f64_frac);
    }

    result_exp = (3068 - f64_exp) / 2;

    f64 = recip_sqrt_estimate(f64, s);

    result_frac = extract64(float64_val(f64), 0, 52);

    return make_float64(f64_sbit |
                        ((result_exp & 0x7ff) << 52) |
                        result_frac);
}

7170
uint32_t HELPER(recpe_u32)(uint32_t a, void *fpstp)
P
pbrook 已提交
7171
{
7172
    float_status *s = fpstp;
7173 7174 7175 7176 7177 7178 7179 7180 7181
    float64 f64;

    if ((a & 0x80000000) == 0) {
        return 0xffffffff;
    }

    f64 = make_float64((0x3feULL << 52)
                       | ((int64_t)(a & 0x7fffffff) << 21));

7182
    f64 = recip_estimate(f64, s);
7183 7184

    return 0x80000000 | ((float64_val(f64) >> 21) & 0x7fffffff);
P
pbrook 已提交
7185 7186
}

7187
uint32_t HELPER(rsqrte_u32)(uint32_t a, void *fpstp)
P
pbrook 已提交
7188
{
7189
    float_status *fpst = fpstp;
7190 7191 7192 7193 7194 7195 7196 7197 7198 7199 7200 7201 7202 7203
    float64 f64;

    if ((a & 0xc0000000) == 0) {
        return 0xffffffff;
    }

    if (a & 0x80000000) {
        f64 = make_float64((0x3feULL << 52)
                           | ((uint64_t)(a & 0x7fffffff) << 21));
    } else { /* bits 31-30 == '01' */
        f64 = make_float64((0x3fdULL << 52)
                           | ((uint64_t)(a & 0x3fffffff) << 22));
    }

7204
    f64 = recip_sqrt_estimate(f64, fpst);
7205 7206

    return 0x80000000 | ((float64_val(f64) >> 21) & 0x7fffffff);
P
pbrook 已提交
7207
}
7208

7209 7210 7211 7212 7213 7214 7215 7216 7217 7218 7219 7220
/* VFPv4 fused multiply-accumulate */
float32 VFP_HELPER(muladd, s)(float32 a, float32 b, float32 c, void *fpstp)
{
    float_status *fpst = fpstp;
    return float32_muladd(a, b, c, 0, fpst);
}

float64 VFP_HELPER(muladd, d)(float64 a, float64 b, float64 c, void *fpstp)
{
    float_status *fpst = fpstp;
    return float64_muladd(a, b, c, 0, fpst);
}
7221 7222 7223 7224 7225 7226 7227 7228 7229 7230 7231 7232 7233 7234 7235 7236 7237 7238 7239 7240 7241 7242 7243 7244 7245 7246 7247 7248 7249 7250 7251 7252 7253 7254 7255 7256 7257 7258 7259 7260 7261 7262 7263 7264 7265

/* ARMv8 round to integral */
float32 HELPER(rints_exact)(float32 x, void *fp_status)
{
    return float32_round_to_int(x, fp_status);
}

float64 HELPER(rintd_exact)(float64 x, void *fp_status)
{
    return float64_round_to_int(x, fp_status);
}

float32 HELPER(rints)(float32 x, void *fp_status)
{
    int old_flags = get_float_exception_flags(fp_status), new_flags;
    float32 ret;

    ret = float32_round_to_int(x, fp_status);

    /* Suppress any inexact exceptions the conversion produced */
    if (!(old_flags & float_flag_inexact)) {
        new_flags = get_float_exception_flags(fp_status);
        set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status);
    }

    return ret;
}

float64 HELPER(rintd)(float64 x, void *fp_status)
{
    int old_flags = get_float_exception_flags(fp_status), new_flags;
    float64 ret;

    ret = float64_round_to_int(x, fp_status);

    new_flags = get_float_exception_flags(fp_status);

    /* Suppress any inexact exceptions the conversion produced */
    if (!(old_flags & float_flag_inexact)) {
        new_flags = get_float_exception_flags(fp_status);
        set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status);
    }

    return ret;
}
7266 7267 7268 7269 7270 7271 7272 7273 7274 7275 7276 7277 7278 7279 7280 7281 7282 7283 7284 7285 7286 7287 7288 7289 7290 7291 7292 7293

/* Convert ARM rounding mode to softfloat */
int arm_rmode_to_sf(int rmode)
{
    switch (rmode) {
    case FPROUNDING_TIEAWAY:
        rmode = float_round_ties_away;
        break;
    case FPROUNDING_ODD:
        /* FIXME: add support for TIEAWAY and ODD */
        qemu_log_mask(LOG_UNIMP, "arm: unimplemented rounding mode: %d\n",
                      rmode);
    case FPROUNDING_TIEEVEN:
    default:
        rmode = float_round_nearest_even;
        break;
    case FPROUNDING_POSINF:
        rmode = float_round_up;
        break;
    case FPROUNDING_NEGINF:
        rmode = float_round_down;
        break;
    case FPROUNDING_ZERO:
        rmode = float_round_to_zero;
        break;
    }
    return rmode;
}
7294

7295 7296 7297 7298
/* CRC helpers.
 * The upper bytes of val (above the number specified by 'bytes') must have
 * been zeroed out by the caller.
 */
7299 7300 7301 7302
uint32_t HELPER(crc32)(uint32_t acc, uint32_t val, uint32_t bytes)
{
    uint8_t buf[4];

7303
    stl_le_p(buf, val);
7304 7305 7306 7307 7308 7309 7310 7311 7312

    /* zlib crc32 converts the accumulator and output to one's complement.  */
    return crc32(acc ^ 0xffffffff, buf, bytes) ^ 0xffffffff;
}

uint32_t HELPER(crc32c)(uint32_t acc, uint32_t val, uint32_t bytes)
{
    uint8_t buf[4];

7313
    stl_le_p(buf, val);
7314 7315 7316 7317

    /* Linux crc32c converts the output to one's complement.  */
    return crc32c(acc, buf, bytes) ^ 0xffffffff;
}