helper.c 257.1 KB
Newer Older
B
bellard 已提交
1
#include "cpu.h"
2
#include "internals.h"
3
#include "exec/gdbstub.h"
4
#include "exec/helper-proto.h"
5
#include "qemu/host-utils.h"
6
#include "sysemu/arch_init.h"
7
#include "sysemu/sysemu.h"
8
#include "qemu/bitops.h"
9
#include "qemu/crc32c.h"
P
Paolo Bonzini 已提交
10
#include "exec/cpu_ldst.h"
11
#include "arm_ldst.h"
12
#include <zlib.h> /* For crc32 */
P
Peter Maydell 已提交
13

14
#ifndef CONFIG_USER_ONLY
15 16 17 18
static inline bool get_phys_addr(CPUARMState *env, target_ulong address,
                                 int access_type, ARMMMUIdx mmu_idx,
                                 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
                                 target_ulong *page_size, uint32_t *fsr);
19 20 21 22 23

/* Definitions for the PMCCNTR and PMCR registers */
#define PMCRD   0x8
#define PMCRC   0x4
#define PMCRE   0x1
24 25
#endif

26
static int vfp_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg)
P
pbrook 已提交
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52
{
    int nregs;

    /* VFP data registers are always little-endian.  */
    nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16;
    if (reg < nregs) {
        stfq_le_p(buf, env->vfp.regs[reg]);
        return 8;
    }
    if (arm_feature(env, ARM_FEATURE_NEON)) {
        /* Aliases for Q regs.  */
        nregs += 16;
        if (reg < nregs) {
            stfq_le_p(buf, env->vfp.regs[(reg - 32) * 2]);
            stfq_le_p(buf + 8, env->vfp.regs[(reg - 32) * 2 + 1]);
            return 16;
        }
    }
    switch (reg - nregs) {
    case 0: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSID]); return 4;
    case 1: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSCR]); return 4;
    case 2: stl_p(buf, env->vfp.xregs[ARM_VFP_FPEXC]); return 4;
    }
    return 0;
}

53
static int vfp_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg)
P
pbrook 已提交
54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72
{
    int nregs;

    nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16;
    if (reg < nregs) {
        env->vfp.regs[reg] = ldfq_le_p(buf);
        return 8;
    }
    if (arm_feature(env, ARM_FEATURE_NEON)) {
        nregs += 16;
        if (reg < nregs) {
            env->vfp.regs[(reg - 32) * 2] = ldfq_le_p(buf);
            env->vfp.regs[(reg - 32) * 2 + 1] = ldfq_le_p(buf + 8);
            return 16;
        }
    }
    switch (reg - nregs) {
    case 0: env->vfp.xregs[ARM_VFP_FPSID] = ldl_p(buf); return 4;
    case 1: env->vfp.xregs[ARM_VFP_FPSCR] = ldl_p(buf); return 4;
73
    case 2: env->vfp.xregs[ARM_VFP_FPEXC] = ldl_p(buf) & (1 << 30); return 4;
P
pbrook 已提交
74 75 76 77
    }
    return 0;
}

78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119
static int aarch64_fpu_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg)
{
    switch (reg) {
    case 0 ... 31:
        /* 128 bit FP register */
        stfq_le_p(buf, env->vfp.regs[reg * 2]);
        stfq_le_p(buf + 8, env->vfp.regs[reg * 2 + 1]);
        return 16;
    case 32:
        /* FPSR */
        stl_p(buf, vfp_get_fpsr(env));
        return 4;
    case 33:
        /* FPCR */
        stl_p(buf, vfp_get_fpcr(env));
        return 4;
    default:
        return 0;
    }
}

static int aarch64_fpu_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg)
{
    switch (reg) {
    case 0 ... 31:
        /* 128 bit FP register */
        env->vfp.regs[reg * 2] = ldfq_le_p(buf);
        env->vfp.regs[reg * 2 + 1] = ldfq_le_p(buf + 8);
        return 16;
    case 32:
        /* FPSR */
        vfp_set_fpsr(env, ldl_p(buf));
        return 4;
    case 33:
        /* FPCR */
        vfp_set_fpcr(env, ldl_p(buf));
        return 4;
    default:
        return 0;
    }
}

120
static uint64_t raw_read(CPUARMState *env, const ARMCPRegInfo *ri)
121
{
122
    assert(ri->fieldoffset);
123
    if (cpreg_field_is_64bit(ri)) {
124
        return CPREG_FIELD64(env, ri);
125
    } else {
126
        return CPREG_FIELD32(env, ri);
127
    }
128 129
}

130 131
static void raw_write(CPUARMState *env, const ARMCPRegInfo *ri,
                      uint64_t value)
132
{
133
    assert(ri->fieldoffset);
134
    if (cpreg_field_is_64bit(ri)) {
135 136 137 138
        CPREG_FIELD64(env, ri) = value;
    } else {
        CPREG_FIELD32(env, ri) = value;
    }
139 140
}

F
Fabian Aggeler 已提交
141 142 143 144 145
static void *raw_ptr(CPUARMState *env, const ARMCPRegInfo *ri)
{
    return (char *)env + ri->fieldoffset;
}

146
static uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri)
147
{
148
    /* Raw read of a coprocessor register (as needed for migration, etc). */
149
    if (ri->type & ARM_CP_CONST) {
150
        return ri->resetvalue;
151
    } else if (ri->raw_readfn) {
152
        return ri->raw_readfn(env, ri);
153
    } else if (ri->readfn) {
154
        return ri->readfn(env, ri);
155
    } else {
156
        return raw_read(env, ri);
157 158 159
    }
}

160
static void write_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri,
161
                             uint64_t v)
162 163 164 165 166 167 168
{
    /* Raw write of a coprocessor register (as needed for migration, etc).
     * Note that constant registers are treated as write-ignored; the
     * caller should check for success by whether a readback gives the
     * value written.
     */
    if (ri->type & ARM_CP_CONST) {
169
        return;
170
    } else if (ri->raw_writefn) {
171
        ri->raw_writefn(env, ri, v);
172
    } else if (ri->writefn) {
173
        ri->writefn(env, ri, v);
174
    } else {
175
        raw_write(env, ri, v);
176 177 178
    }
}

179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199
static bool raw_accessors_invalid(const ARMCPRegInfo *ri)
{
   /* Return true if the regdef would cause an assertion if you called
    * read_raw_cp_reg() or write_raw_cp_reg() on it (ie if it is a
    * program bug for it not to have the NO_RAW flag).
    * NB that returning false here doesn't necessarily mean that calling
    * read/write_raw_cp_reg() is safe, because we can't distinguish "has
    * read/write access functions which are safe for raw use" from "has
    * read/write access functions which have side effects but has forgotten
    * to provide raw access functions".
    * The tests here line up with the conditions in read/write_raw_cp_reg()
    * and assertions in raw_read()/raw_write().
    */
    if ((ri->type & ARM_CP_CONST) ||
        ri->fieldoffset ||
        ((ri->raw_writefn || ri->writefn) && (ri->raw_readfn || ri->readfn))) {
        return false;
    }
    return true;
}

200 201 202 203 204 205 206 207 208
bool write_cpustate_to_list(ARMCPU *cpu)
{
    /* Write the coprocessor state from cpu->env to the (index,value) list. */
    int i;
    bool ok = true;

    for (i = 0; i < cpu->cpreg_array_len; i++) {
        uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
        const ARMCPRegInfo *ri;
209

210
        ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
211 212 213 214
        if (!ri) {
            ok = false;
            continue;
        }
215
        if (ri->type & ARM_CP_NO_RAW) {
216 217
            continue;
        }
218
        cpu->cpreg_values[i] = read_raw_cp_reg(&cpu->env, ri);
219 220 221 222 223 224 225 226 227 228 229 230 231 232
    }
    return ok;
}

bool write_list_to_cpustate(ARMCPU *cpu)
{
    int i;
    bool ok = true;

    for (i = 0; i < cpu->cpreg_array_len; i++) {
        uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
        uint64_t v = cpu->cpreg_values[i];
        const ARMCPRegInfo *ri;

233
        ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
234 235 236 237
        if (!ri) {
            ok = false;
            continue;
        }
238
        if (ri->type & ARM_CP_NO_RAW) {
239 240 241 242 243 244
            continue;
        }
        /* Write value and confirm it reads back as written
         * (to catch read-only registers and partially read-only
         * registers where the incoming migration value doesn't match)
         */
245 246
        write_raw_cp_reg(&cpu->env, ri, v);
        if (read_raw_cp_reg(&cpu->env, ri) != v) {
247 248 249 250 251 252 253 254 255 256 257 258 259
            ok = false;
        }
    }
    return ok;
}

static void add_cpreg_to_list(gpointer key, gpointer opaque)
{
    ARMCPU *cpu = opaque;
    uint64_t regidx;
    const ARMCPRegInfo *ri;

    regidx = *(uint32_t *)key;
260
    ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
261

262
    if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) {
263 264 265 266 267 268 269 270 271 272 273 274 275
        cpu->cpreg_indexes[cpu->cpreg_array_len] = cpreg_to_kvm_id(regidx);
        /* The value array need not be initialized at this point */
        cpu->cpreg_array_len++;
    }
}

static void count_cpreg(gpointer key, gpointer opaque)
{
    ARMCPU *cpu = opaque;
    uint64_t regidx;
    const ARMCPRegInfo *ri;

    regidx = *(uint32_t *)key;
276
    ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
277

278
    if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) {
279 280 281 282 283 284
        cpu->cpreg_array_len++;
    }
}

static gint cpreg_key_compare(gconstpointer a, gconstpointer b)
{
285 286
    uint64_t aidx = cpreg_to_kvm_id(*(uint32_t *)a);
    uint64_t bidx = cpreg_to_kvm_id(*(uint32_t *)b);
287

288 289 290 291 292 293 294
    if (aidx > bidx) {
        return 1;
    }
    if (aidx < bidx) {
        return -1;
    }
    return 0;
295 296 297 298 299 300 301
}

void init_cpreg_list(ARMCPU *cpu)
{
    /* Initialise the cpreg_tuples[] array based on the cp_regs hash.
     * Note that we require cpreg_tuples[] to be sorted by key ID.
     */
302
    GList *keys;
303 304
    int arraylen;

305
    keys = g_hash_table_get_keys(cpu->cp_regs);
306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326
    keys = g_list_sort(keys, cpreg_key_compare);

    cpu->cpreg_array_len = 0;

    g_list_foreach(keys, count_cpreg, cpu);

    arraylen = cpu->cpreg_array_len;
    cpu->cpreg_indexes = g_new(uint64_t, arraylen);
    cpu->cpreg_values = g_new(uint64_t, arraylen);
    cpu->cpreg_vmstate_indexes = g_new(uint64_t, arraylen);
    cpu->cpreg_vmstate_values = g_new(uint64_t, arraylen);
    cpu->cpreg_vmstate_array_len = cpu->cpreg_array_len;
    cpu->cpreg_array_len = 0;

    g_list_foreach(keys, add_cpreg_to_list, cpu);

    assert(cpu->cpreg_array_len == arraylen);

    g_list_free(keys);
}

327
static void dacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
328
{
329 330
    ARMCPU *cpu = arm_env_get_cpu(env);

331
    raw_write(env, ri, value);
332
    tlb_flush(CPU(cpu), 1); /* Flush TLB as domain not tracked in TLB */
333 334
}

335
static void fcse_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
336
{
337 338
    ARMCPU *cpu = arm_env_get_cpu(env);

339
    if (raw_read(env, ri) != value) {
340 341 342
        /* Unlike real hardware the qemu TLB uses virtual addresses,
         * not modified virtual addresses, so this causes a TLB flush.
         */
343
        tlb_flush(CPU(cpu), 1);
344
        raw_write(env, ri, value);
345 346
    }
}
347 348 349

static void contextidr_write(CPUARMState *env, const ARMCPRegInfo *ri,
                             uint64_t value)
350
{
351 352
    ARMCPU *cpu = arm_env_get_cpu(env);

353
    if (raw_read(env, ri) != value && !arm_feature(env, ARM_FEATURE_MPU)
354
        && !extended_addresses_enabled(env)) {
355 356 357 358
        /* For VMSA (when not using the LPAE long descriptor page table
         * format) this register includes the ASID, so do a TLB flush.
         * For PMSA it is purely a process ID and no action is needed.
         */
359
        tlb_flush(CPU(cpu), 1);
360
    }
361
    raw_write(env, ri, value);
362 363
}

364 365
static void tlbiall_write(CPUARMState *env, const ARMCPRegInfo *ri,
                          uint64_t value)
366 367
{
    /* Invalidate all (TLBIALL) */
368 369 370
    ARMCPU *cpu = arm_env_get_cpu(env);

    tlb_flush(CPU(cpu), 1);
371 372
}

373 374
static void tlbimva_write(CPUARMState *env, const ARMCPRegInfo *ri,
                          uint64_t value)
375 376
{
    /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */
377 378 379
    ARMCPU *cpu = arm_env_get_cpu(env);

    tlb_flush_page(CPU(cpu), value & TARGET_PAGE_MASK);
380 381
}

382 383
static void tlbiasid_write(CPUARMState *env, const ARMCPRegInfo *ri,
                           uint64_t value)
384 385
{
    /* Invalidate by ASID (TLBIASID) */
386 387 388
    ARMCPU *cpu = arm_env_get_cpu(env);

    tlb_flush(CPU(cpu), value == 0);
389 390
}

391 392
static void tlbimvaa_write(CPUARMState *env, const ARMCPRegInfo *ri,
                           uint64_t value)
393 394
{
    /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */
395 396 397
    ARMCPU *cpu = arm_env_get_cpu(env);

    tlb_flush_page(CPU(cpu), value & TARGET_PAGE_MASK);
398 399
}

400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440
/* IS variants of TLB operations must affect all cores */
static void tlbiall_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
                             uint64_t value)
{
    CPUState *other_cs;

    CPU_FOREACH(other_cs) {
        tlb_flush(other_cs, 1);
    }
}

static void tlbiasid_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
                             uint64_t value)
{
    CPUState *other_cs;

    CPU_FOREACH(other_cs) {
        tlb_flush(other_cs, value == 0);
    }
}

static void tlbimva_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
                             uint64_t value)
{
    CPUState *other_cs;

    CPU_FOREACH(other_cs) {
        tlb_flush_page(other_cs, value & TARGET_PAGE_MASK);
    }
}

static void tlbimvaa_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
                             uint64_t value)
{
    CPUState *other_cs;

    CPU_FOREACH(other_cs) {
        tlb_flush_page(other_cs, value & TARGET_PAGE_MASK);
    }
}

441
static const ARMCPRegInfo cp_reginfo[] = {
442 443 444 445 446 447 448 449 450 451 452 453 454 455
    /* Define the secure and non-secure FCSE identifier CP registers
     * separately because there is no secure bank in V8 (no _EL3).  This allows
     * the secure register to be properly reset and migrated. There is also no
     * v8 EL1 version of the register so the non-secure instance stands alone.
     */
    { .name = "FCSEIDR(NS)",
      .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0,
      .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS,
      .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_ns),
      .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
    { .name = "FCSEIDR(S)",
      .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0,
      .access = PL1_RW, .secure = ARM_CP_SECSTATE_S,
      .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_s),
456
      .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
457 458 459 460 461 462 463
    /* Define the secure and non-secure context identifier CP registers
     * separately because there is no secure bank in V8 (no _EL3).  This allows
     * the secure register to be properly reset and migrated.  In the
     * non-secure case, the 32-bit register will have reset and migration
     * disabled during registration as it is handled by the 64-bit instance.
     */
    { .name = "CONTEXTIDR_EL1", .state = ARM_CP_STATE_BOTH,
464
      .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
465 466 467 468 469 470 471
      .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS,
      .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[1]),
      .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
    { .name = "CONTEXTIDR(S)", .state = ARM_CP_STATE_AA32,
      .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
      .access = PL1_RW, .secure = ARM_CP_SECSTATE_S,
      .fieldoffset = offsetof(CPUARMState, cp15.contextidr_s),
472
      .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
473 474 475 476 477 478 479 480
    REGINFO_SENTINEL
};

static const ARMCPRegInfo not_v8_cp_reginfo[] = {
    /* NB: Some of these registers exist in v8 but with more precise
     * definitions that don't use CP_ANY wildcards (mostly in v8_cp_reginfo[]).
     */
    /* MMU Domain access control / MPU write buffer control */
F
Fabian Aggeler 已提交
481 482 483 484 485 486
    { .name = "DACR",
      .cp = 15, .opc1 = CP_ANY, .crn = 3, .crm = CP_ANY, .opc2 = CP_ANY,
      .access = PL1_RW, .resetvalue = 0,
      .writefn = dacr_write, .raw_writefn = raw_write,
      .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s),
                             offsetoflow32(CPUARMState, cp15.dacr_ns) } },
487 488
    /* ARMv7 allocates a range of implementation defined TLB LOCKDOWN regs.
     * For v6 and v5, these mappings are overly broad.
489
     */
490 491 492 493 494 495 496
    { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 0,
      .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
    { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 1,
      .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
    { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 4,
      .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
    { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 8,
497
      .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
498 499 500 501
    /* Cache maintenance ops; some of this space may be overridden later. */
    { .name = "CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
      .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
      .type = ARM_CP_NOP | ARM_CP_OVERRIDE },
502 503 504
    REGINFO_SENTINEL
};

505 506 507 508 509 510 511 512 513 514 515 516 517 518 519
static const ARMCPRegInfo not_v6_cp_reginfo[] = {
    /* Not all pre-v6 cores implemented this WFI, so this is slightly
     * over-broad.
     */
    { .name = "WFI_v5", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = 2,
      .access = PL1_W, .type = ARM_CP_WFI },
    REGINFO_SENTINEL
};

static const ARMCPRegInfo not_v7_cp_reginfo[] = {
    /* Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which
     * is UNPREDICTABLE; we choose to NOP as most implementations do).
     */
    { .name = "WFI_v6", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
      .access = PL1_W, .type = ARM_CP_WFI },
520 521 522 523 524 525 526 527 528 529
    /* L1 cache lockdown. Not architectural in v6 and earlier but in practice
     * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and
     * OMAPCP will override this space.
     */
    { .name = "DLOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 0,
      .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_data),
      .resetvalue = 0 },
    { .name = "ILOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 1,
      .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_insn),
      .resetvalue = 0 },
530 531
    /* v6 doesn't have the cache ID registers but Linux reads them anyway */
    { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = CP_ANY,
532
      .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
533
      .resetvalue = 0 },
534 535 536 537 538 539 540
    /* We don't implement pre-v7 debug but most CPUs had at least a DBGDIDR;
     * implementing it as RAZ means the "debug architecture version" bits
     * will read as a reserved value, which should cause Linux to not try
     * to use the debug hardware.
     */
    { .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0,
      .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
541 542 543 544 545
    /* MMU TLB control. Note that the wildcarding means we cover not just
     * the unified TLB ops but also the dside/iside/inner-shareable variants.
     */
    { .name = "TLBIALL", .cp = 15, .crn = 8, .crm = CP_ANY,
      .opc1 = CP_ANY, .opc2 = 0, .access = PL1_W, .writefn = tlbiall_write,
546
      .type = ARM_CP_NO_RAW },
547 548
    { .name = "TLBIMVA", .cp = 15, .crn = 8, .crm = CP_ANY,
      .opc1 = CP_ANY, .opc2 = 1, .access = PL1_W, .writefn = tlbimva_write,
549
      .type = ARM_CP_NO_RAW },
550 551
    { .name = "TLBIASID", .cp = 15, .crn = 8, .crm = CP_ANY,
      .opc1 = CP_ANY, .opc2 = 2, .access = PL1_W, .writefn = tlbiasid_write,
552
      .type = ARM_CP_NO_RAW },
553 554
    { .name = "TLBIMVAA", .cp = 15, .crn = 8, .crm = CP_ANY,
      .opc1 = CP_ANY, .opc2 = 3, .access = PL1_W, .writefn = tlbimvaa_write,
555
      .type = ARM_CP_NO_RAW },
556 557 558 559
    { .name = "PRRR", .cp = 15, .crn = 10, .crm = 2,
      .opc1 = 0, .opc2 = 0, .access = PL1_RW, .type = ARM_CP_NOP },
    { .name = "NMRR", .cp = 15, .crn = 10, .crm = 2,
      .opc1 = 0, .opc2 = 1, .access = PL1_RW, .type = ARM_CP_NOP },
560 561 562
    REGINFO_SENTINEL
};

563 564
static void cpacr_write(CPUARMState *env, const ARMCPRegInfo *ri,
                        uint64_t value)
565
{
566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592
    uint32_t mask = 0;

    /* In ARMv8 most bits of CPACR_EL1 are RES0. */
    if (!arm_feature(env, ARM_FEATURE_V8)) {
        /* ARMv7 defines bits for unimplemented coprocessors as RAZ/WI.
         * ASEDIS [31] and D32DIS [30] are both UNK/SBZP without VFP.
         * TRCDIS [28] is RAZ/WI since we do not implement a trace macrocell.
         */
        if (arm_feature(env, ARM_FEATURE_VFP)) {
            /* VFP coprocessor: cp10 & cp11 [23:20] */
            mask |= (1 << 31) | (1 << 30) | (0xf << 20);

            if (!arm_feature(env, ARM_FEATURE_NEON)) {
                /* ASEDIS [31] bit is RAO/WI */
                value |= (1 << 31);
            }

            /* VFPv3 and upwards with NEON implement 32 double precision
             * registers (D0-D31).
             */
            if (!arm_feature(env, ARM_FEATURE_NEON) ||
                    !arm_feature(env, ARM_FEATURE_VFP3)) {
                /* D32DIS [30] is RAO/WI if D16-31 are not implemented. */
                value |= (1 << 30);
            }
        }
        value &= mask;
593
    }
594
    env->cp15.cpacr_el1 = value;
595 596
}

597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623
static CPAccessResult cpacr_access(CPUARMState *env, const ARMCPRegInfo *ri)
{
    if (arm_feature(env, ARM_FEATURE_V8)) {
        /* Check if CPACR accesses are to be trapped to EL2 */
        if (arm_current_el(env) == 1 &&
            (env->cp15.cptr_el[2] & CPTR_TCPAC) && !arm_is_secure(env)) {
            return CP_ACCESS_TRAP_EL2;
        /* Check if CPACR accesses are to be trapped to EL3 */
        } else if (arm_current_el(env) < 3 &&
                   (env->cp15.cptr_el[3] & CPTR_TCPAC)) {
            return CP_ACCESS_TRAP_EL3;
        }
    }

    return CP_ACCESS_OK;
}

static CPAccessResult cptr_access(CPUARMState *env, const ARMCPRegInfo *ri)
{
    /* Check if CPTR accesses are set to trap to EL3 */
    if (arm_current_el(env) == 2 && (env->cp15.cptr_el[3] & CPTR_TCPAC)) {
        return CP_ACCESS_TRAP_EL3;
    }

    return CP_ACCESS_OK;
}

624 625 626 627 628 629 630
static const ARMCPRegInfo v6_cp_reginfo[] = {
    /* prefetch by MVA in v6, NOP in v7 */
    { .name = "MVA_prefetch",
      .cp = 15, .crn = 7, .crm = 13, .opc1 = 0, .opc2 = 1,
      .access = PL1_W, .type = ARM_CP_NOP },
    { .name = "ISB", .cp = 15, .crn = 7, .crm = 5, .opc1 = 0, .opc2 = 4,
      .access = PL0_W, .type = ARM_CP_NOP },
631
    { .name = "DSB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 4,
632
      .access = PL0_W, .type = ARM_CP_NOP },
633
    { .name = "DMB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 5,
634
      .access = PL0_W, .type = ARM_CP_NOP },
635
    { .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 2,
636
      .access = PL1_RW,
F
Fabian Aggeler 已提交
637 638
      .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ifar_s),
                             offsetof(CPUARMState, cp15.ifar_ns) },
639 640 641 642 643 644
      .resetvalue = 0, },
    /* Watchpoint Fault Address Register : should actually only be present
     * for 1136, 1176, 11MPCore.
     */
    { .name = "WFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1,
      .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, },
645
    { .name = "CPACR", .state = ARM_CP_STATE_BOTH, .opc0 = 3,
646
      .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 2, .accessfn = cpacr_access,
647
      .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.cpacr_el1),
648
      .resetvalue = 0, .writefn = cpacr_write },
649 650 651
    REGINFO_SENTINEL
};

652
static CPAccessResult pmreg_access(CPUARMState *env, const ARMCPRegInfo *ri)
653
{
S
Stefan Weil 已提交
654
    /* Performance monitor registers user accessibility is controlled
655
     * by PMUSERENR.
656
     */
657
    if (arm_current_el(env) == 0 && !env->cp15.c9_pmuserenr) {
658
        return CP_ACCESS_TRAP;
659
    }
660
    return CP_ACCESS_OK;
661 662
}

663
#ifndef CONFIG_USER_ONLY
664 665 666 667 668 669 670 671 672 673 674 675

static inline bool arm_ccnt_enabled(CPUARMState *env)
{
    /* This does not support checking PMCCFILTR_EL0 register */

    if (!(env->cp15.c9_pmcr & PMCRE)) {
        return false;
    }

    return true;
}

676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692
void pmccntr_sync(CPUARMState *env)
{
    uint64_t temp_ticks;

    temp_ticks = muldiv64(qemu_clock_get_us(QEMU_CLOCK_VIRTUAL),
                          get_ticks_per_sec(), 1000000);

    if (env->cp15.c9_pmcr & PMCRD) {
        /* Increment once every 64 processor clock cycles */
        temp_ticks /= 64;
    }

    if (arm_ccnt_enabled(env)) {
        env->cp15.c15_ccnt = temp_ticks - env->cp15.c15_ccnt;
    }
}

693 694
static void pmcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
                       uint64_t value)
695
{
696
    pmccntr_sync(env);
697 698 699 700 701 702

    if (value & PMCRC) {
        /* The counter has been reset */
        env->cp15.c15_ccnt = 0;
    }

703 704 705
    /* only the DP, X, D and E bits are writable */
    env->cp15.c9_pmcr &= ~0x39;
    env->cp15.c9_pmcr |= (value & 0x39);
706

707
    pmccntr_sync(env);
708 709 710 711
}

static uint64_t pmccntr_read(CPUARMState *env, const ARMCPRegInfo *ri)
{
712
    uint64_t total_ticks;
713

714
    if (!arm_ccnt_enabled(env)) {
715 716 717 718
        /* Counter is disabled, do not change value */
        return env->cp15.c15_ccnt;
    }

719 720
    total_ticks = muldiv64(qemu_clock_get_us(QEMU_CLOCK_VIRTUAL),
                           get_ticks_per_sec(), 1000000);
721 722 723 724 725 726 727 728 729 730 731

    if (env->cp15.c9_pmcr & PMCRD) {
        /* Increment once every 64 processor clock cycles */
        total_ticks /= 64;
    }
    return total_ticks - env->cp15.c15_ccnt;
}

static void pmccntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
                        uint64_t value)
{
732
    uint64_t total_ticks;
733

734
    if (!arm_ccnt_enabled(env)) {
735 736 737 738 739
        /* Counter is disabled, set the absolute value */
        env->cp15.c15_ccnt = value;
        return;
    }

740 741
    total_ticks = muldiv64(qemu_clock_get_us(QEMU_CLOCK_VIRTUAL),
                           get_ticks_per_sec(), 1000000);
742 743 744 745 746 747

    if (env->cp15.c9_pmcr & PMCRD) {
        /* Increment once every 64 processor clock cycles */
        total_ticks /= 64;
    }
    env->cp15.c15_ccnt = total_ticks - value;
748
}
749 750 751 752 753 754 755 756 757

static void pmccntr_write32(CPUARMState *env, const ARMCPRegInfo *ri,
                            uint64_t value)
{
    uint64_t cur_val = pmccntr_read(env, NULL);

    pmccntr_write(env, ri, deposit64(cur_val, 0, 32, value));
}

758 759 760 761 762 763
#else /* CONFIG_USER_ONLY */

void pmccntr_sync(CPUARMState *env)
{
}

764
#endif
765

766 767 768 769 770 771 772 773
static void pmccfiltr_write(CPUARMState *env, const ARMCPRegInfo *ri,
                            uint64_t value)
{
    pmccntr_sync(env);
    env->cp15.pmccfiltr_el0 = value & 0x7E000000;
    pmccntr_sync(env);
}

774
static void pmcntenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
775 776 777 778 779 780
                            uint64_t value)
{
    value &= (1 << 31);
    env->cp15.c9_pmcnten |= value;
}

781 782
static void pmcntenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
                             uint64_t value)
783 784 785 786 787
{
    value &= (1 << 31);
    env->cp15.c9_pmcnten &= ~value;
}

788 789
static void pmovsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
                         uint64_t value)
790 791 792 793
{
    env->cp15.c9_pmovsr &= ~value;
}

794 795
static void pmxevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri,
                             uint64_t value)
796 797 798 799
{
    env->cp15.c9_pmxevtyper = value & 0xff;
}

800
static void pmuserenr_write(CPUARMState *env, const ARMCPRegInfo *ri,
801 802 803 804 805
                            uint64_t value)
{
    env->cp15.c9_pmuserenr = value & 1;
}

806 807
static void pmintenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
                             uint64_t value)
808 809 810 811 812 813
{
    /* We have no event counters so only the C bit can be changed */
    value &= (1 << 31);
    env->cp15.c9_pminten |= value;
}

814 815
static void pmintenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
                             uint64_t value)
816 817 818 819 820
{
    value &= (1 << 31);
    env->cp15.c9_pminten &= ~value;
}

821 822
static void vbar_write(CPUARMState *env, const ARMCPRegInfo *ri,
                       uint64_t value)
N
Nathan Rossi 已提交
823
{
824 825 826 827 828 829
    /* Note that even though the AArch64 view of this register has bits
     * [10:0] all RES0 we can only mask the bottom 5, to comply with the
     * architectural requirements for bits which are RES0 only in some
     * contexts. (ARMv8 would permit us to do no masking at all, but ARMv7
     * requires the bottom five bits to be RAZ/WI because they're UNK/SBZP.)
     */
830
    raw_write(env, ri, value & ~0x1FULL);
N
Nathan Rossi 已提交
831 832
}

E
Edgar E. Iglesias 已提交
833 834 835 836 837 838 839 840 841 842 843 844 845 846 847
static void scr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
{
    /* We only mask off bits that are RES0 both for AArch64 and AArch32.
     * For bits that vary between AArch32/64, code needs to check the
     * current execution mode before directly using the feature bit.
     */
    uint32_t valid_mask = SCR_AARCH64_MASK | SCR_AARCH32_MASK;

    if (!arm_feature(env, ARM_FEATURE_EL2)) {
        valid_mask &= ~SCR_HCE;

        /* On ARMv7, SMD (or SCD as it is called in v7) is only
         * supported if EL2 exists. The bit is UNK/SBZP when
         * EL2 is unavailable. In QEMU ARMv7, we force it to always zero
         * when EL2 is unavailable.
G
Greg Bellows 已提交
848
         * On ARMv8, this bit is always available.
E
Edgar E. Iglesias 已提交
849
         */
G
Greg Bellows 已提交
850 851
        if (arm_feature(env, ARM_FEATURE_V7) &&
            !arm_feature(env, ARM_FEATURE_V8)) {
E
Edgar E. Iglesias 已提交
852 853 854 855 856 857 858 859 860
            valid_mask &= ~SCR_SMD;
        }
    }

    /* Clear all-context RES0 bits.  */
    value &= valid_mask;
    raw_write(env, ri, value);
}

861
static uint64_t ccsidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
862 863
{
    ARMCPU *cpu = arm_env_get_cpu(env);
F
Fabian Aggeler 已提交
864 865 866 867 868 869 870 871

    /* Acquire the CSSELR index from the bank corresponding to the CCSIDR
     * bank
     */
    uint32_t index = A32_BANKED_REG_GET(env, csselr,
                                        ri->secure & ARM_CP_SECSTATE_S);

    return cpu->ccsidr[index];
872 873
}

874 875
static void csselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
                         uint64_t value)
876
{
877
    raw_write(env, ri, value & 0xf);
878 879
}

880 881 882 883 884 885 886 887 888 889 890 891 892 893 894
static uint64_t isr_read(CPUARMState *env, const ARMCPRegInfo *ri)
{
    CPUState *cs = ENV_GET_CPU(env);
    uint64_t ret = 0;

    if (cs->interrupt_request & CPU_INTERRUPT_HARD) {
        ret |= CPSR_I;
    }
    if (cs->interrupt_request & CPU_INTERRUPT_FIQ) {
        ret |= CPSR_F;
    }
    /* External aborts are not possible in QEMU so A bit is always clear */
    return ret;
}

895
static const ARMCPRegInfo v7_cp_reginfo[] = {
896 897 898
    /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */
    { .name = "NOP", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
      .access = PL1_W, .type = ARM_CP_NOP },
899 900 901 902 903 904 905 906 907 908 909 910
    /* Performance monitors are implementation defined in v7,
     * but with an ARM recommended set of registers, which we
     * follow (although we don't actually implement any counters)
     *
     * Performance registers fall into three categories:
     *  (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR)
     *  (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR)
     *  (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others)
     * For the cases controlled by PMUSERENR we must set .access to PL0_RW
     * or PL0_RO as appropriate and then check PMUSERENR in the helper fn.
     */
    { .name = "PMCNTENSET", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 1,
911
      .access = PL0_RW, .type = ARM_CP_ALIAS,
912
      .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten),
913 914 915
      .writefn = pmcntenset_write,
      .accessfn = pmreg_access,
      .raw_writefn = raw_write },
916 917 918 919 920
    { .name = "PMCNTENSET_EL0", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 1,
      .access = PL0_RW, .accessfn = pmreg_access,
      .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), .resetvalue = 0,
      .writefn = pmcntenset_write, .raw_writefn = raw_write },
921
    { .name = "PMCNTENCLR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 2,
922 923
      .access = PL0_RW,
      .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten),
924 925
      .accessfn = pmreg_access,
      .writefn = pmcntenclr_write,
926
      .type = ARM_CP_ALIAS },
927 928 929
    { .name = "PMCNTENCLR_EL0", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 2,
      .access = PL0_RW, .accessfn = pmreg_access,
930
      .type = ARM_CP_ALIAS,
931 932
      .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten),
      .writefn = pmcntenclr_write },
933 934
    { .name = "PMOVSR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 3,
      .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
935 936 937 938
      .accessfn = pmreg_access,
      .writefn = pmovsr_write,
      .raw_writefn = raw_write },
    /* Unimplemented so WI. */
939
    { .name = "PMSWINC", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 4,
940
      .access = PL0_W, .accessfn = pmreg_access, .type = ARM_CP_NOP },
941
    /* Since we don't implement any events, writing to PMSELR is UNPREDICTABLE.
942
     * We choose to RAZ/WI.
943 944
     */
    { .name = "PMSELR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 5,
945 946
      .access = PL0_RW, .type = ARM_CP_CONST, .resetvalue = 0,
      .accessfn = pmreg_access },
947
#ifndef CONFIG_USER_ONLY
948
    { .name = "PMCCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 0,
949
      .access = PL0_RW, .resetvalue = 0, .type = ARM_CP_IO,
950
      .readfn = pmccntr_read, .writefn = pmccntr_write32,
951
      .accessfn = pmreg_access },
952 953 954 955 956
    { .name = "PMCCNTR_EL0", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 0,
      .access = PL0_RW, .accessfn = pmreg_access,
      .type = ARM_CP_IO,
      .readfn = pmccntr_read, .writefn = pmccntr_write, },
957
#endif
958 959
    { .name = "PMCCFILTR_EL0", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 15, .opc2 = 7,
960
      .writefn = pmccfiltr_write,
961 962 963 964
      .access = PL0_RW, .accessfn = pmreg_access,
      .type = ARM_CP_IO,
      .fieldoffset = offsetof(CPUARMState, cp15.pmccfiltr_el0),
      .resetvalue = 0, },
965 966 967
    { .name = "PMXEVTYPER", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 1,
      .access = PL0_RW,
      .fieldoffset = offsetof(CPUARMState, cp15.c9_pmxevtyper),
968 969 970
      .accessfn = pmreg_access, .writefn = pmxevtyper_write,
      .raw_writefn = raw_write },
    /* Unimplemented, RAZ/WI. */
971
    { .name = "PMXEVCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 2,
972 973
      .access = PL0_RW, .type = ARM_CP_CONST, .resetvalue = 0,
      .accessfn = pmreg_access },
974 975 976 977
    { .name = "PMUSERENR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 0,
      .access = PL0_R | PL1_RW,
      .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr),
      .resetvalue = 0,
978
      .writefn = pmuserenr_write, .raw_writefn = raw_write },
979 980 981 982
    { .name = "PMINTENSET", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 1,
      .access = PL1_RW,
      .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
      .resetvalue = 0,
983
      .writefn = pmintenset_write, .raw_writefn = raw_write },
984
    { .name = "PMINTENCLR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 2,
985
      .access = PL1_RW, .type = ARM_CP_ALIAS,
986
      .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
987
      .writefn = pmintenclr_write, },
988 989
    { .name = "VBAR", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .crn = 12, .crm = 0, .opc1 = 0, .opc2 = 0,
N
Nathan Rossi 已提交
990
      .access = PL1_RW, .writefn = vbar_write,
G
Greg Bellows 已提交
991 992
      .bank_fieldoffsets = { offsetof(CPUARMState, cp15.vbar_s),
                             offsetof(CPUARMState, cp15.vbar_ns) },
N
Nathan Rossi 已提交
993
      .resetvalue = 0 },
994 995
    { .name = "CCSIDR", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 0,
996
      .access = PL1_R, .readfn = ccsidr_read, .type = ARM_CP_NO_RAW },
997 998
    { .name = "CSSELR", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 2, .opc2 = 0,
F
Fabian Aggeler 已提交
999 1000 1001
      .access = PL1_RW, .writefn = csselr_write, .resetvalue = 0,
      .bank_fieldoffsets = { offsetof(CPUARMState, cp15.csselr_s),
                             offsetof(CPUARMState, cp15.csselr_ns) } },
1002 1003 1004
    /* Auxiliary ID register: this actually has an IMPDEF value but for now
     * just RAZ for all cores:
     */
1005 1006
    { .name = "AIDR", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 7,
1007
      .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
1008 1009 1010 1011 1012 1013 1014 1015 1016
    /* Auxiliary fault status registers: these also are IMPDEF, and we
     * choose to RAZ/WI for all cores.
     */
    { .name = "AFSR0_EL1", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 0,
      .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
    { .name = "AFSR1_EL1", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 1,
      .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
1017 1018 1019 1020 1021
    /* MAIR can just read-as-written because we don't implement caches
     * and so don't need to care about memory attributes.
     */
    { .name = "MAIR_EL1", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0,
G
Greg Bellows 已提交
1022
      .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[1]),
1023 1024 1025 1026
      .resetvalue = 0 },
    /* For non-long-descriptor page tables these are PRRR and NMRR;
     * regardless they still act as reads-as-written for QEMU.
     */
1027
     /* MAIR0/1 are defined separately from their 64-bit counterpart which
G
Greg Bellows 已提交
1028 1029 1030
      * allows them to assign the correct fieldoffset based on the endianness
      * handled in the field definitions.
      */
1031
    { .name = "MAIR0", .state = ARM_CP_STATE_AA32,
1032
      .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, .access = PL1_RW,
G
Greg Bellows 已提交
1033 1034
      .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair0_s),
                             offsetof(CPUARMState, cp15.mair0_ns) },
1035
      .resetfn = arm_cp_reset_ignore },
1036
    { .name = "MAIR1", .state = ARM_CP_STATE_AA32,
1037
      .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 1, .access = PL1_RW,
G
Greg Bellows 已提交
1038 1039
      .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair1_s),
                             offsetof(CPUARMState, cp15.mair1_ns) },
1040
      .resetfn = arm_cp_reset_ignore },
1041 1042
    { .name = "ISR_EL1", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 0,
1043
      .type = ARM_CP_NO_RAW, .access = PL1_R, .readfn = isr_read },
1044 1045
    /* 32 bit ITLB invalidates */
    { .name = "ITLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 0,
1046
      .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write },
1047
    { .name = "ITLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1,
1048
      .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
1049
    { .name = "ITLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 2,
1050
      .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write },
1051 1052
    /* 32 bit DTLB invalidates */
    { .name = "DTLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 0,
1053
      .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write },
1054
    { .name = "DTLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1,
1055
      .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
1056
    { .name = "DTLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 2,
1057
      .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write },
1058 1059
    /* 32 bit TLB invalidates */
    { .name = "TLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0,
1060
      .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write },
1061
    { .name = "TLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1,
1062
      .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
1063
    { .name = "TLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2,
1064
      .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write },
1065
    { .name = "TLBIMVAA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3,
1066
      .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimvaa_write },
1067 1068 1069 1070 1071 1072
    REGINFO_SENTINEL
};

static const ARMCPRegInfo v7mp_cp_reginfo[] = {
    /* 32 bit TLB invalidates, Inner Shareable */
    { .name = "TLBIALLIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0,
1073
      .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_is_write },
1074
    { .name = "TLBIMVAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1,
1075
      .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_is_write },
1076
    { .name = "TLBIASIDIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2,
1077
      .type = ARM_CP_NO_RAW, .access = PL1_W,
1078
      .writefn = tlbiasid_is_write },
1079
    { .name = "TLBIMVAAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3,
1080
      .type = ARM_CP_NO_RAW, .access = PL1_W,
1081
      .writefn = tlbimvaa_is_write },
1082 1083 1084
    REGINFO_SENTINEL
};

1085 1086
static void teecr_write(CPUARMState *env, const ARMCPRegInfo *ri,
                        uint64_t value)
1087 1088 1089 1090 1091
{
    value &= 1;
    env->teecr = value;
}

1092
static CPAccessResult teehbr_access(CPUARMState *env, const ARMCPRegInfo *ri)
1093
{
1094
    if (arm_current_el(env) == 0 && (env->teecr & 1)) {
1095
        return CP_ACCESS_TRAP;
1096
    }
1097
    return CP_ACCESS_OK;
1098 1099 1100 1101 1102 1103 1104 1105 1106
}

static const ARMCPRegInfo t2ee_cp_reginfo[] = {
    { .name = "TEECR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 6, .opc2 = 0,
      .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, teecr),
      .resetvalue = 0,
      .writefn = teecr_write },
    { .name = "TEEHBR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 6, .opc2 = 0,
      .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, teehbr),
1107
      .accessfn = teehbr_access, .resetvalue = 0 },
1108 1109 1110
    REGINFO_SENTINEL
};

1111
static const ARMCPRegInfo v6k_cp_reginfo[] = {
1112 1113 1114
    { .name = "TPIDR_EL0", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 3, .opc2 = 2, .crn = 13, .crm = 0,
      .access = PL0_RW,
1115
      .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[0]), .resetvalue = 0 },
1116 1117
    { .name = "TPIDRURW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 2,
      .access = PL0_RW,
1118 1119
      .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrurw_s),
                             offsetoflow32(CPUARMState, cp15.tpidrurw_ns) },
1120 1121 1122 1123
      .resetfn = arm_cp_reset_ignore },
    { .name = "TPIDRRO_EL0", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 3, .opc2 = 3, .crn = 13, .crm = 0,
      .access = PL0_R|PL1_W,
1124 1125
      .fieldoffset = offsetof(CPUARMState, cp15.tpidrro_el[0]),
      .resetvalue = 0},
1126 1127
    { .name = "TPIDRURO", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 3,
      .access = PL0_R|PL1_W,
1128 1129
      .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidruro_s),
                             offsetoflow32(CPUARMState, cp15.tpidruro_ns) },
1130
      .resetfn = arm_cp_reset_ignore },
1131
    { .name = "TPIDR_EL1", .state = ARM_CP_STATE_AA64,
1132
      .opc0 = 3, .opc1 = 0, .opc2 = 4, .crn = 13, .crm = 0,
1133
      .access = PL1_RW,
1134 1135 1136 1137 1138 1139
      .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[1]), .resetvalue = 0 },
    { .name = "TPIDRPRW", .opc1 = 0, .cp = 15, .crn = 13, .crm = 0, .opc2 = 4,
      .access = PL1_RW,
      .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrprw_s),
                             offsetoflow32(CPUARMState, cp15.tpidrprw_ns) },
      .resetvalue = 0 },
1140 1141 1142
    REGINFO_SENTINEL
};

1143 1144
#ifndef CONFIG_USER_ONLY

1145 1146 1147
static CPAccessResult gt_cntfrq_access(CPUARMState *env, const ARMCPRegInfo *ri)
{
    /* CNTFRQ: not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero */
1148
    if (arm_current_el(env) == 0 && !extract32(env->cp15.c14_cntkctl, 0, 2)) {
1149 1150 1151 1152 1153 1154 1155 1156
        return CP_ACCESS_TRAP;
    }
    return CP_ACCESS_OK;
}

static CPAccessResult gt_counter_access(CPUARMState *env, int timeridx)
{
    /* CNT[PV]CT: not visible from PL0 if ELO[PV]CTEN is zero */
1157
    if (arm_current_el(env) == 0 &&
1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168
        !extract32(env->cp15.c14_cntkctl, timeridx, 1)) {
        return CP_ACCESS_TRAP;
    }
    return CP_ACCESS_OK;
}

static CPAccessResult gt_timer_access(CPUARMState *env, int timeridx)
{
    /* CNT[PV]_CVAL, CNT[PV]_CTL, CNT[PV]_TVAL: not visible from PL0 if
     * EL0[PV]TEN is zero.
     */
1169
    if (arm_current_el(env) == 0 &&
1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197
        !extract32(env->cp15.c14_cntkctl, 9 - timeridx, 1)) {
        return CP_ACCESS_TRAP;
    }
    return CP_ACCESS_OK;
}

static CPAccessResult gt_pct_access(CPUARMState *env,
                                         const ARMCPRegInfo *ri)
{
    return gt_counter_access(env, GTIMER_PHYS);
}

static CPAccessResult gt_vct_access(CPUARMState *env,
                                         const ARMCPRegInfo *ri)
{
    return gt_counter_access(env, GTIMER_VIRT);
}

static CPAccessResult gt_ptimer_access(CPUARMState *env, const ARMCPRegInfo *ri)
{
    return gt_timer_access(env, GTIMER_PHYS);
}

static CPAccessResult gt_vtimer_access(CPUARMState *env, const ARMCPRegInfo *ri)
{
    return gt_timer_access(env, GTIMER_VIRT);
}

1198 1199
static uint64_t gt_get_countervalue(CPUARMState *env)
{
1200
    return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / GTIMER_SCALE;
1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233
}

static void gt_recalc_timer(ARMCPU *cpu, int timeridx)
{
    ARMGenericTimer *gt = &cpu->env.cp15.c14_timer[timeridx];

    if (gt->ctl & 1) {
        /* Timer enabled: calculate and set current ISTATUS, irq, and
         * reset timer to when ISTATUS next has to change
         */
        uint64_t count = gt_get_countervalue(&cpu->env);
        /* Note that this must be unsigned 64 bit arithmetic: */
        int istatus = count >= gt->cval;
        uint64_t nexttick;

        gt->ctl = deposit32(gt->ctl, 2, 1, istatus);
        qemu_set_irq(cpu->gt_timer_outputs[timeridx],
                     (istatus && !(gt->ctl & 2)));
        if (istatus) {
            /* Next transition is when count rolls back over to zero */
            nexttick = UINT64_MAX;
        } else {
            /* Next transition is when we hit cval */
            nexttick = gt->cval;
        }
        /* Note that the desired next expiry time might be beyond the
         * signed-64-bit range of a QEMUTimer -- in this case we just
         * set the timer for as far in the future as possible. When the
         * timer expires we will reset the timer for any remaining period.
         */
        if (nexttick > INT64_MAX / GTIMER_SCALE) {
            nexttick = INT64_MAX / GTIMER_SCALE;
        }
1234
        timer_mod(cpu->gt_timer[timeridx], nexttick);
1235 1236 1237 1238
    } else {
        /* Timer disabled: ISTATUS and timer output always clear */
        gt->ctl &= ~4;
        qemu_set_irq(cpu->gt_timer_outputs[timeridx], 0);
1239
        timer_del(cpu->gt_timer[timeridx]);
1240 1241 1242 1243 1244 1245 1246 1247
    }
}

static void gt_cnt_reset(CPUARMState *env, const ARMCPRegInfo *ri)
{
    ARMCPU *cpu = arm_env_get_cpu(env);
    int timeridx = ri->opc1 & 1;

1248
    timer_del(cpu->gt_timer[timeridx]);
1249 1250
}

1251
static uint64_t gt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
1252
{
1253
    return gt_get_countervalue(env);
1254 1255
}

1256 1257
static void gt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
                          uint64_t value)
1258 1259 1260 1261 1262 1263
{
    int timeridx = ri->opc1 & 1;

    env->cp15.c14_timer[timeridx].cval = value;
    gt_recalc_timer(arm_env_get_cpu(env), timeridx);
}
1264 1265

static uint64_t gt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
1266 1267 1268
{
    int timeridx = ri->crm & 1;

1269 1270
    return (uint32_t)(env->cp15.c14_timer[timeridx].cval -
                      gt_get_countervalue(env));
1271 1272
}

1273 1274
static void gt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
                          uint64_t value)
1275 1276 1277 1278
{
    int timeridx = ri->crm & 1;

    env->cp15.c14_timer[timeridx].cval = gt_get_countervalue(env) +
1279
                                         sextract64(value, 0, 32);
1280 1281 1282
    gt_recalc_timer(arm_env_get_cpu(env), timeridx);
}

1283 1284
static void gt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
                         uint64_t value)
1285 1286 1287 1288 1289
{
    ARMCPU *cpu = arm_env_get_cpu(env);
    int timeridx = ri->crm & 1;
    uint32_t oldval = env->cp15.c14_timer[timeridx].ctl;

1290
    env->cp15.c14_timer[timeridx].ctl = deposit64(oldval, 0, 2, value);
1291 1292 1293
    if ((oldval ^ value) & 1) {
        /* Enable toggled */
        gt_recalc_timer(cpu, timeridx);
1294
    } else if ((oldval ^ value) & 2) {
1295 1296 1297 1298
        /* IMASK toggled: don't need to recalculate,
         * just set the interrupt line based on ISTATUS
         */
        qemu_set_irq(cpu->gt_timer_outputs[timeridx],
1299
                     (oldval & 4) && !(value & 2));
1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322
    }
}

void arm_gt_ptimer_cb(void *opaque)
{
    ARMCPU *cpu = opaque;

    gt_recalc_timer(cpu, GTIMER_PHYS);
}

void arm_gt_vtimer_cb(void *opaque)
{
    ARMCPU *cpu = opaque;

    gt_recalc_timer(cpu, GTIMER_VIRT);
}

static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
    /* Note that CNTFRQ is purely reads-as-written for the benefit
     * of software; writing it doesn't actually change the timer frequency.
     * Our reset value matches the fixed frequency we implement the timer at.
     */
    { .name = "CNTFRQ", .cp = 15, .crn = 14, .crm = 0, .opc1 = 0, .opc2 = 0,
1323
      .type = ARM_CP_ALIAS,
1324 1325 1326 1327 1328 1329
      .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
      .fieldoffset = offsetoflow32(CPUARMState, cp15.c14_cntfrq),
    },
    { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0,
      .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
1330 1331 1332 1333
      .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq),
      .resetvalue = (1000 * 1000 * 1000) / GTIMER_SCALE,
    },
    /* overall control: mostly access permissions */
1334 1335
    { .name = "CNTKCTL", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .opc1 = 0, .crn = 14, .crm = 1, .opc2 = 0,
1336 1337 1338 1339 1340 1341
      .access = PL1_RW,
      .fieldoffset = offsetof(CPUARMState, cp15.c14_cntkctl),
      .resetvalue = 0,
    },
    /* per-timer control */
    { .name = "CNTP_CTL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
1342
      .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL1_RW | PL0_R,
1343 1344 1345 1346 1347 1348 1349
      .accessfn = gt_ptimer_access,
      .fieldoffset = offsetoflow32(CPUARMState,
                                   cp15.c14_timer[GTIMER_PHYS].ctl),
      .writefn = gt_ctl_write, .raw_writefn = raw_write,
    },
    { .name = "CNTP_CTL_EL0", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 1,
1350
      .type = ARM_CP_IO, .access = PL1_RW | PL0_R,
1351
      .accessfn = gt_ptimer_access,
1352 1353
      .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl),
      .resetvalue = 0,
1354
      .writefn = gt_ctl_write, .raw_writefn = raw_write,
1355 1356
    },
    { .name = "CNTV_CTL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 1,
1357
      .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL1_RW | PL0_R,
1358 1359 1360 1361 1362 1363 1364
      .accessfn = gt_vtimer_access,
      .fieldoffset = offsetoflow32(CPUARMState,
                                   cp15.c14_timer[GTIMER_VIRT].ctl),
      .writefn = gt_ctl_write, .raw_writefn = raw_write,
    },
    { .name = "CNTV_CTL_EL0", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 1,
1365
      .type = ARM_CP_IO, .access = PL1_RW | PL0_R,
1366
      .accessfn = gt_vtimer_access,
1367 1368
      .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl),
      .resetvalue = 0,
1369
      .writefn = gt_ctl_write, .raw_writefn = raw_write,
1370 1371 1372
    },
    /* TimerValue views: a 32 bit downcounting view of the underlying state */
    { .name = "CNTP_TVAL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
1373
      .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
1374
      .accessfn = gt_ptimer_access,
1375 1376
      .readfn = gt_tval_read, .writefn = gt_tval_write,
    },
1377 1378
    { .name = "CNTP_TVAL_EL0", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 0,
1379
      .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
1380
      .accessfn = gt_ptimer_access,
1381 1382
      .readfn = gt_tval_read, .writefn = gt_tval_write,
    },
1383
    { .name = "CNTV_TVAL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 0,
1384
      .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
1385
      .accessfn = gt_vtimer_access,
1386 1387
      .readfn = gt_tval_read, .writefn = gt_tval_write,
    },
1388 1389
    { .name = "CNTV_TVAL_EL0", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 0,
1390
      .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
1391
      .accessfn = gt_vtimer_access,
1392 1393
      .readfn = gt_tval_read, .writefn = gt_tval_write,
    },
1394 1395
    /* The counter itself */
    { .name = "CNTPCT", .cp = 15, .crm = 14, .opc1 = 0,
1396
      .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
1397
      .accessfn = gt_pct_access,
1398 1399 1400 1401
      .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore,
    },
    { .name = "CNTPCT_EL0", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 1,
1402
      .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
1403
      .accessfn = gt_pct_access,
1404 1405 1406
      .readfn = gt_cnt_read, .resetfn = gt_cnt_reset,
    },
    { .name = "CNTVCT", .cp = 15, .crm = 14, .opc1 = 1,
1407
      .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
1408
      .accessfn = gt_vct_access,
1409 1410 1411 1412
      .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore,
    },
    { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2,
1413
      .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
1414
      .accessfn = gt_vct_access,
1415 1416 1417 1418 1419
      .readfn = gt_cnt_read, .resetfn = gt_cnt_reset,
    },
    /* Comparison value, indicating when the timer goes off */
    { .name = "CNTP_CVAL", .cp = 15, .crm = 14, .opc1 = 2,
      .access = PL1_RW | PL0_R,
1420
      .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
1421
      .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
1422
      .accessfn = gt_ptimer_access,
1423 1424 1425 1426 1427 1428 1429
      .writefn = gt_cval_write, .raw_writefn = raw_write,
    },
    { .name = "CNTP_CVAL_EL0", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 2,
      .access = PL1_RW | PL0_R,
      .type = ARM_CP_IO,
      .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
1430
      .resetvalue = 0, .accessfn = gt_ptimer_access,
1431
      .writefn = gt_cval_write, .raw_writefn = raw_write,
1432 1433 1434
    },
    { .name = "CNTV_CVAL", .cp = 15, .crm = 14, .opc1 = 3,
      .access = PL1_RW | PL0_R,
1435
      .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
1436
      .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
1437
      .accessfn = gt_vtimer_access,
1438 1439 1440 1441 1442 1443 1444 1445
      .writefn = gt_cval_write, .raw_writefn = raw_write,
    },
    { .name = "CNTV_CVAL_EL0", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 2,
      .access = PL1_RW | PL0_R,
      .type = ARM_CP_IO,
      .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
      .resetvalue = 0, .accessfn = gt_vtimer_access,
1446
      .writefn = gt_cval_write, .raw_writefn = raw_write,
1447 1448 1449 1450 1451 1452
    },
    REGINFO_SENTINEL
};

#else
/* In user-mode none of the generic timer registers are accessible,
1453
 * and their implementation depends on QEMU_CLOCK_VIRTUAL and qdev gpio outputs,
1454 1455
 * so instead just don't register any of them.
 */
1456 1457 1458 1459
static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
    REGINFO_SENTINEL
};

1460 1461
#endif

1462
static void par_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
1463
{
1464
    if (arm_feature(env, ARM_FEATURE_LPAE)) {
1465
        raw_write(env, ri, value);
1466
    } else if (arm_feature(env, ARM_FEATURE_V7)) {
1467
        raw_write(env, ri, value & 0xfffff6ff);
1468
    } else {
1469
        raw_write(env, ri, value & 0xfffff1ff);
1470 1471 1472 1473 1474
    }
}

#ifndef CONFIG_USER_ONLY
/* get_phys_addr() isn't present for user-mode-only targets */
1475

1476 1477 1478 1479 1480 1481
static CPAccessResult ats_access(CPUARMState *env, const ARMCPRegInfo *ri)
{
    if (ri->opc2 & 4) {
        /* Other states are only available with TrustZone; in
         * a non-TZ implementation these registers don't exist
         * at all, which is an Uncategorized trap. This underdecoding
1482
         * is safe because the reginfo is NO_RAW.
1483 1484 1485 1486 1487 1488
         */
        return CP_ACCESS_TRAP_UNCATEGORIZED;
    }
    return CP_ACCESS_OK;
}

1489
static uint64_t do_ats_write(CPUARMState *env, uint64_t value,
1490
                             int access_type, ARMMMUIdx mmu_idx)
1491
{
A
Avi Kivity 已提交
1492
    hwaddr phys_addr;
1493 1494
    target_ulong page_size;
    int prot;
1495 1496
    uint32_t fsr;
    bool ret;
F
Fabian Aggeler 已提交
1497
    uint64_t par64;
1498
    MemTxAttrs attrs = {};
1499

1500
    ret = get_phys_addr(env, value, access_type, mmu_idx,
1501
                        &phys_addr, &attrs, &prot, &page_size, &fsr);
1502
    if (extended_addresses_enabled(env)) {
1503
        /* fsr is a DFSR/IFSR value for the long descriptor
1504 1505 1506
         * translation table format, but with WnR always clear.
         * Convert it to a 64-bit PAR.
         */
F
Fabian Aggeler 已提交
1507
        par64 = (1 << 11); /* LPAE bit always set */
1508
        if (!ret) {
1509
            par64 |= phys_addr & ~0xfffULL;
1510 1511 1512
            if (!attrs.secure) {
                par64 |= (1 << 9); /* NS */
            }
1513
            /* We don't set the ATTR or SH fields in the PAR. */
1514
        } else {
1515
            par64 |= 1; /* F */
1516
            par64 |= (fsr & 0x3f) << 1; /* FS */
1517 1518 1519 1520
            /* Note that S2WLK and FSTAGE are always zero, because we don't
             * implement virtualization and therefore there can't be a stage 2
             * fault.
             */
1521 1522
        }
    } else {
1523
        /* fsr is a DFSR/IFSR value for the short descriptor
1524 1525 1526
         * translation table format (with WnR always clear).
         * Convert it to a 32-bit PAR.
         */
1527
        if (!ret) {
1528 1529 1530
            /* We do not set any attribute bits in the PAR */
            if (page_size == (1 << 24)
                && arm_feature(env, ARM_FEATURE_V7)) {
F
Fabian Aggeler 已提交
1531
                par64 = (phys_addr & 0xff000000) | (1 << 1);
1532
            } else {
F
Fabian Aggeler 已提交
1533
                par64 = phys_addr & 0xfffff000;
1534
            }
1535 1536 1537
            if (!attrs.secure) {
                par64 |= (1 << 9); /* NS */
            }
1538
        } else {
1539 1540
            par64 = ((fsr & (1 << 10)) >> 5) | ((fsr & (1 << 12)) >> 6) |
                    ((fsr & 0xf) << 1) | 1;
1541
        }
1542
    }
1543 1544 1545 1546 1547 1548 1549
    return par64;
}

static void ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
{
    int access_type = ri->opc2 & 1;
    uint64_t par64;
1550 1551 1552
    ARMMMUIdx mmu_idx;
    int el = arm_current_el(env);
    bool secure = arm_is_secure_below_el3(env);
1553

1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599
    switch (ri->opc2 & 6) {
    case 0:
        /* stage 1 current state PL1: ATS1CPR, ATS1CPW */
        switch (el) {
        case 3:
            mmu_idx = ARMMMUIdx_S1E3;
            break;
        case 2:
            mmu_idx = ARMMMUIdx_S1NSE1;
            break;
        case 1:
            mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S1NSE1;
            break;
        default:
            g_assert_not_reached();
        }
        break;
    case 2:
        /* stage 1 current state PL0: ATS1CUR, ATS1CUW */
        switch (el) {
        case 3:
            mmu_idx = ARMMMUIdx_S1SE0;
            break;
        case 2:
            mmu_idx = ARMMMUIdx_S1NSE0;
            break;
        case 1:
            mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S1NSE0;
            break;
        default:
            g_assert_not_reached();
        }
        break;
    case 4:
        /* stage 1+2 NonSecure PL1: ATS12NSOPR, ATS12NSOPW */
        mmu_idx = ARMMMUIdx_S12NSE1;
        break;
    case 6:
        /* stage 1+2 NonSecure PL0: ATS12NSOUR, ATS12NSOUW */
        mmu_idx = ARMMMUIdx_S12NSE0;
        break;
    default:
        g_assert_not_reached();
    }

    par64 = do_ats_write(env, value, access_type, mmu_idx);
F
Fabian Aggeler 已提交
1600 1601

    A32_BANKED_CURRENT_REG_SET(env, par, par64);
1602
}
1603 1604 1605 1606 1607

static void ats_write64(CPUARMState *env, const ARMCPRegInfo *ri,
                        uint64_t value)
{
    int access_type = ri->opc2 & 1;
1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638
    ARMMMUIdx mmu_idx;
    int secure = arm_is_secure_below_el3(env);

    switch (ri->opc2 & 6) {
    case 0:
        switch (ri->opc1) {
        case 0: /* AT S1E1R, AT S1E1W */
            mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S1NSE1;
            break;
        case 4: /* AT S1E2R, AT S1E2W */
            mmu_idx = ARMMMUIdx_S1E2;
            break;
        case 6: /* AT S1E3R, AT S1E3W */
            mmu_idx = ARMMMUIdx_S1E3;
            break;
        default:
            g_assert_not_reached();
        }
        break;
    case 2: /* AT S1E0R, AT S1E0W */
        mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S1NSE0;
        break;
    case 4: /* AT S12E1R, AT S12E1W */
        mmu_idx = ARMMMUIdx_S12NSE1;
        break;
    case 6: /* AT S12E0R, AT S12E0W */
        mmu_idx = ARMMMUIdx_S12NSE0;
        break;
    default:
        g_assert_not_reached();
    }
1639

1640
    env->cp15.par_el[1] = do_ats_write(env, value, access_type, mmu_idx);
1641
}
1642 1643 1644 1645 1646
#endif

static const ARMCPRegInfo vapa_cp_reginfo[] = {
    { .name = "PAR", .cp = 15, .crn = 7, .crm = 4, .opc1 = 0, .opc2 = 0,
      .access = PL1_RW, .resetvalue = 0,
F
Fabian Aggeler 已提交
1647 1648
      .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.par_s),
                             offsetoflow32(CPUARMState, cp15.par_ns) },
1649 1650 1651
      .writefn = par_write },
#ifndef CONFIG_USER_ONLY
    { .name = "ATS", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = CP_ANY,
1652
      .access = PL1_W, .accessfn = ats_access,
1653
      .writefn = ats_write, .type = ARM_CP_NO_RAW },
1654 1655 1656 1657
#endif
    REGINFO_SENTINEL
};

1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687
/* Return basic MPU access permission bits.  */
static uint32_t simple_mpu_ap_bits(uint32_t val)
{
    uint32_t ret;
    uint32_t mask;
    int i;
    ret = 0;
    mask = 3;
    for (i = 0; i < 16; i += 2) {
        ret |= (val >> i) & mask;
        mask <<= 2;
    }
    return ret;
}

/* Pad basic MPU access permission bits to extended format.  */
static uint32_t extended_mpu_ap_bits(uint32_t val)
{
    uint32_t ret;
    uint32_t mask;
    int i;
    ret = 0;
    mask = 3;
    for (i = 0; i < 16; i += 2) {
        ret |= (val & mask) << i;
        mask <<= 2;
    }
    return ret;
}

1688 1689
static void pmsav5_data_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
                                 uint64_t value)
1690
{
1691
    env->cp15.pmsav5_data_ap = extended_mpu_ap_bits(value);
1692 1693
}

1694
static uint64_t pmsav5_data_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
1695
{
1696
    return simple_mpu_ap_bits(env->cp15.pmsav5_data_ap);
1697 1698
}

1699 1700
static void pmsav5_insn_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
                                 uint64_t value)
1701
{
1702
    env->cp15.pmsav5_insn_ap = extended_mpu_ap_bits(value);
1703 1704
}

1705
static uint64_t pmsav5_insn_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
1706
{
1707
    return simple_mpu_ap_bits(env->cp15.pmsav5_insn_ap);
1708 1709 1710 1711
}

static const ARMCPRegInfo pmsav5_cp_reginfo[] = {
    { .name = "DATA_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
1712
      .access = PL1_RW, .type = ARM_CP_ALIAS,
1713
      .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
1714 1715
      .readfn = pmsav5_data_ap_read, .writefn = pmsav5_data_ap_write, },
    { .name = "INSN_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
1716
      .access = PL1_RW, .type = ARM_CP_ALIAS,
1717
      .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
1718 1719 1720
      .readfn = pmsav5_insn_ap_read, .writefn = pmsav5_insn_ap_write, },
    { .name = "DATA_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 2,
      .access = PL1_RW,
1721 1722
      .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
      .resetvalue = 0, },
1723 1724
    { .name = "INSN_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 3,
      .access = PL1_RW,
1725 1726
      .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
      .resetvalue = 0, },
1727 1728 1729 1730 1731 1732
    { .name = "DCACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
      .access = PL1_RW,
      .fieldoffset = offsetof(CPUARMState, cp15.c2_data), .resetvalue = 0, },
    { .name = "ICACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1,
      .access = PL1_RW,
      .fieldoffset = offsetof(CPUARMState, cp15.c2_insn), .resetvalue = 0, },
1733
    /* Protection region base and size registers */
1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757
    { .name = "946_PRBS0", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0,
      .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
      .fieldoffset = offsetof(CPUARMState, cp15.c6_region[0]) },
    { .name = "946_PRBS1", .cp = 15, .crn = 6, .crm = 1, .opc1 = 0,
      .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
      .fieldoffset = offsetof(CPUARMState, cp15.c6_region[1]) },
    { .name = "946_PRBS2", .cp = 15, .crn = 6, .crm = 2, .opc1 = 0,
      .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
      .fieldoffset = offsetof(CPUARMState, cp15.c6_region[2]) },
    { .name = "946_PRBS3", .cp = 15, .crn = 6, .crm = 3, .opc1 = 0,
      .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
      .fieldoffset = offsetof(CPUARMState, cp15.c6_region[3]) },
    { .name = "946_PRBS4", .cp = 15, .crn = 6, .crm = 4, .opc1 = 0,
      .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
      .fieldoffset = offsetof(CPUARMState, cp15.c6_region[4]) },
    { .name = "946_PRBS5", .cp = 15, .crn = 6, .crm = 5, .opc1 = 0,
      .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
      .fieldoffset = offsetof(CPUARMState, cp15.c6_region[5]) },
    { .name = "946_PRBS6", .cp = 15, .crn = 6, .crm = 6, .opc1 = 0,
      .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
      .fieldoffset = offsetof(CPUARMState, cp15.c6_region[6]) },
    { .name = "946_PRBS7", .cp = 15, .crn = 6, .crm = 7, .opc1 = 0,
      .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
      .fieldoffset = offsetof(CPUARMState, cp15.c6_region[7]) },
1758 1759 1760
    REGINFO_SENTINEL
};

1761 1762
static void vmsa_ttbcr_raw_write(CPUARMState *env, const ARMCPRegInfo *ri,
                                 uint64_t value)
1763
{
F
Fabian Aggeler 已提交
1764
    TCR *tcr = raw_ptr(env, ri);
1765 1766
    int maskshift = extract32(value, 0, 3);

1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780
    if (!arm_feature(env, ARM_FEATURE_V8)) {
        if (arm_feature(env, ARM_FEATURE_LPAE) && (value & TTBCR_EAE)) {
            /* Pre ARMv8 bits [21:19], [15:14] and [6:3] are UNK/SBZP when
             * using Long-desciptor translation table format */
            value &= ~((7 << 19) | (3 << 14) | (0xf << 3));
        } else if (arm_feature(env, ARM_FEATURE_EL3)) {
            /* In an implementation that includes the Security Extensions
             * TTBCR has additional fields PD0 [4] and PD1 [5] for
             * Short-descriptor translation table format.
             */
            value &= TTBCR_PD1 | TTBCR_PD0 | TTBCR_N;
        } else {
            value &= TTBCR_N;
        }
1781
    }
1782

F
Fabian Aggeler 已提交
1783 1784
    /* Update the masks corresponding to the the TCR bank being written
     * Note that we always calculate mask and base_mask, but
1785
     * they are only used for short-descriptor tables (ie if EAE is 0);
F
Fabian Aggeler 已提交
1786 1787
     * for long-descriptor tables the TCR fields are used differently
     * and the mask and base_mask values are meaningless.
1788
     */
F
Fabian Aggeler 已提交
1789 1790 1791
    tcr->raw_tcr = value;
    tcr->mask = ~(((uint32_t)0xffffffffu) >> maskshift);
    tcr->base_mask = ~((uint32_t)0x3fffu >> maskshift);
1792 1793
}

1794 1795
static void vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
                             uint64_t value)
1796
{
1797 1798
    ARMCPU *cpu = arm_env_get_cpu(env);

1799 1800 1801 1802
    if (arm_feature(env, ARM_FEATURE_LPAE)) {
        /* With LPAE the TTBCR could result in a change of ASID
         * via the TTBCR.A1 bit, so do a TLB flush.
         */
1803
        tlb_flush(CPU(cpu), 1);
1804
    }
1805
    vmsa_ttbcr_raw_write(env, ri, value);
1806 1807
}

1808 1809
static void vmsa_ttbcr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
{
F
Fabian Aggeler 已提交
1810 1811 1812 1813 1814 1815 1816 1817
    TCR *tcr = raw_ptr(env, ri);

    /* Reset both the TCR as well as the masks corresponding to the bank of
     * the TCR being reset.
     */
    tcr->raw_tcr = 0;
    tcr->mask = 0;
    tcr->base_mask = 0xffffc000u;
1818 1819
}

1820 1821 1822
static void vmsa_tcr_el1_write(CPUARMState *env, const ARMCPRegInfo *ri,
                               uint64_t value)
{
1823
    ARMCPU *cpu = arm_env_get_cpu(env);
F
Fabian Aggeler 已提交
1824
    TCR *tcr = raw_ptr(env, ri);
1825

1826
    /* For AArch64 the A1 bit could result in a change of ASID, so TLB flush. */
1827
    tlb_flush(CPU(cpu), 1);
F
Fabian Aggeler 已提交
1828
    tcr->raw_tcr = value;
1829 1830
}

1831 1832 1833 1834 1835 1836 1837
static void vmsa_ttbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
                            uint64_t value)
{
    /* 64 bit accesses to the TTBRs can change the ASID and so we
     * must flush the TLB.
     */
    if (cpreg_field_is_64bit(ri)) {
1838 1839 1840
        ARMCPU *cpu = arm_env_get_cpu(env);

        tlb_flush(CPU(cpu), 1);
1841 1842 1843 1844
    }
    raw_write(env, ri, value);
}

1845
static const ARMCPRegInfo vmsa_pmsa_cp_reginfo[] = {
1846
    { .name = "DFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
1847
      .access = PL1_RW, .type = ARM_CP_ALIAS,
F
Fabian Aggeler 已提交
1848
      .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dfsr_s),
1849
                             offsetoflow32(CPUARMState, cp15.dfsr_ns) }, },
1850
    { .name = "IFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
F
Fabian Aggeler 已提交
1851 1852 1853
      .access = PL1_RW, .resetvalue = 0,
      .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.ifsr_s),
                             offsetoflow32(CPUARMState, cp15.ifsr_ns) } },
1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865
    { .name = "DFAR", .cp = 15, .opc1 = 0, .crn = 6, .crm = 0, .opc2 = 0,
      .access = PL1_RW, .resetvalue = 0,
      .bank_fieldoffsets = { offsetof(CPUARMState, cp15.dfar_s),
                             offsetof(CPUARMState, cp15.dfar_ns) } },
    { .name = "FAR_EL1", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0,
      .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[1]),
      .resetvalue = 0, },
    REGINFO_SENTINEL
};

static const ARMCPRegInfo vmsa_cp_reginfo[] = {
1866 1867 1868
    { .name = "ESR_EL1", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .crn = 5, .crm = 2, .opc1 = 0, .opc2 = 0,
      .access = PL1_RW,
1869
      .fieldoffset = offsetof(CPUARMState, cp15.esr_el[1]), .resetvalue = 0, },
1870
    { .name = "TTBR0_EL1", .state = ARM_CP_STATE_BOTH,
F
Fabian Aggeler 已提交
1871 1872 1873 1874
      .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 0,
      .access = PL1_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0,
      .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s),
                             offsetof(CPUARMState, cp15.ttbr0_ns) } },
1875
    { .name = "TTBR1_EL1", .state = ARM_CP_STATE_BOTH,
F
Fabian Aggeler 已提交
1876 1877 1878 1879
      .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 1,
      .access = PL1_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0,
      .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s),
                             offsetof(CPUARMState, cp15.ttbr1_ns) } },
1880 1881 1882 1883
    { .name = "TCR_EL1", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
      .access = PL1_RW, .writefn = vmsa_tcr_el1_write,
      .resetfn = vmsa_ttbcr_reset, .raw_writefn = raw_write,
F
Fabian Aggeler 已提交
1884
      .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[1]) },
1885
    { .name = "TTBCR", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
1886
      .access = PL1_RW, .type = ARM_CP_ALIAS, .writefn = vmsa_ttbcr_write,
1887
      .raw_writefn = vmsa_ttbcr_raw_write,
F
Fabian Aggeler 已提交
1888 1889
      .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tcr_el[3]),
                             offsetoflow32(CPUARMState, cp15.tcr_el[1])} },
1890 1891 1892
    REGINFO_SENTINEL
};

1893 1894
static void omap_ticonfig_write(CPUARMState *env, const ARMCPRegInfo *ri,
                                uint64_t value)
1895 1896 1897 1898 1899 1900 1901
{
    env->cp15.c15_ticonfig = value & 0xe7;
    /* The OS_TYPE bit in this register changes the reported CPUID! */
    env->cp15.c0_cpuid = (value & (1 << 5)) ?
        ARM_CPUID_TI915T : ARM_CPUID_TI925T;
}

1902 1903
static void omap_threadid_write(CPUARMState *env, const ARMCPRegInfo *ri,
                                uint64_t value)
1904 1905 1906 1907
{
    env->cp15.c15_threadid = value & 0xffff;
}

1908 1909
static void omap_wfi_write(CPUARMState *env, const ARMCPRegInfo *ri,
                           uint64_t value)
1910 1911
{
    /* Wait-for-interrupt (deprecated) */
1912
    cpu_interrupt(CPU(arm_env_get_cpu(env)), CPU_INTERRUPT_HALT);
1913 1914
}

1915 1916
static void omap_cachemaint_write(CPUARMState *env, const ARMCPRegInfo *ri,
                                  uint64_t value)
1917 1918 1919 1920 1921 1922 1923 1924
{
    /* On OMAP there are registers indicating the max/min index of dcache lines
     * containing a dirty line; cache flush operations have to reset these.
     */
    env->cp15.c15_i_max = 0x000;
    env->cp15.c15_i_min = 0xff0;
}

1925 1926 1927
static const ARMCPRegInfo omap_cp_reginfo[] = {
    { .name = "DFSR", .cp = 15, .crn = 5, .crm = CP_ANY,
      .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_OVERRIDE,
1928
      .fieldoffset = offsetoflow32(CPUARMState, cp15.esr_el[1]),
1929
      .resetvalue = 0, },
1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947
    { .name = "", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0,
      .access = PL1_RW, .type = ARM_CP_NOP },
    { .name = "TICONFIG", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0,
      .access = PL1_RW,
      .fieldoffset = offsetof(CPUARMState, cp15.c15_ticonfig), .resetvalue = 0,
      .writefn = omap_ticonfig_write },
    { .name = "IMAX", .cp = 15, .crn = 15, .crm = 2, .opc1 = 0, .opc2 = 0,
      .access = PL1_RW,
      .fieldoffset = offsetof(CPUARMState, cp15.c15_i_max), .resetvalue = 0, },
    { .name = "IMIN", .cp = 15, .crn = 15, .crm = 3, .opc1 = 0, .opc2 = 0,
      .access = PL1_RW, .resetvalue = 0xff0,
      .fieldoffset = offsetof(CPUARMState, cp15.c15_i_min) },
    { .name = "THREADID", .cp = 15, .crn = 15, .crm = 4, .opc1 = 0, .opc2 = 0,
      .access = PL1_RW,
      .fieldoffset = offsetof(CPUARMState, cp15.c15_threadid), .resetvalue = 0,
      .writefn = omap_threadid_write },
    { .name = "TI925T_STATUS", .cp = 15, .crn = 15,
      .crm = 8, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
1948
      .type = ARM_CP_NO_RAW,
1949 1950 1951 1952 1953 1954
      .readfn = arm_cp_read_zero, .writefn = omap_wfi_write, },
    /* TODO: Peripheral port remap register:
     * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller
     * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff),
     * when MMU is off.
     */
1955
    { .name = "OMAP_CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
1956
      .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
1957
      .type = ARM_CP_OVERRIDE | ARM_CP_NO_RAW,
1958
      .writefn = omap_cachemaint_write },
1959 1960 1961
    { .name = "C9", .cp = 15, .crn = 9,
      .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW,
      .type = ARM_CP_CONST | ARM_CP_OVERRIDE, .resetvalue = 0 },
1962 1963 1964
    REGINFO_SENTINEL
};

1965 1966
static void xscale_cpar_write(CPUARMState *env, const ARMCPRegInfo *ri,
                              uint64_t value)
1967
{
1968
    env->cp15.c15_cpar = value & 0x3fff;
1969 1970 1971 1972 1973 1974 1975
}

static const ARMCPRegInfo xscale_cp_reginfo[] = {
    { .name = "XSCALE_CPAR",
      .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
      .fieldoffset = offsetof(CPUARMState, cp15.c15_cpar), .resetvalue = 0,
      .writefn = xscale_cpar_write, },
1976 1977 1978 1979
    { .name = "XSCALE_AUXCR",
      .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW,
      .fieldoffset = offsetof(CPUARMState, cp15.c1_xscaleauxcr),
      .resetvalue = 0, },
1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994
    /* XScale specific cache-lockdown: since we have no cache we NOP these
     * and hope the guest does not really rely on cache behaviour.
     */
    { .name = "XSCALE_LOCK_ICACHE_LINE",
      .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0,
      .access = PL1_W, .type = ARM_CP_NOP },
    { .name = "XSCALE_UNLOCK_ICACHE",
      .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1,
      .access = PL1_W, .type = ARM_CP_NOP },
    { .name = "XSCALE_DCACHE_LOCK",
      .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 0,
      .access = PL1_RW, .type = ARM_CP_NOP },
    { .name = "XSCALE_UNLOCK_DCACHE",
      .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 1,
      .access = PL1_W, .type = ARM_CP_NOP },
1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005
    REGINFO_SENTINEL
};

static const ARMCPRegInfo dummy_c15_cp_reginfo[] = {
    /* RAZ/WI the whole crn=15 space, when we don't have a more specific
     * implementation of this implementation-defined space.
     * Ideally this should eventually disappear in favour of actually
     * implementing the correct behaviour for all cores.
     */
    { .name = "C15_IMPDEF", .cp = 15, .crn = 15,
      .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
2006
      .access = PL1_RW,
2007
      .type = ARM_CP_CONST | ARM_CP_NO_RAW | ARM_CP_OVERRIDE,
2008
      .resetvalue = 0 },
2009 2010 2011
    REGINFO_SENTINEL
};

2012 2013 2014
static const ARMCPRegInfo cache_dirty_status_cp_reginfo[] = {
    /* Cache status: RAZ because we have no cache so it's always clean */
    { .name = "CDSR", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 6,
2015
      .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
2016
      .resetvalue = 0 },
2017 2018 2019 2020 2021 2022
    REGINFO_SENTINEL
};

static const ARMCPRegInfo cache_block_ops_cp_reginfo[] = {
    /* We never have a a block transfer operation in progress */
    { .name = "BXSR", .cp = 15, .crn = 7, .crm = 12, .opc1 = 0, .opc2 = 4,
2023
      .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
2024
      .resetvalue = 0 },
2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037
    /* The cache ops themselves: these all NOP for QEMU */
    { .name = "IICR", .cp = 15, .crm = 5, .opc1 = 0,
      .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
    { .name = "IDCR", .cp = 15, .crm = 6, .opc1 = 0,
      .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
    { .name = "CDCR", .cp = 15, .crm = 12, .opc1 = 0,
      .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
    { .name = "PIR", .cp = 15, .crm = 12, .opc1 = 1,
      .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
    { .name = "PDR", .cp = 15, .crm = 12, .opc1 = 2,
      .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
    { .name = "CIDCR", .cp = 15, .crm = 14, .opc1 = 0,
      .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
2038 2039 2040 2041 2042 2043 2044 2045
    REGINFO_SENTINEL
};

static const ARMCPRegInfo cache_test_clean_cp_reginfo[] = {
    /* The cache test-and-clean instructions always return (1 << 30)
     * to indicate that there are no dirty cache lines.
     */
    { .name = "TC_DCACHE", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 3,
2046
      .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
2047
      .resetvalue = (1 << 30) },
2048
    { .name = "TCI_DCACHE", .cp = 15, .crn = 7, .crm = 14, .opc1 = 0, .opc2 = 3,
2049
      .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
2050
      .resetvalue = (1 << 30) },
2051 2052 2053
    REGINFO_SENTINEL
};

2054 2055 2056 2057
static const ARMCPRegInfo strongarm_cp_reginfo[] = {
    /* Ignore ReadBuffer accesses */
    { .name = "C9_READBUFFER", .cp = 15, .crn = 9,
      .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
2058
      .access = PL1_RW, .resetvalue = 0,
2059
      .type = ARM_CP_CONST | ARM_CP_OVERRIDE | ARM_CP_NO_RAW },
2060 2061 2062
    REGINFO_SENTINEL
};

2063
static uint64_t mpidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
P
Peter Maydell 已提交
2064
{
2065 2066 2067
    ARMCPU *cpu = ARM_CPU(arm_env_get_cpu(env));
    uint64_t mpidr = cpu->mp_affinity;

P
Peter Maydell 已提交
2068
    if (arm_feature(env, ARM_FEATURE_V7MP)) {
2069
        mpidr |= (1U << 31);
P
Peter Maydell 已提交
2070 2071
        /* Cores which are uniprocessor (non-coherent)
         * but still implement the MP extensions set
2072
         * bit 30. (For instance, Cortex-R5).
P
Peter Maydell 已提交
2073
         */
2074 2075 2076
        if (cpu->mp_is_up) {
            mpidr |= (1u << 30);
        }
P
Peter Maydell 已提交
2077
    }
2078
    return mpidr;
P
Peter Maydell 已提交
2079 2080 2081
}

static const ARMCPRegInfo mpidr_cp_reginfo[] = {
2082 2083
    { .name = "MPIDR", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 5,
2084
      .access = PL1_R, .readfn = mpidr_read, .type = ARM_CP_NO_RAW },
P
Peter Maydell 已提交
2085 2086 2087
    REGINFO_SENTINEL
};

2088
static const ARMCPRegInfo lpae_cp_reginfo[] = {
2089
    /* NOP AMAIR0/1 */
2090 2091
    { .name = "AMAIR0", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 0,
2092
      .access = PL1_RW, .type = ARM_CP_CONST,
2093
      .resetvalue = 0 },
2094
    /* AMAIR1 is mapped to AMAIR_EL1[63:32] */
2095
    { .name = "AMAIR1", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 1,
2096
      .access = PL1_RW, .type = ARM_CP_CONST,
2097
      .resetvalue = 0 },
2098
    { .name = "PAR", .cp = 15, .crm = 7, .opc1 = 0,
F
Fabian Aggeler 已提交
2099 2100 2101
      .access = PL1_RW, .type = ARM_CP_64BIT, .resetvalue = 0,
      .bank_fieldoffsets = { offsetof(CPUARMState, cp15.par_s),
                             offsetof(CPUARMState, cp15.par_ns)} },
2102
    { .name = "TTBR0", .cp = 15, .crm = 2, .opc1 = 0,
2103
      .access = PL1_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
F
Fabian Aggeler 已提交
2104 2105
      .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s),
                             offsetof(CPUARMState, cp15.ttbr0_ns) },
2106
      .writefn = vmsa_ttbr_write, },
2107
    { .name = "TTBR1", .cp = 15, .crm = 2, .opc1 = 1,
2108
      .access = PL1_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
F
Fabian Aggeler 已提交
2109 2110
      .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s),
                             offsetof(CPUARMState, cp15.ttbr1_ns) },
2111
      .writefn = vmsa_ttbr_write, },
2112 2113 2114
    REGINFO_SENTINEL
};

2115
static uint64_t aa64_fpcr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2116
{
2117
    return vfp_get_fpcr(env);
2118 2119
}

2120 2121
static void aa64_fpcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
                            uint64_t value)
2122 2123 2124 2125
{
    vfp_set_fpcr(env, value);
}

2126
static uint64_t aa64_fpsr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2127
{
2128
    return vfp_get_fpsr(env);
2129 2130
}

2131 2132
static void aa64_fpsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
                            uint64_t value)
2133 2134 2135 2136
{
    vfp_set_fpsr(env, value);
}

2137 2138
static CPAccessResult aa64_daif_access(CPUARMState *env, const ARMCPRegInfo *ri)
{
2139
    if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UMA)) {
2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150
        return CP_ACCESS_TRAP;
    }
    return CP_ACCESS_OK;
}

static void aa64_daif_write(CPUARMState *env, const ARMCPRegInfo *ri,
                            uint64_t value)
{
    env->daif = value & PSTATE_DAIF;
}

2151 2152 2153 2154 2155 2156
static CPAccessResult aa64_cacheop_access(CPUARMState *env,
                                          const ARMCPRegInfo *ri)
{
    /* Cache invalidate/clean: NOP, but EL0 must UNDEF unless
     * SCTLR_EL1.UCI is set.
     */
2157
    if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UCI)) {
2158 2159 2160 2161 2162
        return CP_ACCESS_TRAP;
    }
    return CP_ACCESS_OK;
}

2163 2164 2165 2166
/* See: D4.7.2 TLB maintenance requirements and the TLB maintenance instructions
 * Page D4-1736 (DDI0487A.b)
 */

2167 2168 2169 2170
static void tlbi_aa64_va_write(CPUARMState *env, const ARMCPRegInfo *ri,
                               uint64_t value)
{
    /* Invalidate by VA (AArch64 version) */
2171
    ARMCPU *cpu = arm_env_get_cpu(env);
2172 2173
    uint64_t pageaddr = sextract64(value << 12, 0, 56);

2174
    tlb_flush_page(CPU(cpu), pageaddr);
2175 2176 2177 2178 2179 2180
}

static void tlbi_aa64_vaa_write(CPUARMState *env, const ARMCPRegInfo *ri,
                                uint64_t value)
{
    /* Invalidate by VA, all ASIDs (AArch64 version) */
2181
    ARMCPU *cpu = arm_env_get_cpu(env);
2182 2183
    uint64_t pageaddr = sextract64(value << 12, 0, 56);

2184
    tlb_flush_page(CPU(cpu), pageaddr);
2185 2186 2187 2188 2189 2190
}

static void tlbi_aa64_asid_write(CPUARMState *env, const ARMCPRegInfo *ri,
                                 uint64_t value)
{
    /* Invalidate by ASID (AArch64 version) */
2191
    ARMCPU *cpu = arm_env_get_cpu(env);
2192
    int asid = extract64(value, 48, 16);
2193
    tlb_flush(CPU(cpu), asid == 0);
2194 2195
}

2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228
static void tlbi_aa64_va_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
                                  uint64_t value)
{
    CPUState *other_cs;
    uint64_t pageaddr = sextract64(value << 12, 0, 56);

    CPU_FOREACH(other_cs) {
        tlb_flush_page(other_cs, pageaddr);
    }
}

static void tlbi_aa64_vaa_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
                                  uint64_t value)
{
    CPUState *other_cs;
    uint64_t pageaddr = sextract64(value << 12, 0, 56);

    CPU_FOREACH(other_cs) {
        tlb_flush_page(other_cs, pageaddr);
    }
}

static void tlbi_aa64_asid_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
                                  uint64_t value)
{
    CPUState *other_cs;
    int asid = extract64(value, 48, 16);

    CPU_FOREACH(other_cs) {
        tlb_flush(other_cs, asid == 0);
    }
}

2229 2230 2231 2232 2233
static CPAccessResult aa64_zva_access(CPUARMState *env, const ARMCPRegInfo *ri)
{
    /* We don't implement EL2, so the only control on DC ZVA is the
     * bit in the SCTLR which can prohibit access for EL0.
     */
2234
    if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_DZE)) {
2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245
        return CP_ACCESS_TRAP;
    }
    return CP_ACCESS_OK;
}

static uint64_t aa64_dczid_read(CPUARMState *env, const ARMCPRegInfo *ri)
{
    ARMCPU *cpu = arm_env_get_cpu(env);
    int dzp_bit = 1 << 4;

    /* DZP indicates whether DC ZVA access is allowed */
2246
    if (aa64_zva_access(env, NULL) == CP_ACCESS_OK) {
2247 2248 2249 2250 2251
        dzp_bit = 0;
    }
    return cpu->dcz_blocksize | dzp_bit;
}

2252 2253
static CPAccessResult sp_el0_access(CPUARMState *env, const ARMCPRegInfo *ri)
{
2254
    if (!(env->pstate & PSTATE_SP)) {
2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272
        /* Access to SP_EL0 is undefined if it's being used as
         * the stack pointer.
         */
        return CP_ACCESS_TRAP_UNCATEGORIZED;
    }
    return CP_ACCESS_OK;
}

static uint64_t spsel_read(CPUARMState *env, const ARMCPRegInfo *ri)
{
    return env->pstate & PSTATE_SP;
}

static void spsel_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val)
{
    update_spsel(env, val);
}

2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290
static void sctlr_write(CPUARMState *env, const ARMCPRegInfo *ri,
                        uint64_t value)
{
    ARMCPU *cpu = arm_env_get_cpu(env);

    if (raw_read(env, ri) == value) {
        /* Skip the TLB flush if nothing actually changed; Linux likes
         * to do a lot of pointless SCTLR writes.
         */
        return;
    }

    raw_write(env, ri, value);
    /* ??? Lots of these bits are not implemented.  */
    /* This may enable/disable the MMU, so do a TLB flush.  */
    tlb_flush(CPU(cpu), 1);
}

2291 2292 2293 2294 2295 2296 2297
static const ARMCPRegInfo v8_cp_reginfo[] = {
    /* Minimal set of EL0-visible registers. This will need to be expanded
     * significantly for system emulation of AArch64 CPUs.
     */
    { .name = "NZCV", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 2,
      .access = PL0_RW, .type = ARM_CP_NZCV },
2298 2299
    { .name = "DAIF", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 2,
2300
      .type = ARM_CP_NO_RAW,
2301 2302 2303
      .access = PL0_RW, .accessfn = aa64_daif_access,
      .fieldoffset = offsetof(CPUARMState, daif),
      .writefn = aa64_daif_write, .resetfn = arm_cp_reset_ignore },
2304 2305 2306 2307 2308 2309 2310 2311
    { .name = "FPCR", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 4,
      .access = PL0_RW, .readfn = aa64_fpcr_read, .writefn = aa64_fpcr_write },
    { .name = "FPSR", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 4,
      .access = PL0_RW, .readfn = aa64_fpsr_read, .writefn = aa64_fpsr_write },
    { .name = "DCZID_EL0", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 3, .opc2 = 7, .crn = 0, .crm = 0,
2312
      .access = PL0_R, .type = ARM_CP_NO_RAW,
2313 2314 2315 2316 2317 2318 2319 2320 2321
      .readfn = aa64_dczid_read },
    { .name = "DC_ZVA", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 1,
      .access = PL0_W, .type = ARM_CP_DC_ZVA,
#ifndef CONFIG_USER_ONLY
      /* Avoid overhead of an access check that always passes in user-mode */
      .accessfn = aa64_zva_access,
#endif
    },
2322 2323 2324
    { .name = "CURRENTEL", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 0, .opc2 = 2, .crn = 4, .crm = 2,
      .access = PL1_R, .type = ARM_CP_CURRENTEL },
2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359
    /* Cache ops: all NOPs since we don't emulate caches */
    { .name = "IC_IALLUIS", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
      .access = PL1_W, .type = ARM_CP_NOP },
    { .name = "IC_IALLU", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
      .access = PL1_W, .type = ARM_CP_NOP },
    { .name = "IC_IVAU", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 5, .opc2 = 1,
      .access = PL0_W, .type = ARM_CP_NOP,
      .accessfn = aa64_cacheop_access },
    { .name = "DC_IVAC", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
      .access = PL1_W, .type = ARM_CP_NOP },
    { .name = "DC_ISW", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
      .access = PL1_W, .type = ARM_CP_NOP },
    { .name = "DC_CVAC", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 1,
      .access = PL0_W, .type = ARM_CP_NOP,
      .accessfn = aa64_cacheop_access },
    { .name = "DC_CSW", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
      .access = PL1_W, .type = ARM_CP_NOP },
    { .name = "DC_CVAU", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 11, .opc2 = 1,
      .access = PL0_W, .type = ARM_CP_NOP,
      .accessfn = aa64_cacheop_access },
    { .name = "DC_CIVAC", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 1,
      .access = PL0_W, .type = ARM_CP_NOP,
      .accessfn = aa64_cacheop_access },
    { .name = "DC_CISW", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
      .access = PL1_W, .type = ARM_CP_NOP },
2360
    /* TLBI operations */
2361 2362 2363 2364 2365 2366 2367 2368
    { .name = "TLBI_ALLE1", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4,
      .access = PL2_W, .type = ARM_CP_NO_RAW,
      .writefn = tlbiall_write },
    { .name = "TLBI_ALLE1IS", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4,
      .access = PL2_W, .type = ARM_CP_NO_RAW,
      .writefn = tlbiall_write },
2369
    { .name = "TLBI_VMALLE1IS", .state = ARM_CP_STATE_AA64,
2370
      .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0,
2371
      .access = PL1_W, .type = ARM_CP_NO_RAW,
2372
      .writefn = tlbiall_is_write },
2373
    { .name = "TLBI_VAE1IS", .state = ARM_CP_STATE_AA64,
2374
      .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1,
2375
      .access = PL1_W, .type = ARM_CP_NO_RAW,
2376
      .writefn = tlbi_aa64_va_is_write },
2377
    { .name = "TLBI_ASIDE1IS", .state = ARM_CP_STATE_AA64,
2378
      .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2,
2379
      .access = PL1_W, .type = ARM_CP_NO_RAW,
2380
      .writefn = tlbi_aa64_asid_is_write },
2381
    { .name = "TLBI_VAAE1IS", .state = ARM_CP_STATE_AA64,
2382
      .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3,
2383
      .access = PL1_W, .type = ARM_CP_NO_RAW,
2384
      .writefn = tlbi_aa64_vaa_is_write },
2385
    { .name = "TLBI_VALE1IS", .state = ARM_CP_STATE_AA64,
2386
      .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5,
2387
      .access = PL1_W, .type = ARM_CP_NO_RAW,
2388
      .writefn = tlbi_aa64_va_is_write },
2389
    { .name = "TLBI_VAALE1IS", .state = ARM_CP_STATE_AA64,
2390
      .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7,
2391
      .access = PL1_W, .type = ARM_CP_NO_RAW,
2392
      .writefn = tlbi_aa64_vaa_is_write },
2393
    { .name = "TLBI_VMALLE1", .state = ARM_CP_STATE_AA64,
2394
      .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0,
2395
      .access = PL1_W, .type = ARM_CP_NO_RAW,
2396 2397
      .writefn = tlbiall_write },
    { .name = "TLBI_VAE1", .state = ARM_CP_STATE_AA64,
2398
      .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1,
2399
      .access = PL1_W, .type = ARM_CP_NO_RAW,
2400 2401
      .writefn = tlbi_aa64_va_write },
    { .name = "TLBI_ASIDE1", .state = ARM_CP_STATE_AA64,
2402
      .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2,
2403
      .access = PL1_W, .type = ARM_CP_NO_RAW,
2404 2405
      .writefn = tlbi_aa64_asid_write },
    { .name = "TLBI_VAAE1", .state = ARM_CP_STATE_AA64,
2406
      .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3,
2407
      .access = PL1_W, .type = ARM_CP_NO_RAW,
2408 2409
      .writefn = tlbi_aa64_vaa_write },
    { .name = "TLBI_VALE1", .state = ARM_CP_STATE_AA64,
2410
      .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5,
2411
      .access = PL1_W, .type = ARM_CP_NO_RAW,
2412 2413
      .writefn = tlbi_aa64_va_write },
    { .name = "TLBI_VAALE1", .state = ARM_CP_STATE_AA64,
2414
      .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7,
2415
      .access = PL1_W, .type = ARM_CP_NO_RAW,
2416
      .writefn = tlbi_aa64_vaa_write },
2417 2418 2419 2420
#ifndef CONFIG_USER_ONLY
    /* 64 bit address translation operations */
    { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 0,
2421
      .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
2422 2423
    { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 1,
2424
      .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
2425 2426
    { .name = "AT_S1E0R", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 2,
2427
      .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
2428 2429
    { .name = "AT_S1E0W", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 3,
2430
      .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
2431
#endif
2432
    /* TLB invalidate last level of translation table walk */
2433
    { .name = "TLBIMVALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5,
2434
      .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_is_write },
2435
    { .name = "TLBIMVAALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7,
2436
      .type = ARM_CP_NO_RAW, .access = PL1_W,
2437
      .writefn = tlbimvaa_is_write },
2438
    { .name = "TLBIMVAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5,
2439
      .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
2440
    { .name = "TLBIMVAAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7,
2441
      .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimvaa_write },
2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469
    /* 32 bit cache operations */
    { .name = "ICIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
      .type = ARM_CP_NOP, .access = PL1_W },
    { .name = "BPIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 6,
      .type = ARM_CP_NOP, .access = PL1_W },
    { .name = "ICIALLU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
      .type = ARM_CP_NOP, .access = PL1_W },
    { .name = "ICIMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 1,
      .type = ARM_CP_NOP, .access = PL1_W },
    { .name = "BPIALL", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 6,
      .type = ARM_CP_NOP, .access = PL1_W },
    { .name = "BPIMVA", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 7,
      .type = ARM_CP_NOP, .access = PL1_W },
    { .name = "DCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
      .type = ARM_CP_NOP, .access = PL1_W },
    { .name = "DCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
      .type = ARM_CP_NOP, .access = PL1_W },
    { .name = "DCCMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 1,
      .type = ARM_CP_NOP, .access = PL1_W },
    { .name = "DCCSW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
      .type = ARM_CP_NOP, .access = PL1_W },
    { .name = "DCCMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 11, .opc2 = 1,
      .type = ARM_CP_NOP, .access = PL1_W },
    { .name = "DCCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 1,
      .type = ARM_CP_NOP, .access = PL1_W },
    { .name = "DCCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
      .type = ARM_CP_NOP, .access = PL1_W },
    /* MMU Domain access control / MPU write buffer control */
F
Fabian Aggeler 已提交
2470 2471 2472 2473 2474
    { .name = "DACR", .cp = 15, .opc1 = 0, .crn = 3, .crm = 0, .opc2 = 0,
      .access = PL1_RW, .resetvalue = 0,
      .writefn = dacr_write, .raw_writefn = raw_write,
      .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s),
                             offsetoflow32(CPUARMState, cp15.dacr_ns) } },
2475
    { .name = "ELR_EL1", .state = ARM_CP_STATE_AA64,
2476
      .type = ARM_CP_ALIAS,
2477
      .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 1,
2478 2479
      .access = PL1_RW,
      .fieldoffset = offsetof(CPUARMState, elr_el[1]) },
2480
    { .name = "SPSR_EL1", .state = ARM_CP_STATE_AA64,
2481
      .type = ARM_CP_ALIAS,
2482
      .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 0,
2483
      .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, banked_spsr[1]) },
2484 2485 2486 2487 2488 2489 2490
    /* We rely on the access checks not allowing the guest to write to the
     * state field when SPSel indicates that it's being used as the stack
     * pointer.
     */
    { .name = "SP_EL0", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 1, .opc2 = 0,
      .access = PL1_RW, .accessfn = sp_el0_access,
2491
      .type = ARM_CP_ALIAS,
2492
      .fieldoffset = offsetof(CPUARMState, sp_el[0]) },
2493 2494
    { .name = "SP_EL1", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 1, .opc2 = 0,
2495
      .access = PL2_RW, .type = ARM_CP_ALIAS,
2496
      .fieldoffset = offsetof(CPUARMState, sp_el[1]) },
2497 2498
    { .name = "SPSel", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 0,
2499
      .type = ARM_CP_NO_RAW,
2500
      .access = PL1_RW, .readfn = spsel_read, .writefn = spsel_write },
2501 2502 2503
    REGINFO_SENTINEL
};

2504
/* Used to describe the behaviour of EL2 regs when EL2 does not exist.  */
2505
static const ARMCPRegInfo el3_no_el2_cp_reginfo[] = {
2506 2507 2508 2509
    { .name = "VBAR_EL2", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0,
      .access = PL2_RW,
      .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore },
E
Edgar E. Iglesias 已提交
2510
    { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64,
2511
      .type = ARM_CP_NO_RAW,
E
Edgar E. Iglesias 已提交
2512 2513 2514
      .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
      .access = PL2_RW,
      .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore },
2515 2516 2517
    { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2,
      .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
E
Edgar E. Iglesias 已提交
2518 2519 2520 2521 2522 2523 2524
    { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0,
      .access = PL2_RW, .type = ARM_CP_CONST,
      .resetvalue = 0 },
    { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
      .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1,
      .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
E
Edgar E. Iglesias 已提交
2525 2526 2527
    { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2,
      .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
E
Edgar E. Iglesias 已提交
2528 2529 2530
    { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0,
      .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
E
Edgar E. Iglesias 已提交
2531 2532 2533
    { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2,
      .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
E
Edgar E. Iglesias 已提交
2534 2535 2536 2537 2538 2539
    { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0,
      .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
    { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2,
      .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
      .resetvalue = 0 },
2540 2541 2542
    REGINFO_SENTINEL
};

E
Edgar E. Iglesias 已提交
2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567
static void hcr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
{
    ARMCPU *cpu = arm_env_get_cpu(env);
    uint64_t valid_mask = HCR_MASK;

    if (arm_feature(env, ARM_FEATURE_EL3)) {
        valid_mask &= ~HCR_HCD;
    } else {
        valid_mask &= ~HCR_TSC;
    }

    /* Clear RES0 bits.  */
    value &= valid_mask;

    /* These bits change the MMU setup:
     * HCR_VM enables stage 2 translation
     * HCR_PTW forbids certain page-table setups
     * HCR_DC Disables stage1 and enables stage2 translation
     */
    if ((raw_read(env, ri) ^ value) & (HCR_VM | HCR_PTW | HCR_DC)) {
        tlb_flush(CPU(cpu), 1);
    }
    raw_write(env, ri, value);
}

2568
static const ARMCPRegInfo el2_cp_reginfo[] = {
E
Edgar E. Iglesias 已提交
2569 2570 2571 2572
    { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
      .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2),
      .writefn = hcr_write },
F
Fabian Aggeler 已提交
2573 2574 2575 2576 2577
    { .name = "DACR32_EL2", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 0, .opc2 = 0,
      .access = PL2_RW, .resetvalue = 0,
      .writefn = dacr_write, .raw_writefn = raw_write,
      .fieldoffset = offsetof(CPUARMState, cp15.dacr32_el2) },
2578
    { .name = "ELR_EL2", .state = ARM_CP_STATE_AA64,
2579
      .type = ARM_CP_ALIAS,
2580 2581 2582
      .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 1,
      .access = PL2_RW,
      .fieldoffset = offsetof(CPUARMState, elr_el[2]) },
2583
    { .name = "ESR_EL2", .state = ARM_CP_STATE_AA64,
2584
      .type = ARM_CP_ALIAS,
2585 2586
      .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0,
      .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[2]) },
F
Fabian Aggeler 已提交
2587 2588 2589 2590
    { .name = "IFSR32_EL2", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 0, .opc2 = 1,
      .access = PL2_RW, .resetvalue = 0,
      .fieldoffset = offsetof(CPUARMState, cp15.ifsr32_el2) },
2591 2592 2593
    { .name = "FAR_EL2", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0,
      .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[2]) },
2594
    { .name = "SPSR_EL2", .state = ARM_CP_STATE_AA64,
2595
      .type = ARM_CP_ALIAS,
2596 2597
      .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 0,
      .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, banked_spsr[6]) },
2598 2599 2600 2601 2602
    { .name = "VBAR_EL2", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0,
      .access = PL2_RW, .writefn = vbar_write,
      .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[2]),
      .resetvalue = 0 },
2603 2604
    { .name = "SP_EL2", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 1, .opc2 = 0,
2605
      .access = PL3_RW, .type = ARM_CP_ALIAS,
2606
      .fieldoffset = offsetof(CPUARMState, sp_el[2]) },
2607 2608 2609 2610
    { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2,
      .access = PL2_RW, .accessfn = cptr_access, .resetvalue = 0,
      .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[2]) },
E
Edgar E. Iglesias 已提交
2611 2612 2613 2614 2615 2616 2617 2618
    { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0,
      .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[2]),
      .resetvalue = 0 },
    { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
      .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1,
      .access = PL2_RW, .type = ARM_CP_ALIAS,
      .fieldoffset = offsetofhigh32(CPUARMState, cp15.mair_el[2]) },
E
Edgar E. Iglesias 已提交
2619 2620 2621 2622 2623
    { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2,
      .access = PL2_RW, .writefn = vmsa_tcr_el1_write,
      .resetfn = vmsa_ttbcr_reset, .raw_writefn = raw_write,
      .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[2]) },
E
Edgar E. Iglesias 已提交
2624 2625 2626 2627
    { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0,
      .access = PL2_RW, .raw_writefn = raw_write, .writefn = sctlr_write,
      .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[2]) },
E
Edgar E. Iglesias 已提交
2628 2629 2630 2631
    { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2,
      .access = PL2_RW, .resetvalue = 0,
      .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[2]) },
E
Edgar E. Iglesias 已提交
2632 2633 2634 2635 2636 2637 2638
    { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0,
      .access = PL2_RW, .resetvalue = 0,
      .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) },
    { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2,
      .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
      .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) },
E
Edgar E. Iglesias 已提交
2639 2640 2641 2642
    { .name = "TLBI_ALLE2", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0,
      .type = ARM_CP_NO_RAW, .access = PL2_W,
      .writefn = tlbiall_write },
2643 2644 2645 2646 2647 2648 2649 2650
    { .name = "TLBI_VAE2", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1,
      .type = ARM_CP_NO_RAW, .access = PL2_W,
      .writefn = tlbi_aa64_vaa_write },
    { .name = "TLBI_VAE2IS", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1,
      .type = ARM_CP_NO_RAW, .access = PL2_W,
      .writefn = tlbi_aa64_vaa_write },
2651 2652 2653
    REGINFO_SENTINEL
};

2654 2655 2656 2657 2658
static const ARMCPRegInfo el3_cp_reginfo[] = {
    { .name = "SCR_EL3", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 0,
      .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.scr_el3),
      .resetvalue = 0, .writefn = scr_write },
2659
    { .name = "SCR",  .type = ARM_CP_ALIAS,
2660 2661
      .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 0,
      .access = PL3_RW, .fieldoffset = offsetoflow32(CPUARMState, cp15.scr_el3),
2662
      .writefn = scr_write },
2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677
    { .name = "SDER32_EL3", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 1,
      .access = PL3_RW, .resetvalue = 0,
      .fieldoffset = offsetof(CPUARMState, cp15.sder) },
    { .name = "SDER",
      .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 1,
      .access = PL3_RW, .resetvalue = 0,
      .fieldoffset = offsetoflow32(CPUARMState, cp15.sder) },
      /* TODO: Implement NSACR trapping of secure EL1 accesses to EL3 */
    { .name = "NSACR", .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
      .access = PL3_W | PL1_R, .resetvalue = 0,
      .fieldoffset = offsetof(CPUARMState, cp15.nsacr) },
    { .name = "MVBAR", .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
      .access = PL3_RW, .writefn = vbar_write, .resetvalue = 0,
      .fieldoffset = offsetof(CPUARMState, cp15.mvbar) },
2678 2679 2680 2681
    { .name = "SCTLR_EL3", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 0,
      .access = PL3_RW, .raw_writefn = raw_write, .writefn = sctlr_write,
      .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[3]) },
F
Fabian Aggeler 已提交
2682 2683 2684 2685
    { .name = "TTBR0_EL3", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 0,
      .access = PL3_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0,
      .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[3]) },
F
Fabian Aggeler 已提交
2686 2687 2688 2689 2690
    { .name = "TCR_EL3", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 2,
      .access = PL3_RW, .writefn = vmsa_tcr_el1_write,
      .resetfn = vmsa_ttbcr_reset, .raw_writefn = raw_write,
      .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[3]) },
2691
    { .name = "ELR_EL3", .state = ARM_CP_STATE_AA64,
2692
      .type = ARM_CP_ALIAS,
2693 2694 2695
      .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 1,
      .access = PL3_RW,
      .fieldoffset = offsetof(CPUARMState, elr_el[3]) },
2696
    { .name = "ESR_EL3", .state = ARM_CP_STATE_AA64,
2697
      .type = ARM_CP_ALIAS,
2698 2699
      .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 2, .opc2 = 0,
      .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[3]) },
2700 2701 2702
    { .name = "FAR_EL3", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 0,
      .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[3]) },
2703
    { .name = "SPSR_EL3", .state = ARM_CP_STATE_AA64,
2704
      .type = ARM_CP_ALIAS,
2705 2706
      .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 0,
      .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, banked_spsr[7]) },
2707 2708 2709 2710 2711
    { .name = "VBAR_EL3", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 0,
      .access = PL3_RW, .writefn = vbar_write,
      .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[3]),
      .resetvalue = 0 },
2712 2713 2714 2715
    { .name = "CPTR_EL3", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 2,
      .access = PL3_RW, .accessfn = cptr_access, .resetvalue = 0,
      .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[3]) },
2716 2717 2718
    REGINFO_SENTINEL
};

2719 2720 2721 2722 2723
static CPAccessResult ctr_el0_access(CPUARMState *env, const ARMCPRegInfo *ri)
{
    /* Only accessible in EL0 if SCTLR.UCT is set (and only in AArch64,
     * but the AArch32 CTR has its own reginfo struct)
     */
2724
    if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UCT)) {
2725 2726 2727 2728 2729
        return CP_ACCESS_TRAP;
    }
    return CP_ACCESS_OK;
}

2730 2731
static const ARMCPRegInfo debug_cp_reginfo[] = {
    /* DBGDRAR, DBGDSAR: always RAZ since we don't implement memory mapped
2732 2733 2734 2735
     * debug components. The AArch64 version of DBGDRAR is named MDRAR_EL1;
     * unlike DBGDRAR it is never accessible from EL0.
     * DBGDSAR is deprecated and must RAZ from v8 anyway, so it has no AArch64
     * accessor.
2736 2737 2738
     */
    { .name = "DBGDRAR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 0,
      .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
2739 2740 2741
    { .name = "MDRAR_EL1", .state = ARM_CP_STATE_AA64,
      .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0,
      .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
2742 2743
    { .name = "DBGDSAR", .cp = 14, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
      .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
2744
    /* Monitor debug system control register; the 32-bit alias is DBGDSCRext. */
2745 2746
    { .name = "MDSCR_EL1", .state = ARM_CP_STATE_BOTH,
      .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2,
2747 2748 2749
      .access = PL1_RW,
      .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1),
      .resetvalue = 0 },
2750 2751 2752 2753 2754
    /* MDCCSR_EL0, aka DBGDSCRint. This is a read-only mirror of MDSCR_EL1.
     * We don't implement the configurable EL0 access.
     */
    { .name = "MDCCSR_EL0", .state = ARM_CP_STATE_BOTH,
      .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0,
2755
      .type = ARM_CP_ALIAS,
2756
      .access = PL1_R,
2757
      .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1), },
2758
    /* We define a dummy WI OSLAR_EL1, because Linux writes to it. */
2759 2760
    { .name = "OSLAR_EL1", .state = ARM_CP_STATE_BOTH,
      .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 4,
2761
      .access = PL1_W, .type = ARM_CP_NOP },
2762 2763 2764 2765 2766 2767 2768 2769 2770 2771
    /* Dummy OSDLR_EL1: 32-bit Linux will read this */
    { .name = "OSDLR_EL1", .state = ARM_CP_STATE_BOTH,
      .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 4,
      .access = PL1_RW, .type = ARM_CP_NOP },
    /* Dummy DBGVCR: Linux wants to clear this on startup, but we don't
     * implement vector catch debug events yet.
     */
    { .name = "DBGVCR",
      .cp = 14, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0,
      .access = PL1_RW, .type = ARM_CP_NOP },
2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783
    REGINFO_SENTINEL
};

static const ARMCPRegInfo debug_lpae_cp_reginfo[] = {
    /* 64 bit access versions of the (dummy) debug registers */
    { .name = "DBGDRAR", .cp = 14, .crm = 1, .opc1 = 0,
      .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 },
    { .name = "DBGDSAR", .cp = 14, .crm = 2, .opc1 = 0,
      .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 },
    REGINFO_SENTINEL
};

2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908
void hw_watchpoint_update(ARMCPU *cpu, int n)
{
    CPUARMState *env = &cpu->env;
    vaddr len = 0;
    vaddr wvr = env->cp15.dbgwvr[n];
    uint64_t wcr = env->cp15.dbgwcr[n];
    int mask;
    int flags = BP_CPU | BP_STOP_BEFORE_ACCESS;

    if (env->cpu_watchpoint[n]) {
        cpu_watchpoint_remove_by_ref(CPU(cpu), env->cpu_watchpoint[n]);
        env->cpu_watchpoint[n] = NULL;
    }

    if (!extract64(wcr, 0, 1)) {
        /* E bit clear : watchpoint disabled */
        return;
    }

    switch (extract64(wcr, 3, 2)) {
    case 0:
        /* LSC 00 is reserved and must behave as if the wp is disabled */
        return;
    case 1:
        flags |= BP_MEM_READ;
        break;
    case 2:
        flags |= BP_MEM_WRITE;
        break;
    case 3:
        flags |= BP_MEM_ACCESS;
        break;
    }

    /* Attempts to use both MASK and BAS fields simultaneously are
     * CONSTRAINED UNPREDICTABLE; we opt to ignore BAS in this case,
     * thus generating a watchpoint for every byte in the masked region.
     */
    mask = extract64(wcr, 24, 4);
    if (mask == 1 || mask == 2) {
        /* Reserved values of MASK; we must act as if the mask value was
         * some non-reserved value, or as if the watchpoint were disabled.
         * We choose the latter.
         */
        return;
    } else if (mask) {
        /* Watchpoint covers an aligned area up to 2GB in size */
        len = 1ULL << mask;
        /* If masked bits in WVR are not zero it's CONSTRAINED UNPREDICTABLE
         * whether the watchpoint fires when the unmasked bits match; we opt
         * to generate the exceptions.
         */
        wvr &= ~(len - 1);
    } else {
        /* Watchpoint covers bytes defined by the byte address select bits */
        int bas = extract64(wcr, 5, 8);
        int basstart;

        if (bas == 0) {
            /* This must act as if the watchpoint is disabled */
            return;
        }

        if (extract64(wvr, 2, 1)) {
            /* Deprecated case of an only 4-aligned address. BAS[7:4] are
             * ignored, and BAS[3:0] define which bytes to watch.
             */
            bas &= 0xf;
        }
        /* The BAS bits are supposed to be programmed to indicate a contiguous
         * range of bytes. Otherwise it is CONSTRAINED UNPREDICTABLE whether
         * we fire for each byte in the word/doubleword addressed by the WVR.
         * We choose to ignore any non-zero bits after the first range of 1s.
         */
        basstart = ctz32(bas);
        len = cto32(bas >> basstart);
        wvr += basstart;
    }

    cpu_watchpoint_insert(CPU(cpu), wvr, len, flags,
                          &env->cpu_watchpoint[n]);
}

void hw_watchpoint_update_all(ARMCPU *cpu)
{
    int i;
    CPUARMState *env = &cpu->env;

    /* Completely clear out existing QEMU watchpoints and our array, to
     * avoid possible stale entries following migration load.
     */
    cpu_watchpoint_remove_all(CPU(cpu), BP_CPU);
    memset(env->cpu_watchpoint, 0, sizeof(env->cpu_watchpoint));

    for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_watchpoint); i++) {
        hw_watchpoint_update(cpu, i);
    }
}

static void dbgwvr_write(CPUARMState *env, const ARMCPRegInfo *ri,
                         uint64_t value)
{
    ARMCPU *cpu = arm_env_get_cpu(env);
    int i = ri->crm;

    /* Bits [63:49] are hardwired to the value of bit [48]; that is, the
     * register reads and behaves as if values written are sign extended.
     * Bits [1:0] are RES0.
     */
    value = sextract64(value, 0, 49) & ~3ULL;

    raw_write(env, ri, value);
    hw_watchpoint_update(cpu, i);
}

static void dbgwcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
                         uint64_t value)
{
    ARMCPU *cpu = arm_env_get_cpu(env);
    int i = ri->crm;

    raw_write(env, ri, value);
    hw_watchpoint_update(cpu, i);
}

2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026
void hw_breakpoint_update(ARMCPU *cpu, int n)
{
    CPUARMState *env = &cpu->env;
    uint64_t bvr = env->cp15.dbgbvr[n];
    uint64_t bcr = env->cp15.dbgbcr[n];
    vaddr addr;
    int bt;
    int flags = BP_CPU;

    if (env->cpu_breakpoint[n]) {
        cpu_breakpoint_remove_by_ref(CPU(cpu), env->cpu_breakpoint[n]);
        env->cpu_breakpoint[n] = NULL;
    }

    if (!extract64(bcr, 0, 1)) {
        /* E bit clear : watchpoint disabled */
        return;
    }

    bt = extract64(bcr, 20, 4);

    switch (bt) {
    case 4: /* unlinked address mismatch (reserved if AArch64) */
    case 5: /* linked address mismatch (reserved if AArch64) */
        qemu_log_mask(LOG_UNIMP,
                      "arm: address mismatch breakpoint types not implemented");
        return;
    case 0: /* unlinked address match */
    case 1: /* linked address match */
    {
        /* Bits [63:49] are hardwired to the value of bit [48]; that is,
         * we behave as if the register was sign extended. Bits [1:0] are
         * RES0. The BAS field is used to allow setting breakpoints on 16
         * bit wide instructions; it is CONSTRAINED UNPREDICTABLE whether
         * a bp will fire if the addresses covered by the bp and the addresses
         * covered by the insn overlap but the insn doesn't start at the
         * start of the bp address range. We choose to require the insn and
         * the bp to have the same address. The constraints on writing to
         * BAS enforced in dbgbcr_write mean we have only four cases:
         *  0b0000  => no breakpoint
         *  0b0011  => breakpoint on addr
         *  0b1100  => breakpoint on addr + 2
         *  0b1111  => breakpoint on addr
         * See also figure D2-3 in the v8 ARM ARM (DDI0487A.c).
         */
        int bas = extract64(bcr, 5, 4);
        addr = sextract64(bvr, 0, 49) & ~3ULL;
        if (bas == 0) {
            return;
        }
        if (bas == 0xc) {
            addr += 2;
        }
        break;
    }
    case 2: /* unlinked context ID match */
    case 8: /* unlinked VMID match (reserved if no EL2) */
    case 10: /* unlinked context ID and VMID match (reserved if no EL2) */
        qemu_log_mask(LOG_UNIMP,
                      "arm: unlinked context breakpoint types not implemented");
        return;
    case 9: /* linked VMID match (reserved if no EL2) */
    case 11: /* linked context ID and VMID match (reserved if no EL2) */
    case 3: /* linked context ID match */
    default:
        /* We must generate no events for Linked context matches (unless
         * they are linked to by some other bp/wp, which is handled in
         * updates for the linking bp/wp). We choose to also generate no events
         * for reserved values.
         */
        return;
    }

    cpu_breakpoint_insert(CPU(cpu), addr, flags, &env->cpu_breakpoint[n]);
}

void hw_breakpoint_update_all(ARMCPU *cpu)
{
    int i;
    CPUARMState *env = &cpu->env;

    /* Completely clear out existing QEMU breakpoints and our array, to
     * avoid possible stale entries following migration load.
     */
    cpu_breakpoint_remove_all(CPU(cpu), BP_CPU);
    memset(env->cpu_breakpoint, 0, sizeof(env->cpu_breakpoint));

    for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_breakpoint); i++) {
        hw_breakpoint_update(cpu, i);
    }
}

static void dbgbvr_write(CPUARMState *env, const ARMCPRegInfo *ri,
                         uint64_t value)
{
    ARMCPU *cpu = arm_env_get_cpu(env);
    int i = ri->crm;

    raw_write(env, ri, value);
    hw_breakpoint_update(cpu, i);
}

static void dbgbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
                         uint64_t value)
{
    ARMCPU *cpu = arm_env_get_cpu(env);
    int i = ri->crm;

    /* BAS[3] is a read-only copy of BAS[2], and BAS[1] a read-only
     * copy of BAS[0].
     */
    value = deposit64(value, 6, 1, extract64(value, 5, 1));
    value = deposit64(value, 8, 1, extract64(value, 7, 1));

    raw_write(env, ri, value);
    hw_breakpoint_update(cpu, i);
}

3027
static void define_debug_regs(ARMCPU *cpu)
3028
{
3029 3030
    /* Define v7 and v8 architectural debug registers.
     * These are just dummy implementations for now.
3031 3032
     */
    int i;
3033
    int wrps, brps, ctx_cmps;
3034 3035 3036 3037 3038
    ARMCPRegInfo dbgdidr = {
        .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0,
        .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = cpu->dbgdidr,
    };

3039
    /* Note that all these register fields hold "number of Xs minus 1". */
3040 3041
    brps = extract32(cpu->dbgdidr, 24, 4);
    wrps = extract32(cpu->dbgdidr, 28, 4);
3042 3043 3044
    ctx_cmps = extract32(cpu->dbgdidr, 20, 4);

    assert(ctx_cmps <= brps);
3045 3046 3047 3048 3049 3050 3051 3052

    /* The DBGDIDR and ID_AA64DFR0_EL1 define various properties
     * of the debug registers such as number of breakpoints;
     * check that if they both exist then they agree.
     */
    if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
        assert(extract32(cpu->id_aa64dfr0, 12, 4) == brps);
        assert(extract32(cpu->id_aa64dfr0, 20, 4) == wrps);
3053
        assert(extract32(cpu->id_aa64dfr0, 28, 4) == ctx_cmps);
3054
    }
3055

3056
    define_one_arm_cp_reg(cpu, &dbgdidr);
3057 3058 3059 3060 3061 3062
    define_arm_cp_regs(cpu, debug_cp_reginfo);

    if (arm_feature(&cpu->env, ARM_FEATURE_LPAE)) {
        define_arm_cp_regs(cpu, debug_lpae_cp_reginfo);
    }

3063
    for (i = 0; i < brps + 1; i++) {
3064
        ARMCPRegInfo dbgregs[] = {
3065 3066
            { .name = "DBGBVR", .state = ARM_CP_STATE_BOTH,
              .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 4,
3067
              .access = PL1_RW,
3068 3069 3070
              .fieldoffset = offsetof(CPUARMState, cp15.dbgbvr[i]),
              .writefn = dbgbvr_write, .raw_writefn = raw_write
            },
3071 3072
            { .name = "DBGBCR", .state = ARM_CP_STATE_BOTH,
              .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 5,
3073
              .access = PL1_RW,
3074 3075 3076
              .fieldoffset = offsetof(CPUARMState, cp15.dbgbcr[i]),
              .writefn = dbgbcr_write, .raw_writefn = raw_write
            },
3077 3078 3079 3080 3081 3082 3083
            REGINFO_SENTINEL
        };
        define_arm_cp_regs(cpu, dbgregs);
    }

    for (i = 0; i < wrps + 1; i++) {
        ARMCPRegInfo dbgregs[] = {
3084 3085
            { .name = "DBGWVR", .state = ARM_CP_STATE_BOTH,
              .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 6,
3086
              .access = PL1_RW,
3087 3088 3089
              .fieldoffset = offsetof(CPUARMState, cp15.dbgwvr[i]),
              .writefn = dbgwvr_write, .raw_writefn = raw_write
            },
3090 3091
            { .name = "DBGWCR", .state = ARM_CP_STATE_BOTH,
              .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 7,
3092
              .access = PL1_RW,
3093 3094 3095 3096
              .fieldoffset = offsetof(CPUARMState, cp15.dbgwcr[i]),
              .writefn = dbgwcr_write, .raw_writefn = raw_write
            },
            REGINFO_SENTINEL
3097 3098 3099 3100 3101
        };
        define_arm_cp_regs(cpu, dbgregs);
    }
}

3102 3103 3104 3105 3106 3107 3108 3109 3110
void register_cp_regs_for_features(ARMCPU *cpu)
{
    /* Register all the coprocessor registers based on feature bits */
    CPUARMState *env = &cpu->env;
    if (arm_feature(env, ARM_FEATURE_M)) {
        /* M profile has no coprocessor registers */
        return;
    }

3111
    define_arm_cp_regs(cpu, cp_reginfo);
3112 3113 3114 3115 3116 3117 3118
    if (!arm_feature(env, ARM_FEATURE_V8)) {
        /* Must go early as it is full of wildcards that may be
         * overridden by later definitions.
         */
        define_arm_cp_regs(cpu, not_v8_cp_reginfo);
    }

3119
    if (arm_feature(env, ARM_FEATURE_V6)) {
3120 3121
        /* The ID registers all have impdef reset values */
        ARMCPRegInfo v6_idregs[] = {
3122 3123 3124
            { .name = "ID_PFR0", .state = ARM_CP_STATE_BOTH,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0,
              .access = PL1_R, .type = ARM_CP_CONST,
3125
              .resetvalue = cpu->id_pfr0 },
3126 3127 3128
            { .name = "ID_PFR1", .state = ARM_CP_STATE_BOTH,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 1,
              .access = PL1_R, .type = ARM_CP_CONST,
3129
              .resetvalue = cpu->id_pfr1 },
3130 3131 3132
            { .name = "ID_DFR0", .state = ARM_CP_STATE_BOTH,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 2,
              .access = PL1_R, .type = ARM_CP_CONST,
3133
              .resetvalue = cpu->id_dfr0 },
3134 3135 3136
            { .name = "ID_AFR0", .state = ARM_CP_STATE_BOTH,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 3,
              .access = PL1_R, .type = ARM_CP_CONST,
3137
              .resetvalue = cpu->id_afr0 },
3138 3139 3140
            { .name = "ID_MMFR0", .state = ARM_CP_STATE_BOTH,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 4,
              .access = PL1_R, .type = ARM_CP_CONST,
3141
              .resetvalue = cpu->id_mmfr0 },
3142 3143 3144
            { .name = "ID_MMFR1", .state = ARM_CP_STATE_BOTH,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 5,
              .access = PL1_R, .type = ARM_CP_CONST,
3145
              .resetvalue = cpu->id_mmfr1 },
3146 3147 3148
            { .name = "ID_MMFR2", .state = ARM_CP_STATE_BOTH,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 6,
              .access = PL1_R, .type = ARM_CP_CONST,
3149
              .resetvalue = cpu->id_mmfr2 },
3150 3151 3152
            { .name = "ID_MMFR3", .state = ARM_CP_STATE_BOTH,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 7,
              .access = PL1_R, .type = ARM_CP_CONST,
3153
              .resetvalue = cpu->id_mmfr3 },
3154 3155 3156
            { .name = "ID_ISAR0", .state = ARM_CP_STATE_BOTH,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0,
              .access = PL1_R, .type = ARM_CP_CONST,
3157
              .resetvalue = cpu->id_isar0 },
3158 3159 3160
            { .name = "ID_ISAR1", .state = ARM_CP_STATE_BOTH,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 1,
              .access = PL1_R, .type = ARM_CP_CONST,
3161
              .resetvalue = cpu->id_isar1 },
3162 3163 3164
            { .name = "ID_ISAR2", .state = ARM_CP_STATE_BOTH,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2,
              .access = PL1_R, .type = ARM_CP_CONST,
3165
              .resetvalue = cpu->id_isar2 },
3166 3167 3168
            { .name = "ID_ISAR3", .state = ARM_CP_STATE_BOTH,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 3,
              .access = PL1_R, .type = ARM_CP_CONST,
3169
              .resetvalue = cpu->id_isar3 },
3170 3171 3172
            { .name = "ID_ISAR4", .state = ARM_CP_STATE_BOTH,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 4,
              .access = PL1_R, .type = ARM_CP_CONST,
3173
              .resetvalue = cpu->id_isar4 },
3174 3175 3176
            { .name = "ID_ISAR5", .state = ARM_CP_STATE_BOTH,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 5,
              .access = PL1_R, .type = ARM_CP_CONST,
3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187
              .resetvalue = cpu->id_isar5 },
            /* 6..7 are as yet unallocated and must RAZ */
            { .name = "ID_ISAR6", .cp = 15, .crn = 0, .crm = 2,
              .opc1 = 0, .opc2 = 6, .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = 0 },
            { .name = "ID_ISAR7", .cp = 15, .crn = 0, .crm = 2,
              .opc1 = 0, .opc2 = 7, .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = 0 },
            REGINFO_SENTINEL
        };
        define_arm_cp_regs(cpu, v6_idregs);
3188 3189 3190 3191
        define_arm_cp_regs(cpu, v6_cp_reginfo);
    } else {
        define_arm_cp_regs(cpu, not_v6_cp_reginfo);
    }
3192 3193 3194
    if (arm_feature(env, ARM_FEATURE_V6K)) {
        define_arm_cp_regs(cpu, v6k_cp_reginfo);
    }
3195 3196
    if (arm_feature(env, ARM_FEATURE_V7MP) &&
        !arm_feature(env, ARM_FEATURE_MPU)) {
3197 3198
        define_arm_cp_regs(cpu, v7mp_cp_reginfo);
    }
3199
    if (arm_feature(env, ARM_FEATURE_V7)) {
3200
        /* v7 performance monitor control register: same implementor
3201 3202
         * field as main ID register, and we implement only the cycle
         * count register.
3203
         */
3204
#ifndef CONFIG_USER_ONLY
3205 3206
        ARMCPRegInfo pmcr = {
            .name = "PMCR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 0,
3207
            .access = PL0_RW,
3208
            .type = ARM_CP_IO | ARM_CP_ALIAS,
3209
            .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcr),
3210 3211
            .accessfn = pmreg_access, .writefn = pmcr_write,
            .raw_writefn = raw_write,
3212
        };
3213 3214 3215 3216 3217 3218 3219 3220 3221
        ARMCPRegInfo pmcr64 = {
            .name = "PMCR_EL0", .state = ARM_CP_STATE_AA64,
            .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 0,
            .access = PL0_RW, .accessfn = pmreg_access,
            .type = ARM_CP_IO,
            .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcr),
            .resetvalue = cpu->midr & 0xff000000,
            .writefn = pmcr_write, .raw_writefn = raw_write,
        };
3222
        define_one_arm_cp_reg(cpu, &pmcr);
3223
        define_one_arm_cp_reg(cpu, &pmcr64);
3224
#endif
3225
        ARMCPRegInfo clidr = {
3226 3227
            .name = "CLIDR", .state = ARM_CP_STATE_BOTH,
            .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 1,
3228 3229 3230
            .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->clidr
        };
        define_one_arm_cp_reg(cpu, &clidr);
3231
        define_arm_cp_regs(cpu, v7_cp_reginfo);
3232
        define_debug_regs(cpu);
3233 3234
    } else {
        define_arm_cp_regs(cpu, not_v7_cp_reginfo);
3235
    }
3236
    if (arm_feature(env, ARM_FEATURE_V8)) {
3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249
        /* AArch64 ID registers, which all have impdef reset values */
        ARMCPRegInfo v8_idregs[] = {
            { .name = "ID_AA64PFR0_EL1", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 0,
              .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = cpu->id_aa64pfr0 },
            { .name = "ID_AA64PFR1_EL1", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 1,
              .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = cpu->id_aa64pfr1},
            { .name = "ID_AA64DFR0_EL1", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 0,
              .access = PL1_R, .type = ARM_CP_CONST,
S
Stefan Weil 已提交
3250
              /* We mask out the PMUVer field, because we don't currently
3251 3252 3253 3254 3255
               * implement the PMU. Not advertising it prevents the guest
               * from trying to use it and getting UNDEFs on registers we
               * don't implement.
               */
              .resetvalue = cpu->id_aa64dfr0 & ~0xf00 },
3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283
            { .name = "ID_AA64DFR1_EL1", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 1,
              .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = cpu->id_aa64dfr1 },
            { .name = "ID_AA64AFR0_EL1", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 4,
              .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = cpu->id_aa64afr0 },
            { .name = "ID_AA64AFR1_EL1", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 5,
              .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = cpu->id_aa64afr1 },
            { .name = "ID_AA64ISAR0_EL1", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 0,
              .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = cpu->id_aa64isar0 },
            { .name = "ID_AA64ISAR1_EL1", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 1,
              .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = cpu->id_aa64isar1 },
            { .name = "ID_AA64MMFR0_EL1", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0,
              .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = cpu->id_aa64mmfr0 },
            { .name = "ID_AA64MMFR1_EL1", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 1,
              .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = cpu->id_aa64mmfr1 },
3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295
            { .name = "MVFR0_EL1", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0,
              .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = cpu->mvfr0 },
            { .name = "MVFR1_EL1", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1,
              .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = cpu->mvfr1 },
            { .name = "MVFR2_EL1", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2,
              .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = cpu->mvfr2 },
3296 3297
            REGINFO_SENTINEL
        };
3298 3299 3300 3301 3302 3303 3304 3305 3306 3307
        /* RVBAR_EL1 is only implemented if EL1 is the highest EL */
        if (!arm_feature(env, ARM_FEATURE_EL3) &&
            !arm_feature(env, ARM_FEATURE_EL2)) {
            ARMCPRegInfo rvbar = {
                .name = "RVBAR_EL1", .state = ARM_CP_STATE_AA64,
                .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
                .type = ARM_CP_CONST, .access = PL1_R, .resetvalue = cpu->rvbar
            };
            define_one_arm_cp_reg(cpu, &rvbar);
        }
3308
        define_arm_cp_regs(cpu, v8_idregs);
3309 3310
        define_arm_cp_regs(cpu, v8_cp_reginfo);
    }
3311
    if (arm_feature(env, ARM_FEATURE_EL2)) {
3312
        define_arm_cp_regs(cpu, el2_cp_reginfo);
3313 3314 3315 3316 3317 3318 3319 3320 3321
        /* RVBAR_EL2 is only implemented if EL2 is the highest EL */
        if (!arm_feature(env, ARM_FEATURE_EL3)) {
            ARMCPRegInfo rvbar = {
                .name = "RVBAR_EL2", .state = ARM_CP_STATE_AA64,
                .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 1,
                .type = ARM_CP_CONST, .access = PL2_R, .resetvalue = cpu->rvbar
            };
            define_one_arm_cp_reg(cpu, &rvbar);
        }
3322 3323 3324 3325 3326
    } else {
        /* If EL2 is missing but higher ELs are enabled, we need to
         * register the no_el2 reginfos.
         */
        if (arm_feature(env, ARM_FEATURE_EL3)) {
3327
            define_arm_cp_regs(cpu, el3_no_el2_cp_reginfo);
3328
        }
3329
    }
3330
    if (arm_feature(env, ARM_FEATURE_EL3)) {
3331
        define_arm_cp_regs(cpu, el3_cp_reginfo);
3332 3333 3334 3335 3336 3337
        ARMCPRegInfo rvbar = {
            .name = "RVBAR_EL3", .state = ARM_CP_STATE_AA64,
            .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 1,
            .type = ARM_CP_CONST, .access = PL3_R, .resetvalue = cpu->rvbar
        };
        define_one_arm_cp_reg(cpu, &rvbar);
3338
    }
3339 3340 3341 3342 3343 3344 3345 3346 3347
    if (arm_feature(env, ARM_FEATURE_MPU)) {
        /* These are the MPU registers prior to PMSAv6. Any new
         * PMSA core later than the ARM946 will require that we
         * implement the PMSAv6 or PMSAv7 registers, which are
         * completely different.
         */
        assert(!arm_feature(env, ARM_FEATURE_V6));
        define_arm_cp_regs(cpu, pmsav5_cp_reginfo);
    } else {
3348
        define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo);
3349 3350
        define_arm_cp_regs(cpu, vmsa_cp_reginfo);
    }
3351 3352 3353
    if (arm_feature(env, ARM_FEATURE_THUMB2EE)) {
        define_arm_cp_regs(cpu, t2ee_cp_reginfo);
    }
3354 3355 3356
    if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
        define_arm_cp_regs(cpu, generic_timer_cp_reginfo);
    }
3357 3358 3359
    if (arm_feature(env, ARM_FEATURE_VAPA)) {
        define_arm_cp_regs(cpu, vapa_cp_reginfo);
    }
3360 3361 3362 3363 3364 3365 3366 3367 3368
    if (arm_feature(env, ARM_FEATURE_CACHE_TEST_CLEAN)) {
        define_arm_cp_regs(cpu, cache_test_clean_cp_reginfo);
    }
    if (arm_feature(env, ARM_FEATURE_CACHE_DIRTY_REG)) {
        define_arm_cp_regs(cpu, cache_dirty_status_cp_reginfo);
    }
    if (arm_feature(env, ARM_FEATURE_CACHE_BLOCK_OPS)) {
        define_arm_cp_regs(cpu, cache_block_ops_cp_reginfo);
    }
3369 3370 3371
    if (arm_feature(env, ARM_FEATURE_OMAPCP)) {
        define_arm_cp_regs(cpu, omap_cp_reginfo);
    }
3372 3373 3374
    if (arm_feature(env, ARM_FEATURE_STRONGARM)) {
        define_arm_cp_regs(cpu, strongarm_cp_reginfo);
    }
3375 3376 3377 3378 3379 3380
    if (arm_feature(env, ARM_FEATURE_XSCALE)) {
        define_arm_cp_regs(cpu, xscale_cp_reginfo);
    }
    if (arm_feature(env, ARM_FEATURE_DUMMY_C15_REGS)) {
        define_arm_cp_regs(cpu, dummy_c15_cp_reginfo);
    }
3381 3382 3383
    if (arm_feature(env, ARM_FEATURE_LPAE)) {
        define_arm_cp_regs(cpu, lpae_cp_reginfo);
    }
3384 3385 3386 3387 3388
    /* Slightly awkwardly, the OMAP and StrongARM cores need all of
     * cp15 crn=0 to be writes-ignored, whereas for other cores they should
     * be read-only (ie write causes UNDEF exception).
     */
    {
3389 3390 3391
        ARMCPRegInfo id_pre_v8_midr_cp_reginfo[] = {
            /* Pre-v8 MIDR space.
             * Note that the MIDR isn't a simple constant register because
3392 3393
             * of the TI925 behaviour where writes to another register can
             * cause the MIDR value to change.
3394 3395 3396 3397
             *
             * Unimplemented registers in the c15 0 0 0 space default to
             * MIDR. Define MIDR first as this entire space, then CTR, TCMTR
             * and friends override accordingly.
3398 3399
             */
            { .name = "MIDR",
3400
              .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = CP_ANY,
3401
              .access = PL1_R, .resetvalue = cpu->midr,
3402
              .writefn = arm_cp_write_ignore, .raw_writefn = raw_write,
3403 3404
              .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
              .type = ARM_CP_OVERRIDE },
3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422
            /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */
            { .name = "DUMMY",
              .cp = 15, .crn = 0, .crm = 3, .opc1 = 0, .opc2 = CP_ANY,
              .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
            { .name = "DUMMY",
              .cp = 15, .crn = 0, .crm = 4, .opc1 = 0, .opc2 = CP_ANY,
              .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
            { .name = "DUMMY",
              .cp = 15, .crn = 0, .crm = 5, .opc1 = 0, .opc2 = CP_ANY,
              .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
            { .name = "DUMMY",
              .cp = 15, .crn = 0, .crm = 6, .opc1 = 0, .opc2 = CP_ANY,
              .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
            { .name = "DUMMY",
              .cp = 15, .crn = 0, .crm = 7, .opc1 = 0, .opc2 = CP_ANY,
              .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
            REGINFO_SENTINEL
        };
3423 3424 3425 3426
        ARMCPRegInfo id_v8_midr_cp_reginfo[] = {
            { .name = "MIDR_EL1", .state = ARM_CP_STATE_BOTH,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 0,
              .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->midr },
3427 3428 3429 3430 3431 3432 3433
            /* crn = 0 op1 = 0 crm = 0 op2 = 4,7 : AArch32 aliases of MIDR */
            { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST,
              .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4,
              .access = PL1_R, .resetvalue = cpu->midr },
            { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST,
              .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 7,
              .access = PL1_R, .resetvalue = cpu->midr },
3434 3435
            { .name = "REVIDR_EL1", .state = ARM_CP_STATE_BOTH,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 6,
3436
              .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->revidr },
3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453
            REGINFO_SENTINEL
        };
        ARMCPRegInfo id_cp_reginfo[] = {
            /* These are common to v8 and pre-v8 */
            { .name = "CTR",
              .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 1,
              .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
            { .name = "CTR_EL0", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 0, .crm = 0,
              .access = PL0_R, .accessfn = ctr_el0_access,
              .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
            /* TCMTR and TLBTR exist in v8 but have no 64-bit versions */
            { .name = "TCMTR",
              .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 2,
              .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
            REGINFO_SENTINEL
        };
3454 3455 3456 3457 3458 3459
        /* TLBTR is specific to VMSA */
        ARMCPRegInfo id_tlbtr_reginfo = {
              .name = "TLBTR",
              .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 3,
              .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0,
        };
3460 3461 3462 3463 3464 3465 3466
        /* MPUIR is specific to PMSA V6+ */
        ARMCPRegInfo id_mpuir_reginfo = {
              .name = "MPUIR",
              .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4,
              .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = cpu->pmsav7_dregion << 8
        };
3467 3468 3469 3470 3471 3472 3473 3474 3475
        ARMCPRegInfo crn0_wi_reginfo = {
            .name = "CRN0_WI", .cp = 15, .crn = 0, .crm = CP_ANY,
            .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_W,
            .type = ARM_CP_NOP | ARM_CP_OVERRIDE
        };
        if (arm_feature(env, ARM_FEATURE_OMAPCP) ||
            arm_feature(env, ARM_FEATURE_STRONGARM)) {
            ARMCPRegInfo *r;
            /* Register the blanket "writes ignored" value first to cover the
3476 3477 3478
             * whole space. Then update the specific ID registers to allow write
             * access, so that they ignore writes rather than causing them to
             * UNDEF.
3479 3480
             */
            define_one_arm_cp_reg(cpu, &crn0_wi_reginfo);
3481 3482 3483 3484
            for (r = id_pre_v8_midr_cp_reginfo;
                 r->type != ARM_CP_SENTINEL; r++) {
                r->access = PL1_RW;
            }
3485 3486 3487
            for (r = id_cp_reginfo; r->type != ARM_CP_SENTINEL; r++) {
                r->access = PL1_RW;
            }
3488
            id_tlbtr_reginfo.access = PL1_RW;
3489
            id_tlbtr_reginfo.access = PL1_RW;
3490
        }
3491 3492 3493 3494 3495
        if (arm_feature(env, ARM_FEATURE_V8)) {
            define_arm_cp_regs(cpu, id_v8_midr_cp_reginfo);
        } else {
            define_arm_cp_regs(cpu, id_pre_v8_midr_cp_reginfo);
        }
3496
        define_arm_cp_regs(cpu, id_cp_reginfo);
3497 3498
        if (!arm_feature(env, ARM_FEATURE_MPU)) {
            define_one_arm_cp_reg(cpu, &id_tlbtr_reginfo);
3499 3500
        } else if (arm_feature(env, ARM_FEATURE_V7)) {
            define_one_arm_cp_reg(cpu, &id_mpuir_reginfo);
3501
        }
3502 3503
    }

3504 3505 3506 3507
    if (arm_feature(env, ARM_FEATURE_MPIDR)) {
        define_arm_cp_regs(cpu, mpidr_cp_reginfo);
    }

3508 3509
    if (arm_feature(env, ARM_FEATURE_AUXCR)) {
        ARMCPRegInfo auxcr = {
3510 3511
            .name = "ACTLR_EL1", .state = ARM_CP_STATE_BOTH,
            .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 1,
3512 3513 3514 3515 3516 3517
            .access = PL1_RW, .type = ARM_CP_CONST,
            .resetvalue = cpu->reset_auxcr
        };
        define_one_arm_cp_reg(cpu, &auxcr);
    }

3518
    if (arm_feature(env, ARM_FEATURE_CBAR)) {
3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551
        if (arm_feature(env, ARM_FEATURE_AARCH64)) {
            /* 32 bit view is [31:18] 0...0 [43:32]. */
            uint32_t cbar32 = (extract64(cpu->reset_cbar, 18, 14) << 18)
                | extract64(cpu->reset_cbar, 32, 12);
            ARMCPRegInfo cbar_reginfo[] = {
                { .name = "CBAR",
                  .type = ARM_CP_CONST,
                  .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0,
                  .access = PL1_R, .resetvalue = cpu->reset_cbar },
                { .name = "CBAR_EL1", .state = ARM_CP_STATE_AA64,
                  .type = ARM_CP_CONST,
                  .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 3, .opc2 = 0,
                  .access = PL1_R, .resetvalue = cbar32 },
                REGINFO_SENTINEL
            };
            /* We don't implement a r/w 64 bit CBAR currently */
            assert(arm_feature(env, ARM_FEATURE_CBAR_RO));
            define_arm_cp_regs(cpu, cbar_reginfo);
        } else {
            ARMCPRegInfo cbar = {
                .name = "CBAR",
                .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0,
                .access = PL1_R|PL3_W, .resetvalue = cpu->reset_cbar,
                .fieldoffset = offsetof(CPUARMState,
                                        cp15.c15_config_base_address)
            };
            if (arm_feature(env, ARM_FEATURE_CBAR_RO)) {
                cbar.access = PL1_R;
                cbar.fieldoffset = 0;
                cbar.type = ARM_CP_CONST;
            }
            define_one_arm_cp_reg(cpu, &cbar);
        }
3552 3553
    }

3554 3555 3556
    /* Generic registers whose values depend on the implementation */
    {
        ARMCPRegInfo sctlr = {
3557
            .name = "SCTLR", .state = ARM_CP_STATE_BOTH,
3558 3559 3560 3561
            .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0,
            .access = PL1_RW,
            .bank_fieldoffsets = { offsetof(CPUARMState, cp15.sctlr_s),
                                   offsetof(CPUARMState, cp15.sctlr_ns) },
3562 3563
            .writefn = sctlr_write, .resetvalue = cpu->reset_sctlr,
            .raw_writefn = raw_write,
3564 3565 3566 3567 3568 3569 3570 3571 3572 3573
        };
        if (arm_feature(env, ARM_FEATURE_XSCALE)) {
            /* Normally we would always end the TB on an SCTLR write, but Linux
             * arch/arm/mach-pxa/sleep.S expects two instructions following
             * an MMU enable to execute from cache.  Imitate this behaviour.
             */
            sctlr.type |= ARM_CP_SUPPRESS_TB_END;
        }
        define_one_arm_cp_reg(cpu, &sctlr);
    }
3574 3575
}

3576
ARMCPU *cpu_arm_init(const char *cpu_model)
P
pbrook 已提交
3577
{
3578
    return ARM_CPU(cpu_generic_init(TYPE_ARM_CPU, cpu_model));
3579 3580 3581 3582
}

void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu)
{
3583
    CPUState *cs = CPU(cpu);
3584 3585
    CPUARMState *env = &cpu->env;

3586 3587 3588 3589 3590
    if (arm_feature(env, ARM_FEATURE_AARCH64)) {
        gdb_register_coprocessor(cs, aarch64_fpu_gdb_get_reg,
                                 aarch64_fpu_gdb_set_reg,
                                 34, "aarch64-fpu.xml", 0);
    } else if (arm_feature(env, ARM_FEATURE_NEON)) {
3591
        gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
P
pbrook 已提交
3592 3593
                                 51, "arm-neon.xml", 0);
    } else if (arm_feature(env, ARM_FEATURE_VFP3)) {
3594
        gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
P
pbrook 已提交
3595 3596
                                 35, "arm-vfp3.xml", 0);
    } else if (arm_feature(env, ARM_FEATURE_VFP)) {
3597
        gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
P
pbrook 已提交
3598 3599
                                 19, "arm-vfp.xml", 0);
    }
P
pbrook 已提交
3600 3601
}

3602 3603
/* Sort alphabetically by type name, except for "any". */
static gint arm_cpu_list_compare(gconstpointer a, gconstpointer b)
P
pbrook 已提交
3604
{
3605 3606 3607
    ObjectClass *class_a = (ObjectClass *)a;
    ObjectClass *class_b = (ObjectClass *)b;
    const char *name_a, *name_b;
P
pbrook 已提交
3608

3609 3610
    name_a = object_class_get_name(class_a);
    name_b = object_class_get_name(class_b);
A
Andreas Färber 已提交
3611
    if (strcmp(name_a, "any-" TYPE_ARM_CPU) == 0) {
3612
        return 1;
A
Andreas Färber 已提交
3613
    } else if (strcmp(name_b, "any-" TYPE_ARM_CPU) == 0) {
3614 3615 3616
        return -1;
    } else {
        return strcmp(name_a, name_b);
P
pbrook 已提交
3617 3618 3619
    }
}

3620
static void arm_cpu_list_entry(gpointer data, gpointer user_data)
P
pbrook 已提交
3621
{
3622
    ObjectClass *oc = data;
3623
    CPUListState *s = user_data;
A
Andreas Färber 已提交
3624 3625
    const char *typename;
    char *name;
P
pbrook 已提交
3626

A
Andreas Färber 已提交
3627 3628
    typename = object_class_get_name(oc);
    name = g_strndup(typename, strlen(typename) - strlen("-" TYPE_ARM_CPU));
3629
    (*s->cpu_fprintf)(s->file, "  %s\n",
A
Andreas Färber 已提交
3630 3631
                      name);
    g_free(name);
3632 3633 3634 3635
}

void arm_cpu_list(FILE *f, fprintf_function cpu_fprintf)
{
3636
    CPUListState s = {
3637 3638 3639 3640 3641 3642 3643 3644 3645 3646
        .file = f,
        .cpu_fprintf = cpu_fprintf,
    };
    GSList *list;

    list = object_class_get_list(TYPE_ARM_CPU, false);
    list = g_slist_sort(list, arm_cpu_list_compare);
    (*cpu_fprintf)(f, "Available CPUs:\n");
    g_slist_foreach(list, arm_cpu_list_entry, &s);
    g_slist_free(list);
3647 3648 3649 3650 3651 3652
#ifdef CONFIG_KVM
    /* The 'host' CPU type is dynamically registered only if KVM is
     * enabled, so we have to special-case it here:
     */
    (*cpu_fprintf)(f, "  host (only available in KVM mode)\n");
#endif
P
pbrook 已提交
3653 3654
}

3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685
static void arm_cpu_add_definition(gpointer data, gpointer user_data)
{
    ObjectClass *oc = data;
    CpuDefinitionInfoList **cpu_list = user_data;
    CpuDefinitionInfoList *entry;
    CpuDefinitionInfo *info;
    const char *typename;

    typename = object_class_get_name(oc);
    info = g_malloc0(sizeof(*info));
    info->name = g_strndup(typename,
                           strlen(typename) - strlen("-" TYPE_ARM_CPU));

    entry = g_malloc0(sizeof(*entry));
    entry->value = info;
    entry->next = *cpu_list;
    *cpu_list = entry;
}

CpuDefinitionInfoList *arch_query_cpu_definitions(Error **errp)
{
    CpuDefinitionInfoList *cpu_list = NULL;
    GSList *list;

    list = object_class_get_list(TYPE_ARM_CPU, false);
    g_slist_foreach(list, arm_cpu_add_definition, &cpu_list);
    g_slist_free(list);

    return cpu_list;
}

3686
static void add_cpreg_to_hashtable(ARMCPU *cpu, const ARMCPRegInfo *r,
3687
                                   void *opaque, int state, int secstate,
3688
                                   int crm, int opc1, int opc2)
3689 3690 3691 3692 3693 3694 3695
{
    /* Private utility function for define_one_arm_cp_reg_with_opaque():
     * add a single reginfo struct to the hash table.
     */
    uint32_t *key = g_new(uint32_t, 1);
    ARMCPRegInfo *r2 = g_memdup(r, sizeof(ARMCPRegInfo));
    int is64 = (r->type & ARM_CP_64BIT) ? 1 : 0;
3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706
    int ns = (secstate & ARM_CP_SECSTATE_NS) ? 1 : 0;

    /* Reset the secure state to the specific incoming state.  This is
     * necessary as the register may have been defined with both states.
     */
    r2->secure = secstate;

    if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) {
        /* Register is banked (using both entries in array).
         * Overwriting fieldoffset as the array is only used to define
         * banked registers but later only fieldoffset is used.
3707
         */
3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724
        r2->fieldoffset = r->bank_fieldoffsets[ns];
    }

    if (state == ARM_CP_STATE_AA32) {
        if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) {
            /* If the register is banked then we don't need to migrate or
             * reset the 32-bit instance in certain cases:
             *
             * 1) If the register has both 32-bit and 64-bit instances then we
             *    can count on the 64-bit instance taking care of the
             *    non-secure bank.
             * 2) If ARMv8 is enabled then we can count on a 64-bit version
             *    taking care of the secure bank.  This requires that separate
             *    32 and 64-bit definitions are provided.
             */
            if ((r->state == ARM_CP_STATE_BOTH && ns) ||
                (arm_feature(&cpu->env, ARM_FEATURE_V8) && !ns)) {
3725
                r2->type |= ARM_CP_ALIAS;
3726 3727 3728 3729 3730
            }
        } else if ((secstate != r->secure) && !ns) {
            /* The register is not banked so we only want to allow migration of
             * the non-secure instance.
             */
3731
            r2->type |= ARM_CP_ALIAS;
3732
        }
3733 3734 3735 3736 3737 3738 3739 3740

        if (r->state == ARM_CP_STATE_BOTH) {
            /* We assume it is a cp15 register if the .cp field is left unset.
             */
            if (r2->cp == 0) {
                r2->cp = 15;
            }

3741
#ifdef HOST_WORDS_BIGENDIAN
3742 3743 3744
            if (r2->fieldoffset) {
                r2->fieldoffset += sizeof(uint32_t);
            }
3745
#endif
3746
        }
3747 3748 3749 3750 3751
    }
    if (state == ARM_CP_STATE_AA64) {
        /* To allow abbreviation of ARMCPRegInfo
         * definitions, we treat cp == 0 as equivalent to
         * the value for "standard guest-visible sysreg".
3752 3753 3754
         * STATE_BOTH definitions are also always "standard
         * sysreg" in their AArch64 view (the .cp value may
         * be non-zero for the benefit of the AArch32 view).
3755
         */
3756
        if (r->cp == 0 || r->state == ARM_CP_STATE_BOTH) {
3757 3758 3759 3760 3761
            r2->cp = CP_REG_ARM64_SYSREG_CP;
        }
        *key = ENCODE_AA64_CP_REG(r2->cp, r2->crn, crm,
                                  r2->opc0, opc1, opc2);
    } else {
3762
        *key = ENCODE_CP_REG(r2->cp, is64, ns, r2->crn, crm, opc1, opc2);
3763
    }
3764 3765 3766
    if (opaque) {
        r2->opaque = opaque;
    }
3767 3768 3769 3770
    /* reginfo passed to helpers is correct for the actual access,
     * and is never ARM_CP_STATE_BOTH:
     */
    r2->state = state;
3771 3772 3773 3774 3775 3776 3777 3778
    /* Make sure reginfo passed to helpers for wildcarded regs
     * has the correct crm/opc1/opc2 for this reg, not CP_ANY:
     */
    r2->crm = crm;
    r2->opc1 = opc1;
    r2->opc2 = opc2;
    /* By convention, for wildcarded registers only the first
     * entry is used for migration; the others are marked as
3779
     * ALIAS so we don't try to transfer the register
3780
     * multiple times. Special registers (ie NOP/WFI) are
3781
     * never migratable and not even raw-accessible.
3782
     */
3783 3784 3785 3786
    if ((r->type & ARM_CP_SPECIAL)) {
        r2->type |= ARM_CP_NO_RAW;
    }
    if (((r->crm == CP_ANY) && crm != 0) ||
3787 3788
        ((r->opc1 == CP_ANY) && opc1 != 0) ||
        ((r->opc2 == CP_ANY) && opc2 != 0)) {
3789
        r2->type |= ARM_CP_ALIAS;
3790 3791
    }

3792 3793 3794 3795 3796 3797 3798 3799
    /* Check that raw accesses are either forbidden or handled. Note that
     * we can't assert this earlier because the setup of fieldoffset for
     * banked registers has to be done first.
     */
    if (!(r2->type & ARM_CP_NO_RAW)) {
        assert(!raw_accessors_invalid(r2));
    }

3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818
    /* Overriding of an existing definition must be explicitly
     * requested.
     */
    if (!(r->type & ARM_CP_OVERRIDE)) {
        ARMCPRegInfo *oldreg;
        oldreg = g_hash_table_lookup(cpu->cp_regs, key);
        if (oldreg && !(oldreg->type & ARM_CP_OVERRIDE)) {
            fprintf(stderr, "Register redefined: cp=%d %d bit "
                    "crn=%d crm=%d opc1=%d opc2=%d, "
                    "was %s, now %s\n", r2->cp, 32 + 32 * is64,
                    r2->crn, r2->crm, r2->opc1, r2->opc2,
                    oldreg->name, r2->name);
            g_assert_not_reached();
        }
    }
    g_hash_table_insert(cpu->cp_regs, key, r2);
}


3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832
void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
                                       const ARMCPRegInfo *r, void *opaque)
{
    /* Define implementations of coprocessor registers.
     * We store these in a hashtable because typically
     * there are less than 150 registers in a space which
     * is 16*16*16*8*8 = 262144 in size.
     * Wildcarding is supported for the crm, opc1 and opc2 fields.
     * If a register is defined twice then the second definition is
     * used, so this can be used to define some generic registers and
     * then override them with implementation specific variations.
     * At least one of the original and the second definition should
     * include ARM_CP_OVERRIDE in its type bits -- this is just a guard
     * against accidental use.
3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843
     *
     * The state field defines whether the register is to be
     * visible in the AArch32 or AArch64 execution state. If the
     * state is set to ARM_CP_STATE_BOTH then we synthesise a
     * reginfo structure for the AArch32 view, which sees the lower
     * 32 bits of the 64 bit register.
     *
     * Only registers visible in AArch64 may set r->opc0; opc0 cannot
     * be wildcarded. AArch64 registers are always considered to be 64
     * bits; the ARM_CP_64BIT* flag applies only to the AArch32 view of
     * the register, if any.
3844
     */
3845
    int crm, opc1, opc2, state;
3846 3847 3848 3849 3850 3851 3852 3853
    int crmmin = (r->crm == CP_ANY) ? 0 : r->crm;
    int crmmax = (r->crm == CP_ANY) ? 15 : r->crm;
    int opc1min = (r->opc1 == CP_ANY) ? 0 : r->opc1;
    int opc1max = (r->opc1 == CP_ANY) ? 7 : r->opc1;
    int opc2min = (r->opc2 == CP_ANY) ? 0 : r->opc2;
    int opc2max = (r->opc2 == CP_ANY) ? 7 : r->opc2;
    /* 64 bit registers have only CRm and Opc1 fields */
    assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn)));
3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899
    /* op0 only exists in the AArch64 encodings */
    assert((r->state != ARM_CP_STATE_AA32) || (r->opc0 == 0));
    /* AArch64 regs are all 64 bit so ARM_CP_64BIT is meaningless */
    assert((r->state != ARM_CP_STATE_AA64) || !(r->type & ARM_CP_64BIT));
    /* The AArch64 pseudocode CheckSystemAccess() specifies that op1
     * encodes a minimum access level for the register. We roll this
     * runtime check into our general permission check code, so check
     * here that the reginfo's specified permissions are strict enough
     * to encompass the generic architectural permission check.
     */
    if (r->state != ARM_CP_STATE_AA32) {
        int mask = 0;
        switch (r->opc1) {
        case 0: case 1: case 2:
            /* min_EL EL1 */
            mask = PL1_RW;
            break;
        case 3:
            /* min_EL EL0 */
            mask = PL0_RW;
            break;
        case 4:
            /* min_EL EL2 */
            mask = PL2_RW;
            break;
        case 5:
            /* unallocated encoding, so not possible */
            assert(false);
            break;
        case 6:
            /* min_EL EL3 */
            mask = PL3_RW;
            break;
        case 7:
            /* min_EL EL1, secure mode only (we don't check the latter) */
            mask = PL1_RW;
            break;
        default:
            /* broken reginfo with out-of-range opc1 */
            assert(false);
            break;
        }
        /* assert our permissions are not too lax (stricter is fine) */
        assert((r->access & ~mask) == 0);
    }

3900 3901 3902 3903 3904
    /* Check that the register definition has enough info to handle
     * reads and writes if they are permitted.
     */
    if (!(r->type & (ARM_CP_SPECIAL|ARM_CP_CONST))) {
        if (r->access & PL3_R) {
3905 3906 3907
            assert((r->fieldoffset ||
                   (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
                   r->readfn);
3908 3909
        }
        if (r->access & PL3_W) {
3910 3911 3912
            assert((r->fieldoffset ||
                   (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
                   r->writefn);
3913 3914 3915 3916 3917 3918 3919
        }
    }
    /* Bad type field probably means missing sentinel at end of reg list */
    assert(cptype_valid(r->type));
    for (crm = crmmin; crm <= crmmax; crm++) {
        for (opc1 = opc1min; opc1 <= opc1max; opc1++) {
            for (opc2 = opc2min; opc2 <= opc2max; opc2++) {
3920 3921 3922 3923 3924
                for (state = ARM_CP_STATE_AA32;
                     state <= ARM_CP_STATE_AA64; state++) {
                    if (r->state != state && r->state != ARM_CP_STATE_BOTH) {
                        continue;
                    }
3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950
                    if (state == ARM_CP_STATE_AA32) {
                        /* Under AArch32 CP registers can be common
                         * (same for secure and non-secure world) or banked.
                         */
                        switch (r->secure) {
                        case ARM_CP_SECSTATE_S:
                        case ARM_CP_SECSTATE_NS:
                            add_cpreg_to_hashtable(cpu, r, opaque, state,
                                                   r->secure, crm, opc1, opc2);
                            break;
                        default:
                            add_cpreg_to_hashtable(cpu, r, opaque, state,
                                                   ARM_CP_SECSTATE_S,
                                                   crm, opc1, opc2);
                            add_cpreg_to_hashtable(cpu, r, opaque, state,
                                                   ARM_CP_SECSTATE_NS,
                                                   crm, opc1, opc2);
                            break;
                        }
                    } else {
                        /* AArch64 registers get mapped to non-secure instance
                         * of AArch32 */
                        add_cpreg_to_hashtable(cpu, r, opaque, state,
                                               ARM_CP_SECSTATE_NS,
                                               crm, opc1, opc2);
                    }
3951
                }
3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966
            }
        }
    }
}

void define_arm_cp_regs_with_opaque(ARMCPU *cpu,
                                    const ARMCPRegInfo *regs, void *opaque)
{
    /* Define a whole list of registers */
    const ARMCPRegInfo *r;
    for (r = regs; r->type != ARM_CP_SENTINEL; r++) {
        define_one_arm_cp_reg_with_opaque(cpu, r, opaque);
    }
}

3967
const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp)
3968
{
3969
    return g_hash_table_lookup(cpregs, &encoded_cp);
3970 3971
}

3972 3973
void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
                         uint64_t value)
3974 3975 3976 3977
{
    /* Helper coprocessor write function for write-ignore registers */
}

3978
uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri)
3979 3980 3981 3982 3983
{
    /* Helper coprocessor write function for read-as-zero registers */
    return 0;
}

3984 3985 3986 3987 3988
void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque)
{
    /* Helper coprocessor reset function for do-nothing-on-reset registers */
}

3989
static int bad_mode_switch(CPUARMState *env, int mode)
3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003
{
    /* Return true if it is not valid for us to switch to
     * this CPU mode (ie all the UNPREDICTABLE cases in
     * the ARM ARM CPSRWriteByInstr pseudocode).
     */
    switch (mode) {
    case ARM_CPU_MODE_USR:
    case ARM_CPU_MODE_SYS:
    case ARM_CPU_MODE_SVC:
    case ARM_CPU_MODE_ABT:
    case ARM_CPU_MODE_UND:
    case ARM_CPU_MODE_IRQ:
    case ARM_CPU_MODE_FIQ:
        return 0;
4004 4005
    case ARM_CPU_MODE_MON:
        return !arm_is_secure(env);
4006 4007 4008 4009 4010
    default:
        return 1;
    }
}

4011 4012 4013
uint32_t cpsr_read(CPUARMState *env)
{
    int ZF;
P
pbrook 已提交
4014 4015
    ZF = (env->ZF == 0);
    return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) |
4016 4017 4018
        (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
        | (env->thumb << 5) | ((env->condexec_bits & 3) << 25)
        | ((env->condexec_bits & 0xfc) << 8)
4019
        | (env->GE << 16) | (env->daif & CPSR_AIF);
4020 4021 4022 4023
}

void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask)
{
4024 4025
    uint32_t changed_daif;

4026
    if (mask & CPSR_NZCV) {
P
pbrook 已提交
4027 4028
        env->ZF = (~val) & CPSR_Z;
        env->NF = val;
4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047
        env->CF = (val >> 29) & 1;
        env->VF = (val << 3) & 0x80000000;
    }
    if (mask & CPSR_Q)
        env->QF = ((val & CPSR_Q) != 0);
    if (mask & CPSR_T)
        env->thumb = ((val & CPSR_T) != 0);
    if (mask & CPSR_IT_0_1) {
        env->condexec_bits &= ~3;
        env->condexec_bits |= (val >> 25) & 3;
    }
    if (mask & CPSR_IT_2_7) {
        env->condexec_bits &= 3;
        env->condexec_bits |= (val >> 8) & 0xfc;
    }
    if (mask & CPSR_GE) {
        env->GE = (val >> 16) & 0xf;
    }

4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099
    /* In a V7 implementation that includes the security extensions but does
     * not include Virtualization Extensions the SCR.FW and SCR.AW bits control
     * whether non-secure software is allowed to change the CPSR_F and CPSR_A
     * bits respectively.
     *
     * In a V8 implementation, it is permitted for privileged software to
     * change the CPSR A/F bits regardless of the SCR.AW/FW bits.
     */
    if (!arm_feature(env, ARM_FEATURE_V8) &&
        arm_feature(env, ARM_FEATURE_EL3) &&
        !arm_feature(env, ARM_FEATURE_EL2) &&
        !arm_is_secure(env)) {

        changed_daif = (env->daif ^ val) & mask;

        if (changed_daif & CPSR_A) {
            /* Check to see if we are allowed to change the masking of async
             * abort exceptions from a non-secure state.
             */
            if (!(env->cp15.scr_el3 & SCR_AW)) {
                qemu_log_mask(LOG_GUEST_ERROR,
                              "Ignoring attempt to switch CPSR_A flag from "
                              "non-secure world with SCR.AW bit clear\n");
                mask &= ~CPSR_A;
            }
        }

        if (changed_daif & CPSR_F) {
            /* Check to see if we are allowed to change the masking of FIQ
             * exceptions from a non-secure state.
             */
            if (!(env->cp15.scr_el3 & SCR_FW)) {
                qemu_log_mask(LOG_GUEST_ERROR,
                              "Ignoring attempt to switch CPSR_F flag from "
                              "non-secure world with SCR.FW bit clear\n");
                mask &= ~CPSR_F;
            }

            /* Check whether non-maskable FIQ (NMFI) support is enabled.
             * If this bit is set software is not allowed to mask
             * FIQs, but is allowed to set CPSR_F to 0.
             */
            if ((A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_NMFI) &&
                (val & CPSR_F)) {
                qemu_log_mask(LOG_GUEST_ERROR,
                              "Ignoring attempt to enable CPSR_F flag "
                              "(non-maskable FIQ [NMFI] support enabled)\n");
                mask &= ~CPSR_F;
            }
        }
    }

4100 4101 4102
    env->daif &= ~(CPSR_AIF & mask);
    env->daif |= val & CPSR_AIF & mask;

4103
    if ((env->uncached_cpsr ^ val) & mask & CPSR_M) {
4104 4105 4106 4107 4108 4109 4110 4111 4112
        if (bad_mode_switch(env, val & CPSR_M)) {
            /* Attempt to switch to an invalid mode: this is UNPREDICTABLE.
             * We choose to ignore the attempt and leave the CPSR M field
             * untouched.
             */
            mask &= ~CPSR_M;
        } else {
            switch_mode(env, val & CPSR_M);
        }
4113 4114 4115 4116 4117
    }
    mask &= ~CACHED_CPSR_BITS;
    env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask);
}

P
pbrook 已提交
4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134
/* Sign/zero extend */
uint32_t HELPER(sxtb16)(uint32_t x)
{
    uint32_t res;
    res = (uint16_t)(int8_t)x;
    res |= (uint32_t)(int8_t)(x >> 16) << 16;
    return res;
}

uint32_t HELPER(uxtb16)(uint32_t x)
{
    uint32_t res;
    res = (uint16_t)(uint8_t)x;
    res |= (uint32_t)(uint8_t)(x >> 16) << 16;
    return res;
}

P
pbrook 已提交
4135 4136
uint32_t HELPER(clz)(uint32_t x)
{
4137
    return clz32(x);
P
pbrook 已提交
4138 4139
}

P
pbrook 已提交
4140 4141 4142 4143
int32_t HELPER(sdiv)(int32_t num, int32_t den)
{
    if (den == 0)
      return 0;
A
Aurelien Jarno 已提交
4144 4145
    if (num == INT_MIN && den == -1)
      return INT_MIN;
P
pbrook 已提交
4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170
    return num / den;
}

uint32_t HELPER(udiv)(uint32_t num, uint32_t den)
{
    if (den == 0)
      return 0;
    return num / den;
}

uint32_t HELPER(rbit)(uint32_t x)
{
    x =  ((x & 0xff000000) >> 24)
       | ((x & 0x00ff0000) >> 8)
       | ((x & 0x0000ff00) << 8)
       | ((x & 0x000000ff) << 24);
    x =  ((x & 0xf0f0f0f0) >> 4)
       | ((x & 0x0f0f0f0f) << 4);
    x =  ((x & 0x88888888) >> 3)
       | ((x & 0x44444444) >> 1)
       | ((x & 0x22222222) << 1)
       | ((x & 0x11111111) << 3);
    return x;
}

4171
#if defined(CONFIG_USER_ONLY)
B
bellard 已提交
4172

P
pbrook 已提交
4173
/* These should probably raise undefined insn exceptions.  */
4174
void HELPER(v7m_msr)(CPUARMState *env, uint32_t reg, uint32_t val)
P
pbrook 已提交
4175
{
4176 4177 4178
    ARMCPU *cpu = arm_env_get_cpu(env);

    cpu_abort(CPU(cpu), "v7m_msr %d\n", reg);
P
pbrook 已提交
4179 4180
}

4181
uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg)
P
pbrook 已提交
4182
{
4183 4184 4185
    ARMCPU *cpu = arm_env_get_cpu(env);

    cpu_abort(CPU(cpu), "v7m_mrs %d\n", reg);
P
pbrook 已提交
4186 4187 4188
    return 0;
}

4189
void switch_mode(CPUARMState *env, int mode)
B
bellard 已提交
4190
{
4191 4192 4193 4194 4195
    ARMCPU *cpu = arm_env_get_cpu(env);

    if (mode != ARM_CPU_MODE_USR) {
        cpu_abort(CPU(cpu), "Tried to switch out of user mode\n");
    }
B
bellard 已提交
4196 4197
}

4198
void HELPER(set_r13_banked)(CPUARMState *env, uint32_t mode, uint32_t val)
P
pbrook 已提交
4199
{
4200 4201 4202
    ARMCPU *cpu = arm_env_get_cpu(env);

    cpu_abort(CPU(cpu), "banked r13 write\n");
P
pbrook 已提交
4203 4204
}

4205
uint32_t HELPER(get_r13_banked)(CPUARMState *env, uint32_t mode)
P
pbrook 已提交
4206
{
4207 4208 4209
    ARMCPU *cpu = arm_env_get_cpu(env);

    cpu_abort(CPU(cpu), "banked r13 read\n");
P
pbrook 已提交
4210 4211 4212
    return 0;
}

4213 4214
uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
                                 uint32_t cur_el, bool secure)
4215 4216 4217 4218
{
    return 1;
}

4219 4220 4221 4222 4223
void aarch64_sync_64_to_32(CPUARMState *env)
{
    g_assert_not_reached();
}

B
bellard 已提交
4224 4225 4226
#else

/* Map CPU modes onto saved register banks.  */
4227
int bank_number(int mode)
B
bellard 已提交
4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242
{
    switch (mode) {
    case ARM_CPU_MODE_USR:
    case ARM_CPU_MODE_SYS:
        return 0;
    case ARM_CPU_MODE_SVC:
        return 1;
    case ARM_CPU_MODE_ABT:
        return 2;
    case ARM_CPU_MODE_UND:
        return 3;
    case ARM_CPU_MODE_IRQ:
        return 4;
    case ARM_CPU_MODE_FIQ:
        return 5;
4243 4244 4245 4246
    case ARM_CPU_MODE_HYP:
        return 6;
    case ARM_CPU_MODE_MON:
        return 7;
B
bellard 已提交
4247
    }
4248
    hw_error("bank number requested for bad CPSR mode value 0x%x\n", mode);
B
bellard 已提交
4249 4250
}

4251
void switch_mode(CPUARMState *env, int mode)
B
bellard 已提交
4252 4253 4254 4255 4256 4257 4258 4259 4260 4261
{
    int old_mode;
    int i;

    old_mode = env->uncached_cpsr & CPSR_M;
    if (mode == old_mode)
        return;

    if (old_mode == ARM_CPU_MODE_FIQ) {
        memcpy (env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t));
P
pbrook 已提交
4262
        memcpy (env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t));
B
bellard 已提交
4263 4264
    } else if (mode == ARM_CPU_MODE_FIQ) {
        memcpy (env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t));
P
pbrook 已提交
4265
        memcpy (env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t));
B
bellard 已提交
4266 4267
    }

4268
    i = bank_number(old_mode);
B
bellard 已提交
4269 4270 4271 4272
    env->banked_r13[i] = env->regs[13];
    env->banked_r14[i] = env->regs[14];
    env->banked_spsr[i] = env->spsr;

4273
    i = bank_number(mode);
B
bellard 已提交
4274 4275 4276 4277 4278
    env->regs[13] = env->banked_r13[i];
    env->regs[14] = env->banked_r14[i];
    env->spsr = env->banked_spsr[i];
}

4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337
/* Physical Interrupt Target EL Lookup Table
 *
 * [ From ARM ARM section G1.13.4 (Table G1-15) ]
 *
 * The below multi-dimensional table is used for looking up the target
 * exception level given numerous condition criteria.  Specifically, the
 * target EL is based on SCR and HCR routing controls as well as the
 * currently executing EL and secure state.
 *
 *    Dimensions:
 *    target_el_table[2][2][2][2][2][4]
 *                    |  |  |  |  |  +--- Current EL
 *                    |  |  |  |  +------ Non-secure(0)/Secure(1)
 *                    |  |  |  +--------- HCR mask override
 *                    |  |  +------------ SCR exec state control
 *                    |  +--------------- SCR mask override
 *                    +------------------ 32-bit(0)/64-bit(1) EL3
 *
 *    The table values are as such:
 *    0-3 = EL0-EL3
 *     -1 = Cannot occur
 *
 * The ARM ARM target EL table includes entries indicating that an "exception
 * is not taken".  The two cases where this is applicable are:
 *    1) An exception is taken from EL3 but the SCR does not have the exception
 *    routed to EL3.
 *    2) An exception is taken from EL2 but the HCR does not have the exception
 *    routed to EL2.
 * In these two cases, the below table contain a target of EL1.  This value is
 * returned as it is expected that the consumer of the table data will check
 * for "target EL >= current EL" to ensure the exception is not taken.
 *
 *            SCR     HCR
 *         64  EA     AMO                 From
 *        BIT IRQ     IMO      Non-secure         Secure
 *        EL3 FIQ  RW FMO   EL0 EL1 EL2 EL3   EL0 EL1 EL2 EL3
 */
const int8_t target_el_table[2][2][2][2][2][4] = {
    {{{{/* 0   0   0   0 */{ 1,  1,  2, -1 },{ 3, -1, -1,  3 },},
       {/* 0   0   0   1 */{ 2,  2,  2, -1 },{ 3, -1, -1,  3 },},},
      {{/* 0   0   1   0 */{ 1,  1,  2, -1 },{ 3, -1, -1,  3 },},
       {/* 0   0   1   1 */{ 2,  2,  2, -1 },{ 3, -1, -1,  3 },},},},
     {{{/* 0   1   0   0 */{ 3,  3,  3, -1 },{ 3, -1, -1,  3 },},
       {/* 0   1   0   1 */{ 3,  3,  3, -1 },{ 3, -1, -1,  3 },},},
      {{/* 0   1   1   0 */{ 3,  3,  3, -1 },{ 3, -1, -1,  3 },},
       {/* 0   1   1   1 */{ 3,  3,  3, -1 },{ 3, -1, -1,  3 },},},},},
    {{{{/* 1   0   0   0 */{ 1,  1,  2, -1 },{ 1,  1, -1,  1 },},
       {/* 1   0   0   1 */{ 2,  2,  2, -1 },{ 1,  1, -1,  1 },},},
      {{/* 1   0   1   0 */{ 1,  1,  1, -1 },{ 1,  1, -1,  1 },},
       {/* 1   0   1   1 */{ 2,  2,  2, -1 },{ 1,  1, -1,  1 },},},},
     {{{/* 1   1   0   0 */{ 3,  3,  3, -1 },{ 3,  3, -1,  3 },},
       {/* 1   1   0   1 */{ 3,  3,  3, -1 },{ 3,  3, -1,  3 },},},
      {{/* 1   1   1   0 */{ 3,  3,  3, -1 },{ 3,  3, -1,  3 },},
       {/* 1   1   1   1 */{ 3,  3,  3, -1 },{ 3,  3, -1,  3 },},},},},
};

/*
 * Determine the target EL for physical exceptions
 */
4338 4339
uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
                                 uint32_t cur_el, bool secure)
4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373
{
    CPUARMState *env = cs->env_ptr;
    int rw = ((env->cp15.scr_el3 & SCR_RW) == SCR_RW);
    int scr;
    int hcr;
    int target_el;
    int is64 = arm_el_is_aa64(env, 3);

    switch (excp_idx) {
    case EXCP_IRQ:
        scr = ((env->cp15.scr_el3 & SCR_IRQ) == SCR_IRQ);
        hcr = ((env->cp15.hcr_el2 & HCR_IMO) == HCR_IMO);
        break;
    case EXCP_FIQ:
        scr = ((env->cp15.scr_el3 & SCR_FIQ) == SCR_FIQ);
        hcr = ((env->cp15.hcr_el2 & HCR_FMO) == HCR_FMO);
        break;
    default:
        scr = ((env->cp15.scr_el3 & SCR_EA) == SCR_EA);
        hcr = ((env->cp15.hcr_el2 & HCR_AMO) == HCR_AMO);
        break;
    };

    /* If HCR.TGE is set then HCR is treated as being 1 */
    hcr |= ((env->cp15.hcr_el2 & HCR_TGE) == HCR_TGE);

    /* Perform a table-lookup for the target EL given the current state */
    target_el = target_el_table[is64][scr][rw][hcr][secure][cur_el];

    assert(target_el > 0);

    return target_el;
}

P
pbrook 已提交
4374 4375
static void v7m_push(CPUARMState *env, uint32_t val)
{
4376 4377
    CPUState *cs = CPU(arm_env_get_cpu(env));

P
pbrook 已提交
4378
    env->regs[13] -= 4;
4379
    stl_phys(cs->as, env->regs[13], val);
P
pbrook 已提交
4380 4381 4382 4383
}

static uint32_t v7m_pop(CPUARMState *env)
{
4384
    CPUState *cs = CPU(arm_env_get_cpu(env));
P
pbrook 已提交
4385
    uint32_t val;
4386

4387
    val = ldl_phys(cs->as, env->regs[13]);
P
pbrook 已提交
4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410
    env->regs[13] += 4;
    return val;
}

/* Switch to V7M main or process stack pointer.  */
static void switch_v7m_sp(CPUARMState *env, int process)
{
    uint32_t tmp;
    if (env->v7m.current_sp != process) {
        tmp = env->v7m.other_sp;
        env->v7m.other_sp = env->regs[13];
        env->regs[13] = tmp;
        env->v7m.current_sp = process;
    }
}

static void do_v7m_exception_exit(CPUARMState *env)
{
    uint32_t type;
    uint32_t xpsr;

    type = env->regs[15];
    if (env->v7m.exception != 0)
P
Paul Brook 已提交
4411
        armv7m_nvic_complete_irq(env->nvic, env->v7m.exception);
P
pbrook 已提交
4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422

    /* Switch to the target stack.  */
    switch_v7m_sp(env, (type & 4) != 0);
    /* Pop registers.  */
    env->regs[0] = v7m_pop(env);
    env->regs[1] = v7m_pop(env);
    env->regs[2] = v7m_pop(env);
    env->regs[3] = v7m_pop(env);
    env->regs[12] = v7m_pop(env);
    env->regs[14] = v7m_pop(env);
    env->regs[15] = v7m_pop(env);
4423 4424 4425 4426 4427 4428 4429 4430 4431 4432
    if (env->regs[15] & 1) {
        qemu_log_mask(LOG_GUEST_ERROR,
                      "M profile return from interrupt with misaligned "
                      "PC is UNPREDICTABLE\n");
        /* Actual hardware seems to ignore the lsbit, and there are several
         * RTOSes out there which incorrectly assume the r15 in the stack
         * frame should be a Thumb-style "lsbit indicates ARM/Thumb" value.
         */
        env->regs[15] &= ~1U;
    }
P
pbrook 已提交
4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444
    xpsr = v7m_pop(env);
    xpsr_write(env, xpsr, 0xfffffdff);
    /* Undo stack alignment.  */
    if (xpsr & 0x200)
        env->regs[13] |= 4;
    /* ??? The exception return type specifies Thread/Handler mode.  However
       this is also implied by the xPSR value. Not sure what to do
       if there is a mismatch.  */
    /* ??? Likewise for mismatches between the CONTROL register and the stack
       pointer.  */
}

4445
void arm_v7m_cpu_do_interrupt(CPUState *cs)
P
pbrook 已提交
4446
{
4447 4448
    ARMCPU *cpu = ARM_CPU(cs);
    CPUARMState *env = &cpu->env;
P
pbrook 已提交
4449 4450 4451 4452
    uint32_t xpsr = xpsr_read(env);
    uint32_t lr;
    uint32_t addr;

4453
    arm_log_exception(cs->exception_index);
4454

P
pbrook 已提交
4455 4456 4457 4458 4459 4460 4461 4462 4463 4464
    lr = 0xfffffff1;
    if (env->v7m.current_sp)
        lr |= 4;
    if (env->v7m.exception == 0)
        lr |= 8;

    /* For exceptions we just mark as pending on the NVIC, and let that
       handle it.  */
    /* TODO: Need to escalate if the current priority is higher than the
       one we're raising.  */
4465
    switch (cs->exception_index) {
P
pbrook 已提交
4466
    case EXCP_UDEF:
P
Paul Brook 已提交
4467
        armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE);
P
pbrook 已提交
4468 4469
        return;
    case EXCP_SWI:
4470
        /* The PC already points to the next instruction.  */
P
Paul Brook 已提交
4471
        armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SVC);
P
pbrook 已提交
4472 4473 4474
        return;
    case EXCP_PREFETCH_ABORT:
    case EXCP_DATA_ABORT:
4475 4476 4477
        /* TODO: if we implemented the MPU registers, this is where we
         * should set the MMFAR, etc from exception.fsr and exception.vaddress.
         */
P
Paul Brook 已提交
4478
        armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_MEM);
P
pbrook 已提交
4479 4480
        return;
    case EXCP_BKPT:
P
pbrook 已提交
4481 4482
        if (semihosting_enabled) {
            int nr;
4483
            nr = arm_lduw_code(env, env->regs[15], env->bswap_code) & 0xff;
P
pbrook 已提交
4484 4485 4486
            if (nr == 0xab) {
                env->regs[15] += 2;
                env->regs[0] = do_arm_semihosting(env);
4487
                qemu_log_mask(CPU_LOG_INT, "...handled as semihosting call\n");
P
pbrook 已提交
4488 4489 4490
                return;
            }
        }
P
Paul Brook 已提交
4491
        armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_DEBUG);
P
pbrook 已提交
4492 4493
        return;
    case EXCP_IRQ:
P
Paul Brook 已提交
4494
        env->v7m.exception = armv7m_nvic_acknowledge_irq(env->nvic);
P
pbrook 已提交
4495 4496 4497 4498 4499
        break;
    case EXCP_EXCEPTION_EXIT:
        do_v7m_exception_exit(env);
        return;
    default:
4500
        cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
P
pbrook 已提交
4501 4502 4503 4504 4505 4506 4507
        return; /* Never happens.  Keep compiler happy.  */
    }

    /* Align stack pointer.  */
    /* ??? Should only do this if Configuration Control Register
       STACKALIGN bit is set.  */
    if (env->regs[13] & 4) {
P
pbrook 已提交
4508
        env->regs[13] -= 4;
P
pbrook 已提交
4509 4510
        xpsr |= 0x200;
    }
B
balrog 已提交
4511
    /* Switch to the handler mode.  */
P
pbrook 已提交
4512 4513 4514 4515 4516 4517 4518 4519 4520
    v7m_push(env, xpsr);
    v7m_push(env, env->regs[15]);
    v7m_push(env, env->regs[14]);
    v7m_push(env, env->regs[12]);
    v7m_push(env, env->regs[3]);
    v7m_push(env, env->regs[2]);
    v7m_push(env, env->regs[1]);
    v7m_push(env, env->regs[0]);
    switch_v7m_sp(env, 0);
4521 4522
    /* Clear IT bits */
    env->condexec_bits = 0;
P
pbrook 已提交
4523
    env->regs[14] = lr;
4524
    addr = ldl_phys(cs->as, env->v7m.vecbase + env->v7m.exception * 4);
P
pbrook 已提交
4525 4526 4527 4528
    env->regs[15] = addr & 0xfffffffe;
    env->thumb = addr & 1;
}

4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734
/* Function used to synchronize QEMU's AArch64 register set with AArch32
 * register set.  This is necessary when switching between AArch32 and AArch64
 * execution state.
 */
void aarch64_sync_32_to_64(CPUARMState *env)
{
    int i;
    uint32_t mode = env->uncached_cpsr & CPSR_M;

    /* We can blanket copy R[0:7] to X[0:7] */
    for (i = 0; i < 8; i++) {
        env->xregs[i] = env->regs[i];
    }

    /* Unless we are in FIQ mode, x8-x12 come from the user registers r8-r12.
     * Otherwise, they come from the banked user regs.
     */
    if (mode == ARM_CPU_MODE_FIQ) {
        for (i = 8; i < 13; i++) {
            env->xregs[i] = env->usr_regs[i - 8];
        }
    } else {
        for (i = 8; i < 13; i++) {
            env->xregs[i] = env->regs[i];
        }
    }

    /* Registers x13-x23 are the various mode SP and FP registers. Registers
     * r13 and r14 are only copied if we are in that mode, otherwise we copy
     * from the mode banked register.
     */
    if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) {
        env->xregs[13] = env->regs[13];
        env->xregs[14] = env->regs[14];
    } else {
        env->xregs[13] = env->banked_r13[bank_number(ARM_CPU_MODE_USR)];
        /* HYP is an exception in that it is copied from r14 */
        if (mode == ARM_CPU_MODE_HYP) {
            env->xregs[14] = env->regs[14];
        } else {
            env->xregs[14] = env->banked_r14[bank_number(ARM_CPU_MODE_USR)];
        }
    }

    if (mode == ARM_CPU_MODE_HYP) {
        env->xregs[15] = env->regs[13];
    } else {
        env->xregs[15] = env->banked_r13[bank_number(ARM_CPU_MODE_HYP)];
    }

    if (mode == ARM_CPU_MODE_IRQ) {
        env->xregs[16] = env->regs[13];
        env->xregs[17] = env->regs[14];
    } else {
        env->xregs[16] = env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)];
        env->xregs[17] = env->banked_r14[bank_number(ARM_CPU_MODE_IRQ)];
    }

    if (mode == ARM_CPU_MODE_SVC) {
        env->xregs[18] = env->regs[13];
        env->xregs[19] = env->regs[14];
    } else {
        env->xregs[18] = env->banked_r13[bank_number(ARM_CPU_MODE_SVC)];
        env->xregs[19] = env->banked_r14[bank_number(ARM_CPU_MODE_SVC)];
    }

    if (mode == ARM_CPU_MODE_ABT) {
        env->xregs[20] = env->regs[13];
        env->xregs[21] = env->regs[14];
    } else {
        env->xregs[20] = env->banked_r13[bank_number(ARM_CPU_MODE_ABT)];
        env->xregs[21] = env->banked_r14[bank_number(ARM_CPU_MODE_ABT)];
    }

    if (mode == ARM_CPU_MODE_UND) {
        env->xregs[22] = env->regs[13];
        env->xregs[23] = env->regs[14];
    } else {
        env->xregs[22] = env->banked_r13[bank_number(ARM_CPU_MODE_UND)];
        env->xregs[23] = env->banked_r14[bank_number(ARM_CPU_MODE_UND)];
    }

    /* Registers x24-x30 are mapped to r8-r14 in FIQ mode.  If we are in FIQ
     * mode, then we can copy from r8-r14.  Otherwise, we copy from the
     * FIQ bank for r8-r14.
     */
    if (mode == ARM_CPU_MODE_FIQ) {
        for (i = 24; i < 31; i++) {
            env->xregs[i] = env->regs[i - 16];   /* X[24:30] <- R[8:14] */
        }
    } else {
        for (i = 24; i < 29; i++) {
            env->xregs[i] = env->fiq_regs[i - 24];
        }
        env->xregs[29] = env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)];
        env->xregs[30] = env->banked_r14[bank_number(ARM_CPU_MODE_FIQ)];
    }

    env->pc = env->regs[15];
}

/* Function used to synchronize QEMU's AArch32 register set with AArch64
 * register set.  This is necessary when switching between AArch32 and AArch64
 * execution state.
 */
void aarch64_sync_64_to_32(CPUARMState *env)
{
    int i;
    uint32_t mode = env->uncached_cpsr & CPSR_M;

    /* We can blanket copy X[0:7] to R[0:7] */
    for (i = 0; i < 8; i++) {
        env->regs[i] = env->xregs[i];
    }

    /* Unless we are in FIQ mode, r8-r12 come from the user registers x8-x12.
     * Otherwise, we copy x8-x12 into the banked user regs.
     */
    if (mode == ARM_CPU_MODE_FIQ) {
        for (i = 8; i < 13; i++) {
            env->usr_regs[i - 8] = env->xregs[i];
        }
    } else {
        for (i = 8; i < 13; i++) {
            env->regs[i] = env->xregs[i];
        }
    }

    /* Registers r13 & r14 depend on the current mode.
     * If we are in a given mode, we copy the corresponding x registers to r13
     * and r14.  Otherwise, we copy the x register to the banked r13 and r14
     * for the mode.
     */
    if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) {
        env->regs[13] = env->xregs[13];
        env->regs[14] = env->xregs[14];
    } else {
        env->banked_r13[bank_number(ARM_CPU_MODE_USR)] = env->xregs[13];

        /* HYP is an exception in that it does not have its own banked r14 but
         * shares the USR r14
         */
        if (mode == ARM_CPU_MODE_HYP) {
            env->regs[14] = env->xregs[14];
        } else {
            env->banked_r14[bank_number(ARM_CPU_MODE_USR)] = env->xregs[14];
        }
    }

    if (mode == ARM_CPU_MODE_HYP) {
        env->regs[13] = env->xregs[15];
    } else {
        env->banked_r13[bank_number(ARM_CPU_MODE_HYP)] = env->xregs[15];
    }

    if (mode == ARM_CPU_MODE_IRQ) {
        env->regs[13] = env->xregs[16];
        env->regs[14] = env->xregs[17];
    } else {
        env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[16];
        env->banked_r14[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[17];
    }

    if (mode == ARM_CPU_MODE_SVC) {
        env->regs[13] = env->xregs[18];
        env->regs[14] = env->xregs[19];
    } else {
        env->banked_r13[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[18];
        env->banked_r14[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[19];
    }

    if (mode == ARM_CPU_MODE_ABT) {
        env->regs[13] = env->xregs[20];
        env->regs[14] = env->xregs[21];
    } else {
        env->banked_r13[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[20];
        env->banked_r14[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[21];
    }

    if (mode == ARM_CPU_MODE_UND) {
        env->regs[13] = env->xregs[22];
        env->regs[14] = env->xregs[23];
    } else {
        env->banked_r13[bank_number(ARM_CPU_MODE_UND)] = env->xregs[22];
        env->banked_r14[bank_number(ARM_CPU_MODE_UND)] = env->xregs[23];
    }

    /* Registers x24-x30 are mapped to r8-r14 in FIQ mode.  If we are in FIQ
     * mode, then we can copy to r8-r14.  Otherwise, we copy to the
     * FIQ bank for r8-r14.
     */
    if (mode == ARM_CPU_MODE_FIQ) {
        for (i = 24; i < 31; i++) {
            env->regs[i - 16] = env->xregs[i];   /* X[24:30] -> R[8:14] */
        }
    } else {
        for (i = 24; i < 29; i++) {
            env->fiq_regs[i - 24] = env->xregs[i];
        }
        env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[29];
        env->banked_r14[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[30];
    }

    env->regs[15] = env->pc;
}

B
bellard 已提交
4735
/* Handle a CPU exception.  */
4736
void arm_cpu_do_interrupt(CPUState *cs)
B
bellard 已提交
4737
{
4738 4739
    ARMCPU *cpu = ARM_CPU(cs);
    CPUARMState *env = &cpu->env;
B
bellard 已提交
4740 4741 4742 4743
    uint32_t addr;
    uint32_t mask;
    int new_mode;
    uint32_t offset;
4744
    uint32_t moe;
B
bellard 已提交
4745

4746 4747
    assert(!IS_M(env));

4748
    arm_log_exception(cs->exception_index);
4749

4750 4751 4752 4753 4754 4755
    if (arm_is_psci_call(cpu, cs->exception_index)) {
        arm_handle_psci_call(cpu);
        qemu_log_mask(CPU_LOG_INT, "...handled as PSCI call\n");
        return;
    }

4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780
    /* If this is a debug exception we must update the DBGDSCR.MOE bits */
    switch (env->exception.syndrome >> ARM_EL_EC_SHIFT) {
    case EC_BREAKPOINT:
    case EC_BREAKPOINT_SAME_EL:
        moe = 1;
        break;
    case EC_WATCHPOINT:
    case EC_WATCHPOINT_SAME_EL:
        moe = 10;
        break;
    case EC_AA32_BKPT:
        moe = 3;
        break;
    case EC_VECTORCATCH:
        moe = 5;
        break;
    default:
        moe = 0;
        break;
    }

    if (moe) {
        env->cp15.mdscr_el1 = deposit64(env->cp15.mdscr_el1, 2, 4, moe);
    }

B
bellard 已提交
4781
    /* TODO: Vectored interrupt controller.  */
4782
    switch (cs->exception_index) {
B
bellard 已提交
4783 4784 4785 4786 4787 4788 4789 4790 4791 4792
    case EXCP_UDEF:
        new_mode = ARM_CPU_MODE_UND;
        addr = 0x04;
        mask = CPSR_I;
        if (env->thumb)
            offset = 2;
        else
            offset = 4;
        break;
    case EXCP_SWI:
4793 4794 4795
        if (semihosting_enabled) {
            /* Check for semihosting interrupt.  */
            if (env->thumb) {
4796 4797
                mask = arm_lduw_code(env, env->regs[15] - 2, env->bswap_code)
                    & 0xff;
4798
            } else {
4799
                mask = arm_ldl_code(env, env->regs[15] - 4, env->bswap_code)
P
Paul Brook 已提交
4800
                    & 0xffffff;
4801 4802 4803 4804 4805 4806 4807
            }
            /* Only intercept calls from privileged modes, to provide some
               semblance of security.  */
            if (((mask == 0x123456 && !env->thumb)
                    || (mask == 0xab && env->thumb))
                  && (env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR) {
                env->regs[0] = do_arm_semihosting(env);
4808
                qemu_log_mask(CPU_LOG_INT, "...handled as semihosting call\n");
4809 4810 4811
                return;
            }
        }
B
bellard 已提交
4812 4813 4814
        new_mode = ARM_CPU_MODE_SVC;
        addr = 0x08;
        mask = CPSR_I;
4815
        /* The PC already points to the next instruction.  */
B
bellard 已提交
4816 4817
        offset = 0;
        break;
P
pbrook 已提交
4818
    case EXCP_BKPT:
P
pbrook 已提交
4819
        /* See if this is a semihosting syscall.  */
P
pbrook 已提交
4820
        if (env->thumb && semihosting_enabled) {
4821
            mask = arm_lduw_code(env, env->regs[15], env->bswap_code) & 0xff;
P
pbrook 已提交
4822 4823 4824 4825
            if (mask == 0xab
                  && (env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR) {
                env->regs[15] += 2;
                env->regs[0] = do_arm_semihosting(env);
4826
                qemu_log_mask(CPU_LOG_INT, "...handled as semihosting call\n");
P
pbrook 已提交
4827 4828 4829
                return;
            }
        }
4830
        env->exception.fsr = 2;
P
pbrook 已提交
4831 4832
        /* Fall through to prefetch abort.  */
    case EXCP_PREFETCH_ABORT:
F
Fabian Aggeler 已提交
4833
        A32_BANKED_CURRENT_REG_SET(env, ifsr, env->exception.fsr);
F
Fabian Aggeler 已提交
4834
        A32_BANKED_CURRENT_REG_SET(env, ifar, env->exception.vaddress);
4835
        qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x IFAR 0x%x\n",
F
Fabian Aggeler 已提交
4836
                      env->exception.fsr, (uint32_t)env->exception.vaddress);
B
bellard 已提交
4837 4838 4839 4840 4841 4842
        new_mode = ARM_CPU_MODE_ABT;
        addr = 0x0c;
        mask = CPSR_A | CPSR_I;
        offset = 4;
        break;
    case EXCP_DATA_ABORT:
F
Fabian Aggeler 已提交
4843
        A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr);
F
Fabian Aggeler 已提交
4844
        A32_BANKED_CURRENT_REG_SET(env, dfar, env->exception.vaddress);
4845
        qemu_log_mask(CPU_LOG_INT, "...with DFSR 0x%x DFAR 0x%x\n",
F
Fabian Aggeler 已提交
4846
                      env->exception.fsr,
4847
                      (uint32_t)env->exception.vaddress);
B
bellard 已提交
4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858
        new_mode = ARM_CPU_MODE_ABT;
        addr = 0x10;
        mask = CPSR_A | CPSR_I;
        offset = 8;
        break;
    case EXCP_IRQ:
        new_mode = ARM_CPU_MODE_IRQ;
        addr = 0x18;
        /* Disable IRQ and imprecise data aborts.  */
        mask = CPSR_A | CPSR_I;
        offset = 4;
4859 4860 4861 4862 4863
        if (env->cp15.scr_el3 & SCR_IRQ) {
            /* IRQ routed to monitor mode */
            new_mode = ARM_CPU_MODE_MON;
            mask |= CPSR_F;
        }
B
bellard 已提交
4864 4865 4866 4867 4868 4869
        break;
    case EXCP_FIQ:
        new_mode = ARM_CPU_MODE_FIQ;
        addr = 0x1c;
        /* Disable FIQ, IRQ and imprecise data aborts.  */
        mask = CPSR_A | CPSR_I | CPSR_F;
4870 4871 4872 4873
        if (env->cp15.scr_el3 & SCR_FIQ) {
            /* FIQ routed to monitor mode */
            new_mode = ARM_CPU_MODE_MON;
        }
B
bellard 已提交
4874 4875
        offset = 4;
        break;
4876 4877 4878 4879 4880 4881
    case EXCP_SMC:
        new_mode = ARM_CPU_MODE_MON;
        addr = 0x08;
        mask = CPSR_A | CPSR_I | CPSR_F;
        offset = 0;
        break;
B
bellard 已提交
4882
    default:
4883
        cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
B
bellard 已提交
4884 4885
        return; /* Never happens.  Keep compiler happy.  */
    }
F
Fabian Aggeler 已提交
4886 4887 4888

    if (new_mode == ARM_CPU_MODE_MON) {
        addr += env->cp15.mvbar;
4889
    } else if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) {
F
Fabian Aggeler 已提交
4890
        /* High vectors. When enabled, base address cannot be remapped. */
B
bellard 已提交
4891
        addr += 0xffff0000;
N
Nathan Rossi 已提交
4892 4893 4894
    } else {
        /* ARM v7 architectures provide a vector base address register to remap
         * the interrupt vector table.
F
Fabian Aggeler 已提交
4895
         * This register is only followed in non-monitor mode, and is banked.
N
Nathan Rossi 已提交
4896 4897
         * Note: only bits 31:5 are valid.
         */
G
Greg Bellows 已提交
4898
        addr += A32_BANKED_CURRENT_REG_GET(env, vbar);
B
bellard 已提交
4899
    }
4900 4901 4902 4903 4904

    if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
        env->cp15.scr_el3 &= ~SCR_NS;
    }

B
bellard 已提交
4905
    switch_mode (env, new_mode);
4906 4907 4908 4909
    /* For exceptions taken to AArch32 we must clear the SS bit in both
     * PSTATE and in the old-state value we save to SPSR_<mode>, so zero it now.
     */
    env->uncached_cpsr &= ~PSTATE_SS;
B
bellard 已提交
4910
    env->spsr = cpsr_read(env);
P
pbrook 已提交
4911 4912
    /* Clear IT bits.  */
    env->condexec_bits = 0;
4913
    /* Switch to the new mode, and to the correct instruction set.  */
4914
    env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode;
4915
    env->daif |= mask;
4916 4917 4918
    /* this is a lie, as the was no c1_sys on V4T/V5, but who cares
     * and we should just guard the thumb mode on V4 */
    if (arm_feature(env, ARM_FEATURE_V4T)) {
4919
        env->thumb = (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_TE) != 0;
4920
    }
B
bellard 已提交
4921 4922
    env->regs[14] = env->regs[15] + offset;
    env->regs[15] = addr;
4923
    cs->interrupt_request |= CPU_INTERRUPT_EXITTB;
B
bellard 已提交
4924 4925
}

4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946

/* Return the exception level which controls this address translation regime */
static inline uint32_t regime_el(CPUARMState *env, ARMMMUIdx mmu_idx)
{
    switch (mmu_idx) {
    case ARMMMUIdx_S2NS:
    case ARMMMUIdx_S1E2:
        return 2;
    case ARMMMUIdx_S1E3:
        return 3;
    case ARMMMUIdx_S1SE0:
        return arm_el_is_aa64(env, 3) ? 1 : 3;
    case ARMMMUIdx_S1SE1:
    case ARMMMUIdx_S1NSE0:
    case ARMMMUIdx_S1NSE1:
        return 1;
    default:
        g_assert_not_reached();
    }
}

4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966
/* Return true if this address translation regime is secure */
static inline bool regime_is_secure(CPUARMState *env, ARMMMUIdx mmu_idx)
{
    switch (mmu_idx) {
    case ARMMMUIdx_S12NSE0:
    case ARMMMUIdx_S12NSE1:
    case ARMMMUIdx_S1NSE0:
    case ARMMMUIdx_S1NSE1:
    case ARMMMUIdx_S1E2:
    case ARMMMUIdx_S2NS:
        return false;
    case ARMMMUIdx_S1E3:
    case ARMMMUIdx_S1SE0:
    case ARMMMUIdx_S1SE1:
        return true;
    default:
        g_assert_not_reached();
    }
}

4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992
/* Return the SCTLR value which controls this address translation regime */
static inline uint32_t regime_sctlr(CPUARMState *env, ARMMMUIdx mmu_idx)
{
    return env->cp15.sctlr_el[regime_el(env, mmu_idx)];
}

/* Return true if the specified stage of address translation is disabled */
static inline bool regime_translation_disabled(CPUARMState *env,
                                               ARMMMUIdx mmu_idx)
{
    if (mmu_idx == ARMMMUIdx_S2NS) {
        return (env->cp15.hcr_el2 & HCR_VM) == 0;
    }
    return (regime_sctlr(env, mmu_idx) & SCTLR_M) == 0;
}

/* Return the TCR controlling this translation regime */
static inline TCR *regime_tcr(CPUARMState *env, ARMMMUIdx mmu_idx)
{
    if (mmu_idx == ARMMMUIdx_S2NS) {
        /* TODO: return VTCR_EL2 */
        g_assert_not_reached();
    }
    return &env->cp15.tcr_el[regime_el(env, mmu_idx)];
}

4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007
/* Return the TTBR associated with this translation regime */
static inline uint64_t regime_ttbr(CPUARMState *env, ARMMMUIdx mmu_idx,
                                   int ttbrn)
{
    if (mmu_idx == ARMMMUIdx_S2NS) {
        /* TODO: return VTTBR_EL2 */
        g_assert_not_reached();
    }
    if (ttbrn == 0) {
        return env->cp15.ttbr0_el[regime_el(env, mmu_idx)];
    } else {
        return env->cp15.ttbr1_el[regime_el(env, mmu_idx)];
    }
}

5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036
/* Return true if the translation regime is using LPAE format page tables */
static inline bool regime_using_lpae_format(CPUARMState *env,
                                            ARMMMUIdx mmu_idx)
{
    int el = regime_el(env, mmu_idx);
    if (el == 2 || arm_el_is_aa64(env, el)) {
        return true;
    }
    if (arm_feature(env, ARM_FEATURE_LPAE)
        && (regime_tcr(env, mmu_idx)->raw_tcr & TTBCR_EAE)) {
        return true;
    }
    return false;
}

static inline bool regime_is_user(CPUARMState *env, ARMMMUIdx mmu_idx)
{
    switch (mmu_idx) {
    case ARMMMUIdx_S1SE0:
    case ARMMMUIdx_S1NSE0:
        return true;
    default:
        return false;
    case ARMMMUIdx_S12NSE0:
    case ARMMMUIdx_S12NSE1:
        g_assert_not_reached();
    }
}

5037 5038
/* Translate section/page access permissions to page
 * R/W protection flags
5039 5040 5041 5042 5043
 *
 * @env:         CPUARMState
 * @mmu_idx:     MMU index indicating required translation regime
 * @ap:          The 3-bit access permissions (AP[2:0])
 * @domain_prot: The 2-bit domain access permissions
5044 5045 5046 5047
 */
static inline int ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx,
                                int ap, int domain_prot)
{
5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069
    bool is_user = regime_is_user(env, mmu_idx);

    if (domain_prot == 3) {
        return PAGE_READ | PAGE_WRITE;
    }

    switch (ap) {
    case 0:
        if (arm_feature(env, ARM_FEATURE_V7)) {
            return 0;
        }
        switch (regime_sctlr(env, mmu_idx) & (SCTLR_S | SCTLR_R)) {
        case SCTLR_S:
            return is_user ? 0 : PAGE_READ;
        case SCTLR_R:
            return PAGE_READ;
        default:
            return 0;
        }
    case 1:
        return is_user ? 0 : PAGE_READ | PAGE_WRITE;
    case 2:
5070
        if (is_user) {
5071
            return PAGE_READ;
5072
        } else {
5073
            return PAGE_READ | PAGE_WRITE;
5074
        }
5075 5076 5077 5078 5079
    case 3:
        return PAGE_READ | PAGE_WRITE;
    case 4: /* Reserved.  */
        return 0;
    case 5:
5080
        return is_user ? 0 : PAGE_READ;
5081
    case 6:
5082
        return PAGE_READ;
5083
    case 7:
5084
        if (!arm_feature(env, ARM_FEATURE_V6K)) {
5085
            return 0;
5086
        }
5087
        return PAGE_READ;
5088
    default:
5089
        g_assert_not_reached();
5090
    }
B
bellard 已提交
5091 5092
}

5093 5094 5095 5096
/* Translate section/page access permissions to page
 * R/W protection flags.
 *
 * @ap:      The 2-bit simple AP (AP[2:1])
5097
 * @is_user: TRUE if accessing from PL0
5098
 */
5099
static inline int simple_ap_to_rw_prot_is_user(int ap, bool is_user)
5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114
{
    switch (ap) {
    case 0:
        return is_user ? 0 : PAGE_READ | PAGE_WRITE;
    case 1:
        return PAGE_READ | PAGE_WRITE;
    case 2:
        return is_user ? 0 : PAGE_READ;
    case 3:
        return PAGE_READ;
    default:
        g_assert_not_reached();
    }
}

5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201
static inline int
simple_ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, int ap)
{
    return simple_ap_to_rw_prot_is_user(ap, regime_is_user(env, mmu_idx));
}

/* Translate section/page access permissions to protection flags
 *
 * @env:     CPUARMState
 * @mmu_idx: MMU index indicating required translation regime
 * @is_aa64: TRUE if AArch64
 * @ap:      The 2-bit simple AP (AP[2:1])
 * @ns:      NS (non-secure) bit
 * @xn:      XN (execute-never) bit
 * @pxn:     PXN (privileged execute-never) bit
 */
static int get_S1prot(CPUARMState *env, ARMMMUIdx mmu_idx, bool is_aa64,
                      int ap, int ns, int xn, int pxn)
{
    bool is_user = regime_is_user(env, mmu_idx);
    int prot_rw, user_rw;
    bool have_wxn;
    int wxn = 0;

    assert(mmu_idx != ARMMMUIdx_S2NS);

    user_rw = simple_ap_to_rw_prot_is_user(ap, true);
    if (is_user) {
        prot_rw = user_rw;
    } else {
        prot_rw = simple_ap_to_rw_prot_is_user(ap, false);
    }

    if (ns && arm_is_secure(env) && (env->cp15.scr_el3 & SCR_SIF)) {
        return prot_rw;
    }

    /* TODO have_wxn should be replaced with
     *   ARM_FEATURE_V8 || (ARM_FEATURE_V7 && ARM_FEATURE_EL2)
     * when ARM_FEATURE_EL2 starts getting set. For now we assume all LPAE
     * compatible processors have EL2, which is required for [U]WXN.
     */
    have_wxn = arm_feature(env, ARM_FEATURE_LPAE);

    if (have_wxn) {
        wxn = regime_sctlr(env, mmu_idx) & SCTLR_WXN;
    }

    if (is_aa64) {
        switch (regime_el(env, mmu_idx)) {
        case 1:
            if (!is_user) {
                xn = pxn || (user_rw & PAGE_WRITE);
            }
            break;
        case 2:
        case 3:
            break;
        }
    } else if (arm_feature(env, ARM_FEATURE_V7)) {
        switch (regime_el(env, mmu_idx)) {
        case 1:
        case 3:
            if (is_user) {
                xn = xn || !(user_rw & PAGE_READ);
            } else {
                int uwxn = 0;
                if (have_wxn) {
                    uwxn = regime_sctlr(env, mmu_idx) & SCTLR_UWXN;
                }
                xn = xn || !(prot_rw & PAGE_READ) || pxn ||
                     (uwxn && (user_rw & PAGE_WRITE));
            }
            break;
        case 2:
            break;
        }
    } else {
        xn = wxn = 0;
    }

    if (xn || (wxn && (prot_rw & PAGE_WRITE))) {
        return prot_rw;
    }
    return prot_rw | PAGE_EXEC;
}

5202 5203
static bool get_level1_table_address(CPUARMState *env, ARMMMUIdx mmu_idx,
                                     uint32_t *table, uint32_t address)
5204
{
5205 5206
    /* Note that we can only get here for an AArch32 PL0/PL1 lookup */
    TCR *tcr = regime_tcr(env, mmu_idx);
F
Fabian Aggeler 已提交
5207 5208 5209

    if (address & tcr->mask) {
        if (tcr->raw_tcr & TTBCR_PD1) {
5210 5211 5212
            /* Translation table walk disabled for TTBR1 */
            return false;
        }
5213
        *table = regime_ttbr(env, mmu_idx, 1) & 0xffffc000;
5214
    } else {
F
Fabian Aggeler 已提交
5215
        if (tcr->raw_tcr & TTBCR_PD0) {
5216 5217 5218
            /* Translation table walk disabled for TTBR0 */
            return false;
        }
5219
        *table = regime_ttbr(env, mmu_idx, 0) & tcr->base_mask;
5220 5221 5222
    }
    *table |= (address >> 18) & 0x3ffc;
    return true;
5223 5224
}

5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247
/* All loads done in the course of a page table walk go through here.
 * TODO: rather than ignoring errors from physical memory reads (which
 * are external aborts in ARM terminology) we should propagate this
 * error out so that we can turn it into a Data Abort if this walk
 * was being done for a CPU load/store or an address translation instruction
 * (but not if it was for a debug access).
 */
static uint32_t arm_ldl_ptw(CPUState *cs, hwaddr addr, bool is_secure)
{
    MemTxAttrs attrs = {};

    attrs.secure = is_secure;
    return address_space_ldl(cs->as, addr, attrs, NULL);
}

static uint64_t arm_ldq_ptw(CPUState *cs, hwaddr addr, bool is_secure)
{
    MemTxAttrs attrs = {};

    attrs.secure = is_secure;
    return address_space_ldq(cs->as, addr, attrs, NULL);
}

5248 5249 5250 5251
static bool get_phys_addr_v5(CPUARMState *env, uint32_t address,
                             int access_type, ARMMMUIdx mmu_idx,
                             hwaddr *phys_ptr, int *prot,
                             target_ulong *page_size, uint32_t *fsr)
B
bellard 已提交
5252
{
5253
    CPUState *cs = CPU(arm_env_get_cpu(env));
B
bellard 已提交
5254 5255 5256 5257 5258
    int code;
    uint32_t table;
    uint32_t desc;
    int type;
    int ap;
5259
    int domain = 0;
5260
    int domain_prot;
A
Avi Kivity 已提交
5261
    hwaddr phys_addr;
5262
    uint32_t dacr;
B
bellard 已提交
5263

P
pbrook 已提交
5264 5265
    /* Pagetable walk.  */
    /* Lookup l1 descriptor.  */
5266
    if (!get_level1_table_address(env, mmu_idx, &table, address)) {
5267 5268 5269 5270
        /* Section translation fault if page walk is disabled by PD0 or PD1 */
        code = 5;
        goto do_fault;
    }
5271
    desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx));
P
pbrook 已提交
5272
    type = (desc & 3);
5273
    domain = (desc >> 5) & 0x0f;
5274 5275 5276 5277 5278 5279
    if (regime_el(env, mmu_idx) == 1) {
        dacr = env->cp15.dacr_ns;
    } else {
        dacr = env->cp15.dacr_s;
    }
    domain_prot = (dacr >> (domain * 2)) & 3;
P
pbrook 已提交
5280
    if (type == 0) {
5281
        /* Section translation fault.  */
P
pbrook 已提交
5282 5283 5284
        code = 5;
        goto do_fault;
    }
5285
    if (domain_prot == 0 || domain_prot == 2) {
P
pbrook 已提交
5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296
        if (type == 2)
            code = 9; /* Section domain fault.  */
        else
            code = 11; /* Page domain fault.  */
        goto do_fault;
    }
    if (type == 2) {
        /* 1Mb section.  */
        phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
        ap = (desc >> 10) & 3;
        code = 13;
P
Paul Brook 已提交
5297
        *page_size = 1024 * 1024;
P
pbrook 已提交
5298 5299
    } else {
        /* Lookup l2 entry.  */
5300 5301 5302 5303 5304 5305 5306
        if (type == 1) {
            /* Coarse pagetable.  */
            table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
        } else {
            /* Fine pagetable.  */
            table = (desc & 0xfffff000) | ((address >> 8) & 0xffc);
        }
5307
        desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx));
P
pbrook 已提交
5308 5309 5310 5311 5312 5313 5314
        switch (desc & 3) {
        case 0: /* Page translation fault.  */
            code = 7;
            goto do_fault;
        case 1: /* 64k page.  */
            phys_addr = (desc & 0xffff0000) | (address & 0xffff);
            ap = (desc >> (4 + ((address >> 13) & 6))) & 3;
P
Paul Brook 已提交
5315
            *page_size = 0x10000;
P
pbrook 已提交
5316
            break;
P
pbrook 已提交
5317 5318
        case 2: /* 4k page.  */
            phys_addr = (desc & 0xfffff000) | (address & 0xfff);
5319
            ap = (desc >> (4 + ((address >> 9) & 6))) & 3;
P
Paul Brook 已提交
5320
            *page_size = 0x1000;
P
pbrook 已提交
5321
            break;
5322
        case 3: /* 1k page, or ARMv6/XScale "extended small (4k) page" */
5323
            if (type == 1) {
5324 5325 5326
                /* ARMv6/XScale extended small page format */
                if (arm_feature(env, ARM_FEATURE_XSCALE)
                    || arm_feature(env, ARM_FEATURE_V6)) {
5327
                    phys_addr = (desc & 0xfffff000) | (address & 0xfff);
5328
                    *page_size = 0x1000;
5329
                } else {
5330 5331 5332
                    /* UNPREDICTABLE in ARMv5; we choose to take a
                     * page translation fault.
                     */
5333 5334 5335 5336 5337
                    code = 7;
                    goto do_fault;
                }
            } else {
                phys_addr = (desc & 0xfffffc00) | (address & 0x3ff);
5338
                *page_size = 0x400;
5339
            }
P
pbrook 已提交
5340
            ap = (desc >> 4) & 3;
P
pbrook 已提交
5341 5342
            break;
        default:
P
pbrook 已提交
5343 5344
            /* Never happens, but compiler isn't smart enough to tell.  */
            abort();
P
pbrook 已提交
5345
        }
P
pbrook 已提交
5346 5347
        code = 15;
    }
5348 5349 5350
    *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot);
    *prot |= *prot ? PAGE_EXEC : 0;
    if (!(*prot & (1 << access_type))) {
P
pbrook 已提交
5351 5352 5353 5354
        /* Access permission fault.  */
        goto do_fault;
    }
    *phys_ptr = phys_addr;
5355
    return false;
P
pbrook 已提交
5356
do_fault:
5357 5358
    *fsr = code | (domain << 4);
    return true;
P
pbrook 已提交
5359 5360
}

5361 5362 5363 5364
static bool get_phys_addr_v6(CPUARMState *env, uint32_t address,
                             int access_type, ARMMMUIdx mmu_idx,
                             hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
                             target_ulong *page_size, uint32_t *fsr)
P
pbrook 已提交
5365
{
5366
    CPUState *cs = CPU(arm_env_get_cpu(env));
P
pbrook 已提交
5367 5368 5369 5370
    int code;
    uint32_t table;
    uint32_t desc;
    uint32_t xn;
5371
    uint32_t pxn = 0;
P
pbrook 已提交
5372 5373
    int type;
    int ap;
5374
    int domain = 0;
5375
    int domain_prot;
A
Avi Kivity 已提交
5376
    hwaddr phys_addr;
5377
    uint32_t dacr;
5378
    bool ns;
P
pbrook 已提交
5379 5380 5381

    /* Pagetable walk.  */
    /* Lookup l1 descriptor.  */
5382
    if (!get_level1_table_address(env, mmu_idx, &table, address)) {
5383 5384 5385 5386
        /* Section translation fault if page walk is disabled by PD0 or PD1 */
        code = 5;
        goto do_fault;
    }
5387
    desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx));
P
pbrook 已提交
5388
    type = (desc & 3);
5389 5390 5391 5392
    if (type == 0 || (type == 3 && !arm_feature(env, ARM_FEATURE_PXN))) {
        /* Section translation fault, or attempt to use the encoding
         * which is Reserved on implementations without PXN.
         */
P
pbrook 已提交
5393 5394
        code = 5;
        goto do_fault;
5395 5396 5397
    }
    if ((type == 1) || !(desc & (1 << 18))) {
        /* Page or Section.  */
5398
        domain = (desc >> 5) & 0x0f;
P
pbrook 已提交
5399
    }
5400 5401 5402 5403 5404 5405
    if (regime_el(env, mmu_idx) == 1) {
        dacr = env->cp15.dacr_ns;
    } else {
        dacr = env->cp15.dacr_s;
    }
    domain_prot = (dacr >> (domain * 2)) & 3;
5406
    if (domain_prot == 0 || domain_prot == 2) {
5407
        if (type != 1) {
P
pbrook 已提交
5408
            code = 9; /* Section domain fault.  */
5409
        } else {
P
pbrook 已提交
5410
            code = 11; /* Page domain fault.  */
5411
        }
P
pbrook 已提交
5412 5413
        goto do_fault;
    }
5414
    if (type != 1) {
P
pbrook 已提交
5415 5416 5417
        if (desc & (1 << 18)) {
            /* Supersection.  */
            phys_addr = (desc & 0xff000000) | (address & 0x00ffffff);
5418 5419
            phys_addr |= (uint64_t)extract32(desc, 20, 4) << 32;
            phys_addr |= (uint64_t)extract32(desc, 5, 4) << 36;
P
Paul Brook 已提交
5420
            *page_size = 0x1000000;
B
bellard 已提交
5421
        } else {
P
pbrook 已提交
5422 5423
            /* Section.  */
            phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
P
Paul Brook 已提交
5424
            *page_size = 0x100000;
B
bellard 已提交
5425
        }
P
pbrook 已提交
5426 5427
        ap = ((desc >> 10) & 3) | ((desc >> 13) & 4);
        xn = desc & (1 << 4);
5428
        pxn = desc & 1;
P
pbrook 已提交
5429
        code = 13;
5430
        ns = extract32(desc, 19, 1);
P
pbrook 已提交
5431
    } else {
5432 5433 5434
        if (arm_feature(env, ARM_FEATURE_PXN)) {
            pxn = (desc >> 2) & 1;
        }
5435
        ns = extract32(desc, 3, 1);
P
pbrook 已提交
5436 5437
        /* Lookup l2 entry.  */
        table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
5438
        desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx));
P
pbrook 已提交
5439 5440 5441 5442
        ap = ((desc >> 4) & 3) | ((desc >> 7) & 4);
        switch (desc & 3) {
        case 0: /* Page translation fault.  */
            code = 7;
B
bellard 已提交
5443
            goto do_fault;
P
pbrook 已提交
5444 5445 5446
        case 1: /* 64k page.  */
            phys_addr = (desc & 0xffff0000) | (address & 0xffff);
            xn = desc & (1 << 15);
P
Paul Brook 已提交
5447
            *page_size = 0x10000;
P
pbrook 已提交
5448 5449 5450 5451
            break;
        case 2: case 3: /* 4k page.  */
            phys_addr = (desc & 0xfffff000) | (address & 0xfff);
            xn = desc & 1;
P
Paul Brook 已提交
5452
            *page_size = 0x1000;
P
pbrook 已提交
5453 5454 5455 5456
            break;
        default:
            /* Never happens, but compiler isn't smart enough to tell.  */
            abort();
B
bellard 已提交
5457
        }
P
pbrook 已提交
5458 5459
        code = 15;
    }
5460
    if (domain_prot == 3) {
5461 5462
        *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
    } else {
5463
        if (pxn && !regime_is_user(env, mmu_idx)) {
5464 5465
            xn = 1;
        }
5466 5467
        if (xn && access_type == 2)
            goto do_fault;
P
pbrook 已提交
5468

5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479
        if (arm_feature(env, ARM_FEATURE_V6K) &&
                (regime_sctlr(env, mmu_idx) & SCTLR_AFE)) {
            /* The simplified model uses AP[0] as an access control bit.  */
            if ((ap & 1) == 0) {
                /* Access flag fault.  */
                code = (code == 15) ? 6 : 3;
                goto do_fault;
            }
            *prot = simple_ap_to_rw_prot(env, mmu_idx, ap >> 1);
        } else {
            *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot);
5480
        }
5481 5482 5483 5484
        if (*prot && !xn) {
            *prot |= PAGE_EXEC;
        }
        if (!(*prot & (1 << access_type))) {
5485 5486 5487
            /* Access permission fault.  */
            goto do_fault;
        }
5488
    }
5489 5490 5491 5492 5493 5494 5495
    if (ns) {
        /* The NS bit will (as required by the architecture) have no effect if
         * the CPU doesn't support TZ or this is a non-secure translation
         * regime, because the attribute will already be non-secure.
         */
        attrs->secure = false;
    }
P
pbrook 已提交
5496
    *phys_ptr = phys_addr;
5497
    return false;
B
bellard 已提交
5498
do_fault:
5499 5500
    *fsr = code | (domain << 4);
    return true;
B
bellard 已提交
5501 5502
}

5503 5504 5505 5506 5507 5508 5509 5510 5511
/* Fault type for long-descriptor MMU fault reporting; this corresponds
 * to bits [5..2] in the STATUS field in long-format DFSR/IFSR.
 */
typedef enum {
    translation_fault = 1,
    access_fault = 2,
    permission_fault = 3,
} MMUFaultType;

5512 5513 5514 5515
static bool get_phys_addr_lpae(CPUARMState *env, target_ulong address,
                               int access_type, ARMMMUIdx mmu_idx,
                               hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot,
                               target_ulong *page_size_ptr, uint32_t *fsr)
5516
{
5517
    CPUState *cs = CPU(arm_env_get_cpu(env));
5518 5519 5520 5521
    /* Read an LPAE long-descriptor translation table. */
    MMUFaultType fault_type = translation_fault;
    uint32_t level = 1;
    uint32_t epd;
5522 5523
    int32_t tsz;
    uint32_t tg;
5524 5525
    uint64_t ttbr;
    int ttbr_select;
5526
    hwaddr descaddr, descmask;
5527 5528 5529
    uint32_t tableattrs;
    target_ulong page_size;
    uint32_t attrs;
5530 5531 5532
    int32_t granule_sz = 9;
    int32_t va_size = 32;
    int32_t tbi = 0;
5533
    TCR *tcr = regime_tcr(env, mmu_idx);
5534
    int ap, ns, xn, pxn;
5535 5536
    uint32_t el = regime_el(env, mmu_idx);
    bool ttbr1_valid = true;
5537 5538

    /* TODO:
5539 5540 5541 5542
     * This code does not handle the different format TCR for VTCR_EL2.
     * This code also does not support shareability levels.
     * Attribute and permission bit handling should also be checked when adding
     * support for those page table walks.
5543
     */
5544
    if (arm_el_is_aa64(env, el)) {
5545
        va_size = 64;
5546 5547 5548 5549 5550 5551 5552 5553 5554
        if (el > 1) {
            tbi = extract64(tcr->raw_tcr, 20, 1);
        } else {
            if (extract64(address, 55, 1)) {
                tbi = extract64(tcr->raw_tcr, 38, 1);
            } else {
                tbi = extract64(tcr->raw_tcr, 37, 1);
            }
        }
5555
        tbi *= 8;
5556 5557 5558 5559 5560 5561 5562

        /* If we are in 64-bit EL2 or EL3 then there is no TTBR1, so mark it
         * invalid.
         */
        if (el > 1) {
            ttbr1_valid = false;
        }
5563
    }
5564 5565 5566 5567 5568 5569

    /* Determine whether this address is in the region controlled by
     * TTBR0 or TTBR1 (or if it is in neither region and should fault).
     * This is a Non-secure PL0/1 stage 1 translation, so controlled by
     * TTBCR/TTBR0/TTBR1 in accordance with ARM ARM DDI0406C table B-32:
     */
F
Fabian Aggeler 已提交
5570
    uint32_t t0sz = extract32(tcr->raw_tcr, 0, 6);
5571
    if (va_size == 64) {
5572 5573 5574
        t0sz = MIN(t0sz, 39);
        t0sz = MAX(t0sz, 16);
    }
F
Fabian Aggeler 已提交
5575
    uint32_t t1sz = extract32(tcr->raw_tcr, 16, 6);
5576
    if (va_size == 64) {
5577 5578 5579 5580
        t1sz = MIN(t1sz, 39);
        t1sz = MAX(t1sz, 16);
    }
    if (t0sz && !extract64(address, va_size - t0sz, t0sz - tbi)) {
5581 5582
        /* there is a ttbr0 region and we are in it (high bits all zero) */
        ttbr_select = 0;
5583 5584
    } else if (ttbr1_valid && t1sz &&
               !extract64(~address, va_size - t1sz, t1sz - tbi)) {
5585 5586 5587 5588 5589
        /* there is a ttbr1 region and we are in it (high bits all one) */
        ttbr_select = 1;
    } else if (!t0sz) {
        /* ttbr0 region is "everything not in the ttbr1 region" */
        ttbr_select = 0;
5590
    } else if (!t1sz && ttbr1_valid) {
5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606
        /* ttbr1 region is "everything not in the ttbr0 region" */
        ttbr_select = 1;
    } else {
        /* in the gap between the two regions, this is a Translation fault */
        fault_type = translation_fault;
        goto do_fault;
    }

    /* Note that QEMU ignores shareability and cacheability attributes,
     * so we don't need to do anything with the SH, ORGN, IRGN fields
     * in the TTBCR.  Similarly, TTBCR:A1 selects whether we get the
     * ASID from TTBR0 or TTBR1, but QEMU's TLB doesn't currently
     * implement any ASID-like capability so we can ignore it (instead
     * we will always flush the TLB any time the ASID is changed).
     */
    if (ttbr_select == 0) {
5607
        ttbr = regime_ttbr(env, mmu_idx, 0);
F
Fabian Aggeler 已提交
5608
        epd = extract32(tcr->raw_tcr, 7, 1);
5609
        tsz = t0sz;
5610

F
Fabian Aggeler 已提交
5611
        tg = extract32(tcr->raw_tcr, 14, 2);
5612 5613 5614 5615 5616 5617
        if (tg == 1) { /* 64KB pages */
            granule_sz = 13;
        }
        if (tg == 2) { /* 16KB pages */
            granule_sz = 11;
        }
5618
    } else {
5619 5620 5621
        /* We should only be here if TTBR1 is valid */
        assert(ttbr1_valid);

5622
        ttbr = regime_ttbr(env, mmu_idx, 1);
F
Fabian Aggeler 已提交
5623
        epd = extract32(tcr->raw_tcr, 23, 1);
5624
        tsz = t1sz;
5625

F
Fabian Aggeler 已提交
5626
        tg = extract32(tcr->raw_tcr, 30, 2);
5627 5628 5629 5630 5631 5632
        if (tg == 3)  { /* 64KB pages */
            granule_sz = 13;
        }
        if (tg == 1) { /* 16KB pages */
            granule_sz = 11;
        }
5633 5634
    }

5635 5636 5637 5638
    /* Here we should have set up all the parameters for the translation:
     * va_size, ttbr, epd, tsz, granule_sz, tbi
     */

5639
    if (epd) {
5640 5641 5642
        /* Translation table walk disabled => Translation fault on TLB miss
         * Note: This is always 0 on 64-bit EL2 and EL3.
         */
5643 5644 5645
        goto do_fault;
    }

5646 5647 5648 5649 5650 5651 5652 5653 5654 5655
    /* The starting level depends on the virtual address size (which can be
     * up to 48 bits) and the translation granule size. It indicates the number
     * of strides (granule_sz bits at a time) needed to consume the bits
     * of the input address. In the pseudocode this is:
     *  level = 4 - RoundUp((inputsize - grainsize) / stride)
     * where their 'inputsize' is our 'va_size - tsz', 'grainsize' is
     * our 'granule_sz + 3' and 'stride' is our 'granule_sz'.
     * Applying the usual "rounded up m/n is (m+n-1)/n" and simplifying:
     *     = 4 - (va_size - tsz - granule_sz - 3 + granule_sz - 1) / granule_sz
     *     = 4 - (va_size - tsz - 4) / granule_sz;
5656
     */
5657
    level = 4 - (va_size - tsz - 4) / granule_sz;
5658 5659 5660 5661 5662

    /* Clear the vaddr bits which aren't part of the within-region address,
     * so that we don't have to special case things when calculating the
     * first descriptor address.
     */
5663 5664 5665 5666 5667
    if (tsz) {
        address &= (1ULL << (va_size - tsz)) - 1;
    }

    descmask = (1ULL << (granule_sz + 3)) - 1;
5668 5669

    /* Now we can extract the actual base address from the TTBR */
5670 5671
    descaddr = extract64(ttbr, 0, 48);
    descaddr &= ~((1ULL << (va_size - tsz - (granule_sz * (4 - level)))) - 1);
5672

5673 5674 5675 5676 5677 5678
    /* Secure accesses start with the page table in secure memory and
     * can be downgraded to non-secure at any step. Non-secure accesses
     * remain non-secure. We implement this by just ORing in the NSTable/NS
     * bits at each step.
     */
    tableattrs = regime_is_secure(env, mmu_idx) ? 0 : (1 << 4);
5679 5680
    for (;;) {
        uint64_t descriptor;
5681
        bool nstable;
5682

5683 5684
        descaddr |= (address >> (granule_sz * (4 - level))) & descmask;
        descaddr &= ~7ULL;
5685 5686
        nstable = extract32(tableattrs, 4, 1);
        descriptor = arm_ldq_ptw(cs, descaddr, !nstable);
5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707
        if (!(descriptor & 1) ||
            (!(descriptor & 2) && (level == 3))) {
            /* Invalid, or the Reserved level 3 encoding */
            goto do_fault;
        }
        descaddr = descriptor & 0xfffffff000ULL;

        if ((descriptor & 2) && (level < 3)) {
            /* Table entry. The top five bits are attributes which  may
             * propagate down through lower levels of the table (and
             * which are all arranged so that 0 means "no effect", so
             * we can gather them up by ORing in the bits at each level).
             */
            tableattrs |= extract64(descriptor, 59, 5);
            level++;
            continue;
        }
        /* Block entry at level 1 or 2, or page entry at level 3.
         * These are basically the same thing, although the number
         * of bits we pull in from the vaddr varies.
         */
5708
        page_size = (1ULL << ((granule_sz * (4 - level)) + 3));
5709 5710
        descaddr |= (address & (page_size - 1));
        /* Extract attributes from the descriptor and merge with table attrs */
5711 5712
        attrs = extract64(descriptor, 2, 10)
            | (extract64(descriptor, 52, 12) << 10);
5713 5714 5715 5716 5717 5718 5719 5720
        attrs |= extract32(tableattrs, 0, 2) << 11; /* XN, PXN */
        attrs |= extract32(tableattrs, 3, 1) << 5; /* APTable[1] => AP[2] */
        /* The sense of AP[1] vs APTable[0] is reversed, as APTable[0] == 1
         * means "force PL1 access only", which means forcing AP[1] to 0.
         */
        if (extract32(tableattrs, 2, 1)) {
            attrs &= ~(1 << 4);
        }
5721
        attrs |= nstable << 3; /* NS */
5722 5723 5724 5725 5726 5727 5728 5729 5730 5731
        break;
    }
    /* Here descaddr is the final physical address, and attributes
     * are all in attrs.
     */
    fault_type = access_fault;
    if ((attrs & (1 << 8)) == 0) {
        /* Access flag */
        goto do_fault;
    }
5732 5733 5734 5735 5736 5737 5738 5739

    ap = extract32(attrs, 4, 2);
    ns = extract32(attrs, 3, 1);
    xn = extract32(attrs, 12, 1);
    pxn = extract32(attrs, 11, 1);

    *prot = get_S1prot(env, mmu_idx, va_size == 64, ap, ns, xn, pxn);

5740
    fault_type = permission_fault;
5741
    if (!(*prot & (1 << access_type))) {
5742 5743 5744
        goto do_fault;
    }

5745 5746 5747 5748 5749 5750 5751
    if (ns) {
        /* The NS bit will (as required by the architecture) have no effect if
         * the CPU doesn't support TZ or this is a non-secure translation
         * regime, because the attribute will already be non-secure.
         */
        txattrs->secure = false;
    }
5752 5753
    *phys_ptr = descaddr;
    *page_size_ptr = page_size;
5754
    return false;
5755 5756 5757

do_fault:
    /* Long-descriptor format IFSR/DFSR value */
5758 5759
    *fsr = (1 << 9) | (fault_type << 2) | level;
    return true;
5760 5761
}

5762 5763 5764
static bool get_phys_addr_pmsav5(CPUARMState *env, uint32_t address,
                                 int access_type, ARMMMUIdx mmu_idx,
                                 hwaddr *phys_ptr, int *prot, uint32_t *fsr)
P
pbrook 已提交
5765 5766 5767 5768
{
    int n;
    uint32_t mask;
    uint32_t base;
5769
    bool is_user = regime_is_user(env, mmu_idx);
P
pbrook 已提交
5770 5771 5772

    *phys_ptr = address;
    for (n = 7; n >= 0; n--) {
5773
        base = env->cp15.c6_region[n];
5774
        if ((base & 1) == 0) {
5775
            continue;
5776
        }
5777 5778 5779 5780
        mask = 1 << ((base >> 1) & 0x1f);
        /* Keep this shift separate from the above to avoid an
           (undefined) << 32.  */
        mask = (mask << 1) - 1;
5781
        if (((base ^ address) & ~mask) == 0) {
5782
            break;
5783
        }
P
pbrook 已提交
5784
    }
5785
    if (n < 0) {
5786 5787
        *fsr = 2;
        return true;
5788
    }
P
pbrook 已提交
5789 5790

    if (access_type == 2) {
5791
        mask = env->cp15.pmsav5_insn_ap;
P
pbrook 已提交
5792
    } else {
5793
        mask = env->cp15.pmsav5_data_ap;
P
pbrook 已提交
5794 5795 5796 5797
    }
    mask = (mask >> (n * 4)) & 0xf;
    switch (mask) {
    case 0:
5798 5799
        *fsr = 1;
        return true;
P
pbrook 已提交
5800
    case 1:
5801
        if (is_user) {
5802 5803
            *fsr = 1;
            return true;
5804
        }
5805 5806
        *prot = PAGE_READ | PAGE_WRITE;
        break;
P
pbrook 已提交
5807
    case 2:
5808
        *prot = PAGE_READ;
5809
        if (!is_user) {
5810
            *prot |= PAGE_WRITE;
5811
        }
5812
        break;
P
pbrook 已提交
5813
    case 3:
5814 5815
        *prot = PAGE_READ | PAGE_WRITE;
        break;
P
pbrook 已提交
5816
    case 5:
5817
        if (is_user) {
5818 5819
            *fsr = 1;
            return true;
5820
        }
5821 5822
        *prot = PAGE_READ;
        break;
P
pbrook 已提交
5823
    case 6:
5824 5825
        *prot = PAGE_READ;
        break;
P
pbrook 已提交
5826
    default:
5827
        /* Bad permission.  */
5828 5829
        *fsr = 1;
        return true;
P
pbrook 已提交
5830
    }
5831
    *prot |= PAGE_EXEC;
5832
    return false;
P
pbrook 已提交
5833 5834
}

5835 5836 5837 5838 5839 5840
/* get_phys_addr - get the physical address for this virtual address
 *
 * Find the physical address corresponding to the given virtual address,
 * by doing a translation table walk on MMU based systems or using the
 * MPU state on MPU based systems.
 *
5841 5842
 * Returns false if the translation was successful. Otherwise, phys_ptr, attrs,
 * prot and page_size may not be filled in, and the populated fsr value provides
5843 5844 5845 5846 5847 5848 5849 5850 5851 5852
 * information on why the translation aborted, in the format of a
 * DFSR/IFSR fault register, with the following caveats:
 *  * we honour the short vs long DFSR format differences.
 *  * the WnR bit is never set (the caller must do this).
 *  * for MPU based systems we don't bother to return a full FSR format
 *    value.
 *
 * @env: CPUARMState
 * @address: virtual address to get physical address for
 * @access_type: 0 for read, 1 for write, 2 for execute
5853
 * @mmu_idx: MMU index indicating required translation regime
5854
 * @phys_ptr: set to the physical address corresponding to the virtual address
5855
 * @attrs: set to the memory transaction attributes to use
5856 5857
 * @prot: set to the permissions for the page containing phys_ptr
 * @page_size: set to the size of the page containing phys_ptr
5858
 * @fsr: set to the DFSR/IFSR value on failure
5859
 */
5860 5861 5862 5863
static inline bool get_phys_addr(CPUARMState *env, target_ulong address,
                                 int access_type, ARMMMUIdx mmu_idx,
                                 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
                                 target_ulong *page_size, uint32_t *fsr)
P
pbrook 已提交
5864
{
5865 5866
    if (mmu_idx == ARMMMUIdx_S12NSE0 || mmu_idx == ARMMMUIdx_S12NSE1) {
        /* TODO: when we support EL2 we should here call ourselves recursively
5867 5868 5869
         * to do the stage 1 and then stage 2 translations. The arm_ld*_ptw
         * functions will also need changing to perform ARMMMUIdx_S2NS loads
         * rather than direct physical memory loads when appropriate.
5870 5871 5872 5873 5874
         * For non-EL2 CPUs a stage1+stage2 translation is just stage 1.
         */
        assert(!arm_feature(env, ARM_FEATURE_EL2));
        mmu_idx += ARMMMUIdx_S1NSE0;
    }
5875

5876 5877 5878 5879 5880
    /* The page table entries may downgrade secure to non-secure, but
     * cannot upgrade an non-secure translation regime's attributes
     * to secure.
     */
    attrs->secure = regime_is_secure(env, mmu_idx);
5881
    attrs->user = regime_is_user(env, mmu_idx);
5882

5883 5884 5885 5886 5887 5888 5889 5890 5891 5892
    /* Fast Context Switch Extension. This doesn't exist at all in v8.
     * In v7 and earlier it affects all stage 1 translations.
     */
    if (address < 0x02000000 && mmu_idx != ARMMMUIdx_S2NS
        && !arm_feature(env, ARM_FEATURE_V8)) {
        if (regime_el(env, mmu_idx) == 3) {
            address += env->cp15.fcseidr_s;
        } else {
            address += env->cp15.fcseidr_ns;
        }
5893
    }
P
pbrook 已提交
5894

5895
    if (regime_translation_disabled(env, mmu_idx)) {
P
pbrook 已提交
5896 5897
        /* MMU/MPU disabled.  */
        *phys_ptr = address;
5898
        *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
P
Paul Brook 已提交
5899
        *page_size = TARGET_PAGE_SIZE;
P
pbrook 已提交
5900
        return 0;
5901 5902 5903
    }

    if (arm_feature(env, ARM_FEATURE_MPU)) {
P
Paul Brook 已提交
5904
        *page_size = TARGET_PAGE_SIZE;
5905 5906
        return get_phys_addr_pmsav5(env, address, access_type, mmu_idx,
                                    phys_ptr, prot, fsr);
5907 5908 5909 5910
    }

    if (regime_using_lpae_format(env, mmu_idx)) {
        return get_phys_addr_lpae(env, address, access_type, mmu_idx, phys_ptr,
5911
                                  attrs, prot, page_size, fsr);
5912 5913
    } else if (regime_sctlr(env, mmu_idx) & SCTLR_XP) {
        return get_phys_addr_v6(env, address, access_type, mmu_idx, phys_ptr,
5914
                                attrs, prot, page_size, fsr);
P
pbrook 已提交
5915
    } else {
5916
        return get_phys_addr_v5(env, address, access_type, mmu_idx, phys_ptr,
5917
                                prot, page_size, fsr);
P
pbrook 已提交
5918 5919 5920
    }
}

5921
/* Walk the page table and (if the mapping exists) add the page
5922 5923
 * to the TLB. Return false on success, or true on failure. Populate
 * fsr with ARM DFSR/IFSR fault register format value on failure.
5924
 */
5925 5926
bool arm_tlb_fill(CPUState *cs, vaddr address,
                  int access_type, int mmu_idx, uint32_t *fsr)
B
bellard 已提交
5927
{
5928 5929
    ARMCPU *cpu = ARM_CPU(cs);
    CPUARMState *env = &cpu->env;
A
Avi Kivity 已提交
5930
    hwaddr phys_addr;
P
Paul Brook 已提交
5931
    target_ulong page_size;
B
bellard 已提交
5932
    int prot;
5933
    int ret;
5934
    MemTxAttrs attrs = {};
B
bellard 已提交
5935

5936
    ret = get_phys_addr(env, address, access_type, mmu_idx, &phys_addr,
5937 5938
                        &attrs, &prot, &page_size, fsr);
    if (!ret) {
B
bellard 已提交
5939
        /* Map a single [sub]page.  */
5940 5941
        phys_addr &= TARGET_PAGE_MASK;
        address &= TARGET_PAGE_MASK;
5942 5943
        tlb_set_page_with_attrs(cs, address, phys_addr, attrs,
                                prot, mmu_idx, page_size);
P
Paul Brook 已提交
5944
        return 0;
B
bellard 已提交
5945 5946
    }

5947
    return ret;
B
bellard 已提交
5948 5949
}

5950
hwaddr arm_cpu_get_phys_page_debug(CPUState *cs, vaddr addr)
B
bellard 已提交
5951
{
5952
    ARMCPU *cpu = ARM_CPU(cs);
5953
    CPUARMState *env = &cpu->env;
A
Avi Kivity 已提交
5954
    hwaddr phys_addr;
P
Paul Brook 已提交
5955
    target_ulong page_size;
B
bellard 已提交
5956
    int prot;
5957 5958
    bool ret;
    uint32_t fsr;
5959
    MemTxAttrs attrs = {};
B
bellard 已提交
5960

5961
    ret = get_phys_addr(env, addr, 0, cpu_mmu_index(env), &phys_addr,
5962
                        &attrs, &prot, &page_size, &fsr);
B
bellard 已提交
5963

5964
    if (ret) {
B
bellard 已提交
5965
        return -1;
5966
    }
B
bellard 已提交
5967 5968 5969 5970

    return phys_addr;
}

5971
void HELPER(set_r13_banked)(CPUARMState *env, uint32_t mode, uint32_t val)
P
pbrook 已提交
5972
{
5973 5974 5975
    if ((env->uncached_cpsr & CPSR_M) == mode) {
        env->regs[13] = val;
    } else {
5976
        env->banked_r13[bank_number(mode)] = val;
5977
    }
P
pbrook 已提交
5978 5979
}

5980
uint32_t HELPER(get_r13_banked)(CPUARMState *env, uint32_t mode)
P
pbrook 已提交
5981
{
5982 5983 5984
    if ((env->uncached_cpsr & CPSR_M) == mode) {
        return env->regs[13];
    } else {
5985
        return env->banked_r13[bank_number(mode)];
5986
    }
P
pbrook 已提交
5987 5988
}

5989
uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg)
P
pbrook 已提交
5990
{
5991 5992
    ARMCPU *cpu = arm_env_get_cpu(env);

P
pbrook 已提交
5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012
    switch (reg) {
    case 0: /* APSR */
        return xpsr_read(env) & 0xf8000000;
    case 1: /* IAPSR */
        return xpsr_read(env) & 0xf80001ff;
    case 2: /* EAPSR */
        return xpsr_read(env) & 0xff00fc00;
    case 3: /* xPSR */
        return xpsr_read(env) & 0xff00fdff;
    case 5: /* IPSR */
        return xpsr_read(env) & 0x000001ff;
    case 6: /* EPSR */
        return xpsr_read(env) & 0x0700fc00;
    case 7: /* IEPSR */
        return xpsr_read(env) & 0x0700edff;
    case 8: /* MSP */
        return env->v7m.current_sp ? env->v7m.other_sp : env->regs[13];
    case 9: /* PSP */
        return env->v7m.current_sp ? env->regs[13] : env->v7m.other_sp;
    case 16: /* PRIMASK */
6013
        return (env->daif & PSTATE_I) != 0;
6014 6015
    case 17: /* BASEPRI */
    case 18: /* BASEPRI_MAX */
P
pbrook 已提交
6016
        return env->v7m.basepri;
6017
    case 19: /* FAULTMASK */
6018
        return (env->daif & PSTATE_F) != 0;
P
pbrook 已提交
6019 6020 6021 6022
    case 20: /* CONTROL */
        return env->v7m.control;
    default:
        /* ??? For debugging only.  */
6023
        cpu_abort(CPU(cpu), "Unimplemented system register read (%d)\n", reg);
P
pbrook 已提交
6024 6025 6026 6027
        return 0;
    }
}

6028
void HELPER(v7m_msr)(CPUARMState *env, uint32_t reg, uint32_t val)
P
pbrook 已提交
6029
{
6030 6031
    ARMCPU *cpu = arm_env_get_cpu(env);

P
pbrook 已提交
6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066
    switch (reg) {
    case 0: /* APSR */
        xpsr_write(env, val, 0xf8000000);
        break;
    case 1: /* IAPSR */
        xpsr_write(env, val, 0xf8000000);
        break;
    case 2: /* EAPSR */
        xpsr_write(env, val, 0xfe00fc00);
        break;
    case 3: /* xPSR */
        xpsr_write(env, val, 0xfe00fc00);
        break;
    case 5: /* IPSR */
        /* IPSR bits are readonly.  */
        break;
    case 6: /* EPSR */
        xpsr_write(env, val, 0x0600fc00);
        break;
    case 7: /* IEPSR */
        xpsr_write(env, val, 0x0600fc00);
        break;
    case 8: /* MSP */
        if (env->v7m.current_sp)
            env->v7m.other_sp = val;
        else
            env->regs[13] = val;
        break;
    case 9: /* PSP */
        if (env->v7m.current_sp)
            env->regs[13] = val;
        else
            env->v7m.other_sp = val;
        break;
    case 16: /* PRIMASK */
6067 6068 6069 6070 6071
        if (val & 1) {
            env->daif |= PSTATE_I;
        } else {
            env->daif &= ~PSTATE_I;
        }
P
pbrook 已提交
6072
        break;
6073
    case 17: /* BASEPRI */
P
pbrook 已提交
6074 6075
        env->v7m.basepri = val & 0xff;
        break;
6076
    case 18: /* BASEPRI_MAX */
P
pbrook 已提交
6077 6078 6079 6080
        val &= 0xff;
        if (val != 0 && (val < env->v7m.basepri || env->v7m.basepri == 0))
            env->v7m.basepri = val;
        break;
6081
    case 19: /* FAULTMASK */
6082 6083 6084 6085 6086
        if (val & 1) {
            env->daif |= PSTATE_F;
        } else {
            env->daif &= ~PSTATE_F;
        }
6087
        break;
P
pbrook 已提交
6088 6089 6090 6091 6092 6093
    case 20: /* CONTROL */
        env->v7m.control = val & 3;
        switch_v7m_sp(env, (val & 2) != 0);
        break;
    default:
        /* ??? For debugging only.  */
6094
        cpu_abort(CPU(cpu), "Unimplemented system register write (%d)\n", reg);
P
pbrook 已提交
6095 6096 6097 6098
        return;
    }
}

B
bellard 已提交
6099
#endif
P
pbrook 已提交
6100

6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125
void HELPER(dc_zva)(CPUARMState *env, uint64_t vaddr_in)
{
    /* Implement DC ZVA, which zeroes a fixed-length block of memory.
     * Note that we do not implement the (architecturally mandated)
     * alignment fault for attempts to use this on Device memory
     * (which matches the usual QEMU behaviour of not implementing either
     * alignment faults or any memory attribute handling).
     */

    ARMCPU *cpu = arm_env_get_cpu(env);
    uint64_t blocklen = 4 << cpu->dcz_blocksize;
    uint64_t vaddr = vaddr_in & ~(blocklen - 1);

#ifndef CONFIG_USER_ONLY
    {
        /* Slightly awkwardly, QEMU's TARGET_PAGE_SIZE may be less than
         * the block size so we might have to do more than one TLB lookup.
         * We know that in fact for any v8 CPU the page size is at least 4K
         * and the block size must be 2K or less, but TARGET_PAGE_SIZE is only
         * 1K as an artefact of legacy v5 subpage support being present in the
         * same QEMU executable.
         */
        int maxidx = DIV_ROUND_UP(blocklen, TARGET_PAGE_SIZE);
        void *hostaddr[maxidx];
        int try, i;
6126 6127
        unsigned mmu_idx = cpu_mmu_index(env);
        TCGMemOpIdx oi = make_memop_idx(MO_UB, mmu_idx);
6128 6129 6130 6131 6132 6133

        for (try = 0; try < 2; try++) {

            for (i = 0; i < maxidx; i++) {
                hostaddr[i] = tlb_vaddr_to_host(env,
                                                vaddr + TARGET_PAGE_SIZE * i,
6134
                                                1, mmu_idx);
6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154
                if (!hostaddr[i]) {
                    break;
                }
            }
            if (i == maxidx) {
                /* If it's all in the TLB it's fair game for just writing to;
                 * we know we don't need to update dirty status, etc.
                 */
                for (i = 0; i < maxidx - 1; i++) {
                    memset(hostaddr[i], 0, TARGET_PAGE_SIZE);
                }
                memset(hostaddr[i], 0, blocklen - (i * TARGET_PAGE_SIZE));
                return;
            }
            /* OK, try a store and see if we can populate the tlb. This
             * might cause an exception if the memory isn't writable,
             * in which case we will longjmp out of here. We must for
             * this purpose use the actual register value passed to us
             * so that we get the fault address right.
             */
6155
            helper_ret_stb_mmu(env, vaddr_in, 0, oi, GETRA());
6156 6157 6158 6159
            /* Now we can populate the other TLB entries, if any */
            for (i = 0; i < maxidx; i++) {
                uint64_t va = vaddr + TARGET_PAGE_SIZE * i;
                if (va != (vaddr_in & TARGET_PAGE_MASK)) {
6160
                    helper_ret_stb_mmu(env, va, 0, oi, GETRA());
6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176
                }
            }
        }

        /* Slow path (probably attempt to do this to an I/O device or
         * similar, or clearing of a block of code we have translations
         * cached for). Just do a series of byte writes as the architecture
         * demands. It's not worth trying to use a cpu_physical_memory_map(),
         * memset(), unmap() sequence here because:
         *  + we'd need to account for the blocksize being larger than a page
         *  + the direct-RAM access case is almost always going to be dealt
         *    with in the fastpath code above, so there's no speed benefit
         *  + we would have to deal with the map returning NULL because the
         *    bounce buffer was in use
         */
        for (i = 0; i < blocklen; i++) {
6177
            helper_ret_stb_mmu(env, vaddr + i, 0, oi, GETRA());
6178 6179 6180 6181 6182 6183 6184
        }
    }
#else
    memset(g2h(vaddr), 0, blocklen);
#endif
}

P
pbrook 已提交
6185 6186 6187 6188 6189 6190
/* Note that signed overflow is undefined in C.  The following routines are
   careful to use unsigned types where modulo arithmetic is required.
   Failure to do so _will_ break on newer gcc.  */

/* Signed saturating arithmetic.  */

A
aurel32 已提交
6191
/* Perform 16-bit signed saturating addition.  */
P
pbrook 已提交
6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205
static inline uint16_t add16_sat(uint16_t a, uint16_t b)
{
    uint16_t res;

    res = a + b;
    if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) {
        if (a & 0x8000)
            res = 0x8000;
        else
            res = 0x7fff;
    }
    return res;
}

A
aurel32 已提交
6206
/* Perform 8-bit signed saturating addition.  */
P
pbrook 已提交
6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220
static inline uint8_t add8_sat(uint8_t a, uint8_t b)
{
    uint8_t res;

    res = a + b;
    if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) {
        if (a & 0x80)
            res = 0x80;
        else
            res = 0x7f;
    }
    return res;
}

A
aurel32 已提交
6221
/* Perform 16-bit signed saturating subtraction.  */
P
pbrook 已提交
6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235
static inline uint16_t sub16_sat(uint16_t a, uint16_t b)
{
    uint16_t res;

    res = a - b;
    if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) {
        if (a & 0x8000)
            res = 0x8000;
        else
            res = 0x7fff;
    }
    return res;
}

A
aurel32 已提交
6236
/* Perform 8-bit signed saturating subtraction.  */
P
pbrook 已提交
6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259
static inline uint8_t sub8_sat(uint8_t a, uint8_t b)
{
    uint8_t res;

    res = a - b;
    if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) {
        if (a & 0x80)
            res = 0x80;
        else
            res = 0x7f;
    }
    return res;
}

#define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16);
#define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16);
#define ADD8(a, b, n)  RESULT(add8_sat(a, b), n, 8);
#define SUB8(a, b, n)  RESULT(sub8_sat(a, b), n, 8);
#define PFX q

#include "op_addsub.h"

/* Unsigned saturating arithmetic.  */
P
pbrook 已提交
6260
static inline uint16_t add16_usat(uint16_t a, uint16_t b)
P
pbrook 已提交
6261 6262 6263 6264 6265 6266 6267 6268
{
    uint16_t res;
    res = a + b;
    if (res < a)
        res = 0xffff;
    return res;
}

P
pbrook 已提交
6269
static inline uint16_t sub16_usat(uint16_t a, uint16_t b)
P
pbrook 已提交
6270
{
6271
    if (a > b)
P
pbrook 已提交
6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287
        return a - b;
    else
        return 0;
}

static inline uint8_t add8_usat(uint8_t a, uint8_t b)
{
    uint8_t res;
    res = a + b;
    if (res < a)
        res = 0xff;
    return res;
}

static inline uint8_t sub8_usat(uint8_t a, uint8_t b)
{
6288
    if (a > b)
P
pbrook 已提交
6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304
        return a - b;
    else
        return 0;
}

#define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16);
#define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16);
#define ADD8(a, b, n)  RESULT(add8_usat(a, b), n, 8);
#define SUB8(a, b, n)  RESULT(sub8_usat(a, b), n, 8);
#define PFX uq

#include "op_addsub.h"

/* Signed modulo arithmetic.  */
#define SARITH16(a, b, n, op) do { \
    int32_t sum; \
6305
    sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \
P
pbrook 已提交
6306 6307 6308 6309 6310 6311 6312
    RESULT(sum, n, 16); \
    if (sum >= 0) \
        ge |= 3 << (n * 2); \
    } while(0)

#define SARITH8(a, b, n, op) do { \
    int32_t sum; \
6313
    sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \
P
pbrook 已提交
6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333
    RESULT(sum, n, 8); \
    if (sum >= 0) \
        ge |= 1 << n; \
    } while(0)


#define ADD16(a, b, n) SARITH16(a, b, n, +)
#define SUB16(a, b, n) SARITH16(a, b, n, -)
#define ADD8(a, b, n)  SARITH8(a, b, n, +)
#define SUB8(a, b, n)  SARITH8(a, b, n, -)
#define PFX s
#define ARITH_GE

#include "op_addsub.h"

/* Unsigned modulo arithmetic.  */
#define ADD16(a, b, n) do { \
    uint32_t sum; \
    sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \
    RESULT(sum, n, 16); \
6334
    if ((sum >> 16) == 1) \
P
pbrook 已提交
6335 6336 6337 6338 6339 6340 6341
        ge |= 3 << (n * 2); \
    } while(0)

#define ADD8(a, b, n) do { \
    uint32_t sum; \
    sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \
    RESULT(sum, n, 8); \
6342 6343
    if ((sum >> 8) == 1) \
        ge |= 1 << n; \
P
pbrook 已提交
6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358
    } while(0)

#define SUB16(a, b, n) do { \
    uint32_t sum; \
    sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \
    RESULT(sum, n, 16); \
    if ((sum >> 16) == 0) \
        ge |= 3 << (n * 2); \
    } while(0)

#define SUB8(a, b, n) do { \
    uint32_t sum; \
    sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \
    RESULT(sum, n, 8); \
    if ((sum >> 8) == 0) \
6359
        ge |= 1 << n; \
P
pbrook 已提交
6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428
    } while(0)

#define PFX u
#define ARITH_GE

#include "op_addsub.h"

/* Halved signed arithmetic.  */
#define ADD16(a, b, n) \
  RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16)
#define SUB16(a, b, n) \
  RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16)
#define ADD8(a, b, n) \
  RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8)
#define SUB8(a, b, n) \
  RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8)
#define PFX sh

#include "op_addsub.h"

/* Halved unsigned arithmetic.  */
#define ADD16(a, b, n) \
  RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16)
#define SUB16(a, b, n) \
  RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16)
#define ADD8(a, b, n) \
  RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8)
#define SUB8(a, b, n) \
  RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8)
#define PFX uh

#include "op_addsub.h"

static inline uint8_t do_usad(uint8_t a, uint8_t b)
{
    if (a > b)
        return a - b;
    else
        return b - a;
}

/* Unsigned sum of absolute byte differences.  */
uint32_t HELPER(usad8)(uint32_t a, uint32_t b)
{
    uint32_t sum;
    sum = do_usad(a, b);
    sum += do_usad(a >> 8, b >> 8);
    sum += do_usad(a >> 16, b >>16);
    sum += do_usad(a >> 24, b >> 24);
    return sum;
}

/* For ARMv6 SEL instruction.  */
uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b)
{
    uint32_t mask;

    mask = 0;
    if (flags & 1)
        mask |= 0xff;
    if (flags & 2)
        mask |= 0xff00;
    if (flags & 4)
        mask |= 0xff0000;
    if (flags & 8)
        mask |= 0xff000000;
    return (a & mask) | (b & ~mask);
}

6429 6430
/* VFP support.  We follow the convention used for VFP instructions:
   Single precision routines have a "s" suffix, double precision a
P
pbrook 已提交
6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443
   "d" suffix.  */

/* Convert host exception flags to vfp form.  */
static inline int vfp_exceptbits_from_host(int host_bits)
{
    int target_bits = 0;

    if (host_bits & float_flag_invalid)
        target_bits |= 1;
    if (host_bits & float_flag_divbyzero)
        target_bits |= 2;
    if (host_bits & float_flag_overflow)
        target_bits |= 4;
6444
    if (host_bits & (float_flag_underflow | float_flag_output_denormal))
P
pbrook 已提交
6445 6446 6447
        target_bits |= 8;
    if (host_bits & float_flag_inexact)
        target_bits |= 0x10;
6448 6449
    if (host_bits & float_flag_input_denormal)
        target_bits |= 0x80;
P
pbrook 已提交
6450 6451 6452
    return target_bits;
}

6453
uint32_t HELPER(vfp_get_fpscr)(CPUARMState *env)
P
pbrook 已提交
6454 6455 6456 6457 6458 6459 6460 6461
{
    int i;
    uint32_t fpscr;

    fpscr = (env->vfp.xregs[ARM_VFP_FPSCR] & 0xffc8ffff)
            | (env->vfp.vec_len << 16)
            | (env->vfp.vec_stride << 20);
    i = get_float_exception_flags(&env->vfp.fp_status);
6462
    i |= get_float_exception_flags(&env->vfp.standard_fp_status);
P
pbrook 已提交
6463 6464 6465 6466
    fpscr |= vfp_exceptbits_from_host(i);
    return fpscr;
}

6467
uint32_t vfp_get_fpscr(CPUARMState *env)
6468 6469 6470 6471
{
    return HELPER(vfp_get_fpscr)(env);
}

P
pbrook 已提交
6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486
/* Convert vfp exception flags to target form.  */
static inline int vfp_exceptbits_to_host(int target_bits)
{
    int host_bits = 0;

    if (target_bits & 1)
        host_bits |= float_flag_invalid;
    if (target_bits & 2)
        host_bits |= float_flag_divbyzero;
    if (target_bits & 4)
        host_bits |= float_flag_overflow;
    if (target_bits & 8)
        host_bits |= float_flag_underflow;
    if (target_bits & 0x10)
        host_bits |= float_flag_inexact;
6487 6488
    if (target_bits & 0x80)
        host_bits |= float_flag_input_denormal;
P
pbrook 已提交
6489 6490 6491
    return host_bits;
}

6492
void HELPER(vfp_set_fpscr)(CPUARMState *env, uint32_t val)
P
pbrook 已提交
6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505
{
    int i;
    uint32_t changed;

    changed = env->vfp.xregs[ARM_VFP_FPSCR];
    env->vfp.xregs[ARM_VFP_FPSCR] = (val & 0xffc8ffff);
    env->vfp.vec_len = (val >> 16) & 7;
    env->vfp.vec_stride = (val >> 20) & 3;

    changed ^= val;
    if (changed & (3 << 22)) {
        i = (val >> 22) & 3;
        switch (i) {
6506
        case FPROUNDING_TIEEVEN:
P
pbrook 已提交
6507 6508
            i = float_round_nearest_even;
            break;
6509
        case FPROUNDING_POSINF:
P
pbrook 已提交
6510 6511
            i = float_round_up;
            break;
6512
        case FPROUNDING_NEGINF:
P
pbrook 已提交
6513 6514
            i = float_round_down;
            break;
6515
        case FPROUNDING_ZERO:
P
pbrook 已提交
6516 6517 6518 6519 6520
            i = float_round_to_zero;
            break;
        }
        set_float_rounding_mode(i, &env->vfp.fp_status);
    }
6521
    if (changed & (1 << 24)) {
6522
        set_flush_to_zero((val & (1 << 24)) != 0, &env->vfp.fp_status);
6523 6524
        set_flush_inputs_to_zero((val & (1 << 24)) != 0, &env->vfp.fp_status);
    }
P
pbrook 已提交
6525 6526
    if (changed & (1 << 25))
        set_default_nan_mode((val & (1 << 25)) != 0, &env->vfp.fp_status);
P
pbrook 已提交
6527

6528
    i = vfp_exceptbits_to_host(val);
P
pbrook 已提交
6529
    set_float_exception_flags(i, &env->vfp.fp_status);
6530
    set_float_exception_flags(0, &env->vfp.standard_fp_status);
P
pbrook 已提交
6531 6532
}

6533
void vfp_set_fpscr(CPUARMState *env, uint32_t val)
6534 6535 6536 6537
{
    HELPER(vfp_set_fpscr)(env, val);
}

P
pbrook 已提交
6538 6539 6540
#define VFP_HELPER(name, p) HELPER(glue(glue(vfp_,name),p))

#define VFP_BINOP(name) \
6541
float32 VFP_HELPER(name, s)(float32 a, float32 b, void *fpstp) \
P
pbrook 已提交
6542
{ \
6543 6544
    float_status *fpst = fpstp; \
    return float32_ ## name(a, b, fpst); \
P
pbrook 已提交
6545
} \
6546
float64 VFP_HELPER(name, d)(float64 a, float64 b, void *fpstp) \
P
pbrook 已提交
6547
{ \
6548 6549
    float_status *fpst = fpstp; \
    return float64_ ## name(a, b, fpst); \
P
pbrook 已提交
6550 6551 6552 6553 6554
}
VFP_BINOP(add)
VFP_BINOP(sub)
VFP_BINOP(mul)
VFP_BINOP(div)
6555 6556 6557 6558
VFP_BINOP(min)
VFP_BINOP(max)
VFP_BINOP(minnum)
VFP_BINOP(maxnum)
P
pbrook 已提交
6559 6560 6561 6562 6563 6564 6565 6566 6567
#undef VFP_BINOP

float32 VFP_HELPER(neg, s)(float32 a)
{
    return float32_chs(a);
}

float64 VFP_HELPER(neg, d)(float64 a)
{
6568
    return float64_chs(a);
P
pbrook 已提交
6569 6570 6571 6572 6573 6574 6575 6576 6577
}

float32 VFP_HELPER(abs, s)(float32 a)
{
    return float32_abs(a);
}

float64 VFP_HELPER(abs, d)(float64 a)
{
6578
    return float64_abs(a);
P
pbrook 已提交
6579 6580
}

6581
float32 VFP_HELPER(sqrt, s)(float32 a, CPUARMState *env)
P
pbrook 已提交
6582 6583 6584 6585
{
    return float32_sqrt(a, &env->vfp.fp_status);
}

6586
float64 VFP_HELPER(sqrt, d)(float64 a, CPUARMState *env)
P
pbrook 已提交
6587 6588 6589 6590 6591 6592
{
    return float64_sqrt(a, &env->vfp.fp_status);
}

/* XXX: check quiet/signaling case */
#define DO_VFP_cmp(p, type) \
6593
void VFP_HELPER(cmp, p)(type a, type b, CPUARMState *env)  \
P
pbrook 已提交
6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604
{ \
    uint32_t flags; \
    switch(type ## _compare_quiet(a, b, &env->vfp.fp_status)) { \
    case 0: flags = 0x6; break; \
    case -1: flags = 0x8; break; \
    case 1: flags = 0x2; break; \
    default: case 2: flags = 0x3; break; \
    } \
    env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
        | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
} \
6605
void VFP_HELPER(cmpe, p)(type a, type b, CPUARMState *env) \
P
pbrook 已提交
6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620
{ \
    uint32_t flags; \
    switch(type ## _compare(a, b, &env->vfp.fp_status)) { \
    case 0: flags = 0x6; break; \
    case -1: flags = 0x8; break; \
    case 1: flags = 0x2; break; \
    default: case 2: flags = 0x3; break; \
    } \
    env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
        | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
}
DO_VFP_cmp(s, float32)
DO_VFP_cmp(d, float64)
#undef DO_VFP_cmp

6621
/* Integer to float and float to integer conversions */
P
pbrook 已提交
6622

6623 6624 6625 6626
#define CONV_ITOF(name, fsz, sign) \
    float##fsz HELPER(name)(uint32_t x, void *fpstp) \
{ \
    float_status *fpst = fpstp; \
6627
    return sign##int32_to_##float##fsz((sign##int32_t)x, fpst); \
P
pbrook 已提交
6628 6629
}

6630 6631 6632 6633 6634 6635 6636 6637 6638
#define CONV_FTOI(name, fsz, sign, round) \
uint32_t HELPER(name)(float##fsz x, void *fpstp) \
{ \
    float_status *fpst = fpstp; \
    if (float##fsz##_is_any_nan(x)) { \
        float_raise(float_flag_invalid, fpst); \
        return 0; \
    } \
    return float##fsz##_to_##sign##int32##round(x, fpst); \
P
pbrook 已提交
6639 6640
}

6641 6642 6643 6644
#define FLOAT_CONVS(name, p, fsz, sign) \
CONV_ITOF(vfp_##name##to##p, fsz, sign) \
CONV_FTOI(vfp_to##name##p, fsz, sign, ) \
CONV_FTOI(vfp_to##name##z##p, fsz, sign, _round_to_zero)
P
pbrook 已提交
6645

6646 6647 6648 6649
FLOAT_CONVS(si, s, 32, )
FLOAT_CONVS(si, d, 64, )
FLOAT_CONVS(ui, s, 32, u)
FLOAT_CONVS(ui, d, 64, u)
P
pbrook 已提交
6650

6651 6652 6653
#undef CONV_ITOF
#undef CONV_FTOI
#undef FLOAT_CONVS
P
pbrook 已提交
6654 6655

/* floating point conversion */
6656
float64 VFP_HELPER(fcvtd, s)(float32 x, CPUARMState *env)
P
pbrook 已提交
6657
{
6658 6659 6660 6661 6662
    float64 r = float32_to_float64(x, &env->vfp.fp_status);
    /* ARM requires that S<->D conversion of any kind of NaN generates
     * a quiet NaN by forcing the most significant frac bit to 1.
     */
    return float64_maybe_silence_nan(r);
P
pbrook 已提交
6663 6664
}

6665
float32 VFP_HELPER(fcvts, d)(float64 x, CPUARMState *env)
P
pbrook 已提交
6666
{
6667 6668 6669 6670 6671
    float32 r =  float64_to_float32(x, &env->vfp.fp_status);
    /* ARM requires that S<->D conversion of any kind of NaN generates
     * a quiet NaN by forcing the most significant frac bit to 1.
     */
    return float32_maybe_silence_nan(r);
P
pbrook 已提交
6672 6673 6674
}

/* VFP3 fixed point conversion.  */
6675
#define VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \
6676 6677
float##fsz HELPER(vfp_##name##to##p)(uint##isz##_t  x, uint32_t shift, \
                                     void *fpstp) \
P
pbrook 已提交
6678
{ \
6679
    float_status *fpst = fpstp; \
6680
    float##fsz tmp; \
6681
    tmp = itype##_to_##float##fsz(x, fpst); \
6682
    return float##fsz##_scalbn(tmp, -(int)shift, fpst); \
6683 6684
}

6685 6686 6687 6688 6689
/* Notice that we want only input-denormal exception flags from the
 * scalbn operation: the other possible flags (overflow+inexact if
 * we overflow to infinity, output-denormal) aren't correct for the
 * complete scale-and-convert operation.
 */
6690 6691 6692 6693
#define VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, round) \
uint##isz##_t HELPER(vfp_to##name##p##round)(float##fsz x, \
                                             uint32_t shift, \
                                             void *fpstp) \
P
pbrook 已提交
6694
{ \
6695
    float_status *fpst = fpstp; \
6696
    int old_exc_flags = get_float_exception_flags(fpst); \
6697 6698
    float##fsz tmp; \
    if (float##fsz##_is_any_nan(x)) { \
6699
        float_raise(float_flag_invalid, fpst); \
6700
        return 0; \
6701
    } \
6702
    tmp = float##fsz##_scalbn(x, shift, fpst); \
6703 6704 6705
    old_exc_flags |= get_float_exception_flags(fpst) \
        & float_flag_input_denormal; \
    set_float_exception_flags(old_exc_flags, fpst); \
6706
    return float##fsz##_to_##itype##round(tmp, fpst); \
6707 6708
}

6709 6710
#define VFP_CONV_FIX(name, p, fsz, isz, itype)                   \
VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype)                     \
6711 6712 6713 6714 6715 6716
VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, _round_to_zero) \
VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, )

#define VFP_CONV_FIX_A64(name, p, fsz, isz, itype)               \
VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype)                     \
VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, )
6717

6718 6719
VFP_CONV_FIX(sh, d, 64, 64, int16)
VFP_CONV_FIX(sl, d, 64, 64, int32)
6720
VFP_CONV_FIX_A64(sq, d, 64, 64, int64)
6721 6722
VFP_CONV_FIX(uh, d, 64, 64, uint16)
VFP_CONV_FIX(ul, d, 64, 64, uint32)
6723
VFP_CONV_FIX_A64(uq, d, 64, 64, uint64)
6724 6725
VFP_CONV_FIX(sh, s, 32, 32, int16)
VFP_CONV_FIX(sl, s, 32, 32, int32)
6726
VFP_CONV_FIX_A64(sq, s, 32, 64, int64)
6727 6728
VFP_CONV_FIX(uh, s, 32, 32, uint16)
VFP_CONV_FIX(ul, s, 32, 32, uint32)
6729
VFP_CONV_FIX_A64(uq, s, 32, 64, uint64)
P
pbrook 已提交
6730
#undef VFP_CONV_FIX
6731 6732
#undef VFP_CONV_FIX_FLOAT
#undef VFP_CONV_FLOAT_FIX_ROUND
P
pbrook 已提交
6733

6734 6735 6736 6737 6738 6739 6740 6741 6742 6743 6744 6745 6746
/* Set the current fp rounding mode and return the old one.
 * The argument is a softfloat float_round_ value.
 */
uint32_t HELPER(set_rmode)(uint32_t rmode, CPUARMState *env)
{
    float_status *fp_status = &env->vfp.fp_status;

    uint32_t prev_rmode = get_float_rounding_mode(fp_status);
    set_float_rounding_mode(rmode, fp_status);

    return prev_rmode;
}

6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757 6758 6759 6760 6761 6762 6763
/* Set the current fp rounding mode in the standard fp status and return
 * the old one. This is for NEON instructions that need to change the
 * rounding mode but wish to use the standard FPSCR values for everything
 * else. Always set the rounding mode back to the correct value after
 * modifying it.
 * The argument is a softfloat float_round_ value.
 */
uint32_t HELPER(set_neon_rmode)(uint32_t rmode, CPUARMState *env)
{
    float_status *fp_status = &env->vfp.standard_fp_status;

    uint32_t prev_rmode = get_float_rounding_mode(fp_status);
    set_float_rounding_mode(rmode, fp_status);

    return prev_rmode;
}

P
Paul Brook 已提交
6764
/* Half precision conversions.  */
6765
static float32 do_fcvt_f16_to_f32(uint32_t a, CPUARMState *env, float_status *s)
P
Paul Brook 已提交
6766 6767
{
    int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
6768 6769 6770 6771 6772
    float32 r = float16_to_float32(make_float16(a), ieee, s);
    if (ieee) {
        return float32_maybe_silence_nan(r);
    }
    return r;
P
Paul Brook 已提交
6773 6774
}

6775
static uint32_t do_fcvt_f32_to_f16(float32 a, CPUARMState *env, float_status *s)
P
Paul Brook 已提交
6776 6777
{
    int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
6778 6779 6780 6781 6782
    float16 r = float32_to_float16(a, ieee, s);
    if (ieee) {
        r = float16_maybe_silence_nan(r);
    }
    return float16_val(r);
P
Paul Brook 已提交
6783 6784
}

6785
float32 HELPER(neon_fcvt_f16_to_f32)(uint32_t a, CPUARMState *env)
6786 6787 6788 6789
{
    return do_fcvt_f16_to_f32(a, env, &env->vfp.standard_fp_status);
}

6790
uint32_t HELPER(neon_fcvt_f32_to_f16)(float32 a, CPUARMState *env)
6791 6792 6793 6794
{
    return do_fcvt_f32_to_f16(a, env, &env->vfp.standard_fp_status);
}

6795
float32 HELPER(vfp_fcvt_f16_to_f32)(uint32_t a, CPUARMState *env)
6796 6797 6798 6799
{
    return do_fcvt_f16_to_f32(a, env, &env->vfp.fp_status);
}

6800
uint32_t HELPER(vfp_fcvt_f32_to_f16)(float32 a, CPUARMState *env)
6801 6802 6803 6804
{
    return do_fcvt_f32_to_f16(a, env, &env->vfp.fp_status);
}

6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824
float64 HELPER(vfp_fcvt_f16_to_f64)(uint32_t a, CPUARMState *env)
{
    int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
    float64 r = float16_to_float64(make_float16(a), ieee, &env->vfp.fp_status);
    if (ieee) {
        return float64_maybe_silence_nan(r);
    }
    return r;
}

uint32_t HELPER(vfp_fcvt_f64_to_f16)(float64 a, CPUARMState *env)
{
    int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
    float16 r = float64_to_float16(a, ieee, &env->vfp.fp_status);
    if (ieee) {
        r = float16_maybe_silence_nan(r);
    }
    return float16_val(r);
}

6825
#define float32_two make_float32(0x40000000)
6826 6827
#define float32_three make_float32(0x40400000)
#define float32_one_point_five make_float32(0x3fc00000)
6828

6829
float32 HELPER(recps_f32)(float32 a, float32 b, CPUARMState *env)
P
pbrook 已提交
6830
{
6831 6832 6833
    float_status *s = &env->vfp.standard_fp_status;
    if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) ||
        (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) {
6834 6835 6836
        if (!(float32_is_zero(a) || float32_is_zero(b))) {
            float_raise(float_flag_input_denormal, s);
        }
6837 6838 6839
        return float32_two;
    }
    return float32_sub(float32_two, float32_mul(a, b, s), s);
P
pbrook 已提交
6840 6841
}

6842
float32 HELPER(rsqrts_f32)(float32 a, float32 b, CPUARMState *env)
P
pbrook 已提交
6843
{
6844
    float_status *s = &env->vfp.standard_fp_status;
6845 6846 6847
    float32 product;
    if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) ||
        (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) {
6848 6849 6850
        if (!(float32_is_zero(a) || float32_is_zero(b))) {
            float_raise(float_flag_input_denormal, s);
        }
6851
        return float32_one_point_five;
6852
    }
6853 6854
    product = float32_mul(a, b, s);
    return float32_div(float32_sub(float32_three, product, s), float32_two, s);
P
pbrook 已提交
6855 6856
}

P
pbrook 已提交
6857 6858
/* NEON helpers.  */

6859 6860 6861 6862
/* Constants 256 and 512 are used in some helpers; we avoid relying on
 * int->float conversions at run-time.  */
#define float64_256 make_float64(0x4070000000000000LL)
#define float64_512 make_float64(0x4080000000000000LL)
6863 6864
#define float32_maxnorm make_float32(0x7f7fffff)
#define float64_maxnorm make_float64(0x7fefffffffffffffLL)
6865

6866 6867 6868 6869
/* Reciprocal functions
 *
 * The algorithm that must be used to calculate the estimate
 * is specified by the ARM ARM, see FPRecipEstimate()
6870
 */
6871 6872

static float64 recip_estimate(float64 a, float_status *real_fp_status)
6873
{
6874 6875 6876
    /* These calculations mustn't set any fp exception flags,
     * so we use a local copy of the fp_status.
     */
6877
    float_status dummy_status = *real_fp_status;
6878
    float_status *s = &dummy_status;
6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897
    /* q = (int)(a * 512.0) */
    float64 q = float64_mul(float64_512, a, s);
    int64_t q_int = float64_to_int64_round_to_zero(q, s);

    /* r = 1.0 / (((double)q + 0.5) / 512.0) */
    q = int64_to_float64(q_int, s);
    q = float64_add(q, float64_half, s);
    q = float64_div(q, float64_512, s);
    q = float64_div(float64_one, q, s);

    /* s = (int)(256.0 * r + 0.5) */
    q = float64_mul(q, float64_256, s);
    q = float64_add(q, float64_half, s);
    q_int = float64_to_int64_round_to_zero(q, s);

    /* return (double)s / 256.0 */
    return float64_div(int64_to_float64(q_int, s), float64_256, s);
}

6898 6899
/* Common wrapper to call recip_estimate */
static float64 call_recip_estimate(float64 num, int off, float_status *fpst)
P
pbrook 已提交
6900
{
6901 6902 6903 6904 6905
    uint64_t val64 = float64_val(num);
    uint64_t frac = extract64(val64, 0, 52);
    int64_t exp = extract64(val64, 52, 11);
    uint64_t sbit;
    float64 scaled, estimate;
6906

6907 6908 6909 6910 6911 6912 6913 6914 6915
    /* Generate the scaled number for the estimate function */
    if (exp == 0) {
        if (extract64(frac, 51, 1) == 0) {
            exp = -1;
            frac = extract64(frac, 0, 50) << 2;
        } else {
            frac = extract64(frac, 0, 51) << 1;
        }
    }
6916

6917 6918 6919 6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938 6939 6940 6941 6942 6943 6944 6945 6946 6947 6948 6949 6950 6951 6952 6953 6954 6955 6956 6957 6958 6959 6960 6961 6962 6963 6964 6965 6966 6967 6968 6969 6970 6971 6972
    /* scaled = '0' : '01111111110' : fraction<51:44> : Zeros(44); */
    scaled = make_float64((0x3feULL << 52)
                          | extract64(frac, 44, 8) << 44);

    estimate = recip_estimate(scaled, fpst);

    /* Build new result */
    val64 = float64_val(estimate);
    sbit = 0x8000000000000000ULL & val64;
    exp = off - exp;
    frac = extract64(val64, 0, 52);

    if (exp == 0) {
        frac = 1ULL << 51 | extract64(frac, 1, 51);
    } else if (exp == -1) {
        frac = 1ULL << 50 | extract64(frac, 2, 50);
        exp = 0;
    }

    return make_float64(sbit | (exp << 52) | frac);
}

static bool round_to_inf(float_status *fpst, bool sign_bit)
{
    switch (fpst->float_rounding_mode) {
    case float_round_nearest_even: /* Round to Nearest */
        return true;
    case float_round_up: /* Round to +Inf */
        return !sign_bit;
    case float_round_down: /* Round to -Inf */
        return sign_bit;
    case float_round_to_zero: /* Round to Zero */
        return false;
    }

    g_assert_not_reached();
}

float32 HELPER(recpe_f32)(float32 input, void *fpstp)
{
    float_status *fpst = fpstp;
    float32 f32 = float32_squash_input_denormal(input, fpst);
    uint32_t f32_val = float32_val(f32);
    uint32_t f32_sbit = 0x80000000ULL & f32_val;
    int32_t f32_exp = extract32(f32_val, 23, 8);
    uint32_t f32_frac = extract32(f32_val, 0, 23);
    float64 f64, r64;
    uint64_t r64_val;
    int64_t r64_exp;
    uint64_t r64_frac;

    if (float32_is_any_nan(f32)) {
        float32 nan = f32;
        if (float32_is_signaling_nan(f32)) {
            float_raise(float_flag_invalid, fpst);
            nan = float32_maybe_silence_nan(f32);
6973
        }
6974 6975
        if (fpst->default_nan_mode) {
            nan =  float32_default_nan;
6976
        }
6977 6978 6979 6980 6981 6982 6983 6984 6985 6986 6987 6988 6989 6990 6991 6992 6993
        return nan;
    } else if (float32_is_infinity(f32)) {
        return float32_set_sign(float32_zero, float32_is_neg(f32));
    } else if (float32_is_zero(f32)) {
        float_raise(float_flag_divbyzero, fpst);
        return float32_set_sign(float32_infinity, float32_is_neg(f32));
    } else if ((f32_val & ~(1ULL << 31)) < (1ULL << 21)) {
        /* Abs(value) < 2.0^-128 */
        float_raise(float_flag_overflow | float_flag_inexact, fpst);
        if (round_to_inf(fpst, f32_sbit)) {
            return float32_set_sign(float32_infinity, float32_is_neg(f32));
        } else {
            return float32_set_sign(float32_maxnorm, float32_is_neg(f32));
        }
    } else if (f32_exp >= 253 && fpst->flush_to_zero) {
        float_raise(float_flag_underflow, fpst);
        return float32_set_sign(float32_zero, float32_is_neg(f32));
6994 6995 6996
    }


6997 6998 6999 7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013 7014 7015 7016 7017 7018 7019 7020 7021 7022 7023 7024 7025 7026 7027 7028 7029 7030 7031 7032 7033 7034 7035 7036 7037 7038 7039 7040 7041 7042 7043 7044
    f64 = make_float64(((int64_t)(f32_exp) << 52) | (int64_t)(f32_frac) << 29);
    r64 = call_recip_estimate(f64, 253, fpst);
    r64_val = float64_val(r64);
    r64_exp = extract64(r64_val, 52, 11);
    r64_frac = extract64(r64_val, 0, 52);

    /* result = sign : result_exp<7:0> : fraction<51:29>; */
    return make_float32(f32_sbit |
                        (r64_exp & 0xff) << 23 |
                        extract64(r64_frac, 29, 24));
}

float64 HELPER(recpe_f64)(float64 input, void *fpstp)
{
    float_status *fpst = fpstp;
    float64 f64 = float64_squash_input_denormal(input, fpst);
    uint64_t f64_val = float64_val(f64);
    uint64_t f64_sbit = 0x8000000000000000ULL & f64_val;
    int64_t f64_exp = extract64(f64_val, 52, 11);
    float64 r64;
    uint64_t r64_val;
    int64_t r64_exp;
    uint64_t r64_frac;

    /* Deal with any special cases */
    if (float64_is_any_nan(f64)) {
        float64 nan = f64;
        if (float64_is_signaling_nan(f64)) {
            float_raise(float_flag_invalid, fpst);
            nan = float64_maybe_silence_nan(f64);
        }
        if (fpst->default_nan_mode) {
            nan =  float64_default_nan;
        }
        return nan;
    } else if (float64_is_infinity(f64)) {
        return float64_set_sign(float64_zero, float64_is_neg(f64));
    } else if (float64_is_zero(f64)) {
        float_raise(float_flag_divbyzero, fpst);
        return float64_set_sign(float64_infinity, float64_is_neg(f64));
    } else if ((f64_val & ~(1ULL << 63)) < (1ULL << 50)) {
        /* Abs(value) < 2.0^-1024 */
        float_raise(float_flag_overflow | float_flag_inexact, fpst);
        if (round_to_inf(fpst, f64_sbit)) {
            return float64_set_sign(float64_infinity, float64_is_neg(f64));
        } else {
            return float64_set_sign(float64_maxnorm, float64_is_neg(f64));
        }
7045
    } else if (f64_exp >= 2045 && fpst->flush_to_zero) {
7046 7047 7048
        float_raise(float_flag_underflow, fpst);
        return float64_set_sign(float64_zero, float64_is_neg(f64));
    }
7049

7050 7051 7052 7053
    r64 = call_recip_estimate(f64, 2045, fpst);
    r64_val = float64_val(r64);
    r64_exp = extract64(r64_val, 52, 11);
    r64_frac = extract64(r64_val, 0, 52);
7054

7055 7056 7057 7058
    /* result = sign : result_exp<10:0> : fraction<51:0> */
    return make_float64(f64_sbit |
                        ((r64_exp & 0x7ff) << 52) |
                        r64_frac);
P
pbrook 已提交
7059 7060
}

7061 7062 7063
/* The algorithm that must be used to calculate the estimate
 * is specified by the ARM ARM.
 */
7064
static float64 recip_sqrt_estimate(float64 a, float_status *real_fp_status)
7065
{
7066 7067 7068
    /* These calculations mustn't set any fp exception flags,
     * so we use a local copy of the fp_status.
     */
7069
    float_status dummy_status = *real_fp_status;
7070
    float_status *s = &dummy_status;
7071 7072 7073 7074 7075 7076 7077 7078 7079 7080 7081 7082 7083 7084 7085 7086 7087 7088 7089 7090 7091 7092 7093 7094 7095 7096 7097 7098 7099 7100 7101 7102 7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113 7114 7115
    float64 q;
    int64_t q_int;

    if (float64_lt(a, float64_half, s)) {
        /* range 0.25 <= a < 0.5 */

        /* a in units of 1/512 rounded down */
        /* q0 = (int)(a * 512.0);  */
        q = float64_mul(float64_512, a, s);
        q_int = float64_to_int64_round_to_zero(q, s);

        /* reciprocal root r */
        /* r = 1.0 / sqrt(((double)q0 + 0.5) / 512.0);  */
        q = int64_to_float64(q_int, s);
        q = float64_add(q, float64_half, s);
        q = float64_div(q, float64_512, s);
        q = float64_sqrt(q, s);
        q = float64_div(float64_one, q, s);
    } else {
        /* range 0.5 <= a < 1.0 */

        /* a in units of 1/256 rounded down */
        /* q1 = (int)(a * 256.0); */
        q = float64_mul(float64_256, a, s);
        int64_t q_int = float64_to_int64_round_to_zero(q, s);

        /* reciprocal root r */
        /* r = 1.0 /sqrt(((double)q1 + 0.5) / 256); */
        q = int64_to_float64(q_int, s);
        q = float64_add(q, float64_half, s);
        q = float64_div(q, float64_256, s);
        q = float64_sqrt(q, s);
        q = float64_div(float64_one, q, s);
    }
    /* r in units of 1/256 rounded to nearest */
    /* s = (int)(256.0 * r + 0.5); */

    q = float64_mul(q, float64_256,s );
    q = float64_add(q, float64_half, s);
    q_int = float64_to_int64_round_to_zero(q, s);

    /* return (double)s / 256.0;*/
    return float64_div(int64_to_float64(q_int, s), float64_256, s);
}

7116
float32 HELPER(rsqrte_f32)(float32 input, void *fpstp)
P
pbrook 已提交
7117
{
7118 7119 7120 7121 7122 7123 7124 7125
    float_status *s = fpstp;
    float32 f32 = float32_squash_input_denormal(input, s);
    uint32_t val = float32_val(f32);
    uint32_t f32_sbit = 0x80000000 & val;
    int32_t f32_exp = extract32(val, 23, 8);
    uint32_t f32_frac = extract32(val, 0, 23);
    uint64_t f64_frac;
    uint64_t val64;
7126 7127 7128
    int result_exp;
    float64 f64;

7129 7130 7131
    if (float32_is_any_nan(f32)) {
        float32 nan = f32;
        if (float32_is_signaling_nan(f32)) {
7132
            float_raise(float_flag_invalid, s);
7133
            nan = float32_maybe_silence_nan(f32);
7134
        }
7135 7136
        if (s->default_nan_mode) {
            nan =  float32_default_nan;
7137
        }
7138 7139
        return nan;
    } else if (float32_is_zero(f32)) {
7140
        float_raise(float_flag_divbyzero, s);
7141 7142
        return float32_set_sign(float32_infinity, float32_is_neg(f32));
    } else if (float32_is_neg(f32)) {
7143 7144
        float_raise(float_flag_invalid, s);
        return float32_default_nan;
7145
    } else if (float32_is_infinity(f32)) {
7146 7147 7148
        return float32_zero;
    }

7149
    /* Scale and normalize to a double-precision value between 0.25 and 1.0,
7150
     * preserving the parity of the exponent.  */
7151 7152 7153 7154 7155 7156 7157 7158 7159 7160 7161 7162

    f64_frac = ((uint64_t) f32_frac) << 29;
    if (f32_exp == 0) {
        while (extract64(f64_frac, 51, 1) == 0) {
            f64_frac = f64_frac << 1;
            f32_exp = f32_exp-1;
        }
        f64_frac = extract64(f64_frac, 0, 51) << 1;
    }

    if (extract64(f32_exp, 0, 1) == 0) {
        f64 = make_float64(((uint64_t) f32_sbit) << 32
7163
                           | (0x3feULL << 52)
7164
                           | f64_frac);
7165
    } else {
7166
        f64 = make_float64(((uint64_t) f32_sbit) << 32
7167
                           | (0x3fdULL << 52)
7168
                           | f64_frac);
7169 7170
    }

7171
    result_exp = (380 - f32_exp) / 2;
7172

7173
    f64 = recip_sqrt_estimate(f64, s);
7174 7175 7176

    val64 = float64_val(f64);

7177
    val = ((result_exp & 0xff) << 23)
7178 7179
        | ((val64 >> 29)  & 0x7fffff);
    return make_float32(val);
P
pbrook 已提交
7180 7181
}

7182 7183 7184 7185 7186 7187 7188 7189 7190 7191 7192 7193 7194 7195 7196 7197 7198 7199 7200 7201 7202 7203 7204 7205 7206 7207 7208 7209 7210 7211 7212 7213 7214 7215 7216 7217 7218 7219 7220 7221 7222 7223 7224 7225 7226 7227 7228 7229 7230 7231 7232 7233 7234 7235 7236 7237 7238 7239 7240 7241 7242 7243 7244
float64 HELPER(rsqrte_f64)(float64 input, void *fpstp)
{
    float_status *s = fpstp;
    float64 f64 = float64_squash_input_denormal(input, s);
    uint64_t val = float64_val(f64);
    uint64_t f64_sbit = 0x8000000000000000ULL & val;
    int64_t f64_exp = extract64(val, 52, 11);
    uint64_t f64_frac = extract64(val, 0, 52);
    int64_t result_exp;
    uint64_t result_frac;

    if (float64_is_any_nan(f64)) {
        float64 nan = f64;
        if (float64_is_signaling_nan(f64)) {
            float_raise(float_flag_invalid, s);
            nan = float64_maybe_silence_nan(f64);
        }
        if (s->default_nan_mode) {
            nan =  float64_default_nan;
        }
        return nan;
    } else if (float64_is_zero(f64)) {
        float_raise(float_flag_divbyzero, s);
        return float64_set_sign(float64_infinity, float64_is_neg(f64));
    } else if (float64_is_neg(f64)) {
        float_raise(float_flag_invalid, s);
        return float64_default_nan;
    } else if (float64_is_infinity(f64)) {
        return float64_zero;
    }

    /* Scale and normalize to a double-precision value between 0.25 and 1.0,
     * preserving the parity of the exponent.  */

    if (f64_exp == 0) {
        while (extract64(f64_frac, 51, 1) == 0) {
            f64_frac = f64_frac << 1;
            f64_exp = f64_exp - 1;
        }
        f64_frac = extract64(f64_frac, 0, 51) << 1;
    }

    if (extract64(f64_exp, 0, 1) == 0) {
        f64 = make_float64(f64_sbit
                           | (0x3feULL << 52)
                           | f64_frac);
    } else {
        f64 = make_float64(f64_sbit
                           | (0x3fdULL << 52)
                           | f64_frac);
    }

    result_exp = (3068 - f64_exp) / 2;

    f64 = recip_sqrt_estimate(f64, s);

    result_frac = extract64(float64_val(f64), 0, 52);

    return make_float64(f64_sbit |
                        ((result_exp & 0x7ff) << 52) |
                        result_frac);
}

7245
uint32_t HELPER(recpe_u32)(uint32_t a, void *fpstp)
P
pbrook 已提交
7246
{
7247
    float_status *s = fpstp;
7248 7249 7250 7251 7252 7253 7254 7255 7256
    float64 f64;

    if ((a & 0x80000000) == 0) {
        return 0xffffffff;
    }

    f64 = make_float64((0x3feULL << 52)
                       | ((int64_t)(a & 0x7fffffff) << 21));

7257
    f64 = recip_estimate(f64, s);
7258 7259

    return 0x80000000 | ((float64_val(f64) >> 21) & 0x7fffffff);
P
pbrook 已提交
7260 7261
}

7262
uint32_t HELPER(rsqrte_u32)(uint32_t a, void *fpstp)
P
pbrook 已提交
7263
{
7264
    float_status *fpst = fpstp;
7265 7266 7267 7268 7269 7270 7271 7272 7273 7274 7275 7276 7277 7278
    float64 f64;

    if ((a & 0xc0000000) == 0) {
        return 0xffffffff;
    }

    if (a & 0x80000000) {
        f64 = make_float64((0x3feULL << 52)
                           | ((uint64_t)(a & 0x7fffffff) << 21));
    } else { /* bits 31-30 == '01' */
        f64 = make_float64((0x3fdULL << 52)
                           | ((uint64_t)(a & 0x3fffffff) << 22));
    }

7279
    f64 = recip_sqrt_estimate(f64, fpst);
7280 7281

    return 0x80000000 | ((float64_val(f64) >> 21) & 0x7fffffff);
P
pbrook 已提交
7282
}
7283

7284 7285 7286 7287 7288 7289 7290 7291 7292 7293 7294 7295
/* VFPv4 fused multiply-accumulate */
float32 VFP_HELPER(muladd, s)(float32 a, float32 b, float32 c, void *fpstp)
{
    float_status *fpst = fpstp;
    return float32_muladd(a, b, c, 0, fpst);
}

float64 VFP_HELPER(muladd, d)(float64 a, float64 b, float64 c, void *fpstp)
{
    float_status *fpst = fpstp;
    return float64_muladd(a, b, c, 0, fpst);
}
7296 7297 7298 7299 7300 7301 7302 7303 7304 7305 7306 7307 7308 7309 7310 7311 7312 7313 7314 7315 7316 7317 7318 7319 7320 7321 7322 7323 7324 7325 7326 7327 7328 7329 7330 7331 7332 7333 7334 7335 7336 7337 7338 7339 7340

/* ARMv8 round to integral */
float32 HELPER(rints_exact)(float32 x, void *fp_status)
{
    return float32_round_to_int(x, fp_status);
}

float64 HELPER(rintd_exact)(float64 x, void *fp_status)
{
    return float64_round_to_int(x, fp_status);
}

float32 HELPER(rints)(float32 x, void *fp_status)
{
    int old_flags = get_float_exception_flags(fp_status), new_flags;
    float32 ret;

    ret = float32_round_to_int(x, fp_status);

    /* Suppress any inexact exceptions the conversion produced */
    if (!(old_flags & float_flag_inexact)) {
        new_flags = get_float_exception_flags(fp_status);
        set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status);
    }

    return ret;
}

float64 HELPER(rintd)(float64 x, void *fp_status)
{
    int old_flags = get_float_exception_flags(fp_status), new_flags;
    float64 ret;

    ret = float64_round_to_int(x, fp_status);

    new_flags = get_float_exception_flags(fp_status);

    /* Suppress any inexact exceptions the conversion produced */
    if (!(old_flags & float_flag_inexact)) {
        new_flags = get_float_exception_flags(fp_status);
        set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status);
    }

    return ret;
}
7341 7342 7343 7344 7345 7346 7347 7348 7349 7350 7351 7352 7353 7354 7355 7356 7357 7358 7359 7360 7361 7362 7363 7364 7365 7366 7367 7368

/* Convert ARM rounding mode to softfloat */
int arm_rmode_to_sf(int rmode)
{
    switch (rmode) {
    case FPROUNDING_TIEAWAY:
        rmode = float_round_ties_away;
        break;
    case FPROUNDING_ODD:
        /* FIXME: add support for TIEAWAY and ODD */
        qemu_log_mask(LOG_UNIMP, "arm: unimplemented rounding mode: %d\n",
                      rmode);
    case FPROUNDING_TIEEVEN:
    default:
        rmode = float_round_nearest_even;
        break;
    case FPROUNDING_POSINF:
        rmode = float_round_up;
        break;
    case FPROUNDING_NEGINF:
        rmode = float_round_down;
        break;
    case FPROUNDING_ZERO:
        rmode = float_round_to_zero;
        break;
    }
    return rmode;
}
7369

7370 7371 7372 7373
/* CRC helpers.
 * The upper bytes of val (above the number specified by 'bytes') must have
 * been zeroed out by the caller.
 */
7374 7375 7376 7377
uint32_t HELPER(crc32)(uint32_t acc, uint32_t val, uint32_t bytes)
{
    uint8_t buf[4];

7378
    stl_le_p(buf, val);
7379 7380 7381 7382 7383 7384 7385 7386 7387

    /* zlib crc32 converts the accumulator and output to one's complement.  */
    return crc32(acc ^ 0xffffffff, buf, bytes) ^ 0xffffffff;
}

uint32_t HELPER(crc32c)(uint32_t acc, uint32_t val, uint32_t bytes)
{
    uint8_t buf[4];

7388
    stl_le_p(buf, val);
7389 7390 7391 7392

    /* Linux crc32c converts the output to one's complement.  */
    return crc32c(acc, buf, bytes) ^ 0xffffffff;
}