helper.c 209.3 KB
Newer Older
B
bellard 已提交
1
#include "cpu.h"
2
#include "internals.h"
3
#include "exec/gdbstub.h"
4
#include "exec/helper-proto.h"
5
#include "qemu/host-utils.h"
6
#include "sysemu/arch_init.h"
7
#include "sysemu/sysemu.h"
8
#include "qemu/bitops.h"
9
#include "qemu/crc32c.h"
P
Paolo Bonzini 已提交
10
#include "exec/cpu_ldst.h"
11
#include "arm_ldst.h"
12
#include <zlib.h> /* For crc32 */
P
Peter Maydell 已提交
13

14
#ifndef CONFIG_USER_ONLY
15
static inline int get_phys_addr(CPUARMState *env, target_ulong address,
16
                                int access_type, int is_user,
A
Avi Kivity 已提交
17
                                hwaddr *phys_ptr, int *prot,
18
                                target_ulong *page_size);
19 20 21 22 23

/* Definitions for the PMCCNTR and PMCR registers */
#define PMCRD   0x8
#define PMCRC   0x4
#define PMCRE   0x1
24 25
#endif

26
static int vfp_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg)
P
pbrook 已提交
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52
{
    int nregs;

    /* VFP data registers are always little-endian.  */
    nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16;
    if (reg < nregs) {
        stfq_le_p(buf, env->vfp.regs[reg]);
        return 8;
    }
    if (arm_feature(env, ARM_FEATURE_NEON)) {
        /* Aliases for Q regs.  */
        nregs += 16;
        if (reg < nregs) {
            stfq_le_p(buf, env->vfp.regs[(reg - 32) * 2]);
            stfq_le_p(buf + 8, env->vfp.regs[(reg - 32) * 2 + 1]);
            return 16;
        }
    }
    switch (reg - nregs) {
    case 0: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSID]); return 4;
    case 1: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSCR]); return 4;
    case 2: stl_p(buf, env->vfp.xregs[ARM_VFP_FPEXC]); return 4;
    }
    return 0;
}

53
static int vfp_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg)
P
pbrook 已提交
54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72
{
    int nregs;

    nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16;
    if (reg < nregs) {
        env->vfp.regs[reg] = ldfq_le_p(buf);
        return 8;
    }
    if (arm_feature(env, ARM_FEATURE_NEON)) {
        nregs += 16;
        if (reg < nregs) {
            env->vfp.regs[(reg - 32) * 2] = ldfq_le_p(buf);
            env->vfp.regs[(reg - 32) * 2 + 1] = ldfq_le_p(buf + 8);
            return 16;
        }
    }
    switch (reg - nregs) {
    case 0: env->vfp.xregs[ARM_VFP_FPSID] = ldl_p(buf); return 4;
    case 1: env->vfp.xregs[ARM_VFP_FPSCR] = ldl_p(buf); return 4;
73
    case 2: env->vfp.xregs[ARM_VFP_FPEXC] = ldl_p(buf) & (1 << 30); return 4;
P
pbrook 已提交
74 75 76 77
    }
    return 0;
}

78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119
static int aarch64_fpu_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg)
{
    switch (reg) {
    case 0 ... 31:
        /* 128 bit FP register */
        stfq_le_p(buf, env->vfp.regs[reg * 2]);
        stfq_le_p(buf + 8, env->vfp.regs[reg * 2 + 1]);
        return 16;
    case 32:
        /* FPSR */
        stl_p(buf, vfp_get_fpsr(env));
        return 4;
    case 33:
        /* FPCR */
        stl_p(buf, vfp_get_fpcr(env));
        return 4;
    default:
        return 0;
    }
}

static int aarch64_fpu_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg)
{
    switch (reg) {
    case 0 ... 31:
        /* 128 bit FP register */
        env->vfp.regs[reg * 2] = ldfq_le_p(buf);
        env->vfp.regs[reg * 2 + 1] = ldfq_le_p(buf + 8);
        return 16;
    case 32:
        /* FPSR */
        vfp_set_fpsr(env, ldl_p(buf));
        return 4;
    case 33:
        /* FPCR */
        vfp_set_fpcr(env, ldl_p(buf));
        return 4;
    default:
        return 0;
    }
}

120
static uint64_t raw_read(CPUARMState *env, const ARMCPRegInfo *ri)
121
{
122
    if (cpreg_field_is_64bit(ri)) {
123
        return CPREG_FIELD64(env, ri);
124
    } else {
125
        return CPREG_FIELD32(env, ri);
126
    }
127 128
}

129 130
static void raw_write(CPUARMState *env, const ARMCPRegInfo *ri,
                      uint64_t value)
131
{
132
    if (cpreg_field_is_64bit(ri)) {
133 134 135 136
        CPREG_FIELD64(env, ri) = value;
    } else {
        CPREG_FIELD32(env, ri) = value;
    }
137 138
}

139
static uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri)
140
{
141
    /* Raw read of a coprocessor register (as needed for migration, etc). */
142
    if (ri->type & ARM_CP_CONST) {
143
        return ri->resetvalue;
144
    } else if (ri->raw_readfn) {
145
        return ri->raw_readfn(env, ri);
146
    } else if (ri->readfn) {
147
        return ri->readfn(env, ri);
148
    } else {
149
        return raw_read(env, ri);
150 151 152
    }
}

153
static void write_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri,
154
                             uint64_t v)
155 156 157 158 159 160 161
{
    /* Raw write of a coprocessor register (as needed for migration, etc).
     * Note that constant registers are treated as write-ignored; the
     * caller should check for success by whether a readback gives the
     * value written.
     */
    if (ri->type & ARM_CP_CONST) {
162
        return;
163
    } else if (ri->raw_writefn) {
164
        ri->raw_writefn(env, ri, v);
165
    } else if (ri->writefn) {
166
        ri->writefn(env, ri, v);
167
    } else {
168
        raw_write(env, ri, v);
169 170 171 172 173 174 175 176 177 178 179 180
    }
}

bool write_cpustate_to_list(ARMCPU *cpu)
{
    /* Write the coprocessor state from cpu->env to the (index,value) list. */
    int i;
    bool ok = true;

    for (i = 0; i < cpu->cpreg_array_len; i++) {
        uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
        const ARMCPRegInfo *ri;
181

182
        ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
183 184 185 186 187 188 189
        if (!ri) {
            ok = false;
            continue;
        }
        if (ri->type & ARM_CP_NO_MIGRATE) {
            continue;
        }
190
        cpu->cpreg_values[i] = read_raw_cp_reg(&cpu->env, ri);
191 192 193 194 195 196 197 198 199 200 201 202 203 204
    }
    return ok;
}

bool write_list_to_cpustate(ARMCPU *cpu)
{
    int i;
    bool ok = true;

    for (i = 0; i < cpu->cpreg_array_len; i++) {
        uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
        uint64_t v = cpu->cpreg_values[i];
        const ARMCPRegInfo *ri;

205
        ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
206 207 208 209 210 211 212 213 214 215 216
        if (!ri) {
            ok = false;
            continue;
        }
        if (ri->type & ARM_CP_NO_MIGRATE) {
            continue;
        }
        /* Write value and confirm it reads back as written
         * (to catch read-only registers and partially read-only
         * registers where the incoming migration value doesn't match)
         */
217 218
        write_raw_cp_reg(&cpu->env, ri, v);
        if (read_raw_cp_reg(&cpu->env, ri) != v) {
219 220 221 222 223 224 225 226 227 228 229 230 231
            ok = false;
        }
    }
    return ok;
}

static void add_cpreg_to_list(gpointer key, gpointer opaque)
{
    ARMCPU *cpu = opaque;
    uint64_t regidx;
    const ARMCPRegInfo *ri;

    regidx = *(uint32_t *)key;
232
    ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
233 234 235 236 237 238 239 240 241 242 243 244 245 246 247

    if (!(ri->type & ARM_CP_NO_MIGRATE)) {
        cpu->cpreg_indexes[cpu->cpreg_array_len] = cpreg_to_kvm_id(regidx);
        /* The value array need not be initialized at this point */
        cpu->cpreg_array_len++;
    }
}

static void count_cpreg(gpointer key, gpointer opaque)
{
    ARMCPU *cpu = opaque;
    uint64_t regidx;
    const ARMCPRegInfo *ri;

    regidx = *(uint32_t *)key;
248
    ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
249 250 251 252 253 254 255 256

    if (!(ri->type & ARM_CP_NO_MIGRATE)) {
        cpu->cpreg_array_len++;
    }
}

static gint cpreg_key_compare(gconstpointer a, gconstpointer b)
{
257 258
    uint64_t aidx = cpreg_to_kvm_id(*(uint32_t *)a);
    uint64_t bidx = cpreg_to_kvm_id(*(uint32_t *)b);
259

260 261 262 263 264 265 266
    if (aidx > bidx) {
        return 1;
    }
    if (aidx < bidx) {
        return -1;
    }
    return 0;
267 268
}

269 270 271 272 273 274 275
static void cpreg_make_keylist(gpointer key, gpointer value, gpointer udata)
{
    GList **plist = udata;

    *plist = g_list_prepend(*plist, key);
}

276 277 278 279 280
void init_cpreg_list(ARMCPU *cpu)
{
    /* Initialise the cpreg_tuples[] array based on the cp_regs hash.
     * Note that we require cpreg_tuples[] to be sorted by key ID.
     */
281
    GList *keys = NULL;
282 283
    int arraylen;

284 285
    g_hash_table_foreach(cpu->cp_regs, cpreg_make_keylist, &keys);

286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306
    keys = g_list_sort(keys, cpreg_key_compare);

    cpu->cpreg_array_len = 0;

    g_list_foreach(keys, count_cpreg, cpu);

    arraylen = cpu->cpreg_array_len;
    cpu->cpreg_indexes = g_new(uint64_t, arraylen);
    cpu->cpreg_values = g_new(uint64_t, arraylen);
    cpu->cpreg_vmstate_indexes = g_new(uint64_t, arraylen);
    cpu->cpreg_vmstate_values = g_new(uint64_t, arraylen);
    cpu->cpreg_vmstate_array_len = cpu->cpreg_array_len;
    cpu->cpreg_array_len = 0;

    g_list_foreach(keys, add_cpreg_to_list, cpu);

    assert(cpu->cpreg_array_len == arraylen);

    g_list_free(keys);
}

307
static void dacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
308
{
309 310
    ARMCPU *cpu = arm_env_get_cpu(env);

311
    raw_write(env, ri, value);
312
    tlb_flush(CPU(cpu), 1); /* Flush TLB as domain not tracked in TLB */
313 314
}

315
static void fcse_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
316
{
317 318
    ARMCPU *cpu = arm_env_get_cpu(env);

319
    if (raw_read(env, ri) != value) {
320 321 322
        /* Unlike real hardware the qemu TLB uses virtual addresses,
         * not modified virtual addresses, so this causes a TLB flush.
         */
323
        tlb_flush(CPU(cpu), 1);
324
        raw_write(env, ri, value);
325 326
    }
}
327 328 329

static void contextidr_write(CPUARMState *env, const ARMCPRegInfo *ri,
                             uint64_t value)
330
{
331 332
    ARMCPU *cpu = arm_env_get_cpu(env);

333
    if (raw_read(env, ri) != value && !arm_feature(env, ARM_FEATURE_MPU)
334
        && !extended_addresses_enabled(env)) {
335 336 337 338
        /* For VMSA (when not using the LPAE long descriptor page table
         * format) this register includes the ASID, so do a TLB flush.
         * For PMSA it is purely a process ID and no action is needed.
         */
339
        tlb_flush(CPU(cpu), 1);
340
    }
341
    raw_write(env, ri, value);
342 343
}

344 345
static void tlbiall_write(CPUARMState *env, const ARMCPRegInfo *ri,
                          uint64_t value)
346 347
{
    /* Invalidate all (TLBIALL) */
348 349 350
    ARMCPU *cpu = arm_env_get_cpu(env);

    tlb_flush(CPU(cpu), 1);
351 352
}

353 354
static void tlbimva_write(CPUARMState *env, const ARMCPRegInfo *ri,
                          uint64_t value)
355 356
{
    /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */
357 358 359
    ARMCPU *cpu = arm_env_get_cpu(env);

    tlb_flush_page(CPU(cpu), value & TARGET_PAGE_MASK);
360 361
}

362 363
static void tlbiasid_write(CPUARMState *env, const ARMCPRegInfo *ri,
                           uint64_t value)
364 365
{
    /* Invalidate by ASID (TLBIASID) */
366 367 368
    ARMCPU *cpu = arm_env_get_cpu(env);

    tlb_flush(CPU(cpu), value == 0);
369 370
}

371 372
static void tlbimvaa_write(CPUARMState *env, const ARMCPRegInfo *ri,
                           uint64_t value)
373 374
{
    /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */
375 376 377
    ARMCPU *cpu = arm_env_get_cpu(env);

    tlb_flush_page(CPU(cpu), value & TARGET_PAGE_MASK);
378 379
}

380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420
/* IS variants of TLB operations must affect all cores */
static void tlbiall_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
                             uint64_t value)
{
    CPUState *other_cs;

    CPU_FOREACH(other_cs) {
        tlb_flush(other_cs, 1);
    }
}

static void tlbiasid_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
                             uint64_t value)
{
    CPUState *other_cs;

    CPU_FOREACH(other_cs) {
        tlb_flush(other_cs, value == 0);
    }
}

static void tlbimva_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
                             uint64_t value)
{
    CPUState *other_cs;

    CPU_FOREACH(other_cs) {
        tlb_flush_page(other_cs, value & TARGET_PAGE_MASK);
    }
}

static void tlbimvaa_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
                             uint64_t value)
{
    CPUState *other_cs;

    CPU_FOREACH(other_cs) {
        tlb_flush_page(other_cs, value & TARGET_PAGE_MASK);
    }
}

421
static const ARMCPRegInfo cp_reginfo[] = {
422 423
    { .name = "FCSEIDR", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 0,
      .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c13_fcse),
424
      .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
425 426 427 428
    { .name = "CONTEXTIDR", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
      .access = PL1_RW,
      .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el1),
429
      .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
430 431 432 433 434 435 436 437 438 439 440 441
    REGINFO_SENTINEL
};

static const ARMCPRegInfo not_v8_cp_reginfo[] = {
    /* NB: Some of these registers exist in v8 but with more precise
     * definitions that don't use CP_ANY wildcards (mostly in v8_cp_reginfo[]).
     */
    /* MMU Domain access control / MPU write buffer control */
    { .name = "DACR", .cp = 15,
      .crn = 3, .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
      .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c3),
      .resetvalue = 0, .writefn = dacr_write, .raw_writefn = raw_write, },
442 443 444 445 446
    /* ??? This covers not just the impdef TLB lockdown registers but also
     * some v7VMSA registers relating to TEX remap, so it is overly broad.
     */
    { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = CP_ANY,
      .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
447 448 449 450
    /* Cache maintenance ops; some of this space may be overridden later. */
    { .name = "CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
      .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
      .type = ARM_CP_NOP | ARM_CP_OVERRIDE },
451 452 453
    REGINFO_SENTINEL
};

454 455 456 457 458 459 460 461 462 463 464 465 466 467 468
static const ARMCPRegInfo not_v6_cp_reginfo[] = {
    /* Not all pre-v6 cores implemented this WFI, so this is slightly
     * over-broad.
     */
    { .name = "WFI_v5", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = 2,
      .access = PL1_W, .type = ARM_CP_WFI },
    REGINFO_SENTINEL
};

static const ARMCPRegInfo not_v7_cp_reginfo[] = {
    /* Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which
     * is UNPREDICTABLE; we choose to NOP as most implementations do).
     */
    { .name = "WFI_v6", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
      .access = PL1_W, .type = ARM_CP_WFI },
469 470 471 472 473 474 475 476 477 478
    /* L1 cache lockdown. Not architectural in v6 and earlier but in practice
     * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and
     * OMAPCP will override this space.
     */
    { .name = "DLOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 0,
      .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_data),
      .resetvalue = 0 },
    { .name = "ILOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 1,
      .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_insn),
      .resetvalue = 0 },
479 480
    /* v6 doesn't have the cache ID registers but Linux reads them anyway */
    { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = CP_ANY,
481 482
      .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_MIGRATE,
      .resetvalue = 0 },
483 484 485 486 487 488 489
    /* We don't implement pre-v7 debug but most CPUs had at least a DBGDIDR;
     * implementing it as RAZ means the "debug architecture version" bits
     * will read as a reserved value, which should cause Linux to not try
     * to use the debug hardware.
     */
    { .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0,
      .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
490 491 492 493 494 495 496 497 498 499 500 501 502 503 504
    /* MMU TLB control. Note that the wildcarding means we cover not just
     * the unified TLB ops but also the dside/iside/inner-shareable variants.
     */
    { .name = "TLBIALL", .cp = 15, .crn = 8, .crm = CP_ANY,
      .opc1 = CP_ANY, .opc2 = 0, .access = PL1_W, .writefn = tlbiall_write,
      .type = ARM_CP_NO_MIGRATE },
    { .name = "TLBIMVA", .cp = 15, .crn = 8, .crm = CP_ANY,
      .opc1 = CP_ANY, .opc2 = 1, .access = PL1_W, .writefn = tlbimva_write,
      .type = ARM_CP_NO_MIGRATE },
    { .name = "TLBIASID", .cp = 15, .crn = 8, .crm = CP_ANY,
      .opc1 = CP_ANY, .opc2 = 2, .access = PL1_W, .writefn = tlbiasid_write,
      .type = ARM_CP_NO_MIGRATE },
    { .name = "TLBIMVAA", .cp = 15, .crn = 8, .crm = CP_ANY,
      .opc1 = CP_ANY, .opc2 = 3, .access = PL1_W, .writefn = tlbimvaa_write,
      .type = ARM_CP_NO_MIGRATE },
505 506 507
    REGINFO_SENTINEL
};

508 509
static void cpacr_write(CPUARMState *env, const ARMCPRegInfo *ri,
                        uint64_t value)
510
{
511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537
    uint32_t mask = 0;

    /* In ARMv8 most bits of CPACR_EL1 are RES0. */
    if (!arm_feature(env, ARM_FEATURE_V8)) {
        /* ARMv7 defines bits for unimplemented coprocessors as RAZ/WI.
         * ASEDIS [31] and D32DIS [30] are both UNK/SBZP without VFP.
         * TRCDIS [28] is RAZ/WI since we do not implement a trace macrocell.
         */
        if (arm_feature(env, ARM_FEATURE_VFP)) {
            /* VFP coprocessor: cp10 & cp11 [23:20] */
            mask |= (1 << 31) | (1 << 30) | (0xf << 20);

            if (!arm_feature(env, ARM_FEATURE_NEON)) {
                /* ASEDIS [31] bit is RAO/WI */
                value |= (1 << 31);
            }

            /* VFPv3 and upwards with NEON implement 32 double precision
             * registers (D0-D31).
             */
            if (!arm_feature(env, ARM_FEATURE_NEON) ||
                    !arm_feature(env, ARM_FEATURE_VFP3)) {
                /* D32DIS [30] is RAO/WI if D16-31 are not implemented. */
                value |= (1 << 30);
            }
        }
        value &= mask;
538
    }
539
    env->cp15.c1_coproc = value;
540 541
}

542 543 544 545 546 547 548
static const ARMCPRegInfo v6_cp_reginfo[] = {
    /* prefetch by MVA in v6, NOP in v7 */
    { .name = "MVA_prefetch",
      .cp = 15, .crn = 7, .crm = 13, .opc1 = 0, .opc2 = 1,
      .access = PL1_W, .type = ARM_CP_NOP },
    { .name = "ISB", .cp = 15, .crn = 7, .crm = 5, .opc1 = 0, .opc2 = 4,
      .access = PL0_W, .type = ARM_CP_NOP },
549
    { .name = "DSB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 4,
550
      .access = PL0_W, .type = ARM_CP_NOP },
551
    { .name = "DMB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 5,
552
      .access = PL0_W, .type = ARM_CP_NOP },
553
    { .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 2,
554
      .access = PL1_RW,
555
      .fieldoffset = offsetofhigh32(CPUARMState, cp15.far_el[1]),
556 557 558 559 560 561
      .resetvalue = 0, },
    /* Watchpoint Fault Address Register : should actually only be present
     * for 1136, 1176, 11MPCore.
     */
    { .name = "WFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1,
      .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, },
562 563
    { .name = "CPACR", .state = ARM_CP_STATE_BOTH, .opc0 = 3,
      .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 2,
564 565
      .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c1_coproc),
      .resetvalue = 0, .writefn = cpacr_write },
566 567 568
    REGINFO_SENTINEL
};

569
static CPAccessResult pmreg_access(CPUARMState *env, const ARMCPRegInfo *ri)
570
{
S
Stefan Weil 已提交
571
    /* Performance monitor registers user accessibility is controlled
572
     * by PMUSERENR.
573 574
     */
    if (arm_current_pl(env) == 0 && !env->cp15.c9_pmuserenr) {
575
        return CP_ACCESS_TRAP;
576
    }
577
    return CP_ACCESS_OK;
578 579
}

580
#ifndef CONFIG_USER_ONLY
581 582 583 584 585 586 587 588 589 590 591 592

static inline bool arm_ccnt_enabled(CPUARMState *env)
{
    /* This does not support checking PMCCFILTR_EL0 register */

    if (!(env->cp15.c9_pmcr & PMCRE)) {
        return false;
    }

    return true;
}

593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609
void pmccntr_sync(CPUARMState *env)
{
    uint64_t temp_ticks;

    temp_ticks = muldiv64(qemu_clock_get_us(QEMU_CLOCK_VIRTUAL),
                          get_ticks_per_sec(), 1000000);

    if (env->cp15.c9_pmcr & PMCRD) {
        /* Increment once every 64 processor clock cycles */
        temp_ticks /= 64;
    }

    if (arm_ccnt_enabled(env)) {
        env->cp15.c15_ccnt = temp_ticks - env->cp15.c15_ccnt;
    }
}

610 611
static void pmcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
                       uint64_t value)
612
{
613
    pmccntr_sync(env);
614 615 616 617 618 619

    if (value & PMCRC) {
        /* The counter has been reset */
        env->cp15.c15_ccnt = 0;
    }

620 621 622
    /* only the DP, X, D and E bits are writable */
    env->cp15.c9_pmcr &= ~0x39;
    env->cp15.c9_pmcr |= (value & 0x39);
623

624
    pmccntr_sync(env);
625 626 627 628
}

static uint64_t pmccntr_read(CPUARMState *env, const ARMCPRegInfo *ri)
{
629
    uint64_t total_ticks;
630

631
    if (!arm_ccnt_enabled(env)) {
632 633 634 635
        /* Counter is disabled, do not change value */
        return env->cp15.c15_ccnt;
    }

636 637
    total_ticks = muldiv64(qemu_clock_get_us(QEMU_CLOCK_VIRTUAL),
                           get_ticks_per_sec(), 1000000);
638 639 640 641 642 643 644 645 646 647 648

    if (env->cp15.c9_pmcr & PMCRD) {
        /* Increment once every 64 processor clock cycles */
        total_ticks /= 64;
    }
    return total_ticks - env->cp15.c15_ccnt;
}

static void pmccntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
                        uint64_t value)
{
649
    uint64_t total_ticks;
650

651
    if (!arm_ccnt_enabled(env)) {
652 653 654 655 656
        /* Counter is disabled, set the absolute value */
        env->cp15.c15_ccnt = value;
        return;
    }

657 658
    total_ticks = muldiv64(qemu_clock_get_us(QEMU_CLOCK_VIRTUAL),
                           get_ticks_per_sec(), 1000000);
659 660 661 662 663 664

    if (env->cp15.c9_pmcr & PMCRD) {
        /* Increment once every 64 processor clock cycles */
        total_ticks /= 64;
    }
    env->cp15.c15_ccnt = total_ticks - value;
665
}
666 667 668 669 670 671 672 673 674

static void pmccntr_write32(CPUARMState *env, const ARMCPRegInfo *ri,
                            uint64_t value)
{
    uint64_t cur_val = pmccntr_read(env, NULL);

    pmccntr_write(env, ri, deposit64(cur_val, 0, 32, value));
}

675 676 677 678 679 680
#else /* CONFIG_USER_ONLY */

void pmccntr_sync(CPUARMState *env)
{
}

681
#endif
682

683 684 685 686 687 688 689 690
static void pmccfiltr_write(CPUARMState *env, const ARMCPRegInfo *ri,
                            uint64_t value)
{
    pmccntr_sync(env);
    env->cp15.pmccfiltr_el0 = value & 0x7E000000;
    pmccntr_sync(env);
}

691
static void pmcntenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
692 693 694 695 696 697
                            uint64_t value)
{
    value &= (1 << 31);
    env->cp15.c9_pmcnten |= value;
}

698 699
static void pmcntenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
                             uint64_t value)
700 701 702 703 704
{
    value &= (1 << 31);
    env->cp15.c9_pmcnten &= ~value;
}

705 706
static void pmovsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
                         uint64_t value)
707 708 709 710
{
    env->cp15.c9_pmovsr &= ~value;
}

711 712
static void pmxevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri,
                             uint64_t value)
713 714 715 716
{
    env->cp15.c9_pmxevtyper = value & 0xff;
}

717
static void pmuserenr_write(CPUARMState *env, const ARMCPRegInfo *ri,
718 719 720 721 722
                            uint64_t value)
{
    env->cp15.c9_pmuserenr = value & 1;
}

723 724
static void pmintenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
                             uint64_t value)
725 726 727 728 729 730
{
    /* We have no event counters so only the C bit can be changed */
    value &= (1 << 31);
    env->cp15.c9_pminten |= value;
}

731 732
static void pmintenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
                             uint64_t value)
733 734 735 736 737
{
    value &= (1 << 31);
    env->cp15.c9_pminten &= ~value;
}

738 739
static void vbar_write(CPUARMState *env, const ARMCPRegInfo *ri,
                       uint64_t value)
N
Nathan Rossi 已提交
740
{
741 742 743 744 745 746
    /* Note that even though the AArch64 view of this register has bits
     * [10:0] all RES0 we can only mask the bottom 5, to comply with the
     * architectural requirements for bits which are RES0 only in some
     * contexts. (ARMv8 would permit us to do no masking at all, but ARMv7
     * requires the bottom five bits to be RAZ/WI because they're UNK/SBZP.)
     */
747
    raw_write(env, ri, value & ~0x1FULL);
N
Nathan Rossi 已提交
748 749
}

750
static uint64_t ccsidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
751 752
{
    ARMCPU *cpu = arm_env_get_cpu(env);
753
    return cpu->ccsidr[env->cp15.c0_cssel];
754 755
}

756 757
static void csselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
                         uint64_t value)
758
{
759
    raw_write(env, ri, value & 0xf);
760 761
}

762 763 764 765 766 767 768 769 770 771 772 773 774 775 776
static uint64_t isr_read(CPUARMState *env, const ARMCPRegInfo *ri)
{
    CPUState *cs = ENV_GET_CPU(env);
    uint64_t ret = 0;

    if (cs->interrupt_request & CPU_INTERRUPT_HARD) {
        ret |= CPSR_I;
    }
    if (cs->interrupt_request & CPU_INTERRUPT_FIQ) {
        ret |= CPSR_F;
    }
    /* External aborts are not possible in QEMU so A bit is always clear */
    return ret;
}

777
static const ARMCPRegInfo v7_cp_reginfo[] = {
778 779 780
    /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */
    { .name = "NOP", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
      .access = PL1_W, .type = ARM_CP_NOP },
781 782 783 784 785 786 787 788 789 790 791 792
    /* Performance monitors are implementation defined in v7,
     * but with an ARM recommended set of registers, which we
     * follow (although we don't actually implement any counters)
     *
     * Performance registers fall into three categories:
     *  (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR)
     *  (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR)
     *  (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others)
     * For the cases controlled by PMUSERENR we must set .access to PL0_RW
     * or PL0_RO as appropriate and then check PMUSERENR in the helper fn.
     */
    { .name = "PMCNTENSET", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 1,
793 794
      .access = PL0_RW, .type = ARM_CP_NO_MIGRATE,
      .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten),
795 796 797
      .writefn = pmcntenset_write,
      .accessfn = pmreg_access,
      .raw_writefn = raw_write },
798 799 800 801 802
    { .name = "PMCNTENSET_EL0", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 1,
      .access = PL0_RW, .accessfn = pmreg_access,
      .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), .resetvalue = 0,
      .writefn = pmcntenset_write, .raw_writefn = raw_write },
803
    { .name = "PMCNTENCLR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 2,
804 805
      .access = PL0_RW,
      .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten),
806 807
      .accessfn = pmreg_access,
      .writefn = pmcntenclr_write,
808
      .type = ARM_CP_NO_MIGRATE },
809 810 811 812 813 814
    { .name = "PMCNTENCLR_EL0", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 2,
      .access = PL0_RW, .accessfn = pmreg_access,
      .type = ARM_CP_NO_MIGRATE,
      .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten),
      .writefn = pmcntenclr_write },
815 816
    { .name = "PMOVSR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 3,
      .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
817 818 819 820
      .accessfn = pmreg_access,
      .writefn = pmovsr_write,
      .raw_writefn = raw_write },
    /* Unimplemented so WI. */
821
    { .name = "PMSWINC", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 4,
822
      .access = PL0_W, .accessfn = pmreg_access, .type = ARM_CP_NOP },
823
    /* Since we don't implement any events, writing to PMSELR is UNPREDICTABLE.
824
     * We choose to RAZ/WI.
825 826
     */
    { .name = "PMSELR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 5,
827 828
      .access = PL0_RW, .type = ARM_CP_CONST, .resetvalue = 0,
      .accessfn = pmreg_access },
829
#ifndef CONFIG_USER_ONLY
830
    { .name = "PMCCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 0,
831
      .access = PL0_RW, .resetvalue = 0, .type = ARM_CP_IO,
832
      .readfn = pmccntr_read, .writefn = pmccntr_write32,
833
      .accessfn = pmreg_access },
834 835 836 837 838
    { .name = "PMCCNTR_EL0", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 0,
      .access = PL0_RW, .accessfn = pmreg_access,
      .type = ARM_CP_IO,
      .readfn = pmccntr_read, .writefn = pmccntr_write, },
839
#endif
840 841
    { .name = "PMCCFILTR_EL0", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 15, .opc2 = 7,
842
      .writefn = pmccfiltr_write,
843 844 845 846
      .access = PL0_RW, .accessfn = pmreg_access,
      .type = ARM_CP_IO,
      .fieldoffset = offsetof(CPUARMState, cp15.pmccfiltr_el0),
      .resetvalue = 0, },
847 848 849
    { .name = "PMXEVTYPER", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 1,
      .access = PL0_RW,
      .fieldoffset = offsetof(CPUARMState, cp15.c9_pmxevtyper),
850 851 852
      .accessfn = pmreg_access, .writefn = pmxevtyper_write,
      .raw_writefn = raw_write },
    /* Unimplemented, RAZ/WI. */
853
    { .name = "PMXEVCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 2,
854 855
      .access = PL0_RW, .type = ARM_CP_CONST, .resetvalue = 0,
      .accessfn = pmreg_access },
856 857 858 859
    { .name = "PMUSERENR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 0,
      .access = PL0_R | PL1_RW,
      .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr),
      .resetvalue = 0,
860
      .writefn = pmuserenr_write, .raw_writefn = raw_write },
861 862 863 864
    { .name = "PMINTENSET", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 1,
      .access = PL1_RW,
      .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
      .resetvalue = 0,
865
      .writefn = pmintenset_write, .raw_writefn = raw_write },
866
    { .name = "PMINTENCLR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 2,
867
      .access = PL1_RW, .type = ARM_CP_NO_MIGRATE,
868
      .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
869
      .resetvalue = 0, .writefn = pmintenclr_write, },
870 871
    { .name = "VBAR", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .crn = 12, .crm = 0, .opc1 = 0, .opc2 = 0,
N
Nathan Rossi 已提交
872
      .access = PL1_RW, .writefn = vbar_write,
873
      .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[1]),
N
Nathan Rossi 已提交
874
      .resetvalue = 0 },
875 876 877
    { .name = "SCR", .cp = 15, .crn = 1, .crm = 1, .opc1 = 0, .opc2 = 0,
      .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c1_scr),
      .resetvalue = 0, },
878 879
    { .name = "CCSIDR", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 0,
880
      .access = PL1_R, .readfn = ccsidr_read, .type = ARM_CP_NO_MIGRATE },
881 882
    { .name = "CSSELR", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 2, .opc2 = 0,
883 884 885 886 887
      .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c0_cssel),
      .writefn = csselr_write, .resetvalue = 0 },
    /* Auxiliary ID register: this actually has an IMPDEF value but for now
     * just RAZ for all cores:
     */
888 889
    { .name = "AIDR", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 7,
890
      .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
891 892 893 894 895 896 897 898 899
    /* Auxiliary fault status registers: these also are IMPDEF, and we
     * choose to RAZ/WI for all cores.
     */
    { .name = "AFSR0_EL1", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 0,
      .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
    { .name = "AFSR1_EL1", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 1,
      .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919
    /* MAIR can just read-as-written because we don't implement caches
     * and so don't need to care about memory attributes.
     */
    { .name = "MAIR_EL1", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0,
      .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el1),
      .resetvalue = 0 },
    /* For non-long-descriptor page tables these are PRRR and NMRR;
     * regardless they still act as reads-as-written for QEMU.
     * The override is necessary because of the overly-broad TLB_LOCKDOWN
     * definition.
     */
    { .name = "MAIR0", .state = ARM_CP_STATE_AA32, .type = ARM_CP_OVERRIDE,
      .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, .access = PL1_RW,
      .fieldoffset = offsetoflow32(CPUARMState, cp15.mair_el1),
      .resetfn = arm_cp_reset_ignore },
    { .name = "MAIR1", .state = ARM_CP_STATE_AA32, .type = ARM_CP_OVERRIDE,
      .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 1, .access = PL1_RW,
      .fieldoffset = offsetofhigh32(CPUARMState, cp15.mair_el1),
      .resetfn = arm_cp_reset_ignore },
920 921 922
    { .name = "ISR_EL1", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 0,
      .type = ARM_CP_NO_MIGRATE, .access = PL1_R, .readfn = isr_read },
923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951
    /* 32 bit ITLB invalidates */
    { .name = "ITLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 0,
      .type = ARM_CP_NO_MIGRATE, .access = PL1_W, .writefn = tlbiall_write },
    { .name = "ITLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1,
      .type = ARM_CP_NO_MIGRATE, .access = PL1_W, .writefn = tlbimva_write },
    { .name = "ITLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 2,
      .type = ARM_CP_NO_MIGRATE, .access = PL1_W, .writefn = tlbiasid_write },
    /* 32 bit DTLB invalidates */
    { .name = "DTLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 0,
      .type = ARM_CP_NO_MIGRATE, .access = PL1_W, .writefn = tlbiall_write },
    { .name = "DTLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1,
      .type = ARM_CP_NO_MIGRATE, .access = PL1_W, .writefn = tlbimva_write },
    { .name = "DTLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 2,
      .type = ARM_CP_NO_MIGRATE, .access = PL1_W, .writefn = tlbiasid_write },
    /* 32 bit TLB invalidates */
    { .name = "TLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0,
      .type = ARM_CP_NO_MIGRATE, .access = PL1_W, .writefn = tlbiall_write },
    { .name = "TLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1,
      .type = ARM_CP_NO_MIGRATE, .access = PL1_W, .writefn = tlbimva_write },
    { .name = "TLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2,
      .type = ARM_CP_NO_MIGRATE, .access = PL1_W, .writefn = tlbiasid_write },
    { .name = "TLBIMVAA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3,
      .type = ARM_CP_NO_MIGRATE, .access = PL1_W, .writefn = tlbimvaa_write },
    REGINFO_SENTINEL
};

static const ARMCPRegInfo v7mp_cp_reginfo[] = {
    /* 32 bit TLB invalidates, Inner Shareable */
    { .name = "TLBIALLIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0,
952
      .type = ARM_CP_NO_MIGRATE, .access = PL1_W, .writefn = tlbiall_is_write },
953
    { .name = "TLBIMVAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1,
954
      .type = ARM_CP_NO_MIGRATE, .access = PL1_W, .writefn = tlbimva_is_write },
955
    { .name = "TLBIASIDIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2,
956 957
      .type = ARM_CP_NO_MIGRATE, .access = PL1_W,
      .writefn = tlbiasid_is_write },
958
    { .name = "TLBIMVAAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3,
959 960
      .type = ARM_CP_NO_MIGRATE, .access = PL1_W,
      .writefn = tlbimvaa_is_write },
961 962 963
    REGINFO_SENTINEL
};

964 965
static void teecr_write(CPUARMState *env, const ARMCPRegInfo *ri,
                        uint64_t value)
966 967 968 969 970
{
    value &= 1;
    env->teecr = value;
}

971
static CPAccessResult teehbr_access(CPUARMState *env, const ARMCPRegInfo *ri)
972 973
{
    if (arm_current_pl(env) == 0 && (env->teecr & 1)) {
974
        return CP_ACCESS_TRAP;
975
    }
976
    return CP_ACCESS_OK;
977 978 979 980 981 982 983 984 985
}

static const ARMCPRegInfo t2ee_cp_reginfo[] = {
    { .name = "TEECR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 6, .opc2 = 0,
      .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, teecr),
      .resetvalue = 0,
      .writefn = teecr_write },
    { .name = "TEEHBR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 6, .opc2 = 0,
      .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, teehbr),
986
      .accessfn = teehbr_access, .resetvalue = 0 },
987 988 989
    REGINFO_SENTINEL
};

990
static const ARMCPRegInfo v6k_cp_reginfo[] = {
991 992 993 994
    { .name = "TPIDR_EL0", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 3, .opc2 = 2, .crn = 13, .crm = 0,
      .access = PL0_RW,
      .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el0), .resetvalue = 0 },
995 996
    { .name = "TPIDRURW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 2,
      .access = PL0_RW,
997 998 999 1000 1001 1002
      .fieldoffset = offsetoflow32(CPUARMState, cp15.tpidr_el0),
      .resetfn = arm_cp_reset_ignore },
    { .name = "TPIDRRO_EL0", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 3, .opc2 = 3, .crn = 13, .crm = 0,
      .access = PL0_R|PL1_W,
      .fieldoffset = offsetof(CPUARMState, cp15.tpidrro_el0), .resetvalue = 0 },
1003 1004
    { .name = "TPIDRURO", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 3,
      .access = PL0_R|PL1_W,
1005 1006 1007 1008
      .fieldoffset = offsetoflow32(CPUARMState, cp15.tpidrro_el0),
      .resetfn = arm_cp_reset_ignore },
    { .name = "TPIDR_EL1", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .opc1 = 0, .opc2 = 4, .crn = 13, .crm = 0,
1009
      .access = PL1_RW,
1010
      .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el1), .resetvalue = 0 },
1011 1012 1013
    REGINFO_SENTINEL
};

1014 1015
#ifndef CONFIG_USER_ONLY

1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068
static CPAccessResult gt_cntfrq_access(CPUARMState *env, const ARMCPRegInfo *ri)
{
    /* CNTFRQ: not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero */
    if (arm_current_pl(env) == 0 && !extract32(env->cp15.c14_cntkctl, 0, 2)) {
        return CP_ACCESS_TRAP;
    }
    return CP_ACCESS_OK;
}

static CPAccessResult gt_counter_access(CPUARMState *env, int timeridx)
{
    /* CNT[PV]CT: not visible from PL0 if ELO[PV]CTEN is zero */
    if (arm_current_pl(env) == 0 &&
        !extract32(env->cp15.c14_cntkctl, timeridx, 1)) {
        return CP_ACCESS_TRAP;
    }
    return CP_ACCESS_OK;
}

static CPAccessResult gt_timer_access(CPUARMState *env, int timeridx)
{
    /* CNT[PV]_CVAL, CNT[PV]_CTL, CNT[PV]_TVAL: not visible from PL0 if
     * EL0[PV]TEN is zero.
     */
    if (arm_current_pl(env) == 0 &&
        !extract32(env->cp15.c14_cntkctl, 9 - timeridx, 1)) {
        return CP_ACCESS_TRAP;
    }
    return CP_ACCESS_OK;
}

static CPAccessResult gt_pct_access(CPUARMState *env,
                                         const ARMCPRegInfo *ri)
{
    return gt_counter_access(env, GTIMER_PHYS);
}

static CPAccessResult gt_vct_access(CPUARMState *env,
                                         const ARMCPRegInfo *ri)
{
    return gt_counter_access(env, GTIMER_VIRT);
}

static CPAccessResult gt_ptimer_access(CPUARMState *env, const ARMCPRegInfo *ri)
{
    return gt_timer_access(env, GTIMER_PHYS);
}

static CPAccessResult gt_vtimer_access(CPUARMState *env, const ARMCPRegInfo *ri)
{
    return gt_timer_access(env, GTIMER_VIRT);
}

1069 1070
static uint64_t gt_get_countervalue(CPUARMState *env)
{
1071
    return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / GTIMER_SCALE;
1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104
}

static void gt_recalc_timer(ARMCPU *cpu, int timeridx)
{
    ARMGenericTimer *gt = &cpu->env.cp15.c14_timer[timeridx];

    if (gt->ctl & 1) {
        /* Timer enabled: calculate and set current ISTATUS, irq, and
         * reset timer to when ISTATUS next has to change
         */
        uint64_t count = gt_get_countervalue(&cpu->env);
        /* Note that this must be unsigned 64 bit arithmetic: */
        int istatus = count >= gt->cval;
        uint64_t nexttick;

        gt->ctl = deposit32(gt->ctl, 2, 1, istatus);
        qemu_set_irq(cpu->gt_timer_outputs[timeridx],
                     (istatus && !(gt->ctl & 2)));
        if (istatus) {
            /* Next transition is when count rolls back over to zero */
            nexttick = UINT64_MAX;
        } else {
            /* Next transition is when we hit cval */
            nexttick = gt->cval;
        }
        /* Note that the desired next expiry time might be beyond the
         * signed-64-bit range of a QEMUTimer -- in this case we just
         * set the timer for as far in the future as possible. When the
         * timer expires we will reset the timer for any remaining period.
         */
        if (nexttick > INT64_MAX / GTIMER_SCALE) {
            nexttick = INT64_MAX / GTIMER_SCALE;
        }
1105
        timer_mod(cpu->gt_timer[timeridx], nexttick);
1106 1107 1108 1109
    } else {
        /* Timer disabled: ISTATUS and timer output always clear */
        gt->ctl &= ~4;
        qemu_set_irq(cpu->gt_timer_outputs[timeridx], 0);
1110
        timer_del(cpu->gt_timer[timeridx]);
1111 1112 1113 1114 1115 1116 1117 1118
    }
}

static void gt_cnt_reset(CPUARMState *env, const ARMCPRegInfo *ri)
{
    ARMCPU *cpu = arm_env_get_cpu(env);
    int timeridx = ri->opc1 & 1;

1119
    timer_del(cpu->gt_timer[timeridx]);
1120 1121
}

1122
static uint64_t gt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
1123
{
1124
    return gt_get_countervalue(env);
1125 1126
}

1127 1128
static void gt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
                          uint64_t value)
1129 1130 1131 1132 1133 1134
{
    int timeridx = ri->opc1 & 1;

    env->cp15.c14_timer[timeridx].cval = value;
    gt_recalc_timer(arm_env_get_cpu(env), timeridx);
}
1135 1136

static uint64_t gt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
1137 1138 1139
{
    int timeridx = ri->crm & 1;

1140 1141
    return (uint32_t)(env->cp15.c14_timer[timeridx].cval -
                      gt_get_countervalue(env));
1142 1143
}

1144 1145
static void gt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
                          uint64_t value)
1146 1147 1148 1149 1150 1151 1152 1153
{
    int timeridx = ri->crm & 1;

    env->cp15.c14_timer[timeridx].cval = gt_get_countervalue(env) +
        + sextract64(value, 0, 32);
    gt_recalc_timer(arm_env_get_cpu(env), timeridx);
}

1154 1155
static void gt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
                         uint64_t value)
1156 1157 1158 1159 1160
{
    ARMCPU *cpu = arm_env_get_cpu(env);
    int timeridx = ri->crm & 1;
    uint32_t oldval = env->cp15.c14_timer[timeridx].ctl;

1161
    env->cp15.c14_timer[timeridx].ctl = deposit64(oldval, 0, 2, value);
1162 1163 1164
    if ((oldval ^ value) & 1) {
        /* Enable toggled */
        gt_recalc_timer(cpu, timeridx);
1165
    } else if ((oldval ^ value) & 2) {
1166 1167 1168 1169
        /* IMASK toggled: don't need to recalculate,
         * just set the interrupt line based on ISTATUS
         */
        qemu_set_irq(cpu->gt_timer_outputs[timeridx],
1170
                     (oldval & 4) && !(value & 2));
1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193
    }
}

void arm_gt_ptimer_cb(void *opaque)
{
    ARMCPU *cpu = opaque;

    gt_recalc_timer(cpu, GTIMER_PHYS);
}

void arm_gt_vtimer_cb(void *opaque)
{
    ARMCPU *cpu = opaque;

    gt_recalc_timer(cpu, GTIMER_VIRT);
}

static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
    /* Note that CNTFRQ is purely reads-as-written for the benefit
     * of software; writing it doesn't actually change the timer frequency.
     * Our reset value matches the fixed frequency we implement the timer at.
     */
    { .name = "CNTFRQ", .cp = 15, .crn = 14, .crm = 0, .opc1 = 0, .opc2 = 0,
1194 1195 1196 1197 1198 1199 1200 1201
      .type = ARM_CP_NO_MIGRATE,
      .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
      .fieldoffset = offsetoflow32(CPUARMState, cp15.c14_cntfrq),
      .resetfn = arm_cp_reset_ignore,
    },
    { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0,
      .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
1202 1203 1204 1205
      .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq),
      .resetvalue = (1000 * 1000 * 1000) / GTIMER_SCALE,
    },
    /* overall control: mostly access permissions */
1206 1207
    { .name = "CNTKCTL", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .opc1 = 0, .crn = 14, .crm = 1, .opc2 = 0,
1208 1209 1210 1211 1212 1213
      .access = PL1_RW,
      .fieldoffset = offsetof(CPUARMState, cp15.c14_cntkctl),
      .resetvalue = 0,
    },
    /* per-timer control */
    { .name = "CNTP_CTL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
1214 1215 1216 1217 1218 1219 1220 1221 1222
      .type = ARM_CP_IO | ARM_CP_NO_MIGRATE, .access = PL1_RW | PL0_R,
      .accessfn = gt_ptimer_access,
      .fieldoffset = offsetoflow32(CPUARMState,
                                   cp15.c14_timer[GTIMER_PHYS].ctl),
      .resetfn = arm_cp_reset_ignore,
      .writefn = gt_ctl_write, .raw_writefn = raw_write,
    },
    { .name = "CNTP_CTL_EL0", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 1,
1223
      .type = ARM_CP_IO, .access = PL1_RW | PL0_R,
1224
      .accessfn = gt_ptimer_access,
1225 1226
      .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl),
      .resetvalue = 0,
1227
      .writefn = gt_ctl_write, .raw_writefn = raw_write,
1228 1229
    },
    { .name = "CNTV_CTL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 1,
1230 1231 1232 1233 1234 1235 1236 1237 1238
      .type = ARM_CP_IO | ARM_CP_NO_MIGRATE, .access = PL1_RW | PL0_R,
      .accessfn = gt_vtimer_access,
      .fieldoffset = offsetoflow32(CPUARMState,
                                   cp15.c14_timer[GTIMER_VIRT].ctl),
      .resetfn = arm_cp_reset_ignore,
      .writefn = gt_ctl_write, .raw_writefn = raw_write,
    },
    { .name = "CNTV_CTL_EL0", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 1,
1239
      .type = ARM_CP_IO, .access = PL1_RW | PL0_R,
1240
      .accessfn = gt_vtimer_access,
1241 1242
      .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl),
      .resetvalue = 0,
1243
      .writefn = gt_ctl_write, .raw_writefn = raw_write,
1244 1245 1246 1247
    },
    /* TimerValue views: a 32 bit downcounting view of the underlying state */
    { .name = "CNTP_TVAL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
      .type = ARM_CP_NO_MIGRATE | ARM_CP_IO, .access = PL1_RW | PL0_R,
1248
      .accessfn = gt_ptimer_access,
1249 1250
      .readfn = gt_tval_read, .writefn = gt_tval_write,
    },
1251 1252 1253 1254 1255
    { .name = "CNTP_TVAL_EL0", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 0,
      .type = ARM_CP_NO_MIGRATE | ARM_CP_IO, .access = PL1_RW | PL0_R,
      .readfn = gt_tval_read, .writefn = gt_tval_write,
    },
1256 1257
    { .name = "CNTV_TVAL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 0,
      .type = ARM_CP_NO_MIGRATE | ARM_CP_IO, .access = PL1_RW | PL0_R,
1258
      .accessfn = gt_vtimer_access,
1259 1260
      .readfn = gt_tval_read, .writefn = gt_tval_write,
    },
1261 1262 1263 1264 1265
    { .name = "CNTV_TVAL_EL0", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 0,
      .type = ARM_CP_NO_MIGRATE | ARM_CP_IO, .access = PL1_RW | PL0_R,
      .readfn = gt_tval_read, .writefn = gt_tval_write,
    },
1266 1267 1268
    /* The counter itself */
    { .name = "CNTPCT", .cp = 15, .crm = 14, .opc1 = 0,
      .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_MIGRATE | ARM_CP_IO,
1269
      .accessfn = gt_pct_access,
1270 1271 1272 1273 1274 1275
      .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore,
    },
    { .name = "CNTPCT_EL0", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 1,
      .access = PL0_R, .type = ARM_CP_NO_MIGRATE | ARM_CP_IO,
      .accessfn = gt_pct_access,
1276 1277 1278 1279
      .readfn = gt_cnt_read, .resetfn = gt_cnt_reset,
    },
    { .name = "CNTVCT", .cp = 15, .crm = 14, .opc1 = 1,
      .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_MIGRATE | ARM_CP_IO,
1280
      .accessfn = gt_vct_access,
1281 1282 1283 1284 1285 1286
      .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore,
    },
    { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2,
      .access = PL0_R, .type = ARM_CP_NO_MIGRATE | ARM_CP_IO,
      .accessfn = gt_vct_access,
1287 1288 1289 1290 1291
      .readfn = gt_cnt_read, .resetfn = gt_cnt_reset,
    },
    /* Comparison value, indicating when the timer goes off */
    { .name = "CNTP_CVAL", .cp = 15, .crm = 14, .opc1 = 2,
      .access = PL1_RW | PL0_R,
1292
      .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_NO_MIGRATE,
1293
      .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
1294 1295 1296 1297 1298 1299 1300 1301 1302
      .accessfn = gt_ptimer_access, .resetfn = arm_cp_reset_ignore,
      .writefn = gt_cval_write, .raw_writefn = raw_write,
    },
    { .name = "CNTP_CVAL_EL0", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 2,
      .access = PL1_RW | PL0_R,
      .type = ARM_CP_IO,
      .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
      .resetvalue = 0, .accessfn = gt_vtimer_access,
1303
      .writefn = gt_cval_write, .raw_writefn = raw_write,
1304 1305 1306
    },
    { .name = "CNTV_CVAL", .cp = 15, .crm = 14, .opc1 = 3,
      .access = PL1_RW | PL0_R,
1307
      .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_NO_MIGRATE,
1308
      .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
1309 1310 1311 1312 1313 1314 1315 1316 1317
      .accessfn = gt_vtimer_access, .resetfn = arm_cp_reset_ignore,
      .writefn = gt_cval_write, .raw_writefn = raw_write,
    },
    { .name = "CNTV_CVAL_EL0", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 2,
      .access = PL1_RW | PL0_R,
      .type = ARM_CP_IO,
      .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
      .resetvalue = 0, .accessfn = gt_vtimer_access,
1318
      .writefn = gt_cval_write, .raw_writefn = raw_write,
1319 1320 1321 1322 1323 1324
    },
    REGINFO_SENTINEL
};

#else
/* In user-mode none of the generic timer registers are accessible,
1325
 * and their implementation depends on QEMU_CLOCK_VIRTUAL and qdev gpio outputs,
1326 1327
 * so instead just don't register any of them.
 */
1328 1329 1330 1331
static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
    REGINFO_SENTINEL
};

1332 1333
#endif

1334
static void par_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
1335
{
1336
    if (arm_feature(env, ARM_FEATURE_LPAE)) {
1337
        raw_write(env, ri, value);
1338
    } else if (arm_feature(env, ARM_FEATURE_V7)) {
1339
        raw_write(env, ri, value & 0xfffff6ff);
1340
    } else {
1341
        raw_write(env, ri, value & 0xfffff1ff);
1342 1343 1344 1345 1346
    }
}

#ifndef CONFIG_USER_ONLY
/* get_phys_addr() isn't present for user-mode-only targets */
1347

1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360
static CPAccessResult ats_access(CPUARMState *env, const ARMCPRegInfo *ri)
{
    if (ri->opc2 & 4) {
        /* Other states are only available with TrustZone; in
         * a non-TZ implementation these registers don't exist
         * at all, which is an Uncategorized trap. This underdecoding
         * is safe because the reginfo is NO_MIGRATE.
         */
        return CP_ACCESS_TRAP_UNCATEGORIZED;
    }
    return CP_ACCESS_OK;
}

1361
static void ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
1362
{
A
Avi Kivity 已提交
1363
    hwaddr phys_addr;
1364 1365 1366 1367 1368 1369 1370
    target_ulong page_size;
    int prot;
    int ret, is_user = ri->opc2 & 2;
    int access_type = ri->opc2 & 1;

    ret = get_phys_addr(env, value, access_type, is_user,
                        &phys_addr, &prot, &page_size);
1371 1372 1373 1374 1375 1376 1377 1378 1379
    if (extended_addresses_enabled(env)) {
        /* ret is a DFSR/IFSR value for the long descriptor
         * translation table format, but with WnR always clear.
         * Convert it to a 64-bit PAR.
         */
        uint64_t par64 = (1 << 11); /* LPAE bit always set */
        if (ret == 0) {
            par64 |= phys_addr & ~0xfffULL;
            /* We don't set the ATTR or SH fields in the PAR. */
1380
        } else {
1381 1382 1383 1384 1385 1386
            par64 |= 1; /* F */
            par64 |= (ret & 0x3f) << 1; /* FS */
            /* Note that S2WLK and FSTAGE are always zero, because we don't
             * implement virtualization and therefore there can't be a stage 2
             * fault.
             */
1387
        }
1388
        env->cp15.par_el1 = par64;
1389
    } else {
1390 1391 1392 1393 1394 1395 1396 1397
        /* ret is a DFSR/IFSR value for the short descriptor
         * translation table format (with WnR always clear).
         * Convert it to a 32-bit PAR.
         */
        if (ret == 0) {
            /* We do not set any attribute bits in the PAR */
            if (page_size == (1 << 24)
                && arm_feature(env, ARM_FEATURE_V7)) {
1398
                env->cp15.par_el1 = (phys_addr & 0xff000000) | 1 << 1;
1399
            } else {
1400
                env->cp15.par_el1 = phys_addr & 0xfffff000;
1401 1402
            }
        } else {
1403
            env->cp15.par_el1 = ((ret & (1 << 10)) >> 5) |
1404
                ((ret & (1 << 12)) >> 6) |
1405 1406
                ((ret & 0xf) << 1) | 1;
        }
1407 1408 1409 1410 1411 1412 1413
    }
}
#endif

static const ARMCPRegInfo vapa_cp_reginfo[] = {
    { .name = "PAR", .cp = 15, .crn = 7, .crm = 4, .opc1 = 0, .opc2 = 0,
      .access = PL1_RW, .resetvalue = 0,
1414
      .fieldoffset = offsetoflow32(CPUARMState, cp15.par_el1),
1415 1416 1417
      .writefn = par_write },
#ifndef CONFIG_USER_ONLY
    { .name = "ATS", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = CP_ANY,
1418 1419
      .access = PL1_W, .accessfn = ats_access,
      .writefn = ats_write, .type = ARM_CP_NO_MIGRATE },
1420 1421 1422 1423
#endif
    REGINFO_SENTINEL
};

1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453
/* Return basic MPU access permission bits.  */
static uint32_t simple_mpu_ap_bits(uint32_t val)
{
    uint32_t ret;
    uint32_t mask;
    int i;
    ret = 0;
    mask = 3;
    for (i = 0; i < 16; i += 2) {
        ret |= (val >> i) & mask;
        mask <<= 2;
    }
    return ret;
}

/* Pad basic MPU access permission bits to extended format.  */
static uint32_t extended_mpu_ap_bits(uint32_t val)
{
    uint32_t ret;
    uint32_t mask;
    int i;
    ret = 0;
    mask = 3;
    for (i = 0; i < 16; i += 2) {
        ret |= (val & mask) << i;
        mask <<= 2;
    }
    return ret;
}

1454 1455
static void pmsav5_data_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
                                 uint64_t value)
1456
{
1457
    env->cp15.pmsav5_data_ap = extended_mpu_ap_bits(value);
1458 1459
}

1460
static uint64_t pmsav5_data_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
1461
{
1462
    return simple_mpu_ap_bits(env->cp15.pmsav5_data_ap);
1463 1464
}

1465 1466
static void pmsav5_insn_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
                                 uint64_t value)
1467
{
1468
    env->cp15.pmsav5_insn_ap = extended_mpu_ap_bits(value);
1469 1470
}

1471
static uint64_t pmsav5_insn_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
1472
{
1473
    return simple_mpu_ap_bits(env->cp15.pmsav5_insn_ap);
1474 1475 1476 1477
}

static const ARMCPRegInfo pmsav5_cp_reginfo[] = {
    { .name = "DATA_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
1478
      .access = PL1_RW, .type = ARM_CP_NO_MIGRATE,
1479 1480
      .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
      .resetvalue = 0,
1481 1482
      .readfn = pmsav5_data_ap_read, .writefn = pmsav5_data_ap_write, },
    { .name = "INSN_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
1483
      .access = PL1_RW, .type = ARM_CP_NO_MIGRATE,
1484 1485
      .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
      .resetvalue = 0,
1486 1487 1488
      .readfn = pmsav5_insn_ap_read, .writefn = pmsav5_insn_ap_write, },
    { .name = "DATA_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 2,
      .access = PL1_RW,
1489 1490
      .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
      .resetvalue = 0, },
1491 1492
    { .name = "INSN_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 3,
      .access = PL1_RW,
1493 1494
      .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
      .resetvalue = 0, },
1495 1496 1497 1498 1499 1500
    { .name = "DCACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
      .access = PL1_RW,
      .fieldoffset = offsetof(CPUARMState, cp15.c2_data), .resetvalue = 0, },
    { .name = "ICACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1,
      .access = PL1_RW,
      .fieldoffset = offsetof(CPUARMState, cp15.c2_insn), .resetvalue = 0, },
1501
    /* Protection region base and size registers */
1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525
    { .name = "946_PRBS0", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0,
      .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
      .fieldoffset = offsetof(CPUARMState, cp15.c6_region[0]) },
    { .name = "946_PRBS1", .cp = 15, .crn = 6, .crm = 1, .opc1 = 0,
      .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
      .fieldoffset = offsetof(CPUARMState, cp15.c6_region[1]) },
    { .name = "946_PRBS2", .cp = 15, .crn = 6, .crm = 2, .opc1 = 0,
      .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
      .fieldoffset = offsetof(CPUARMState, cp15.c6_region[2]) },
    { .name = "946_PRBS3", .cp = 15, .crn = 6, .crm = 3, .opc1 = 0,
      .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
      .fieldoffset = offsetof(CPUARMState, cp15.c6_region[3]) },
    { .name = "946_PRBS4", .cp = 15, .crn = 6, .crm = 4, .opc1 = 0,
      .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
      .fieldoffset = offsetof(CPUARMState, cp15.c6_region[4]) },
    { .name = "946_PRBS5", .cp = 15, .crn = 6, .crm = 5, .opc1 = 0,
      .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
      .fieldoffset = offsetof(CPUARMState, cp15.c6_region[5]) },
    { .name = "946_PRBS6", .cp = 15, .crn = 6, .crm = 6, .opc1 = 0,
      .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
      .fieldoffset = offsetof(CPUARMState, cp15.c6_region[6]) },
    { .name = "946_PRBS7", .cp = 15, .crn = 6, .crm = 7, .opc1 = 0,
      .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
      .fieldoffset = offsetof(CPUARMState, cp15.c6_region[7]) },
1526 1527 1528
    REGINFO_SENTINEL
};

1529 1530
static void vmsa_ttbcr_raw_write(CPUARMState *env, const ARMCPRegInfo *ri,
                                 uint64_t value)
1531
{
1532 1533
    int maskshift = extract32(value, 0, 3);

1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547
    if (!arm_feature(env, ARM_FEATURE_V8)) {
        if (arm_feature(env, ARM_FEATURE_LPAE) && (value & TTBCR_EAE)) {
            /* Pre ARMv8 bits [21:19], [15:14] and [6:3] are UNK/SBZP when
             * using Long-desciptor translation table format */
            value &= ~((7 << 19) | (3 << 14) | (0xf << 3));
        } else if (arm_feature(env, ARM_FEATURE_EL3)) {
            /* In an implementation that includes the Security Extensions
             * TTBCR has additional fields PD0 [4] and PD1 [5] for
             * Short-descriptor translation table format.
             */
            value &= TTBCR_PD1 | TTBCR_PD0 | TTBCR_N;
        } else {
            value &= TTBCR_N;
        }
1548
    }
1549

1550 1551 1552 1553 1554
    /* Note that we always calculate c2_mask and c2_base_mask, but
     * they are only used for short-descriptor tables (ie if EAE is 0);
     * for long-descriptor tables the TTBCR fields are used differently
     * and the c2_mask and c2_base_mask values are meaningless.
     */
1555
    raw_write(env, ri, value);
1556 1557
    env->cp15.c2_mask = ~(((uint32_t)0xffffffffu) >> maskshift);
    env->cp15.c2_base_mask = ~((uint32_t)0x3fffu >> maskshift);
1558 1559
}

1560 1561
static void vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
                             uint64_t value)
1562
{
1563 1564
    ARMCPU *cpu = arm_env_get_cpu(env);

1565 1566 1567 1568
    if (arm_feature(env, ARM_FEATURE_LPAE)) {
        /* With LPAE the TTBCR could result in a change of ASID
         * via the TTBCR.A1 bit, so do a TLB flush.
         */
1569
        tlb_flush(CPU(cpu), 1);
1570
    }
1571
    vmsa_ttbcr_raw_write(env, ri, value);
1572 1573
}

1574 1575 1576
static void vmsa_ttbcr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
{
    env->cp15.c2_base_mask = 0xffffc000u;
1577
    raw_write(env, ri, 0);
1578 1579 1580
    env->cp15.c2_mask = 0;
}

1581 1582 1583
static void vmsa_tcr_el1_write(CPUARMState *env, const ARMCPRegInfo *ri,
                               uint64_t value)
{
1584 1585
    ARMCPU *cpu = arm_env_get_cpu(env);

1586
    /* For AArch64 the A1 bit could result in a change of ASID, so TLB flush. */
1587
    tlb_flush(CPU(cpu), 1);
1588
    raw_write(env, ri, value);
1589 1590
}

1591 1592 1593 1594 1595 1596 1597
static void vmsa_ttbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
                            uint64_t value)
{
    /* 64 bit accesses to the TTBRs can change the ASID and so we
     * must flush the TLB.
     */
    if (cpreg_field_is_64bit(ri)) {
1598 1599 1600
        ARMCPU *cpu = arm_env_get_cpu(env);

        tlb_flush(CPU(cpu), 1);
1601 1602 1603 1604
    }
    raw_write(env, ri, value);
}

1605 1606
static const ARMCPRegInfo vmsa_cp_reginfo[] = {
    { .name = "DFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
1607
      .access = PL1_RW, .type = ARM_CP_NO_MIGRATE,
1608
      .fieldoffset = offsetoflow32(CPUARMState, cp15.esr_el[1]),
1609
      .resetfn = arm_cp_reset_ignore, },
1610 1611
    { .name = "IFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
      .access = PL1_RW,
1612 1613 1614 1615
      .fieldoffset = offsetof(CPUARMState, cp15.ifsr_el2), .resetvalue = 0, },
    { .name = "ESR_EL1", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .crn = 5, .crm = 2, .opc1 = 0, .opc2 = 0,
      .access = PL1_RW,
1616
      .fieldoffset = offsetof(CPUARMState, cp15.esr_el[1]), .resetvalue = 0, },
1617 1618 1619 1620 1621 1622 1623 1624
    { .name = "TTBR0_EL1", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
      .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el1),
      .writefn = vmsa_ttbr_write, .resetvalue = 0 },
    { .name = "TTBR1_EL1", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1,
      .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.ttbr1_el1),
      .writefn = vmsa_ttbr_write, .resetvalue = 0 },
1625 1626 1627 1628
    { .name = "TCR_EL1", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
      .access = PL1_RW, .writefn = vmsa_tcr_el1_write,
      .resetfn = vmsa_ttbcr_reset, .raw_writefn = raw_write,
1629
      .fieldoffset = offsetof(CPUARMState, cp15.c2_control) },
1630 1631 1632 1633
    { .name = "TTBCR", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
      .access = PL1_RW, .type = ARM_CP_NO_MIGRATE, .writefn = vmsa_ttbcr_write,
      .resetfn = arm_cp_reset_ignore, .raw_writefn = vmsa_ttbcr_raw_write,
      .fieldoffset = offsetoflow32(CPUARMState, cp15.c2_control) },
1634 1635 1636
    /* 64-bit FAR; this entry also gives us the AArch32 DFAR */
    { .name = "FAR_EL1", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0,
1637
      .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[1]),
1638
      .resetvalue = 0, },
1639 1640 1641
    REGINFO_SENTINEL
};

1642 1643
static void omap_ticonfig_write(CPUARMState *env, const ARMCPRegInfo *ri,
                                uint64_t value)
1644 1645 1646 1647 1648 1649 1650
{
    env->cp15.c15_ticonfig = value & 0xe7;
    /* The OS_TYPE bit in this register changes the reported CPUID! */
    env->cp15.c0_cpuid = (value & (1 << 5)) ?
        ARM_CPUID_TI915T : ARM_CPUID_TI925T;
}

1651 1652
static void omap_threadid_write(CPUARMState *env, const ARMCPRegInfo *ri,
                                uint64_t value)
1653 1654 1655 1656
{
    env->cp15.c15_threadid = value & 0xffff;
}

1657 1658
static void omap_wfi_write(CPUARMState *env, const ARMCPRegInfo *ri,
                           uint64_t value)
1659 1660
{
    /* Wait-for-interrupt (deprecated) */
1661
    cpu_interrupt(CPU(arm_env_get_cpu(env)), CPU_INTERRUPT_HALT);
1662 1663
}

1664 1665
static void omap_cachemaint_write(CPUARMState *env, const ARMCPRegInfo *ri,
                                  uint64_t value)
1666 1667 1668 1669 1670 1671 1672 1673
{
    /* On OMAP there are registers indicating the max/min index of dcache lines
     * containing a dirty line; cache flush operations have to reset these.
     */
    env->cp15.c15_i_max = 0x000;
    env->cp15.c15_i_min = 0xff0;
}

1674 1675 1676
static const ARMCPRegInfo omap_cp_reginfo[] = {
    { .name = "DFSR", .cp = 15, .crn = 5, .crm = CP_ANY,
      .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_OVERRIDE,
1677
      .fieldoffset = offsetoflow32(CPUARMState, cp15.esr_el[1]),
1678
      .resetvalue = 0, },
1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696
    { .name = "", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0,
      .access = PL1_RW, .type = ARM_CP_NOP },
    { .name = "TICONFIG", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0,
      .access = PL1_RW,
      .fieldoffset = offsetof(CPUARMState, cp15.c15_ticonfig), .resetvalue = 0,
      .writefn = omap_ticonfig_write },
    { .name = "IMAX", .cp = 15, .crn = 15, .crm = 2, .opc1 = 0, .opc2 = 0,
      .access = PL1_RW,
      .fieldoffset = offsetof(CPUARMState, cp15.c15_i_max), .resetvalue = 0, },
    { .name = "IMIN", .cp = 15, .crn = 15, .crm = 3, .opc1 = 0, .opc2 = 0,
      .access = PL1_RW, .resetvalue = 0xff0,
      .fieldoffset = offsetof(CPUARMState, cp15.c15_i_min) },
    { .name = "THREADID", .cp = 15, .crn = 15, .crm = 4, .opc1 = 0, .opc2 = 0,
      .access = PL1_RW,
      .fieldoffset = offsetof(CPUARMState, cp15.c15_threadid), .resetvalue = 0,
      .writefn = omap_threadid_write },
    { .name = "TI925T_STATUS", .cp = 15, .crn = 15,
      .crm = 8, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
1697
      .type = ARM_CP_NO_MIGRATE,
1698 1699 1700 1701 1702 1703
      .readfn = arm_cp_read_zero, .writefn = omap_wfi_write, },
    /* TODO: Peripheral port remap register:
     * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller
     * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff),
     * when MMU is off.
     */
1704
    { .name = "OMAP_CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
1705 1706
      .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
      .type = ARM_CP_OVERRIDE | ARM_CP_NO_MIGRATE,
1707
      .writefn = omap_cachemaint_write },
1708 1709 1710
    { .name = "C9", .cp = 15, .crn = 9,
      .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW,
      .type = ARM_CP_CONST | ARM_CP_OVERRIDE, .resetvalue = 0 },
1711 1712 1713
    REGINFO_SENTINEL
};

1714 1715
static void xscale_cpar_write(CPUARMState *env, const ARMCPRegInfo *ri,
                              uint64_t value)
1716
{
1717
    env->cp15.c15_cpar = value & 0x3fff;
1718 1719 1720 1721 1722 1723 1724
}

static const ARMCPRegInfo xscale_cp_reginfo[] = {
    { .name = "XSCALE_CPAR",
      .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
      .fieldoffset = offsetof(CPUARMState, cp15.c15_cpar), .resetvalue = 0,
      .writefn = xscale_cpar_write, },
1725 1726 1727 1728
    { .name = "XSCALE_AUXCR",
      .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW,
      .fieldoffset = offsetof(CPUARMState, cp15.c1_xscaleauxcr),
      .resetvalue = 0, },
1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743
    /* XScale specific cache-lockdown: since we have no cache we NOP these
     * and hope the guest does not really rely on cache behaviour.
     */
    { .name = "XSCALE_LOCK_ICACHE_LINE",
      .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0,
      .access = PL1_W, .type = ARM_CP_NOP },
    { .name = "XSCALE_UNLOCK_ICACHE",
      .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1,
      .access = PL1_W, .type = ARM_CP_NOP },
    { .name = "XSCALE_DCACHE_LOCK",
      .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 0,
      .access = PL1_RW, .type = ARM_CP_NOP },
    { .name = "XSCALE_UNLOCK_DCACHE",
      .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 1,
      .access = PL1_W, .type = ARM_CP_NOP },
1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754
    REGINFO_SENTINEL
};

static const ARMCPRegInfo dummy_c15_cp_reginfo[] = {
    /* RAZ/WI the whole crn=15 space, when we don't have a more specific
     * implementation of this implementation-defined space.
     * Ideally this should eventually disappear in favour of actually
     * implementing the correct behaviour for all cores.
     */
    { .name = "C15_IMPDEF", .cp = 15, .crn = 15,
      .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
1755 1756
      .access = PL1_RW,
      .type = ARM_CP_CONST | ARM_CP_NO_MIGRATE | ARM_CP_OVERRIDE,
1757
      .resetvalue = 0 },
1758 1759 1760
    REGINFO_SENTINEL
};

1761 1762 1763
static const ARMCPRegInfo cache_dirty_status_cp_reginfo[] = {
    /* Cache status: RAZ because we have no cache so it's always clean */
    { .name = "CDSR", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 6,
1764 1765
      .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_MIGRATE,
      .resetvalue = 0 },
1766 1767 1768 1769 1770 1771
    REGINFO_SENTINEL
};

static const ARMCPRegInfo cache_block_ops_cp_reginfo[] = {
    /* We never have a a block transfer operation in progress */
    { .name = "BXSR", .cp = 15, .crn = 7, .crm = 12, .opc1 = 0, .opc2 = 4,
1772 1773
      .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_MIGRATE,
      .resetvalue = 0 },
1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786
    /* The cache ops themselves: these all NOP for QEMU */
    { .name = "IICR", .cp = 15, .crm = 5, .opc1 = 0,
      .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
    { .name = "IDCR", .cp = 15, .crm = 6, .opc1 = 0,
      .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
    { .name = "CDCR", .cp = 15, .crm = 12, .opc1 = 0,
      .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
    { .name = "PIR", .cp = 15, .crm = 12, .opc1 = 1,
      .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
    { .name = "PDR", .cp = 15, .crm = 12, .opc1 = 2,
      .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
    { .name = "CIDCR", .cp = 15, .crm = 14, .opc1 = 0,
      .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
1787 1788 1789 1790 1791 1792 1793 1794
    REGINFO_SENTINEL
};

static const ARMCPRegInfo cache_test_clean_cp_reginfo[] = {
    /* The cache test-and-clean instructions always return (1 << 30)
     * to indicate that there are no dirty cache lines.
     */
    { .name = "TC_DCACHE", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 3,
1795 1796
      .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_MIGRATE,
      .resetvalue = (1 << 30) },
1797
    { .name = "TCI_DCACHE", .cp = 15, .crn = 7, .crm = 14, .opc1 = 0, .opc2 = 3,
1798 1799
      .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_MIGRATE,
      .resetvalue = (1 << 30) },
1800 1801 1802
    REGINFO_SENTINEL
};

1803 1804 1805 1806
static const ARMCPRegInfo strongarm_cp_reginfo[] = {
    /* Ignore ReadBuffer accesses */
    { .name = "C9_READBUFFER", .cp = 15, .crn = 9,
      .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
1807 1808
      .access = PL1_RW, .resetvalue = 0,
      .type = ARM_CP_CONST | ARM_CP_OVERRIDE | ARM_CP_NO_MIGRATE },
1809 1810 1811
    REGINFO_SENTINEL
};

1812
static uint64_t mpidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
P
Peter Maydell 已提交
1813
{
1814 1815
    CPUState *cs = CPU(arm_env_get_cpu(env));
    uint32_t mpidr = cs->cpu_index;
1816 1817
    /* We don't support setting cluster ID ([8..11]) (known as Aff1
     * in later ARM ARM versions), or any of the higher affinity level fields,
P
Peter Maydell 已提交
1818 1819 1820
     * so these bits always RAZ.
     */
    if (arm_feature(env, ARM_FEATURE_V7MP)) {
1821
        mpidr |= (1U << 31);
P
Peter Maydell 已提交
1822 1823 1824 1825 1826 1827
        /* Cores which are uniprocessor (non-coherent)
         * but still implement the MP extensions set
         * bit 30. (For instance, A9UP.) However we do
         * not currently model any of those cores.
         */
    }
1828
    return mpidr;
P
Peter Maydell 已提交
1829 1830 1831
}

static const ARMCPRegInfo mpidr_cp_reginfo[] = {
1832 1833
    { .name = "MPIDR", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 5,
1834
      .access = PL1_R, .readfn = mpidr_read, .type = ARM_CP_NO_MIGRATE },
P
Peter Maydell 已提交
1835 1836 1837
    REGINFO_SENTINEL
};

1838
static const ARMCPRegInfo lpae_cp_reginfo[] = {
1839
    /* NOP AMAIR0/1: the override is because these clash with the rather
1840 1841
     * broadly specified TLB_LOCKDOWN entry in the generic cp_reginfo.
     */
1842 1843
    { .name = "AMAIR0", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 0,
1844 1845
      .access = PL1_RW, .type = ARM_CP_CONST | ARM_CP_OVERRIDE,
      .resetvalue = 0 },
1846
    /* AMAIR1 is mapped to AMAIR_EL1[63:32] */
1847 1848 1849
    { .name = "AMAIR1", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 1,
      .access = PL1_RW, .type = ARM_CP_CONST | ARM_CP_OVERRIDE,
      .resetvalue = 0 },
1850 1851
    { .name = "PAR", .cp = 15, .crm = 7, .opc1 = 0,
      .access = PL1_RW, .type = ARM_CP_64BIT,
1852
      .fieldoffset = offsetof(CPUARMState, cp15.par_el1), .resetvalue = 0 },
1853
    { .name = "TTBR0", .cp = 15, .crm = 2, .opc1 = 0,
1854 1855 1856
      .access = PL1_RW, .type = ARM_CP_64BIT | ARM_CP_NO_MIGRATE,
      .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el1),
      .writefn = vmsa_ttbr_write, .resetfn = arm_cp_reset_ignore },
1857
    { .name = "TTBR1", .cp = 15, .crm = 2, .opc1 = 1,
1858 1859 1860
      .access = PL1_RW, .type = ARM_CP_64BIT | ARM_CP_NO_MIGRATE,
      .fieldoffset = offsetof(CPUARMState, cp15.ttbr1_el1),
      .writefn = vmsa_ttbr_write, .resetfn = arm_cp_reset_ignore },
1861 1862 1863
    REGINFO_SENTINEL
};

1864
static uint64_t aa64_fpcr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1865
{
1866
    return vfp_get_fpcr(env);
1867 1868
}

1869 1870
static void aa64_fpcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
                            uint64_t value)
1871 1872 1873 1874
{
    vfp_set_fpcr(env, value);
}

1875
static uint64_t aa64_fpsr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1876
{
1877
    return vfp_get_fpsr(env);
1878 1879
}

1880 1881
static void aa64_fpsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
                            uint64_t value)
1882 1883 1884 1885
{
    vfp_set_fpsr(env, value);
}

1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899
static CPAccessResult aa64_daif_access(CPUARMState *env, const ARMCPRegInfo *ri)
{
    if (arm_current_pl(env) == 0 && !(env->cp15.c1_sys & SCTLR_UMA)) {
        return CP_ACCESS_TRAP;
    }
    return CP_ACCESS_OK;
}

static void aa64_daif_write(CPUARMState *env, const ARMCPRegInfo *ri,
                            uint64_t value)
{
    env->daif = value & PSTATE_DAIF;
}

1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911
static CPAccessResult aa64_cacheop_access(CPUARMState *env,
                                          const ARMCPRegInfo *ri)
{
    /* Cache invalidate/clean: NOP, but EL0 must UNDEF unless
     * SCTLR_EL1.UCI is set.
     */
    if (arm_current_pl(env) == 0 && !(env->cp15.c1_sys & SCTLR_UCI)) {
        return CP_ACCESS_TRAP;
    }
    return CP_ACCESS_OK;
}

1912 1913 1914 1915
/* See: D4.7.2 TLB maintenance requirements and the TLB maintenance instructions
 * Page D4-1736 (DDI0487A.b)
 */

1916 1917 1918 1919
static void tlbi_aa64_va_write(CPUARMState *env, const ARMCPRegInfo *ri,
                               uint64_t value)
{
    /* Invalidate by VA (AArch64 version) */
1920
    ARMCPU *cpu = arm_env_get_cpu(env);
1921 1922
    uint64_t pageaddr = sextract64(value << 12, 0, 56);

1923
    tlb_flush_page(CPU(cpu), pageaddr);
1924 1925 1926 1927 1928 1929
}

static void tlbi_aa64_vaa_write(CPUARMState *env, const ARMCPRegInfo *ri,
                                uint64_t value)
{
    /* Invalidate by VA, all ASIDs (AArch64 version) */
1930
    ARMCPU *cpu = arm_env_get_cpu(env);
1931 1932
    uint64_t pageaddr = sextract64(value << 12, 0, 56);

1933
    tlb_flush_page(CPU(cpu), pageaddr);
1934 1935 1936 1937 1938 1939
}

static void tlbi_aa64_asid_write(CPUARMState *env, const ARMCPRegInfo *ri,
                                 uint64_t value)
{
    /* Invalidate by ASID (AArch64 version) */
1940
    ARMCPU *cpu = arm_env_get_cpu(env);
1941
    int asid = extract64(value, 48, 16);
1942
    tlb_flush(CPU(cpu), asid == 0);
1943 1944
}

1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977
static void tlbi_aa64_va_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
                                  uint64_t value)
{
    CPUState *other_cs;
    uint64_t pageaddr = sextract64(value << 12, 0, 56);

    CPU_FOREACH(other_cs) {
        tlb_flush_page(other_cs, pageaddr);
    }
}

static void tlbi_aa64_vaa_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
                                  uint64_t value)
{
    CPUState *other_cs;
    uint64_t pageaddr = sextract64(value << 12, 0, 56);

    CPU_FOREACH(other_cs) {
        tlb_flush_page(other_cs, pageaddr);
    }
}

static void tlbi_aa64_asid_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
                                  uint64_t value)
{
    CPUState *other_cs;
    int asid = extract64(value, 48, 16);

    CPU_FOREACH(other_cs) {
        tlb_flush(other_cs, asid == 0);
    }
}

1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000
static CPAccessResult aa64_zva_access(CPUARMState *env, const ARMCPRegInfo *ri)
{
    /* We don't implement EL2, so the only control on DC ZVA is the
     * bit in the SCTLR which can prohibit access for EL0.
     */
    if (arm_current_pl(env) == 0 && !(env->cp15.c1_sys & SCTLR_DZE)) {
        return CP_ACCESS_TRAP;
    }
    return CP_ACCESS_OK;
}

static uint64_t aa64_dczid_read(CPUARMState *env, const ARMCPRegInfo *ri)
{
    ARMCPU *cpu = arm_env_get_cpu(env);
    int dzp_bit = 1 << 4;

    /* DZP indicates whether DC ZVA access is allowed */
    if (aa64_zva_access(env, NULL) != CP_ACCESS_OK) {
        dzp_bit = 0;
    }
    return cpu->dcz_blocksize | dzp_bit;
}

2001 2002
static CPAccessResult sp_el0_access(CPUARMState *env, const ARMCPRegInfo *ri)
{
2003
    if (!(env->pstate & PSTATE_SP)) {
2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021
        /* Access to SP_EL0 is undefined if it's being used as
         * the stack pointer.
         */
        return CP_ACCESS_TRAP_UNCATEGORIZED;
    }
    return CP_ACCESS_OK;
}

static uint64_t spsel_read(CPUARMState *env, const ARMCPRegInfo *ri)
{
    return env->pstate & PSTATE_SP;
}

static void spsel_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val)
{
    update_spsel(env, val);
}

2022 2023 2024 2025 2026 2027 2028
static const ARMCPRegInfo v8_cp_reginfo[] = {
    /* Minimal set of EL0-visible registers. This will need to be expanded
     * significantly for system emulation of AArch64 CPUs.
     */
    { .name = "NZCV", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 2,
      .access = PL0_RW, .type = ARM_CP_NZCV },
2029 2030 2031 2032 2033 2034
    { .name = "DAIF", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 2,
      .type = ARM_CP_NO_MIGRATE,
      .access = PL0_RW, .accessfn = aa64_daif_access,
      .fieldoffset = offsetof(CPUARMState, daif),
      .writefn = aa64_daif_write, .resetfn = arm_cp_reset_ignore },
2035 2036 2037 2038 2039 2040 2041 2042
    { .name = "FPCR", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 4,
      .access = PL0_RW, .readfn = aa64_fpcr_read, .writefn = aa64_fpcr_write },
    { .name = "FPSR", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 4,
      .access = PL0_RW, .readfn = aa64_fpsr_read, .writefn = aa64_fpsr_write },
    { .name = "DCZID_EL0", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 3, .opc2 = 7, .crn = 0, .crm = 0,
2043 2044 2045 2046 2047 2048 2049 2050 2051 2052
      .access = PL0_R, .type = ARM_CP_NO_MIGRATE,
      .readfn = aa64_dczid_read },
    { .name = "DC_ZVA", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 1,
      .access = PL0_W, .type = ARM_CP_DC_ZVA,
#ifndef CONFIG_USER_ONLY
      /* Avoid overhead of an access check that always passes in user-mode */
      .accessfn = aa64_zva_access,
#endif
    },
2053 2054 2055
    { .name = "CURRENTEL", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 0, .opc2 = 2, .crn = 4, .crm = 2,
      .access = PL1_R, .type = ARM_CP_CURRENTEL },
2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090
    /* Cache ops: all NOPs since we don't emulate caches */
    { .name = "IC_IALLUIS", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
      .access = PL1_W, .type = ARM_CP_NOP },
    { .name = "IC_IALLU", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
      .access = PL1_W, .type = ARM_CP_NOP },
    { .name = "IC_IVAU", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 5, .opc2 = 1,
      .access = PL0_W, .type = ARM_CP_NOP,
      .accessfn = aa64_cacheop_access },
    { .name = "DC_IVAC", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
      .access = PL1_W, .type = ARM_CP_NOP },
    { .name = "DC_ISW", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
      .access = PL1_W, .type = ARM_CP_NOP },
    { .name = "DC_CVAC", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 1,
      .access = PL0_W, .type = ARM_CP_NOP,
      .accessfn = aa64_cacheop_access },
    { .name = "DC_CSW", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
      .access = PL1_W, .type = ARM_CP_NOP },
    { .name = "DC_CVAU", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 11, .opc2 = 1,
      .access = PL0_W, .type = ARM_CP_NOP,
      .accessfn = aa64_cacheop_access },
    { .name = "DC_CIVAC", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 1,
      .access = PL0_W, .type = ARM_CP_NOP,
      .accessfn = aa64_cacheop_access },
    { .name = "DC_CISW", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
      .access = PL1_W, .type = ARM_CP_NOP },
2091 2092
    /* TLBI operations */
    { .name = "TLBI_VMALLE1IS", .state = ARM_CP_STATE_AA64,
2093
      .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0,
2094
      .access = PL1_W, .type = ARM_CP_NO_MIGRATE,
2095
      .writefn = tlbiall_is_write },
2096
    { .name = "TLBI_VAE1IS", .state = ARM_CP_STATE_AA64,
2097
      .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1,
2098
      .access = PL1_W, .type = ARM_CP_NO_MIGRATE,
2099
      .writefn = tlbi_aa64_va_is_write },
2100
    { .name = "TLBI_ASIDE1IS", .state = ARM_CP_STATE_AA64,
2101
      .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2,
2102
      .access = PL1_W, .type = ARM_CP_NO_MIGRATE,
2103
      .writefn = tlbi_aa64_asid_is_write },
2104
    { .name = "TLBI_VAAE1IS", .state = ARM_CP_STATE_AA64,
2105
      .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3,
2106
      .access = PL1_W, .type = ARM_CP_NO_MIGRATE,
2107
      .writefn = tlbi_aa64_vaa_is_write },
2108
    { .name = "TLBI_VALE1IS", .state = ARM_CP_STATE_AA64,
2109
      .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5,
2110
      .access = PL1_W, .type = ARM_CP_NO_MIGRATE,
2111
      .writefn = tlbi_aa64_va_is_write },
2112
    { .name = "TLBI_VAALE1IS", .state = ARM_CP_STATE_AA64,
2113
      .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7,
2114
      .access = PL1_W, .type = ARM_CP_NO_MIGRATE,
2115
      .writefn = tlbi_aa64_vaa_is_write },
2116
    { .name = "TLBI_VMALLE1", .state = ARM_CP_STATE_AA64,
2117
      .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0,
2118 2119 2120
      .access = PL1_W, .type = ARM_CP_NO_MIGRATE,
      .writefn = tlbiall_write },
    { .name = "TLBI_VAE1", .state = ARM_CP_STATE_AA64,
2121
      .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1,
2122 2123 2124
      .access = PL1_W, .type = ARM_CP_NO_MIGRATE,
      .writefn = tlbi_aa64_va_write },
    { .name = "TLBI_ASIDE1", .state = ARM_CP_STATE_AA64,
2125
      .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2,
2126 2127 2128
      .access = PL1_W, .type = ARM_CP_NO_MIGRATE,
      .writefn = tlbi_aa64_asid_write },
    { .name = "TLBI_VAAE1", .state = ARM_CP_STATE_AA64,
2129
      .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3,
2130 2131 2132
      .access = PL1_W, .type = ARM_CP_NO_MIGRATE,
      .writefn = tlbi_aa64_vaa_write },
    { .name = "TLBI_VALE1", .state = ARM_CP_STATE_AA64,
2133
      .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5,
2134 2135 2136
      .access = PL1_W, .type = ARM_CP_NO_MIGRATE,
      .writefn = tlbi_aa64_va_write },
    { .name = "TLBI_VAALE1", .state = ARM_CP_STATE_AA64,
2137
      .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7,
2138 2139
      .access = PL1_W, .type = ARM_CP_NO_MIGRATE,
      .writefn = tlbi_aa64_vaa_write },
2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154
#ifndef CONFIG_USER_ONLY
    /* 64 bit address translation operations */
    { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 0,
      .access = PL1_W, .type = ARM_CP_NO_MIGRATE, .writefn = ats_write },
    { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 1,
      .access = PL1_W, .type = ARM_CP_NO_MIGRATE, .writefn = ats_write },
    { .name = "AT_S1E0R", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 2,
      .access = PL1_W, .type = ARM_CP_NO_MIGRATE, .writefn = ats_write },
    { .name = "AT_S1E0W", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 3,
      .access = PL1_W, .type = ARM_CP_NO_MIGRATE, .writefn = ats_write },
#endif
2155
    /* TLB invalidate last level of translation table walk */
2156
    { .name = "TLBIMVALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5,
2157
      .type = ARM_CP_NO_MIGRATE, .access = PL1_W, .writefn = tlbimva_is_write },
2158
    { .name = "TLBIMVAALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7,
2159 2160
      .type = ARM_CP_NO_MIGRATE, .access = PL1_W,
      .writefn = tlbimvaa_is_write },
2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196
    { .name = "TLBIMVAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5,
      .type = ARM_CP_NO_MIGRATE, .access = PL1_W, .writefn = tlbimva_write },
    { .name = "TLBIMVAAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7,
      .type = ARM_CP_NO_MIGRATE, .access = PL1_W, .writefn = tlbimvaa_write },
    /* 32 bit cache operations */
    { .name = "ICIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
      .type = ARM_CP_NOP, .access = PL1_W },
    { .name = "BPIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 6,
      .type = ARM_CP_NOP, .access = PL1_W },
    { .name = "ICIALLU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
      .type = ARM_CP_NOP, .access = PL1_W },
    { .name = "ICIMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 1,
      .type = ARM_CP_NOP, .access = PL1_W },
    { .name = "BPIALL", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 6,
      .type = ARM_CP_NOP, .access = PL1_W },
    { .name = "BPIMVA", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 7,
      .type = ARM_CP_NOP, .access = PL1_W },
    { .name = "DCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
      .type = ARM_CP_NOP, .access = PL1_W },
    { .name = "DCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
      .type = ARM_CP_NOP, .access = PL1_W },
    { .name = "DCCMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 1,
      .type = ARM_CP_NOP, .access = PL1_W },
    { .name = "DCCSW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
      .type = ARM_CP_NOP, .access = PL1_W },
    { .name = "DCCMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 11, .opc2 = 1,
      .type = ARM_CP_NOP, .access = PL1_W },
    { .name = "DCCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 1,
      .type = ARM_CP_NOP, .access = PL1_W },
    { .name = "DCCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
      .type = ARM_CP_NOP, .access = PL1_W },
    /* MMU Domain access control / MPU write buffer control */
    { .name = "DACR", .cp = 15,
      .opc1 = 0, .crn = 3, .crm = 0, .opc2 = 0,
      .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c3),
      .resetvalue = 0, .writefn = dacr_write, .raw_writefn = raw_write, },
2197 2198 2199
    { .name = "ELR_EL1", .state = ARM_CP_STATE_AA64,
      .type = ARM_CP_NO_MIGRATE,
      .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 1,
2200 2201
      .access = PL1_RW,
      .fieldoffset = offsetof(CPUARMState, elr_el[1]) },
2202 2203 2204 2205
    { .name = "SPSR_EL1", .state = ARM_CP_STATE_AA64,
      .type = ARM_CP_NO_MIGRATE,
      .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 0,
      .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, banked_spsr[0]) },
2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218
    /* We rely on the access checks not allowing the guest to write to the
     * state field when SPSel indicates that it's being used as the stack
     * pointer.
     */
    { .name = "SP_EL0", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 1, .opc2 = 0,
      .access = PL1_RW, .accessfn = sp_el0_access,
      .type = ARM_CP_NO_MIGRATE,
      .fieldoffset = offsetof(CPUARMState, sp_el[0]) },
    { .name = "SPSel", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 0,
      .type = ARM_CP_NO_MIGRATE,
      .access = PL1_RW, .readfn = spsel_read, .writefn = spsel_write },
2219 2220 2221
    REGINFO_SENTINEL
};

2222 2223 2224 2225 2226 2227 2228 2229 2230
/* Used to describe the behaviour of EL2 regs when EL2 does not exist.  */
static const ARMCPRegInfo v8_el3_no_el2_cp_reginfo[] = {
    { .name = "VBAR_EL2", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0,
      .access = PL2_RW,
      .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore },
    REGINFO_SENTINEL
};

2231 2232 2233 2234 2235 2236
static const ARMCPRegInfo v8_el2_cp_reginfo[] = {
    { .name = "ELR_EL2", .state = ARM_CP_STATE_AA64,
      .type = ARM_CP_NO_MIGRATE,
      .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 1,
      .access = PL2_RW,
      .fieldoffset = offsetof(CPUARMState, elr_el[2]) },
2237 2238 2239 2240
    { .name = "ESR_EL2", .state = ARM_CP_STATE_AA64,
      .type = ARM_CP_NO_MIGRATE,
      .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0,
      .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[2]) },
2241 2242 2243
    { .name = "FAR_EL2", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0,
      .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[2]) },
2244 2245 2246 2247
    { .name = "SPSR_EL2", .state = ARM_CP_STATE_AA64,
      .type = ARM_CP_NO_MIGRATE,
      .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 0,
      .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, banked_spsr[6]) },
2248 2249 2250 2251 2252
    { .name = "VBAR_EL2", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0,
      .access = PL2_RW, .writefn = vbar_write,
      .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[2]),
      .resetvalue = 0 },
2253 2254 2255
    REGINFO_SENTINEL
};

2256 2257 2258 2259 2260 2261
static const ARMCPRegInfo v8_el3_cp_reginfo[] = {
    { .name = "ELR_EL3", .state = ARM_CP_STATE_AA64,
      .type = ARM_CP_NO_MIGRATE,
      .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 1,
      .access = PL3_RW,
      .fieldoffset = offsetof(CPUARMState, elr_el[3]) },
2262 2263 2264 2265
    { .name = "ESR_EL3", .state = ARM_CP_STATE_AA64,
      .type = ARM_CP_NO_MIGRATE,
      .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 2, .opc2 = 0,
      .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[3]) },
2266 2267 2268
    { .name = "FAR_EL3", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 0,
      .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[3]) },
2269 2270 2271 2272
    { .name = "SPSR_EL3", .state = ARM_CP_STATE_AA64,
      .type = ARM_CP_NO_MIGRATE,
      .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 0,
      .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, banked_spsr[7]) },
2273 2274 2275 2276 2277
    { .name = "VBAR_EL3", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 0,
      .access = PL3_RW, .writefn = vbar_write,
      .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[3]),
      .resetvalue = 0 },
2278 2279 2280
    REGINFO_SENTINEL
};

2281 2282
static void sctlr_write(CPUARMState *env, const ARMCPRegInfo *ri,
                        uint64_t value)
2283
{
2284 2285
    ARMCPU *cpu = arm_env_get_cpu(env);

2286
    if (raw_read(env, ri) == value) {
2287 2288 2289 2290 2291 2292
        /* Skip the TLB flush if nothing actually changed; Linux likes
         * to do a lot of pointless SCTLR writes.
         */
        return;
    }

2293
    raw_write(env, ri, value);
2294 2295
    /* ??? Lots of these bits are not implemented.  */
    /* This may enable/disable the MMU, so do a TLB flush.  */
2296
    tlb_flush(CPU(cpu), 1);
2297 2298
}

2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309
static CPAccessResult ctr_el0_access(CPUARMState *env, const ARMCPRegInfo *ri)
{
    /* Only accessible in EL0 if SCTLR.UCT is set (and only in AArch64,
     * but the AArch32 CTR has its own reginfo struct)
     */
    if (arm_current_pl(env) == 0 && !(env->cp15.c1_sys & SCTLR_UCT)) {
        return CP_ACCESS_TRAP;
    }
    return CP_ACCESS_OK;
}

2310 2311
static const ARMCPRegInfo debug_cp_reginfo[] = {
    /* DBGDRAR, DBGDSAR: always RAZ since we don't implement memory mapped
2312 2313 2314 2315
     * debug components. The AArch64 version of DBGDRAR is named MDRAR_EL1;
     * unlike DBGDRAR it is never accessible from EL0.
     * DBGDSAR is deprecated and must RAZ from v8 anyway, so it has no AArch64
     * accessor.
2316 2317 2318
     */
    { .name = "DBGDRAR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 0,
      .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
2319 2320 2321
    { .name = "MDRAR_EL1", .state = ARM_CP_STATE_AA64,
      .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0,
      .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
2322 2323
    { .name = "DBGDSAR", .cp = 14, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
      .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
2324
    /* Monitor debug system control register; the 32-bit alias is DBGDSCRext. */
2325 2326
    { .name = "MDSCR_EL1", .state = ARM_CP_STATE_BOTH,
      .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2,
2327 2328 2329
      .access = PL1_RW,
      .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1),
      .resetvalue = 0 },
2330 2331 2332 2333 2334 2335 2336 2337 2338
    /* MDCCSR_EL0, aka DBGDSCRint. This is a read-only mirror of MDSCR_EL1.
     * We don't implement the configurable EL0 access.
     */
    { .name = "MDCCSR_EL0", .state = ARM_CP_STATE_BOTH,
      .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0,
      .type = ARM_CP_NO_MIGRATE,
      .access = PL1_R,
      .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1),
      .resetfn = arm_cp_reset_ignore },
2339
    /* We define a dummy WI OSLAR_EL1, because Linux writes to it. */
2340 2341
    { .name = "OSLAR_EL1", .state = ARM_CP_STATE_BOTH,
      .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 4,
2342
      .access = PL1_W, .type = ARM_CP_NOP },
2343 2344 2345 2346 2347 2348 2349 2350 2351 2352
    /* Dummy OSDLR_EL1: 32-bit Linux will read this */
    { .name = "OSDLR_EL1", .state = ARM_CP_STATE_BOTH,
      .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 4,
      .access = PL1_RW, .type = ARM_CP_NOP },
    /* Dummy DBGVCR: Linux wants to clear this on startup, but we don't
     * implement vector catch debug events yet.
     */
    { .name = "DBGVCR",
      .cp = 14, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0,
      .access = PL1_RW, .type = ARM_CP_NOP },
2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364
    REGINFO_SENTINEL
};

static const ARMCPRegInfo debug_lpae_cp_reginfo[] = {
    /* 64 bit access versions of the (dummy) debug registers */
    { .name = "DBGDRAR", .cp = 14, .crm = 1, .opc1 = 0,
      .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 },
    { .name = "DBGDSAR", .cp = 14, .crm = 2, .opc1 = 0,
      .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 },
    REGINFO_SENTINEL
};

2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489
void hw_watchpoint_update(ARMCPU *cpu, int n)
{
    CPUARMState *env = &cpu->env;
    vaddr len = 0;
    vaddr wvr = env->cp15.dbgwvr[n];
    uint64_t wcr = env->cp15.dbgwcr[n];
    int mask;
    int flags = BP_CPU | BP_STOP_BEFORE_ACCESS;

    if (env->cpu_watchpoint[n]) {
        cpu_watchpoint_remove_by_ref(CPU(cpu), env->cpu_watchpoint[n]);
        env->cpu_watchpoint[n] = NULL;
    }

    if (!extract64(wcr, 0, 1)) {
        /* E bit clear : watchpoint disabled */
        return;
    }

    switch (extract64(wcr, 3, 2)) {
    case 0:
        /* LSC 00 is reserved and must behave as if the wp is disabled */
        return;
    case 1:
        flags |= BP_MEM_READ;
        break;
    case 2:
        flags |= BP_MEM_WRITE;
        break;
    case 3:
        flags |= BP_MEM_ACCESS;
        break;
    }

    /* Attempts to use both MASK and BAS fields simultaneously are
     * CONSTRAINED UNPREDICTABLE; we opt to ignore BAS in this case,
     * thus generating a watchpoint for every byte in the masked region.
     */
    mask = extract64(wcr, 24, 4);
    if (mask == 1 || mask == 2) {
        /* Reserved values of MASK; we must act as if the mask value was
         * some non-reserved value, or as if the watchpoint were disabled.
         * We choose the latter.
         */
        return;
    } else if (mask) {
        /* Watchpoint covers an aligned area up to 2GB in size */
        len = 1ULL << mask;
        /* If masked bits in WVR are not zero it's CONSTRAINED UNPREDICTABLE
         * whether the watchpoint fires when the unmasked bits match; we opt
         * to generate the exceptions.
         */
        wvr &= ~(len - 1);
    } else {
        /* Watchpoint covers bytes defined by the byte address select bits */
        int bas = extract64(wcr, 5, 8);
        int basstart;

        if (bas == 0) {
            /* This must act as if the watchpoint is disabled */
            return;
        }

        if (extract64(wvr, 2, 1)) {
            /* Deprecated case of an only 4-aligned address. BAS[7:4] are
             * ignored, and BAS[3:0] define which bytes to watch.
             */
            bas &= 0xf;
        }
        /* The BAS bits are supposed to be programmed to indicate a contiguous
         * range of bytes. Otherwise it is CONSTRAINED UNPREDICTABLE whether
         * we fire for each byte in the word/doubleword addressed by the WVR.
         * We choose to ignore any non-zero bits after the first range of 1s.
         */
        basstart = ctz32(bas);
        len = cto32(bas >> basstart);
        wvr += basstart;
    }

    cpu_watchpoint_insert(CPU(cpu), wvr, len, flags,
                          &env->cpu_watchpoint[n]);
}

void hw_watchpoint_update_all(ARMCPU *cpu)
{
    int i;
    CPUARMState *env = &cpu->env;

    /* Completely clear out existing QEMU watchpoints and our array, to
     * avoid possible stale entries following migration load.
     */
    cpu_watchpoint_remove_all(CPU(cpu), BP_CPU);
    memset(env->cpu_watchpoint, 0, sizeof(env->cpu_watchpoint));

    for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_watchpoint); i++) {
        hw_watchpoint_update(cpu, i);
    }
}

static void dbgwvr_write(CPUARMState *env, const ARMCPRegInfo *ri,
                         uint64_t value)
{
    ARMCPU *cpu = arm_env_get_cpu(env);
    int i = ri->crm;

    /* Bits [63:49] are hardwired to the value of bit [48]; that is, the
     * register reads and behaves as if values written are sign extended.
     * Bits [1:0] are RES0.
     */
    value = sextract64(value, 0, 49) & ~3ULL;

    raw_write(env, ri, value);
    hw_watchpoint_update(cpu, i);
}

static void dbgwcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
                         uint64_t value)
{
    ARMCPU *cpu = arm_env_get_cpu(env);
    int i = ri->crm;

    raw_write(env, ri, value);
    hw_watchpoint_update(cpu, i);
}

2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607
void hw_breakpoint_update(ARMCPU *cpu, int n)
{
    CPUARMState *env = &cpu->env;
    uint64_t bvr = env->cp15.dbgbvr[n];
    uint64_t bcr = env->cp15.dbgbcr[n];
    vaddr addr;
    int bt;
    int flags = BP_CPU;

    if (env->cpu_breakpoint[n]) {
        cpu_breakpoint_remove_by_ref(CPU(cpu), env->cpu_breakpoint[n]);
        env->cpu_breakpoint[n] = NULL;
    }

    if (!extract64(bcr, 0, 1)) {
        /* E bit clear : watchpoint disabled */
        return;
    }

    bt = extract64(bcr, 20, 4);

    switch (bt) {
    case 4: /* unlinked address mismatch (reserved if AArch64) */
    case 5: /* linked address mismatch (reserved if AArch64) */
        qemu_log_mask(LOG_UNIMP,
                      "arm: address mismatch breakpoint types not implemented");
        return;
    case 0: /* unlinked address match */
    case 1: /* linked address match */
    {
        /* Bits [63:49] are hardwired to the value of bit [48]; that is,
         * we behave as if the register was sign extended. Bits [1:0] are
         * RES0. The BAS field is used to allow setting breakpoints on 16
         * bit wide instructions; it is CONSTRAINED UNPREDICTABLE whether
         * a bp will fire if the addresses covered by the bp and the addresses
         * covered by the insn overlap but the insn doesn't start at the
         * start of the bp address range. We choose to require the insn and
         * the bp to have the same address. The constraints on writing to
         * BAS enforced in dbgbcr_write mean we have only four cases:
         *  0b0000  => no breakpoint
         *  0b0011  => breakpoint on addr
         *  0b1100  => breakpoint on addr + 2
         *  0b1111  => breakpoint on addr
         * See also figure D2-3 in the v8 ARM ARM (DDI0487A.c).
         */
        int bas = extract64(bcr, 5, 4);
        addr = sextract64(bvr, 0, 49) & ~3ULL;
        if (bas == 0) {
            return;
        }
        if (bas == 0xc) {
            addr += 2;
        }
        break;
    }
    case 2: /* unlinked context ID match */
    case 8: /* unlinked VMID match (reserved if no EL2) */
    case 10: /* unlinked context ID and VMID match (reserved if no EL2) */
        qemu_log_mask(LOG_UNIMP,
                      "arm: unlinked context breakpoint types not implemented");
        return;
    case 9: /* linked VMID match (reserved if no EL2) */
    case 11: /* linked context ID and VMID match (reserved if no EL2) */
    case 3: /* linked context ID match */
    default:
        /* We must generate no events for Linked context matches (unless
         * they are linked to by some other bp/wp, which is handled in
         * updates for the linking bp/wp). We choose to also generate no events
         * for reserved values.
         */
        return;
    }

    cpu_breakpoint_insert(CPU(cpu), addr, flags, &env->cpu_breakpoint[n]);
}

void hw_breakpoint_update_all(ARMCPU *cpu)
{
    int i;
    CPUARMState *env = &cpu->env;

    /* Completely clear out existing QEMU breakpoints and our array, to
     * avoid possible stale entries following migration load.
     */
    cpu_breakpoint_remove_all(CPU(cpu), BP_CPU);
    memset(env->cpu_breakpoint, 0, sizeof(env->cpu_breakpoint));

    for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_breakpoint); i++) {
        hw_breakpoint_update(cpu, i);
    }
}

static void dbgbvr_write(CPUARMState *env, const ARMCPRegInfo *ri,
                         uint64_t value)
{
    ARMCPU *cpu = arm_env_get_cpu(env);
    int i = ri->crm;

    raw_write(env, ri, value);
    hw_breakpoint_update(cpu, i);
}

static void dbgbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
                         uint64_t value)
{
    ARMCPU *cpu = arm_env_get_cpu(env);
    int i = ri->crm;

    /* BAS[3] is a read-only copy of BAS[2], and BAS[1] a read-only
     * copy of BAS[0].
     */
    value = deposit64(value, 6, 1, extract64(value, 5, 1));
    value = deposit64(value, 8, 1, extract64(value, 7, 1));

    raw_write(env, ri, value);
    hw_breakpoint_update(cpu, i);
}

2608
static void define_debug_regs(ARMCPU *cpu)
2609
{
2610 2611
    /* Define v7 and v8 architectural debug registers.
     * These are just dummy implementations for now.
2612 2613
     */
    int i;
2614
    int wrps, brps, ctx_cmps;
2615 2616 2617 2618 2619
    ARMCPRegInfo dbgdidr = {
        .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0,
        .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = cpu->dbgdidr,
    };

2620
    /* Note that all these register fields hold "number of Xs minus 1". */
2621 2622
    brps = extract32(cpu->dbgdidr, 24, 4);
    wrps = extract32(cpu->dbgdidr, 28, 4);
2623 2624 2625
    ctx_cmps = extract32(cpu->dbgdidr, 20, 4);

    assert(ctx_cmps <= brps);
2626 2627 2628 2629 2630 2631 2632 2633

    /* The DBGDIDR and ID_AA64DFR0_EL1 define various properties
     * of the debug registers such as number of breakpoints;
     * check that if they both exist then they agree.
     */
    if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
        assert(extract32(cpu->id_aa64dfr0, 12, 4) == brps);
        assert(extract32(cpu->id_aa64dfr0, 20, 4) == wrps);
2634
        assert(extract32(cpu->id_aa64dfr0, 28, 4) == ctx_cmps);
2635
    }
2636

2637
    define_one_arm_cp_reg(cpu, &dbgdidr);
2638 2639 2640 2641 2642 2643
    define_arm_cp_regs(cpu, debug_cp_reginfo);

    if (arm_feature(&cpu->env, ARM_FEATURE_LPAE)) {
        define_arm_cp_regs(cpu, debug_lpae_cp_reginfo);
    }

2644
    for (i = 0; i < brps + 1; i++) {
2645
        ARMCPRegInfo dbgregs[] = {
2646 2647
            { .name = "DBGBVR", .state = ARM_CP_STATE_BOTH,
              .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 4,
2648
              .access = PL1_RW,
2649 2650 2651
              .fieldoffset = offsetof(CPUARMState, cp15.dbgbvr[i]),
              .writefn = dbgbvr_write, .raw_writefn = raw_write
            },
2652 2653
            { .name = "DBGBCR", .state = ARM_CP_STATE_BOTH,
              .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 5,
2654
              .access = PL1_RW,
2655 2656 2657
              .fieldoffset = offsetof(CPUARMState, cp15.dbgbcr[i]),
              .writefn = dbgbcr_write, .raw_writefn = raw_write
            },
2658 2659 2660 2661 2662 2663 2664
            REGINFO_SENTINEL
        };
        define_arm_cp_regs(cpu, dbgregs);
    }

    for (i = 0; i < wrps + 1; i++) {
        ARMCPRegInfo dbgregs[] = {
2665 2666
            { .name = "DBGWVR", .state = ARM_CP_STATE_BOTH,
              .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 6,
2667
              .access = PL1_RW,
2668 2669 2670
              .fieldoffset = offsetof(CPUARMState, cp15.dbgwvr[i]),
              .writefn = dbgwvr_write, .raw_writefn = raw_write
            },
2671 2672
            { .name = "DBGWCR", .state = ARM_CP_STATE_BOTH,
              .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 7,
2673
              .access = PL1_RW,
2674 2675 2676 2677
              .fieldoffset = offsetof(CPUARMState, cp15.dbgwcr[i]),
              .writefn = dbgwcr_write, .raw_writefn = raw_write
            },
            REGINFO_SENTINEL
2678 2679 2680 2681 2682
        };
        define_arm_cp_regs(cpu, dbgregs);
    }
}

2683 2684 2685 2686 2687 2688 2689 2690 2691
void register_cp_regs_for_features(ARMCPU *cpu)
{
    /* Register all the coprocessor registers based on feature bits */
    CPUARMState *env = &cpu->env;
    if (arm_feature(env, ARM_FEATURE_M)) {
        /* M profile has no coprocessor registers */
        return;
    }

2692
    define_arm_cp_regs(cpu, cp_reginfo);
2693 2694 2695 2696 2697 2698 2699
    if (!arm_feature(env, ARM_FEATURE_V8)) {
        /* Must go early as it is full of wildcards that may be
         * overridden by later definitions.
         */
        define_arm_cp_regs(cpu, not_v8_cp_reginfo);
    }

2700
    if (arm_feature(env, ARM_FEATURE_V6)) {
2701 2702
        /* The ID registers all have impdef reset values */
        ARMCPRegInfo v6_idregs[] = {
2703 2704 2705
            { .name = "ID_PFR0", .state = ARM_CP_STATE_BOTH,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0,
              .access = PL1_R, .type = ARM_CP_CONST,
2706
              .resetvalue = cpu->id_pfr0 },
2707 2708 2709
            { .name = "ID_PFR1", .state = ARM_CP_STATE_BOTH,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 1,
              .access = PL1_R, .type = ARM_CP_CONST,
2710
              .resetvalue = cpu->id_pfr1 },
2711 2712 2713
            { .name = "ID_DFR0", .state = ARM_CP_STATE_BOTH,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 2,
              .access = PL1_R, .type = ARM_CP_CONST,
2714
              .resetvalue = cpu->id_dfr0 },
2715 2716 2717
            { .name = "ID_AFR0", .state = ARM_CP_STATE_BOTH,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 3,
              .access = PL1_R, .type = ARM_CP_CONST,
2718
              .resetvalue = cpu->id_afr0 },
2719 2720 2721
            { .name = "ID_MMFR0", .state = ARM_CP_STATE_BOTH,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 4,
              .access = PL1_R, .type = ARM_CP_CONST,
2722
              .resetvalue = cpu->id_mmfr0 },
2723 2724 2725
            { .name = "ID_MMFR1", .state = ARM_CP_STATE_BOTH,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 5,
              .access = PL1_R, .type = ARM_CP_CONST,
2726
              .resetvalue = cpu->id_mmfr1 },
2727 2728 2729
            { .name = "ID_MMFR2", .state = ARM_CP_STATE_BOTH,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 6,
              .access = PL1_R, .type = ARM_CP_CONST,
2730
              .resetvalue = cpu->id_mmfr2 },
2731 2732 2733
            { .name = "ID_MMFR3", .state = ARM_CP_STATE_BOTH,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 7,
              .access = PL1_R, .type = ARM_CP_CONST,
2734
              .resetvalue = cpu->id_mmfr3 },
2735 2736 2737
            { .name = "ID_ISAR0", .state = ARM_CP_STATE_BOTH,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0,
              .access = PL1_R, .type = ARM_CP_CONST,
2738
              .resetvalue = cpu->id_isar0 },
2739 2740 2741
            { .name = "ID_ISAR1", .state = ARM_CP_STATE_BOTH,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 1,
              .access = PL1_R, .type = ARM_CP_CONST,
2742
              .resetvalue = cpu->id_isar1 },
2743 2744 2745
            { .name = "ID_ISAR2", .state = ARM_CP_STATE_BOTH,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2,
              .access = PL1_R, .type = ARM_CP_CONST,
2746
              .resetvalue = cpu->id_isar2 },
2747 2748 2749
            { .name = "ID_ISAR3", .state = ARM_CP_STATE_BOTH,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 3,
              .access = PL1_R, .type = ARM_CP_CONST,
2750
              .resetvalue = cpu->id_isar3 },
2751 2752 2753
            { .name = "ID_ISAR4", .state = ARM_CP_STATE_BOTH,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 4,
              .access = PL1_R, .type = ARM_CP_CONST,
2754
              .resetvalue = cpu->id_isar4 },
2755 2756 2757
            { .name = "ID_ISAR5", .state = ARM_CP_STATE_BOTH,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 5,
              .access = PL1_R, .type = ARM_CP_CONST,
2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768
              .resetvalue = cpu->id_isar5 },
            /* 6..7 are as yet unallocated and must RAZ */
            { .name = "ID_ISAR6", .cp = 15, .crn = 0, .crm = 2,
              .opc1 = 0, .opc2 = 6, .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = 0 },
            { .name = "ID_ISAR7", .cp = 15, .crn = 0, .crm = 2,
              .opc1 = 0, .opc2 = 7, .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = 0 },
            REGINFO_SENTINEL
        };
        define_arm_cp_regs(cpu, v6_idregs);
2769 2770 2771 2772
        define_arm_cp_regs(cpu, v6_cp_reginfo);
    } else {
        define_arm_cp_regs(cpu, not_v6_cp_reginfo);
    }
2773 2774 2775
    if (arm_feature(env, ARM_FEATURE_V6K)) {
        define_arm_cp_regs(cpu, v6k_cp_reginfo);
    }
2776 2777 2778
    if (arm_feature(env, ARM_FEATURE_V7MP)) {
        define_arm_cp_regs(cpu, v7mp_cp_reginfo);
    }
2779
    if (arm_feature(env, ARM_FEATURE_V7)) {
2780
        /* v7 performance monitor control register: same implementor
2781 2782
         * field as main ID register, and we implement only the cycle
         * count register.
2783
         */
2784
#ifndef CONFIG_USER_ONLY
2785 2786
        ARMCPRegInfo pmcr = {
            .name = "PMCR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 0,
2787 2788 2789
            .access = PL0_RW,
            .type = ARM_CP_IO | ARM_CP_NO_MIGRATE,
            .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcr),
2790 2791
            .accessfn = pmreg_access, .writefn = pmcr_write,
            .raw_writefn = raw_write,
2792
        };
2793 2794 2795 2796 2797 2798 2799 2800 2801
        ARMCPRegInfo pmcr64 = {
            .name = "PMCR_EL0", .state = ARM_CP_STATE_AA64,
            .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 0,
            .access = PL0_RW, .accessfn = pmreg_access,
            .type = ARM_CP_IO,
            .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcr),
            .resetvalue = cpu->midr & 0xff000000,
            .writefn = pmcr_write, .raw_writefn = raw_write,
        };
2802
        define_one_arm_cp_reg(cpu, &pmcr);
2803
        define_one_arm_cp_reg(cpu, &pmcr64);
2804
#endif
2805
        ARMCPRegInfo clidr = {
2806 2807
            .name = "CLIDR", .state = ARM_CP_STATE_BOTH,
            .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 1,
2808 2809 2810
            .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->clidr
        };
        define_one_arm_cp_reg(cpu, &clidr);
2811
        define_arm_cp_regs(cpu, v7_cp_reginfo);
2812
        define_debug_regs(cpu);
2813 2814
    } else {
        define_arm_cp_regs(cpu, not_v7_cp_reginfo);
2815
    }
2816
    if (arm_feature(env, ARM_FEATURE_V8)) {
2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829
        /* AArch64 ID registers, which all have impdef reset values */
        ARMCPRegInfo v8_idregs[] = {
            { .name = "ID_AA64PFR0_EL1", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 0,
              .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = cpu->id_aa64pfr0 },
            { .name = "ID_AA64PFR1_EL1", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 1,
              .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = cpu->id_aa64pfr1},
            { .name = "ID_AA64DFR0_EL1", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 0,
              .access = PL1_R, .type = ARM_CP_CONST,
S
Stefan Weil 已提交
2830
              /* We mask out the PMUVer field, because we don't currently
2831 2832 2833 2834 2835
               * implement the PMU. Not advertising it prevents the guest
               * from trying to use it and getting UNDEFs on registers we
               * don't implement.
               */
              .resetvalue = cpu->id_aa64dfr0 & ~0xf00 },
2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863
            { .name = "ID_AA64DFR1_EL1", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 1,
              .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = cpu->id_aa64dfr1 },
            { .name = "ID_AA64AFR0_EL1", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 4,
              .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = cpu->id_aa64afr0 },
            { .name = "ID_AA64AFR1_EL1", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 5,
              .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = cpu->id_aa64afr1 },
            { .name = "ID_AA64ISAR0_EL1", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 0,
              .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = cpu->id_aa64isar0 },
            { .name = "ID_AA64ISAR1_EL1", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 1,
              .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = cpu->id_aa64isar1 },
            { .name = "ID_AA64MMFR0_EL1", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0,
              .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = cpu->id_aa64mmfr0 },
            { .name = "ID_AA64MMFR1_EL1", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 1,
              .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = cpu->id_aa64mmfr1 },
2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875
            { .name = "MVFR0_EL1", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0,
              .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = cpu->mvfr0 },
            { .name = "MVFR1_EL1", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1,
              .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = cpu->mvfr1 },
            { .name = "MVFR2_EL1", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2,
              .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = cpu->mvfr2 },
2876 2877
            REGINFO_SENTINEL
        };
2878 2879 2880 2881 2882 2883
        ARMCPRegInfo rvbar = {
            .name = "RVBAR_EL1", .state = ARM_CP_STATE_AA64,
            .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 2,
            .type = ARM_CP_CONST, .access = PL1_R, .resetvalue = cpu->rvbar
        };
        define_one_arm_cp_reg(cpu, &rvbar);
2884
        define_arm_cp_regs(cpu, v8_idregs);
2885 2886
        define_arm_cp_regs(cpu, v8_cp_reginfo);
    }
2887 2888
    if (arm_feature(env, ARM_FEATURE_EL2)) {
        define_arm_cp_regs(cpu, v8_el2_cp_reginfo);
2889 2890 2891 2892 2893 2894 2895
    } else {
        /* If EL2 is missing but higher ELs are enabled, we need to
         * register the no_el2 reginfos.
         */
        if (arm_feature(env, ARM_FEATURE_EL3)) {
            define_arm_cp_regs(cpu, v8_el3_no_el2_cp_reginfo);
        }
2896
    }
2897 2898 2899
    if (arm_feature(env, ARM_FEATURE_EL3)) {
        define_arm_cp_regs(cpu, v8_el3_cp_reginfo);
    }
2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910
    if (arm_feature(env, ARM_FEATURE_MPU)) {
        /* These are the MPU registers prior to PMSAv6. Any new
         * PMSA core later than the ARM946 will require that we
         * implement the PMSAv6 or PMSAv7 registers, which are
         * completely different.
         */
        assert(!arm_feature(env, ARM_FEATURE_V6));
        define_arm_cp_regs(cpu, pmsav5_cp_reginfo);
    } else {
        define_arm_cp_regs(cpu, vmsa_cp_reginfo);
    }
2911 2912 2913
    if (arm_feature(env, ARM_FEATURE_THUMB2EE)) {
        define_arm_cp_regs(cpu, t2ee_cp_reginfo);
    }
2914 2915 2916
    if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
        define_arm_cp_regs(cpu, generic_timer_cp_reginfo);
    }
2917 2918 2919
    if (arm_feature(env, ARM_FEATURE_VAPA)) {
        define_arm_cp_regs(cpu, vapa_cp_reginfo);
    }
2920 2921 2922 2923 2924 2925 2926 2927 2928
    if (arm_feature(env, ARM_FEATURE_CACHE_TEST_CLEAN)) {
        define_arm_cp_regs(cpu, cache_test_clean_cp_reginfo);
    }
    if (arm_feature(env, ARM_FEATURE_CACHE_DIRTY_REG)) {
        define_arm_cp_regs(cpu, cache_dirty_status_cp_reginfo);
    }
    if (arm_feature(env, ARM_FEATURE_CACHE_BLOCK_OPS)) {
        define_arm_cp_regs(cpu, cache_block_ops_cp_reginfo);
    }
2929 2930 2931
    if (arm_feature(env, ARM_FEATURE_OMAPCP)) {
        define_arm_cp_regs(cpu, omap_cp_reginfo);
    }
2932 2933 2934
    if (arm_feature(env, ARM_FEATURE_STRONGARM)) {
        define_arm_cp_regs(cpu, strongarm_cp_reginfo);
    }
2935 2936 2937 2938 2939 2940
    if (arm_feature(env, ARM_FEATURE_XSCALE)) {
        define_arm_cp_regs(cpu, xscale_cp_reginfo);
    }
    if (arm_feature(env, ARM_FEATURE_DUMMY_C15_REGS)) {
        define_arm_cp_regs(cpu, dummy_c15_cp_reginfo);
    }
2941 2942 2943
    if (arm_feature(env, ARM_FEATURE_LPAE)) {
        define_arm_cp_regs(cpu, lpae_cp_reginfo);
    }
2944 2945 2946 2947 2948
    /* Slightly awkwardly, the OMAP and StrongARM cores need all of
     * cp15 crn=0 to be writes-ignored, whereas for other cores they should
     * be read-only (ie write causes UNDEF exception).
     */
    {
2949 2950 2951
        ARMCPRegInfo id_pre_v8_midr_cp_reginfo[] = {
            /* Pre-v8 MIDR space.
             * Note that the MIDR isn't a simple constant register because
2952 2953
             * of the TI925 behaviour where writes to another register can
             * cause the MIDR value to change.
2954 2955 2956 2957
             *
             * Unimplemented registers in the c15 0 0 0 space default to
             * MIDR. Define MIDR first as this entire space, then CTR, TCMTR
             * and friends override accordingly.
2958 2959
             */
            { .name = "MIDR",
2960
              .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = CP_ANY,
2961
              .access = PL1_R, .resetvalue = cpu->midr,
2962
              .writefn = arm_cp_write_ignore, .raw_writefn = raw_write,
2963 2964
              .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
              .type = ARM_CP_OVERRIDE },
2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982
            /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */
            { .name = "DUMMY",
              .cp = 15, .crn = 0, .crm = 3, .opc1 = 0, .opc2 = CP_ANY,
              .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
            { .name = "DUMMY",
              .cp = 15, .crn = 0, .crm = 4, .opc1 = 0, .opc2 = CP_ANY,
              .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
            { .name = "DUMMY",
              .cp = 15, .crn = 0, .crm = 5, .opc1 = 0, .opc2 = CP_ANY,
              .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
            { .name = "DUMMY",
              .cp = 15, .crn = 0, .crm = 6, .opc1 = 0, .opc2 = CP_ANY,
              .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
            { .name = "DUMMY",
              .cp = 15, .crn = 0, .crm = 7, .opc1 = 0, .opc2 = CP_ANY,
              .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
            REGINFO_SENTINEL
        };
2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013
        ARMCPRegInfo id_v8_midr_cp_reginfo[] = {
            /* v8 MIDR -- the wildcard isn't necessary, and nor is the
             * variable-MIDR TI925 behaviour. Instead we have a single
             * (strictly speaking IMPDEF) alias of the MIDR, REVIDR.
             */
            { .name = "MIDR_EL1", .state = ARM_CP_STATE_BOTH,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 0,
              .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->midr },
            { .name = "REVIDR_EL1", .state = ARM_CP_STATE_BOTH,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 6,
              .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->midr },
            REGINFO_SENTINEL
        };
        ARMCPRegInfo id_cp_reginfo[] = {
            /* These are common to v8 and pre-v8 */
            { .name = "CTR",
              .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 1,
              .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
            { .name = "CTR_EL0", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 0, .crm = 0,
              .access = PL0_R, .accessfn = ctr_el0_access,
              .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
            /* TCMTR and TLBTR exist in v8 but have no 64-bit versions */
            { .name = "TCMTR",
              .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 2,
              .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
            { .name = "TLBTR",
              .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 3,
              .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
            REGINFO_SENTINEL
        };
3014 3015 3016 3017 3018 3019 3020 3021 3022
        ARMCPRegInfo crn0_wi_reginfo = {
            .name = "CRN0_WI", .cp = 15, .crn = 0, .crm = CP_ANY,
            .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_W,
            .type = ARM_CP_NOP | ARM_CP_OVERRIDE
        };
        if (arm_feature(env, ARM_FEATURE_OMAPCP) ||
            arm_feature(env, ARM_FEATURE_STRONGARM)) {
            ARMCPRegInfo *r;
            /* Register the blanket "writes ignored" value first to cover the
3023 3024 3025
             * whole space. Then update the specific ID registers to allow write
             * access, so that they ignore writes rather than causing them to
             * UNDEF.
3026 3027
             */
            define_one_arm_cp_reg(cpu, &crn0_wi_reginfo);
3028 3029 3030 3031
            for (r = id_pre_v8_midr_cp_reginfo;
                 r->type != ARM_CP_SENTINEL; r++) {
                r->access = PL1_RW;
            }
3032 3033 3034 3035
            for (r = id_cp_reginfo; r->type != ARM_CP_SENTINEL; r++) {
                r->access = PL1_RW;
            }
        }
3036 3037 3038 3039 3040
        if (arm_feature(env, ARM_FEATURE_V8)) {
            define_arm_cp_regs(cpu, id_v8_midr_cp_reginfo);
        } else {
            define_arm_cp_regs(cpu, id_pre_v8_midr_cp_reginfo);
        }
3041
        define_arm_cp_regs(cpu, id_cp_reginfo);
3042 3043
    }

3044 3045 3046 3047
    if (arm_feature(env, ARM_FEATURE_MPIDR)) {
        define_arm_cp_regs(cpu, mpidr_cp_reginfo);
    }

3048 3049
    if (arm_feature(env, ARM_FEATURE_AUXCR)) {
        ARMCPRegInfo auxcr = {
3050 3051
            .name = "ACTLR_EL1", .state = ARM_CP_STATE_BOTH,
            .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 1,
3052 3053 3054 3055 3056 3057
            .access = PL1_RW, .type = ARM_CP_CONST,
            .resetvalue = cpu->reset_auxcr
        };
        define_one_arm_cp_reg(cpu, &auxcr);
    }

3058
    if (arm_feature(env, ARM_FEATURE_CBAR)) {
3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091
        if (arm_feature(env, ARM_FEATURE_AARCH64)) {
            /* 32 bit view is [31:18] 0...0 [43:32]. */
            uint32_t cbar32 = (extract64(cpu->reset_cbar, 18, 14) << 18)
                | extract64(cpu->reset_cbar, 32, 12);
            ARMCPRegInfo cbar_reginfo[] = {
                { .name = "CBAR",
                  .type = ARM_CP_CONST,
                  .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0,
                  .access = PL1_R, .resetvalue = cpu->reset_cbar },
                { .name = "CBAR_EL1", .state = ARM_CP_STATE_AA64,
                  .type = ARM_CP_CONST,
                  .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 3, .opc2 = 0,
                  .access = PL1_R, .resetvalue = cbar32 },
                REGINFO_SENTINEL
            };
            /* We don't implement a r/w 64 bit CBAR currently */
            assert(arm_feature(env, ARM_FEATURE_CBAR_RO));
            define_arm_cp_regs(cpu, cbar_reginfo);
        } else {
            ARMCPRegInfo cbar = {
                .name = "CBAR",
                .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0,
                .access = PL1_R|PL3_W, .resetvalue = cpu->reset_cbar,
                .fieldoffset = offsetof(CPUARMState,
                                        cp15.c15_config_base_address)
            };
            if (arm_feature(env, ARM_FEATURE_CBAR_RO)) {
                cbar.access = PL1_R;
                cbar.fieldoffset = 0;
                cbar.type = ARM_CP_CONST;
            }
            define_one_arm_cp_reg(cpu, &cbar);
        }
3092 3093
    }

3094 3095 3096
    /* Generic registers whose values depend on the implementation */
    {
        ARMCPRegInfo sctlr = {
3097 3098
            .name = "SCTLR", .state = ARM_CP_STATE_BOTH,
            .opc0 = 3, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 0,
3099
            .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c1_sys),
3100 3101
            .writefn = sctlr_write, .resetvalue = cpu->reset_sctlr,
            .raw_writefn = raw_write,
3102 3103 3104 3105 3106 3107 3108 3109 3110 3111
        };
        if (arm_feature(env, ARM_FEATURE_XSCALE)) {
            /* Normally we would always end the TB on an SCTLR write, but Linux
             * arch/arm/mach-pxa/sleep.S expects two instructions following
             * an MMU enable to execute from cache.  Imitate this behaviour.
             */
            sctlr.type |= ARM_CP_SUPPRESS_TB_END;
        }
        define_one_arm_cp_reg(cpu, &sctlr);
    }
3112 3113
}

3114
ARMCPU *cpu_arm_init(const char *cpu_model)
P
pbrook 已提交
3115
{
3116
    return ARM_CPU(cpu_generic_init(TYPE_ARM_CPU, cpu_model));
3117 3118 3119 3120
}

void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu)
{
3121
    CPUState *cs = CPU(cpu);
3122 3123
    CPUARMState *env = &cpu->env;

3124 3125 3126 3127 3128
    if (arm_feature(env, ARM_FEATURE_AARCH64)) {
        gdb_register_coprocessor(cs, aarch64_fpu_gdb_get_reg,
                                 aarch64_fpu_gdb_set_reg,
                                 34, "aarch64-fpu.xml", 0);
    } else if (arm_feature(env, ARM_FEATURE_NEON)) {
3129
        gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
P
pbrook 已提交
3130 3131
                                 51, "arm-neon.xml", 0);
    } else if (arm_feature(env, ARM_FEATURE_VFP3)) {
3132
        gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
P
pbrook 已提交
3133 3134
                                 35, "arm-vfp3.xml", 0);
    } else if (arm_feature(env, ARM_FEATURE_VFP)) {
3135
        gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
P
pbrook 已提交
3136 3137
                                 19, "arm-vfp.xml", 0);
    }
P
pbrook 已提交
3138 3139
}

3140 3141
/* Sort alphabetically by type name, except for "any". */
static gint arm_cpu_list_compare(gconstpointer a, gconstpointer b)
P
pbrook 已提交
3142
{
3143 3144 3145
    ObjectClass *class_a = (ObjectClass *)a;
    ObjectClass *class_b = (ObjectClass *)b;
    const char *name_a, *name_b;
P
pbrook 已提交
3146

3147 3148
    name_a = object_class_get_name(class_a);
    name_b = object_class_get_name(class_b);
A
Andreas Färber 已提交
3149
    if (strcmp(name_a, "any-" TYPE_ARM_CPU) == 0) {
3150
        return 1;
A
Andreas Färber 已提交
3151
    } else if (strcmp(name_b, "any-" TYPE_ARM_CPU) == 0) {
3152 3153 3154
        return -1;
    } else {
        return strcmp(name_a, name_b);
P
pbrook 已提交
3155 3156 3157
    }
}

3158
static void arm_cpu_list_entry(gpointer data, gpointer user_data)
P
pbrook 已提交
3159
{
3160
    ObjectClass *oc = data;
3161
    CPUListState *s = user_data;
A
Andreas Färber 已提交
3162 3163
    const char *typename;
    char *name;
P
pbrook 已提交
3164

A
Andreas Färber 已提交
3165 3166
    typename = object_class_get_name(oc);
    name = g_strndup(typename, strlen(typename) - strlen("-" TYPE_ARM_CPU));
3167
    (*s->cpu_fprintf)(s->file, "  %s\n",
A
Andreas Färber 已提交
3168 3169
                      name);
    g_free(name);
3170 3171 3172 3173
}

void arm_cpu_list(FILE *f, fprintf_function cpu_fprintf)
{
3174
    CPUListState s = {
3175 3176 3177 3178 3179 3180 3181 3182 3183 3184
        .file = f,
        .cpu_fprintf = cpu_fprintf,
    };
    GSList *list;

    list = object_class_get_list(TYPE_ARM_CPU, false);
    list = g_slist_sort(list, arm_cpu_list_compare);
    (*cpu_fprintf)(f, "Available CPUs:\n");
    g_slist_foreach(list, arm_cpu_list_entry, &s);
    g_slist_free(list);
3185 3186 3187 3188 3189 3190
#ifdef CONFIG_KVM
    /* The 'host' CPU type is dynamically registered only if KVM is
     * enabled, so we have to special-case it here:
     */
    (*cpu_fprintf)(f, "  host (only available in KVM mode)\n");
#endif
P
pbrook 已提交
3191 3192
}

3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223
static void arm_cpu_add_definition(gpointer data, gpointer user_data)
{
    ObjectClass *oc = data;
    CpuDefinitionInfoList **cpu_list = user_data;
    CpuDefinitionInfoList *entry;
    CpuDefinitionInfo *info;
    const char *typename;

    typename = object_class_get_name(oc);
    info = g_malloc0(sizeof(*info));
    info->name = g_strndup(typename,
                           strlen(typename) - strlen("-" TYPE_ARM_CPU));

    entry = g_malloc0(sizeof(*entry));
    entry->value = info;
    entry->next = *cpu_list;
    *cpu_list = entry;
}

CpuDefinitionInfoList *arch_query_cpu_definitions(Error **errp)
{
    CpuDefinitionInfoList *cpu_list = NULL;
    GSList *list;

    list = object_class_get_list(TYPE_ARM_CPU, false);
    g_slist_foreach(list, arm_cpu_add_definition, &cpu_list);
    g_slist_free(list);

    return cpu_list;
}

3224
static void add_cpreg_to_hashtable(ARMCPU *cpu, const ARMCPRegInfo *r,
3225 3226
                                   void *opaque, int state,
                                   int crm, int opc1, int opc2)
3227 3228 3229 3230 3231 3232 3233
{
    /* Private utility function for define_one_arm_cp_reg_with_opaque():
     * add a single reginfo struct to the hash table.
     */
    uint32_t *key = g_new(uint32_t, 1);
    ARMCPRegInfo *r2 = g_memdup(r, sizeof(ARMCPRegInfo));
    int is64 = (r->type & ARM_CP_64BIT) ? 1 : 0;
3234 3235 3236 3237
    if (r->state == ARM_CP_STATE_BOTH && state == ARM_CP_STATE_AA32) {
        /* The AArch32 view of a shared register sees the lower 32 bits
         * of a 64 bit backing field. It is not migratable as the AArch64
         * view handles that. AArch64 also handles reset.
3238
         * We assume it is a cp15 register if the .cp field is left unset.
3239
         */
3240 3241 3242
        if (r2->cp == 0) {
            r2->cp = 15;
        }
3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254
        r2->type |= ARM_CP_NO_MIGRATE;
        r2->resetfn = arm_cp_reset_ignore;
#ifdef HOST_WORDS_BIGENDIAN
        if (r2->fieldoffset) {
            r2->fieldoffset += sizeof(uint32_t);
        }
#endif
    }
    if (state == ARM_CP_STATE_AA64) {
        /* To allow abbreviation of ARMCPRegInfo
         * definitions, we treat cp == 0 as equivalent to
         * the value for "standard guest-visible sysreg".
3255 3256 3257
         * STATE_BOTH definitions are also always "standard
         * sysreg" in their AArch64 view (the .cp value may
         * be non-zero for the benefit of the AArch32 view).
3258
         */
3259
        if (r->cp == 0 || r->state == ARM_CP_STATE_BOTH) {
3260 3261 3262 3263 3264 3265 3266
            r2->cp = CP_REG_ARM64_SYSREG_CP;
        }
        *key = ENCODE_AA64_CP_REG(r2->cp, r2->crn, crm,
                                  r2->opc0, opc1, opc2);
    } else {
        *key = ENCODE_CP_REG(r2->cp, is64, r2->crn, crm, opc1, opc2);
    }
3267 3268 3269
    if (opaque) {
        r2->opaque = opaque;
    }
3270 3271 3272 3273
    /* reginfo passed to helpers is correct for the actual access,
     * and is never ARM_CP_STATE_BOTH:
     */
    r2->state = state;
3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311
    /* Make sure reginfo passed to helpers for wildcarded regs
     * has the correct crm/opc1/opc2 for this reg, not CP_ANY:
     */
    r2->crm = crm;
    r2->opc1 = opc1;
    r2->opc2 = opc2;
    /* By convention, for wildcarded registers only the first
     * entry is used for migration; the others are marked as
     * NO_MIGRATE so we don't try to transfer the register
     * multiple times. Special registers (ie NOP/WFI) are
     * never migratable.
     */
    if ((r->type & ARM_CP_SPECIAL) ||
        ((r->crm == CP_ANY) && crm != 0) ||
        ((r->opc1 == CP_ANY) && opc1 != 0) ||
        ((r->opc2 == CP_ANY) && opc2 != 0)) {
        r2->type |= ARM_CP_NO_MIGRATE;
    }

    /* Overriding of an existing definition must be explicitly
     * requested.
     */
    if (!(r->type & ARM_CP_OVERRIDE)) {
        ARMCPRegInfo *oldreg;
        oldreg = g_hash_table_lookup(cpu->cp_regs, key);
        if (oldreg && !(oldreg->type & ARM_CP_OVERRIDE)) {
            fprintf(stderr, "Register redefined: cp=%d %d bit "
                    "crn=%d crm=%d opc1=%d opc2=%d, "
                    "was %s, now %s\n", r2->cp, 32 + 32 * is64,
                    r2->crn, r2->crm, r2->opc1, r2->opc2,
                    oldreg->name, r2->name);
            g_assert_not_reached();
        }
    }
    g_hash_table_insert(cpu->cp_regs, key, r2);
}


3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325
void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
                                       const ARMCPRegInfo *r, void *opaque)
{
    /* Define implementations of coprocessor registers.
     * We store these in a hashtable because typically
     * there are less than 150 registers in a space which
     * is 16*16*16*8*8 = 262144 in size.
     * Wildcarding is supported for the crm, opc1 and opc2 fields.
     * If a register is defined twice then the second definition is
     * used, so this can be used to define some generic registers and
     * then override them with implementation specific variations.
     * At least one of the original and the second definition should
     * include ARM_CP_OVERRIDE in its type bits -- this is just a guard
     * against accidental use.
3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336
     *
     * The state field defines whether the register is to be
     * visible in the AArch32 or AArch64 execution state. If the
     * state is set to ARM_CP_STATE_BOTH then we synthesise a
     * reginfo structure for the AArch32 view, which sees the lower
     * 32 bits of the 64 bit register.
     *
     * Only registers visible in AArch64 may set r->opc0; opc0 cannot
     * be wildcarded. AArch64 registers are always considered to be 64
     * bits; the ARM_CP_64BIT* flag applies only to the AArch32 view of
     * the register, if any.
3337
     */
3338
    int crm, opc1, opc2, state;
3339 3340 3341 3342 3343 3344 3345 3346
    int crmmin = (r->crm == CP_ANY) ? 0 : r->crm;
    int crmmax = (r->crm == CP_ANY) ? 15 : r->crm;
    int opc1min = (r->opc1 == CP_ANY) ? 0 : r->opc1;
    int opc1max = (r->opc1 == CP_ANY) ? 7 : r->opc1;
    int opc2min = (r->opc2 == CP_ANY) ? 0 : r->opc2;
    int opc2max = (r->opc2 == CP_ANY) ? 7 : r->opc2;
    /* 64 bit registers have only CRm and Opc1 fields */
    assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn)));
3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392
    /* op0 only exists in the AArch64 encodings */
    assert((r->state != ARM_CP_STATE_AA32) || (r->opc0 == 0));
    /* AArch64 regs are all 64 bit so ARM_CP_64BIT is meaningless */
    assert((r->state != ARM_CP_STATE_AA64) || !(r->type & ARM_CP_64BIT));
    /* The AArch64 pseudocode CheckSystemAccess() specifies that op1
     * encodes a minimum access level for the register. We roll this
     * runtime check into our general permission check code, so check
     * here that the reginfo's specified permissions are strict enough
     * to encompass the generic architectural permission check.
     */
    if (r->state != ARM_CP_STATE_AA32) {
        int mask = 0;
        switch (r->opc1) {
        case 0: case 1: case 2:
            /* min_EL EL1 */
            mask = PL1_RW;
            break;
        case 3:
            /* min_EL EL0 */
            mask = PL0_RW;
            break;
        case 4:
            /* min_EL EL2 */
            mask = PL2_RW;
            break;
        case 5:
            /* unallocated encoding, so not possible */
            assert(false);
            break;
        case 6:
            /* min_EL EL3 */
            mask = PL3_RW;
            break;
        case 7:
            /* min_EL EL1, secure mode only (we don't check the latter) */
            mask = PL1_RW;
            break;
        default:
            /* broken reginfo with out-of-range opc1 */
            assert(false);
            break;
        }
        /* assert our permissions are not too lax (stricter is fine) */
        assert((r->access & ~mask) == 0);
    }

3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408
    /* Check that the register definition has enough info to handle
     * reads and writes if they are permitted.
     */
    if (!(r->type & (ARM_CP_SPECIAL|ARM_CP_CONST))) {
        if (r->access & PL3_R) {
            assert(r->fieldoffset || r->readfn);
        }
        if (r->access & PL3_W) {
            assert(r->fieldoffset || r->writefn);
        }
    }
    /* Bad type field probably means missing sentinel at end of reg list */
    assert(cptype_valid(r->type));
    for (crm = crmmin; crm <= crmmax; crm++) {
        for (opc1 = opc1min; opc1 <= opc1max; opc1++) {
            for (opc2 = opc2min; opc2 <= opc2max; opc2++) {
3409 3410 3411 3412 3413 3414 3415 3416
                for (state = ARM_CP_STATE_AA32;
                     state <= ARM_CP_STATE_AA64; state++) {
                    if (r->state != state && r->state != ARM_CP_STATE_BOTH) {
                        continue;
                    }
                    add_cpreg_to_hashtable(cpu, r, opaque, state,
                                           crm, opc1, opc2);
                }
3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431
            }
        }
    }
}

void define_arm_cp_regs_with_opaque(ARMCPU *cpu,
                                    const ARMCPRegInfo *regs, void *opaque)
{
    /* Define a whole list of registers */
    const ARMCPRegInfo *r;
    for (r = regs; r->type != ARM_CP_SENTINEL; r++) {
        define_one_arm_cp_reg_with_opaque(cpu, r, opaque);
    }
}

3432
const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp)
3433
{
3434
    return g_hash_table_lookup(cpregs, &encoded_cp);
3435 3436
}

3437 3438
void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
                         uint64_t value)
3439 3440 3441 3442
{
    /* Helper coprocessor write function for write-ignore registers */
}

3443
uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri)
3444 3445 3446 3447 3448
{
    /* Helper coprocessor write function for read-as-zero registers */
    return 0;
}

3449 3450 3451 3452 3453
void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque)
{
    /* Helper coprocessor reset function for do-nothing-on-reset registers */
}

3454
static int bad_mode_switch(CPUARMState *env, int mode)
3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473
{
    /* Return true if it is not valid for us to switch to
     * this CPU mode (ie all the UNPREDICTABLE cases in
     * the ARM ARM CPSRWriteByInstr pseudocode).
     */
    switch (mode) {
    case ARM_CPU_MODE_USR:
    case ARM_CPU_MODE_SYS:
    case ARM_CPU_MODE_SVC:
    case ARM_CPU_MODE_ABT:
    case ARM_CPU_MODE_UND:
    case ARM_CPU_MODE_IRQ:
    case ARM_CPU_MODE_FIQ:
        return 0;
    default:
        return 1;
    }
}

3474 3475 3476
uint32_t cpsr_read(CPUARMState *env)
{
    int ZF;
P
pbrook 已提交
3477 3478
    ZF = (env->ZF == 0);
    return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) |
3479 3480 3481
        (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
        | (env->thumb << 5) | ((env->condexec_bits & 3) << 25)
        | ((env->condexec_bits & 0xfc) << 8)
3482
        | (env->GE << 16) | (env->daif & CPSR_AIF);
3483 3484 3485 3486 3487
}

void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask)
{
    if (mask & CPSR_NZCV) {
P
pbrook 已提交
3488 3489
        env->ZF = (~val) & CPSR_Z;
        env->NF = val;
3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508
        env->CF = (val >> 29) & 1;
        env->VF = (val << 3) & 0x80000000;
    }
    if (mask & CPSR_Q)
        env->QF = ((val & CPSR_Q) != 0);
    if (mask & CPSR_T)
        env->thumb = ((val & CPSR_T) != 0);
    if (mask & CPSR_IT_0_1) {
        env->condexec_bits &= ~3;
        env->condexec_bits |= (val >> 25) & 3;
    }
    if (mask & CPSR_IT_2_7) {
        env->condexec_bits &= 3;
        env->condexec_bits |= (val >> 8) & 0xfc;
    }
    if (mask & CPSR_GE) {
        env->GE = (val >> 16) & 0xf;
    }

3509 3510 3511
    env->daif &= ~(CPSR_AIF & mask);
    env->daif |= val & CPSR_AIF & mask;

3512
    if ((env->uncached_cpsr ^ val) & mask & CPSR_M) {
3513 3514 3515 3516 3517 3518 3519 3520 3521
        if (bad_mode_switch(env, val & CPSR_M)) {
            /* Attempt to switch to an invalid mode: this is UNPREDICTABLE.
             * We choose to ignore the attempt and leave the CPSR M field
             * untouched.
             */
            mask &= ~CPSR_M;
        } else {
            switch_mode(env, val & CPSR_M);
        }
3522 3523 3524 3525 3526
    }
    mask &= ~CACHED_CPSR_BITS;
    env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask);
}

P
pbrook 已提交
3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543
/* Sign/zero extend */
uint32_t HELPER(sxtb16)(uint32_t x)
{
    uint32_t res;
    res = (uint16_t)(int8_t)x;
    res |= (uint32_t)(int8_t)(x >> 16) << 16;
    return res;
}

uint32_t HELPER(uxtb16)(uint32_t x)
{
    uint32_t res;
    res = (uint16_t)(uint8_t)x;
    res |= (uint32_t)(uint8_t)(x >> 16) << 16;
    return res;
}

P
pbrook 已提交
3544 3545
uint32_t HELPER(clz)(uint32_t x)
{
3546
    return clz32(x);
P
pbrook 已提交
3547 3548
}

P
pbrook 已提交
3549 3550 3551 3552
int32_t HELPER(sdiv)(int32_t num, int32_t den)
{
    if (den == 0)
      return 0;
A
Aurelien Jarno 已提交
3553 3554
    if (num == INT_MIN && den == -1)
      return INT_MIN;
P
pbrook 已提交
3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579
    return num / den;
}

uint32_t HELPER(udiv)(uint32_t num, uint32_t den)
{
    if (den == 0)
      return 0;
    return num / den;
}

uint32_t HELPER(rbit)(uint32_t x)
{
    x =  ((x & 0xff000000) >> 24)
       | ((x & 0x00ff0000) >> 8)
       | ((x & 0x0000ff00) << 8)
       | ((x & 0x000000ff) << 24);
    x =  ((x & 0xf0f0f0f0) >> 4)
       | ((x & 0x0f0f0f0f) << 4);
    x =  ((x & 0x88888888) >> 3)
       | ((x & 0x44444444) >> 1)
       | ((x & 0x22222222) << 1)
       | ((x & 0x11111111) << 3);
    return x;
}

3580
#if defined(CONFIG_USER_ONLY)
B
bellard 已提交
3581

3582
void arm_cpu_do_interrupt(CPUState *cs)
B
bellard 已提交
3583
{
3584
    cs->exception_index = -1;
B
bellard 已提交
3585 3586
}

3587 3588
int arm_cpu_handle_mmu_fault(CPUState *cs, vaddr address, int rw,
                             int mmu_idx)
B
bellard 已提交
3589
{
3590 3591 3592
    ARMCPU *cpu = ARM_CPU(cs);
    CPUARMState *env = &cpu->env;

3593
    env->exception.vaddress = address;
B
bellard 已提交
3594
    if (rw == 2) {
3595
        cs->exception_index = EXCP_PREFETCH_ABORT;
B
bellard 已提交
3596
    } else {
3597
        cs->exception_index = EXCP_DATA_ABORT;
B
bellard 已提交
3598 3599 3600 3601
    }
    return 1;
}

P
pbrook 已提交
3602
/* These should probably raise undefined insn exceptions.  */
3603
void HELPER(v7m_msr)(CPUARMState *env, uint32_t reg, uint32_t val)
P
pbrook 已提交
3604
{
3605 3606 3607
    ARMCPU *cpu = arm_env_get_cpu(env);

    cpu_abort(CPU(cpu), "v7m_msr %d\n", reg);
P
pbrook 已提交
3608 3609
}

3610
uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg)
P
pbrook 已提交
3611
{
3612 3613 3614
    ARMCPU *cpu = arm_env_get_cpu(env);

    cpu_abort(CPU(cpu), "v7m_mrs %d\n", reg);
P
pbrook 已提交
3615 3616 3617
    return 0;
}

3618
void switch_mode(CPUARMState *env, int mode)
B
bellard 已提交
3619
{
3620 3621 3622 3623 3624
    ARMCPU *cpu = arm_env_get_cpu(env);

    if (mode != ARM_CPU_MODE_USR) {
        cpu_abort(CPU(cpu), "Tried to switch out of user mode\n");
    }
B
bellard 已提交
3625 3626
}

3627
void HELPER(set_r13_banked)(CPUARMState *env, uint32_t mode, uint32_t val)
P
pbrook 已提交
3628
{
3629 3630 3631
    ARMCPU *cpu = arm_env_get_cpu(env);

    cpu_abort(CPU(cpu), "banked r13 write\n");
P
pbrook 已提交
3632 3633
}

3634
uint32_t HELPER(get_r13_banked)(CPUARMState *env, uint32_t mode)
P
pbrook 已提交
3635
{
3636 3637 3638
    ARMCPU *cpu = arm_env_get_cpu(env);

    cpu_abort(CPU(cpu), "banked r13 read\n");
P
pbrook 已提交
3639 3640 3641
    return 0;
}

B
bellard 已提交
3642 3643 3644
#else

/* Map CPU modes onto saved register banks.  */
3645
int bank_number(int mode)
B
bellard 已提交
3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660
{
    switch (mode) {
    case ARM_CPU_MODE_USR:
    case ARM_CPU_MODE_SYS:
        return 0;
    case ARM_CPU_MODE_SVC:
        return 1;
    case ARM_CPU_MODE_ABT:
        return 2;
    case ARM_CPU_MODE_UND:
        return 3;
    case ARM_CPU_MODE_IRQ:
        return 4;
    case ARM_CPU_MODE_FIQ:
        return 5;
3661 3662 3663 3664
    case ARM_CPU_MODE_HYP:
        return 6;
    case ARM_CPU_MODE_MON:
        return 7;
B
bellard 已提交
3665
    }
3666
    hw_error("bank number requested for bad CPSR mode value 0x%x\n", mode);
B
bellard 已提交
3667 3668
}

3669
void switch_mode(CPUARMState *env, int mode)
B
bellard 已提交
3670 3671 3672 3673 3674 3675 3676 3677 3678 3679
{
    int old_mode;
    int i;

    old_mode = env->uncached_cpsr & CPSR_M;
    if (mode == old_mode)
        return;

    if (old_mode == ARM_CPU_MODE_FIQ) {
        memcpy (env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t));
P
pbrook 已提交
3680
        memcpy (env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t));
B
bellard 已提交
3681 3682
    } else if (mode == ARM_CPU_MODE_FIQ) {
        memcpy (env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t));
P
pbrook 已提交
3683
        memcpy (env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t));
B
bellard 已提交
3684 3685
    }

3686
    i = bank_number(old_mode);
B
bellard 已提交
3687 3688 3689 3690
    env->banked_r13[i] = env->regs[13];
    env->banked_r14[i] = env->regs[14];
    env->banked_spsr[i] = env->spsr;

3691
    i = bank_number(mode);
B
bellard 已提交
3692 3693 3694 3695 3696
    env->regs[13] = env->banked_r13[i];
    env->regs[14] = env->banked_r14[i];
    env->spsr = env->banked_spsr[i];
}

P
pbrook 已提交
3697 3698
static void v7m_push(CPUARMState *env, uint32_t val)
{
3699 3700
    CPUState *cs = CPU(arm_env_get_cpu(env));

P
pbrook 已提交
3701
    env->regs[13] -= 4;
3702
    stl_phys(cs->as, env->regs[13], val);
P
pbrook 已提交
3703 3704 3705 3706
}

static uint32_t v7m_pop(CPUARMState *env)
{
3707
    CPUState *cs = CPU(arm_env_get_cpu(env));
P
pbrook 已提交
3708
    uint32_t val;
3709

3710
    val = ldl_phys(cs->as, env->regs[13]);
P
pbrook 已提交
3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733
    env->regs[13] += 4;
    return val;
}

/* Switch to V7M main or process stack pointer.  */
static void switch_v7m_sp(CPUARMState *env, int process)
{
    uint32_t tmp;
    if (env->v7m.current_sp != process) {
        tmp = env->v7m.other_sp;
        env->v7m.other_sp = env->regs[13];
        env->regs[13] = tmp;
        env->v7m.current_sp = process;
    }
}

static void do_v7m_exception_exit(CPUARMState *env)
{
    uint32_t type;
    uint32_t xpsr;

    type = env->regs[15];
    if (env->v7m.exception != 0)
P
Paul Brook 已提交
3734
        armv7m_nvic_complete_irq(env->nvic, env->v7m.exception);
P
pbrook 已提交
3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757

    /* Switch to the target stack.  */
    switch_v7m_sp(env, (type & 4) != 0);
    /* Pop registers.  */
    env->regs[0] = v7m_pop(env);
    env->regs[1] = v7m_pop(env);
    env->regs[2] = v7m_pop(env);
    env->regs[3] = v7m_pop(env);
    env->regs[12] = v7m_pop(env);
    env->regs[14] = v7m_pop(env);
    env->regs[15] = v7m_pop(env);
    xpsr = v7m_pop(env);
    xpsr_write(env, xpsr, 0xfffffdff);
    /* Undo stack alignment.  */
    if (xpsr & 0x200)
        env->regs[13] |= 4;
    /* ??? The exception return type specifies Thread/Handler mode.  However
       this is also implied by the xPSR value. Not sure what to do
       if there is a mismatch.  */
    /* ??? Likewise for mismatches between the CONTROL register and the stack
       pointer.  */
}

3758
void arm_v7m_cpu_do_interrupt(CPUState *cs)
P
pbrook 已提交
3759
{
3760 3761
    ARMCPU *cpu = ARM_CPU(cs);
    CPUARMState *env = &cpu->env;
P
pbrook 已提交
3762 3763 3764 3765
    uint32_t xpsr = xpsr_read(env);
    uint32_t lr;
    uint32_t addr;

3766
    arm_log_exception(cs->exception_index);
3767

P
pbrook 已提交
3768 3769 3770 3771 3772 3773 3774 3775 3776 3777
    lr = 0xfffffff1;
    if (env->v7m.current_sp)
        lr |= 4;
    if (env->v7m.exception == 0)
        lr |= 8;

    /* For exceptions we just mark as pending on the NVIC, and let that
       handle it.  */
    /* TODO: Need to escalate if the current priority is higher than the
       one we're raising.  */
3778
    switch (cs->exception_index) {
P
pbrook 已提交
3779
    case EXCP_UDEF:
P
Paul Brook 已提交
3780
        armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE);
P
pbrook 已提交
3781 3782
        return;
    case EXCP_SWI:
3783
        /* The PC already points to the next instruction.  */
P
Paul Brook 已提交
3784
        armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SVC);
P
pbrook 已提交
3785 3786 3787
        return;
    case EXCP_PREFETCH_ABORT:
    case EXCP_DATA_ABORT:
3788 3789 3790
        /* TODO: if we implemented the MPU registers, this is where we
         * should set the MMFAR, etc from exception.fsr and exception.vaddress.
         */
P
Paul Brook 已提交
3791
        armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_MEM);
P
pbrook 已提交
3792 3793
        return;
    case EXCP_BKPT:
P
pbrook 已提交
3794 3795
        if (semihosting_enabled) {
            int nr;
3796
            nr = arm_lduw_code(env, env->regs[15], env->bswap_code) & 0xff;
P
pbrook 已提交
3797 3798 3799
            if (nr == 0xab) {
                env->regs[15] += 2;
                env->regs[0] = do_arm_semihosting(env);
3800
                qemu_log_mask(CPU_LOG_INT, "...handled as semihosting call\n");
P
pbrook 已提交
3801 3802 3803
                return;
            }
        }
P
Paul Brook 已提交
3804
        armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_DEBUG);
P
pbrook 已提交
3805 3806
        return;
    case EXCP_IRQ:
P
Paul Brook 已提交
3807
        env->v7m.exception = armv7m_nvic_acknowledge_irq(env->nvic);
P
pbrook 已提交
3808 3809 3810 3811 3812
        break;
    case EXCP_EXCEPTION_EXIT:
        do_v7m_exception_exit(env);
        return;
    default:
3813
        cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
P
pbrook 已提交
3814 3815 3816 3817 3818 3819 3820
        return; /* Never happens.  Keep compiler happy.  */
    }

    /* Align stack pointer.  */
    /* ??? Should only do this if Configuration Control Register
       STACKALIGN bit is set.  */
    if (env->regs[13] & 4) {
P
pbrook 已提交
3821
        env->regs[13] -= 4;
P
pbrook 已提交
3822 3823
        xpsr |= 0x200;
    }
B
balrog 已提交
3824
    /* Switch to the handler mode.  */
P
pbrook 已提交
3825 3826 3827 3828 3829 3830 3831 3832 3833
    v7m_push(env, xpsr);
    v7m_push(env, env->regs[15]);
    v7m_push(env, env->regs[14]);
    v7m_push(env, env->regs[12]);
    v7m_push(env, env->regs[3]);
    v7m_push(env, env->regs[2]);
    v7m_push(env, env->regs[1]);
    v7m_push(env, env->regs[0]);
    switch_v7m_sp(env, 0);
3834 3835
    /* Clear IT bits */
    env->condexec_bits = 0;
P
pbrook 已提交
3836
    env->regs[14] = lr;
3837
    addr = ldl_phys(cs->as, env->v7m.vecbase + env->v7m.exception * 4);
P
pbrook 已提交
3838 3839 3840 3841
    env->regs[15] = addr & 0xfffffffe;
    env->thumb = addr & 1;
}

B
bellard 已提交
3842
/* Handle a CPU exception.  */
3843
void arm_cpu_do_interrupt(CPUState *cs)
B
bellard 已提交
3844
{
3845 3846
    ARMCPU *cpu = ARM_CPU(cs);
    CPUARMState *env = &cpu->env;
B
bellard 已提交
3847 3848 3849 3850
    uint32_t addr;
    uint32_t mask;
    int new_mode;
    uint32_t offset;
3851
    uint32_t moe;
B
bellard 已提交
3852

3853 3854
    assert(!IS_M(env));

3855
    arm_log_exception(cs->exception_index);
3856

3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881
    /* If this is a debug exception we must update the DBGDSCR.MOE bits */
    switch (env->exception.syndrome >> ARM_EL_EC_SHIFT) {
    case EC_BREAKPOINT:
    case EC_BREAKPOINT_SAME_EL:
        moe = 1;
        break;
    case EC_WATCHPOINT:
    case EC_WATCHPOINT_SAME_EL:
        moe = 10;
        break;
    case EC_AA32_BKPT:
        moe = 3;
        break;
    case EC_VECTORCATCH:
        moe = 5;
        break;
    default:
        moe = 0;
        break;
    }

    if (moe) {
        env->cp15.mdscr_el1 = deposit64(env->cp15.mdscr_el1, 2, 4, moe);
    }

B
bellard 已提交
3882
    /* TODO: Vectored interrupt controller.  */
3883
    switch (cs->exception_index) {
B
bellard 已提交
3884 3885 3886 3887 3888 3889 3890 3891 3892 3893
    case EXCP_UDEF:
        new_mode = ARM_CPU_MODE_UND;
        addr = 0x04;
        mask = CPSR_I;
        if (env->thumb)
            offset = 2;
        else
            offset = 4;
        break;
    case EXCP_SWI:
3894 3895 3896
        if (semihosting_enabled) {
            /* Check for semihosting interrupt.  */
            if (env->thumb) {
3897 3898
                mask = arm_lduw_code(env, env->regs[15] - 2, env->bswap_code)
                    & 0xff;
3899
            } else {
3900
                mask = arm_ldl_code(env, env->regs[15] - 4, env->bswap_code)
P
Paul Brook 已提交
3901
                    & 0xffffff;
3902 3903 3904 3905 3906 3907 3908
            }
            /* Only intercept calls from privileged modes, to provide some
               semblance of security.  */
            if (((mask == 0x123456 && !env->thumb)
                    || (mask == 0xab && env->thumb))
                  && (env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR) {
                env->regs[0] = do_arm_semihosting(env);
3909
                qemu_log_mask(CPU_LOG_INT, "...handled as semihosting call\n");
3910 3911 3912
                return;
            }
        }
B
bellard 已提交
3913 3914 3915
        new_mode = ARM_CPU_MODE_SVC;
        addr = 0x08;
        mask = CPSR_I;
3916
        /* The PC already points to the next instruction.  */
B
bellard 已提交
3917 3918
        offset = 0;
        break;
P
pbrook 已提交
3919
    case EXCP_BKPT:
P
pbrook 已提交
3920
        /* See if this is a semihosting syscall.  */
P
pbrook 已提交
3921
        if (env->thumb && semihosting_enabled) {
3922
            mask = arm_lduw_code(env, env->regs[15], env->bswap_code) & 0xff;
P
pbrook 已提交
3923 3924 3925 3926
            if (mask == 0xab
                  && (env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR) {
                env->regs[15] += 2;
                env->regs[0] = do_arm_semihosting(env);
3927
                qemu_log_mask(CPU_LOG_INT, "...handled as semihosting call\n");
P
pbrook 已提交
3928 3929 3930
                return;
            }
        }
3931
        env->exception.fsr = 2;
P
pbrook 已提交
3932 3933
        /* Fall through to prefetch abort.  */
    case EXCP_PREFETCH_ABORT:
3934
        env->cp15.ifsr_el2 = env->exception.fsr;
3935 3936
        env->cp15.far_el[1] = deposit64(env->cp15.far_el[1], 32, 32,
                                        env->exception.vaddress);
3937
        qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x IFAR 0x%x\n",
3938
                      env->cp15.ifsr_el2, (uint32_t)env->exception.vaddress);
B
bellard 已提交
3939 3940 3941 3942 3943 3944
        new_mode = ARM_CPU_MODE_ABT;
        addr = 0x0c;
        mask = CPSR_A | CPSR_I;
        offset = 4;
        break;
    case EXCP_DATA_ABORT:
3945
        env->cp15.esr_el[1] = env->exception.fsr;
3946 3947
        env->cp15.far_el[1] = deposit64(env->cp15.far_el[1], 0, 32,
                                        env->exception.vaddress);
3948
        qemu_log_mask(CPU_LOG_INT, "...with DFSR 0x%x DFAR 0x%x\n",
3949
                      (uint32_t)env->cp15.esr_el[1],
3950
                      (uint32_t)env->exception.vaddress);
B
bellard 已提交
3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970
        new_mode = ARM_CPU_MODE_ABT;
        addr = 0x10;
        mask = CPSR_A | CPSR_I;
        offset = 8;
        break;
    case EXCP_IRQ:
        new_mode = ARM_CPU_MODE_IRQ;
        addr = 0x18;
        /* Disable IRQ and imprecise data aborts.  */
        mask = CPSR_A | CPSR_I;
        offset = 4;
        break;
    case EXCP_FIQ:
        new_mode = ARM_CPU_MODE_FIQ;
        addr = 0x1c;
        /* Disable FIQ, IRQ and imprecise data aborts.  */
        mask = CPSR_A | CPSR_I | CPSR_F;
        offset = 4;
        break;
    default:
3971
        cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
B
bellard 已提交
3972 3973 3974
        return; /* Never happens.  Keep compiler happy.  */
    }
    /* High vectors.  */
3975
    if (env->cp15.c1_sys & SCTLR_V) {
N
Nathan Rossi 已提交
3976
        /* when enabled, base address cannot be remapped.  */
B
bellard 已提交
3977
        addr += 0xffff0000;
N
Nathan Rossi 已提交
3978 3979 3980 3981 3982 3983 3984 3985
    } else {
        /* ARM v7 architectures provide a vector base address register to remap
         * the interrupt vector table.
         * This register is only followed in non-monitor mode, and has a secure
         * and un-secure copy. Since the cpu is always in a un-secure operation
         * and is never in monitor mode this feature is always active.
         * Note: only bits 31:5 are valid.
         */
3986
        addr += env->cp15.vbar_el[1];
B
bellard 已提交
3987 3988
    }
    switch_mode (env, new_mode);
3989 3990 3991 3992
    /* For exceptions taken to AArch32 we must clear the SS bit in both
     * PSTATE and in the old-state value we save to SPSR_<mode>, so zero it now.
     */
    env->uncached_cpsr &= ~PSTATE_SS;
B
bellard 已提交
3993
    env->spsr = cpsr_read(env);
P
pbrook 已提交
3994 3995
    /* Clear IT bits.  */
    env->condexec_bits = 0;
3996
    /* Switch to the new mode, and to the correct instruction set.  */
3997
    env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode;
3998
    env->daif |= mask;
3999 4000 4001
    /* this is a lie, as the was no c1_sys on V4T/V5, but who cares
     * and we should just guard the thumb mode on V4 */
    if (arm_feature(env, ARM_FEATURE_V4T)) {
4002
        env->thumb = (env->cp15.c1_sys & SCTLR_TE) != 0;
4003
    }
B
bellard 已提交
4004 4005
    env->regs[14] = env->regs[15] + offset;
    env->regs[15] = addr;
4006
    cs->interrupt_request |= CPU_INTERRUPT_EXITTB;
B
bellard 已提交
4007 4008 4009 4010 4011
}

/* Check section/page access permissions.
   Returns the page protection flags, or zero if the access is not
   permitted.  */
4012
static inline int check_ap(CPUARMState *env, int ap, int domain_prot,
4013
                           int access_type, int is_user)
B
bellard 已提交
4014
{
P
pbrook 已提交
4015 4016
  int prot_ro;

4017
  if (domain_prot == 3) {
B
bellard 已提交
4018
    return PAGE_READ | PAGE_WRITE;
4019
  }
B
bellard 已提交
4020

P
pbrook 已提交
4021 4022 4023 4024 4025
  if (access_type == 1)
      prot_ro = 0;
  else
      prot_ro = PAGE_READ;

B
bellard 已提交
4026 4027
  switch (ap) {
  case 0:
4028 4029 4030
      if (arm_feature(env, ARM_FEATURE_V7)) {
          return 0;
      }
P
pbrook 已提交
4031
      if (access_type == 1)
B
bellard 已提交
4032
          return 0;
4033 4034
      switch (env->cp15.c1_sys & (SCTLR_S | SCTLR_R)) {
      case SCTLR_S:
B
bellard 已提交
4035
          return is_user ? 0 : PAGE_READ;
4036
      case SCTLR_R:
B
bellard 已提交
4037 4038 4039 4040 4041 4042 4043 4044
          return PAGE_READ;
      default:
          return 0;
      }
  case 1:
      return is_user ? 0 : PAGE_READ | PAGE_WRITE;
  case 2:
      if (is_user)
P
pbrook 已提交
4045
          return prot_ro;
B
bellard 已提交
4046 4047 4048 4049
      else
          return PAGE_READ | PAGE_WRITE;
  case 3:
      return PAGE_READ | PAGE_WRITE;
P
pbrook 已提交
4050
  case 4: /* Reserved.  */
P
pbrook 已提交
4051 4052 4053 4054 4055
      return 0;
  case 5:
      return is_user ? 0 : prot_ro;
  case 6:
      return prot_ro;
P
pbrook 已提交
4056
  case 7:
4057
      if (!arm_feature (env, ARM_FEATURE_V6K))
P
pbrook 已提交
4058 4059
          return 0;
      return prot_ro;
B
bellard 已提交
4060 4061 4062 4063 4064
  default:
      abort();
  }
}

4065 4066
static bool get_level1_table_address(CPUARMState *env, uint32_t *table,
                                         uint32_t address)
4067
{
4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082
    if (address & env->cp15.c2_mask) {
        if ((env->cp15.c2_control & TTBCR_PD1)) {
            /* Translation table walk disabled for TTBR1 */
            return false;
        }
        *table = env->cp15.ttbr1_el1 & 0xffffc000;
    } else {
        if ((env->cp15.c2_control & TTBCR_PD0)) {
            /* Translation table walk disabled for TTBR0 */
            return false;
        }
        *table = env->cp15.ttbr0_el1 & env->cp15.c2_base_mask;
    }
    *table |= (address >> 18) & 0x3ffc;
    return true;
4083 4084
}

4085
static int get_phys_addr_v5(CPUARMState *env, uint32_t address, int access_type,
A
Avi Kivity 已提交
4086
                            int is_user, hwaddr *phys_ptr,
4087
                            int *prot, target_ulong *page_size)
B
bellard 已提交
4088
{
4089
    CPUState *cs = CPU(arm_env_get_cpu(env));
B
bellard 已提交
4090 4091 4092 4093 4094
    int code;
    uint32_t table;
    uint32_t desc;
    int type;
    int ap;
4095
    int domain = 0;
4096
    int domain_prot;
A
Avi Kivity 已提交
4097
    hwaddr phys_addr;
B
bellard 已提交
4098

P
pbrook 已提交
4099 4100
    /* Pagetable walk.  */
    /* Lookup l1 descriptor.  */
4101 4102 4103 4104 4105
    if (!get_level1_table_address(env, &table, address)) {
        /* Section translation fault if page walk is disabled by PD0 or PD1 */
        code = 5;
        goto do_fault;
    }
4106
    desc = ldl_phys(cs->as, table);
P
pbrook 已提交
4107
    type = (desc & 3);
4108 4109
    domain = (desc >> 5) & 0x0f;
    domain_prot = (env->cp15.c3 >> (domain * 2)) & 3;
P
pbrook 已提交
4110
    if (type == 0) {
4111
        /* Section translation fault.  */
P
pbrook 已提交
4112 4113 4114
        code = 5;
        goto do_fault;
    }
4115
    if (domain_prot == 0 || domain_prot == 2) {
P
pbrook 已提交
4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126
        if (type == 2)
            code = 9; /* Section domain fault.  */
        else
            code = 11; /* Page domain fault.  */
        goto do_fault;
    }
    if (type == 2) {
        /* 1Mb section.  */
        phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
        ap = (desc >> 10) & 3;
        code = 13;
P
Paul Brook 已提交
4127
        *page_size = 1024 * 1024;
P
pbrook 已提交
4128 4129 4130 4131 4132 4133 4134 4135 4136
    } else {
        /* Lookup l2 entry.  */
	if (type == 1) {
	    /* Coarse pagetable.  */
	    table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
	} else {
	    /* Fine pagetable.  */
	    table = (desc & 0xfffff000) | ((address >> 8) & 0xffc);
	}
4137
        desc = ldl_phys(cs->as, table);
P
pbrook 已提交
4138 4139 4140 4141 4142 4143 4144
        switch (desc & 3) {
        case 0: /* Page translation fault.  */
            code = 7;
            goto do_fault;
        case 1: /* 64k page.  */
            phys_addr = (desc & 0xffff0000) | (address & 0xffff);
            ap = (desc >> (4 + ((address >> 13) & 6))) & 3;
P
Paul Brook 已提交
4145
            *page_size = 0x10000;
P
pbrook 已提交
4146
            break;
P
pbrook 已提交
4147 4148
        case 2: /* 4k page.  */
            phys_addr = (desc & 0xfffff000) | (address & 0xfff);
4149
            ap = (desc >> (4 + ((address >> 9) & 6))) & 3;
P
Paul Brook 已提交
4150
            *page_size = 0x1000;
P
pbrook 已提交
4151
            break;
P
pbrook 已提交
4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164
        case 3: /* 1k page.  */
	    if (type == 1) {
		if (arm_feature(env, ARM_FEATURE_XSCALE)) {
		    phys_addr = (desc & 0xfffff000) | (address & 0xfff);
		} else {
		    /* Page translation fault.  */
		    code = 7;
		    goto do_fault;
		}
	    } else {
		phys_addr = (desc & 0xfffffc00) | (address & 0x3ff);
	    }
            ap = (desc >> 4) & 3;
P
Paul Brook 已提交
4165
            *page_size = 0x400;
P
pbrook 已提交
4166 4167
            break;
        default:
P
pbrook 已提交
4168 4169
            /* Never happens, but compiler isn't smart enough to tell.  */
            abort();
P
pbrook 已提交
4170
        }
P
pbrook 已提交
4171 4172
        code = 15;
    }
4173
    *prot = check_ap(env, ap, domain_prot, access_type, is_user);
P
pbrook 已提交
4174 4175 4176 4177
    if (!*prot) {
        /* Access permission fault.  */
        goto do_fault;
    }
4178
    *prot |= PAGE_EXEC;
P
pbrook 已提交
4179 4180 4181 4182 4183 4184
    *phys_ptr = phys_addr;
    return 0;
do_fault:
    return code | (domain << 4);
}

4185
static int get_phys_addr_v6(CPUARMState *env, uint32_t address, int access_type,
A
Avi Kivity 已提交
4186
                            int is_user, hwaddr *phys_ptr,
4187
                            int *prot, target_ulong *page_size)
P
pbrook 已提交
4188
{
4189
    CPUState *cs = CPU(arm_env_get_cpu(env));
P
pbrook 已提交
4190 4191 4192 4193
    int code;
    uint32_t table;
    uint32_t desc;
    uint32_t xn;
4194
    uint32_t pxn = 0;
P
pbrook 已提交
4195 4196
    int type;
    int ap;
4197
    int domain = 0;
4198
    int domain_prot;
A
Avi Kivity 已提交
4199
    hwaddr phys_addr;
P
pbrook 已提交
4200 4201 4202

    /* Pagetable walk.  */
    /* Lookup l1 descriptor.  */
4203 4204 4205 4206 4207
    if (!get_level1_table_address(env, &table, address)) {
        /* Section translation fault if page walk is disabled by PD0 or PD1 */
        code = 5;
        goto do_fault;
    }
4208
    desc = ldl_phys(cs->as, table);
P
pbrook 已提交
4209
    type = (desc & 3);
4210 4211 4212 4213
    if (type == 0 || (type == 3 && !arm_feature(env, ARM_FEATURE_PXN))) {
        /* Section translation fault, or attempt to use the encoding
         * which is Reserved on implementations without PXN.
         */
P
pbrook 已提交
4214 4215
        code = 5;
        goto do_fault;
4216 4217 4218
    }
    if ((type == 1) || !(desc & (1 << 18))) {
        /* Page or Section.  */
4219
        domain = (desc >> 5) & 0x0f;
P
pbrook 已提交
4220
    }
4221 4222
    domain_prot = (env->cp15.c3 >> (domain * 2)) & 3;
    if (domain_prot == 0 || domain_prot == 2) {
4223
        if (type != 1) {
P
pbrook 已提交
4224
            code = 9; /* Section domain fault.  */
4225
        } else {
P
pbrook 已提交
4226
            code = 11; /* Page domain fault.  */
4227
        }
P
pbrook 已提交
4228 4229
        goto do_fault;
    }
4230
    if (type != 1) {
P
pbrook 已提交
4231 4232 4233
        if (desc & (1 << 18)) {
            /* Supersection.  */
            phys_addr = (desc & 0xff000000) | (address & 0x00ffffff);
P
Paul Brook 已提交
4234
            *page_size = 0x1000000;
B
bellard 已提交
4235
        } else {
P
pbrook 已提交
4236 4237
            /* Section.  */
            phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
P
Paul Brook 已提交
4238
            *page_size = 0x100000;
B
bellard 已提交
4239
        }
P
pbrook 已提交
4240 4241
        ap = ((desc >> 10) & 3) | ((desc >> 13) & 4);
        xn = desc & (1 << 4);
4242
        pxn = desc & 1;
P
pbrook 已提交
4243 4244
        code = 13;
    } else {
4245 4246 4247
        if (arm_feature(env, ARM_FEATURE_PXN)) {
            pxn = (desc >> 2) & 1;
        }
P
pbrook 已提交
4248 4249
        /* Lookup l2 entry.  */
        table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
4250
        desc = ldl_phys(cs->as, table);
P
pbrook 已提交
4251 4252 4253 4254
        ap = ((desc >> 4) & 3) | ((desc >> 7) & 4);
        switch (desc & 3) {
        case 0: /* Page translation fault.  */
            code = 7;
B
bellard 已提交
4255
            goto do_fault;
P
pbrook 已提交
4256 4257 4258
        case 1: /* 64k page.  */
            phys_addr = (desc & 0xffff0000) | (address & 0xffff);
            xn = desc & (1 << 15);
P
Paul Brook 已提交
4259
            *page_size = 0x10000;
P
pbrook 已提交
4260 4261 4262 4263
            break;
        case 2: case 3: /* 4k page.  */
            phys_addr = (desc & 0xfffff000) | (address & 0xfff);
            xn = desc & 1;
P
Paul Brook 已提交
4264
            *page_size = 0x1000;
P
pbrook 已提交
4265 4266 4267 4268
            break;
        default:
            /* Never happens, but compiler isn't smart enough to tell.  */
            abort();
B
bellard 已提交
4269
        }
P
pbrook 已提交
4270 4271
        code = 15;
    }
4272
    if (domain_prot == 3) {
4273 4274
        *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
    } else {
4275 4276 4277
        if (pxn && !is_user) {
            xn = 1;
        }
4278 4279
        if (xn && access_type == 2)
            goto do_fault;
P
pbrook 已提交
4280

4281
        /* The simplified model uses AP[0] as an access control bit.  */
4282
        if ((env->cp15.c1_sys & SCTLR_AFE) && (ap & 1) == 0) {
4283 4284 4285 4286
            /* Access flag fault.  */
            code = (code == 15) ? 6 : 3;
            goto do_fault;
        }
4287
        *prot = check_ap(env, ap, domain_prot, access_type, is_user);
4288 4289 4290 4291 4292 4293 4294
        if (!*prot) {
            /* Access permission fault.  */
            goto do_fault;
        }
        if (!xn) {
            *prot |= PAGE_EXEC;
        }
4295
    }
P
pbrook 已提交
4296
    *phys_ptr = phys_addr;
B
bellard 已提交
4297 4298 4299 4300 4301
    return 0;
do_fault:
    return code | (domain << 4);
}

4302 4303 4304 4305 4306 4307 4308 4309 4310
/* Fault type for long-descriptor MMU fault reporting; this corresponds
 * to bits [5..2] in the STATUS field in long-format DFSR/IFSR.
 */
typedef enum {
    translation_fault = 1,
    access_fault = 2,
    permission_fault = 3,
} MMUFaultType;

4311
static int get_phys_addr_lpae(CPUARMState *env, target_ulong address,
4312
                              int access_type, int is_user,
A
Avi Kivity 已提交
4313
                              hwaddr *phys_ptr, int *prot,
4314 4315
                              target_ulong *page_size_ptr)
{
4316
    CPUState *cs = CPU(arm_env_get_cpu(env));
4317 4318 4319 4320
    /* Read an LPAE long-descriptor translation table. */
    MMUFaultType fault_type = translation_fault;
    uint32_t level = 1;
    uint32_t epd;
4321 4322
    int32_t tsz;
    uint32_t tg;
4323 4324
    uint64_t ttbr;
    int ttbr_select;
4325
    hwaddr descaddr, descmask;
4326 4327 4328
    uint32_t tableattrs;
    target_ulong page_size;
    uint32_t attrs;
4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340
    int32_t granule_sz = 9;
    int32_t va_size = 32;
    int32_t tbi = 0;

    if (arm_el_is_aa64(env, 1)) {
        va_size = 64;
        if (extract64(address, 55, 1))
            tbi = extract64(env->cp15.c2_control, 38, 1);
        else
            tbi = extract64(env->cp15.c2_control, 37, 1);
        tbi *= 8;
    }
4341 4342 4343 4344 4345 4346

    /* Determine whether this address is in the region controlled by
     * TTBR0 or TTBR1 (or if it is in neither region and should fault).
     * This is a Non-secure PL0/1 stage 1 translation, so controlled by
     * TTBCR/TTBR0/TTBR1 in accordance with ARM ARM DDI0406C table B-32:
     */
4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357
    uint32_t t0sz = extract32(env->cp15.c2_control, 0, 6);
    if (arm_el_is_aa64(env, 1)) {
        t0sz = MIN(t0sz, 39);
        t0sz = MAX(t0sz, 16);
    }
    uint32_t t1sz = extract32(env->cp15.c2_control, 16, 6);
    if (arm_el_is_aa64(env, 1)) {
        t1sz = MIN(t1sz, 39);
        t1sz = MAX(t1sz, 16);
    }
    if (t0sz && !extract64(address, va_size - t0sz, t0sz - tbi)) {
4358 4359
        /* there is a ttbr0 region and we are in it (high bits all zero) */
        ttbr_select = 0;
4360
    } else if (t1sz && !extract64(~address, va_size - t1sz, t1sz - tbi)) {
4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382
        /* there is a ttbr1 region and we are in it (high bits all one) */
        ttbr_select = 1;
    } else if (!t0sz) {
        /* ttbr0 region is "everything not in the ttbr1 region" */
        ttbr_select = 0;
    } else if (!t1sz) {
        /* ttbr1 region is "everything not in the ttbr0 region" */
        ttbr_select = 1;
    } else {
        /* in the gap between the two regions, this is a Translation fault */
        fault_type = translation_fault;
        goto do_fault;
    }

    /* Note that QEMU ignores shareability and cacheability attributes,
     * so we don't need to do anything with the SH, ORGN, IRGN fields
     * in the TTBCR.  Similarly, TTBCR:A1 selects whether we get the
     * ASID from TTBR0 or TTBR1, but QEMU's TLB doesn't currently
     * implement any ASID-like capability so we can ignore it (instead
     * we will always flush the TLB any time the ASID is changed).
     */
    if (ttbr_select == 0) {
4383
        ttbr = env->cp15.ttbr0_el1;
4384 4385
        epd = extract32(env->cp15.c2_control, 7, 1);
        tsz = t0sz;
4386 4387 4388 4389 4390 4391 4392 4393

        tg = extract32(env->cp15.c2_control, 14, 2);
        if (tg == 1) { /* 64KB pages */
            granule_sz = 13;
        }
        if (tg == 2) { /* 16KB pages */
            granule_sz = 11;
        }
4394
    } else {
4395
        ttbr = env->cp15.ttbr1_el1;
4396 4397
        epd = extract32(env->cp15.c2_control, 23, 1);
        tsz = t1sz;
4398 4399 4400 4401 4402 4403 4404 4405

        tg = extract32(env->cp15.c2_control, 30, 2);
        if (tg == 3)  { /* 64KB pages */
            granule_sz = 13;
        }
        if (tg == 1) { /* 16KB pages */
            granule_sz = 11;
        }
4406 4407 4408 4409 4410 4411 4412
    }

    if (epd) {
        /* Translation table walk disabled => Translation fault on TLB miss */
        goto do_fault;
    }

4413 4414
    /* The starting level depends on the virtual address size which can be
     * up to 48-bits and the translation granule size.
4415
     */
4416 4417 4418 4419
    if ((va_size - tsz) > (granule_sz * 4 + 3)) {
        level = 0;
    } else if ((va_size - tsz) > (granule_sz * 3 + 3)) {
        level = 1;
4420
    } else {
4421
        level = 2;
4422 4423 4424 4425 4426 4427
    }

    /* Clear the vaddr bits which aren't part of the within-region address,
     * so that we don't have to special case things when calculating the
     * first descriptor address.
     */
4428 4429 4430 4431 4432
    if (tsz) {
        address &= (1ULL << (va_size - tsz)) - 1;
    }

    descmask = (1ULL << (granule_sz + 3)) - 1;
4433 4434

    /* Now we can extract the actual base address from the TTBR */
4435 4436
    descaddr = extract64(ttbr, 0, 48);
    descaddr &= ~((1ULL << (va_size - tsz - (granule_sz * (4 - level)))) - 1);
4437 4438 4439 4440 4441

    tableattrs = 0;
    for (;;) {
        uint64_t descriptor;

4442 4443
        descaddr |= (address >> (granule_sz * (4 - level))) & descmask;
        descaddr &= ~7ULL;
4444
        descriptor = ldq_phys(cs->as, descaddr);
4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465
        if (!(descriptor & 1) ||
            (!(descriptor & 2) && (level == 3))) {
            /* Invalid, or the Reserved level 3 encoding */
            goto do_fault;
        }
        descaddr = descriptor & 0xfffffff000ULL;

        if ((descriptor & 2) && (level < 3)) {
            /* Table entry. The top five bits are attributes which  may
             * propagate down through lower levels of the table (and
             * which are all arranged so that 0 means "no effect", so
             * we can gather them up by ORing in the bits at each level).
             */
            tableattrs |= extract64(descriptor, 59, 5);
            level++;
            continue;
        }
        /* Block entry at level 1 or 2, or page entry at level 3.
         * These are basically the same thing, although the number
         * of bits we pull in from the vaddr varies.
         */
4466
        page_size = (1ULL << ((granule_sz * (4 - level)) + 3));
4467 4468
        descaddr |= (address & (page_size - 1));
        /* Extract attributes from the descriptor and merge with table attrs */
4469 4470
        attrs = extract64(descriptor, 2, 10)
            | (extract64(descriptor, 52, 12) << 10);
4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495
        attrs |= extract32(tableattrs, 0, 2) << 11; /* XN, PXN */
        attrs |= extract32(tableattrs, 3, 1) << 5; /* APTable[1] => AP[2] */
        /* The sense of AP[1] vs APTable[0] is reversed, as APTable[0] == 1
         * means "force PL1 access only", which means forcing AP[1] to 0.
         */
        if (extract32(tableattrs, 2, 1)) {
            attrs &= ~(1 << 4);
        }
        /* Since we're always in the Non-secure state, NSTable is ignored. */
        break;
    }
    /* Here descaddr is the final physical address, and attributes
     * are all in attrs.
     */
    fault_type = access_fault;
    if ((attrs & (1 << 8)) == 0) {
        /* Access flag */
        goto do_fault;
    }
    fault_type = permission_fault;
    if (is_user && !(attrs & (1 << 4))) {
        /* Unprivileged access not enabled */
        goto do_fault;
    }
    *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
4496 4497 4498 4499 4500 4501
    if ((arm_feature(env, ARM_FEATURE_V8) && is_user && (attrs & (1 << 12))) ||
        (!arm_feature(env, ARM_FEATURE_V8) && (attrs & (1 << 12))) ||
        (!is_user && (attrs & (1 << 11)))) {
        /* XN/UXN or PXN. Since we only implement EL0/EL1 we unconditionally
         * treat XN/UXN as UXN for v8.
         */
4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523
        if (access_type == 2) {
            goto do_fault;
        }
        *prot &= ~PAGE_EXEC;
    }
    if (attrs & (1 << 5)) {
        /* Write access forbidden */
        if (access_type == 1) {
            goto do_fault;
        }
        *prot &= ~PAGE_WRITE;
    }

    *phys_ptr = descaddr;
    *page_size_ptr = page_size;
    return 0;

do_fault:
    /* Long-descriptor format IFSR/DFSR value */
    return (1 << 9) | (fault_type << 2) | level;
}

4524 4525
static int get_phys_addr_mpu(CPUARMState *env, uint32_t address,
                             int access_type, int is_user,
A
Avi Kivity 已提交
4526
                             hwaddr *phys_ptr, int *prot)
P
pbrook 已提交
4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547
{
    int n;
    uint32_t mask;
    uint32_t base;

    *phys_ptr = address;
    for (n = 7; n >= 0; n--) {
	base = env->cp15.c6_region[n];
	if ((base & 1) == 0)
	    continue;
	mask = 1 << ((base >> 1) & 0x1f);
	/* Keep this shift separate from the above to avoid an
	   (undefined) << 32.  */
	mask = (mask << 1) - 1;
	if (((base ^ address) & ~mask) == 0)
	    break;
    }
    if (n < 0)
	return 2;

    if (access_type == 2) {
4548
        mask = env->cp15.pmsav5_insn_ap;
P
pbrook 已提交
4549
    } else {
4550
        mask = env->cp15.pmsav5_data_ap;
P
pbrook 已提交
4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580
    }
    mask = (mask >> (n * 4)) & 0xf;
    switch (mask) {
    case 0:
	return 1;
    case 1:
	if (is_user)
	  return 1;
	*prot = PAGE_READ | PAGE_WRITE;
	break;
    case 2:
	*prot = PAGE_READ;
	if (!is_user)
	    *prot |= PAGE_WRITE;
	break;
    case 3:
	*prot = PAGE_READ | PAGE_WRITE;
	break;
    case 5:
	if (is_user)
	    return 1;
	*prot = PAGE_READ;
	break;
    case 6:
	*prot = PAGE_READ;
	break;
    default:
	/* Bad permission.  */
	return 1;
    }
4581
    *prot |= PAGE_EXEC;
P
pbrook 已提交
4582 4583 4584
    return 0;
}

4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607
/* get_phys_addr - get the physical address for this virtual address
 *
 * Find the physical address corresponding to the given virtual address,
 * by doing a translation table walk on MMU based systems or using the
 * MPU state on MPU based systems.
 *
 * Returns 0 if the translation was successful. Otherwise, phys_ptr,
 * prot and page_size are not filled in, and the return value provides
 * information on why the translation aborted, in the format of a
 * DFSR/IFSR fault register, with the following caveats:
 *  * we honour the short vs long DFSR format differences.
 *  * the WnR bit is never set (the caller must do this).
 *  * for MPU based systems we don't bother to return a full FSR format
 *    value.
 *
 * @env: CPUARMState
 * @address: virtual address to get physical address for
 * @access_type: 0 for read, 1 for write, 2 for execute
 * @is_user: 0 for privileged access, 1 for user
 * @phys_ptr: set to the physical address corresponding to the virtual address
 * @prot: set to the permissions for the page containing phys_ptr
 * @page_size: set to the size of the page containing phys_ptr
 */
4608
static inline int get_phys_addr(CPUARMState *env, target_ulong address,
P
pbrook 已提交
4609
                                int access_type, int is_user,
A
Avi Kivity 已提交
4610
                                hwaddr *phys_ptr, int *prot,
P
Paul Brook 已提交
4611
                                target_ulong *page_size)
P
pbrook 已提交
4612 4613 4614 4615 4616
{
    /* Fast Context Switch Extension.  */
    if (address < 0x02000000)
        address += env->cp15.c13_fcse;

4617
    if ((env->cp15.c1_sys & SCTLR_M) == 0) {
P
pbrook 已提交
4618 4619
        /* MMU/MPU disabled.  */
        *phys_ptr = address;
4620
        *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
P
Paul Brook 已提交
4621
        *page_size = TARGET_PAGE_SIZE;
P
pbrook 已提交
4622 4623
        return 0;
    } else if (arm_feature(env, ARM_FEATURE_MPU)) {
P
Paul Brook 已提交
4624
        *page_size = TARGET_PAGE_SIZE;
P
pbrook 已提交
4625 4626
	return get_phys_addr_mpu(env, address, access_type, is_user, phys_ptr,
				 prot);
4627 4628 4629
    } else if (extended_addresses_enabled(env)) {
        return get_phys_addr_lpae(env, address, access_type, is_user, phys_ptr,
                                  prot, page_size);
4630
    } else if (env->cp15.c1_sys & SCTLR_XP) {
P
pbrook 已提交
4631
        return get_phys_addr_v6(env, address, access_type, is_user, phys_ptr,
P
Paul Brook 已提交
4632
                                prot, page_size);
P
pbrook 已提交
4633 4634
    } else {
        return get_phys_addr_v5(env, address, access_type, is_user, phys_ptr,
P
Paul Brook 已提交
4635
                                prot, page_size);
P
pbrook 已提交
4636 4637 4638
    }
}

4639 4640
int arm_cpu_handle_mmu_fault(CPUState *cs, vaddr address,
                             int access_type, int mmu_idx)
B
bellard 已提交
4641
{
4642 4643
    ARMCPU *cpu = ARM_CPU(cs);
    CPUARMState *env = &cpu->env;
A
Avi Kivity 已提交
4644
    hwaddr phys_addr;
P
Paul Brook 已提交
4645
    target_ulong page_size;
B
bellard 已提交
4646
    int prot;
4647
    int ret, is_user;
4648 4649
    uint32_t syn;
    bool same_el = (arm_current_pl(env) != 0);
B
bellard 已提交
4650

4651
    is_user = mmu_idx == MMU_USER_IDX;
P
Paul Brook 已提交
4652 4653
    ret = get_phys_addr(env, address, access_type, is_user, &phys_addr, &prot,
                        &page_size);
B
bellard 已提交
4654 4655
    if (ret == 0) {
        /* Map a single [sub]page.  */
4656 4657
        phys_addr &= TARGET_PAGE_MASK;
        address &= TARGET_PAGE_MASK;
4658
        tlb_set_page(cs, address, phys_addr, prot, mmu_idx, page_size);
P
Paul Brook 已提交
4659
        return 0;
B
bellard 已提交
4660 4661
    }

4662 4663 4664 4665 4666 4667
    /* AArch64 syndrome does not have an LPAE bit */
    syn = ret & ~(1 << 9);

    /* For insn and data aborts we assume there is no instruction syndrome
     * information; this is always true for exceptions reported to EL1.
     */
B
bellard 已提交
4668
    if (access_type == 2) {
4669
        syn = syn_insn_abort(same_el, 0, 0, syn);
4670
        cs->exception_index = EXCP_PREFETCH_ABORT;
B
bellard 已提交
4671
    } else {
4672
        syn = syn_data_abort(same_el, 0, 0, 0, access_type == 1, syn);
4673 4674 4675
        if (access_type == 1 && arm_feature(env, ARM_FEATURE_V6)) {
            ret |= (1 << 11);
        }
4676
        cs->exception_index = EXCP_DATA_ABORT;
B
bellard 已提交
4677
    }
4678 4679

    env->exception.syndrome = syn;
4680 4681
    env->exception.vaddress = address;
    env->exception.fsr = ret;
B
bellard 已提交
4682 4683 4684
    return 1;
}

4685
hwaddr arm_cpu_get_phys_page_debug(CPUState *cs, vaddr addr)
B
bellard 已提交
4686
{
4687
    ARMCPU *cpu = ARM_CPU(cs);
A
Avi Kivity 已提交
4688
    hwaddr phys_addr;
P
Paul Brook 已提交
4689
    target_ulong page_size;
B
bellard 已提交
4690 4691 4692
    int prot;
    int ret;

4693
    ret = get_phys_addr(&cpu->env, addr, 0, 0, &phys_addr, &prot, &page_size);
B
bellard 已提交
4694

4695
    if (ret != 0) {
B
bellard 已提交
4696
        return -1;
4697
    }
B
bellard 已提交
4698 4699 4700 4701

    return phys_addr;
}

4702
void HELPER(set_r13_banked)(CPUARMState *env, uint32_t mode, uint32_t val)
P
pbrook 已提交
4703
{
4704 4705 4706
    if ((env->uncached_cpsr & CPSR_M) == mode) {
        env->regs[13] = val;
    } else {
4707
        env->banked_r13[bank_number(mode)] = val;
4708
    }
P
pbrook 已提交
4709 4710
}

4711
uint32_t HELPER(get_r13_banked)(CPUARMState *env, uint32_t mode)
P
pbrook 已提交
4712
{
4713 4714 4715
    if ((env->uncached_cpsr & CPSR_M) == mode) {
        return env->regs[13];
    } else {
4716
        return env->banked_r13[bank_number(mode)];
4717
    }
P
pbrook 已提交
4718 4719
}

4720
uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg)
P
pbrook 已提交
4721
{
4722 4723
    ARMCPU *cpu = arm_env_get_cpu(env);

P
pbrook 已提交
4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743
    switch (reg) {
    case 0: /* APSR */
        return xpsr_read(env) & 0xf8000000;
    case 1: /* IAPSR */
        return xpsr_read(env) & 0xf80001ff;
    case 2: /* EAPSR */
        return xpsr_read(env) & 0xff00fc00;
    case 3: /* xPSR */
        return xpsr_read(env) & 0xff00fdff;
    case 5: /* IPSR */
        return xpsr_read(env) & 0x000001ff;
    case 6: /* EPSR */
        return xpsr_read(env) & 0x0700fc00;
    case 7: /* IEPSR */
        return xpsr_read(env) & 0x0700edff;
    case 8: /* MSP */
        return env->v7m.current_sp ? env->v7m.other_sp : env->regs[13];
    case 9: /* PSP */
        return env->v7m.current_sp ? env->regs[13] : env->v7m.other_sp;
    case 16: /* PRIMASK */
4744
        return (env->daif & PSTATE_I) != 0;
4745 4746
    case 17: /* BASEPRI */
    case 18: /* BASEPRI_MAX */
P
pbrook 已提交
4747
        return env->v7m.basepri;
4748
    case 19: /* FAULTMASK */
4749
        return (env->daif & PSTATE_F) != 0;
P
pbrook 已提交
4750 4751 4752 4753
    case 20: /* CONTROL */
        return env->v7m.control;
    default:
        /* ??? For debugging only.  */
4754
        cpu_abort(CPU(cpu), "Unimplemented system register read (%d)\n", reg);
P
pbrook 已提交
4755 4756 4757 4758
        return 0;
    }
}

4759
void HELPER(v7m_msr)(CPUARMState *env, uint32_t reg, uint32_t val)
P
pbrook 已提交
4760
{
4761 4762
    ARMCPU *cpu = arm_env_get_cpu(env);

P
pbrook 已提交
4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797
    switch (reg) {
    case 0: /* APSR */
        xpsr_write(env, val, 0xf8000000);
        break;
    case 1: /* IAPSR */
        xpsr_write(env, val, 0xf8000000);
        break;
    case 2: /* EAPSR */
        xpsr_write(env, val, 0xfe00fc00);
        break;
    case 3: /* xPSR */
        xpsr_write(env, val, 0xfe00fc00);
        break;
    case 5: /* IPSR */
        /* IPSR bits are readonly.  */
        break;
    case 6: /* EPSR */
        xpsr_write(env, val, 0x0600fc00);
        break;
    case 7: /* IEPSR */
        xpsr_write(env, val, 0x0600fc00);
        break;
    case 8: /* MSP */
        if (env->v7m.current_sp)
            env->v7m.other_sp = val;
        else
            env->regs[13] = val;
        break;
    case 9: /* PSP */
        if (env->v7m.current_sp)
            env->regs[13] = val;
        else
            env->v7m.other_sp = val;
        break;
    case 16: /* PRIMASK */
4798 4799 4800 4801 4802
        if (val & 1) {
            env->daif |= PSTATE_I;
        } else {
            env->daif &= ~PSTATE_I;
        }
P
pbrook 已提交
4803
        break;
4804
    case 17: /* BASEPRI */
P
pbrook 已提交
4805 4806
        env->v7m.basepri = val & 0xff;
        break;
4807
    case 18: /* BASEPRI_MAX */
P
pbrook 已提交
4808 4809 4810 4811
        val &= 0xff;
        if (val != 0 && (val < env->v7m.basepri || env->v7m.basepri == 0))
            env->v7m.basepri = val;
        break;
4812
    case 19: /* FAULTMASK */
4813 4814 4815 4816 4817
        if (val & 1) {
            env->daif |= PSTATE_F;
        } else {
            env->daif &= ~PSTATE_F;
        }
4818
        break;
P
pbrook 已提交
4819 4820 4821 4822 4823 4824
    case 20: /* CONTROL */
        env->v7m.control = val & 3;
        switch_v7m_sp(env, (val & 2) != 0);
        break;
    default:
        /* ??? For debugging only.  */
4825
        cpu_abort(CPU(cpu), "Unimplemented system register write (%d)\n", reg);
P
pbrook 已提交
4826 4827 4828 4829
        return;
    }
}

B
bellard 已提交
4830
#endif
P
pbrook 已提交
4831

4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913
void HELPER(dc_zva)(CPUARMState *env, uint64_t vaddr_in)
{
    /* Implement DC ZVA, which zeroes a fixed-length block of memory.
     * Note that we do not implement the (architecturally mandated)
     * alignment fault for attempts to use this on Device memory
     * (which matches the usual QEMU behaviour of not implementing either
     * alignment faults or any memory attribute handling).
     */

    ARMCPU *cpu = arm_env_get_cpu(env);
    uint64_t blocklen = 4 << cpu->dcz_blocksize;
    uint64_t vaddr = vaddr_in & ~(blocklen - 1);

#ifndef CONFIG_USER_ONLY
    {
        /* Slightly awkwardly, QEMU's TARGET_PAGE_SIZE may be less than
         * the block size so we might have to do more than one TLB lookup.
         * We know that in fact for any v8 CPU the page size is at least 4K
         * and the block size must be 2K or less, but TARGET_PAGE_SIZE is only
         * 1K as an artefact of legacy v5 subpage support being present in the
         * same QEMU executable.
         */
        int maxidx = DIV_ROUND_UP(blocklen, TARGET_PAGE_SIZE);
        void *hostaddr[maxidx];
        int try, i;

        for (try = 0; try < 2; try++) {

            for (i = 0; i < maxidx; i++) {
                hostaddr[i] = tlb_vaddr_to_host(env,
                                                vaddr + TARGET_PAGE_SIZE * i,
                                                1, cpu_mmu_index(env));
                if (!hostaddr[i]) {
                    break;
                }
            }
            if (i == maxidx) {
                /* If it's all in the TLB it's fair game for just writing to;
                 * we know we don't need to update dirty status, etc.
                 */
                for (i = 0; i < maxidx - 1; i++) {
                    memset(hostaddr[i], 0, TARGET_PAGE_SIZE);
                }
                memset(hostaddr[i], 0, blocklen - (i * TARGET_PAGE_SIZE));
                return;
            }
            /* OK, try a store and see if we can populate the tlb. This
             * might cause an exception if the memory isn't writable,
             * in which case we will longjmp out of here. We must for
             * this purpose use the actual register value passed to us
             * so that we get the fault address right.
             */
            helper_ret_stb_mmu(env, vaddr_in, 0, cpu_mmu_index(env), GETRA());
            /* Now we can populate the other TLB entries, if any */
            for (i = 0; i < maxidx; i++) {
                uint64_t va = vaddr + TARGET_PAGE_SIZE * i;
                if (va != (vaddr_in & TARGET_PAGE_MASK)) {
                    helper_ret_stb_mmu(env, va, 0, cpu_mmu_index(env), GETRA());
                }
            }
        }

        /* Slow path (probably attempt to do this to an I/O device or
         * similar, or clearing of a block of code we have translations
         * cached for). Just do a series of byte writes as the architecture
         * demands. It's not worth trying to use a cpu_physical_memory_map(),
         * memset(), unmap() sequence here because:
         *  + we'd need to account for the blocksize being larger than a page
         *  + the direct-RAM access case is almost always going to be dealt
         *    with in the fastpath code above, so there's no speed benefit
         *  + we would have to deal with the map returning NULL because the
         *    bounce buffer was in use
         */
        for (i = 0; i < blocklen; i++) {
            helper_ret_stb_mmu(env, vaddr + i, 0, cpu_mmu_index(env), GETRA());
        }
    }
#else
    memset(g2h(vaddr), 0, blocklen);
#endif
}

P
pbrook 已提交
4914 4915 4916 4917 4918 4919
/* Note that signed overflow is undefined in C.  The following routines are
   careful to use unsigned types where modulo arithmetic is required.
   Failure to do so _will_ break on newer gcc.  */

/* Signed saturating arithmetic.  */

A
aurel32 已提交
4920
/* Perform 16-bit signed saturating addition.  */
P
pbrook 已提交
4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934
static inline uint16_t add16_sat(uint16_t a, uint16_t b)
{
    uint16_t res;

    res = a + b;
    if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) {
        if (a & 0x8000)
            res = 0x8000;
        else
            res = 0x7fff;
    }
    return res;
}

A
aurel32 已提交
4935
/* Perform 8-bit signed saturating addition.  */
P
pbrook 已提交
4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949
static inline uint8_t add8_sat(uint8_t a, uint8_t b)
{
    uint8_t res;

    res = a + b;
    if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) {
        if (a & 0x80)
            res = 0x80;
        else
            res = 0x7f;
    }
    return res;
}

A
aurel32 已提交
4950
/* Perform 16-bit signed saturating subtraction.  */
P
pbrook 已提交
4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964
static inline uint16_t sub16_sat(uint16_t a, uint16_t b)
{
    uint16_t res;

    res = a - b;
    if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) {
        if (a & 0x8000)
            res = 0x8000;
        else
            res = 0x7fff;
    }
    return res;
}

A
aurel32 已提交
4965
/* Perform 8-bit signed saturating subtraction.  */
P
pbrook 已提交
4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988
static inline uint8_t sub8_sat(uint8_t a, uint8_t b)
{
    uint8_t res;

    res = a - b;
    if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) {
        if (a & 0x80)
            res = 0x80;
        else
            res = 0x7f;
    }
    return res;
}

#define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16);
#define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16);
#define ADD8(a, b, n)  RESULT(add8_sat(a, b), n, 8);
#define SUB8(a, b, n)  RESULT(sub8_sat(a, b), n, 8);
#define PFX q

#include "op_addsub.h"

/* Unsigned saturating arithmetic.  */
P
pbrook 已提交
4989
static inline uint16_t add16_usat(uint16_t a, uint16_t b)
P
pbrook 已提交
4990 4991 4992 4993 4994 4995 4996 4997
{
    uint16_t res;
    res = a + b;
    if (res < a)
        res = 0xffff;
    return res;
}

P
pbrook 已提交
4998
static inline uint16_t sub16_usat(uint16_t a, uint16_t b)
P
pbrook 已提交
4999
{
5000
    if (a > b)
P
pbrook 已提交
5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016
        return a - b;
    else
        return 0;
}

static inline uint8_t add8_usat(uint8_t a, uint8_t b)
{
    uint8_t res;
    res = a + b;
    if (res < a)
        res = 0xff;
    return res;
}

static inline uint8_t sub8_usat(uint8_t a, uint8_t b)
{
5017
    if (a > b)
P
pbrook 已提交
5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033
        return a - b;
    else
        return 0;
}

#define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16);
#define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16);
#define ADD8(a, b, n)  RESULT(add8_usat(a, b), n, 8);
#define SUB8(a, b, n)  RESULT(sub8_usat(a, b), n, 8);
#define PFX uq

#include "op_addsub.h"

/* Signed modulo arithmetic.  */
#define SARITH16(a, b, n, op) do { \
    int32_t sum; \
5034
    sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \
P
pbrook 已提交
5035 5036 5037 5038 5039 5040 5041
    RESULT(sum, n, 16); \
    if (sum >= 0) \
        ge |= 3 << (n * 2); \
    } while(0)

#define SARITH8(a, b, n, op) do { \
    int32_t sum; \
5042
    sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \
P
pbrook 已提交
5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062
    RESULT(sum, n, 8); \
    if (sum >= 0) \
        ge |= 1 << n; \
    } while(0)


#define ADD16(a, b, n) SARITH16(a, b, n, +)
#define SUB16(a, b, n) SARITH16(a, b, n, -)
#define ADD8(a, b, n)  SARITH8(a, b, n, +)
#define SUB8(a, b, n)  SARITH8(a, b, n, -)
#define PFX s
#define ARITH_GE

#include "op_addsub.h"

/* Unsigned modulo arithmetic.  */
#define ADD16(a, b, n) do { \
    uint32_t sum; \
    sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \
    RESULT(sum, n, 16); \
5063
    if ((sum >> 16) == 1) \
P
pbrook 已提交
5064 5065 5066 5067 5068 5069 5070
        ge |= 3 << (n * 2); \
    } while(0)

#define ADD8(a, b, n) do { \
    uint32_t sum; \
    sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \
    RESULT(sum, n, 8); \
5071 5072
    if ((sum >> 8) == 1) \
        ge |= 1 << n; \
P
pbrook 已提交
5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087
    } while(0)

#define SUB16(a, b, n) do { \
    uint32_t sum; \
    sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \
    RESULT(sum, n, 16); \
    if ((sum >> 16) == 0) \
        ge |= 3 << (n * 2); \
    } while(0)

#define SUB8(a, b, n) do { \
    uint32_t sum; \
    sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \
    RESULT(sum, n, 8); \
    if ((sum >> 8) == 0) \
5088
        ge |= 1 << n; \
P
pbrook 已提交
5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157
    } while(0)

#define PFX u
#define ARITH_GE

#include "op_addsub.h"

/* Halved signed arithmetic.  */
#define ADD16(a, b, n) \
  RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16)
#define SUB16(a, b, n) \
  RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16)
#define ADD8(a, b, n) \
  RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8)
#define SUB8(a, b, n) \
  RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8)
#define PFX sh

#include "op_addsub.h"

/* Halved unsigned arithmetic.  */
#define ADD16(a, b, n) \
  RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16)
#define SUB16(a, b, n) \
  RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16)
#define ADD8(a, b, n) \
  RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8)
#define SUB8(a, b, n) \
  RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8)
#define PFX uh

#include "op_addsub.h"

static inline uint8_t do_usad(uint8_t a, uint8_t b)
{
    if (a > b)
        return a - b;
    else
        return b - a;
}

/* Unsigned sum of absolute byte differences.  */
uint32_t HELPER(usad8)(uint32_t a, uint32_t b)
{
    uint32_t sum;
    sum = do_usad(a, b);
    sum += do_usad(a >> 8, b >> 8);
    sum += do_usad(a >> 16, b >>16);
    sum += do_usad(a >> 24, b >> 24);
    return sum;
}

/* For ARMv6 SEL instruction.  */
uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b)
{
    uint32_t mask;

    mask = 0;
    if (flags & 1)
        mask |= 0xff;
    if (flags & 2)
        mask |= 0xff00;
    if (flags & 4)
        mask |= 0xff0000;
    if (flags & 8)
        mask |= 0xff000000;
    return (a & mask) | (b & ~mask);
}

5158 5159
/* VFP support.  We follow the convention used for VFP instructions:
   Single precision routines have a "s" suffix, double precision a
P
pbrook 已提交
5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172
   "d" suffix.  */

/* Convert host exception flags to vfp form.  */
static inline int vfp_exceptbits_from_host(int host_bits)
{
    int target_bits = 0;

    if (host_bits & float_flag_invalid)
        target_bits |= 1;
    if (host_bits & float_flag_divbyzero)
        target_bits |= 2;
    if (host_bits & float_flag_overflow)
        target_bits |= 4;
5173
    if (host_bits & (float_flag_underflow | float_flag_output_denormal))
P
pbrook 已提交
5174 5175 5176
        target_bits |= 8;
    if (host_bits & float_flag_inexact)
        target_bits |= 0x10;
5177 5178
    if (host_bits & float_flag_input_denormal)
        target_bits |= 0x80;
P
pbrook 已提交
5179 5180 5181
    return target_bits;
}

5182
uint32_t HELPER(vfp_get_fpscr)(CPUARMState *env)
P
pbrook 已提交
5183 5184 5185 5186 5187 5188 5189 5190
{
    int i;
    uint32_t fpscr;

    fpscr = (env->vfp.xregs[ARM_VFP_FPSCR] & 0xffc8ffff)
            | (env->vfp.vec_len << 16)
            | (env->vfp.vec_stride << 20);
    i = get_float_exception_flags(&env->vfp.fp_status);
5191
    i |= get_float_exception_flags(&env->vfp.standard_fp_status);
P
pbrook 已提交
5192 5193 5194 5195
    fpscr |= vfp_exceptbits_from_host(i);
    return fpscr;
}

5196
uint32_t vfp_get_fpscr(CPUARMState *env)
5197 5198 5199 5200
{
    return HELPER(vfp_get_fpscr)(env);
}

P
pbrook 已提交
5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215
/* Convert vfp exception flags to target form.  */
static inline int vfp_exceptbits_to_host(int target_bits)
{
    int host_bits = 0;

    if (target_bits & 1)
        host_bits |= float_flag_invalid;
    if (target_bits & 2)
        host_bits |= float_flag_divbyzero;
    if (target_bits & 4)
        host_bits |= float_flag_overflow;
    if (target_bits & 8)
        host_bits |= float_flag_underflow;
    if (target_bits & 0x10)
        host_bits |= float_flag_inexact;
5216 5217
    if (target_bits & 0x80)
        host_bits |= float_flag_input_denormal;
P
pbrook 已提交
5218 5219 5220
    return host_bits;
}

5221
void HELPER(vfp_set_fpscr)(CPUARMState *env, uint32_t val)
P
pbrook 已提交
5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234
{
    int i;
    uint32_t changed;

    changed = env->vfp.xregs[ARM_VFP_FPSCR];
    env->vfp.xregs[ARM_VFP_FPSCR] = (val & 0xffc8ffff);
    env->vfp.vec_len = (val >> 16) & 7;
    env->vfp.vec_stride = (val >> 20) & 3;

    changed ^= val;
    if (changed & (3 << 22)) {
        i = (val >> 22) & 3;
        switch (i) {
5235
        case FPROUNDING_TIEEVEN:
P
pbrook 已提交
5236 5237
            i = float_round_nearest_even;
            break;
5238
        case FPROUNDING_POSINF:
P
pbrook 已提交
5239 5240
            i = float_round_up;
            break;
5241
        case FPROUNDING_NEGINF:
P
pbrook 已提交
5242 5243
            i = float_round_down;
            break;
5244
        case FPROUNDING_ZERO:
P
pbrook 已提交
5245 5246 5247 5248 5249
            i = float_round_to_zero;
            break;
        }
        set_float_rounding_mode(i, &env->vfp.fp_status);
    }
5250
    if (changed & (1 << 24)) {
5251
        set_flush_to_zero((val & (1 << 24)) != 0, &env->vfp.fp_status);
5252 5253
        set_flush_inputs_to_zero((val & (1 << 24)) != 0, &env->vfp.fp_status);
    }
P
pbrook 已提交
5254 5255
    if (changed & (1 << 25))
        set_default_nan_mode((val & (1 << 25)) != 0, &env->vfp.fp_status);
P
pbrook 已提交
5256

5257
    i = vfp_exceptbits_to_host(val);
P
pbrook 已提交
5258
    set_float_exception_flags(i, &env->vfp.fp_status);
5259
    set_float_exception_flags(0, &env->vfp.standard_fp_status);
P
pbrook 已提交
5260 5261
}

5262
void vfp_set_fpscr(CPUARMState *env, uint32_t val)
5263 5264 5265 5266
{
    HELPER(vfp_set_fpscr)(env, val);
}

P
pbrook 已提交
5267 5268 5269
#define VFP_HELPER(name, p) HELPER(glue(glue(vfp_,name),p))

#define VFP_BINOP(name) \
5270
float32 VFP_HELPER(name, s)(float32 a, float32 b, void *fpstp) \
P
pbrook 已提交
5271
{ \
5272 5273
    float_status *fpst = fpstp; \
    return float32_ ## name(a, b, fpst); \
P
pbrook 已提交
5274
} \
5275
float64 VFP_HELPER(name, d)(float64 a, float64 b, void *fpstp) \
P
pbrook 已提交
5276
{ \
5277 5278
    float_status *fpst = fpstp; \
    return float64_ ## name(a, b, fpst); \
P
pbrook 已提交
5279 5280 5281 5282 5283
}
VFP_BINOP(add)
VFP_BINOP(sub)
VFP_BINOP(mul)
VFP_BINOP(div)
5284 5285 5286 5287
VFP_BINOP(min)
VFP_BINOP(max)
VFP_BINOP(minnum)
VFP_BINOP(maxnum)
P
pbrook 已提交
5288 5289 5290 5291 5292 5293 5294 5295 5296
#undef VFP_BINOP

float32 VFP_HELPER(neg, s)(float32 a)
{
    return float32_chs(a);
}

float64 VFP_HELPER(neg, d)(float64 a)
{
5297
    return float64_chs(a);
P
pbrook 已提交
5298 5299 5300 5301 5302 5303 5304 5305 5306
}

float32 VFP_HELPER(abs, s)(float32 a)
{
    return float32_abs(a);
}

float64 VFP_HELPER(abs, d)(float64 a)
{
5307
    return float64_abs(a);
P
pbrook 已提交
5308 5309
}

5310
float32 VFP_HELPER(sqrt, s)(float32 a, CPUARMState *env)
P
pbrook 已提交
5311 5312 5313 5314
{
    return float32_sqrt(a, &env->vfp.fp_status);
}

5315
float64 VFP_HELPER(sqrt, d)(float64 a, CPUARMState *env)
P
pbrook 已提交
5316 5317 5318 5319 5320 5321
{
    return float64_sqrt(a, &env->vfp.fp_status);
}

/* XXX: check quiet/signaling case */
#define DO_VFP_cmp(p, type) \
5322
void VFP_HELPER(cmp, p)(type a, type b, CPUARMState *env)  \
P
pbrook 已提交
5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333
{ \
    uint32_t flags; \
    switch(type ## _compare_quiet(a, b, &env->vfp.fp_status)) { \
    case 0: flags = 0x6; break; \
    case -1: flags = 0x8; break; \
    case 1: flags = 0x2; break; \
    default: case 2: flags = 0x3; break; \
    } \
    env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
        | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
} \
5334
void VFP_HELPER(cmpe, p)(type a, type b, CPUARMState *env) \
P
pbrook 已提交
5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349
{ \
    uint32_t flags; \
    switch(type ## _compare(a, b, &env->vfp.fp_status)) { \
    case 0: flags = 0x6; break; \
    case -1: flags = 0x8; break; \
    case 1: flags = 0x2; break; \
    default: case 2: flags = 0x3; break; \
    } \
    env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
        | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
}
DO_VFP_cmp(s, float32)
DO_VFP_cmp(d, float64)
#undef DO_VFP_cmp

5350
/* Integer to float and float to integer conversions */
P
pbrook 已提交
5351

5352 5353 5354 5355
#define CONV_ITOF(name, fsz, sign) \
    float##fsz HELPER(name)(uint32_t x, void *fpstp) \
{ \
    float_status *fpst = fpstp; \
5356
    return sign##int32_to_##float##fsz((sign##int32_t)x, fpst); \
P
pbrook 已提交
5357 5358
}

5359 5360 5361 5362 5363 5364 5365 5366 5367
#define CONV_FTOI(name, fsz, sign, round) \
uint32_t HELPER(name)(float##fsz x, void *fpstp) \
{ \
    float_status *fpst = fpstp; \
    if (float##fsz##_is_any_nan(x)) { \
        float_raise(float_flag_invalid, fpst); \
        return 0; \
    } \
    return float##fsz##_to_##sign##int32##round(x, fpst); \
P
pbrook 已提交
5368 5369
}

5370 5371 5372 5373
#define FLOAT_CONVS(name, p, fsz, sign) \
CONV_ITOF(vfp_##name##to##p, fsz, sign) \
CONV_FTOI(vfp_to##name##p, fsz, sign, ) \
CONV_FTOI(vfp_to##name##z##p, fsz, sign, _round_to_zero)
P
pbrook 已提交
5374

5375 5376 5377 5378
FLOAT_CONVS(si, s, 32, )
FLOAT_CONVS(si, d, 64, )
FLOAT_CONVS(ui, s, 32, u)
FLOAT_CONVS(ui, d, 64, u)
P
pbrook 已提交
5379

5380 5381 5382
#undef CONV_ITOF
#undef CONV_FTOI
#undef FLOAT_CONVS
P
pbrook 已提交
5383 5384

/* floating point conversion */
5385
float64 VFP_HELPER(fcvtd, s)(float32 x, CPUARMState *env)
P
pbrook 已提交
5386
{
5387 5388 5389 5390 5391
    float64 r = float32_to_float64(x, &env->vfp.fp_status);
    /* ARM requires that S<->D conversion of any kind of NaN generates
     * a quiet NaN by forcing the most significant frac bit to 1.
     */
    return float64_maybe_silence_nan(r);
P
pbrook 已提交
5392 5393
}

5394
float32 VFP_HELPER(fcvts, d)(float64 x, CPUARMState *env)
P
pbrook 已提交
5395
{
5396 5397 5398 5399 5400
    float32 r =  float64_to_float32(x, &env->vfp.fp_status);
    /* ARM requires that S<->D conversion of any kind of NaN generates
     * a quiet NaN by forcing the most significant frac bit to 1.
     */
    return float32_maybe_silence_nan(r);
P
pbrook 已提交
5401 5402 5403
}

/* VFP3 fixed point conversion.  */
5404
#define VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \
5405 5406
float##fsz HELPER(vfp_##name##to##p)(uint##isz##_t  x, uint32_t shift, \
                                     void *fpstp) \
P
pbrook 已提交
5407
{ \
5408
    float_status *fpst = fpstp; \
5409
    float##fsz tmp; \
5410
    tmp = itype##_to_##float##fsz(x, fpst); \
5411
    return float##fsz##_scalbn(tmp, -(int)shift, fpst); \
5412 5413
}

5414 5415 5416 5417 5418
/* Notice that we want only input-denormal exception flags from the
 * scalbn operation: the other possible flags (overflow+inexact if
 * we overflow to infinity, output-denormal) aren't correct for the
 * complete scale-and-convert operation.
 */
5419 5420 5421 5422
#define VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, round) \
uint##isz##_t HELPER(vfp_to##name##p##round)(float##fsz x, \
                                             uint32_t shift, \
                                             void *fpstp) \
P
pbrook 已提交
5423
{ \
5424
    float_status *fpst = fpstp; \
5425
    int old_exc_flags = get_float_exception_flags(fpst); \
5426 5427
    float##fsz tmp; \
    if (float##fsz##_is_any_nan(x)) { \
5428
        float_raise(float_flag_invalid, fpst); \
5429
        return 0; \
5430
    } \
5431
    tmp = float##fsz##_scalbn(x, shift, fpst); \
5432 5433 5434
    old_exc_flags |= get_float_exception_flags(fpst) \
        & float_flag_input_denormal; \
    set_float_exception_flags(old_exc_flags, fpst); \
5435
    return float##fsz##_to_##itype##round(tmp, fpst); \
5436 5437
}

5438 5439
#define VFP_CONV_FIX(name, p, fsz, isz, itype)                   \
VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype)                     \
5440 5441 5442 5443 5444 5445
VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, _round_to_zero) \
VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, )

#define VFP_CONV_FIX_A64(name, p, fsz, isz, itype)               \
VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype)                     \
VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, )
5446

5447 5448
VFP_CONV_FIX(sh, d, 64, 64, int16)
VFP_CONV_FIX(sl, d, 64, 64, int32)
5449
VFP_CONV_FIX_A64(sq, d, 64, 64, int64)
5450 5451
VFP_CONV_FIX(uh, d, 64, 64, uint16)
VFP_CONV_FIX(ul, d, 64, 64, uint32)
5452
VFP_CONV_FIX_A64(uq, d, 64, 64, uint64)
5453 5454
VFP_CONV_FIX(sh, s, 32, 32, int16)
VFP_CONV_FIX(sl, s, 32, 32, int32)
5455
VFP_CONV_FIX_A64(sq, s, 32, 64, int64)
5456 5457
VFP_CONV_FIX(uh, s, 32, 32, uint16)
VFP_CONV_FIX(ul, s, 32, 32, uint32)
5458
VFP_CONV_FIX_A64(uq, s, 32, 64, uint64)
P
pbrook 已提交
5459
#undef VFP_CONV_FIX
5460 5461
#undef VFP_CONV_FIX_FLOAT
#undef VFP_CONV_FLOAT_FIX_ROUND
P
pbrook 已提交
5462

5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475
/* Set the current fp rounding mode and return the old one.
 * The argument is a softfloat float_round_ value.
 */
uint32_t HELPER(set_rmode)(uint32_t rmode, CPUARMState *env)
{
    float_status *fp_status = &env->vfp.fp_status;

    uint32_t prev_rmode = get_float_rounding_mode(fp_status);
    set_float_rounding_mode(rmode, fp_status);

    return prev_rmode;
}

5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492
/* Set the current fp rounding mode in the standard fp status and return
 * the old one. This is for NEON instructions that need to change the
 * rounding mode but wish to use the standard FPSCR values for everything
 * else. Always set the rounding mode back to the correct value after
 * modifying it.
 * The argument is a softfloat float_round_ value.
 */
uint32_t HELPER(set_neon_rmode)(uint32_t rmode, CPUARMState *env)
{
    float_status *fp_status = &env->vfp.standard_fp_status;

    uint32_t prev_rmode = get_float_rounding_mode(fp_status);
    set_float_rounding_mode(rmode, fp_status);

    return prev_rmode;
}

P
Paul Brook 已提交
5493
/* Half precision conversions.  */
5494
static float32 do_fcvt_f16_to_f32(uint32_t a, CPUARMState *env, float_status *s)
P
Paul Brook 已提交
5495 5496
{
    int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
5497 5498 5499 5500 5501
    float32 r = float16_to_float32(make_float16(a), ieee, s);
    if (ieee) {
        return float32_maybe_silence_nan(r);
    }
    return r;
P
Paul Brook 已提交
5502 5503
}

5504
static uint32_t do_fcvt_f32_to_f16(float32 a, CPUARMState *env, float_status *s)
P
Paul Brook 已提交
5505 5506
{
    int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
5507 5508 5509 5510 5511
    float16 r = float32_to_float16(a, ieee, s);
    if (ieee) {
        r = float16_maybe_silence_nan(r);
    }
    return float16_val(r);
P
Paul Brook 已提交
5512 5513
}

5514
float32 HELPER(neon_fcvt_f16_to_f32)(uint32_t a, CPUARMState *env)
5515 5516 5517 5518
{
    return do_fcvt_f16_to_f32(a, env, &env->vfp.standard_fp_status);
}

5519
uint32_t HELPER(neon_fcvt_f32_to_f16)(float32 a, CPUARMState *env)
5520 5521 5522 5523
{
    return do_fcvt_f32_to_f16(a, env, &env->vfp.standard_fp_status);
}

5524
float32 HELPER(vfp_fcvt_f16_to_f32)(uint32_t a, CPUARMState *env)
5525 5526 5527 5528
{
    return do_fcvt_f16_to_f32(a, env, &env->vfp.fp_status);
}

5529
uint32_t HELPER(vfp_fcvt_f32_to_f16)(float32 a, CPUARMState *env)
5530 5531 5532 5533
{
    return do_fcvt_f32_to_f16(a, env, &env->vfp.fp_status);
}

5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553
float64 HELPER(vfp_fcvt_f16_to_f64)(uint32_t a, CPUARMState *env)
{
    int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
    float64 r = float16_to_float64(make_float16(a), ieee, &env->vfp.fp_status);
    if (ieee) {
        return float64_maybe_silence_nan(r);
    }
    return r;
}

uint32_t HELPER(vfp_fcvt_f64_to_f16)(float64 a, CPUARMState *env)
{
    int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
    float16 r = float64_to_float16(a, ieee, &env->vfp.fp_status);
    if (ieee) {
        r = float16_maybe_silence_nan(r);
    }
    return float16_val(r);
}

5554
#define float32_two make_float32(0x40000000)
5555 5556
#define float32_three make_float32(0x40400000)
#define float32_one_point_five make_float32(0x3fc00000)
5557

5558
float32 HELPER(recps_f32)(float32 a, float32 b, CPUARMState *env)
P
pbrook 已提交
5559
{
5560 5561 5562
    float_status *s = &env->vfp.standard_fp_status;
    if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) ||
        (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) {
5563 5564 5565
        if (!(float32_is_zero(a) || float32_is_zero(b))) {
            float_raise(float_flag_input_denormal, s);
        }
5566 5567 5568
        return float32_two;
    }
    return float32_sub(float32_two, float32_mul(a, b, s), s);
P
pbrook 已提交
5569 5570
}

5571
float32 HELPER(rsqrts_f32)(float32 a, float32 b, CPUARMState *env)
P
pbrook 已提交
5572
{
5573
    float_status *s = &env->vfp.standard_fp_status;
5574 5575 5576
    float32 product;
    if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) ||
        (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) {
5577 5578 5579
        if (!(float32_is_zero(a) || float32_is_zero(b))) {
            float_raise(float_flag_input_denormal, s);
        }
5580
        return float32_one_point_five;
5581
    }
5582 5583
    product = float32_mul(a, b, s);
    return float32_div(float32_sub(float32_three, product, s), float32_two, s);
P
pbrook 已提交
5584 5585
}

P
pbrook 已提交
5586 5587
/* NEON helpers.  */

5588 5589 5590 5591
/* Constants 256 and 512 are used in some helpers; we avoid relying on
 * int->float conversions at run-time.  */
#define float64_256 make_float64(0x4070000000000000LL)
#define float64_512 make_float64(0x4080000000000000LL)
5592 5593
#define float32_maxnorm make_float32(0x7f7fffff)
#define float64_maxnorm make_float64(0x7fefffffffffffffLL)
5594

5595 5596 5597 5598
/* Reciprocal functions
 *
 * The algorithm that must be used to calculate the estimate
 * is specified by the ARM ARM, see FPRecipEstimate()
5599
 */
5600 5601

static float64 recip_estimate(float64 a, float_status *real_fp_status)
5602
{
5603 5604 5605
    /* These calculations mustn't set any fp exception flags,
     * so we use a local copy of the fp_status.
     */
5606
    float_status dummy_status = *real_fp_status;
5607
    float_status *s = &dummy_status;
5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626
    /* q = (int)(a * 512.0) */
    float64 q = float64_mul(float64_512, a, s);
    int64_t q_int = float64_to_int64_round_to_zero(q, s);

    /* r = 1.0 / (((double)q + 0.5) / 512.0) */
    q = int64_to_float64(q_int, s);
    q = float64_add(q, float64_half, s);
    q = float64_div(q, float64_512, s);
    q = float64_div(float64_one, q, s);

    /* s = (int)(256.0 * r + 0.5) */
    q = float64_mul(q, float64_256, s);
    q = float64_add(q, float64_half, s);
    q_int = float64_to_int64_round_to_zero(q, s);

    /* return (double)s / 256.0 */
    return float64_div(int64_to_float64(q_int, s), float64_256, s);
}

5627 5628
/* Common wrapper to call recip_estimate */
static float64 call_recip_estimate(float64 num, int off, float_status *fpst)
P
pbrook 已提交
5629
{
5630 5631 5632 5633 5634
    uint64_t val64 = float64_val(num);
    uint64_t frac = extract64(val64, 0, 52);
    int64_t exp = extract64(val64, 52, 11);
    uint64_t sbit;
    float64 scaled, estimate;
5635

5636 5637 5638 5639 5640 5641 5642 5643 5644
    /* Generate the scaled number for the estimate function */
    if (exp == 0) {
        if (extract64(frac, 51, 1) == 0) {
            exp = -1;
            frac = extract64(frac, 0, 50) << 2;
        } else {
            frac = extract64(frac, 0, 51) << 1;
        }
    }
5645

5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701
    /* scaled = '0' : '01111111110' : fraction<51:44> : Zeros(44); */
    scaled = make_float64((0x3feULL << 52)
                          | extract64(frac, 44, 8) << 44);

    estimate = recip_estimate(scaled, fpst);

    /* Build new result */
    val64 = float64_val(estimate);
    sbit = 0x8000000000000000ULL & val64;
    exp = off - exp;
    frac = extract64(val64, 0, 52);

    if (exp == 0) {
        frac = 1ULL << 51 | extract64(frac, 1, 51);
    } else if (exp == -1) {
        frac = 1ULL << 50 | extract64(frac, 2, 50);
        exp = 0;
    }

    return make_float64(sbit | (exp << 52) | frac);
}

static bool round_to_inf(float_status *fpst, bool sign_bit)
{
    switch (fpst->float_rounding_mode) {
    case float_round_nearest_even: /* Round to Nearest */
        return true;
    case float_round_up: /* Round to +Inf */
        return !sign_bit;
    case float_round_down: /* Round to -Inf */
        return sign_bit;
    case float_round_to_zero: /* Round to Zero */
        return false;
    }

    g_assert_not_reached();
}

float32 HELPER(recpe_f32)(float32 input, void *fpstp)
{
    float_status *fpst = fpstp;
    float32 f32 = float32_squash_input_denormal(input, fpst);
    uint32_t f32_val = float32_val(f32);
    uint32_t f32_sbit = 0x80000000ULL & f32_val;
    int32_t f32_exp = extract32(f32_val, 23, 8);
    uint32_t f32_frac = extract32(f32_val, 0, 23);
    float64 f64, r64;
    uint64_t r64_val;
    int64_t r64_exp;
    uint64_t r64_frac;

    if (float32_is_any_nan(f32)) {
        float32 nan = f32;
        if (float32_is_signaling_nan(f32)) {
            float_raise(float_flag_invalid, fpst);
            nan = float32_maybe_silence_nan(f32);
5702
        }
5703 5704
        if (fpst->default_nan_mode) {
            nan =  float32_default_nan;
5705
        }
5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722
        return nan;
    } else if (float32_is_infinity(f32)) {
        return float32_set_sign(float32_zero, float32_is_neg(f32));
    } else if (float32_is_zero(f32)) {
        float_raise(float_flag_divbyzero, fpst);
        return float32_set_sign(float32_infinity, float32_is_neg(f32));
    } else if ((f32_val & ~(1ULL << 31)) < (1ULL << 21)) {
        /* Abs(value) < 2.0^-128 */
        float_raise(float_flag_overflow | float_flag_inexact, fpst);
        if (round_to_inf(fpst, f32_sbit)) {
            return float32_set_sign(float32_infinity, float32_is_neg(f32));
        } else {
            return float32_set_sign(float32_maxnorm, float32_is_neg(f32));
        }
    } else if (f32_exp >= 253 && fpst->flush_to_zero) {
        float_raise(float_flag_underflow, fpst);
        return float32_set_sign(float32_zero, float32_is_neg(f32));
5723 5724 5725
    }


5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777
    f64 = make_float64(((int64_t)(f32_exp) << 52) | (int64_t)(f32_frac) << 29);
    r64 = call_recip_estimate(f64, 253, fpst);
    r64_val = float64_val(r64);
    r64_exp = extract64(r64_val, 52, 11);
    r64_frac = extract64(r64_val, 0, 52);

    /* result = sign : result_exp<7:0> : fraction<51:29>; */
    return make_float32(f32_sbit |
                        (r64_exp & 0xff) << 23 |
                        extract64(r64_frac, 29, 24));
}

float64 HELPER(recpe_f64)(float64 input, void *fpstp)
{
    float_status *fpst = fpstp;
    float64 f64 = float64_squash_input_denormal(input, fpst);
    uint64_t f64_val = float64_val(f64);
    uint64_t f64_sbit = 0x8000000000000000ULL & f64_val;
    int64_t f64_exp = extract64(f64_val, 52, 11);
    float64 r64;
    uint64_t r64_val;
    int64_t r64_exp;
    uint64_t r64_frac;

    /* Deal with any special cases */
    if (float64_is_any_nan(f64)) {
        float64 nan = f64;
        if (float64_is_signaling_nan(f64)) {
            float_raise(float_flag_invalid, fpst);
            nan = float64_maybe_silence_nan(f64);
        }
        if (fpst->default_nan_mode) {
            nan =  float64_default_nan;
        }
        return nan;
    } else if (float64_is_infinity(f64)) {
        return float64_set_sign(float64_zero, float64_is_neg(f64));
    } else if (float64_is_zero(f64)) {
        float_raise(float_flag_divbyzero, fpst);
        return float64_set_sign(float64_infinity, float64_is_neg(f64));
    } else if ((f64_val & ~(1ULL << 63)) < (1ULL << 50)) {
        /* Abs(value) < 2.0^-1024 */
        float_raise(float_flag_overflow | float_flag_inexact, fpst);
        if (round_to_inf(fpst, f64_sbit)) {
            return float64_set_sign(float64_infinity, float64_is_neg(f64));
        } else {
            return float64_set_sign(float64_maxnorm, float64_is_neg(f64));
        }
    } else if (f64_exp >= 1023 && fpst->flush_to_zero) {
        float_raise(float_flag_underflow, fpst);
        return float64_set_sign(float64_zero, float64_is_neg(f64));
    }
5778

5779 5780 5781 5782
    r64 = call_recip_estimate(f64, 2045, fpst);
    r64_val = float64_val(r64);
    r64_exp = extract64(r64_val, 52, 11);
    r64_frac = extract64(r64_val, 0, 52);
5783

5784 5785 5786 5787
    /* result = sign : result_exp<10:0> : fraction<51:0> */
    return make_float64(f64_sbit |
                        ((r64_exp & 0x7ff) << 52) |
                        r64_frac);
P
pbrook 已提交
5788 5789
}

5790 5791 5792
/* The algorithm that must be used to calculate the estimate
 * is specified by the ARM ARM.
 */
5793
static float64 recip_sqrt_estimate(float64 a, float_status *real_fp_status)
5794
{
5795 5796 5797
    /* These calculations mustn't set any fp exception flags,
     * so we use a local copy of the fp_status.
     */
5798
    float_status dummy_status = *real_fp_status;
5799
    float_status *s = &dummy_status;
5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844
    float64 q;
    int64_t q_int;

    if (float64_lt(a, float64_half, s)) {
        /* range 0.25 <= a < 0.5 */

        /* a in units of 1/512 rounded down */
        /* q0 = (int)(a * 512.0);  */
        q = float64_mul(float64_512, a, s);
        q_int = float64_to_int64_round_to_zero(q, s);

        /* reciprocal root r */
        /* r = 1.0 / sqrt(((double)q0 + 0.5) / 512.0);  */
        q = int64_to_float64(q_int, s);
        q = float64_add(q, float64_half, s);
        q = float64_div(q, float64_512, s);
        q = float64_sqrt(q, s);
        q = float64_div(float64_one, q, s);
    } else {
        /* range 0.5 <= a < 1.0 */

        /* a in units of 1/256 rounded down */
        /* q1 = (int)(a * 256.0); */
        q = float64_mul(float64_256, a, s);
        int64_t q_int = float64_to_int64_round_to_zero(q, s);

        /* reciprocal root r */
        /* r = 1.0 /sqrt(((double)q1 + 0.5) / 256); */
        q = int64_to_float64(q_int, s);
        q = float64_add(q, float64_half, s);
        q = float64_div(q, float64_256, s);
        q = float64_sqrt(q, s);
        q = float64_div(float64_one, q, s);
    }
    /* r in units of 1/256 rounded to nearest */
    /* s = (int)(256.0 * r + 0.5); */

    q = float64_mul(q, float64_256,s );
    q = float64_add(q, float64_half, s);
    q_int = float64_to_int64_round_to_zero(q, s);

    /* return (double)s / 256.0;*/
    return float64_div(int64_to_float64(q_int, s), float64_256, s);
}

5845
float32 HELPER(rsqrte_f32)(float32 input, void *fpstp)
P
pbrook 已提交
5846
{
5847 5848 5849 5850 5851 5852 5853 5854
    float_status *s = fpstp;
    float32 f32 = float32_squash_input_denormal(input, s);
    uint32_t val = float32_val(f32);
    uint32_t f32_sbit = 0x80000000 & val;
    int32_t f32_exp = extract32(val, 23, 8);
    uint32_t f32_frac = extract32(val, 0, 23);
    uint64_t f64_frac;
    uint64_t val64;
5855 5856 5857
    int result_exp;
    float64 f64;

5858 5859 5860
    if (float32_is_any_nan(f32)) {
        float32 nan = f32;
        if (float32_is_signaling_nan(f32)) {
5861
            float_raise(float_flag_invalid, s);
5862
            nan = float32_maybe_silence_nan(f32);
5863
        }
5864 5865
        if (s->default_nan_mode) {
            nan =  float32_default_nan;
5866
        }
5867 5868
        return nan;
    } else if (float32_is_zero(f32)) {
5869
        float_raise(float_flag_divbyzero, s);
5870 5871
        return float32_set_sign(float32_infinity, float32_is_neg(f32));
    } else if (float32_is_neg(f32)) {
5872 5873
        float_raise(float_flag_invalid, s);
        return float32_default_nan;
5874
    } else if (float32_is_infinity(f32)) {
5875 5876 5877
        return float32_zero;
    }

5878
    /* Scale and normalize to a double-precision value between 0.25 and 1.0,
5879
     * preserving the parity of the exponent.  */
5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891

    f64_frac = ((uint64_t) f32_frac) << 29;
    if (f32_exp == 0) {
        while (extract64(f64_frac, 51, 1) == 0) {
            f64_frac = f64_frac << 1;
            f32_exp = f32_exp-1;
        }
        f64_frac = extract64(f64_frac, 0, 51) << 1;
    }

    if (extract64(f32_exp, 0, 1) == 0) {
        f64 = make_float64(((uint64_t) f32_sbit) << 32
5892
                           | (0x3feULL << 52)
5893
                           | f64_frac);
5894
    } else {
5895
        f64 = make_float64(((uint64_t) f32_sbit) << 32
5896
                           | (0x3fdULL << 52)
5897
                           | f64_frac);
5898 5899
    }

5900
    result_exp = (380 - f32_exp) / 2;
5901

5902
    f64 = recip_sqrt_estimate(f64, s);
5903 5904 5905

    val64 = float64_val(f64);

5906
    val = ((result_exp & 0xff) << 23)
5907 5908
        | ((val64 >> 29)  & 0x7fffff);
    return make_float32(val);
P
pbrook 已提交
5909 5910
}

5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973
float64 HELPER(rsqrte_f64)(float64 input, void *fpstp)
{
    float_status *s = fpstp;
    float64 f64 = float64_squash_input_denormal(input, s);
    uint64_t val = float64_val(f64);
    uint64_t f64_sbit = 0x8000000000000000ULL & val;
    int64_t f64_exp = extract64(val, 52, 11);
    uint64_t f64_frac = extract64(val, 0, 52);
    int64_t result_exp;
    uint64_t result_frac;

    if (float64_is_any_nan(f64)) {
        float64 nan = f64;
        if (float64_is_signaling_nan(f64)) {
            float_raise(float_flag_invalid, s);
            nan = float64_maybe_silence_nan(f64);
        }
        if (s->default_nan_mode) {
            nan =  float64_default_nan;
        }
        return nan;
    } else if (float64_is_zero(f64)) {
        float_raise(float_flag_divbyzero, s);
        return float64_set_sign(float64_infinity, float64_is_neg(f64));
    } else if (float64_is_neg(f64)) {
        float_raise(float_flag_invalid, s);
        return float64_default_nan;
    } else if (float64_is_infinity(f64)) {
        return float64_zero;
    }

    /* Scale and normalize to a double-precision value between 0.25 and 1.0,
     * preserving the parity of the exponent.  */

    if (f64_exp == 0) {
        while (extract64(f64_frac, 51, 1) == 0) {
            f64_frac = f64_frac << 1;
            f64_exp = f64_exp - 1;
        }
        f64_frac = extract64(f64_frac, 0, 51) << 1;
    }

    if (extract64(f64_exp, 0, 1) == 0) {
        f64 = make_float64(f64_sbit
                           | (0x3feULL << 52)
                           | f64_frac);
    } else {
        f64 = make_float64(f64_sbit
                           | (0x3fdULL << 52)
                           | f64_frac);
    }

    result_exp = (3068 - f64_exp) / 2;

    f64 = recip_sqrt_estimate(f64, s);

    result_frac = extract64(float64_val(f64), 0, 52);

    return make_float64(f64_sbit |
                        ((result_exp & 0x7ff) << 52) |
                        result_frac);
}

5974
uint32_t HELPER(recpe_u32)(uint32_t a, void *fpstp)
P
pbrook 已提交
5975
{
5976
    float_status *s = fpstp;
5977 5978 5979 5980 5981 5982 5983 5984 5985
    float64 f64;

    if ((a & 0x80000000) == 0) {
        return 0xffffffff;
    }

    f64 = make_float64((0x3feULL << 52)
                       | ((int64_t)(a & 0x7fffffff) << 21));

5986
    f64 = recip_estimate(f64, s);
5987 5988

    return 0x80000000 | ((float64_val(f64) >> 21) & 0x7fffffff);
P
pbrook 已提交
5989 5990
}

5991
uint32_t HELPER(rsqrte_u32)(uint32_t a, void *fpstp)
P
pbrook 已提交
5992
{
5993
    float_status *fpst = fpstp;
5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007
    float64 f64;

    if ((a & 0xc0000000) == 0) {
        return 0xffffffff;
    }

    if (a & 0x80000000) {
        f64 = make_float64((0x3feULL << 52)
                           | ((uint64_t)(a & 0x7fffffff) << 21));
    } else { /* bits 31-30 == '01' */
        f64 = make_float64((0x3fdULL << 52)
                           | ((uint64_t)(a & 0x3fffffff) << 22));
    }

6008
    f64 = recip_sqrt_estimate(f64, fpst);
6009 6010

    return 0x80000000 | ((float64_val(f64) >> 21) & 0x7fffffff);
P
pbrook 已提交
6011
}
6012

6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024
/* VFPv4 fused multiply-accumulate */
float32 VFP_HELPER(muladd, s)(float32 a, float32 b, float32 c, void *fpstp)
{
    float_status *fpst = fpstp;
    return float32_muladd(a, b, c, 0, fpst);
}

float64 VFP_HELPER(muladd, d)(float64 a, float64 b, float64 c, void *fpstp)
{
    float_status *fpst = fpstp;
    return float64_muladd(a, b, c, 0, fpst);
}
6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069

/* ARMv8 round to integral */
float32 HELPER(rints_exact)(float32 x, void *fp_status)
{
    return float32_round_to_int(x, fp_status);
}

float64 HELPER(rintd_exact)(float64 x, void *fp_status)
{
    return float64_round_to_int(x, fp_status);
}

float32 HELPER(rints)(float32 x, void *fp_status)
{
    int old_flags = get_float_exception_flags(fp_status), new_flags;
    float32 ret;

    ret = float32_round_to_int(x, fp_status);

    /* Suppress any inexact exceptions the conversion produced */
    if (!(old_flags & float_flag_inexact)) {
        new_flags = get_float_exception_flags(fp_status);
        set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status);
    }

    return ret;
}

float64 HELPER(rintd)(float64 x, void *fp_status)
{
    int old_flags = get_float_exception_flags(fp_status), new_flags;
    float64 ret;

    ret = float64_round_to_int(x, fp_status);

    new_flags = get_float_exception_flags(fp_status);

    /* Suppress any inexact exceptions the conversion produced */
    if (!(old_flags & float_flag_inexact)) {
        new_flags = get_float_exception_flags(fp_status);
        set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status);
    }

    return ret;
}
6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097

/* Convert ARM rounding mode to softfloat */
int arm_rmode_to_sf(int rmode)
{
    switch (rmode) {
    case FPROUNDING_TIEAWAY:
        rmode = float_round_ties_away;
        break;
    case FPROUNDING_ODD:
        /* FIXME: add support for TIEAWAY and ODD */
        qemu_log_mask(LOG_UNIMP, "arm: unimplemented rounding mode: %d\n",
                      rmode);
    case FPROUNDING_TIEEVEN:
    default:
        rmode = float_round_nearest_even;
        break;
    case FPROUNDING_POSINF:
        rmode = float_round_up;
        break;
    case FPROUNDING_NEGINF:
        rmode = float_round_down;
        break;
    case FPROUNDING_ZERO:
        rmode = float_round_to_zero;
        break;
    }
    return rmode;
}
6098

6099 6100 6101 6102
/* CRC helpers.
 * The upper bytes of val (above the number specified by 'bytes') must have
 * been zeroed out by the caller.
 */
6103 6104 6105 6106
uint32_t HELPER(crc32)(uint32_t acc, uint32_t val, uint32_t bytes)
{
    uint8_t buf[4];

6107
    stl_le_p(buf, val);
6108 6109 6110 6111 6112 6113 6114 6115 6116

    /* zlib crc32 converts the accumulator and output to one's complement.  */
    return crc32(acc ^ 0xffffffff, buf, bytes) ^ 0xffffffff;
}

uint32_t HELPER(crc32c)(uint32_t acc, uint32_t val, uint32_t bytes)
{
    uint8_t buf[4];

6117
    stl_le_p(buf, val);
6118 6119 6120 6121

    /* Linux crc32c converts the output to one's complement.  */
    return crc32c(acc, buf, bytes) ^ 0xffffffff;
}