helper.c 188.4 KB
Newer Older
B
bellard 已提交
1
#include "cpu.h"
2
#include "internals.h"
3
#include "exec/gdbstub.h"
L
Lluís 已提交
4
#include "helper.h"
5
#include "qemu/host-utils.h"
6
#include "sysemu/arch_init.h"
7
#include "sysemu/sysemu.h"
8
#include "qemu/bitops.h"
9 10
#include "qemu/crc32c.h"
#include <zlib.h> /* For crc32 */
P
Peter Maydell 已提交
11

12
#ifndef CONFIG_USER_ONLY
13 14
#include "exec/softmmu_exec.h"

15
static inline int get_phys_addr(CPUARMState *env, target_ulong address,
16
                                int access_type, int is_user,
A
Avi Kivity 已提交
17
                                hwaddr *phys_ptr, int *prot,
18
                                target_ulong *page_size);
19 20 21 22 23

/* Definitions for the PMCCNTR and PMCR registers */
#define PMCRD   0x8
#define PMCRC   0x4
#define PMCRE   0x1
24 25
#endif

26
static int vfp_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg)
P
pbrook 已提交
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52
{
    int nregs;

    /* VFP data registers are always little-endian.  */
    nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16;
    if (reg < nregs) {
        stfq_le_p(buf, env->vfp.regs[reg]);
        return 8;
    }
    if (arm_feature(env, ARM_FEATURE_NEON)) {
        /* Aliases for Q regs.  */
        nregs += 16;
        if (reg < nregs) {
            stfq_le_p(buf, env->vfp.regs[(reg - 32) * 2]);
            stfq_le_p(buf + 8, env->vfp.regs[(reg - 32) * 2 + 1]);
            return 16;
        }
    }
    switch (reg - nregs) {
    case 0: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSID]); return 4;
    case 1: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSCR]); return 4;
    case 2: stl_p(buf, env->vfp.xregs[ARM_VFP_FPEXC]); return 4;
    }
    return 0;
}

53
static int vfp_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg)
P
pbrook 已提交
54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72
{
    int nregs;

    nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16;
    if (reg < nregs) {
        env->vfp.regs[reg] = ldfq_le_p(buf);
        return 8;
    }
    if (arm_feature(env, ARM_FEATURE_NEON)) {
        nregs += 16;
        if (reg < nregs) {
            env->vfp.regs[(reg - 32) * 2] = ldfq_le_p(buf);
            env->vfp.regs[(reg - 32) * 2 + 1] = ldfq_le_p(buf + 8);
            return 16;
        }
    }
    switch (reg - nregs) {
    case 0: env->vfp.xregs[ARM_VFP_FPSID] = ldl_p(buf); return 4;
    case 1: env->vfp.xregs[ARM_VFP_FPSCR] = ldl_p(buf); return 4;
73
    case 2: env->vfp.xregs[ARM_VFP_FPEXC] = ldl_p(buf) & (1 << 30); return 4;
P
pbrook 已提交
74 75 76 77
    }
    return 0;
}

78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119
static int aarch64_fpu_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg)
{
    switch (reg) {
    case 0 ... 31:
        /* 128 bit FP register */
        stfq_le_p(buf, env->vfp.regs[reg * 2]);
        stfq_le_p(buf + 8, env->vfp.regs[reg * 2 + 1]);
        return 16;
    case 32:
        /* FPSR */
        stl_p(buf, vfp_get_fpsr(env));
        return 4;
    case 33:
        /* FPCR */
        stl_p(buf, vfp_get_fpcr(env));
        return 4;
    default:
        return 0;
    }
}

static int aarch64_fpu_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg)
{
    switch (reg) {
    case 0 ... 31:
        /* 128 bit FP register */
        env->vfp.regs[reg * 2] = ldfq_le_p(buf);
        env->vfp.regs[reg * 2 + 1] = ldfq_le_p(buf + 8);
        return 16;
    case 32:
        /* FPSR */
        vfp_set_fpsr(env, ldl_p(buf));
        return 4;
    case 33:
        /* FPCR */
        vfp_set_fpcr(env, ldl_p(buf));
        return 4;
    default:
        return 0;
    }
}

120
static uint64_t raw_read(CPUARMState *env, const ARMCPRegInfo *ri)
121
{
122
    if (cpreg_field_is_64bit(ri)) {
123
        return CPREG_FIELD64(env, ri);
124
    } else {
125
        return CPREG_FIELD32(env, ri);
126
    }
127 128
}

129 130
static void raw_write(CPUARMState *env, const ARMCPRegInfo *ri,
                      uint64_t value)
131
{
132
    if (cpreg_field_is_64bit(ri)) {
133 134 135 136
        CPREG_FIELD64(env, ri) = value;
    } else {
        CPREG_FIELD32(env, ri) = value;
    }
137 138
}

139
static uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri)
140
{
141
    /* Raw read of a coprocessor register (as needed for migration, etc). */
142
    if (ri->type & ARM_CP_CONST) {
143
        return ri->resetvalue;
144
    } else if (ri->raw_readfn) {
145
        return ri->raw_readfn(env, ri);
146
    } else if (ri->readfn) {
147
        return ri->readfn(env, ri);
148
    } else {
149
        return raw_read(env, ri);
150 151 152
    }
}

153
static void write_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri,
154
                             uint64_t v)
155 156 157 158 159 160 161
{
    /* Raw write of a coprocessor register (as needed for migration, etc).
     * Note that constant registers are treated as write-ignored; the
     * caller should check for success by whether a readback gives the
     * value written.
     */
    if (ri->type & ARM_CP_CONST) {
162
        return;
163
    } else if (ri->raw_writefn) {
164
        ri->raw_writefn(env, ri, v);
165
    } else if (ri->writefn) {
166
        ri->writefn(env, ri, v);
167
    } else {
168
        raw_write(env, ri, v);
169 170 171 172 173 174 175 176 177 178 179 180
    }
}

bool write_cpustate_to_list(ARMCPU *cpu)
{
    /* Write the coprocessor state from cpu->env to the (index,value) list. */
    int i;
    bool ok = true;

    for (i = 0; i < cpu->cpreg_array_len; i++) {
        uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
        const ARMCPRegInfo *ri;
181

182
        ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
183 184 185 186 187 188 189
        if (!ri) {
            ok = false;
            continue;
        }
        if (ri->type & ARM_CP_NO_MIGRATE) {
            continue;
        }
190
        cpu->cpreg_values[i] = read_raw_cp_reg(&cpu->env, ri);
191 192 193 194 195 196 197 198 199 200 201 202 203 204
    }
    return ok;
}

bool write_list_to_cpustate(ARMCPU *cpu)
{
    int i;
    bool ok = true;

    for (i = 0; i < cpu->cpreg_array_len; i++) {
        uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
        uint64_t v = cpu->cpreg_values[i];
        const ARMCPRegInfo *ri;

205
        ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
206 207 208 209 210 211 212 213 214 215 216
        if (!ri) {
            ok = false;
            continue;
        }
        if (ri->type & ARM_CP_NO_MIGRATE) {
            continue;
        }
        /* Write value and confirm it reads back as written
         * (to catch read-only registers and partially read-only
         * registers where the incoming migration value doesn't match)
         */
217 218
        write_raw_cp_reg(&cpu->env, ri, v);
        if (read_raw_cp_reg(&cpu->env, ri) != v) {
219 220 221 222 223 224 225 226 227 228 229 230 231
            ok = false;
        }
    }
    return ok;
}

static void add_cpreg_to_list(gpointer key, gpointer opaque)
{
    ARMCPU *cpu = opaque;
    uint64_t regidx;
    const ARMCPRegInfo *ri;

    regidx = *(uint32_t *)key;
232
    ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
233 234 235 236 237 238 239 240 241 242 243 244 245 246 247

    if (!(ri->type & ARM_CP_NO_MIGRATE)) {
        cpu->cpreg_indexes[cpu->cpreg_array_len] = cpreg_to_kvm_id(regidx);
        /* The value array need not be initialized at this point */
        cpu->cpreg_array_len++;
    }
}

static void count_cpreg(gpointer key, gpointer opaque)
{
    ARMCPU *cpu = opaque;
    uint64_t regidx;
    const ARMCPRegInfo *ri;

    regidx = *(uint32_t *)key;
248
    ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
249 250 251 252 253 254 255 256

    if (!(ri->type & ARM_CP_NO_MIGRATE)) {
        cpu->cpreg_array_len++;
    }
}

static gint cpreg_key_compare(gconstpointer a, gconstpointer b)
{
257 258
    uint64_t aidx = cpreg_to_kvm_id(*(uint32_t *)a);
    uint64_t bidx = cpreg_to_kvm_id(*(uint32_t *)b);
259

260 261 262 263 264 265 266
    if (aidx > bidx) {
        return 1;
    }
    if (aidx < bidx) {
        return -1;
    }
    return 0;
267 268
}

269 270 271 272 273 274 275
static void cpreg_make_keylist(gpointer key, gpointer value, gpointer udata)
{
    GList **plist = udata;

    *plist = g_list_prepend(*plist, key);
}

276 277 278 279 280
void init_cpreg_list(ARMCPU *cpu)
{
    /* Initialise the cpreg_tuples[] array based on the cp_regs hash.
     * Note that we require cpreg_tuples[] to be sorted by key ID.
     */
281
    GList *keys = NULL;
282 283
    int arraylen;

284 285
    g_hash_table_foreach(cpu->cp_regs, cpreg_make_keylist, &keys);

286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306
    keys = g_list_sort(keys, cpreg_key_compare);

    cpu->cpreg_array_len = 0;

    g_list_foreach(keys, count_cpreg, cpu);

    arraylen = cpu->cpreg_array_len;
    cpu->cpreg_indexes = g_new(uint64_t, arraylen);
    cpu->cpreg_values = g_new(uint64_t, arraylen);
    cpu->cpreg_vmstate_indexes = g_new(uint64_t, arraylen);
    cpu->cpreg_vmstate_values = g_new(uint64_t, arraylen);
    cpu->cpreg_vmstate_array_len = cpu->cpreg_array_len;
    cpu->cpreg_array_len = 0;

    g_list_foreach(keys, add_cpreg_to_list, cpu);

    assert(cpu->cpreg_array_len == arraylen);

    g_list_free(keys);
}

307 308 309 310 311 312 313 314 315 316 317
/* Return true if extended addresses are enabled.
 * This is always the case if our translation regime is 64 bit,
 * but depends on TTBCR.EAE for 32 bit.
 */
static inline bool extended_addresses_enabled(CPUARMState *env)
{
    return arm_el_is_aa64(env, 1)
        || ((arm_feature(env, ARM_FEATURE_LPAE)
             && (env->cp15.c2_control & (1U << 31))));
}

318
static void dacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
319
{
320 321
    ARMCPU *cpu = arm_env_get_cpu(env);

322
    env->cp15.c3 = value;
323
    tlb_flush(CPU(cpu), 1); /* Flush TLB as domain not tracked in TLB */
324 325
}

326
static void fcse_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
327
{
328 329
    ARMCPU *cpu = arm_env_get_cpu(env);

330 331 332 333
    if (env->cp15.c13_fcse != value) {
        /* Unlike real hardware the qemu TLB uses virtual addresses,
         * not modified virtual addresses, so this causes a TLB flush.
         */
334
        tlb_flush(CPU(cpu), 1);
335 336 337
        env->cp15.c13_fcse = value;
    }
}
338 339 340

static void contextidr_write(CPUARMState *env, const ARMCPRegInfo *ri,
                             uint64_t value)
341
{
342 343
    ARMCPU *cpu = arm_env_get_cpu(env);

344 345
    if (env->cp15.contextidr_el1 != value && !arm_feature(env, ARM_FEATURE_MPU)
        && !extended_addresses_enabled(env)) {
346 347 348 349
        /* For VMSA (when not using the LPAE long descriptor page table
         * format) this register includes the ASID, so do a TLB flush.
         * For PMSA it is purely a process ID and no action is needed.
         */
350
        tlb_flush(CPU(cpu), 1);
351
    }
352
    env->cp15.contextidr_el1 = value;
353 354
}

355 356
static void tlbiall_write(CPUARMState *env, const ARMCPRegInfo *ri,
                          uint64_t value)
357 358
{
    /* Invalidate all (TLBIALL) */
359 360 361
    ARMCPU *cpu = arm_env_get_cpu(env);

    tlb_flush(CPU(cpu), 1);
362 363
}

364 365
static void tlbimva_write(CPUARMState *env, const ARMCPRegInfo *ri,
                          uint64_t value)
366 367
{
    /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */
368 369 370
    ARMCPU *cpu = arm_env_get_cpu(env);

    tlb_flush_page(CPU(cpu), value & TARGET_PAGE_MASK);
371 372
}

373 374
static void tlbiasid_write(CPUARMState *env, const ARMCPRegInfo *ri,
                           uint64_t value)
375 376
{
    /* Invalidate by ASID (TLBIASID) */
377 378 379
    ARMCPU *cpu = arm_env_get_cpu(env);

    tlb_flush(CPU(cpu), value == 0);
380 381
}

382 383
static void tlbimvaa_write(CPUARMState *env, const ARMCPRegInfo *ri,
                           uint64_t value)
384 385
{
    /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */
386 387 388
    ARMCPU *cpu = arm_env_get_cpu(env);

    tlb_flush_page(CPU(cpu), value & TARGET_PAGE_MASK);
389 390
}

391 392 393 394 395 396 397
static const ARMCPRegInfo cp_reginfo[] = {
    /* DBGDIDR: just RAZ. In particular this means the "debug architecture
     * version" bits will read as a reserved value, which should cause
     * Linux to not try to use the debug hardware.
     */
    { .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0,
      .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
398 399
    { .name = "FCSEIDR", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 0,
      .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c13_fcse),
400
      .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
401 402 403 404
    { .name = "CONTEXTIDR", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
      .access = PL1_RW,
      .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el1),
405
      .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
406 407 408 409 410 411 412 413 414 415 416 417
    REGINFO_SENTINEL
};

static const ARMCPRegInfo not_v8_cp_reginfo[] = {
    /* NB: Some of these registers exist in v8 but with more precise
     * definitions that don't use CP_ANY wildcards (mostly in v8_cp_reginfo[]).
     */
    /* MMU Domain access control / MPU write buffer control */
    { .name = "DACR", .cp = 15,
      .crn = 3, .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
      .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c3),
      .resetvalue = 0, .writefn = dacr_write, .raw_writefn = raw_write, },
418 419 420 421 422
    /* ??? This covers not just the impdef TLB lockdown registers but also
     * some v7VMSA registers relating to TEX remap, so it is overly broad.
     */
    { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = CP_ANY,
      .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
423 424 425 426
    /* MMU TLB control. Note that the wildcarding means we cover not just
     * the unified TLB ops but also the dside/iside/inner-shareable variants.
     */
    { .name = "TLBIALL", .cp = 15, .crn = 8, .crm = CP_ANY,
427 428
      .opc1 = CP_ANY, .opc2 = 0, .access = PL1_W, .writefn = tlbiall_write,
      .type = ARM_CP_NO_MIGRATE },
429
    { .name = "TLBIMVA", .cp = 15, .crn = 8, .crm = CP_ANY,
430 431
      .opc1 = CP_ANY, .opc2 = 1, .access = PL1_W, .writefn = tlbimva_write,
      .type = ARM_CP_NO_MIGRATE },
432
    { .name = "TLBIASID", .cp = 15, .crn = 8, .crm = CP_ANY,
433 434
      .opc1 = CP_ANY, .opc2 = 2, .access = PL1_W, .writefn = tlbiasid_write,
      .type = ARM_CP_NO_MIGRATE },
435
    { .name = "TLBIMVAA", .cp = 15, .crn = 8, .crm = CP_ANY,
436 437
      .opc1 = CP_ANY, .opc2 = 3, .access = PL1_W, .writefn = tlbimvaa_write,
      .type = ARM_CP_NO_MIGRATE },
438 439 440 441
    /* Cache maintenance ops; some of this space may be overridden later. */
    { .name = "CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
      .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
      .type = ARM_CP_NOP | ARM_CP_OVERRIDE },
442 443 444
    REGINFO_SENTINEL
};

445 446 447 448 449 450 451 452 453 454 455 456 457 458 459
static const ARMCPRegInfo not_v6_cp_reginfo[] = {
    /* Not all pre-v6 cores implemented this WFI, so this is slightly
     * over-broad.
     */
    { .name = "WFI_v5", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = 2,
      .access = PL1_W, .type = ARM_CP_WFI },
    REGINFO_SENTINEL
};

static const ARMCPRegInfo not_v7_cp_reginfo[] = {
    /* Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which
     * is UNPREDICTABLE; we choose to NOP as most implementations do).
     */
    { .name = "WFI_v6", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
      .access = PL1_W, .type = ARM_CP_WFI },
460 461 462 463 464 465 466 467 468 469
    /* L1 cache lockdown. Not architectural in v6 and earlier but in practice
     * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and
     * OMAPCP will override this space.
     */
    { .name = "DLOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 0,
      .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_data),
      .resetvalue = 0 },
    { .name = "ILOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 1,
      .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_insn),
      .resetvalue = 0 },
470 471
    /* v6 doesn't have the cache ID registers but Linux reads them anyway */
    { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = CP_ANY,
472 473
      .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_MIGRATE,
      .resetvalue = 0 },
474 475 476
    REGINFO_SENTINEL
};

477 478
static void cpacr_write(CPUARMState *env, const ARMCPRegInfo *ri,
                        uint64_t value)
479 480 481 482 483 484 485 486
{
    if (env->cp15.c1_coproc != value) {
        env->cp15.c1_coproc = value;
        /* ??? Is this safe when called from within a TB?  */
        tb_flush(env);
    }
}

487 488 489 490 491 492 493
static const ARMCPRegInfo v6_cp_reginfo[] = {
    /* prefetch by MVA in v6, NOP in v7 */
    { .name = "MVA_prefetch",
      .cp = 15, .crn = 7, .crm = 13, .opc1 = 0, .opc2 = 1,
      .access = PL1_W, .type = ARM_CP_NOP },
    { .name = "ISB", .cp = 15, .crn = 7, .crm = 5, .opc1 = 0, .opc2 = 4,
      .access = PL0_W, .type = ARM_CP_NOP },
494
    { .name = "DSB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 4,
495
      .access = PL0_W, .type = ARM_CP_NOP },
496
    { .name = "DMB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 5,
497
      .access = PL0_W, .type = ARM_CP_NOP },
498
    { .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 2,
499 500
      .access = PL1_RW,
      .fieldoffset = offsetofhigh32(CPUARMState, cp15.far_el1),
501 502 503 504 505 506
      .resetvalue = 0, },
    /* Watchpoint Fault Address Register : should actually only be present
     * for 1136, 1176, 11MPCore.
     */
    { .name = "WFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1,
      .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, },
507 508
    { .name = "CPACR", .state = ARM_CP_STATE_BOTH, .opc0 = 3,
      .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 2,
509 510
      .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c1_coproc),
      .resetvalue = 0, .writefn = cpacr_write },
511 512 513
    REGINFO_SENTINEL
};

514
static CPAccessResult pmreg_access(CPUARMState *env, const ARMCPRegInfo *ri)
515
{
S
Stefan Weil 已提交
516
    /* Performance monitor registers user accessibility is controlled
517
     * by PMUSERENR.
518 519
     */
    if (arm_current_pl(env) == 0 && !env->cp15.c9_pmuserenr) {
520
        return CP_ACCESS_TRAP;
521
    }
522
    return CP_ACCESS_OK;
523 524
}

525
#ifndef CONFIG_USER_ONLY
526 527
static void pmcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
                       uint64_t value)
528
{
529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549
    /* Don't computer the number of ticks in user mode */
    uint32_t temp_ticks;

    temp_ticks = qemu_clock_get_us(QEMU_CLOCK_VIRTUAL) *
                  get_ticks_per_sec() / 1000000;

    if (env->cp15.c9_pmcr & PMCRE) {
        /* If the counter is enabled */
        if (env->cp15.c9_pmcr & PMCRD) {
            /* Increment once every 64 processor clock cycles */
            env->cp15.c15_ccnt = (temp_ticks/64) - env->cp15.c15_ccnt;
        } else {
            env->cp15.c15_ccnt = temp_ticks - env->cp15.c15_ccnt;
        }
    }

    if (value & PMCRC) {
        /* The counter has been reset */
        env->cp15.c15_ccnt = 0;
    }

550 551 552
    /* only the DP, X, D and E bits are writable */
    env->cp15.c9_pmcr &= ~0x39;
    env->cp15.c9_pmcr |= (value & 0x39);
553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600

    if (env->cp15.c9_pmcr & PMCRE) {
        if (env->cp15.c9_pmcr & PMCRD) {
            /* Increment once every 64 processor clock cycles */
            temp_ticks /= 64;
        }
        env->cp15.c15_ccnt = temp_ticks - env->cp15.c15_ccnt;
    }
}

static uint64_t pmccntr_read(CPUARMState *env, const ARMCPRegInfo *ri)
{
    uint32_t total_ticks;

    if (!(env->cp15.c9_pmcr & PMCRE)) {
        /* Counter is disabled, do not change value */
        return env->cp15.c15_ccnt;
    }

    total_ticks = qemu_clock_get_us(QEMU_CLOCK_VIRTUAL) *
                  get_ticks_per_sec() / 1000000;

    if (env->cp15.c9_pmcr & PMCRD) {
        /* Increment once every 64 processor clock cycles */
        total_ticks /= 64;
    }
    return total_ticks - env->cp15.c15_ccnt;
}

static void pmccntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
                        uint64_t value)
{
    uint32_t total_ticks;

    if (!(env->cp15.c9_pmcr & PMCRE)) {
        /* Counter is disabled, set the absolute value */
        env->cp15.c15_ccnt = value;
        return;
    }

    total_ticks = qemu_clock_get_us(QEMU_CLOCK_VIRTUAL) *
                  get_ticks_per_sec() / 1000000;

    if (env->cp15.c9_pmcr & PMCRD) {
        /* Increment once every 64 processor clock cycles */
        total_ticks /= 64;
    }
    env->cp15.c15_ccnt = total_ticks - value;
601
}
602
#endif
603

604
static void pmcntenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
605 606 607 608 609 610
                            uint64_t value)
{
    value &= (1 << 31);
    env->cp15.c9_pmcnten |= value;
}

611 612
static void pmcntenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
                             uint64_t value)
613 614 615 616 617
{
    value &= (1 << 31);
    env->cp15.c9_pmcnten &= ~value;
}

618 619
static void pmovsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
                         uint64_t value)
620 621 622 623
{
    env->cp15.c9_pmovsr &= ~value;
}

624 625
static void pmxevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri,
                             uint64_t value)
626 627 628 629
{
    env->cp15.c9_pmxevtyper = value & 0xff;
}

630
static void pmuserenr_write(CPUARMState *env, const ARMCPRegInfo *ri,
631 632 633 634 635
                            uint64_t value)
{
    env->cp15.c9_pmuserenr = value & 1;
}

636 637
static void pmintenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
                             uint64_t value)
638 639 640 641 642 643
{
    /* We have no event counters so only the C bit can be changed */
    value &= (1 << 31);
    env->cp15.c9_pminten |= value;
}

644 645
static void pmintenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
                             uint64_t value)
646 647 648 649 650
{
    value &= (1 << 31);
    env->cp15.c9_pminten &= ~value;
}

651 652
static void vbar_write(CPUARMState *env, const ARMCPRegInfo *ri,
                       uint64_t value)
N
Nathan Rossi 已提交
653
{
654 655 656 657 658 659
    /* Note that even though the AArch64 view of this register has bits
     * [10:0] all RES0 we can only mask the bottom 5, to comply with the
     * architectural requirements for bits which are RES0 only in some
     * contexts. (ARMv8 would permit us to do no masking at all, but ARMv7
     * requires the bottom five bits to be RAZ/WI because they're UNK/SBZP.)
     */
660
    env->cp15.c12_vbar = value & ~0x1FULL;
N
Nathan Rossi 已提交
661 662
}

663
static uint64_t ccsidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
664 665
{
    ARMCPU *cpu = arm_env_get_cpu(env);
666
    return cpu->ccsidr[env->cp15.c0_cssel];
667 668
}

669 670
static void csselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
                         uint64_t value)
671 672 673 674
{
    env->cp15.c0_cssel = value & 0xf;
}

675 676 677 678 679 680 681 682 683 684 685 686 687 688 689
static uint64_t isr_read(CPUARMState *env, const ARMCPRegInfo *ri)
{
    CPUState *cs = ENV_GET_CPU(env);
    uint64_t ret = 0;

    if (cs->interrupt_request & CPU_INTERRUPT_HARD) {
        ret |= CPSR_I;
    }
    if (cs->interrupt_request & CPU_INTERRUPT_FIQ) {
        ret |= CPSR_F;
    }
    /* External aborts are not possible in QEMU so A bit is always clear */
    return ret;
}

690 691 692 693 694 695
static const ARMCPRegInfo v7_cp_reginfo[] = {
    /* DBGDRAR, DBGDSAR: always RAZ since we don't implement memory mapped
     * debug components
     */
    { .name = "DBGDRAR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 0,
      .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
696
    { .name = "DBGDSAR", .cp = 14, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
697
      .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
698 699 700
    /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */
    { .name = "NOP", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
      .access = PL1_W, .type = ARM_CP_NOP },
701 702 703 704 705 706 707 708 709 710 711 712 713 714
    /* Performance monitors are implementation defined in v7,
     * but with an ARM recommended set of registers, which we
     * follow (although we don't actually implement any counters)
     *
     * Performance registers fall into three categories:
     *  (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR)
     *  (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR)
     *  (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others)
     * For the cases controlled by PMUSERENR we must set .access to PL0_RW
     * or PL0_RO as appropriate and then check PMUSERENR in the helper fn.
     */
    { .name = "PMCNTENSET", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 1,
      .access = PL0_RW, .resetvalue = 0,
      .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten),
715 716 717
      .writefn = pmcntenset_write,
      .accessfn = pmreg_access,
      .raw_writefn = raw_write },
718 719
    { .name = "PMCNTENCLR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 2,
      .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten),
720 721
      .accessfn = pmreg_access,
      .writefn = pmcntenclr_write,
722
      .type = ARM_CP_NO_MIGRATE },
723 724
    { .name = "PMOVSR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 3,
      .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
725 726 727 728
      .accessfn = pmreg_access,
      .writefn = pmovsr_write,
      .raw_writefn = raw_write },
    /* Unimplemented so WI. */
729
    { .name = "PMSWINC", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 4,
730
      .access = PL0_W, .accessfn = pmreg_access, .type = ARM_CP_NOP },
731
    /* Since we don't implement any events, writing to PMSELR is UNPREDICTABLE.
732
     * We choose to RAZ/WI.
733 734
     */
    { .name = "PMSELR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 5,
735 736
      .access = PL0_RW, .type = ARM_CP_CONST, .resetvalue = 0,
      .accessfn = pmreg_access },
737
#ifndef CONFIG_USER_ONLY
738
    { .name = "PMCCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 0,
739 740
      .access = PL0_RW, .resetvalue = 0, .type = ARM_CP_IO,
      .readfn = pmccntr_read, .writefn = pmccntr_write,
741
      .accessfn = pmreg_access },
742
#endif
743 744 745
    { .name = "PMXEVTYPER", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 1,
      .access = PL0_RW,
      .fieldoffset = offsetof(CPUARMState, cp15.c9_pmxevtyper),
746 747 748
      .accessfn = pmreg_access, .writefn = pmxevtyper_write,
      .raw_writefn = raw_write },
    /* Unimplemented, RAZ/WI. */
749
    { .name = "PMXEVCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 2,
750 751
      .access = PL0_RW, .type = ARM_CP_CONST, .resetvalue = 0,
      .accessfn = pmreg_access },
752 753 754 755
    { .name = "PMUSERENR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 0,
      .access = PL0_R | PL1_RW,
      .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr),
      .resetvalue = 0,
756
      .writefn = pmuserenr_write, .raw_writefn = raw_write },
757 758 759 760
    { .name = "PMINTENSET", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 1,
      .access = PL1_RW,
      .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
      .resetvalue = 0,
761
      .writefn = pmintenset_write, .raw_writefn = raw_write },
762
    { .name = "PMINTENCLR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 2,
763
      .access = PL1_RW, .type = ARM_CP_NO_MIGRATE,
764
      .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
765
      .resetvalue = 0, .writefn = pmintenclr_write, },
766 767
    { .name = "VBAR", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .crn = 12, .crm = 0, .opc1 = 0, .opc2 = 0,
N
Nathan Rossi 已提交
768 769 770
      .access = PL1_RW, .writefn = vbar_write,
      .fieldoffset = offsetof(CPUARMState, cp15.c12_vbar),
      .resetvalue = 0 },
771 772 773
    { .name = "SCR", .cp = 15, .crn = 1, .crm = 1, .opc1 = 0, .opc2 = 0,
      .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c1_scr),
      .resetvalue = 0, },
774 775
    { .name = "CCSIDR", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 0,
776
      .access = PL1_R, .readfn = ccsidr_read, .type = ARM_CP_NO_MIGRATE },
777 778
    { .name = "CSSELR", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 2, .opc2 = 0,
779 780 781 782 783
      .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c0_cssel),
      .writefn = csselr_write, .resetvalue = 0 },
    /* Auxiliary ID register: this actually has an IMPDEF value but for now
     * just RAZ for all cores:
     */
784 785
    { .name = "AIDR", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 7,
786
      .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
787 788 789 790 791 792 793 794 795
    /* Auxiliary fault status registers: these also are IMPDEF, and we
     * choose to RAZ/WI for all cores.
     */
    { .name = "AFSR0_EL1", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 0,
      .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
    { .name = "AFSR1_EL1", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 1,
      .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815
    /* MAIR can just read-as-written because we don't implement caches
     * and so don't need to care about memory attributes.
     */
    { .name = "MAIR_EL1", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0,
      .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el1),
      .resetvalue = 0 },
    /* For non-long-descriptor page tables these are PRRR and NMRR;
     * regardless they still act as reads-as-written for QEMU.
     * The override is necessary because of the overly-broad TLB_LOCKDOWN
     * definition.
     */
    { .name = "MAIR0", .state = ARM_CP_STATE_AA32, .type = ARM_CP_OVERRIDE,
      .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, .access = PL1_RW,
      .fieldoffset = offsetoflow32(CPUARMState, cp15.mair_el1),
      .resetfn = arm_cp_reset_ignore },
    { .name = "MAIR1", .state = ARM_CP_STATE_AA32, .type = ARM_CP_OVERRIDE,
      .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 1, .access = PL1_RW,
      .fieldoffset = offsetofhigh32(CPUARMState, cp15.mair_el1),
      .resetfn = arm_cp_reset_ignore },
816 817 818
    { .name = "ISR_EL1", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 0,
      .type = ARM_CP_NO_MIGRATE, .access = PL1_R, .readfn = isr_read },
819 820 821
    REGINFO_SENTINEL
};

822 823
static void teecr_write(CPUARMState *env, const ARMCPRegInfo *ri,
                        uint64_t value)
824 825 826 827 828
{
    value &= 1;
    env->teecr = value;
}

829
static CPAccessResult teehbr_access(CPUARMState *env, const ARMCPRegInfo *ri)
830 831
{
    if (arm_current_pl(env) == 0 && (env->teecr & 1)) {
832
        return CP_ACCESS_TRAP;
833
    }
834
    return CP_ACCESS_OK;
835 836 837 838 839 840 841 842 843
}

static const ARMCPRegInfo t2ee_cp_reginfo[] = {
    { .name = "TEECR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 6, .opc2 = 0,
      .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, teecr),
      .resetvalue = 0,
      .writefn = teecr_write },
    { .name = "TEEHBR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 6, .opc2 = 0,
      .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, teehbr),
844
      .accessfn = teehbr_access, .resetvalue = 0 },
845 846 847
    REGINFO_SENTINEL
};

848
static const ARMCPRegInfo v6k_cp_reginfo[] = {
849 850 851 852
    { .name = "TPIDR_EL0", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 3, .opc2 = 2, .crn = 13, .crm = 0,
      .access = PL0_RW,
      .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el0), .resetvalue = 0 },
853 854
    { .name = "TPIDRURW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 2,
      .access = PL0_RW,
855 856 857 858 859 860
      .fieldoffset = offsetoflow32(CPUARMState, cp15.tpidr_el0),
      .resetfn = arm_cp_reset_ignore },
    { .name = "TPIDRRO_EL0", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 3, .opc2 = 3, .crn = 13, .crm = 0,
      .access = PL0_R|PL1_W,
      .fieldoffset = offsetof(CPUARMState, cp15.tpidrro_el0), .resetvalue = 0 },
861 862
    { .name = "TPIDRURO", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 3,
      .access = PL0_R|PL1_W,
863 864 865 866
      .fieldoffset = offsetoflow32(CPUARMState, cp15.tpidrro_el0),
      .resetfn = arm_cp_reset_ignore },
    { .name = "TPIDR_EL1", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .opc1 = 0, .opc2 = 4, .crn = 13, .crm = 0,
867
      .access = PL1_RW,
868
      .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el1), .resetvalue = 0 },
869 870 871
    REGINFO_SENTINEL
};

872 873
#ifndef CONFIG_USER_ONLY

874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926
static CPAccessResult gt_cntfrq_access(CPUARMState *env, const ARMCPRegInfo *ri)
{
    /* CNTFRQ: not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero */
    if (arm_current_pl(env) == 0 && !extract32(env->cp15.c14_cntkctl, 0, 2)) {
        return CP_ACCESS_TRAP;
    }
    return CP_ACCESS_OK;
}

static CPAccessResult gt_counter_access(CPUARMState *env, int timeridx)
{
    /* CNT[PV]CT: not visible from PL0 if ELO[PV]CTEN is zero */
    if (arm_current_pl(env) == 0 &&
        !extract32(env->cp15.c14_cntkctl, timeridx, 1)) {
        return CP_ACCESS_TRAP;
    }
    return CP_ACCESS_OK;
}

static CPAccessResult gt_timer_access(CPUARMState *env, int timeridx)
{
    /* CNT[PV]_CVAL, CNT[PV]_CTL, CNT[PV]_TVAL: not visible from PL0 if
     * EL0[PV]TEN is zero.
     */
    if (arm_current_pl(env) == 0 &&
        !extract32(env->cp15.c14_cntkctl, 9 - timeridx, 1)) {
        return CP_ACCESS_TRAP;
    }
    return CP_ACCESS_OK;
}

static CPAccessResult gt_pct_access(CPUARMState *env,
                                         const ARMCPRegInfo *ri)
{
    return gt_counter_access(env, GTIMER_PHYS);
}

static CPAccessResult gt_vct_access(CPUARMState *env,
                                         const ARMCPRegInfo *ri)
{
    return gt_counter_access(env, GTIMER_VIRT);
}

static CPAccessResult gt_ptimer_access(CPUARMState *env, const ARMCPRegInfo *ri)
{
    return gt_timer_access(env, GTIMER_PHYS);
}

static CPAccessResult gt_vtimer_access(CPUARMState *env, const ARMCPRegInfo *ri)
{
    return gt_timer_access(env, GTIMER_VIRT);
}

927 928
static uint64_t gt_get_countervalue(CPUARMState *env)
{
929
    return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / GTIMER_SCALE;
930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962
}

static void gt_recalc_timer(ARMCPU *cpu, int timeridx)
{
    ARMGenericTimer *gt = &cpu->env.cp15.c14_timer[timeridx];

    if (gt->ctl & 1) {
        /* Timer enabled: calculate and set current ISTATUS, irq, and
         * reset timer to when ISTATUS next has to change
         */
        uint64_t count = gt_get_countervalue(&cpu->env);
        /* Note that this must be unsigned 64 bit arithmetic: */
        int istatus = count >= gt->cval;
        uint64_t nexttick;

        gt->ctl = deposit32(gt->ctl, 2, 1, istatus);
        qemu_set_irq(cpu->gt_timer_outputs[timeridx],
                     (istatus && !(gt->ctl & 2)));
        if (istatus) {
            /* Next transition is when count rolls back over to zero */
            nexttick = UINT64_MAX;
        } else {
            /* Next transition is when we hit cval */
            nexttick = gt->cval;
        }
        /* Note that the desired next expiry time might be beyond the
         * signed-64-bit range of a QEMUTimer -- in this case we just
         * set the timer for as far in the future as possible. When the
         * timer expires we will reset the timer for any remaining period.
         */
        if (nexttick > INT64_MAX / GTIMER_SCALE) {
            nexttick = INT64_MAX / GTIMER_SCALE;
        }
963
        timer_mod(cpu->gt_timer[timeridx], nexttick);
964 965 966 967
    } else {
        /* Timer disabled: ISTATUS and timer output always clear */
        gt->ctl &= ~4;
        qemu_set_irq(cpu->gt_timer_outputs[timeridx], 0);
968
        timer_del(cpu->gt_timer[timeridx]);
969 970 971 972 973 974 975 976
    }
}

static void gt_cnt_reset(CPUARMState *env, const ARMCPRegInfo *ri)
{
    ARMCPU *cpu = arm_env_get_cpu(env);
    int timeridx = ri->opc1 & 1;

977
    timer_del(cpu->gt_timer[timeridx]);
978 979
}

980
static uint64_t gt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
981
{
982
    return gt_get_countervalue(env);
983 984
}

985 986
static void gt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
                          uint64_t value)
987 988 989 990 991 992
{
    int timeridx = ri->opc1 & 1;

    env->cp15.c14_timer[timeridx].cval = value;
    gt_recalc_timer(arm_env_get_cpu(env), timeridx);
}
993 994

static uint64_t gt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
995 996 997
{
    int timeridx = ri->crm & 1;

998 999
    return (uint32_t)(env->cp15.c14_timer[timeridx].cval -
                      gt_get_countervalue(env));
1000 1001
}

1002 1003
static void gt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
                          uint64_t value)
1004 1005 1006 1007 1008 1009 1010 1011
{
    int timeridx = ri->crm & 1;

    env->cp15.c14_timer[timeridx].cval = gt_get_countervalue(env) +
        + sextract64(value, 0, 32);
    gt_recalc_timer(arm_env_get_cpu(env), timeridx);
}

1012 1013
static void gt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
                         uint64_t value)
1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051
{
    ARMCPU *cpu = arm_env_get_cpu(env);
    int timeridx = ri->crm & 1;
    uint32_t oldval = env->cp15.c14_timer[timeridx].ctl;

    env->cp15.c14_timer[timeridx].ctl = value & 3;
    if ((oldval ^ value) & 1) {
        /* Enable toggled */
        gt_recalc_timer(cpu, timeridx);
    } else if ((oldval & value) & 2) {
        /* IMASK toggled: don't need to recalculate,
         * just set the interrupt line based on ISTATUS
         */
        qemu_set_irq(cpu->gt_timer_outputs[timeridx],
                     (oldval & 4) && (value & 2));
    }
}

void arm_gt_ptimer_cb(void *opaque)
{
    ARMCPU *cpu = opaque;

    gt_recalc_timer(cpu, GTIMER_PHYS);
}

void arm_gt_vtimer_cb(void *opaque)
{
    ARMCPU *cpu = opaque;

    gt_recalc_timer(cpu, GTIMER_VIRT);
}

static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
    /* Note that CNTFRQ is purely reads-as-written for the benefit
     * of software; writing it doesn't actually change the timer frequency.
     * Our reset value matches the fixed frequency we implement the timer at.
     */
    { .name = "CNTFRQ", .cp = 15, .crn = 14, .crm = 0, .opc1 = 0, .opc2 = 0,
1052 1053 1054 1055 1056 1057 1058 1059
      .type = ARM_CP_NO_MIGRATE,
      .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
      .fieldoffset = offsetoflow32(CPUARMState, cp15.c14_cntfrq),
      .resetfn = arm_cp_reset_ignore,
    },
    { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0,
      .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
1060 1061 1062 1063
      .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq),
      .resetvalue = (1000 * 1000 * 1000) / GTIMER_SCALE,
    },
    /* overall control: mostly access permissions */
1064 1065
    { .name = "CNTKCTL", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .opc1 = 0, .crn = 14, .crm = 1, .opc2 = 0,
1066 1067 1068 1069 1070 1071
      .access = PL1_RW,
      .fieldoffset = offsetof(CPUARMState, cp15.c14_cntkctl),
      .resetvalue = 0,
    },
    /* per-timer control */
    { .name = "CNTP_CTL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
1072 1073 1074 1075 1076 1077 1078 1079 1080
      .type = ARM_CP_IO | ARM_CP_NO_MIGRATE, .access = PL1_RW | PL0_R,
      .accessfn = gt_ptimer_access,
      .fieldoffset = offsetoflow32(CPUARMState,
                                   cp15.c14_timer[GTIMER_PHYS].ctl),
      .resetfn = arm_cp_reset_ignore,
      .writefn = gt_ctl_write, .raw_writefn = raw_write,
    },
    { .name = "CNTP_CTL_EL0", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 1,
1081
      .type = ARM_CP_IO, .access = PL1_RW | PL0_R,
1082
      .accessfn = gt_ptimer_access,
1083 1084
      .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl),
      .resetvalue = 0,
1085
      .writefn = gt_ctl_write, .raw_writefn = raw_write,
1086 1087
    },
    { .name = "CNTV_CTL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 1,
1088 1089 1090 1091 1092 1093 1094 1095 1096
      .type = ARM_CP_IO | ARM_CP_NO_MIGRATE, .access = PL1_RW | PL0_R,
      .accessfn = gt_vtimer_access,
      .fieldoffset = offsetoflow32(CPUARMState,
                                   cp15.c14_timer[GTIMER_VIRT].ctl),
      .resetfn = arm_cp_reset_ignore,
      .writefn = gt_ctl_write, .raw_writefn = raw_write,
    },
    { .name = "CNTV_CTL_EL0", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 1,
1097
      .type = ARM_CP_IO, .access = PL1_RW | PL0_R,
1098
      .accessfn = gt_vtimer_access,
1099 1100
      .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl),
      .resetvalue = 0,
1101
      .writefn = gt_ctl_write, .raw_writefn = raw_write,
1102 1103 1104 1105
    },
    /* TimerValue views: a 32 bit downcounting view of the underlying state */
    { .name = "CNTP_TVAL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
      .type = ARM_CP_NO_MIGRATE | ARM_CP_IO, .access = PL1_RW | PL0_R,
1106
      .accessfn = gt_ptimer_access,
1107 1108
      .readfn = gt_tval_read, .writefn = gt_tval_write,
    },
1109 1110 1111 1112 1113
    { .name = "CNTP_TVAL_EL0", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 0,
      .type = ARM_CP_NO_MIGRATE | ARM_CP_IO, .access = PL1_RW | PL0_R,
      .readfn = gt_tval_read, .writefn = gt_tval_write,
    },
1114 1115
    { .name = "CNTV_TVAL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 0,
      .type = ARM_CP_NO_MIGRATE | ARM_CP_IO, .access = PL1_RW | PL0_R,
1116
      .accessfn = gt_vtimer_access,
1117 1118
      .readfn = gt_tval_read, .writefn = gt_tval_write,
    },
1119 1120 1121 1122 1123
    { .name = "CNTV_TVAL_EL0", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 0,
      .type = ARM_CP_NO_MIGRATE | ARM_CP_IO, .access = PL1_RW | PL0_R,
      .readfn = gt_tval_read, .writefn = gt_tval_write,
    },
1124 1125 1126
    /* The counter itself */
    { .name = "CNTPCT", .cp = 15, .crm = 14, .opc1 = 0,
      .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_MIGRATE | ARM_CP_IO,
1127
      .accessfn = gt_pct_access,
1128 1129 1130 1131 1132 1133
      .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore,
    },
    { .name = "CNTPCT_EL0", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 1,
      .access = PL0_R, .type = ARM_CP_NO_MIGRATE | ARM_CP_IO,
      .accessfn = gt_pct_access,
1134 1135 1136 1137
      .readfn = gt_cnt_read, .resetfn = gt_cnt_reset,
    },
    { .name = "CNTVCT", .cp = 15, .crm = 14, .opc1 = 1,
      .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_MIGRATE | ARM_CP_IO,
1138
      .accessfn = gt_vct_access,
1139 1140 1141 1142 1143 1144
      .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore,
    },
    { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2,
      .access = PL0_R, .type = ARM_CP_NO_MIGRATE | ARM_CP_IO,
      .accessfn = gt_vct_access,
1145 1146 1147 1148 1149
      .readfn = gt_cnt_read, .resetfn = gt_cnt_reset,
    },
    /* Comparison value, indicating when the timer goes off */
    { .name = "CNTP_CVAL", .cp = 15, .crm = 14, .opc1 = 2,
      .access = PL1_RW | PL0_R,
1150
      .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_NO_MIGRATE,
1151
      .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
1152 1153 1154 1155 1156 1157 1158 1159 1160
      .accessfn = gt_ptimer_access, .resetfn = arm_cp_reset_ignore,
      .writefn = gt_cval_write, .raw_writefn = raw_write,
    },
    { .name = "CNTP_CVAL_EL0", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 2,
      .access = PL1_RW | PL0_R,
      .type = ARM_CP_IO,
      .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
      .resetvalue = 0, .accessfn = gt_vtimer_access,
1161
      .writefn = gt_cval_write, .raw_writefn = raw_write,
1162 1163 1164
    },
    { .name = "CNTV_CVAL", .cp = 15, .crm = 14, .opc1 = 3,
      .access = PL1_RW | PL0_R,
1165
      .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_NO_MIGRATE,
1166
      .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
1167 1168 1169 1170 1171 1172 1173 1174 1175
      .accessfn = gt_vtimer_access, .resetfn = arm_cp_reset_ignore,
      .writefn = gt_cval_write, .raw_writefn = raw_write,
    },
    { .name = "CNTV_CVAL_EL0", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 2,
      .access = PL1_RW | PL0_R,
      .type = ARM_CP_IO,
      .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
      .resetvalue = 0, .accessfn = gt_vtimer_access,
1176
      .writefn = gt_cval_write, .raw_writefn = raw_write,
1177 1178 1179 1180 1181 1182
    },
    REGINFO_SENTINEL
};

#else
/* In user-mode none of the generic timer registers are accessible,
1183
 * and their implementation depends on QEMU_CLOCK_VIRTUAL and qdev gpio outputs,
1184 1185
 * so instead just don't register any of them.
 */
1186 1187 1188 1189
static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
    REGINFO_SENTINEL
};

1190 1191
#endif

1192
static void par_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
1193
{
1194
    if (arm_feature(env, ARM_FEATURE_LPAE)) {
1195
        env->cp15.par_el1 = value;
1196
    } else if (arm_feature(env, ARM_FEATURE_V7)) {
1197
        env->cp15.par_el1 = value & 0xfffff6ff;
1198
    } else {
1199
        env->cp15.par_el1 = value & 0xfffff1ff;
1200 1201 1202 1203 1204
    }
}

#ifndef CONFIG_USER_ONLY
/* get_phys_addr() isn't present for user-mode-only targets */
1205

1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218
static CPAccessResult ats_access(CPUARMState *env, const ARMCPRegInfo *ri)
{
    if (ri->opc2 & 4) {
        /* Other states are only available with TrustZone; in
         * a non-TZ implementation these registers don't exist
         * at all, which is an Uncategorized trap. This underdecoding
         * is safe because the reginfo is NO_MIGRATE.
         */
        return CP_ACCESS_TRAP_UNCATEGORIZED;
    }
    return CP_ACCESS_OK;
}

1219
static void ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
1220
{
A
Avi Kivity 已提交
1221
    hwaddr phys_addr;
1222 1223 1224 1225 1226 1227 1228
    target_ulong page_size;
    int prot;
    int ret, is_user = ri->opc2 & 2;
    int access_type = ri->opc2 & 1;

    ret = get_phys_addr(env, value, access_type, is_user,
                        &phys_addr, &prot, &page_size);
1229 1230 1231 1232 1233 1234 1235 1236 1237
    if (extended_addresses_enabled(env)) {
        /* ret is a DFSR/IFSR value for the long descriptor
         * translation table format, but with WnR always clear.
         * Convert it to a 64-bit PAR.
         */
        uint64_t par64 = (1 << 11); /* LPAE bit always set */
        if (ret == 0) {
            par64 |= phys_addr & ~0xfffULL;
            /* We don't set the ATTR or SH fields in the PAR. */
1238
        } else {
1239 1240 1241 1242 1243 1244
            par64 |= 1; /* F */
            par64 |= (ret & 0x3f) << 1; /* FS */
            /* Note that S2WLK and FSTAGE are always zero, because we don't
             * implement virtualization and therefore there can't be a stage 2
             * fault.
             */
1245
        }
1246
        env->cp15.par_el1 = par64;
1247
    } else {
1248 1249 1250 1251 1252 1253 1254 1255
        /* ret is a DFSR/IFSR value for the short descriptor
         * translation table format (with WnR always clear).
         * Convert it to a 32-bit PAR.
         */
        if (ret == 0) {
            /* We do not set any attribute bits in the PAR */
            if (page_size == (1 << 24)
                && arm_feature(env, ARM_FEATURE_V7)) {
1256
                env->cp15.par_el1 = (phys_addr & 0xff000000) | 1 << 1;
1257
            } else {
1258
                env->cp15.par_el1 = phys_addr & 0xfffff000;
1259 1260
            }
        } else {
1261
            env->cp15.par_el1 = ((ret & (1 << 10)) >> 5) |
1262
                ((ret & (1 << 12)) >> 6) |
1263 1264
                ((ret & 0xf) << 1) | 1;
        }
1265 1266 1267 1268 1269 1270 1271
    }
}
#endif

static const ARMCPRegInfo vapa_cp_reginfo[] = {
    { .name = "PAR", .cp = 15, .crn = 7, .crm = 4, .opc1 = 0, .opc2 = 0,
      .access = PL1_RW, .resetvalue = 0,
1272
      .fieldoffset = offsetoflow32(CPUARMState, cp15.par_el1),
1273 1274 1275
      .writefn = par_write },
#ifndef CONFIG_USER_ONLY
    { .name = "ATS", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = CP_ANY,
1276 1277
      .access = PL1_W, .accessfn = ats_access,
      .writefn = ats_write, .type = ARM_CP_NO_MIGRATE },
1278 1279 1280 1281
#endif
    REGINFO_SENTINEL
};

1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311
/* Return basic MPU access permission bits.  */
static uint32_t simple_mpu_ap_bits(uint32_t val)
{
    uint32_t ret;
    uint32_t mask;
    int i;
    ret = 0;
    mask = 3;
    for (i = 0; i < 16; i += 2) {
        ret |= (val >> i) & mask;
        mask <<= 2;
    }
    return ret;
}

/* Pad basic MPU access permission bits to extended format.  */
static uint32_t extended_mpu_ap_bits(uint32_t val)
{
    uint32_t ret;
    uint32_t mask;
    int i;
    ret = 0;
    mask = 3;
    for (i = 0; i < 16; i += 2) {
        ret |= (val & mask) << i;
        mask <<= 2;
    }
    return ret;
}

1312 1313
static void pmsav5_data_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
                                 uint64_t value)
1314
{
1315
    env->cp15.pmsav5_data_ap = extended_mpu_ap_bits(value);
1316 1317
}

1318
static uint64_t pmsav5_data_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
1319
{
1320
    return simple_mpu_ap_bits(env->cp15.pmsav5_data_ap);
1321 1322
}

1323 1324
static void pmsav5_insn_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
                                 uint64_t value)
1325
{
1326
    env->cp15.pmsav5_insn_ap = extended_mpu_ap_bits(value);
1327 1328
}

1329
static uint64_t pmsav5_insn_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
1330
{
1331
    return simple_mpu_ap_bits(env->cp15.pmsav5_insn_ap);
1332 1333 1334 1335
}

static const ARMCPRegInfo pmsav5_cp_reginfo[] = {
    { .name = "DATA_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
1336
      .access = PL1_RW, .type = ARM_CP_NO_MIGRATE,
1337 1338
      .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
      .resetvalue = 0,
1339 1340
      .readfn = pmsav5_data_ap_read, .writefn = pmsav5_data_ap_write, },
    { .name = "INSN_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
1341
      .access = PL1_RW, .type = ARM_CP_NO_MIGRATE,
1342 1343
      .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
      .resetvalue = 0,
1344 1345 1346
      .readfn = pmsav5_insn_ap_read, .writefn = pmsav5_insn_ap_write, },
    { .name = "DATA_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 2,
      .access = PL1_RW,
1347 1348
      .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
      .resetvalue = 0, },
1349 1350
    { .name = "INSN_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 3,
      .access = PL1_RW,
1351 1352
      .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
      .resetvalue = 0, },
1353 1354 1355 1356 1357 1358
    { .name = "DCACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
      .access = PL1_RW,
      .fieldoffset = offsetof(CPUARMState, cp15.c2_data), .resetvalue = 0, },
    { .name = "ICACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1,
      .access = PL1_RW,
      .fieldoffset = offsetof(CPUARMState, cp15.c2_insn), .resetvalue = 0, },
1359
    /* Protection region base and size registers */
1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383
    { .name = "946_PRBS0", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0,
      .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
      .fieldoffset = offsetof(CPUARMState, cp15.c6_region[0]) },
    { .name = "946_PRBS1", .cp = 15, .crn = 6, .crm = 1, .opc1 = 0,
      .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
      .fieldoffset = offsetof(CPUARMState, cp15.c6_region[1]) },
    { .name = "946_PRBS2", .cp = 15, .crn = 6, .crm = 2, .opc1 = 0,
      .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
      .fieldoffset = offsetof(CPUARMState, cp15.c6_region[2]) },
    { .name = "946_PRBS3", .cp = 15, .crn = 6, .crm = 3, .opc1 = 0,
      .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
      .fieldoffset = offsetof(CPUARMState, cp15.c6_region[3]) },
    { .name = "946_PRBS4", .cp = 15, .crn = 6, .crm = 4, .opc1 = 0,
      .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
      .fieldoffset = offsetof(CPUARMState, cp15.c6_region[4]) },
    { .name = "946_PRBS5", .cp = 15, .crn = 6, .crm = 5, .opc1 = 0,
      .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
      .fieldoffset = offsetof(CPUARMState, cp15.c6_region[5]) },
    { .name = "946_PRBS6", .cp = 15, .crn = 6, .crm = 6, .opc1 = 0,
      .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
      .fieldoffset = offsetof(CPUARMState, cp15.c6_region[6]) },
    { .name = "946_PRBS7", .cp = 15, .crn = 6, .crm = 7, .opc1 = 0,
      .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
      .fieldoffset = offsetof(CPUARMState, cp15.c6_region[7]) },
1384 1385 1386
    REGINFO_SENTINEL
};

1387 1388
static void vmsa_ttbcr_raw_write(CPUARMState *env, const ARMCPRegInfo *ri,
                                 uint64_t value)
1389
{
1390 1391
    int maskshift = extract32(value, 0, 3);

1392
    if (arm_feature(env, ARM_FEATURE_LPAE) && (value & (1 << 31))) {
1393 1394 1395 1396 1397 1398 1399 1400 1401
        value &= ~((7 << 19) | (3 << 14) | (0xf << 3));
    } else {
        value &= 7;
    }
    /* Note that we always calculate c2_mask and c2_base_mask, but
     * they are only used for short-descriptor tables (ie if EAE is 0);
     * for long-descriptor tables the TTBCR fields are used differently
     * and the c2_mask and c2_base_mask values are meaningless.
     */
1402
    env->cp15.c2_control = value;
1403 1404
    env->cp15.c2_mask = ~(((uint32_t)0xffffffffu) >> maskshift);
    env->cp15.c2_base_mask = ~((uint32_t)0x3fffu >> maskshift);
1405 1406
}

1407 1408
static void vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
                             uint64_t value)
1409
{
1410 1411
    ARMCPU *cpu = arm_env_get_cpu(env);

1412 1413 1414 1415
    if (arm_feature(env, ARM_FEATURE_LPAE)) {
        /* With LPAE the TTBCR could result in a change of ASID
         * via the TTBCR.A1 bit, so do a TLB flush.
         */
1416
        tlb_flush(CPU(cpu), 1);
1417
    }
1418
    vmsa_ttbcr_raw_write(env, ri, value);
1419 1420
}

1421 1422 1423 1424 1425 1426 1427
static void vmsa_ttbcr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
{
    env->cp15.c2_base_mask = 0xffffc000u;
    env->cp15.c2_control = 0;
    env->cp15.c2_mask = 0;
}

1428 1429 1430
static void vmsa_tcr_el1_write(CPUARMState *env, const ARMCPRegInfo *ri,
                               uint64_t value)
{
1431 1432
    ARMCPU *cpu = arm_env_get_cpu(env);

1433
    /* For AArch64 the A1 bit could result in a change of ASID, so TLB flush. */
1434
    tlb_flush(CPU(cpu), 1);
1435 1436 1437
    env->cp15.c2_control = value;
}

1438 1439 1440 1441 1442 1443 1444
static void vmsa_ttbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
                            uint64_t value)
{
    /* 64 bit accesses to the TTBRs can change the ASID and so we
     * must flush the TLB.
     */
    if (cpreg_field_is_64bit(ri)) {
1445 1446 1447
        ARMCPU *cpu = arm_env_get_cpu(env);

        tlb_flush(CPU(cpu), 1);
1448 1449 1450 1451
    }
    raw_write(env, ri, value);
}

1452 1453
static const ARMCPRegInfo vmsa_cp_reginfo[] = {
    { .name = "DFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
1454 1455 1456
      .access = PL1_RW, .type = ARM_CP_NO_MIGRATE,
      .fieldoffset = offsetoflow32(CPUARMState, cp15.esr_el1),
      .resetfn = arm_cp_reset_ignore, },
1457 1458
    { .name = "IFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
      .access = PL1_RW,
1459 1460 1461 1462 1463
      .fieldoffset = offsetof(CPUARMState, cp15.ifsr_el2), .resetvalue = 0, },
    { .name = "ESR_EL1", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .crn = 5, .crm = 2, .opc1 = 0, .opc2 = 0,
      .access = PL1_RW,
      .fieldoffset = offsetof(CPUARMState, cp15.esr_el1), .resetvalue = 0, },
1464 1465 1466 1467 1468 1469 1470 1471
    { .name = "TTBR0_EL1", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
      .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el1),
      .writefn = vmsa_ttbr_write, .resetvalue = 0 },
    { .name = "TTBR1_EL1", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1,
      .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.ttbr1_el1),
      .writefn = vmsa_ttbr_write, .resetvalue = 0 },
1472 1473 1474 1475
    { .name = "TCR_EL1", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
      .access = PL1_RW, .writefn = vmsa_tcr_el1_write,
      .resetfn = vmsa_ttbcr_reset, .raw_writefn = raw_write,
1476
      .fieldoffset = offsetof(CPUARMState, cp15.c2_control) },
1477 1478 1479 1480
    { .name = "TTBCR", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
      .access = PL1_RW, .type = ARM_CP_NO_MIGRATE, .writefn = vmsa_ttbcr_write,
      .resetfn = arm_cp_reset_ignore, .raw_writefn = vmsa_ttbcr_raw_write,
      .fieldoffset = offsetoflow32(CPUARMState, cp15.c2_control) },
1481 1482 1483 1484
    /* 64-bit FAR; this entry also gives us the AArch32 DFAR */
    { .name = "FAR_EL1", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0,
      .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el1),
1485
      .resetvalue = 0, },
1486 1487 1488
    REGINFO_SENTINEL
};

1489 1490
static void omap_ticonfig_write(CPUARMState *env, const ARMCPRegInfo *ri,
                                uint64_t value)
1491 1492 1493 1494 1495 1496 1497
{
    env->cp15.c15_ticonfig = value & 0xe7;
    /* The OS_TYPE bit in this register changes the reported CPUID! */
    env->cp15.c0_cpuid = (value & (1 << 5)) ?
        ARM_CPUID_TI915T : ARM_CPUID_TI925T;
}

1498 1499
static void omap_threadid_write(CPUARMState *env, const ARMCPRegInfo *ri,
                                uint64_t value)
1500 1501 1502 1503
{
    env->cp15.c15_threadid = value & 0xffff;
}

1504 1505
static void omap_wfi_write(CPUARMState *env, const ARMCPRegInfo *ri,
                           uint64_t value)
1506 1507
{
    /* Wait-for-interrupt (deprecated) */
1508
    cpu_interrupt(CPU(arm_env_get_cpu(env)), CPU_INTERRUPT_HALT);
1509 1510
}

1511 1512
static void omap_cachemaint_write(CPUARMState *env, const ARMCPRegInfo *ri,
                                  uint64_t value)
1513 1514 1515 1516 1517 1518 1519 1520
{
    /* On OMAP there are registers indicating the max/min index of dcache lines
     * containing a dirty line; cache flush operations have to reset these.
     */
    env->cp15.c15_i_max = 0x000;
    env->cp15.c15_i_min = 0xff0;
}

1521 1522 1523
static const ARMCPRegInfo omap_cp_reginfo[] = {
    { .name = "DFSR", .cp = 15, .crn = 5, .crm = CP_ANY,
      .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_OVERRIDE,
1524 1525
      .fieldoffset = offsetoflow32(CPUARMState, cp15.esr_el1),
      .resetvalue = 0, },
1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543
    { .name = "", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0,
      .access = PL1_RW, .type = ARM_CP_NOP },
    { .name = "TICONFIG", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0,
      .access = PL1_RW,
      .fieldoffset = offsetof(CPUARMState, cp15.c15_ticonfig), .resetvalue = 0,
      .writefn = omap_ticonfig_write },
    { .name = "IMAX", .cp = 15, .crn = 15, .crm = 2, .opc1 = 0, .opc2 = 0,
      .access = PL1_RW,
      .fieldoffset = offsetof(CPUARMState, cp15.c15_i_max), .resetvalue = 0, },
    { .name = "IMIN", .cp = 15, .crn = 15, .crm = 3, .opc1 = 0, .opc2 = 0,
      .access = PL1_RW, .resetvalue = 0xff0,
      .fieldoffset = offsetof(CPUARMState, cp15.c15_i_min) },
    { .name = "THREADID", .cp = 15, .crn = 15, .crm = 4, .opc1 = 0, .opc2 = 0,
      .access = PL1_RW,
      .fieldoffset = offsetof(CPUARMState, cp15.c15_threadid), .resetvalue = 0,
      .writefn = omap_threadid_write },
    { .name = "TI925T_STATUS", .cp = 15, .crn = 15,
      .crm = 8, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
1544
      .type = ARM_CP_NO_MIGRATE,
1545 1546 1547 1548 1549 1550
      .readfn = arm_cp_read_zero, .writefn = omap_wfi_write, },
    /* TODO: Peripheral port remap register:
     * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller
     * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff),
     * when MMU is off.
     */
1551
    { .name = "OMAP_CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
1552 1553
      .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
      .type = ARM_CP_OVERRIDE | ARM_CP_NO_MIGRATE,
1554
      .writefn = omap_cachemaint_write },
1555 1556 1557
    { .name = "C9", .cp = 15, .crn = 9,
      .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW,
      .type = ARM_CP_CONST | ARM_CP_OVERRIDE, .resetvalue = 0 },
1558 1559 1560
    REGINFO_SENTINEL
};

1561 1562
static void xscale_cpar_write(CPUARMState *env, const ARMCPRegInfo *ri,
                              uint64_t value)
1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576
{
    value &= 0x3fff;
    if (env->cp15.c15_cpar != value) {
        /* Changes cp0 to cp13 behavior, so needs a TB flush.  */
        tb_flush(env);
        env->cp15.c15_cpar = value;
    }
}

static const ARMCPRegInfo xscale_cp_reginfo[] = {
    { .name = "XSCALE_CPAR",
      .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
      .fieldoffset = offsetof(CPUARMState, cp15.c15_cpar), .resetvalue = 0,
      .writefn = xscale_cpar_write, },
1577 1578 1579 1580
    { .name = "XSCALE_AUXCR",
      .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW,
      .fieldoffset = offsetof(CPUARMState, cp15.c1_xscaleauxcr),
      .resetvalue = 0, },
1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595
    /* XScale specific cache-lockdown: since we have no cache we NOP these
     * and hope the guest does not really rely on cache behaviour.
     */
    { .name = "XSCALE_LOCK_ICACHE_LINE",
      .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0,
      .access = PL1_W, .type = ARM_CP_NOP },
    { .name = "XSCALE_UNLOCK_ICACHE",
      .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1,
      .access = PL1_W, .type = ARM_CP_NOP },
    { .name = "XSCALE_DCACHE_LOCK",
      .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 0,
      .access = PL1_RW, .type = ARM_CP_NOP },
    { .name = "XSCALE_UNLOCK_DCACHE",
      .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 1,
      .access = PL1_W, .type = ARM_CP_NOP },
1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606
    REGINFO_SENTINEL
};

static const ARMCPRegInfo dummy_c15_cp_reginfo[] = {
    /* RAZ/WI the whole crn=15 space, when we don't have a more specific
     * implementation of this implementation-defined space.
     * Ideally this should eventually disappear in favour of actually
     * implementing the correct behaviour for all cores.
     */
    { .name = "C15_IMPDEF", .cp = 15, .crn = 15,
      .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
1607 1608
      .access = PL1_RW,
      .type = ARM_CP_CONST | ARM_CP_NO_MIGRATE | ARM_CP_OVERRIDE,
1609
      .resetvalue = 0 },
1610 1611 1612
    REGINFO_SENTINEL
};

1613 1614 1615
static const ARMCPRegInfo cache_dirty_status_cp_reginfo[] = {
    /* Cache status: RAZ because we have no cache so it's always clean */
    { .name = "CDSR", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 6,
1616 1617
      .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_MIGRATE,
      .resetvalue = 0 },
1618 1619 1620 1621 1622 1623
    REGINFO_SENTINEL
};

static const ARMCPRegInfo cache_block_ops_cp_reginfo[] = {
    /* We never have a a block transfer operation in progress */
    { .name = "BXSR", .cp = 15, .crn = 7, .crm = 12, .opc1 = 0, .opc2 = 4,
1624 1625
      .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_MIGRATE,
      .resetvalue = 0 },
1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638
    /* The cache ops themselves: these all NOP for QEMU */
    { .name = "IICR", .cp = 15, .crm = 5, .opc1 = 0,
      .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
    { .name = "IDCR", .cp = 15, .crm = 6, .opc1 = 0,
      .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
    { .name = "CDCR", .cp = 15, .crm = 12, .opc1 = 0,
      .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
    { .name = "PIR", .cp = 15, .crm = 12, .opc1 = 1,
      .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
    { .name = "PDR", .cp = 15, .crm = 12, .opc1 = 2,
      .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
    { .name = "CIDCR", .cp = 15, .crm = 14, .opc1 = 0,
      .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
1639 1640 1641 1642 1643 1644 1645 1646
    REGINFO_SENTINEL
};

static const ARMCPRegInfo cache_test_clean_cp_reginfo[] = {
    /* The cache test-and-clean instructions always return (1 << 30)
     * to indicate that there are no dirty cache lines.
     */
    { .name = "TC_DCACHE", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 3,
1647 1648
      .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_MIGRATE,
      .resetvalue = (1 << 30) },
1649
    { .name = "TCI_DCACHE", .cp = 15, .crn = 7, .crm = 14, .opc1 = 0, .opc2 = 3,
1650 1651
      .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_MIGRATE,
      .resetvalue = (1 << 30) },
1652 1653 1654
    REGINFO_SENTINEL
};

1655 1656 1657 1658
static const ARMCPRegInfo strongarm_cp_reginfo[] = {
    /* Ignore ReadBuffer accesses */
    { .name = "C9_READBUFFER", .cp = 15, .crn = 9,
      .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
1659 1660
      .access = PL1_RW, .resetvalue = 0,
      .type = ARM_CP_CONST | ARM_CP_OVERRIDE | ARM_CP_NO_MIGRATE },
1661 1662 1663
    REGINFO_SENTINEL
};

1664
static uint64_t mpidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
P
Peter Maydell 已提交
1665
{
1666 1667
    CPUState *cs = CPU(arm_env_get_cpu(env));
    uint32_t mpidr = cs->cpu_index;
1668 1669
    /* We don't support setting cluster ID ([8..11]) (known as Aff1
     * in later ARM ARM versions), or any of the higher affinity level fields,
P
Peter Maydell 已提交
1670 1671 1672
     * so these bits always RAZ.
     */
    if (arm_feature(env, ARM_FEATURE_V7MP)) {
1673
        mpidr |= (1U << 31);
P
Peter Maydell 已提交
1674 1675 1676 1677 1678 1679
        /* Cores which are uniprocessor (non-coherent)
         * but still implement the MP extensions set
         * bit 30. (For instance, A9UP.) However we do
         * not currently model any of those cores.
         */
    }
1680
    return mpidr;
P
Peter Maydell 已提交
1681 1682 1683
}

static const ARMCPRegInfo mpidr_cp_reginfo[] = {
1684 1685
    { .name = "MPIDR", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 5,
1686
      .access = PL1_R, .readfn = mpidr_read, .type = ARM_CP_NO_MIGRATE },
P
Peter Maydell 已提交
1687 1688 1689
    REGINFO_SENTINEL
};

1690
static const ARMCPRegInfo lpae_cp_reginfo[] = {
1691
    /* NOP AMAIR0/1: the override is because these clash with the rather
1692 1693
     * broadly specified TLB_LOCKDOWN entry in the generic cp_reginfo.
     */
1694 1695
    { .name = "AMAIR0", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 0,
1696 1697
      .access = PL1_RW, .type = ARM_CP_CONST | ARM_CP_OVERRIDE,
      .resetvalue = 0 },
1698
    /* AMAIR1 is mapped to AMAIR_EL1[63:32] */
1699 1700 1701
    { .name = "AMAIR1", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 1,
      .access = PL1_RW, .type = ARM_CP_CONST | ARM_CP_OVERRIDE,
      .resetvalue = 0 },
1702 1703 1704 1705 1706
    /* 64 bit access versions of the (dummy) debug registers */
    { .name = "DBGDRAR", .cp = 14, .crm = 1, .opc1 = 0,
      .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 },
    { .name = "DBGDSAR", .cp = 14, .crm = 2, .opc1 = 0,
      .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 },
1707 1708
    { .name = "PAR", .cp = 15, .crm = 7, .opc1 = 0,
      .access = PL1_RW, .type = ARM_CP_64BIT,
1709
      .fieldoffset = offsetof(CPUARMState, cp15.par_el1), .resetvalue = 0 },
1710
    { .name = "TTBR0", .cp = 15, .crm = 2, .opc1 = 0,
1711 1712 1713
      .access = PL1_RW, .type = ARM_CP_64BIT | ARM_CP_NO_MIGRATE,
      .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el1),
      .writefn = vmsa_ttbr_write, .resetfn = arm_cp_reset_ignore },
1714
    { .name = "TTBR1", .cp = 15, .crm = 2, .opc1 = 1,
1715 1716 1717
      .access = PL1_RW, .type = ARM_CP_64BIT | ARM_CP_NO_MIGRATE,
      .fieldoffset = offsetof(CPUARMState, cp15.ttbr1_el1),
      .writefn = vmsa_ttbr_write, .resetfn = arm_cp_reset_ignore },
1718 1719 1720
    REGINFO_SENTINEL
};

1721
static uint64_t aa64_fpcr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1722
{
1723
    return vfp_get_fpcr(env);
1724 1725
}

1726 1727
static void aa64_fpcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
                            uint64_t value)
1728 1729 1730 1731
{
    vfp_set_fpcr(env, value);
}

1732
static uint64_t aa64_fpsr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1733
{
1734
    return vfp_get_fpsr(env);
1735 1736
}

1737 1738
static void aa64_fpsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
                            uint64_t value)
1739 1740 1741 1742
{
    vfp_set_fpsr(env, value);
}

1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756
static CPAccessResult aa64_daif_access(CPUARMState *env, const ARMCPRegInfo *ri)
{
    if (arm_current_pl(env) == 0 && !(env->cp15.c1_sys & SCTLR_UMA)) {
        return CP_ACCESS_TRAP;
    }
    return CP_ACCESS_OK;
}

static void aa64_daif_write(CPUARMState *env, const ARMCPRegInfo *ri,
                            uint64_t value)
{
    env->daif = value & PSTATE_DAIF;
}

1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768
static CPAccessResult aa64_cacheop_access(CPUARMState *env,
                                          const ARMCPRegInfo *ri)
{
    /* Cache invalidate/clean: NOP, but EL0 must UNDEF unless
     * SCTLR_EL1.UCI is set.
     */
    if (arm_current_pl(env) == 0 && !(env->cp15.c1_sys & SCTLR_UCI)) {
        return CP_ACCESS_TRAP;
    }
    return CP_ACCESS_OK;
}

1769 1770 1771 1772
static void tlbi_aa64_va_write(CPUARMState *env, const ARMCPRegInfo *ri,
                               uint64_t value)
{
    /* Invalidate by VA (AArch64 version) */
1773
    ARMCPU *cpu = arm_env_get_cpu(env);
1774
    uint64_t pageaddr = value << 12;
1775
    tlb_flush_page(CPU(cpu), pageaddr);
1776 1777 1778 1779 1780 1781
}

static void tlbi_aa64_vaa_write(CPUARMState *env, const ARMCPRegInfo *ri,
                                uint64_t value)
{
    /* Invalidate by VA, all ASIDs (AArch64 version) */
1782
    ARMCPU *cpu = arm_env_get_cpu(env);
1783
    uint64_t pageaddr = value << 12;
1784
    tlb_flush_page(CPU(cpu), pageaddr);
1785 1786 1787 1788 1789 1790
}

static void tlbi_aa64_asid_write(CPUARMState *env, const ARMCPRegInfo *ri,
                                 uint64_t value)
{
    /* Invalidate by ASID (AArch64 version) */
1791
    ARMCPU *cpu = arm_env_get_cpu(env);
1792
    int asid = extract64(value, 48, 16);
1793
    tlb_flush(CPU(cpu), asid == 0);
1794 1795
}

1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818
static CPAccessResult aa64_zva_access(CPUARMState *env, const ARMCPRegInfo *ri)
{
    /* We don't implement EL2, so the only control on DC ZVA is the
     * bit in the SCTLR which can prohibit access for EL0.
     */
    if (arm_current_pl(env) == 0 && !(env->cp15.c1_sys & SCTLR_DZE)) {
        return CP_ACCESS_TRAP;
    }
    return CP_ACCESS_OK;
}

static uint64_t aa64_dczid_read(CPUARMState *env, const ARMCPRegInfo *ri)
{
    ARMCPU *cpu = arm_env_get_cpu(env);
    int dzp_bit = 1 << 4;

    /* DZP indicates whether DC ZVA access is allowed */
    if (aa64_zva_access(env, NULL) != CP_ACCESS_OK) {
        dzp_bit = 0;
    }
    return cpu->dcz_blocksize | dzp_bit;
}

1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839
static CPAccessResult sp_el0_access(CPUARMState *env, const ARMCPRegInfo *ri)
{
    if (!env->pstate & PSTATE_SP) {
        /* Access to SP_EL0 is undefined if it's being used as
         * the stack pointer.
         */
        return CP_ACCESS_TRAP_UNCATEGORIZED;
    }
    return CP_ACCESS_OK;
}

static uint64_t spsel_read(CPUARMState *env, const ARMCPRegInfo *ri)
{
    return env->pstate & PSTATE_SP;
}

static void spsel_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val)
{
    update_spsel(env, val);
}

1840 1841 1842 1843 1844 1845 1846
static const ARMCPRegInfo v8_cp_reginfo[] = {
    /* Minimal set of EL0-visible registers. This will need to be expanded
     * significantly for system emulation of AArch64 CPUs.
     */
    { .name = "NZCV", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 2,
      .access = PL0_RW, .type = ARM_CP_NZCV },
1847 1848 1849 1850 1851 1852
    { .name = "DAIF", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 2,
      .type = ARM_CP_NO_MIGRATE,
      .access = PL0_RW, .accessfn = aa64_daif_access,
      .fieldoffset = offsetof(CPUARMState, daif),
      .writefn = aa64_daif_write, .resetfn = arm_cp_reset_ignore },
1853 1854 1855 1856 1857 1858 1859 1860
    { .name = "FPCR", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 4,
      .access = PL0_RW, .readfn = aa64_fpcr_read, .writefn = aa64_fpcr_write },
    { .name = "FPSR", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 4,
      .access = PL0_RW, .readfn = aa64_fpsr_read, .writefn = aa64_fpsr_write },
    { .name = "DCZID_EL0", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 3, .opc2 = 7, .crn = 0, .crm = 0,
1861 1862 1863 1864 1865 1866 1867 1868 1869 1870
      .access = PL0_R, .type = ARM_CP_NO_MIGRATE,
      .readfn = aa64_dczid_read },
    { .name = "DC_ZVA", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 1,
      .access = PL0_W, .type = ARM_CP_DC_ZVA,
#ifndef CONFIG_USER_ONLY
      /* Avoid overhead of an access check that always passes in user-mode */
      .accessfn = aa64_zva_access,
#endif
    },
1871 1872 1873
    { .name = "CURRENTEL", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 0, .opc2 = 2, .crn = 4, .crm = 2,
      .access = PL1_R, .type = ARM_CP_CURRENTEL },
1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908
    /* Cache ops: all NOPs since we don't emulate caches */
    { .name = "IC_IALLUIS", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
      .access = PL1_W, .type = ARM_CP_NOP },
    { .name = "IC_IALLU", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
      .access = PL1_W, .type = ARM_CP_NOP },
    { .name = "IC_IVAU", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 5, .opc2 = 1,
      .access = PL0_W, .type = ARM_CP_NOP,
      .accessfn = aa64_cacheop_access },
    { .name = "DC_IVAC", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
      .access = PL1_W, .type = ARM_CP_NOP },
    { .name = "DC_ISW", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
      .access = PL1_W, .type = ARM_CP_NOP },
    { .name = "DC_CVAC", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 1,
      .access = PL0_W, .type = ARM_CP_NOP,
      .accessfn = aa64_cacheop_access },
    { .name = "DC_CSW", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
      .access = PL1_W, .type = ARM_CP_NOP },
    { .name = "DC_CVAU", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 11, .opc2 = 1,
      .access = PL0_W, .type = ARM_CP_NOP,
      .accessfn = aa64_cacheop_access },
    { .name = "DC_CIVAC", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 1,
      .access = PL0_W, .type = ARM_CP_NOP,
      .accessfn = aa64_cacheop_access },
    { .name = "DC_CISW", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
      .access = PL1_W, .type = ARM_CP_NOP },
1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957
    /* TLBI operations */
    { .name = "TLBI_VMALLE1IS", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc2 = 0, .crn = 8, .crm = 3, .opc2 = 0,
      .access = PL1_W, .type = ARM_CP_NO_MIGRATE,
      .writefn = tlbiall_write },
    { .name = "TLBI_VAE1IS", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc2 = 0, .crn = 8, .crm = 3, .opc2 = 1,
      .access = PL1_W, .type = ARM_CP_NO_MIGRATE,
      .writefn = tlbi_aa64_va_write },
    { .name = "TLBI_ASIDE1IS", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc2 = 0, .crn = 8, .crm = 3, .opc2 = 2,
      .access = PL1_W, .type = ARM_CP_NO_MIGRATE,
      .writefn = tlbi_aa64_asid_write },
    { .name = "TLBI_VAAE1IS", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc2 = 0, .crn = 8, .crm = 3, .opc2 = 3,
      .access = PL1_W, .type = ARM_CP_NO_MIGRATE,
      .writefn = tlbi_aa64_vaa_write },
    { .name = "TLBI_VALE1IS", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc2 = 0, .crn = 8, .crm = 3, .opc2 = 5,
      .access = PL1_W, .type = ARM_CP_NO_MIGRATE,
      .writefn = tlbi_aa64_va_write },
    { .name = "TLBI_VAALE1IS", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc2 = 0, .crn = 8, .crm = 3, .opc2 = 7,
      .access = PL1_W, .type = ARM_CP_NO_MIGRATE,
      .writefn = tlbi_aa64_vaa_write },
    { .name = "TLBI_VMALLE1", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc2 = 0, .crn = 8, .crm = 7, .opc2 = 0,
      .access = PL1_W, .type = ARM_CP_NO_MIGRATE,
      .writefn = tlbiall_write },
    { .name = "TLBI_VAE1", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc2 = 0, .crn = 8, .crm = 7, .opc2 = 1,
      .access = PL1_W, .type = ARM_CP_NO_MIGRATE,
      .writefn = tlbi_aa64_va_write },
    { .name = "TLBI_ASIDE1", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc2 = 0, .crn = 8, .crm = 7, .opc2 = 2,
      .access = PL1_W, .type = ARM_CP_NO_MIGRATE,
      .writefn = tlbi_aa64_asid_write },
    { .name = "TLBI_VAAE1", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc2 = 0, .crn = 8, .crm = 7, .opc2 = 3,
      .access = PL1_W, .type = ARM_CP_NO_MIGRATE,
      .writefn = tlbi_aa64_vaa_write },
    { .name = "TLBI_VALE1", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc2 = 0, .crn = 8, .crm = 7, .opc2 = 5,
      .access = PL1_W, .type = ARM_CP_NO_MIGRATE,
      .writefn = tlbi_aa64_va_write },
    { .name = "TLBI_VAALE1", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc2 = 0, .crn = 8, .crm = 7, .opc2 = 7,
      .access = PL1_W, .type = ARM_CP_NO_MIGRATE,
      .writefn = tlbi_aa64_vaa_write },
1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972
#ifndef CONFIG_USER_ONLY
    /* 64 bit address translation operations */
    { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 0,
      .access = PL1_W, .type = ARM_CP_NO_MIGRATE, .writefn = ats_write },
    { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 1,
      .access = PL1_W, .type = ARM_CP_NO_MIGRATE, .writefn = ats_write },
    { .name = "AT_S1E0R", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 2,
      .access = PL1_W, .type = ARM_CP_NO_MIGRATE, .writefn = ats_write },
    { .name = "AT_S1E0W", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 3,
      .access = PL1_W, .type = ARM_CP_NO_MIGRATE, .writefn = ats_write },
#endif
1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044
    /* 32 bit TLB invalidates, Inner Shareable */
    { .name = "TLBIALLIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0,
      .type = ARM_CP_NO_MIGRATE, .access = PL1_W, .writefn = tlbiall_write },
    { .name = "TLBIMVAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1,
      .type = ARM_CP_NO_MIGRATE, .access = PL1_W, .writefn = tlbimva_write },
    { .name = "TLBIASIDIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2,
      .type = ARM_CP_NO_MIGRATE, .access = PL1_W, .writefn = tlbiasid_write },
    { .name = "TLBIMVAAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3,
      .type = ARM_CP_NO_MIGRATE, .access = PL1_W, .writefn = tlbimvaa_write },
    { .name = "TLBIMVALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5,
      .type = ARM_CP_NO_MIGRATE, .access = PL1_W, .writefn = tlbimva_write },
    { .name = "TLBIMVAALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7,
      .type = ARM_CP_NO_MIGRATE, .access = PL1_W, .writefn = tlbimvaa_write },
    /* 32 bit ITLB invalidates */
    { .name = "ITLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 0,
      .type = ARM_CP_NO_MIGRATE, .access = PL1_W, .writefn = tlbiall_write },
    { .name = "ITLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1,
      .type = ARM_CP_NO_MIGRATE, .access = PL1_W, .writefn = tlbimva_write },
    { .name = "ITLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 2,
      .type = ARM_CP_NO_MIGRATE, .access = PL1_W, .writefn = tlbiasid_write },
    /* 32 bit DTLB invalidates */
    { .name = "DTLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 0,
      .type = ARM_CP_NO_MIGRATE, .access = PL1_W, .writefn = tlbiall_write },
    { .name = "DTLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1,
      .type = ARM_CP_NO_MIGRATE, .access = PL1_W, .writefn = tlbimva_write },
    { .name = "DTLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 2,
      .type = ARM_CP_NO_MIGRATE, .access = PL1_W, .writefn = tlbiasid_write },
    /* 32 bit TLB invalidates */
    { .name = "TLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0,
      .type = ARM_CP_NO_MIGRATE, .access = PL1_W, .writefn = tlbiall_write },
    { .name = "TLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1,
      .type = ARM_CP_NO_MIGRATE, .access = PL1_W, .writefn = tlbimva_write },
    { .name = "TLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2,
      .type = ARM_CP_NO_MIGRATE, .access = PL1_W, .writefn = tlbiasid_write },
    { .name = "TLBIMVAA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3,
      .type = ARM_CP_NO_MIGRATE, .access = PL1_W, .writefn = tlbimvaa_write },
    { .name = "TLBIMVAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5,
      .type = ARM_CP_NO_MIGRATE, .access = PL1_W, .writefn = tlbimva_write },
    { .name = "TLBIMVAAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7,
      .type = ARM_CP_NO_MIGRATE, .access = PL1_W, .writefn = tlbimvaa_write },
    /* 32 bit cache operations */
    { .name = "ICIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
      .type = ARM_CP_NOP, .access = PL1_W },
    { .name = "BPIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 6,
      .type = ARM_CP_NOP, .access = PL1_W },
    { .name = "ICIALLU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
      .type = ARM_CP_NOP, .access = PL1_W },
    { .name = "ICIMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 1,
      .type = ARM_CP_NOP, .access = PL1_W },
    { .name = "BPIALL", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 6,
      .type = ARM_CP_NOP, .access = PL1_W },
    { .name = "BPIMVA", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 7,
      .type = ARM_CP_NOP, .access = PL1_W },
    { .name = "DCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
      .type = ARM_CP_NOP, .access = PL1_W },
    { .name = "DCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
      .type = ARM_CP_NOP, .access = PL1_W },
    { .name = "DCCMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 1,
      .type = ARM_CP_NOP, .access = PL1_W },
    { .name = "DCCSW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
      .type = ARM_CP_NOP, .access = PL1_W },
    { .name = "DCCMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 11, .opc2 = 1,
      .type = ARM_CP_NOP, .access = PL1_W },
    { .name = "DCCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 1,
      .type = ARM_CP_NOP, .access = PL1_W },
    { .name = "DCCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
      .type = ARM_CP_NOP, .access = PL1_W },
    /* MMU Domain access control / MPU write buffer control */
    { .name = "DACR", .cp = 15,
      .opc1 = 0, .crn = 3, .crm = 0, .opc2 = 0,
      .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c3),
      .resetvalue = 0, .writefn = dacr_write, .raw_writefn = raw_write, },
2045 2046 2047 2048 2049 2050
    /* Dummy implementation of monitor debug system control register:
     * we don't support debug.
     */
    { .name = "MDSCR_EL1", .state = ARM_CP_STATE_AA64,
      .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2,
      .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
2051 2052 2053 2054
    /* We define a dummy WI OSLAR_EL1, because Linux writes to it. */
    { .name = "OSLAR_EL1", .state = ARM_CP_STATE_AA64,
      .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 4,
      .access = PL1_W, .type = ARM_CP_NOP },
2055 2056 2057 2058
    { .name = "ELR_EL1", .state = ARM_CP_STATE_AA64,
      .type = ARM_CP_NO_MIGRATE,
      .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 1,
      .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, elr_el1) },
2059 2060 2061 2062
    { .name = "SPSR_EL1", .state = ARM_CP_STATE_AA64,
      .type = ARM_CP_NO_MIGRATE,
      .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 0,
      .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, banked_spsr[0]) },
2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075
    /* We rely on the access checks not allowing the guest to write to the
     * state field when SPSel indicates that it's being used as the stack
     * pointer.
     */
    { .name = "SP_EL0", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 1, .opc2 = 0,
      .access = PL1_RW, .accessfn = sp_el0_access,
      .type = ARM_CP_NO_MIGRATE,
      .fieldoffset = offsetof(CPUARMState, sp_el[0]) },
    { .name = "SPSel", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 0,
      .type = ARM_CP_NO_MIGRATE,
      .access = PL1_RW, .readfn = spsel_read, .writefn = spsel_write },
2076 2077 2078
    REGINFO_SENTINEL
};

2079 2080
static void sctlr_write(CPUARMState *env, const ARMCPRegInfo *ri,
                        uint64_t value)
2081
{
2082 2083
    ARMCPU *cpu = arm_env_get_cpu(env);

2084 2085 2086
    env->cp15.c1_sys = value;
    /* ??? Lots of these bits are not implemented.  */
    /* This may enable/disable the MMU, so do a TLB flush.  */
2087
    tlb_flush(CPU(cpu), 1);
2088 2089
}

2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100
static CPAccessResult ctr_el0_access(CPUARMState *env, const ARMCPRegInfo *ri)
{
    /* Only accessible in EL0 if SCTLR.UCT is set (and only in AArch64,
     * but the AArch32 CTR has its own reginfo struct)
     */
    if (arm_current_pl(env) == 0 && !(env->cp15.c1_sys & SCTLR_UCT)) {
        return CP_ACCESS_TRAP;
    }
    return CP_ACCESS_OK;
}

2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131
static void define_aarch64_debug_regs(ARMCPU *cpu)
{
    /* Define breakpoint and watchpoint registers. These do nothing
     * but read as written, for now.
     */
    int i;

    for (i = 0; i < 16; i++) {
        ARMCPRegInfo dbgregs[] = {
            { .name = "DBGBVR", .state = ARM_CP_STATE_AA64,
              .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 4,
              .access = PL1_RW,
              .fieldoffset = offsetof(CPUARMState, cp15.dbgbvr[i]) },
            { .name = "DBGBCR", .state = ARM_CP_STATE_AA64,
              .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 5,
              .access = PL1_RW,
              .fieldoffset = offsetof(CPUARMState, cp15.dbgbcr[i]) },
            { .name = "DBGWVR", .state = ARM_CP_STATE_AA64,
              .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 6,
              .access = PL1_RW,
              .fieldoffset = offsetof(CPUARMState, cp15.dbgwvr[i]) },
            { .name = "DBGWCR", .state = ARM_CP_STATE_AA64,
              .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 7,
              .access = PL1_RW,
              .fieldoffset = offsetof(CPUARMState, cp15.dbgwcr[i]) },
               REGINFO_SENTINEL
        };
        define_arm_cp_regs(cpu, dbgregs);
    }
}

2132 2133 2134 2135 2136 2137 2138 2139 2140
void register_cp_regs_for_features(ARMCPU *cpu)
{
    /* Register all the coprocessor registers based on feature bits */
    CPUARMState *env = &cpu->env;
    if (arm_feature(env, ARM_FEATURE_M)) {
        /* M profile has no coprocessor registers */
        return;
    }

2141
    define_arm_cp_regs(cpu, cp_reginfo);
2142 2143 2144 2145 2146 2147 2148
    if (!arm_feature(env, ARM_FEATURE_V8)) {
        /* Must go early as it is full of wildcards that may be
         * overridden by later definitions.
         */
        define_arm_cp_regs(cpu, not_v8_cp_reginfo);
    }

2149
    if (arm_feature(env, ARM_FEATURE_V6)) {
2150 2151
        /* The ID registers all have impdef reset values */
        ARMCPRegInfo v6_idregs[] = {
2152 2153 2154
            { .name = "ID_PFR0", .state = ARM_CP_STATE_BOTH,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0,
              .access = PL1_R, .type = ARM_CP_CONST,
2155
              .resetvalue = cpu->id_pfr0 },
2156 2157 2158
            { .name = "ID_PFR1", .state = ARM_CP_STATE_BOTH,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 1,
              .access = PL1_R, .type = ARM_CP_CONST,
2159
              .resetvalue = cpu->id_pfr1 },
2160 2161 2162
            { .name = "ID_DFR0", .state = ARM_CP_STATE_BOTH,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 2,
              .access = PL1_R, .type = ARM_CP_CONST,
2163
              .resetvalue = cpu->id_dfr0 },
2164 2165 2166
            { .name = "ID_AFR0", .state = ARM_CP_STATE_BOTH,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 3,
              .access = PL1_R, .type = ARM_CP_CONST,
2167
              .resetvalue = cpu->id_afr0 },
2168 2169 2170
            { .name = "ID_MMFR0", .state = ARM_CP_STATE_BOTH,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 4,
              .access = PL1_R, .type = ARM_CP_CONST,
2171
              .resetvalue = cpu->id_mmfr0 },
2172 2173 2174
            { .name = "ID_MMFR1", .state = ARM_CP_STATE_BOTH,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 5,
              .access = PL1_R, .type = ARM_CP_CONST,
2175
              .resetvalue = cpu->id_mmfr1 },
2176 2177 2178
            { .name = "ID_MMFR2", .state = ARM_CP_STATE_BOTH,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 6,
              .access = PL1_R, .type = ARM_CP_CONST,
2179
              .resetvalue = cpu->id_mmfr2 },
2180 2181 2182
            { .name = "ID_MMFR3", .state = ARM_CP_STATE_BOTH,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 7,
              .access = PL1_R, .type = ARM_CP_CONST,
2183
              .resetvalue = cpu->id_mmfr3 },
2184 2185 2186
            { .name = "ID_ISAR0", .state = ARM_CP_STATE_BOTH,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0,
              .access = PL1_R, .type = ARM_CP_CONST,
2187
              .resetvalue = cpu->id_isar0 },
2188 2189 2190
            { .name = "ID_ISAR1", .state = ARM_CP_STATE_BOTH,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 1,
              .access = PL1_R, .type = ARM_CP_CONST,
2191
              .resetvalue = cpu->id_isar1 },
2192 2193 2194
            { .name = "ID_ISAR2", .state = ARM_CP_STATE_BOTH,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2,
              .access = PL1_R, .type = ARM_CP_CONST,
2195
              .resetvalue = cpu->id_isar2 },
2196 2197 2198
            { .name = "ID_ISAR3", .state = ARM_CP_STATE_BOTH,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 3,
              .access = PL1_R, .type = ARM_CP_CONST,
2199
              .resetvalue = cpu->id_isar3 },
2200 2201 2202
            { .name = "ID_ISAR4", .state = ARM_CP_STATE_BOTH,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 4,
              .access = PL1_R, .type = ARM_CP_CONST,
2203
              .resetvalue = cpu->id_isar4 },
2204 2205 2206
            { .name = "ID_ISAR5", .state = ARM_CP_STATE_BOTH,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 5,
              .access = PL1_R, .type = ARM_CP_CONST,
2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217
              .resetvalue = cpu->id_isar5 },
            /* 6..7 are as yet unallocated and must RAZ */
            { .name = "ID_ISAR6", .cp = 15, .crn = 0, .crm = 2,
              .opc1 = 0, .opc2 = 6, .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = 0 },
            { .name = "ID_ISAR7", .cp = 15, .crn = 0, .crm = 2,
              .opc1 = 0, .opc2 = 7, .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = 0 },
            REGINFO_SENTINEL
        };
        define_arm_cp_regs(cpu, v6_idregs);
2218 2219 2220 2221
        define_arm_cp_regs(cpu, v6_cp_reginfo);
    } else {
        define_arm_cp_regs(cpu, not_v6_cp_reginfo);
    }
2222 2223 2224
    if (arm_feature(env, ARM_FEATURE_V6K)) {
        define_arm_cp_regs(cpu, v6k_cp_reginfo);
    }
2225
    if (arm_feature(env, ARM_FEATURE_V7)) {
2226
        /* v7 performance monitor control register: same implementor
2227 2228
         * field as main ID register, and we implement only the cycle
         * count register.
2229
         */
2230
#ifndef CONFIG_USER_ONLY
2231 2232 2233
        ARMCPRegInfo pmcr = {
            .name = "PMCR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 0,
            .access = PL0_RW, .resetvalue = cpu->midr & 0xff000000,
2234
            .type = ARM_CP_IO,
2235
            .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcr),
2236 2237
            .accessfn = pmreg_access, .writefn = pmcr_write,
            .raw_writefn = raw_write,
2238
        };
2239 2240
        define_one_arm_cp_reg(cpu, &pmcr);
#endif
2241
        ARMCPRegInfo clidr = {
2242 2243
            .name = "CLIDR", .state = ARM_CP_STATE_BOTH,
            .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 1,
2244 2245 2246
            .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->clidr
        };
        define_one_arm_cp_reg(cpu, &clidr);
2247
        define_arm_cp_regs(cpu, v7_cp_reginfo);
2248 2249
    } else {
        define_arm_cp_regs(cpu, not_v7_cp_reginfo);
2250
    }
2251
    if (arm_feature(env, ARM_FEATURE_V8)) {
2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264
        /* AArch64 ID registers, which all have impdef reset values */
        ARMCPRegInfo v8_idregs[] = {
            { .name = "ID_AA64PFR0_EL1", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 0,
              .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = cpu->id_aa64pfr0 },
            { .name = "ID_AA64PFR1_EL1", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 1,
              .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = cpu->id_aa64pfr1},
            { .name = "ID_AA64DFR0_EL1", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 0,
              .access = PL1_R, .type = ARM_CP_CONST,
2265 2266 2267 2268 2269 2270
              /* We mask out the PMUVer field, beacuse we don't currently
               * implement the PMU. Not advertising it prevents the guest
               * from trying to use it and getting UNDEFs on registers we
               * don't implement.
               */
              .resetvalue = cpu->id_aa64dfr0 & ~0xf00 },
2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298
            { .name = "ID_AA64DFR1_EL1", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 1,
              .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = cpu->id_aa64dfr1 },
            { .name = "ID_AA64AFR0_EL1", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 4,
              .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = cpu->id_aa64afr0 },
            { .name = "ID_AA64AFR1_EL1", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 5,
              .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = cpu->id_aa64afr1 },
            { .name = "ID_AA64ISAR0_EL1", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 0,
              .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = cpu->id_aa64isar0 },
            { .name = "ID_AA64ISAR1_EL1", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 1,
              .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = cpu->id_aa64isar1 },
            { .name = "ID_AA64MMFR0_EL1", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0,
              .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = cpu->id_aa64mmfr0 },
            { .name = "ID_AA64MMFR1_EL1", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 1,
              .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = cpu->id_aa64mmfr1 },
2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310
            { .name = "MVFR0_EL1", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0,
              .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = cpu->mvfr0 },
            { .name = "MVFR1_EL1", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1,
              .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = cpu->mvfr1 },
            { .name = "MVFR2_EL1", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2,
              .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = cpu->mvfr2 },
2311 2312
            REGINFO_SENTINEL
        };
2313 2314 2315 2316 2317 2318
        ARMCPRegInfo rvbar = {
            .name = "RVBAR_EL1", .state = ARM_CP_STATE_AA64,
            .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 2,
            .type = ARM_CP_CONST, .access = PL1_R, .resetvalue = cpu->rvbar
        };
        define_one_arm_cp_reg(cpu, &rvbar);
2319
        define_arm_cp_regs(cpu, v8_idregs);
2320
        define_arm_cp_regs(cpu, v8_cp_reginfo);
2321
        define_aarch64_debug_regs(cpu);
2322
    }
2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333
    if (arm_feature(env, ARM_FEATURE_MPU)) {
        /* These are the MPU registers prior to PMSAv6. Any new
         * PMSA core later than the ARM946 will require that we
         * implement the PMSAv6 or PMSAv7 registers, which are
         * completely different.
         */
        assert(!arm_feature(env, ARM_FEATURE_V6));
        define_arm_cp_regs(cpu, pmsav5_cp_reginfo);
    } else {
        define_arm_cp_regs(cpu, vmsa_cp_reginfo);
    }
2334 2335 2336
    if (arm_feature(env, ARM_FEATURE_THUMB2EE)) {
        define_arm_cp_regs(cpu, t2ee_cp_reginfo);
    }
2337 2338 2339
    if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
        define_arm_cp_regs(cpu, generic_timer_cp_reginfo);
    }
2340 2341 2342
    if (arm_feature(env, ARM_FEATURE_VAPA)) {
        define_arm_cp_regs(cpu, vapa_cp_reginfo);
    }
2343 2344 2345 2346 2347 2348 2349 2350 2351
    if (arm_feature(env, ARM_FEATURE_CACHE_TEST_CLEAN)) {
        define_arm_cp_regs(cpu, cache_test_clean_cp_reginfo);
    }
    if (arm_feature(env, ARM_FEATURE_CACHE_DIRTY_REG)) {
        define_arm_cp_regs(cpu, cache_dirty_status_cp_reginfo);
    }
    if (arm_feature(env, ARM_FEATURE_CACHE_BLOCK_OPS)) {
        define_arm_cp_regs(cpu, cache_block_ops_cp_reginfo);
    }
2352 2353 2354
    if (arm_feature(env, ARM_FEATURE_OMAPCP)) {
        define_arm_cp_regs(cpu, omap_cp_reginfo);
    }
2355 2356 2357
    if (arm_feature(env, ARM_FEATURE_STRONGARM)) {
        define_arm_cp_regs(cpu, strongarm_cp_reginfo);
    }
2358 2359 2360 2361 2362 2363
    if (arm_feature(env, ARM_FEATURE_XSCALE)) {
        define_arm_cp_regs(cpu, xscale_cp_reginfo);
    }
    if (arm_feature(env, ARM_FEATURE_DUMMY_C15_REGS)) {
        define_arm_cp_regs(cpu, dummy_c15_cp_reginfo);
    }
2364 2365 2366
    if (arm_feature(env, ARM_FEATURE_LPAE)) {
        define_arm_cp_regs(cpu, lpae_cp_reginfo);
    }
2367 2368 2369 2370 2371
    /* Slightly awkwardly, the OMAP and StrongARM cores need all of
     * cp15 crn=0 to be writes-ignored, whereas for other cores they should
     * be read-only (ie write causes UNDEF exception).
     */
    {
2372 2373 2374
        ARMCPRegInfo id_pre_v8_midr_cp_reginfo[] = {
            /* Pre-v8 MIDR space.
             * Note that the MIDR isn't a simple constant register because
2375 2376
             * of the TI925 behaviour where writes to another register can
             * cause the MIDR value to change.
2377 2378 2379 2380
             *
             * Unimplemented registers in the c15 0 0 0 space default to
             * MIDR. Define MIDR first as this entire space, then CTR, TCMTR
             * and friends override accordingly.
2381 2382
             */
            { .name = "MIDR",
2383
              .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = CP_ANY,
2384
              .access = PL1_R, .resetvalue = cpu->midr,
2385
              .writefn = arm_cp_write_ignore, .raw_writefn = raw_write,
2386 2387
              .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
              .type = ARM_CP_OVERRIDE },
2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405
            /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */
            { .name = "DUMMY",
              .cp = 15, .crn = 0, .crm = 3, .opc1 = 0, .opc2 = CP_ANY,
              .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
            { .name = "DUMMY",
              .cp = 15, .crn = 0, .crm = 4, .opc1 = 0, .opc2 = CP_ANY,
              .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
            { .name = "DUMMY",
              .cp = 15, .crn = 0, .crm = 5, .opc1 = 0, .opc2 = CP_ANY,
              .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
            { .name = "DUMMY",
              .cp = 15, .crn = 0, .crm = 6, .opc1 = 0, .opc2 = CP_ANY,
              .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
            { .name = "DUMMY",
              .cp = 15, .crn = 0, .crm = 7, .opc1 = 0, .opc2 = CP_ANY,
              .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
            REGINFO_SENTINEL
        };
2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436
        ARMCPRegInfo id_v8_midr_cp_reginfo[] = {
            /* v8 MIDR -- the wildcard isn't necessary, and nor is the
             * variable-MIDR TI925 behaviour. Instead we have a single
             * (strictly speaking IMPDEF) alias of the MIDR, REVIDR.
             */
            { .name = "MIDR_EL1", .state = ARM_CP_STATE_BOTH,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 0,
              .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->midr },
            { .name = "REVIDR_EL1", .state = ARM_CP_STATE_BOTH,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 6,
              .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->midr },
            REGINFO_SENTINEL
        };
        ARMCPRegInfo id_cp_reginfo[] = {
            /* These are common to v8 and pre-v8 */
            { .name = "CTR",
              .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 1,
              .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
            { .name = "CTR_EL0", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 0, .crm = 0,
              .access = PL0_R, .accessfn = ctr_el0_access,
              .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
            /* TCMTR and TLBTR exist in v8 but have no 64-bit versions */
            { .name = "TCMTR",
              .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 2,
              .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
            { .name = "TLBTR",
              .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 3,
              .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
            REGINFO_SENTINEL
        };
2437 2438 2439 2440 2441 2442 2443 2444 2445
        ARMCPRegInfo crn0_wi_reginfo = {
            .name = "CRN0_WI", .cp = 15, .crn = 0, .crm = CP_ANY,
            .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_W,
            .type = ARM_CP_NOP | ARM_CP_OVERRIDE
        };
        if (arm_feature(env, ARM_FEATURE_OMAPCP) ||
            arm_feature(env, ARM_FEATURE_STRONGARM)) {
            ARMCPRegInfo *r;
            /* Register the blanket "writes ignored" value first to cover the
2446 2447 2448
             * whole space. Then update the specific ID registers to allow write
             * access, so that they ignore writes rather than causing them to
             * UNDEF.
2449 2450
             */
            define_one_arm_cp_reg(cpu, &crn0_wi_reginfo);
2451 2452 2453 2454
            for (r = id_pre_v8_midr_cp_reginfo;
                 r->type != ARM_CP_SENTINEL; r++) {
                r->access = PL1_RW;
            }
2455 2456 2457 2458
            for (r = id_cp_reginfo; r->type != ARM_CP_SENTINEL; r++) {
                r->access = PL1_RW;
            }
        }
2459 2460 2461 2462 2463
        if (arm_feature(env, ARM_FEATURE_V8)) {
            define_arm_cp_regs(cpu, id_v8_midr_cp_reginfo);
        } else {
            define_arm_cp_regs(cpu, id_pre_v8_midr_cp_reginfo);
        }
2464
        define_arm_cp_regs(cpu, id_cp_reginfo);
2465 2466
    }

2467 2468 2469 2470
    if (arm_feature(env, ARM_FEATURE_MPIDR)) {
        define_arm_cp_regs(cpu, mpidr_cp_reginfo);
    }

2471 2472
    if (arm_feature(env, ARM_FEATURE_AUXCR)) {
        ARMCPRegInfo auxcr = {
2473 2474
            .name = "ACTLR_EL1", .state = ARM_CP_STATE_BOTH,
            .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 1,
2475 2476 2477 2478 2479 2480
            .access = PL1_RW, .type = ARM_CP_CONST,
            .resetvalue = cpu->reset_auxcr
        };
        define_one_arm_cp_reg(cpu, &auxcr);
    }

2481
    if (arm_feature(env, ARM_FEATURE_CBAR)) {
2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514
        if (arm_feature(env, ARM_FEATURE_AARCH64)) {
            /* 32 bit view is [31:18] 0...0 [43:32]. */
            uint32_t cbar32 = (extract64(cpu->reset_cbar, 18, 14) << 18)
                | extract64(cpu->reset_cbar, 32, 12);
            ARMCPRegInfo cbar_reginfo[] = {
                { .name = "CBAR",
                  .type = ARM_CP_CONST,
                  .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0,
                  .access = PL1_R, .resetvalue = cpu->reset_cbar },
                { .name = "CBAR_EL1", .state = ARM_CP_STATE_AA64,
                  .type = ARM_CP_CONST,
                  .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 3, .opc2 = 0,
                  .access = PL1_R, .resetvalue = cbar32 },
                REGINFO_SENTINEL
            };
            /* We don't implement a r/w 64 bit CBAR currently */
            assert(arm_feature(env, ARM_FEATURE_CBAR_RO));
            define_arm_cp_regs(cpu, cbar_reginfo);
        } else {
            ARMCPRegInfo cbar = {
                .name = "CBAR",
                .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0,
                .access = PL1_R|PL3_W, .resetvalue = cpu->reset_cbar,
                .fieldoffset = offsetof(CPUARMState,
                                        cp15.c15_config_base_address)
            };
            if (arm_feature(env, ARM_FEATURE_CBAR_RO)) {
                cbar.access = PL1_R;
                cbar.fieldoffset = 0;
                cbar.type = ARM_CP_CONST;
            }
            define_one_arm_cp_reg(cpu, &cbar);
        }
2515 2516
    }

2517 2518 2519
    /* Generic registers whose values depend on the implementation */
    {
        ARMCPRegInfo sctlr = {
2520 2521
            .name = "SCTLR", .state = ARM_CP_STATE_BOTH,
            .opc0 = 3, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 0,
2522
            .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c1_sys),
2523 2524
            .writefn = sctlr_write, .resetvalue = cpu->reset_sctlr,
            .raw_writefn = raw_write,
2525 2526 2527 2528 2529 2530 2531 2532 2533 2534
        };
        if (arm_feature(env, ARM_FEATURE_XSCALE)) {
            /* Normally we would always end the TB on an SCTLR write, but Linux
             * arch/arm/mach-pxa/sleep.S expects two instructions following
             * an MMU enable to execute from cache.  Imitate this behaviour.
             */
            sctlr.type |= ARM_CP_SUPPRESS_TB_END;
        }
        define_one_arm_cp_reg(cpu, &sctlr);
    }
2535 2536
}

2537
ARMCPU *cpu_arm_init(const char *cpu_model)
P
pbrook 已提交
2538
{
2539
    return ARM_CPU(cpu_generic_init(TYPE_ARM_CPU, cpu_model));
2540 2541 2542 2543
}

void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu)
{
2544
    CPUState *cs = CPU(cpu);
2545 2546
    CPUARMState *env = &cpu->env;

2547 2548 2549 2550 2551
    if (arm_feature(env, ARM_FEATURE_AARCH64)) {
        gdb_register_coprocessor(cs, aarch64_fpu_gdb_get_reg,
                                 aarch64_fpu_gdb_set_reg,
                                 34, "aarch64-fpu.xml", 0);
    } else if (arm_feature(env, ARM_FEATURE_NEON)) {
2552
        gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
P
pbrook 已提交
2553 2554
                                 51, "arm-neon.xml", 0);
    } else if (arm_feature(env, ARM_FEATURE_VFP3)) {
2555
        gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
P
pbrook 已提交
2556 2557
                                 35, "arm-vfp3.xml", 0);
    } else if (arm_feature(env, ARM_FEATURE_VFP)) {
2558
        gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
P
pbrook 已提交
2559 2560
                                 19, "arm-vfp.xml", 0);
    }
P
pbrook 已提交
2561 2562
}

2563 2564
/* Sort alphabetically by type name, except for "any". */
static gint arm_cpu_list_compare(gconstpointer a, gconstpointer b)
P
pbrook 已提交
2565
{
2566 2567 2568
    ObjectClass *class_a = (ObjectClass *)a;
    ObjectClass *class_b = (ObjectClass *)b;
    const char *name_a, *name_b;
P
pbrook 已提交
2569

2570 2571
    name_a = object_class_get_name(class_a);
    name_b = object_class_get_name(class_b);
A
Andreas Färber 已提交
2572
    if (strcmp(name_a, "any-" TYPE_ARM_CPU) == 0) {
2573
        return 1;
A
Andreas Färber 已提交
2574
    } else if (strcmp(name_b, "any-" TYPE_ARM_CPU) == 0) {
2575 2576 2577
        return -1;
    } else {
        return strcmp(name_a, name_b);
P
pbrook 已提交
2578 2579 2580
    }
}

2581
static void arm_cpu_list_entry(gpointer data, gpointer user_data)
P
pbrook 已提交
2582
{
2583
    ObjectClass *oc = data;
2584
    CPUListState *s = user_data;
A
Andreas Färber 已提交
2585 2586
    const char *typename;
    char *name;
P
pbrook 已提交
2587

A
Andreas Färber 已提交
2588 2589
    typename = object_class_get_name(oc);
    name = g_strndup(typename, strlen(typename) - strlen("-" TYPE_ARM_CPU));
2590
    (*s->cpu_fprintf)(s->file, "  %s\n",
A
Andreas Färber 已提交
2591 2592
                      name);
    g_free(name);
2593 2594 2595 2596
}

void arm_cpu_list(FILE *f, fprintf_function cpu_fprintf)
{
2597
    CPUListState s = {
2598 2599 2600 2601 2602 2603 2604 2605 2606 2607
        .file = f,
        .cpu_fprintf = cpu_fprintf,
    };
    GSList *list;

    list = object_class_get_list(TYPE_ARM_CPU, false);
    list = g_slist_sort(list, arm_cpu_list_compare);
    (*cpu_fprintf)(f, "Available CPUs:\n");
    g_slist_foreach(list, arm_cpu_list_entry, &s);
    g_slist_free(list);
2608 2609 2610 2611 2612 2613
#ifdef CONFIG_KVM
    /* The 'host' CPU type is dynamically registered only if KVM is
     * enabled, so we have to special-case it here:
     */
    (*cpu_fprintf)(f, "  host (only available in KVM mode)\n");
#endif
P
pbrook 已提交
2614 2615
}

2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646
static void arm_cpu_add_definition(gpointer data, gpointer user_data)
{
    ObjectClass *oc = data;
    CpuDefinitionInfoList **cpu_list = user_data;
    CpuDefinitionInfoList *entry;
    CpuDefinitionInfo *info;
    const char *typename;

    typename = object_class_get_name(oc);
    info = g_malloc0(sizeof(*info));
    info->name = g_strndup(typename,
                           strlen(typename) - strlen("-" TYPE_ARM_CPU));

    entry = g_malloc0(sizeof(*entry));
    entry->value = info;
    entry->next = *cpu_list;
    *cpu_list = entry;
}

CpuDefinitionInfoList *arch_query_cpu_definitions(Error **errp)
{
    CpuDefinitionInfoList *cpu_list = NULL;
    GSList *list;

    list = object_class_get_list(TYPE_ARM_CPU, false);
    g_slist_foreach(list, arm_cpu_add_definition, &cpu_list);
    g_slist_free(list);

    return cpu_list;
}

2647
static void add_cpreg_to_hashtable(ARMCPU *cpu, const ARMCPRegInfo *r,
2648 2649
                                   void *opaque, int state,
                                   int crm, int opc1, int opc2)
2650 2651 2652 2653 2654 2655 2656
{
    /* Private utility function for define_one_arm_cp_reg_with_opaque():
     * add a single reginfo struct to the hash table.
     */
    uint32_t *key = g_new(uint32_t, 1);
    ARMCPRegInfo *r2 = g_memdup(r, sizeof(ARMCPRegInfo));
    int is64 = (r->type & ARM_CP_64BIT) ? 1 : 0;
2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684
    if (r->state == ARM_CP_STATE_BOTH && state == ARM_CP_STATE_AA32) {
        /* The AArch32 view of a shared register sees the lower 32 bits
         * of a 64 bit backing field. It is not migratable as the AArch64
         * view handles that. AArch64 also handles reset.
         * We assume it is a cp15 register.
         */
        r2->cp = 15;
        r2->type |= ARM_CP_NO_MIGRATE;
        r2->resetfn = arm_cp_reset_ignore;
#ifdef HOST_WORDS_BIGENDIAN
        if (r2->fieldoffset) {
            r2->fieldoffset += sizeof(uint32_t);
        }
#endif
    }
    if (state == ARM_CP_STATE_AA64) {
        /* To allow abbreviation of ARMCPRegInfo
         * definitions, we treat cp == 0 as equivalent to
         * the value for "standard guest-visible sysreg".
         */
        if (r->cp == 0) {
            r2->cp = CP_REG_ARM64_SYSREG_CP;
        }
        *key = ENCODE_AA64_CP_REG(r2->cp, r2->crn, crm,
                                  r2->opc0, opc1, opc2);
    } else {
        *key = ENCODE_CP_REG(r2->cp, is64, r2->crn, crm, opc1, opc2);
    }
2685 2686 2687
    if (opaque) {
        r2->opaque = opaque;
    }
2688 2689 2690 2691
    /* reginfo passed to helpers is correct for the actual access,
     * and is never ARM_CP_STATE_BOTH:
     */
    r2->state = state;
2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729
    /* Make sure reginfo passed to helpers for wildcarded regs
     * has the correct crm/opc1/opc2 for this reg, not CP_ANY:
     */
    r2->crm = crm;
    r2->opc1 = opc1;
    r2->opc2 = opc2;
    /* By convention, for wildcarded registers only the first
     * entry is used for migration; the others are marked as
     * NO_MIGRATE so we don't try to transfer the register
     * multiple times. Special registers (ie NOP/WFI) are
     * never migratable.
     */
    if ((r->type & ARM_CP_SPECIAL) ||
        ((r->crm == CP_ANY) && crm != 0) ||
        ((r->opc1 == CP_ANY) && opc1 != 0) ||
        ((r->opc2 == CP_ANY) && opc2 != 0)) {
        r2->type |= ARM_CP_NO_MIGRATE;
    }

    /* Overriding of an existing definition must be explicitly
     * requested.
     */
    if (!(r->type & ARM_CP_OVERRIDE)) {
        ARMCPRegInfo *oldreg;
        oldreg = g_hash_table_lookup(cpu->cp_regs, key);
        if (oldreg && !(oldreg->type & ARM_CP_OVERRIDE)) {
            fprintf(stderr, "Register redefined: cp=%d %d bit "
                    "crn=%d crm=%d opc1=%d opc2=%d, "
                    "was %s, now %s\n", r2->cp, 32 + 32 * is64,
                    r2->crn, r2->crm, r2->opc1, r2->opc2,
                    oldreg->name, r2->name);
            g_assert_not_reached();
        }
    }
    g_hash_table_insert(cpu->cp_regs, key, r2);
}


2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743
void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
                                       const ARMCPRegInfo *r, void *opaque)
{
    /* Define implementations of coprocessor registers.
     * We store these in a hashtable because typically
     * there are less than 150 registers in a space which
     * is 16*16*16*8*8 = 262144 in size.
     * Wildcarding is supported for the crm, opc1 and opc2 fields.
     * If a register is defined twice then the second definition is
     * used, so this can be used to define some generic registers and
     * then override them with implementation specific variations.
     * At least one of the original and the second definition should
     * include ARM_CP_OVERRIDE in its type bits -- this is just a guard
     * against accidental use.
2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754
     *
     * The state field defines whether the register is to be
     * visible in the AArch32 or AArch64 execution state. If the
     * state is set to ARM_CP_STATE_BOTH then we synthesise a
     * reginfo structure for the AArch32 view, which sees the lower
     * 32 bits of the 64 bit register.
     *
     * Only registers visible in AArch64 may set r->opc0; opc0 cannot
     * be wildcarded. AArch64 registers are always considered to be 64
     * bits; the ARM_CP_64BIT* flag applies only to the AArch32 view of
     * the register, if any.
2755
     */
2756
    int crm, opc1, opc2, state;
2757 2758 2759 2760 2761 2762 2763 2764
    int crmmin = (r->crm == CP_ANY) ? 0 : r->crm;
    int crmmax = (r->crm == CP_ANY) ? 15 : r->crm;
    int opc1min = (r->opc1 == CP_ANY) ? 0 : r->opc1;
    int opc1max = (r->opc1 == CP_ANY) ? 7 : r->opc1;
    int opc2min = (r->opc2 == CP_ANY) ? 0 : r->opc2;
    int opc2max = (r->opc2 == CP_ANY) ? 7 : r->opc2;
    /* 64 bit registers have only CRm and Opc1 fields */
    assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn)));
2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810
    /* op0 only exists in the AArch64 encodings */
    assert((r->state != ARM_CP_STATE_AA32) || (r->opc0 == 0));
    /* AArch64 regs are all 64 bit so ARM_CP_64BIT is meaningless */
    assert((r->state != ARM_CP_STATE_AA64) || !(r->type & ARM_CP_64BIT));
    /* The AArch64 pseudocode CheckSystemAccess() specifies that op1
     * encodes a minimum access level for the register. We roll this
     * runtime check into our general permission check code, so check
     * here that the reginfo's specified permissions are strict enough
     * to encompass the generic architectural permission check.
     */
    if (r->state != ARM_CP_STATE_AA32) {
        int mask = 0;
        switch (r->opc1) {
        case 0: case 1: case 2:
            /* min_EL EL1 */
            mask = PL1_RW;
            break;
        case 3:
            /* min_EL EL0 */
            mask = PL0_RW;
            break;
        case 4:
            /* min_EL EL2 */
            mask = PL2_RW;
            break;
        case 5:
            /* unallocated encoding, so not possible */
            assert(false);
            break;
        case 6:
            /* min_EL EL3 */
            mask = PL3_RW;
            break;
        case 7:
            /* min_EL EL1, secure mode only (we don't check the latter) */
            mask = PL1_RW;
            break;
        default:
            /* broken reginfo with out-of-range opc1 */
            assert(false);
            break;
        }
        /* assert our permissions are not too lax (stricter is fine) */
        assert((r->access & ~mask) == 0);
    }

2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826
    /* Check that the register definition has enough info to handle
     * reads and writes if they are permitted.
     */
    if (!(r->type & (ARM_CP_SPECIAL|ARM_CP_CONST))) {
        if (r->access & PL3_R) {
            assert(r->fieldoffset || r->readfn);
        }
        if (r->access & PL3_W) {
            assert(r->fieldoffset || r->writefn);
        }
    }
    /* Bad type field probably means missing sentinel at end of reg list */
    assert(cptype_valid(r->type));
    for (crm = crmmin; crm <= crmmax; crm++) {
        for (opc1 = opc1min; opc1 <= opc1max; opc1++) {
            for (opc2 = opc2min; opc2 <= opc2max; opc2++) {
2827 2828 2829 2830 2831 2832 2833 2834
                for (state = ARM_CP_STATE_AA32;
                     state <= ARM_CP_STATE_AA64; state++) {
                    if (r->state != state && r->state != ARM_CP_STATE_BOTH) {
                        continue;
                    }
                    add_cpreg_to_hashtable(cpu, r, opaque, state,
                                           crm, opc1, opc2);
                }
2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849
            }
        }
    }
}

void define_arm_cp_regs_with_opaque(ARMCPU *cpu,
                                    const ARMCPRegInfo *regs, void *opaque)
{
    /* Define a whole list of registers */
    const ARMCPRegInfo *r;
    for (r = regs; r->type != ARM_CP_SENTINEL; r++) {
        define_one_arm_cp_reg_with_opaque(cpu, r, opaque);
    }
}

2850
const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp)
2851
{
2852
    return g_hash_table_lookup(cpregs, &encoded_cp);
2853 2854
}

2855 2856
void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
                         uint64_t value)
2857 2858 2859 2860
{
    /* Helper coprocessor write function for write-ignore registers */
}

2861
uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri)
2862 2863 2864 2865 2866
{
    /* Helper coprocessor write function for read-as-zero registers */
    return 0;
}

2867 2868 2869 2870 2871
void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque)
{
    /* Helper coprocessor reset function for do-nothing-on-reset registers */
}

2872
static int bad_mode_switch(CPUARMState *env, int mode)
2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891
{
    /* Return true if it is not valid for us to switch to
     * this CPU mode (ie all the UNPREDICTABLE cases in
     * the ARM ARM CPSRWriteByInstr pseudocode).
     */
    switch (mode) {
    case ARM_CPU_MODE_USR:
    case ARM_CPU_MODE_SYS:
    case ARM_CPU_MODE_SVC:
    case ARM_CPU_MODE_ABT:
    case ARM_CPU_MODE_UND:
    case ARM_CPU_MODE_IRQ:
    case ARM_CPU_MODE_FIQ:
        return 0;
    default:
        return 1;
    }
}

2892 2893 2894
uint32_t cpsr_read(CPUARMState *env)
{
    int ZF;
P
pbrook 已提交
2895 2896
    ZF = (env->ZF == 0);
    return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) |
2897 2898 2899
        (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
        | (env->thumb << 5) | ((env->condexec_bits & 3) << 25)
        | ((env->condexec_bits & 0xfc) << 8)
2900
        | (env->GE << 16) | (env->daif & CPSR_AIF);
2901 2902 2903 2904 2905
}

void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask)
{
    if (mask & CPSR_NZCV) {
P
pbrook 已提交
2906 2907
        env->ZF = (~val) & CPSR_Z;
        env->NF = val;
2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926
        env->CF = (val >> 29) & 1;
        env->VF = (val << 3) & 0x80000000;
    }
    if (mask & CPSR_Q)
        env->QF = ((val & CPSR_Q) != 0);
    if (mask & CPSR_T)
        env->thumb = ((val & CPSR_T) != 0);
    if (mask & CPSR_IT_0_1) {
        env->condexec_bits &= ~3;
        env->condexec_bits |= (val >> 25) & 3;
    }
    if (mask & CPSR_IT_2_7) {
        env->condexec_bits &= 3;
        env->condexec_bits |= (val >> 8) & 0xfc;
    }
    if (mask & CPSR_GE) {
        env->GE = (val >> 16) & 0xf;
    }

2927 2928 2929
    env->daif &= ~(CPSR_AIF & mask);
    env->daif |= val & CPSR_AIF & mask;

2930
    if ((env->uncached_cpsr ^ val) & mask & CPSR_M) {
2931 2932 2933 2934 2935 2936 2937 2938 2939
        if (bad_mode_switch(env, val & CPSR_M)) {
            /* Attempt to switch to an invalid mode: this is UNPREDICTABLE.
             * We choose to ignore the attempt and leave the CPSR M field
             * untouched.
             */
            mask &= ~CPSR_M;
        } else {
            switch_mode(env, val & CPSR_M);
        }
2940 2941 2942 2943 2944
    }
    mask &= ~CACHED_CPSR_BITS;
    env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask);
}

P
pbrook 已提交
2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961
/* Sign/zero extend */
uint32_t HELPER(sxtb16)(uint32_t x)
{
    uint32_t res;
    res = (uint16_t)(int8_t)x;
    res |= (uint32_t)(int8_t)(x >> 16) << 16;
    return res;
}

uint32_t HELPER(uxtb16)(uint32_t x)
{
    uint32_t res;
    res = (uint16_t)(uint8_t)x;
    res |= (uint32_t)(uint8_t)(x >> 16) << 16;
    return res;
}

P
pbrook 已提交
2962 2963
uint32_t HELPER(clz)(uint32_t x)
{
2964
    return clz32(x);
P
pbrook 已提交
2965 2966
}

P
pbrook 已提交
2967 2968 2969 2970
int32_t HELPER(sdiv)(int32_t num, int32_t den)
{
    if (den == 0)
      return 0;
A
Aurelien Jarno 已提交
2971 2972
    if (num == INT_MIN && den == -1)
      return INT_MIN;
P
pbrook 已提交
2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997
    return num / den;
}

uint32_t HELPER(udiv)(uint32_t num, uint32_t den)
{
    if (den == 0)
      return 0;
    return num / den;
}

uint32_t HELPER(rbit)(uint32_t x)
{
    x =  ((x & 0xff000000) >> 24)
       | ((x & 0x00ff0000) >> 8)
       | ((x & 0x0000ff00) << 8)
       | ((x & 0x000000ff) << 24);
    x =  ((x & 0xf0f0f0f0) >> 4)
       | ((x & 0x0f0f0f0f) << 4);
    x =  ((x & 0x88888888) >> 3)
       | ((x & 0x44444444) >> 1)
       | ((x & 0x22222222) << 1)
       | ((x & 0x11111111) << 3);
    return x;
}

2998
#if defined(CONFIG_USER_ONLY)
B
bellard 已提交
2999

3000
void arm_cpu_do_interrupt(CPUState *cs)
B
bellard 已提交
3001
{
3002
    cs->exception_index = -1;
B
bellard 已提交
3003 3004
}

3005 3006
int arm_cpu_handle_mmu_fault(CPUState *cs, vaddr address, int rw,
                             int mmu_idx)
B
bellard 已提交
3007
{
3008 3009 3010
    ARMCPU *cpu = ARM_CPU(cs);
    CPUARMState *env = &cpu->env;

3011
    env->exception.vaddress = address;
B
bellard 已提交
3012
    if (rw == 2) {
3013
        cs->exception_index = EXCP_PREFETCH_ABORT;
B
bellard 已提交
3014
    } else {
3015
        cs->exception_index = EXCP_DATA_ABORT;
B
bellard 已提交
3016 3017 3018 3019
    }
    return 1;
}

P
pbrook 已提交
3020
/* These should probably raise undefined insn exceptions.  */
3021
void HELPER(v7m_msr)(CPUARMState *env, uint32_t reg, uint32_t val)
P
pbrook 已提交
3022
{
3023 3024 3025
    ARMCPU *cpu = arm_env_get_cpu(env);

    cpu_abort(CPU(cpu), "v7m_msr %d\n", reg);
P
pbrook 已提交
3026 3027
}

3028
uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg)
P
pbrook 已提交
3029
{
3030 3031 3032
    ARMCPU *cpu = arm_env_get_cpu(env);

    cpu_abort(CPU(cpu), "v7m_mrs %d\n", reg);
P
pbrook 已提交
3033 3034 3035
    return 0;
}

3036
void switch_mode(CPUARMState *env, int mode)
B
bellard 已提交
3037
{
3038 3039 3040 3041 3042
    ARMCPU *cpu = arm_env_get_cpu(env);

    if (mode != ARM_CPU_MODE_USR) {
        cpu_abort(CPU(cpu), "Tried to switch out of user mode\n");
    }
B
bellard 已提交
3043 3044
}

3045
void HELPER(set_r13_banked)(CPUARMState *env, uint32_t mode, uint32_t val)
P
pbrook 已提交
3046
{
3047 3048 3049
    ARMCPU *cpu = arm_env_get_cpu(env);

    cpu_abort(CPU(cpu), "banked r13 write\n");
P
pbrook 已提交
3050 3051
}

3052
uint32_t HELPER(get_r13_banked)(CPUARMState *env, uint32_t mode)
P
pbrook 已提交
3053
{
3054 3055 3056
    ARMCPU *cpu = arm_env_get_cpu(env);

    cpu_abort(CPU(cpu), "banked r13 read\n");
P
pbrook 已提交
3057 3058 3059
    return 0;
}

B
bellard 已提交
3060 3061 3062
#else

/* Map CPU modes onto saved register banks.  */
3063
int bank_number(int mode)
B
bellard 已提交
3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079
{
    switch (mode) {
    case ARM_CPU_MODE_USR:
    case ARM_CPU_MODE_SYS:
        return 0;
    case ARM_CPU_MODE_SVC:
        return 1;
    case ARM_CPU_MODE_ABT:
        return 2;
    case ARM_CPU_MODE_UND:
        return 3;
    case ARM_CPU_MODE_IRQ:
        return 4;
    case ARM_CPU_MODE_FIQ:
        return 5;
    }
3080
    hw_error("bank number requested for bad CPSR mode value 0x%x\n", mode);
B
bellard 已提交
3081 3082
}

3083
void switch_mode(CPUARMState *env, int mode)
B
bellard 已提交
3084 3085 3086 3087 3088 3089 3090 3091 3092 3093
{
    int old_mode;
    int i;

    old_mode = env->uncached_cpsr & CPSR_M;
    if (mode == old_mode)
        return;

    if (old_mode == ARM_CPU_MODE_FIQ) {
        memcpy (env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t));
P
pbrook 已提交
3094
        memcpy (env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t));
B
bellard 已提交
3095 3096
    } else if (mode == ARM_CPU_MODE_FIQ) {
        memcpy (env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t));
P
pbrook 已提交
3097
        memcpy (env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t));
B
bellard 已提交
3098 3099
    }

3100
    i = bank_number(old_mode);
B
bellard 已提交
3101 3102 3103 3104
    env->banked_r13[i] = env->regs[13];
    env->banked_r14[i] = env->regs[14];
    env->banked_spsr[i] = env->spsr;

3105
    i = bank_number(mode);
B
bellard 已提交
3106 3107 3108 3109 3110
    env->regs[13] = env->banked_r13[i];
    env->regs[14] = env->banked_r14[i];
    env->spsr = env->banked_spsr[i];
}

P
pbrook 已提交
3111 3112
static void v7m_push(CPUARMState *env, uint32_t val)
{
3113 3114
    CPUState *cs = CPU(arm_env_get_cpu(env));

P
pbrook 已提交
3115
    env->regs[13] -= 4;
3116
    stl_phys(cs->as, env->regs[13], val);
P
pbrook 已提交
3117 3118 3119 3120
}

static uint32_t v7m_pop(CPUARMState *env)
{
3121
    CPUState *cs = CPU(arm_env_get_cpu(env));
P
pbrook 已提交
3122
    uint32_t val;
3123

3124
    val = ldl_phys(cs->as, env->regs[13]);
P
pbrook 已提交
3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147
    env->regs[13] += 4;
    return val;
}

/* Switch to V7M main or process stack pointer.  */
static void switch_v7m_sp(CPUARMState *env, int process)
{
    uint32_t tmp;
    if (env->v7m.current_sp != process) {
        tmp = env->v7m.other_sp;
        env->v7m.other_sp = env->regs[13];
        env->regs[13] = tmp;
        env->v7m.current_sp = process;
    }
}

static void do_v7m_exception_exit(CPUARMState *env)
{
    uint32_t type;
    uint32_t xpsr;

    type = env->regs[15];
    if (env->v7m.exception != 0)
P
Paul Brook 已提交
3148
        armv7m_nvic_complete_irq(env->nvic, env->v7m.exception);
P
pbrook 已提交
3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171

    /* Switch to the target stack.  */
    switch_v7m_sp(env, (type & 4) != 0);
    /* Pop registers.  */
    env->regs[0] = v7m_pop(env);
    env->regs[1] = v7m_pop(env);
    env->regs[2] = v7m_pop(env);
    env->regs[3] = v7m_pop(env);
    env->regs[12] = v7m_pop(env);
    env->regs[14] = v7m_pop(env);
    env->regs[15] = v7m_pop(env);
    xpsr = v7m_pop(env);
    xpsr_write(env, xpsr, 0xfffffdff);
    /* Undo stack alignment.  */
    if (xpsr & 0x200)
        env->regs[13] |= 4;
    /* ??? The exception return type specifies Thread/Handler mode.  However
       this is also implied by the xPSR value. Not sure what to do
       if there is a mismatch.  */
    /* ??? Likewise for mismatches between the CONTROL register and the stack
       pointer.  */
}

3172
void arm_v7m_cpu_do_interrupt(CPUState *cs)
P
pbrook 已提交
3173
{
3174 3175
    ARMCPU *cpu = ARM_CPU(cs);
    CPUARMState *env = &cpu->env;
P
pbrook 已提交
3176 3177 3178 3179
    uint32_t xpsr = xpsr_read(env);
    uint32_t lr;
    uint32_t addr;

3180
    arm_log_exception(cs->exception_index);
3181

P
pbrook 已提交
3182 3183 3184 3185 3186 3187 3188 3189 3190 3191
    lr = 0xfffffff1;
    if (env->v7m.current_sp)
        lr |= 4;
    if (env->v7m.exception == 0)
        lr |= 8;

    /* For exceptions we just mark as pending on the NVIC, and let that
       handle it.  */
    /* TODO: Need to escalate if the current priority is higher than the
       one we're raising.  */
3192
    switch (cs->exception_index) {
P
pbrook 已提交
3193
    case EXCP_UDEF:
P
Paul Brook 已提交
3194
        armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE);
P
pbrook 已提交
3195 3196
        return;
    case EXCP_SWI:
3197
        /* The PC already points to the next instruction.  */
P
Paul Brook 已提交
3198
        armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SVC);
P
pbrook 已提交
3199 3200 3201
        return;
    case EXCP_PREFETCH_ABORT:
    case EXCP_DATA_ABORT:
3202 3203 3204
        /* TODO: if we implemented the MPU registers, this is where we
         * should set the MMFAR, etc from exception.fsr and exception.vaddress.
         */
P
Paul Brook 已提交
3205
        armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_MEM);
P
pbrook 已提交
3206 3207
        return;
    case EXCP_BKPT:
P
pbrook 已提交
3208 3209
        if (semihosting_enabled) {
            int nr;
3210
            nr = arm_lduw_code(env, env->regs[15], env->bswap_code) & 0xff;
P
pbrook 已提交
3211 3212 3213
            if (nr == 0xab) {
                env->regs[15] += 2;
                env->regs[0] = do_arm_semihosting(env);
3214
                qemu_log_mask(CPU_LOG_INT, "...handled as semihosting call\n");
P
pbrook 已提交
3215 3216 3217
                return;
            }
        }
P
Paul Brook 已提交
3218
        armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_DEBUG);
P
pbrook 已提交
3219 3220
        return;
    case EXCP_IRQ:
P
Paul Brook 已提交
3221
        env->v7m.exception = armv7m_nvic_acknowledge_irq(env->nvic);
P
pbrook 已提交
3222 3223 3224 3225 3226
        break;
    case EXCP_EXCEPTION_EXIT:
        do_v7m_exception_exit(env);
        return;
    default:
3227
        cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
P
pbrook 已提交
3228 3229 3230 3231 3232 3233 3234
        return; /* Never happens.  Keep compiler happy.  */
    }

    /* Align stack pointer.  */
    /* ??? Should only do this if Configuration Control Register
       STACKALIGN bit is set.  */
    if (env->regs[13] & 4) {
P
pbrook 已提交
3235
        env->regs[13] -= 4;
P
pbrook 已提交
3236 3237
        xpsr |= 0x200;
    }
B
balrog 已提交
3238
    /* Switch to the handler mode.  */
P
pbrook 已提交
3239 3240 3241 3242 3243 3244 3245 3246 3247
    v7m_push(env, xpsr);
    v7m_push(env, env->regs[15]);
    v7m_push(env, env->regs[14]);
    v7m_push(env, env->regs[12]);
    v7m_push(env, env->regs[3]);
    v7m_push(env, env->regs[2]);
    v7m_push(env, env->regs[1]);
    v7m_push(env, env->regs[0]);
    switch_v7m_sp(env, 0);
3248 3249
    /* Clear IT bits */
    env->condexec_bits = 0;
P
pbrook 已提交
3250
    env->regs[14] = lr;
3251
    addr = ldl_phys(cs->as, env->v7m.vecbase + env->v7m.exception * 4);
P
pbrook 已提交
3252 3253 3254 3255
    env->regs[15] = addr & 0xfffffffe;
    env->thumb = addr & 1;
}

B
bellard 已提交
3256
/* Handle a CPU exception.  */
3257
void arm_cpu_do_interrupt(CPUState *cs)
B
bellard 已提交
3258
{
3259 3260
    ARMCPU *cpu = ARM_CPU(cs);
    CPUARMState *env = &cpu->env;
B
bellard 已提交
3261 3262 3263 3264 3265
    uint32_t addr;
    uint32_t mask;
    int new_mode;
    uint32_t offset;

3266 3267
    assert(!IS_M(env));

3268
    arm_log_exception(cs->exception_index);
3269

B
bellard 已提交
3270
    /* TODO: Vectored interrupt controller.  */
3271
    switch (cs->exception_index) {
B
bellard 已提交
3272 3273 3274 3275 3276 3277 3278 3279 3280 3281
    case EXCP_UDEF:
        new_mode = ARM_CPU_MODE_UND;
        addr = 0x04;
        mask = CPSR_I;
        if (env->thumb)
            offset = 2;
        else
            offset = 4;
        break;
    case EXCP_SWI:
3282 3283 3284
        if (semihosting_enabled) {
            /* Check for semihosting interrupt.  */
            if (env->thumb) {
3285 3286
                mask = arm_lduw_code(env, env->regs[15] - 2, env->bswap_code)
                    & 0xff;
3287
            } else {
3288
                mask = arm_ldl_code(env, env->regs[15] - 4, env->bswap_code)
P
Paul Brook 已提交
3289
                    & 0xffffff;
3290 3291 3292 3293 3294 3295 3296
            }
            /* Only intercept calls from privileged modes, to provide some
               semblance of security.  */
            if (((mask == 0x123456 && !env->thumb)
                    || (mask == 0xab && env->thumb))
                  && (env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR) {
                env->regs[0] = do_arm_semihosting(env);
3297
                qemu_log_mask(CPU_LOG_INT, "...handled as semihosting call\n");
3298 3299 3300
                return;
            }
        }
B
bellard 已提交
3301 3302 3303
        new_mode = ARM_CPU_MODE_SVC;
        addr = 0x08;
        mask = CPSR_I;
3304
        /* The PC already points to the next instruction.  */
B
bellard 已提交
3305 3306
        offset = 0;
        break;
P
pbrook 已提交
3307
    case EXCP_BKPT:
P
pbrook 已提交
3308
        /* See if this is a semihosting syscall.  */
P
pbrook 已提交
3309
        if (env->thumb && semihosting_enabled) {
3310
            mask = arm_lduw_code(env, env->regs[15], env->bswap_code) & 0xff;
P
pbrook 已提交
3311 3312 3313 3314
            if (mask == 0xab
                  && (env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR) {
                env->regs[15] += 2;
                env->regs[0] = do_arm_semihosting(env);
3315
                qemu_log_mask(CPU_LOG_INT, "...handled as semihosting call\n");
P
pbrook 已提交
3316 3317 3318
                return;
            }
        }
3319
        env->exception.fsr = 2;
P
pbrook 已提交
3320 3321
        /* Fall through to prefetch abort.  */
    case EXCP_PREFETCH_ABORT:
3322 3323 3324
        env->cp15.ifsr_el2 = env->exception.fsr;
        env->cp15.far_el1 = deposit64(env->cp15.far_el1, 32, 32,
                                      env->exception.vaddress);
3325
        qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x IFAR 0x%x\n",
3326
                      env->cp15.ifsr_el2, (uint32_t)env->exception.vaddress);
B
bellard 已提交
3327 3328 3329 3330 3331 3332
        new_mode = ARM_CPU_MODE_ABT;
        addr = 0x0c;
        mask = CPSR_A | CPSR_I;
        offset = 4;
        break;
    case EXCP_DATA_ABORT:
3333 3334 3335
        env->cp15.esr_el1 = env->exception.fsr;
        env->cp15.far_el1 = deposit64(env->cp15.far_el1, 0, 32,
                                      env->exception.vaddress);
3336
        qemu_log_mask(CPU_LOG_INT, "...with DFSR 0x%x DFAR 0x%x\n",
3337 3338
                      (uint32_t)env->cp15.esr_el1,
                      (uint32_t)env->exception.vaddress);
B
bellard 已提交
3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358
        new_mode = ARM_CPU_MODE_ABT;
        addr = 0x10;
        mask = CPSR_A | CPSR_I;
        offset = 8;
        break;
    case EXCP_IRQ:
        new_mode = ARM_CPU_MODE_IRQ;
        addr = 0x18;
        /* Disable IRQ and imprecise data aborts.  */
        mask = CPSR_A | CPSR_I;
        offset = 4;
        break;
    case EXCP_FIQ:
        new_mode = ARM_CPU_MODE_FIQ;
        addr = 0x1c;
        /* Disable FIQ, IRQ and imprecise data aborts.  */
        mask = CPSR_A | CPSR_I | CPSR_F;
        offset = 4;
        break;
    default:
3359
        cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
B
bellard 已提交
3360 3361 3362
        return; /* Never happens.  Keep compiler happy.  */
    }
    /* High vectors.  */
3363
    if (env->cp15.c1_sys & SCTLR_V) {
N
Nathan Rossi 已提交
3364
        /* when enabled, base address cannot be remapped.  */
B
bellard 已提交
3365
        addr += 0xffff0000;
N
Nathan Rossi 已提交
3366 3367 3368 3369 3370 3371 3372 3373 3374
    } else {
        /* ARM v7 architectures provide a vector base address register to remap
         * the interrupt vector table.
         * This register is only followed in non-monitor mode, and has a secure
         * and un-secure copy. Since the cpu is always in a un-secure operation
         * and is never in monitor mode this feature is always active.
         * Note: only bits 31:5 are valid.
         */
        addr += env->cp15.c12_vbar;
B
bellard 已提交
3375 3376 3377
    }
    switch_mode (env, new_mode);
    env->spsr = cpsr_read(env);
P
pbrook 已提交
3378 3379
    /* Clear IT bits.  */
    env->condexec_bits = 0;
3380
    /* Switch to the new mode, and to the correct instruction set.  */
3381
    env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode;
3382
    env->daif |= mask;
3383 3384 3385
    /* this is a lie, as the was no c1_sys on V4T/V5, but who cares
     * and we should just guard the thumb mode on V4 */
    if (arm_feature(env, ARM_FEATURE_V4T)) {
3386
        env->thumb = (env->cp15.c1_sys & SCTLR_TE) != 0;
3387
    }
B
bellard 已提交
3388 3389
    env->regs[14] = env->regs[15] + offset;
    env->regs[15] = addr;
3390
    cs->interrupt_request |= CPU_INTERRUPT_EXITTB;
B
bellard 已提交
3391 3392 3393 3394 3395
}

/* Check section/page access permissions.
   Returns the page protection flags, or zero if the access is not
   permitted.  */
3396
static inline int check_ap(CPUARMState *env, int ap, int domain_prot,
3397
                           int access_type, int is_user)
B
bellard 已提交
3398
{
P
pbrook 已提交
3399 3400
  int prot_ro;

3401
  if (domain_prot == 3) {
B
bellard 已提交
3402
    return PAGE_READ | PAGE_WRITE;
3403
  }
B
bellard 已提交
3404

P
pbrook 已提交
3405 3406 3407 3408 3409
  if (access_type == 1)
      prot_ro = 0;
  else
      prot_ro = PAGE_READ;

B
bellard 已提交
3410 3411
  switch (ap) {
  case 0:
3412 3413 3414
      if (arm_feature(env, ARM_FEATURE_V7)) {
          return 0;
      }
P
pbrook 已提交
3415
      if (access_type == 1)
B
bellard 已提交
3416
          return 0;
3417 3418
      switch (env->cp15.c1_sys & (SCTLR_S | SCTLR_R)) {
      case SCTLR_S:
B
bellard 已提交
3419
          return is_user ? 0 : PAGE_READ;
3420
      case SCTLR_R:
B
bellard 已提交
3421 3422 3423 3424 3425 3426 3427 3428
          return PAGE_READ;
      default:
          return 0;
      }
  case 1:
      return is_user ? 0 : PAGE_READ | PAGE_WRITE;
  case 2:
      if (is_user)
P
pbrook 已提交
3429
          return prot_ro;
B
bellard 已提交
3430 3431 3432 3433
      else
          return PAGE_READ | PAGE_WRITE;
  case 3:
      return PAGE_READ | PAGE_WRITE;
P
pbrook 已提交
3434
  case 4: /* Reserved.  */
P
pbrook 已提交
3435 3436 3437 3438 3439
      return 0;
  case 5:
      return is_user ? 0 : prot_ro;
  case 6:
      return prot_ro;
P
pbrook 已提交
3440
  case 7:
3441
      if (!arm_feature (env, ARM_FEATURE_V6K))
P
pbrook 已提交
3442 3443
          return 0;
      return prot_ro;
B
bellard 已提交
3444 3445 3446 3447 3448
  default:
      abort();
  }
}

3449
static uint32_t get_level1_table_address(CPUARMState *env, uint32_t address)
3450 3451 3452 3453
{
    uint32_t table;

    if (address & env->cp15.c2_mask)
3454
        table = env->cp15.ttbr1_el1 & 0xffffc000;
3455
    else
3456
        table = env->cp15.ttbr0_el1 & env->cp15.c2_base_mask;
3457 3458 3459 3460 3461

    table |= (address >> 18) & 0x3ffc;
    return table;
}

3462
static int get_phys_addr_v5(CPUARMState *env, uint32_t address, int access_type,
A
Avi Kivity 已提交
3463
                            int is_user, hwaddr *phys_ptr,
3464
                            int *prot, target_ulong *page_size)
B
bellard 已提交
3465
{
3466
    CPUState *cs = CPU(arm_env_get_cpu(env));
B
bellard 已提交
3467 3468 3469 3470 3471 3472
    int code;
    uint32_t table;
    uint32_t desc;
    int type;
    int ap;
    int domain;
3473
    int domain_prot;
A
Avi Kivity 已提交
3474
    hwaddr phys_addr;
B
bellard 已提交
3475

P
pbrook 已提交
3476 3477
    /* Pagetable walk.  */
    /* Lookup l1 descriptor.  */
3478
    table = get_level1_table_address(env, address);
3479
    desc = ldl_phys(cs->as, table);
P
pbrook 已提交
3480
    type = (desc & 3);
3481 3482
    domain = (desc >> 5) & 0x0f;
    domain_prot = (env->cp15.c3 >> (domain * 2)) & 3;
P
pbrook 已提交
3483
    if (type == 0) {
3484
        /* Section translation fault.  */
P
pbrook 已提交
3485 3486 3487
        code = 5;
        goto do_fault;
    }
3488
    if (domain_prot == 0 || domain_prot == 2) {
P
pbrook 已提交
3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499
        if (type == 2)
            code = 9; /* Section domain fault.  */
        else
            code = 11; /* Page domain fault.  */
        goto do_fault;
    }
    if (type == 2) {
        /* 1Mb section.  */
        phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
        ap = (desc >> 10) & 3;
        code = 13;
P
Paul Brook 已提交
3500
        *page_size = 1024 * 1024;
P
pbrook 已提交
3501 3502 3503 3504 3505 3506 3507 3508 3509
    } else {
        /* Lookup l2 entry.  */
	if (type == 1) {
	    /* Coarse pagetable.  */
	    table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
	} else {
	    /* Fine pagetable.  */
	    table = (desc & 0xfffff000) | ((address >> 8) & 0xffc);
	}
3510
        desc = ldl_phys(cs->as, table);
P
pbrook 已提交
3511 3512 3513 3514 3515 3516 3517
        switch (desc & 3) {
        case 0: /* Page translation fault.  */
            code = 7;
            goto do_fault;
        case 1: /* 64k page.  */
            phys_addr = (desc & 0xffff0000) | (address & 0xffff);
            ap = (desc >> (4 + ((address >> 13) & 6))) & 3;
P
Paul Brook 已提交
3518
            *page_size = 0x10000;
P
pbrook 已提交
3519
            break;
P
pbrook 已提交
3520 3521
        case 2: /* 4k page.  */
            phys_addr = (desc & 0xfffff000) | (address & 0xfff);
3522
            ap = (desc >> (4 + ((address >> 9) & 6))) & 3;
P
Paul Brook 已提交
3523
            *page_size = 0x1000;
P
pbrook 已提交
3524
            break;
P
pbrook 已提交
3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537
        case 3: /* 1k page.  */
	    if (type == 1) {
		if (arm_feature(env, ARM_FEATURE_XSCALE)) {
		    phys_addr = (desc & 0xfffff000) | (address & 0xfff);
		} else {
		    /* Page translation fault.  */
		    code = 7;
		    goto do_fault;
		}
	    } else {
		phys_addr = (desc & 0xfffffc00) | (address & 0x3ff);
	    }
            ap = (desc >> 4) & 3;
P
Paul Brook 已提交
3538
            *page_size = 0x400;
P
pbrook 已提交
3539 3540
            break;
        default:
P
pbrook 已提交
3541 3542
            /* Never happens, but compiler isn't smart enough to tell.  */
            abort();
P
pbrook 已提交
3543
        }
P
pbrook 已提交
3544 3545
        code = 15;
    }
3546
    *prot = check_ap(env, ap, domain_prot, access_type, is_user);
P
pbrook 已提交
3547 3548 3549 3550
    if (!*prot) {
        /* Access permission fault.  */
        goto do_fault;
    }
3551
    *prot |= PAGE_EXEC;
P
pbrook 已提交
3552 3553 3554 3555 3556 3557
    *phys_ptr = phys_addr;
    return 0;
do_fault:
    return code | (domain << 4);
}

3558
static int get_phys_addr_v6(CPUARMState *env, uint32_t address, int access_type,
A
Avi Kivity 已提交
3559
                            int is_user, hwaddr *phys_ptr,
3560
                            int *prot, target_ulong *page_size)
P
pbrook 已提交
3561
{
3562
    CPUState *cs = CPU(arm_env_get_cpu(env));
P
pbrook 已提交
3563 3564 3565 3566
    int code;
    uint32_t table;
    uint32_t desc;
    uint32_t xn;
3567
    uint32_t pxn = 0;
P
pbrook 已提交
3568 3569
    int type;
    int ap;
3570
    int domain = 0;
3571
    int domain_prot;
A
Avi Kivity 已提交
3572
    hwaddr phys_addr;
P
pbrook 已提交
3573 3574 3575

    /* Pagetable walk.  */
    /* Lookup l1 descriptor.  */
3576
    table = get_level1_table_address(env, address);
3577
    desc = ldl_phys(cs->as, table);
P
pbrook 已提交
3578
    type = (desc & 3);
3579 3580 3581 3582
    if (type == 0 || (type == 3 && !arm_feature(env, ARM_FEATURE_PXN))) {
        /* Section translation fault, or attempt to use the encoding
         * which is Reserved on implementations without PXN.
         */
P
pbrook 已提交
3583 3584
        code = 5;
        goto do_fault;
3585 3586 3587
    }
    if ((type == 1) || !(desc & (1 << 18))) {
        /* Page or Section.  */
3588
        domain = (desc >> 5) & 0x0f;
P
pbrook 已提交
3589
    }
3590 3591
    domain_prot = (env->cp15.c3 >> (domain * 2)) & 3;
    if (domain_prot == 0 || domain_prot == 2) {
3592
        if (type != 1) {
P
pbrook 已提交
3593
            code = 9; /* Section domain fault.  */
3594
        } else {
P
pbrook 已提交
3595
            code = 11; /* Page domain fault.  */
3596
        }
P
pbrook 已提交
3597 3598
        goto do_fault;
    }
3599
    if (type != 1) {
P
pbrook 已提交
3600 3601 3602
        if (desc & (1 << 18)) {
            /* Supersection.  */
            phys_addr = (desc & 0xff000000) | (address & 0x00ffffff);
P
Paul Brook 已提交
3603
            *page_size = 0x1000000;
B
bellard 已提交
3604
        } else {
P
pbrook 已提交
3605 3606
            /* Section.  */
            phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
P
Paul Brook 已提交
3607
            *page_size = 0x100000;
B
bellard 已提交
3608
        }
P
pbrook 已提交
3609 3610
        ap = ((desc >> 10) & 3) | ((desc >> 13) & 4);
        xn = desc & (1 << 4);
3611
        pxn = desc & 1;
P
pbrook 已提交
3612 3613
        code = 13;
    } else {
3614 3615 3616
        if (arm_feature(env, ARM_FEATURE_PXN)) {
            pxn = (desc >> 2) & 1;
        }
P
pbrook 已提交
3617 3618
        /* Lookup l2 entry.  */
        table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
3619
        desc = ldl_phys(cs->as, table);
P
pbrook 已提交
3620 3621 3622 3623
        ap = ((desc >> 4) & 3) | ((desc >> 7) & 4);
        switch (desc & 3) {
        case 0: /* Page translation fault.  */
            code = 7;
B
bellard 已提交
3624
            goto do_fault;
P
pbrook 已提交
3625 3626 3627
        case 1: /* 64k page.  */
            phys_addr = (desc & 0xffff0000) | (address & 0xffff);
            xn = desc & (1 << 15);
P
Paul Brook 已提交
3628
            *page_size = 0x10000;
P
pbrook 已提交
3629 3630 3631 3632
            break;
        case 2: case 3: /* 4k page.  */
            phys_addr = (desc & 0xfffff000) | (address & 0xfff);
            xn = desc & 1;
P
Paul Brook 已提交
3633
            *page_size = 0x1000;
P
pbrook 已提交
3634 3635 3636 3637
            break;
        default:
            /* Never happens, but compiler isn't smart enough to tell.  */
            abort();
B
bellard 已提交
3638
        }
P
pbrook 已提交
3639 3640
        code = 15;
    }
3641
    if (domain_prot == 3) {
3642 3643
        *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
    } else {
3644 3645 3646
        if (pxn && !is_user) {
            xn = 1;
        }
3647 3648
        if (xn && access_type == 2)
            goto do_fault;
P
pbrook 已提交
3649

3650
        /* The simplified model uses AP[0] as an access control bit.  */
3651
        if ((env->cp15.c1_sys & SCTLR_AFE) && (ap & 1) == 0) {
3652 3653 3654 3655
            /* Access flag fault.  */
            code = (code == 15) ? 6 : 3;
            goto do_fault;
        }
3656
        *prot = check_ap(env, ap, domain_prot, access_type, is_user);
3657 3658 3659 3660 3661 3662 3663
        if (!*prot) {
            /* Access permission fault.  */
            goto do_fault;
        }
        if (!xn) {
            *prot |= PAGE_EXEC;
        }
3664
    }
P
pbrook 已提交
3665
    *phys_ptr = phys_addr;
B
bellard 已提交
3666 3667 3668 3669 3670
    return 0;
do_fault:
    return code | (domain << 4);
}

3671 3672 3673 3674 3675 3676 3677 3678 3679
/* Fault type for long-descriptor MMU fault reporting; this corresponds
 * to bits [5..2] in the STATUS field in long-format DFSR/IFSR.
 */
typedef enum {
    translation_fault = 1,
    access_fault = 2,
    permission_fault = 3,
} MMUFaultType;

3680
static int get_phys_addr_lpae(CPUARMState *env, target_ulong address,
3681
                              int access_type, int is_user,
A
Avi Kivity 已提交
3682
                              hwaddr *phys_ptr, int *prot,
3683 3684
                              target_ulong *page_size_ptr)
{
3685
    CPUState *cs = CPU(arm_env_get_cpu(env));
3686 3687 3688 3689
    /* Read an LPAE long-descriptor translation table. */
    MMUFaultType fault_type = translation_fault;
    uint32_t level = 1;
    uint32_t epd;
3690 3691
    int32_t tsz;
    uint32_t tg;
3692 3693
    uint64_t ttbr;
    int ttbr_select;
3694
    hwaddr descaddr, descmask;
3695 3696 3697
    uint32_t tableattrs;
    target_ulong page_size;
    uint32_t attrs;
3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709
    int32_t granule_sz = 9;
    int32_t va_size = 32;
    int32_t tbi = 0;

    if (arm_el_is_aa64(env, 1)) {
        va_size = 64;
        if (extract64(address, 55, 1))
            tbi = extract64(env->cp15.c2_control, 38, 1);
        else
            tbi = extract64(env->cp15.c2_control, 37, 1);
        tbi *= 8;
    }
3710 3711 3712 3713 3714 3715

    /* Determine whether this address is in the region controlled by
     * TTBR0 or TTBR1 (or if it is in neither region and should fault).
     * This is a Non-secure PL0/1 stage 1 translation, so controlled by
     * TTBCR/TTBR0/TTBR1 in accordance with ARM ARM DDI0406C table B-32:
     */
3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726
    uint32_t t0sz = extract32(env->cp15.c2_control, 0, 6);
    if (arm_el_is_aa64(env, 1)) {
        t0sz = MIN(t0sz, 39);
        t0sz = MAX(t0sz, 16);
    }
    uint32_t t1sz = extract32(env->cp15.c2_control, 16, 6);
    if (arm_el_is_aa64(env, 1)) {
        t1sz = MIN(t1sz, 39);
        t1sz = MAX(t1sz, 16);
    }
    if (t0sz && !extract64(address, va_size - t0sz, t0sz - tbi)) {
3727 3728
        /* there is a ttbr0 region and we are in it (high bits all zero) */
        ttbr_select = 0;
3729
    } else if (t1sz && !extract64(~address, va_size - t1sz, t1sz - tbi)) {
3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751
        /* there is a ttbr1 region and we are in it (high bits all one) */
        ttbr_select = 1;
    } else if (!t0sz) {
        /* ttbr0 region is "everything not in the ttbr1 region" */
        ttbr_select = 0;
    } else if (!t1sz) {
        /* ttbr1 region is "everything not in the ttbr0 region" */
        ttbr_select = 1;
    } else {
        /* in the gap between the two regions, this is a Translation fault */
        fault_type = translation_fault;
        goto do_fault;
    }

    /* Note that QEMU ignores shareability and cacheability attributes,
     * so we don't need to do anything with the SH, ORGN, IRGN fields
     * in the TTBCR.  Similarly, TTBCR:A1 selects whether we get the
     * ASID from TTBR0 or TTBR1, but QEMU's TLB doesn't currently
     * implement any ASID-like capability so we can ignore it (instead
     * we will always flush the TLB any time the ASID is changed).
     */
    if (ttbr_select == 0) {
3752
        ttbr = env->cp15.ttbr0_el1;
3753 3754
        epd = extract32(env->cp15.c2_control, 7, 1);
        tsz = t0sz;
3755 3756 3757 3758 3759 3760 3761 3762

        tg = extract32(env->cp15.c2_control, 14, 2);
        if (tg == 1) { /* 64KB pages */
            granule_sz = 13;
        }
        if (tg == 2) { /* 16KB pages */
            granule_sz = 11;
        }
3763
    } else {
3764
        ttbr = env->cp15.ttbr1_el1;
3765 3766
        epd = extract32(env->cp15.c2_control, 23, 1);
        tsz = t1sz;
3767 3768 3769 3770 3771 3772 3773 3774

        tg = extract32(env->cp15.c2_control, 30, 2);
        if (tg == 3)  { /* 64KB pages */
            granule_sz = 13;
        }
        if (tg == 1) { /* 16KB pages */
            granule_sz = 11;
        }
3775 3776 3777 3778 3779 3780 3781
    }

    if (epd) {
        /* Translation table walk disabled => Translation fault on TLB miss */
        goto do_fault;
    }

3782 3783
    /* The starting level depends on the virtual address size which can be
     * up to 48-bits and the translation granule size.
3784
     */
3785 3786 3787 3788
    if ((va_size - tsz) > (granule_sz * 4 + 3)) {
        level = 0;
    } else if ((va_size - tsz) > (granule_sz * 3 + 3)) {
        level = 1;
3789
    } else {
3790
        level = 2;
3791 3792 3793 3794 3795 3796
    }

    /* Clear the vaddr bits which aren't part of the within-region address,
     * so that we don't have to special case things when calculating the
     * first descriptor address.
     */
3797 3798 3799 3800 3801
    if (tsz) {
        address &= (1ULL << (va_size - tsz)) - 1;
    }

    descmask = (1ULL << (granule_sz + 3)) - 1;
3802 3803

    /* Now we can extract the actual base address from the TTBR */
3804 3805
    descaddr = extract64(ttbr, 0, 48);
    descaddr &= ~((1ULL << (va_size - tsz - (granule_sz * (4 - level)))) - 1);
3806 3807 3808 3809 3810

    tableattrs = 0;
    for (;;) {
        uint64_t descriptor;

3811 3812
        descaddr |= (address >> (granule_sz * (4 - level))) & descmask;
        descaddr &= ~7ULL;
3813
        descriptor = ldq_phys(cs->as, descaddr);
3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834
        if (!(descriptor & 1) ||
            (!(descriptor & 2) && (level == 3))) {
            /* Invalid, or the Reserved level 3 encoding */
            goto do_fault;
        }
        descaddr = descriptor & 0xfffffff000ULL;

        if ((descriptor & 2) && (level < 3)) {
            /* Table entry. The top five bits are attributes which  may
             * propagate down through lower levels of the table (and
             * which are all arranged so that 0 means "no effect", so
             * we can gather them up by ORing in the bits at each level).
             */
            tableattrs |= extract64(descriptor, 59, 5);
            level++;
            continue;
        }
        /* Block entry at level 1 or 2, or page entry at level 3.
         * These are basically the same thing, although the number
         * of bits we pull in from the vaddr varies.
         */
3835
        page_size = (1 << ((granule_sz * (4 - level)) + 3));
3836 3837
        descaddr |= (address & (page_size - 1));
        /* Extract attributes from the descriptor and merge with table attrs */
3838 3839 3840 3841 3842 3843 3844
        if (arm_feature(env, ARM_FEATURE_V8)) {
            attrs = extract64(descriptor, 2, 10)
                | (extract64(descriptor, 53, 11) << 10);
        } else {
            attrs = extract64(descriptor, 2, 10)
                | (extract64(descriptor, 52, 12) << 10);
        }
3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893
        attrs |= extract32(tableattrs, 0, 2) << 11; /* XN, PXN */
        attrs |= extract32(tableattrs, 3, 1) << 5; /* APTable[1] => AP[2] */
        /* The sense of AP[1] vs APTable[0] is reversed, as APTable[0] == 1
         * means "force PL1 access only", which means forcing AP[1] to 0.
         */
        if (extract32(tableattrs, 2, 1)) {
            attrs &= ~(1 << 4);
        }
        /* Since we're always in the Non-secure state, NSTable is ignored. */
        break;
    }
    /* Here descaddr is the final physical address, and attributes
     * are all in attrs.
     */
    fault_type = access_fault;
    if ((attrs & (1 << 8)) == 0) {
        /* Access flag */
        goto do_fault;
    }
    fault_type = permission_fault;
    if (is_user && !(attrs & (1 << 4))) {
        /* Unprivileged access not enabled */
        goto do_fault;
    }
    *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
    if (attrs & (1 << 12) || (!is_user && (attrs & (1 << 11)))) {
        /* XN or PXN */
        if (access_type == 2) {
            goto do_fault;
        }
        *prot &= ~PAGE_EXEC;
    }
    if (attrs & (1 << 5)) {
        /* Write access forbidden */
        if (access_type == 1) {
            goto do_fault;
        }
        *prot &= ~PAGE_WRITE;
    }

    *phys_ptr = descaddr;
    *page_size_ptr = page_size;
    return 0;

do_fault:
    /* Long-descriptor format IFSR/DFSR value */
    return (1 << 9) | (fault_type << 2) | level;
}

3894 3895
static int get_phys_addr_mpu(CPUARMState *env, uint32_t address,
                             int access_type, int is_user,
A
Avi Kivity 已提交
3896
                             hwaddr *phys_ptr, int *prot)
P
pbrook 已提交
3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917
{
    int n;
    uint32_t mask;
    uint32_t base;

    *phys_ptr = address;
    for (n = 7; n >= 0; n--) {
	base = env->cp15.c6_region[n];
	if ((base & 1) == 0)
	    continue;
	mask = 1 << ((base >> 1) & 0x1f);
	/* Keep this shift separate from the above to avoid an
	   (undefined) << 32.  */
	mask = (mask << 1) - 1;
	if (((base ^ address) & ~mask) == 0)
	    break;
    }
    if (n < 0)
	return 2;

    if (access_type == 2) {
3918
        mask = env->cp15.pmsav5_insn_ap;
P
pbrook 已提交
3919
    } else {
3920
        mask = env->cp15.pmsav5_data_ap;
P
pbrook 已提交
3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950
    }
    mask = (mask >> (n * 4)) & 0xf;
    switch (mask) {
    case 0:
	return 1;
    case 1:
	if (is_user)
	  return 1;
	*prot = PAGE_READ | PAGE_WRITE;
	break;
    case 2:
	*prot = PAGE_READ;
	if (!is_user)
	    *prot |= PAGE_WRITE;
	break;
    case 3:
	*prot = PAGE_READ | PAGE_WRITE;
	break;
    case 5:
	if (is_user)
	    return 1;
	*prot = PAGE_READ;
	break;
    case 6:
	*prot = PAGE_READ;
	break;
    default:
	/* Bad permission.  */
	return 1;
    }
3951
    *prot |= PAGE_EXEC;
P
pbrook 已提交
3952 3953 3954
    return 0;
}

3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977
/* get_phys_addr - get the physical address for this virtual address
 *
 * Find the physical address corresponding to the given virtual address,
 * by doing a translation table walk on MMU based systems or using the
 * MPU state on MPU based systems.
 *
 * Returns 0 if the translation was successful. Otherwise, phys_ptr,
 * prot and page_size are not filled in, and the return value provides
 * information on why the translation aborted, in the format of a
 * DFSR/IFSR fault register, with the following caveats:
 *  * we honour the short vs long DFSR format differences.
 *  * the WnR bit is never set (the caller must do this).
 *  * for MPU based systems we don't bother to return a full FSR format
 *    value.
 *
 * @env: CPUARMState
 * @address: virtual address to get physical address for
 * @access_type: 0 for read, 1 for write, 2 for execute
 * @is_user: 0 for privileged access, 1 for user
 * @phys_ptr: set to the physical address corresponding to the virtual address
 * @prot: set to the permissions for the page containing phys_ptr
 * @page_size: set to the size of the page containing phys_ptr
 */
3978
static inline int get_phys_addr(CPUARMState *env, target_ulong address,
P
pbrook 已提交
3979
                                int access_type, int is_user,
A
Avi Kivity 已提交
3980
                                hwaddr *phys_ptr, int *prot,
P
Paul Brook 已提交
3981
                                target_ulong *page_size)
P
pbrook 已提交
3982 3983 3984 3985 3986
{
    /* Fast Context Switch Extension.  */
    if (address < 0x02000000)
        address += env->cp15.c13_fcse;

3987
    if ((env->cp15.c1_sys & SCTLR_M) == 0) {
P
pbrook 已提交
3988 3989
        /* MMU/MPU disabled.  */
        *phys_ptr = address;
3990
        *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
P
Paul Brook 已提交
3991
        *page_size = TARGET_PAGE_SIZE;
P
pbrook 已提交
3992 3993
        return 0;
    } else if (arm_feature(env, ARM_FEATURE_MPU)) {
P
Paul Brook 已提交
3994
        *page_size = TARGET_PAGE_SIZE;
P
pbrook 已提交
3995 3996
	return get_phys_addr_mpu(env, address, access_type, is_user, phys_ptr,
				 prot);
3997 3998 3999
    } else if (extended_addresses_enabled(env)) {
        return get_phys_addr_lpae(env, address, access_type, is_user, phys_ptr,
                                  prot, page_size);
4000
    } else if (env->cp15.c1_sys & SCTLR_XP) {
P
pbrook 已提交
4001
        return get_phys_addr_v6(env, address, access_type, is_user, phys_ptr,
P
Paul Brook 已提交
4002
                                prot, page_size);
P
pbrook 已提交
4003 4004
    } else {
        return get_phys_addr_v5(env, address, access_type, is_user, phys_ptr,
P
Paul Brook 已提交
4005
                                prot, page_size);
P
pbrook 已提交
4006 4007 4008
    }
}

4009 4010
int arm_cpu_handle_mmu_fault(CPUState *cs, vaddr address,
                             int access_type, int mmu_idx)
B
bellard 已提交
4011
{
4012 4013
    ARMCPU *cpu = ARM_CPU(cs);
    CPUARMState *env = &cpu->env;
A
Avi Kivity 已提交
4014
    hwaddr phys_addr;
P
Paul Brook 已提交
4015
    target_ulong page_size;
B
bellard 已提交
4016
    int prot;
4017
    int ret, is_user;
4018 4019
    uint32_t syn;
    bool same_el = (arm_current_pl(env) != 0);
B
bellard 已提交
4020

4021
    is_user = mmu_idx == MMU_USER_IDX;
P
Paul Brook 已提交
4022 4023
    ret = get_phys_addr(env, address, access_type, is_user, &phys_addr, &prot,
                        &page_size);
B
bellard 已提交
4024 4025
    if (ret == 0) {
        /* Map a single [sub]page.  */
A
Avi Kivity 已提交
4026
        phys_addr &= ~(hwaddr)0x3ff;
4027
        address &= ~(target_ulong)0x3ff;
4028
        tlb_set_page(cs, address, phys_addr, prot, mmu_idx, page_size);
P
Paul Brook 已提交
4029
        return 0;
B
bellard 已提交
4030 4031
    }

4032 4033 4034 4035 4036 4037
    /* AArch64 syndrome does not have an LPAE bit */
    syn = ret & ~(1 << 9);

    /* For insn and data aborts we assume there is no instruction syndrome
     * information; this is always true for exceptions reported to EL1.
     */
B
bellard 已提交
4038
    if (access_type == 2) {
4039
        syn = syn_insn_abort(same_el, 0, 0, syn);
4040
        cs->exception_index = EXCP_PREFETCH_ABORT;
B
bellard 已提交
4041
    } else {
4042
        syn = syn_data_abort(same_el, 0, 0, 0, access_type == 1, syn);
4043 4044 4045
        if (access_type == 1 && arm_feature(env, ARM_FEATURE_V6)) {
            ret |= (1 << 11);
        }
4046
        cs->exception_index = EXCP_DATA_ABORT;
B
bellard 已提交
4047
    }
4048 4049

    env->exception.syndrome = syn;
4050 4051
    env->exception.vaddress = address;
    env->exception.fsr = ret;
B
bellard 已提交
4052 4053 4054
    return 1;
}

4055
hwaddr arm_cpu_get_phys_page_debug(CPUState *cs, vaddr addr)
B
bellard 已提交
4056
{
4057
    ARMCPU *cpu = ARM_CPU(cs);
A
Avi Kivity 已提交
4058
    hwaddr phys_addr;
P
Paul Brook 已提交
4059
    target_ulong page_size;
B
bellard 已提交
4060 4061 4062
    int prot;
    int ret;

4063
    ret = get_phys_addr(&cpu->env, addr, 0, 0, &phys_addr, &prot, &page_size);
B
bellard 已提交
4064

4065
    if (ret != 0) {
B
bellard 已提交
4066
        return -1;
4067
    }
B
bellard 已提交
4068 4069 4070 4071

    return phys_addr;
}

4072
void HELPER(set_r13_banked)(CPUARMState *env, uint32_t mode, uint32_t val)
P
pbrook 已提交
4073
{
4074 4075 4076
    if ((env->uncached_cpsr & CPSR_M) == mode) {
        env->regs[13] = val;
    } else {
4077
        env->banked_r13[bank_number(mode)] = val;
4078
    }
P
pbrook 已提交
4079 4080
}

4081
uint32_t HELPER(get_r13_banked)(CPUARMState *env, uint32_t mode)
P
pbrook 已提交
4082
{
4083 4084 4085
    if ((env->uncached_cpsr & CPSR_M) == mode) {
        return env->regs[13];
    } else {
4086
        return env->banked_r13[bank_number(mode)];
4087
    }
P
pbrook 已提交
4088 4089
}

4090
uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg)
P
pbrook 已提交
4091
{
4092 4093
    ARMCPU *cpu = arm_env_get_cpu(env);

P
pbrook 已提交
4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113
    switch (reg) {
    case 0: /* APSR */
        return xpsr_read(env) & 0xf8000000;
    case 1: /* IAPSR */
        return xpsr_read(env) & 0xf80001ff;
    case 2: /* EAPSR */
        return xpsr_read(env) & 0xff00fc00;
    case 3: /* xPSR */
        return xpsr_read(env) & 0xff00fdff;
    case 5: /* IPSR */
        return xpsr_read(env) & 0x000001ff;
    case 6: /* EPSR */
        return xpsr_read(env) & 0x0700fc00;
    case 7: /* IEPSR */
        return xpsr_read(env) & 0x0700edff;
    case 8: /* MSP */
        return env->v7m.current_sp ? env->v7m.other_sp : env->regs[13];
    case 9: /* PSP */
        return env->v7m.current_sp ? env->regs[13] : env->v7m.other_sp;
    case 16: /* PRIMASK */
4114
        return (env->daif & PSTATE_I) != 0;
4115 4116
    case 17: /* BASEPRI */
    case 18: /* BASEPRI_MAX */
P
pbrook 已提交
4117
        return env->v7m.basepri;
4118
    case 19: /* FAULTMASK */
4119
        return (env->daif & PSTATE_F) != 0;
P
pbrook 已提交
4120 4121 4122 4123
    case 20: /* CONTROL */
        return env->v7m.control;
    default:
        /* ??? For debugging only.  */
4124
        cpu_abort(CPU(cpu), "Unimplemented system register read (%d)\n", reg);
P
pbrook 已提交
4125 4126 4127 4128
        return 0;
    }
}

4129
void HELPER(v7m_msr)(CPUARMState *env, uint32_t reg, uint32_t val)
P
pbrook 已提交
4130
{
4131 4132
    ARMCPU *cpu = arm_env_get_cpu(env);

P
pbrook 已提交
4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167
    switch (reg) {
    case 0: /* APSR */
        xpsr_write(env, val, 0xf8000000);
        break;
    case 1: /* IAPSR */
        xpsr_write(env, val, 0xf8000000);
        break;
    case 2: /* EAPSR */
        xpsr_write(env, val, 0xfe00fc00);
        break;
    case 3: /* xPSR */
        xpsr_write(env, val, 0xfe00fc00);
        break;
    case 5: /* IPSR */
        /* IPSR bits are readonly.  */
        break;
    case 6: /* EPSR */
        xpsr_write(env, val, 0x0600fc00);
        break;
    case 7: /* IEPSR */
        xpsr_write(env, val, 0x0600fc00);
        break;
    case 8: /* MSP */
        if (env->v7m.current_sp)
            env->v7m.other_sp = val;
        else
            env->regs[13] = val;
        break;
    case 9: /* PSP */
        if (env->v7m.current_sp)
            env->regs[13] = val;
        else
            env->v7m.other_sp = val;
        break;
    case 16: /* PRIMASK */
4168 4169 4170 4171 4172
        if (val & 1) {
            env->daif |= PSTATE_I;
        } else {
            env->daif &= ~PSTATE_I;
        }
P
pbrook 已提交
4173
        break;
4174
    case 17: /* BASEPRI */
P
pbrook 已提交
4175 4176
        env->v7m.basepri = val & 0xff;
        break;
4177
    case 18: /* BASEPRI_MAX */
P
pbrook 已提交
4178 4179 4180 4181
        val &= 0xff;
        if (val != 0 && (val < env->v7m.basepri || env->v7m.basepri == 0))
            env->v7m.basepri = val;
        break;
4182
    case 19: /* FAULTMASK */
4183 4184 4185 4186 4187
        if (val & 1) {
            env->daif |= PSTATE_F;
        } else {
            env->daif &= ~PSTATE_F;
        }
4188
        break;
P
pbrook 已提交
4189 4190 4191 4192 4193 4194
    case 20: /* CONTROL */
        env->v7m.control = val & 3;
        switch_v7m_sp(env, (val & 2) != 0);
        break;
    default:
        /* ??? For debugging only.  */
4195
        cpu_abort(CPU(cpu), "Unimplemented system register write (%d)\n", reg);
P
pbrook 已提交
4196 4197 4198 4199
        return;
    }
}

B
bellard 已提交
4200
#endif
P
pbrook 已提交
4201

4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283
void HELPER(dc_zva)(CPUARMState *env, uint64_t vaddr_in)
{
    /* Implement DC ZVA, which zeroes a fixed-length block of memory.
     * Note that we do not implement the (architecturally mandated)
     * alignment fault for attempts to use this on Device memory
     * (which matches the usual QEMU behaviour of not implementing either
     * alignment faults or any memory attribute handling).
     */

    ARMCPU *cpu = arm_env_get_cpu(env);
    uint64_t blocklen = 4 << cpu->dcz_blocksize;
    uint64_t vaddr = vaddr_in & ~(blocklen - 1);

#ifndef CONFIG_USER_ONLY
    {
        /* Slightly awkwardly, QEMU's TARGET_PAGE_SIZE may be less than
         * the block size so we might have to do more than one TLB lookup.
         * We know that in fact for any v8 CPU the page size is at least 4K
         * and the block size must be 2K or less, but TARGET_PAGE_SIZE is only
         * 1K as an artefact of legacy v5 subpage support being present in the
         * same QEMU executable.
         */
        int maxidx = DIV_ROUND_UP(blocklen, TARGET_PAGE_SIZE);
        void *hostaddr[maxidx];
        int try, i;

        for (try = 0; try < 2; try++) {

            for (i = 0; i < maxidx; i++) {
                hostaddr[i] = tlb_vaddr_to_host(env,
                                                vaddr + TARGET_PAGE_SIZE * i,
                                                1, cpu_mmu_index(env));
                if (!hostaddr[i]) {
                    break;
                }
            }
            if (i == maxidx) {
                /* If it's all in the TLB it's fair game for just writing to;
                 * we know we don't need to update dirty status, etc.
                 */
                for (i = 0; i < maxidx - 1; i++) {
                    memset(hostaddr[i], 0, TARGET_PAGE_SIZE);
                }
                memset(hostaddr[i], 0, blocklen - (i * TARGET_PAGE_SIZE));
                return;
            }
            /* OK, try a store and see if we can populate the tlb. This
             * might cause an exception if the memory isn't writable,
             * in which case we will longjmp out of here. We must for
             * this purpose use the actual register value passed to us
             * so that we get the fault address right.
             */
            helper_ret_stb_mmu(env, vaddr_in, 0, cpu_mmu_index(env), GETRA());
            /* Now we can populate the other TLB entries, if any */
            for (i = 0; i < maxidx; i++) {
                uint64_t va = vaddr + TARGET_PAGE_SIZE * i;
                if (va != (vaddr_in & TARGET_PAGE_MASK)) {
                    helper_ret_stb_mmu(env, va, 0, cpu_mmu_index(env), GETRA());
                }
            }
        }

        /* Slow path (probably attempt to do this to an I/O device or
         * similar, or clearing of a block of code we have translations
         * cached for). Just do a series of byte writes as the architecture
         * demands. It's not worth trying to use a cpu_physical_memory_map(),
         * memset(), unmap() sequence here because:
         *  + we'd need to account for the blocksize being larger than a page
         *  + the direct-RAM access case is almost always going to be dealt
         *    with in the fastpath code above, so there's no speed benefit
         *  + we would have to deal with the map returning NULL because the
         *    bounce buffer was in use
         */
        for (i = 0; i < blocklen; i++) {
            helper_ret_stb_mmu(env, vaddr + i, 0, cpu_mmu_index(env), GETRA());
        }
    }
#else
    memset(g2h(vaddr), 0, blocklen);
#endif
}

P
pbrook 已提交
4284 4285 4286 4287 4288 4289
/* Note that signed overflow is undefined in C.  The following routines are
   careful to use unsigned types where modulo arithmetic is required.
   Failure to do so _will_ break on newer gcc.  */

/* Signed saturating arithmetic.  */

A
aurel32 已提交
4290
/* Perform 16-bit signed saturating addition.  */
P
pbrook 已提交
4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304
static inline uint16_t add16_sat(uint16_t a, uint16_t b)
{
    uint16_t res;

    res = a + b;
    if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) {
        if (a & 0x8000)
            res = 0x8000;
        else
            res = 0x7fff;
    }
    return res;
}

A
aurel32 已提交
4305
/* Perform 8-bit signed saturating addition.  */
P
pbrook 已提交
4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319
static inline uint8_t add8_sat(uint8_t a, uint8_t b)
{
    uint8_t res;

    res = a + b;
    if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) {
        if (a & 0x80)
            res = 0x80;
        else
            res = 0x7f;
    }
    return res;
}

A
aurel32 已提交
4320
/* Perform 16-bit signed saturating subtraction.  */
P
pbrook 已提交
4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334
static inline uint16_t sub16_sat(uint16_t a, uint16_t b)
{
    uint16_t res;

    res = a - b;
    if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) {
        if (a & 0x8000)
            res = 0x8000;
        else
            res = 0x7fff;
    }
    return res;
}

A
aurel32 已提交
4335
/* Perform 8-bit signed saturating subtraction.  */
P
pbrook 已提交
4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358
static inline uint8_t sub8_sat(uint8_t a, uint8_t b)
{
    uint8_t res;

    res = a - b;
    if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) {
        if (a & 0x80)
            res = 0x80;
        else
            res = 0x7f;
    }
    return res;
}

#define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16);
#define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16);
#define ADD8(a, b, n)  RESULT(add8_sat(a, b), n, 8);
#define SUB8(a, b, n)  RESULT(sub8_sat(a, b), n, 8);
#define PFX q

#include "op_addsub.h"

/* Unsigned saturating arithmetic.  */
P
pbrook 已提交
4359
static inline uint16_t add16_usat(uint16_t a, uint16_t b)
P
pbrook 已提交
4360 4361 4362 4363 4364 4365 4366 4367
{
    uint16_t res;
    res = a + b;
    if (res < a)
        res = 0xffff;
    return res;
}

P
pbrook 已提交
4368
static inline uint16_t sub16_usat(uint16_t a, uint16_t b)
P
pbrook 已提交
4369
{
4370
    if (a > b)
P
pbrook 已提交
4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386
        return a - b;
    else
        return 0;
}

static inline uint8_t add8_usat(uint8_t a, uint8_t b)
{
    uint8_t res;
    res = a + b;
    if (res < a)
        res = 0xff;
    return res;
}

static inline uint8_t sub8_usat(uint8_t a, uint8_t b)
{
4387
    if (a > b)
P
pbrook 已提交
4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403
        return a - b;
    else
        return 0;
}

#define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16);
#define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16);
#define ADD8(a, b, n)  RESULT(add8_usat(a, b), n, 8);
#define SUB8(a, b, n)  RESULT(sub8_usat(a, b), n, 8);
#define PFX uq

#include "op_addsub.h"

/* Signed modulo arithmetic.  */
#define SARITH16(a, b, n, op) do { \
    int32_t sum; \
4404
    sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \
P
pbrook 已提交
4405 4406 4407 4408 4409 4410 4411
    RESULT(sum, n, 16); \
    if (sum >= 0) \
        ge |= 3 << (n * 2); \
    } while(0)

#define SARITH8(a, b, n, op) do { \
    int32_t sum; \
4412
    sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \
P
pbrook 已提交
4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432
    RESULT(sum, n, 8); \
    if (sum >= 0) \
        ge |= 1 << n; \
    } while(0)


#define ADD16(a, b, n) SARITH16(a, b, n, +)
#define SUB16(a, b, n) SARITH16(a, b, n, -)
#define ADD8(a, b, n)  SARITH8(a, b, n, +)
#define SUB8(a, b, n)  SARITH8(a, b, n, -)
#define PFX s
#define ARITH_GE

#include "op_addsub.h"

/* Unsigned modulo arithmetic.  */
#define ADD16(a, b, n) do { \
    uint32_t sum; \
    sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \
    RESULT(sum, n, 16); \
4433
    if ((sum >> 16) == 1) \
P
pbrook 已提交
4434 4435 4436 4437 4438 4439 4440
        ge |= 3 << (n * 2); \
    } while(0)

#define ADD8(a, b, n) do { \
    uint32_t sum; \
    sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \
    RESULT(sum, n, 8); \
4441 4442
    if ((sum >> 8) == 1) \
        ge |= 1 << n; \
P
pbrook 已提交
4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457
    } while(0)

#define SUB16(a, b, n) do { \
    uint32_t sum; \
    sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \
    RESULT(sum, n, 16); \
    if ((sum >> 16) == 0) \
        ge |= 3 << (n * 2); \
    } while(0)

#define SUB8(a, b, n) do { \
    uint32_t sum; \
    sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \
    RESULT(sum, n, 8); \
    if ((sum >> 8) == 0) \
4458
        ge |= 1 << n; \
P
pbrook 已提交
4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527
    } while(0)

#define PFX u
#define ARITH_GE

#include "op_addsub.h"

/* Halved signed arithmetic.  */
#define ADD16(a, b, n) \
  RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16)
#define SUB16(a, b, n) \
  RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16)
#define ADD8(a, b, n) \
  RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8)
#define SUB8(a, b, n) \
  RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8)
#define PFX sh

#include "op_addsub.h"

/* Halved unsigned arithmetic.  */
#define ADD16(a, b, n) \
  RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16)
#define SUB16(a, b, n) \
  RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16)
#define ADD8(a, b, n) \
  RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8)
#define SUB8(a, b, n) \
  RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8)
#define PFX uh

#include "op_addsub.h"

static inline uint8_t do_usad(uint8_t a, uint8_t b)
{
    if (a > b)
        return a - b;
    else
        return b - a;
}

/* Unsigned sum of absolute byte differences.  */
uint32_t HELPER(usad8)(uint32_t a, uint32_t b)
{
    uint32_t sum;
    sum = do_usad(a, b);
    sum += do_usad(a >> 8, b >> 8);
    sum += do_usad(a >> 16, b >>16);
    sum += do_usad(a >> 24, b >> 24);
    return sum;
}

/* For ARMv6 SEL instruction.  */
uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b)
{
    uint32_t mask;

    mask = 0;
    if (flags & 1)
        mask |= 0xff;
    if (flags & 2)
        mask |= 0xff00;
    if (flags & 4)
        mask |= 0xff0000;
    if (flags & 8)
        mask |= 0xff000000;
    return (a & mask) | (b & ~mask);
}

4528 4529
/* VFP support.  We follow the convention used for VFP instructions:
   Single precision routines have a "s" suffix, double precision a
P
pbrook 已提交
4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542
   "d" suffix.  */

/* Convert host exception flags to vfp form.  */
static inline int vfp_exceptbits_from_host(int host_bits)
{
    int target_bits = 0;

    if (host_bits & float_flag_invalid)
        target_bits |= 1;
    if (host_bits & float_flag_divbyzero)
        target_bits |= 2;
    if (host_bits & float_flag_overflow)
        target_bits |= 4;
4543
    if (host_bits & (float_flag_underflow | float_flag_output_denormal))
P
pbrook 已提交
4544 4545 4546
        target_bits |= 8;
    if (host_bits & float_flag_inexact)
        target_bits |= 0x10;
4547 4548
    if (host_bits & float_flag_input_denormal)
        target_bits |= 0x80;
P
pbrook 已提交
4549 4550 4551
    return target_bits;
}

4552
uint32_t HELPER(vfp_get_fpscr)(CPUARMState *env)
P
pbrook 已提交
4553 4554 4555 4556 4557 4558 4559 4560
{
    int i;
    uint32_t fpscr;

    fpscr = (env->vfp.xregs[ARM_VFP_FPSCR] & 0xffc8ffff)
            | (env->vfp.vec_len << 16)
            | (env->vfp.vec_stride << 20);
    i = get_float_exception_flags(&env->vfp.fp_status);
4561
    i |= get_float_exception_flags(&env->vfp.standard_fp_status);
P
pbrook 已提交
4562 4563 4564 4565
    fpscr |= vfp_exceptbits_from_host(i);
    return fpscr;
}

4566
uint32_t vfp_get_fpscr(CPUARMState *env)
4567 4568 4569 4570
{
    return HELPER(vfp_get_fpscr)(env);
}

P
pbrook 已提交
4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585
/* Convert vfp exception flags to target form.  */
static inline int vfp_exceptbits_to_host(int target_bits)
{
    int host_bits = 0;

    if (target_bits & 1)
        host_bits |= float_flag_invalid;
    if (target_bits & 2)
        host_bits |= float_flag_divbyzero;
    if (target_bits & 4)
        host_bits |= float_flag_overflow;
    if (target_bits & 8)
        host_bits |= float_flag_underflow;
    if (target_bits & 0x10)
        host_bits |= float_flag_inexact;
4586 4587
    if (target_bits & 0x80)
        host_bits |= float_flag_input_denormal;
P
pbrook 已提交
4588 4589 4590
    return host_bits;
}

4591
void HELPER(vfp_set_fpscr)(CPUARMState *env, uint32_t val)
P
pbrook 已提交
4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604
{
    int i;
    uint32_t changed;

    changed = env->vfp.xregs[ARM_VFP_FPSCR];
    env->vfp.xregs[ARM_VFP_FPSCR] = (val & 0xffc8ffff);
    env->vfp.vec_len = (val >> 16) & 7;
    env->vfp.vec_stride = (val >> 20) & 3;

    changed ^= val;
    if (changed & (3 << 22)) {
        i = (val >> 22) & 3;
        switch (i) {
4605
        case FPROUNDING_TIEEVEN:
P
pbrook 已提交
4606 4607
            i = float_round_nearest_even;
            break;
4608
        case FPROUNDING_POSINF:
P
pbrook 已提交
4609 4610
            i = float_round_up;
            break;
4611
        case FPROUNDING_NEGINF:
P
pbrook 已提交
4612 4613
            i = float_round_down;
            break;
4614
        case FPROUNDING_ZERO:
P
pbrook 已提交
4615 4616 4617 4618 4619
            i = float_round_to_zero;
            break;
        }
        set_float_rounding_mode(i, &env->vfp.fp_status);
    }
4620
    if (changed & (1 << 24)) {
4621
        set_flush_to_zero((val & (1 << 24)) != 0, &env->vfp.fp_status);
4622 4623
        set_flush_inputs_to_zero((val & (1 << 24)) != 0, &env->vfp.fp_status);
    }
P
pbrook 已提交
4624 4625
    if (changed & (1 << 25))
        set_default_nan_mode((val & (1 << 25)) != 0, &env->vfp.fp_status);
P
pbrook 已提交
4626

4627
    i = vfp_exceptbits_to_host(val);
P
pbrook 已提交
4628
    set_float_exception_flags(i, &env->vfp.fp_status);
4629
    set_float_exception_flags(0, &env->vfp.standard_fp_status);
P
pbrook 已提交
4630 4631
}

4632
void vfp_set_fpscr(CPUARMState *env, uint32_t val)
4633 4634 4635 4636
{
    HELPER(vfp_set_fpscr)(env, val);
}

P
pbrook 已提交
4637 4638 4639
#define VFP_HELPER(name, p) HELPER(glue(glue(vfp_,name),p))

#define VFP_BINOP(name) \
4640
float32 VFP_HELPER(name, s)(float32 a, float32 b, void *fpstp) \
P
pbrook 已提交
4641
{ \
4642 4643
    float_status *fpst = fpstp; \
    return float32_ ## name(a, b, fpst); \
P
pbrook 已提交
4644
} \
4645
float64 VFP_HELPER(name, d)(float64 a, float64 b, void *fpstp) \
P
pbrook 已提交
4646
{ \
4647 4648
    float_status *fpst = fpstp; \
    return float64_ ## name(a, b, fpst); \
P
pbrook 已提交
4649 4650 4651 4652 4653
}
VFP_BINOP(add)
VFP_BINOP(sub)
VFP_BINOP(mul)
VFP_BINOP(div)
4654 4655 4656 4657
VFP_BINOP(min)
VFP_BINOP(max)
VFP_BINOP(minnum)
VFP_BINOP(maxnum)
P
pbrook 已提交
4658 4659 4660 4661 4662 4663 4664 4665 4666
#undef VFP_BINOP

float32 VFP_HELPER(neg, s)(float32 a)
{
    return float32_chs(a);
}

float64 VFP_HELPER(neg, d)(float64 a)
{
4667
    return float64_chs(a);
P
pbrook 已提交
4668 4669 4670 4671 4672 4673 4674 4675 4676
}

float32 VFP_HELPER(abs, s)(float32 a)
{
    return float32_abs(a);
}

float64 VFP_HELPER(abs, d)(float64 a)
{
4677
    return float64_abs(a);
P
pbrook 已提交
4678 4679
}

4680
float32 VFP_HELPER(sqrt, s)(float32 a, CPUARMState *env)
P
pbrook 已提交
4681 4682 4683 4684
{
    return float32_sqrt(a, &env->vfp.fp_status);
}

4685
float64 VFP_HELPER(sqrt, d)(float64 a, CPUARMState *env)
P
pbrook 已提交
4686 4687 4688 4689 4690 4691
{
    return float64_sqrt(a, &env->vfp.fp_status);
}

/* XXX: check quiet/signaling case */
#define DO_VFP_cmp(p, type) \
4692
void VFP_HELPER(cmp, p)(type a, type b, CPUARMState *env)  \
P
pbrook 已提交
4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703
{ \
    uint32_t flags; \
    switch(type ## _compare_quiet(a, b, &env->vfp.fp_status)) { \
    case 0: flags = 0x6; break; \
    case -1: flags = 0x8; break; \
    case 1: flags = 0x2; break; \
    default: case 2: flags = 0x3; break; \
    } \
    env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
        | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
} \
4704
void VFP_HELPER(cmpe, p)(type a, type b, CPUARMState *env) \
P
pbrook 已提交
4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719
{ \
    uint32_t flags; \
    switch(type ## _compare(a, b, &env->vfp.fp_status)) { \
    case 0: flags = 0x6; break; \
    case -1: flags = 0x8; break; \
    case 1: flags = 0x2; break; \
    default: case 2: flags = 0x3; break; \
    } \
    env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
        | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
}
DO_VFP_cmp(s, float32)
DO_VFP_cmp(d, float64)
#undef DO_VFP_cmp

4720
/* Integer to float and float to integer conversions */
P
pbrook 已提交
4721

4722 4723 4724 4725
#define CONV_ITOF(name, fsz, sign) \
    float##fsz HELPER(name)(uint32_t x, void *fpstp) \
{ \
    float_status *fpst = fpstp; \
4726
    return sign##int32_to_##float##fsz((sign##int32_t)x, fpst); \
P
pbrook 已提交
4727 4728
}

4729 4730 4731 4732 4733 4734 4735 4736 4737
#define CONV_FTOI(name, fsz, sign, round) \
uint32_t HELPER(name)(float##fsz x, void *fpstp) \
{ \
    float_status *fpst = fpstp; \
    if (float##fsz##_is_any_nan(x)) { \
        float_raise(float_flag_invalid, fpst); \
        return 0; \
    } \
    return float##fsz##_to_##sign##int32##round(x, fpst); \
P
pbrook 已提交
4738 4739
}

4740 4741 4742 4743
#define FLOAT_CONVS(name, p, fsz, sign) \
CONV_ITOF(vfp_##name##to##p, fsz, sign) \
CONV_FTOI(vfp_to##name##p, fsz, sign, ) \
CONV_FTOI(vfp_to##name##z##p, fsz, sign, _round_to_zero)
P
pbrook 已提交
4744

4745 4746 4747 4748
FLOAT_CONVS(si, s, 32, )
FLOAT_CONVS(si, d, 64, )
FLOAT_CONVS(ui, s, 32, u)
FLOAT_CONVS(ui, d, 64, u)
P
pbrook 已提交
4749

4750 4751 4752
#undef CONV_ITOF
#undef CONV_FTOI
#undef FLOAT_CONVS
P
pbrook 已提交
4753 4754

/* floating point conversion */
4755
float64 VFP_HELPER(fcvtd, s)(float32 x, CPUARMState *env)
P
pbrook 已提交
4756
{
4757 4758 4759 4760 4761
    float64 r = float32_to_float64(x, &env->vfp.fp_status);
    /* ARM requires that S<->D conversion of any kind of NaN generates
     * a quiet NaN by forcing the most significant frac bit to 1.
     */
    return float64_maybe_silence_nan(r);
P
pbrook 已提交
4762 4763
}

4764
float32 VFP_HELPER(fcvts, d)(float64 x, CPUARMState *env)
P
pbrook 已提交
4765
{
4766 4767 4768 4769 4770
    float32 r =  float64_to_float32(x, &env->vfp.fp_status);
    /* ARM requires that S<->D conversion of any kind of NaN generates
     * a quiet NaN by forcing the most significant frac bit to 1.
     */
    return float32_maybe_silence_nan(r);
P
pbrook 已提交
4771 4772 4773
}

/* VFP3 fixed point conversion.  */
4774
#define VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \
4775 4776
float##fsz HELPER(vfp_##name##to##p)(uint##isz##_t  x, uint32_t shift, \
                                     void *fpstp) \
P
pbrook 已提交
4777
{ \
4778
    float_status *fpst = fpstp; \
4779
    float##fsz tmp; \
4780
    tmp = itype##_to_##float##fsz(x, fpst); \
4781
    return float##fsz##_scalbn(tmp, -(int)shift, fpst); \
4782 4783
}

4784 4785 4786 4787 4788
/* Notice that we want only input-denormal exception flags from the
 * scalbn operation: the other possible flags (overflow+inexact if
 * we overflow to infinity, output-denormal) aren't correct for the
 * complete scale-and-convert operation.
 */
4789 4790 4791 4792
#define VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, round) \
uint##isz##_t HELPER(vfp_to##name##p##round)(float##fsz x, \
                                             uint32_t shift, \
                                             void *fpstp) \
P
pbrook 已提交
4793
{ \
4794
    float_status *fpst = fpstp; \
4795
    int old_exc_flags = get_float_exception_flags(fpst); \
4796 4797
    float##fsz tmp; \
    if (float##fsz##_is_any_nan(x)) { \
4798
        float_raise(float_flag_invalid, fpst); \
4799
        return 0; \
4800
    } \
4801
    tmp = float##fsz##_scalbn(x, shift, fpst); \
4802 4803 4804
    old_exc_flags |= get_float_exception_flags(fpst) \
        & float_flag_input_denormal; \
    set_float_exception_flags(old_exc_flags, fpst); \
4805
    return float##fsz##_to_##itype##round(tmp, fpst); \
4806 4807
}

4808 4809
#define VFP_CONV_FIX(name, p, fsz, isz, itype)                   \
VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype)                     \
4810 4811 4812 4813 4814 4815
VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, _round_to_zero) \
VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, )

#define VFP_CONV_FIX_A64(name, p, fsz, isz, itype)               \
VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype)                     \
VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, )
4816

4817 4818
VFP_CONV_FIX(sh, d, 64, 64, int16)
VFP_CONV_FIX(sl, d, 64, 64, int32)
4819
VFP_CONV_FIX_A64(sq, d, 64, 64, int64)
4820 4821
VFP_CONV_FIX(uh, d, 64, 64, uint16)
VFP_CONV_FIX(ul, d, 64, 64, uint32)
4822
VFP_CONV_FIX_A64(uq, d, 64, 64, uint64)
4823 4824
VFP_CONV_FIX(sh, s, 32, 32, int16)
VFP_CONV_FIX(sl, s, 32, 32, int32)
4825
VFP_CONV_FIX_A64(sq, s, 32, 64, int64)
4826 4827
VFP_CONV_FIX(uh, s, 32, 32, uint16)
VFP_CONV_FIX(ul, s, 32, 32, uint32)
4828
VFP_CONV_FIX_A64(uq, s, 32, 64, uint64)
P
pbrook 已提交
4829
#undef VFP_CONV_FIX
4830 4831
#undef VFP_CONV_FIX_FLOAT
#undef VFP_CONV_FLOAT_FIX_ROUND
P
pbrook 已提交
4832

4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845
/* Set the current fp rounding mode and return the old one.
 * The argument is a softfloat float_round_ value.
 */
uint32_t HELPER(set_rmode)(uint32_t rmode, CPUARMState *env)
{
    float_status *fp_status = &env->vfp.fp_status;

    uint32_t prev_rmode = get_float_rounding_mode(fp_status);
    set_float_rounding_mode(rmode, fp_status);

    return prev_rmode;
}

4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862
/* Set the current fp rounding mode in the standard fp status and return
 * the old one. This is for NEON instructions that need to change the
 * rounding mode but wish to use the standard FPSCR values for everything
 * else. Always set the rounding mode back to the correct value after
 * modifying it.
 * The argument is a softfloat float_round_ value.
 */
uint32_t HELPER(set_neon_rmode)(uint32_t rmode, CPUARMState *env)
{
    float_status *fp_status = &env->vfp.standard_fp_status;

    uint32_t prev_rmode = get_float_rounding_mode(fp_status);
    set_float_rounding_mode(rmode, fp_status);

    return prev_rmode;
}

P
Paul Brook 已提交
4863
/* Half precision conversions.  */
4864
static float32 do_fcvt_f16_to_f32(uint32_t a, CPUARMState *env, float_status *s)
P
Paul Brook 已提交
4865 4866
{
    int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
4867 4868 4869 4870 4871
    float32 r = float16_to_float32(make_float16(a), ieee, s);
    if (ieee) {
        return float32_maybe_silence_nan(r);
    }
    return r;
P
Paul Brook 已提交
4872 4873
}

4874
static uint32_t do_fcvt_f32_to_f16(float32 a, CPUARMState *env, float_status *s)
P
Paul Brook 已提交
4875 4876
{
    int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
4877 4878 4879 4880 4881
    float16 r = float32_to_float16(a, ieee, s);
    if (ieee) {
        r = float16_maybe_silence_nan(r);
    }
    return float16_val(r);
P
Paul Brook 已提交
4882 4883
}

4884
float32 HELPER(neon_fcvt_f16_to_f32)(uint32_t a, CPUARMState *env)
4885 4886 4887 4888
{
    return do_fcvt_f16_to_f32(a, env, &env->vfp.standard_fp_status);
}

4889
uint32_t HELPER(neon_fcvt_f32_to_f16)(float32 a, CPUARMState *env)
4890 4891 4892 4893
{
    return do_fcvt_f32_to_f16(a, env, &env->vfp.standard_fp_status);
}

4894
float32 HELPER(vfp_fcvt_f16_to_f32)(uint32_t a, CPUARMState *env)
4895 4896 4897 4898
{
    return do_fcvt_f16_to_f32(a, env, &env->vfp.fp_status);
}

4899
uint32_t HELPER(vfp_fcvt_f32_to_f16)(float32 a, CPUARMState *env)
4900 4901 4902 4903
{
    return do_fcvt_f32_to_f16(a, env, &env->vfp.fp_status);
}

4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923
float64 HELPER(vfp_fcvt_f16_to_f64)(uint32_t a, CPUARMState *env)
{
    int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
    float64 r = float16_to_float64(make_float16(a), ieee, &env->vfp.fp_status);
    if (ieee) {
        return float64_maybe_silence_nan(r);
    }
    return r;
}

uint32_t HELPER(vfp_fcvt_f64_to_f16)(float64 a, CPUARMState *env)
{
    int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
    float16 r = float64_to_float16(a, ieee, &env->vfp.fp_status);
    if (ieee) {
        r = float16_maybe_silence_nan(r);
    }
    return float16_val(r);
}

4924
#define float32_two make_float32(0x40000000)
4925 4926
#define float32_three make_float32(0x40400000)
#define float32_one_point_five make_float32(0x3fc00000)
4927

4928
float32 HELPER(recps_f32)(float32 a, float32 b, CPUARMState *env)
P
pbrook 已提交
4929
{
4930 4931 4932
    float_status *s = &env->vfp.standard_fp_status;
    if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) ||
        (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) {
4933 4934 4935
        if (!(float32_is_zero(a) || float32_is_zero(b))) {
            float_raise(float_flag_input_denormal, s);
        }
4936 4937 4938
        return float32_two;
    }
    return float32_sub(float32_two, float32_mul(a, b, s), s);
P
pbrook 已提交
4939 4940
}

4941
float32 HELPER(rsqrts_f32)(float32 a, float32 b, CPUARMState *env)
P
pbrook 已提交
4942
{
4943
    float_status *s = &env->vfp.standard_fp_status;
4944 4945 4946
    float32 product;
    if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) ||
        (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) {
4947 4948 4949
        if (!(float32_is_zero(a) || float32_is_zero(b))) {
            float_raise(float_flag_input_denormal, s);
        }
4950
        return float32_one_point_five;
4951
    }
4952 4953
    product = float32_mul(a, b, s);
    return float32_div(float32_sub(float32_three, product, s), float32_two, s);
P
pbrook 已提交
4954 4955
}

P
pbrook 已提交
4956 4957
/* NEON helpers.  */

4958 4959 4960 4961
/* Constants 256 and 512 are used in some helpers; we avoid relying on
 * int->float conversions at run-time.  */
#define float64_256 make_float64(0x4070000000000000LL)
#define float64_512 make_float64(0x4080000000000000LL)
4962 4963
#define float32_maxnorm make_float32(0x7f7fffff)
#define float64_maxnorm make_float64(0x7fefffffffffffffLL)
4964

4965 4966 4967 4968
/* Reciprocal functions
 *
 * The algorithm that must be used to calculate the estimate
 * is specified by the ARM ARM, see FPRecipEstimate()
4969
 */
4970 4971

static float64 recip_estimate(float64 a, float_status *real_fp_status)
4972
{
4973 4974 4975
    /* These calculations mustn't set any fp exception flags,
     * so we use a local copy of the fp_status.
     */
4976
    float_status dummy_status = *real_fp_status;
4977
    float_status *s = &dummy_status;
4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996
    /* q = (int)(a * 512.0) */
    float64 q = float64_mul(float64_512, a, s);
    int64_t q_int = float64_to_int64_round_to_zero(q, s);

    /* r = 1.0 / (((double)q + 0.5) / 512.0) */
    q = int64_to_float64(q_int, s);
    q = float64_add(q, float64_half, s);
    q = float64_div(q, float64_512, s);
    q = float64_div(float64_one, q, s);

    /* s = (int)(256.0 * r + 0.5) */
    q = float64_mul(q, float64_256, s);
    q = float64_add(q, float64_half, s);
    q_int = float64_to_int64_round_to_zero(q, s);

    /* return (double)s / 256.0 */
    return float64_div(int64_to_float64(q_int, s), float64_256, s);
}

4997 4998
/* Common wrapper to call recip_estimate */
static float64 call_recip_estimate(float64 num, int off, float_status *fpst)
P
pbrook 已提交
4999
{
5000 5001 5002 5003 5004
    uint64_t val64 = float64_val(num);
    uint64_t frac = extract64(val64, 0, 52);
    int64_t exp = extract64(val64, 52, 11);
    uint64_t sbit;
    float64 scaled, estimate;
5005

5006 5007 5008 5009 5010 5011 5012 5013 5014
    /* Generate the scaled number for the estimate function */
    if (exp == 0) {
        if (extract64(frac, 51, 1) == 0) {
            exp = -1;
            frac = extract64(frac, 0, 50) << 2;
        } else {
            frac = extract64(frac, 0, 51) << 1;
        }
    }
5015

5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071
    /* scaled = '0' : '01111111110' : fraction<51:44> : Zeros(44); */
    scaled = make_float64((0x3feULL << 52)
                          | extract64(frac, 44, 8) << 44);

    estimate = recip_estimate(scaled, fpst);

    /* Build new result */
    val64 = float64_val(estimate);
    sbit = 0x8000000000000000ULL & val64;
    exp = off - exp;
    frac = extract64(val64, 0, 52);

    if (exp == 0) {
        frac = 1ULL << 51 | extract64(frac, 1, 51);
    } else if (exp == -1) {
        frac = 1ULL << 50 | extract64(frac, 2, 50);
        exp = 0;
    }

    return make_float64(sbit | (exp << 52) | frac);
}

static bool round_to_inf(float_status *fpst, bool sign_bit)
{
    switch (fpst->float_rounding_mode) {
    case float_round_nearest_even: /* Round to Nearest */
        return true;
    case float_round_up: /* Round to +Inf */
        return !sign_bit;
    case float_round_down: /* Round to -Inf */
        return sign_bit;
    case float_round_to_zero: /* Round to Zero */
        return false;
    }

    g_assert_not_reached();
}

float32 HELPER(recpe_f32)(float32 input, void *fpstp)
{
    float_status *fpst = fpstp;
    float32 f32 = float32_squash_input_denormal(input, fpst);
    uint32_t f32_val = float32_val(f32);
    uint32_t f32_sbit = 0x80000000ULL & f32_val;
    int32_t f32_exp = extract32(f32_val, 23, 8);
    uint32_t f32_frac = extract32(f32_val, 0, 23);
    float64 f64, r64;
    uint64_t r64_val;
    int64_t r64_exp;
    uint64_t r64_frac;

    if (float32_is_any_nan(f32)) {
        float32 nan = f32;
        if (float32_is_signaling_nan(f32)) {
            float_raise(float_flag_invalid, fpst);
            nan = float32_maybe_silence_nan(f32);
5072
        }
5073 5074
        if (fpst->default_nan_mode) {
            nan =  float32_default_nan;
5075
        }
5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092
        return nan;
    } else if (float32_is_infinity(f32)) {
        return float32_set_sign(float32_zero, float32_is_neg(f32));
    } else if (float32_is_zero(f32)) {
        float_raise(float_flag_divbyzero, fpst);
        return float32_set_sign(float32_infinity, float32_is_neg(f32));
    } else if ((f32_val & ~(1ULL << 31)) < (1ULL << 21)) {
        /* Abs(value) < 2.0^-128 */
        float_raise(float_flag_overflow | float_flag_inexact, fpst);
        if (round_to_inf(fpst, f32_sbit)) {
            return float32_set_sign(float32_infinity, float32_is_neg(f32));
        } else {
            return float32_set_sign(float32_maxnorm, float32_is_neg(f32));
        }
    } else if (f32_exp >= 253 && fpst->flush_to_zero) {
        float_raise(float_flag_underflow, fpst);
        return float32_set_sign(float32_zero, float32_is_neg(f32));
5093 5094 5095
    }


5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147
    f64 = make_float64(((int64_t)(f32_exp) << 52) | (int64_t)(f32_frac) << 29);
    r64 = call_recip_estimate(f64, 253, fpst);
    r64_val = float64_val(r64);
    r64_exp = extract64(r64_val, 52, 11);
    r64_frac = extract64(r64_val, 0, 52);

    /* result = sign : result_exp<7:0> : fraction<51:29>; */
    return make_float32(f32_sbit |
                        (r64_exp & 0xff) << 23 |
                        extract64(r64_frac, 29, 24));
}

float64 HELPER(recpe_f64)(float64 input, void *fpstp)
{
    float_status *fpst = fpstp;
    float64 f64 = float64_squash_input_denormal(input, fpst);
    uint64_t f64_val = float64_val(f64);
    uint64_t f64_sbit = 0x8000000000000000ULL & f64_val;
    int64_t f64_exp = extract64(f64_val, 52, 11);
    float64 r64;
    uint64_t r64_val;
    int64_t r64_exp;
    uint64_t r64_frac;

    /* Deal with any special cases */
    if (float64_is_any_nan(f64)) {
        float64 nan = f64;
        if (float64_is_signaling_nan(f64)) {
            float_raise(float_flag_invalid, fpst);
            nan = float64_maybe_silence_nan(f64);
        }
        if (fpst->default_nan_mode) {
            nan =  float64_default_nan;
        }
        return nan;
    } else if (float64_is_infinity(f64)) {
        return float64_set_sign(float64_zero, float64_is_neg(f64));
    } else if (float64_is_zero(f64)) {
        float_raise(float_flag_divbyzero, fpst);
        return float64_set_sign(float64_infinity, float64_is_neg(f64));
    } else if ((f64_val & ~(1ULL << 63)) < (1ULL << 50)) {
        /* Abs(value) < 2.0^-1024 */
        float_raise(float_flag_overflow | float_flag_inexact, fpst);
        if (round_to_inf(fpst, f64_sbit)) {
            return float64_set_sign(float64_infinity, float64_is_neg(f64));
        } else {
            return float64_set_sign(float64_maxnorm, float64_is_neg(f64));
        }
    } else if (f64_exp >= 1023 && fpst->flush_to_zero) {
        float_raise(float_flag_underflow, fpst);
        return float64_set_sign(float64_zero, float64_is_neg(f64));
    }
5148

5149 5150 5151 5152
    r64 = call_recip_estimate(f64, 2045, fpst);
    r64_val = float64_val(r64);
    r64_exp = extract64(r64_val, 52, 11);
    r64_frac = extract64(r64_val, 0, 52);
5153

5154 5155 5156 5157
    /* result = sign : result_exp<10:0> : fraction<51:0> */
    return make_float64(f64_sbit |
                        ((r64_exp & 0x7ff) << 52) |
                        r64_frac);
P
pbrook 已提交
5158 5159
}

5160 5161 5162
/* The algorithm that must be used to calculate the estimate
 * is specified by the ARM ARM.
 */
5163
static float64 recip_sqrt_estimate(float64 a, float_status *real_fp_status)
5164
{
5165 5166 5167
    /* These calculations mustn't set any fp exception flags,
     * so we use a local copy of the fp_status.
     */
5168
    float_status dummy_status = *real_fp_status;
5169
    float_status *s = &dummy_status;
5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214
    float64 q;
    int64_t q_int;

    if (float64_lt(a, float64_half, s)) {
        /* range 0.25 <= a < 0.5 */

        /* a in units of 1/512 rounded down */
        /* q0 = (int)(a * 512.0);  */
        q = float64_mul(float64_512, a, s);
        q_int = float64_to_int64_round_to_zero(q, s);

        /* reciprocal root r */
        /* r = 1.0 / sqrt(((double)q0 + 0.5) / 512.0);  */
        q = int64_to_float64(q_int, s);
        q = float64_add(q, float64_half, s);
        q = float64_div(q, float64_512, s);
        q = float64_sqrt(q, s);
        q = float64_div(float64_one, q, s);
    } else {
        /* range 0.5 <= a < 1.0 */

        /* a in units of 1/256 rounded down */
        /* q1 = (int)(a * 256.0); */
        q = float64_mul(float64_256, a, s);
        int64_t q_int = float64_to_int64_round_to_zero(q, s);

        /* reciprocal root r */
        /* r = 1.0 /sqrt(((double)q1 + 0.5) / 256); */
        q = int64_to_float64(q_int, s);
        q = float64_add(q, float64_half, s);
        q = float64_div(q, float64_256, s);
        q = float64_sqrt(q, s);
        q = float64_div(float64_one, q, s);
    }
    /* r in units of 1/256 rounded to nearest */
    /* s = (int)(256.0 * r + 0.5); */

    q = float64_mul(q, float64_256,s );
    q = float64_add(q, float64_half, s);
    q_int = float64_to_int64_round_to_zero(q, s);

    /* return (double)s / 256.0;*/
    return float64_div(int64_to_float64(q_int, s), float64_256, s);
}

5215
float32 HELPER(rsqrte_f32)(float32 input, void *fpstp)
P
pbrook 已提交
5216
{
5217 5218 5219 5220 5221 5222 5223 5224
    float_status *s = fpstp;
    float32 f32 = float32_squash_input_denormal(input, s);
    uint32_t val = float32_val(f32);
    uint32_t f32_sbit = 0x80000000 & val;
    int32_t f32_exp = extract32(val, 23, 8);
    uint32_t f32_frac = extract32(val, 0, 23);
    uint64_t f64_frac;
    uint64_t val64;
5225 5226 5227
    int result_exp;
    float64 f64;

5228 5229 5230
    if (float32_is_any_nan(f32)) {
        float32 nan = f32;
        if (float32_is_signaling_nan(f32)) {
5231
            float_raise(float_flag_invalid, s);
5232
            nan = float32_maybe_silence_nan(f32);
5233
        }
5234 5235
        if (s->default_nan_mode) {
            nan =  float32_default_nan;
5236
        }
5237 5238
        return nan;
    } else if (float32_is_zero(f32)) {
5239
        float_raise(float_flag_divbyzero, s);
5240 5241
        return float32_set_sign(float32_infinity, float32_is_neg(f32));
    } else if (float32_is_neg(f32)) {
5242 5243
        float_raise(float_flag_invalid, s);
        return float32_default_nan;
5244
    } else if (float32_is_infinity(f32)) {
5245 5246 5247
        return float32_zero;
    }

5248
    /* Scale and normalize to a double-precision value between 0.25 and 1.0,
5249
     * preserving the parity of the exponent.  */
5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261

    f64_frac = ((uint64_t) f32_frac) << 29;
    if (f32_exp == 0) {
        while (extract64(f64_frac, 51, 1) == 0) {
            f64_frac = f64_frac << 1;
            f32_exp = f32_exp-1;
        }
        f64_frac = extract64(f64_frac, 0, 51) << 1;
    }

    if (extract64(f32_exp, 0, 1) == 0) {
        f64 = make_float64(((uint64_t) f32_sbit) << 32
5262
                           | (0x3feULL << 52)
5263
                           | f64_frac);
5264
    } else {
5265
        f64 = make_float64(((uint64_t) f32_sbit) << 32
5266
                           | (0x3fdULL << 52)
5267
                           | f64_frac);
5268 5269
    }

5270
    result_exp = (380 - f32_exp) / 2;
5271

5272
    f64 = recip_sqrt_estimate(f64, s);
5273 5274 5275

    val64 = float64_val(f64);

5276
    val = ((result_exp & 0xff) << 23)
5277 5278
        | ((val64 >> 29)  & 0x7fffff);
    return make_float32(val);
P
pbrook 已提交
5279 5280
}

5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343
float64 HELPER(rsqrte_f64)(float64 input, void *fpstp)
{
    float_status *s = fpstp;
    float64 f64 = float64_squash_input_denormal(input, s);
    uint64_t val = float64_val(f64);
    uint64_t f64_sbit = 0x8000000000000000ULL & val;
    int64_t f64_exp = extract64(val, 52, 11);
    uint64_t f64_frac = extract64(val, 0, 52);
    int64_t result_exp;
    uint64_t result_frac;

    if (float64_is_any_nan(f64)) {
        float64 nan = f64;
        if (float64_is_signaling_nan(f64)) {
            float_raise(float_flag_invalid, s);
            nan = float64_maybe_silence_nan(f64);
        }
        if (s->default_nan_mode) {
            nan =  float64_default_nan;
        }
        return nan;
    } else if (float64_is_zero(f64)) {
        float_raise(float_flag_divbyzero, s);
        return float64_set_sign(float64_infinity, float64_is_neg(f64));
    } else if (float64_is_neg(f64)) {
        float_raise(float_flag_invalid, s);
        return float64_default_nan;
    } else if (float64_is_infinity(f64)) {
        return float64_zero;
    }

    /* Scale and normalize to a double-precision value between 0.25 and 1.0,
     * preserving the parity of the exponent.  */

    if (f64_exp == 0) {
        while (extract64(f64_frac, 51, 1) == 0) {
            f64_frac = f64_frac << 1;
            f64_exp = f64_exp - 1;
        }
        f64_frac = extract64(f64_frac, 0, 51) << 1;
    }

    if (extract64(f64_exp, 0, 1) == 0) {
        f64 = make_float64(f64_sbit
                           | (0x3feULL << 52)
                           | f64_frac);
    } else {
        f64 = make_float64(f64_sbit
                           | (0x3fdULL << 52)
                           | f64_frac);
    }

    result_exp = (3068 - f64_exp) / 2;

    f64 = recip_sqrt_estimate(f64, s);

    result_frac = extract64(float64_val(f64), 0, 52);

    return make_float64(f64_sbit |
                        ((result_exp & 0x7ff) << 52) |
                        result_frac);
}

5344
uint32_t HELPER(recpe_u32)(uint32_t a, void *fpstp)
P
pbrook 已提交
5345
{
5346
    float_status *s = fpstp;
5347 5348 5349 5350 5351 5352 5353 5354 5355
    float64 f64;

    if ((a & 0x80000000) == 0) {
        return 0xffffffff;
    }

    f64 = make_float64((0x3feULL << 52)
                       | ((int64_t)(a & 0x7fffffff) << 21));

5356
    f64 = recip_estimate(f64, s);
5357 5358

    return 0x80000000 | ((float64_val(f64) >> 21) & 0x7fffffff);
P
pbrook 已提交
5359 5360
}

5361
uint32_t HELPER(rsqrte_u32)(uint32_t a, void *fpstp)
P
pbrook 已提交
5362
{
5363
    float_status *fpst = fpstp;
5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377
    float64 f64;

    if ((a & 0xc0000000) == 0) {
        return 0xffffffff;
    }

    if (a & 0x80000000) {
        f64 = make_float64((0x3feULL << 52)
                           | ((uint64_t)(a & 0x7fffffff) << 21));
    } else { /* bits 31-30 == '01' */
        f64 = make_float64((0x3fdULL << 52)
                           | ((uint64_t)(a & 0x3fffffff) << 22));
    }

5378
    f64 = recip_sqrt_estimate(f64, fpst);
5379 5380

    return 0x80000000 | ((float64_val(f64) >> 21) & 0x7fffffff);
P
pbrook 已提交
5381
}
5382

5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394
/* VFPv4 fused multiply-accumulate */
float32 VFP_HELPER(muladd, s)(float32 a, float32 b, float32 c, void *fpstp)
{
    float_status *fpst = fpstp;
    return float32_muladd(a, b, c, 0, fpst);
}

float64 VFP_HELPER(muladd, d)(float64 a, float64 b, float64 c, void *fpstp)
{
    float_status *fpst = fpstp;
    return float64_muladd(a, b, c, 0, fpst);
}
5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439

/* ARMv8 round to integral */
float32 HELPER(rints_exact)(float32 x, void *fp_status)
{
    return float32_round_to_int(x, fp_status);
}

float64 HELPER(rintd_exact)(float64 x, void *fp_status)
{
    return float64_round_to_int(x, fp_status);
}

float32 HELPER(rints)(float32 x, void *fp_status)
{
    int old_flags = get_float_exception_flags(fp_status), new_flags;
    float32 ret;

    ret = float32_round_to_int(x, fp_status);

    /* Suppress any inexact exceptions the conversion produced */
    if (!(old_flags & float_flag_inexact)) {
        new_flags = get_float_exception_flags(fp_status);
        set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status);
    }

    return ret;
}

float64 HELPER(rintd)(float64 x, void *fp_status)
{
    int old_flags = get_float_exception_flags(fp_status), new_flags;
    float64 ret;

    ret = float64_round_to_int(x, fp_status);

    new_flags = get_float_exception_flags(fp_status);

    /* Suppress any inexact exceptions the conversion produced */
    if (!(old_flags & float_flag_inexact)) {
        new_flags = get_float_exception_flags(fp_status);
        set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status);
    }

    return ret;
}
5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467

/* Convert ARM rounding mode to softfloat */
int arm_rmode_to_sf(int rmode)
{
    switch (rmode) {
    case FPROUNDING_TIEAWAY:
        rmode = float_round_ties_away;
        break;
    case FPROUNDING_ODD:
        /* FIXME: add support for TIEAWAY and ODD */
        qemu_log_mask(LOG_UNIMP, "arm: unimplemented rounding mode: %d\n",
                      rmode);
    case FPROUNDING_TIEEVEN:
    default:
        rmode = float_round_nearest_even;
        break;
    case FPROUNDING_POSINF:
        rmode = float_round_up;
        break;
    case FPROUNDING_NEGINF:
        rmode = float_round_down;
        break;
    case FPROUNDING_ZERO:
        rmode = float_round_to_zero;
        break;
    }
    return rmode;
}
5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504

static void crc_init_buffer(uint8_t *buf, uint32_t val, uint32_t bytes)
{
    memset(buf, 0, 4);

    if (bytes == 1) {
        buf[0] = val & 0xff;
    } else if (bytes == 2) {
        buf[0] = val & 0xff;
        buf[1] = (val >> 8) & 0xff;
    } else {
        buf[0] = val & 0xff;
        buf[1] = (val >> 8) & 0xff;
        buf[2] = (val >> 16) & 0xff;
        buf[3] = (val >> 24) & 0xff;
    }
}

uint32_t HELPER(crc32)(uint32_t acc, uint32_t val, uint32_t bytes)
{
    uint8_t buf[4];

    crc_init_buffer(buf, val, bytes);

    /* zlib crc32 converts the accumulator and output to one's complement.  */
    return crc32(acc ^ 0xffffffff, buf, bytes) ^ 0xffffffff;
}

uint32_t HELPER(crc32c)(uint32_t acc, uint32_t val, uint32_t bytes)
{
    uint8_t buf[4];

    crc_init_buffer(buf, val, bytes);

    /* Linux crc32c converts the output to one's complement.  */
    return crc32c(acc, buf, bytes) ^ 0xffffffff;
}