intel_lrc.c 67.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
/*
 * Copyright © 2014 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Ben Widawsky <ben@bwidawsk.net>
 *    Michel Thierry <michel.thierry@intel.com>
 *    Thomas Daniel <thomas.daniel@intel.com>
 *    Oscar Mateo <oscar.mateo@intel.com>
 *
 */

31 32 33 34
/**
 * DOC: Logical Rings, Logical Ring Contexts and Execlists
 *
 * Motivation:
35 36 37 38
 * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
 * These expanded contexts enable a number of new abilities, especially
 * "Execlists" (also implemented in this file).
 *
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
 * One of the main differences with the legacy HW contexts is that logical
 * ring contexts incorporate many more things to the context's state, like
 * PDPs or ringbuffer control registers:
 *
 * The reason why PDPs are included in the context is straightforward: as
 * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
 * contained there mean you don't need to do a ppgtt->switch_mm yourself,
 * instead, the GPU will do it for you on the context switch.
 *
 * But, what about the ringbuffer control registers (head, tail, etc..)?
 * shouldn't we just need a set of those per engine command streamer? This is
 * where the name "Logical Rings" starts to make sense: by virtualizing the
 * rings, the engine cs shifts to a new "ring buffer" with every context
 * switch. When you want to submit a workload to the GPU you: A) choose your
 * context, B) find its appropriate virtualized ring, C) write commands to it
 * and then, finally, D) tell the GPU to switch to that context.
 *
 * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
 * to a contexts is via a context execution list, ergo "Execlists".
 *
 * LRC implementation:
 * Regarding the creation of contexts, we have:
 *
 * - One global default context.
 * - One local default context for each opened fd.
 * - One local extra context for each context create ioctl call.
 *
 * Now that ringbuffers belong per-context (and not per-engine, like before)
 * and that contexts are uniquely tied to a given engine (and not reusable,
 * like before) we need:
 *
 * - One ringbuffer per-engine inside each context.
 * - One backing object per-engine inside each context.
 *
 * The global default context starts its life with these new objects fully
 * allocated and populated. The local default context for each opened fd is
 * more complex, because we don't know at creation time which engine is going
 * to use them. To handle this, we have implemented a deferred creation of LR
 * contexts:
 *
 * The local context starts its life as a hollow or blank holder, that only
 * gets populated for a given engine once we receive an execbuffer. If later
 * on we receive another execbuffer ioctl for the same context but a different
 * engine, we allocate/populate a new ringbuffer and context backing object and
 * so on.
 *
 * Finally, regarding local contexts created using the ioctl call: as they are
 * only allowed with the render ring, we can allocate & populate them right
 * away (no need to defer anything, at least for now).
 *
 * Execlists implementation:
90 91
 * Execlists are the new method by which, on gen8+ hardware, workloads are
 * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
 * This method works as follows:
 *
 * When a request is committed, its commands (the BB start and any leading or
 * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
 * for the appropriate context. The tail pointer in the hardware context is not
 * updated at this time, but instead, kept by the driver in the ringbuffer
 * structure. A structure representing this request is added to a request queue
 * for the appropriate engine: this structure contains a copy of the context's
 * tail after the request was written to the ring buffer and a pointer to the
 * context itself.
 *
 * If the engine's request queue was empty before the request was added, the
 * queue is processed immediately. Otherwise the queue will be processed during
 * a context switch interrupt. In any case, elements on the queue will get sent
 * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
 * globally unique 20-bits submission ID.
 *
 * When execution of a request completes, the GPU updates the context status
 * buffer with a context complete event and generates a context switch interrupt.
 * During the interrupt handling, the driver examines the events in the buffer:
 * for each context complete event, if the announced ID matches that on the head
 * of the request queue, then that request is retired and removed from the queue.
 *
 * After processing, if any requests were retired and the queue is not empty
 * then a new execution list can be submitted. The two requests at the front of
 * the queue are next to be submitted but since a context may not occur twice in
 * an execution list, if subsequent requests have the same ID as the first then
 * the two requests must be combined. This is done simply by discarding requests
 * at the head of the queue until either only one requests is left (in which case
 * we use a NULL second context) or the first two requests have unique IDs.
 *
 * By always executing the first two requests in the queue the driver ensures
 * that the GPU is kept as busy as possible. In the case where a single context
 * completes but a second context is still executing, the request for this second
 * context will be at the head of the queue when we remove the first one. This
 * request will then be resubmitted along with a new request for a different context,
 * which will cause the hardware to continue executing the second request and queue
 * the new request (the GPU detects the condition of a context getting preempted
 * with the same context and optimizes the context switch flow by not doing
 * preemption, but just sampling the new tail pointer).
 *
133
 */
134
#include <linux/interrupt.h>
135 136 137 138

#include <drm/drmP.h>
#include <drm/i915_drm.h>
#include "i915_drv.h"
139
#include "intel_mocs.h"
140

141
#define GEN9_LR_CONTEXT_RENDER_SIZE (22 * PAGE_SIZE)
142 143 144
#define GEN8_LR_CONTEXT_RENDER_SIZE (20 * PAGE_SIZE)
#define GEN8_LR_CONTEXT_OTHER_SIZE (2 * PAGE_SIZE)

145 146 147 148 149 150 151 152 153 154 155 156 157
#define RING_EXECLIST_QFULL		(1 << 0x2)
#define RING_EXECLIST1_VALID		(1 << 0x3)
#define RING_EXECLIST0_VALID		(1 << 0x4)
#define RING_EXECLIST_ACTIVE_STATUS	(3 << 0xE)
#define RING_EXECLIST1_ACTIVE		(1 << 0x11)
#define RING_EXECLIST0_ACTIVE		(1 << 0x12)

#define GEN8_CTX_STATUS_IDLE_ACTIVE	(1 << 0)
#define GEN8_CTX_STATUS_PREEMPTED	(1 << 1)
#define GEN8_CTX_STATUS_ELEMENT_SWITCH	(1 << 2)
#define GEN8_CTX_STATUS_ACTIVE_IDLE	(1 << 3)
#define GEN8_CTX_STATUS_COMPLETE	(1 << 4)
#define GEN8_CTX_STATUS_LITE_RESTORE	(1 << 15)
158

159 160 161 162 163
#define GEN8_CTX_STATUS_COMPLETED_MASK \
	 (GEN8_CTX_STATUS_ACTIVE_IDLE | \
	  GEN8_CTX_STATUS_PREEMPTED | \
	  GEN8_CTX_STATUS_ELEMENT_SWITCH)

164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192
#define CTX_LRI_HEADER_0		0x01
#define CTX_CONTEXT_CONTROL		0x02
#define CTX_RING_HEAD			0x04
#define CTX_RING_TAIL			0x06
#define CTX_RING_BUFFER_START		0x08
#define CTX_RING_BUFFER_CONTROL		0x0a
#define CTX_BB_HEAD_U			0x0c
#define CTX_BB_HEAD_L			0x0e
#define CTX_BB_STATE			0x10
#define CTX_SECOND_BB_HEAD_U		0x12
#define CTX_SECOND_BB_HEAD_L		0x14
#define CTX_SECOND_BB_STATE		0x16
#define CTX_BB_PER_CTX_PTR		0x18
#define CTX_RCS_INDIRECT_CTX		0x1a
#define CTX_RCS_INDIRECT_CTX_OFFSET	0x1c
#define CTX_LRI_HEADER_1		0x21
#define CTX_CTX_TIMESTAMP		0x22
#define CTX_PDP3_UDW			0x24
#define CTX_PDP3_LDW			0x26
#define CTX_PDP2_UDW			0x28
#define CTX_PDP2_LDW			0x2a
#define CTX_PDP1_UDW			0x2c
#define CTX_PDP1_LDW			0x2e
#define CTX_PDP0_UDW			0x30
#define CTX_PDP0_LDW			0x32
#define CTX_LRI_HEADER_2		0x41
#define CTX_R_PWR_CLK_STATE		0x42
#define CTX_GPGPU_CSR_BASE_ADDRESS	0x44

193 194 195 196 197
#define GEN8_CTX_VALID (1<<0)
#define GEN8_CTX_FORCE_PD_RESTORE (1<<1)
#define GEN8_CTX_FORCE_RESTORE (1<<2)
#define GEN8_CTX_L3LLC_COHERENT (1<<5)
#define GEN8_CTX_PRIVILEGE (1<<8)
198

199
#define ASSIGN_CTX_REG(reg_state, pos, reg, val) do { \
200
	(reg_state)[(pos)+0] = i915_mmio_reg_offset(reg); \
201 202 203 204
	(reg_state)[(pos)+1] = (val); \
} while (0)

#define ASSIGN_CTX_PDP(ppgtt, reg_state, n) do {		\
205
	const u64 _addr = i915_page_dir_dma_addr((ppgtt), (n));	\
206 207
	reg_state[CTX_PDP ## n ## _UDW+1] = upper_32_bits(_addr); \
	reg_state[CTX_PDP ## n ## _LDW+1] = lower_32_bits(_addr); \
208
} while (0)
209

210
#define ASSIGN_CTX_PML4(ppgtt, reg_state) do { \
211 212
	reg_state[CTX_PDP0_UDW + 1] = upper_32_bits(px_dma(&ppgtt->pml4)); \
	reg_state[CTX_PDP0_LDW + 1] = lower_32_bits(px_dma(&ppgtt->pml4)); \
213
} while (0)
214

215 216 217 218 219 220 221
enum {
	FAULT_AND_HANG = 0,
	FAULT_AND_HALT, /* Debug only */
	FAULT_AND_STREAM,
	FAULT_AND_CONTINUE /* Unsupported */
};
#define GEN8_CTX_ID_SHIFT 32
222
#define GEN8_CTX_ID_WIDTH 21
223 224
#define GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT	0x17
#define GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT	0x26
225

226 227 228
/* Typical size of the average request (2 pipecontrols and a MI_BB) */
#define EXECLISTS_REQUEST_SIZE 64 /* bytes */

229 230
#define WA_TAIL_DWORDS 2

231
static int execlists_context_deferred_alloc(struct i915_gem_context *ctx,
232
					    struct intel_engine_cs *engine);
233 234 235 236
static void execlists_init_reg_state(u32 *reg_state,
				     struct i915_gem_context *ctx,
				     struct intel_engine_cs *engine,
				     struct intel_ring *ring);
237

238 239
/**
 * intel_sanitize_enable_execlists() - sanitize i915.enable_execlists
240
 * @dev_priv: i915 device private
241 242 243
 * @enable_execlists: value of i915.enable_execlists module parameter.
 *
 * Only certain platforms support Execlists (the prerequisites being
244
 * support for Logical Ring Contexts and Aliasing PPGTT or better).
245 246 247
 *
 * Return: 1 if Execlists is supported and has to be enabled.
 */
248
int intel_sanitize_enable_execlists(struct drm_i915_private *dev_priv, int enable_execlists)
249
{
250 251 252
	/* On platforms with execlist available, vGPU will only
	 * support execlist mode, no ring buffer mode.
	 */
253
	if (HAS_LOGICAL_RING_CONTEXTS(dev_priv) && intel_vgpu_active(dev_priv))
254 255
		return 1;

256
	if (INTEL_GEN(dev_priv) >= 9)
257 258
		return 1;

259 260 261
	if (enable_execlists == 0)
		return 0;

262 263 264
	if (HAS_LOGICAL_RING_CONTEXTS(dev_priv) &&
	    USES_PPGTT(dev_priv) &&
	    i915.use_mmio_flip >= 0)
265 266 267 268
		return 1;

	return 0;
}
269

270
static void
271
logical_ring_init_platform_invariants(struct intel_engine_cs *engine)
272
{
273
	struct drm_i915_private *dev_priv = engine->i915;
274

275
	engine->ctx_desc_template = GEN8_CTX_VALID;
276
	if (IS_GEN8(dev_priv))
277 278
		engine->ctx_desc_template |= GEN8_CTX_L3LLC_COHERENT;
	engine->ctx_desc_template |= GEN8_CTX_PRIVILEGE;
279 280 281 282 283 284

	/* TODO: WaDisableLiteRestore when we start using semaphore
	 * signalling between Command Streamers */
	/* ring->ctx_desc_template |= GEN8_CTX_FORCE_RESTORE; */
}

285
/**
286 287 288
 * intel_lr_context_descriptor_update() - calculate & cache the descriptor
 * 					  descriptor for a pinned context
 * @ctx: Context to work on
289
 * @engine: Engine the descriptor will be used with
290
 *
291 292 293 294 295
 * The context descriptor encodes various attributes of a context,
 * including its GTT address and some flags. Because it's fairly
 * expensive to calculate, we'll just do it once and cache the result,
 * which remains valid until the context is unpinned.
 *
296 297 298 299 300 301 302
 * This is what a descriptor looks like, from LSB to MSB::
 *
 *      bits  0-11:    flags, GEN8_CTX_* (cached in ctx_desc_template)
 *      bits 12-31:    LRCA, GTT address of (the HWSP of) this context
 *      bits 32-52:    ctx ID, a globally unique tag
 *      bits 53-54:    mbz, reserved for use by hardware
 *      bits 55-63:    group ID, currently unused and set to 0
303
 */
304
static void
305
intel_lr_context_descriptor_update(struct i915_gem_context *ctx,
306
				   struct intel_engine_cs *engine)
307
{
308
	struct intel_context *ce = &ctx->engine[engine->id];
309
	u64 desc;
310

311
	BUILD_BUG_ON(MAX_CONTEXT_HW_ID > (1<<GEN8_CTX_ID_WIDTH));
312

313 314
	desc = ctx->desc_template;				/* bits  3-4  */
	desc |= engine->ctx_desc_template;			/* bits  0-11 */
315
	desc |= i915_ggtt_offset(ce->state) + LRC_PPHWSP_PN * PAGE_SIZE;
316
								/* bits 12-31 */
317
	desc |= (u64)ctx->hw_id << GEN8_CTX_ID_SHIFT;		/* bits 32-52 */
318

319
	ce->lrc_desc = desc;
320 321
}

322
uint64_t intel_lr_context_descriptor(struct i915_gem_context *ctx,
323
				     struct intel_engine_cs *engine)
324
{
325
	return ctx->engine[engine->id].lrc_desc;
326
}
327

328 329 330
static inline void
execlists_context_status_change(struct drm_i915_gem_request *rq,
				unsigned long status)
331
{
332 333 334 335 336 337
	/*
	 * Only used when GVT-g is enabled now. When GVT-g is disabled,
	 * The compiler should eliminate this function as dead-code.
	 */
	if (!IS_ENABLED(CONFIG_DRM_I915_GVT))
		return;
338

339
	atomic_notifier_call_chain(&rq->ctx->status_notifier, status, rq);
340 341
}

342 343 344 345 346 347 348 349 350
static void
execlists_update_context_pdps(struct i915_hw_ppgtt *ppgtt, u32 *reg_state)
{
	ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
	ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
	ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
	ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
}

351
static u64 execlists_update_context(struct drm_i915_gem_request *rq)
352
{
353
	struct intel_context *ce = &rq->ctx->engine[rq->engine->id];
354
	struct i915_hw_ppgtt *ppgtt = rq->ctx->ppgtt;
355
	u32 *reg_state = ce->lrc_reg_state;
356

C
Chris Wilson 已提交
357
	reg_state[CTX_RING_TAIL+1] = rq->tail;
358

359 360 361 362 363 364 365
	/* True 32b PPGTT with dynamic page allocation: update PDP
	 * registers and point the unallocated PDPs to scratch page.
	 * PML4 is allocated during ppgtt init, so this is not needed
	 * in 48-bit mode.
	 */
	if (ppgtt && !USES_FULL_48BIT_PPGTT(ppgtt->base.dev))
		execlists_update_context_pdps(ppgtt, reg_state);
366 367

	return ce->lrc_desc;
368 369
}

370
static void execlists_submit_ports(struct intel_engine_cs *engine)
371
{
372 373
	struct drm_i915_private *dev_priv = engine->i915;
	struct execlist_port *port = engine->execlist_port;
374 375 376 377
	u32 __iomem *elsp =
		dev_priv->regs + i915_mmio_reg_offset(RING_ELSP(engine));
	u64 desc[2];

378 379 380 381 382 383 384 385 386 387 388 389
	if (!port[0].count)
		execlists_context_status_change(port[0].request,
						INTEL_CONTEXT_SCHEDULE_IN);
	desc[0] = execlists_update_context(port[0].request);
	engine->preempt_wa = port[0].count++; /* bdw only? fixed on skl? */

	if (port[1].request) {
		GEM_BUG_ON(port[1].count);
		execlists_context_status_change(port[1].request,
						INTEL_CONTEXT_SCHEDULE_IN);
		desc[1] = execlists_update_context(port[1].request);
		port[1].count = 1;
390 391 392
	} else {
		desc[1] = 0;
	}
393
	GEM_BUG_ON(desc[0] == desc[1]);
394 395 396 397 398 399 400 401 402 403

	/* You must always write both descriptors in the order below. */
	writel(upper_32_bits(desc[1]), elsp);
	writel(lower_32_bits(desc[1]), elsp);

	writel(upper_32_bits(desc[0]), elsp);
	/* The context is automatically loaded after the following */
	writel(lower_32_bits(desc[0]), elsp);
}

404
static bool ctx_single_port_submission(const struct i915_gem_context *ctx)
405
{
406
	return (IS_ENABLED(CONFIG_DRM_I915_GVT) &&
407
		i915_gem_context_force_single_submission(ctx));
408
}
409

410 411 412 413 414
static bool can_merge_ctx(const struct i915_gem_context *prev,
			  const struct i915_gem_context *next)
{
	if (prev != next)
		return false;
415

416 417
	if (ctx_single_port_submission(prev))
		return false;
418

419
	return true;
420 421
}

422
static void execlists_dequeue(struct intel_engine_cs *engine)
423
{
424
	struct drm_i915_gem_request *last;
425
	struct execlist_port *port = engine->execlist_port;
426
	unsigned long flags;
427
	struct rb_node *rb;
428 429 430 431 432 433
	bool submit = false;

	last = port->request;
	if (last)
		/* WaIdleLiteRestore:bdw,skl
		 * Apply the wa NOOPs to prevent ring:HEAD == req:TAIL
434
		 * as we resubmit the request. See gen8_emit_breadcrumb()
435 436 437 438
		 * for where we prepare the padding after the end of the
		 * request.
		 */
		last->tail = last->wa_tail;
439

440
	GEM_BUG_ON(port[1].request);
441

442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460
	/* Hardware submission is through 2 ports. Conceptually each port
	 * has a (RING_START, RING_HEAD, RING_TAIL) tuple. RING_START is
	 * static for a context, and unique to each, so we only execute
	 * requests belonging to a single context from each ring. RING_HEAD
	 * is maintained by the CS in the context image, it marks the place
	 * where it got up to last time, and through RING_TAIL we tell the CS
	 * where we want to execute up to this time.
	 *
	 * In this list the requests are in order of execution. Consecutive
	 * requests from the same context are adjacent in the ringbuffer. We
	 * can combine these requests into a single RING_TAIL update:
	 *
	 *              RING_HEAD...req1...req2
	 *                                    ^- RING_TAIL
	 * since to execute req2 the CS must first execute req1.
	 *
	 * Our goal then is to point each port to the end of a consecutive
	 * sequence of requests as being the most optimal (fewest wake ups
	 * and context switches) submission.
461
	 */
462

463
	spin_lock_irqsave(&engine->timeline->lock, flags);
464 465 466 467 468
	rb = engine->execlist_first;
	while (rb) {
		struct drm_i915_gem_request *cursor =
			rb_entry(rb, typeof(*cursor), priotree.node);

469 470 471
		/* Can we combine this request with the current port? It has to
		 * be the same context/ringbuffer and not have any exceptions
		 * (e.g. GVT saying never to combine contexts).
472
		 *
473 474 475 476
		 * If we can combine the requests, we can execute both by
		 * updating the RING_TAIL to point to the end of the second
		 * request, and so we never need to tell the hardware about
		 * the first.
477
		 */
478 479 480 481 482 483 484 485 486 487 488 489 490
		if (last && !can_merge_ctx(cursor->ctx, last->ctx)) {
			/* If we are on the second port and cannot combine
			 * this request with the last, then we are done.
			 */
			if (port != engine->execlist_port)
				break;

			/* If GVT overrides us we only ever submit port[0],
			 * leaving port[1] empty. Note that we also have
			 * to be careful that we don't queue the same
			 * context (even though a different request) to
			 * the second port.
			 */
491 492
			if (ctx_single_port_submission(last->ctx) ||
			    ctx_single_port_submission(cursor->ctx))
493 494 495 496 497 498 499
				break;

			GEM_BUG_ON(last->ctx == cursor->ctx);

			i915_gem_request_assign(&port->request, last);
			port++;
		}
500

501 502 503 504 505
		rb = rb_next(rb);
		rb_erase(&cursor->priotree.node, &engine->execlist_queue);
		RB_CLEAR_NODE(&cursor->priotree.node);
		cursor->priotree.priority = INT_MAX;

506
		__i915_gem_request_submit(cursor);
507 508 509 510 511
		last = cursor;
		submit = true;
	}
	if (submit) {
		i915_gem_request_assign(&port->request, last);
512
		engine->execlist_first = rb;
513
	}
514
	spin_unlock_irqrestore(&engine->timeline->lock, flags);
515

516 517
	if (submit)
		execlists_submit_ports(engine);
518 519
}

520
static bool execlists_elsp_idle(struct intel_engine_cs *engine)
521
{
522
	return !engine->execlist_port[0].request;
523 524
}

525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546
/**
 * intel_execlists_idle() - Determine if all engine submission ports are idle
 * @dev_priv: i915 device private
 *
 * Return true if there are no requests pending on any of the submission ports
 * of any engines.
 */
bool intel_execlists_idle(struct drm_i915_private *dev_priv)
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

	if (!i915.enable_execlists)
		return true;

	for_each_engine(engine, dev_priv, id)
		if (!execlists_elsp_idle(engine))
			return false;

	return true;
}

547
static bool execlists_elsp_ready(struct intel_engine_cs *engine)
B
Ben Widawsky 已提交
548
{
549
	int port;
B
Ben Widawsky 已提交
550

551
	port = 1; /* wait for a free slot */
552
	if (engine->preempt_wa)
553
		port = 0; /* wait for GPU to be idle before continuing */
554

555
	return !engine->execlist_port[port].request;
B
Ben Widawsky 已提交
556 557
}

558
/*
559 560 561
 * Check the unread Context Status Buffers and manage the submission of new
 * contexts to the ELSP accordingly.
 */
562
static void intel_lrc_irq_handler(unsigned long data)
563
{
564
	struct intel_engine_cs *engine = (struct intel_engine_cs *)data;
565
	struct execlist_port *port = engine->execlist_port;
566
	struct drm_i915_private *dev_priv = engine->i915;
567

568
	intel_uncore_forcewake_get(dev_priv, engine->fw_domains);
569

570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588
	if (!execlists_elsp_idle(engine)) {
		u32 __iomem *csb_mmio =
			dev_priv->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_PTR(engine));
		u32 __iomem *buf =
			dev_priv->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_BUF_LO(engine, 0));
		unsigned int csb, head, tail;

		csb = readl(csb_mmio);
		head = GEN8_CSB_READ_PTR(csb);
		tail = GEN8_CSB_WRITE_PTR(csb);
		if (tail < head)
			tail += GEN8_CSB_ENTRIES;
		while (head < tail) {
			unsigned int idx = ++head % GEN8_CSB_ENTRIES;
			unsigned int status = readl(buf + 2 * idx);

			if (!(status & GEN8_CTX_STATUS_COMPLETED_MASK))
				continue;

589 590 591 592 593
			/* Check the context/desc id for this event matches */
			GEM_BUG_ON(readl(buf + 2 * idx + 1) !=
				   upper_32_bits(intel_lr_context_descriptor(port[0].request->ctx,
									     engine)));

594 595 596 597 598 599 600 601 602 603 604 605
			GEM_BUG_ON(port[0].count == 0);
			if (--port[0].count == 0) {
				GEM_BUG_ON(status & GEN8_CTX_STATUS_PREEMPTED);
				execlists_context_status_change(port[0].request,
								INTEL_CONTEXT_SCHEDULE_OUT);

				i915_gem_request_put(port[0].request);
				port[0] = port[1];
				memset(&port[1], 0, sizeof(port[1]));

				engine->preempt_wa = false;
			}
606

607 608
			GEM_BUG_ON(port[0].count == 0 &&
				   !(status & GEN8_CTX_STATUS_ACTIVE_IDLE));
609 610
		}

611 612 613
		writel(_MASKED_FIELD(GEN8_CSB_READ_PTR_MASK,
				     GEN8_CSB_WRITE_PTR(csb) << 8),
		       csb_mmio);
614 615
	}

616 617
	if (execlists_elsp_ready(engine))
		execlists_dequeue(engine);
618

619
	intel_uncore_forcewake_put(dev_priv, engine->fw_domains);
620 621
}

622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647
static bool insert_request(struct i915_priotree *pt, struct rb_root *root)
{
	struct rb_node **p, *rb;
	bool first = true;

	/* most positive priority is scheduled first, equal priorities fifo */
	rb = NULL;
	p = &root->rb_node;
	while (*p) {
		struct i915_priotree *pos;

		rb = *p;
		pos = rb_entry(rb, typeof(*pos), node);
		if (pt->priority > pos->priority) {
			p = &rb->rb_left;
		} else {
			p = &rb->rb_right;
			first = false;
		}
	}
	rb_link_node(&pt->node, rb, p);
	rb_insert_color(&pt->node, root);

	return first;
}

648
static void execlists_submit_request(struct drm_i915_gem_request *request)
649
{
650
	struct intel_engine_cs *engine = request->engine;
651
	unsigned long flags;
652

653 654
	/* Will be called from irq-context when using foreign fences. */
	spin_lock_irqsave(&engine->timeline->lock, flags);
655

656 657
	if (insert_request(&request->priotree, &engine->execlist_queue))
		engine->execlist_first = &request->priotree.node;
658 659
	if (execlists_elsp_idle(engine))
		tasklet_hi_schedule(&engine->irq_tasklet);
660

661
	spin_unlock_irqrestore(&engine->timeline->lock, flags);
662 663
}

664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690
static struct intel_engine_cs *
pt_lock_engine(struct i915_priotree *pt, struct intel_engine_cs *locked)
{
	struct intel_engine_cs *engine;

	engine = container_of(pt,
			      struct drm_i915_gem_request,
			      priotree)->engine;
	if (engine != locked) {
		if (locked)
			spin_unlock_irq(&locked->timeline->lock);
		spin_lock_irq(&engine->timeline->lock);
	}

	return engine;
}

static void execlists_schedule(struct drm_i915_gem_request *request, int prio)
{
	struct intel_engine_cs *engine = NULL;
	struct i915_dependency *dep, *p;
	struct i915_dependency stack;
	LIST_HEAD(dfs);

	if (prio <= READ_ONCE(request->priotree.priority))
		return;

691 692
	/* Need BKL in order to use the temporary link inside i915_dependency */
	lockdep_assert_held(&request->i915->drm.struct_mutex);
693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720

	stack.signaler = &request->priotree;
	list_add(&stack.dfs_link, &dfs);

	/* Recursively bump all dependent priorities to match the new request.
	 *
	 * A naive approach would be to use recursion:
	 * static void update_priorities(struct i915_priotree *pt, prio) {
	 *	list_for_each_entry(dep, &pt->signalers_list, signal_link)
	 *		update_priorities(dep->signal, prio)
	 *	insert_request(pt);
	 * }
	 * but that may have unlimited recursion depth and so runs a very
	 * real risk of overunning the kernel stack. Instead, we build
	 * a flat list of all dependencies starting with the current request.
	 * As we walk the list of dependencies, we add all of its dependencies
	 * to the end of the list (this may include an already visited
	 * request) and continue to walk onwards onto the new dependencies. The
	 * end result is a topological list of requests in reverse order, the
	 * last element in the list is the request we must execute first.
	 */
	list_for_each_entry_safe(dep, p, &dfs, dfs_link) {
		struct i915_priotree *pt = dep->signaler;

		list_for_each_entry(p, &pt->signalers_list, signal_link)
			if (prio > READ_ONCE(p->signaler->priority))
				list_move_tail(&p->dfs_link, &dfs);

721
		list_safe_reset_next(dep, p, dfs_link);
722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761
		if (!RB_EMPTY_NODE(&pt->node))
			continue;

		engine = pt_lock_engine(pt, engine);

		/* If it is not already in the rbtree, we can update the
		 * priority inplace and skip over it (and its dependencies)
		 * if it is referenced *again* as we descend the dfs.
		 */
		if (prio > pt->priority && RB_EMPTY_NODE(&pt->node)) {
			pt->priority = prio;
			list_del_init(&dep->dfs_link);
		}
	}

	/* Fifo and depth-first replacement ensure our deps execute before us */
	list_for_each_entry_safe_reverse(dep, p, &dfs, dfs_link) {
		struct i915_priotree *pt = dep->signaler;

		INIT_LIST_HEAD(&dep->dfs_link);

		engine = pt_lock_engine(pt, engine);

		if (prio <= pt->priority)
			continue;

		GEM_BUG_ON(RB_EMPTY_NODE(&pt->node));

		pt->priority = prio;
		rb_erase(&pt->node, &engine->execlist_queue);
		if (insert_request(pt, &engine->execlist_queue))
			engine->execlist_first = &pt->node;
	}

	if (engine)
		spin_unlock_irq(&engine->timeline->lock);

	/* XXX Do we need to preempt to make room for us and our deps? */
}

762 763
static int execlists_context_pin(struct intel_engine_cs *engine,
				 struct i915_gem_context *ctx)
764
{
765
	struct intel_context *ce = &ctx->engine[engine->id];
766
	unsigned int flags;
767
	void *vaddr;
768
	int ret;
769

770
	lockdep_assert_held(&ctx->i915->drm.struct_mutex);
771

772
	if (ce->pin_count++)
773 774
		return 0;

775 776 777 778 779
	if (!ce->state) {
		ret = execlists_context_deferred_alloc(ctx, engine);
		if (ret)
			goto err;
	}
780
	GEM_BUG_ON(!ce->state);
781

782 783 784
	flags = PIN_GLOBAL;
	if (ctx->ggtt_offset_bias)
		flags |= PIN_OFFSET_BIAS | ctx->ggtt_offset_bias;
785
	if (i915_gem_context_is_kernel(ctx))
786 787 788
		flags |= PIN_HIGH;

	ret = i915_vma_pin(ce->state, 0, GEN8_LR_CONTEXT_ALIGN, flags);
789
	if (ret)
790
		goto err;
791

792
	vaddr = i915_gem_object_pin_map(ce->state->obj, I915_MAP_WB);
793 794
	if (IS_ERR(vaddr)) {
		ret = PTR_ERR(vaddr);
795
		goto unpin_vma;
796 797
	}

798
	ret = intel_ring_pin(ce->ring, ctx->ggtt_offset_bias);
799
	if (ret)
800
		goto unpin_map;
801

802
	intel_lr_context_descriptor_update(ctx, engine);
803

804 805
	ce->lrc_reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;
	ce->lrc_reg_state[CTX_RING_BUFFER_START+1] =
806
		i915_ggtt_offset(ce->ring->vma);
807

C
Chris Wilson 已提交
808
	ce->state->obj->mm.dirty = true;
809

810
	i915_gem_context_get(ctx);
811
	return 0;
812

813
unpin_map:
814 815 816
	i915_gem_object_unpin_map(ce->state->obj);
unpin_vma:
	__i915_vma_unpin(ce->state);
817
err:
818
	ce->pin_count = 0;
819 820 821
	return ret;
}

822 823
static void execlists_context_unpin(struct intel_engine_cs *engine,
				    struct i915_gem_context *ctx)
824
{
825
	struct intel_context *ce = &ctx->engine[engine->id];
826

827
	lockdep_assert_held(&ctx->i915->drm.struct_mutex);
828
	GEM_BUG_ON(ce->pin_count == 0);
829

830
	if (--ce->pin_count)
831
		return;
832

833
	intel_ring_unpin(ce->ring);
834

835 836
	i915_gem_object_unpin_map(ce->state->obj);
	i915_vma_unpin(ce->state);
837

838
	i915_gem_context_put(ctx);
839 840
}

841
static int execlists_request_alloc(struct drm_i915_gem_request *request)
842 843 844 845 846
{
	struct intel_engine_cs *engine = request->engine;
	struct intel_context *ce = &request->ctx->engine[engine->id];
	int ret;

847 848
	GEM_BUG_ON(!ce->pin_count);

849 850 851 852 853 854
	/* Flush enough space to reduce the likelihood of waiting after
	 * we start building the request - in which case we will just
	 * have to repeat work.
	 */
	request->reserved_space += EXECLISTS_REQUEST_SIZE;

855
	GEM_BUG_ON(!ce->ring);
856 857 858 859 860 861 862 863 864 865
	request->ring = ce->ring;

	if (i915.enable_guc_submission) {
		/*
		 * Check that the GuC has space for the request before
		 * going any further, as the i915_add_request() call
		 * later on mustn't fail ...
		 */
		ret = i915_guc_wq_reserve(request);
		if (ret)
866
			goto err;
867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893
	}

	ret = intel_ring_begin(request, 0);
	if (ret)
		goto err_unreserve;

	if (!ce->initialised) {
		ret = engine->init_context(request);
		if (ret)
			goto err_unreserve;

		ce->initialised = true;
	}

	/* Note that after this point, we have committed to using
	 * this request as it is being used to both track the
	 * state of engine initialisation and liveness of the
	 * golden renderstate above. Think twice before you try
	 * to cancel/unwind this request now.
	 */

	request->reserved_space -= EXECLISTS_REQUEST_SIZE;
	return 0;

err_unreserve:
	if (i915.enable_guc_submission)
		i915_guc_wq_unreserve(request);
894
err:
895 896 897
	return ret;
}

898
static int intel_logical_ring_workarounds_emit(struct drm_i915_gem_request *req)
899 900
{
	int ret, i;
901
	struct intel_ring *ring = req->ring;
902
	struct i915_workarounds *w = &req->i915->workarounds;
903

904
	if (w->count == 0)
905 906
		return 0;

907
	ret = req->engine->emit_flush(req, EMIT_BARRIER);
908 909 910
	if (ret)
		return ret;

911
	ret = intel_ring_begin(req, w->count * 2 + 2);
912 913 914
	if (ret)
		return ret;

915
	intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(w->count));
916
	for (i = 0; i < w->count; i++) {
917 918
		intel_ring_emit_reg(ring, w->reg[i].addr);
		intel_ring_emit(ring, w->reg[i].value);
919
	}
920
	intel_ring_emit(ring, MI_NOOP);
921

922
	intel_ring_advance(ring);
923

924
	ret = req->engine->emit_flush(req, EMIT_BARRIER);
925 926 927 928 929 930
	if (ret)
		return ret;

	return 0;
}

931
#define wa_ctx_emit(batch, index, cmd)					\
932
	do {								\
933 934
		int __index = (index)++;				\
		if (WARN_ON(__index >= (PAGE_SIZE / sizeof(uint32_t)))) { \
935 936
			return -ENOSPC;					\
		}							\
937
		batch[__index] = (cmd);					\
938 939
	} while (0)

V
Ville Syrjälä 已提交
940
#define wa_ctx_emit_reg(batch, index, reg) \
941
	wa_ctx_emit((batch), (index), i915_mmio_reg_offset(reg))
942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958

/*
 * In this WA we need to set GEN8_L3SQCREG4[21:21] and reset it after
 * PIPE_CONTROL instruction. This is required for the flush to happen correctly
 * but there is a slight complication as this is applied in WA batch where the
 * values are only initialized once so we cannot take register value at the
 * beginning and reuse it further; hence we save its value to memory, upload a
 * constant value with bit21 set and then we restore it back with the saved value.
 * To simplify the WA, a constant value is formed by using the default value
 * of this register. This shouldn't be a problem because we are only modifying
 * it for a short period and this batch in non-premptible. We can ofcourse
 * use additional instructions that read the actual value of the register
 * at that time and set our bit of interest but it makes the WA complicated.
 *
 * This WA is also required for Gen9 so extracting as a function avoids
 * code duplication.
 */
959
static inline int gen8_emit_flush_coherentl3_wa(struct intel_engine_cs *engine,
960
						uint32_t *batch,
961 962 963 964
						uint32_t index)
{
	uint32_t l3sqc4_flush = (0x40400000 | GEN8_LQSC_FLUSH_COHERENT_LINES);

965
	wa_ctx_emit(batch, index, (MI_STORE_REGISTER_MEM_GEN8 |
966
				   MI_SRM_LRM_GLOBAL_GTT));
V
Ville Syrjälä 已提交
967
	wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
968
	wa_ctx_emit(batch, index, i915_ggtt_offset(engine->scratch) + 256);
969 970 971
	wa_ctx_emit(batch, index, 0);

	wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
V
Ville Syrjälä 已提交
972
	wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
973 974 975 976 977 978 979 980 981 982
	wa_ctx_emit(batch, index, l3sqc4_flush);

	wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
	wa_ctx_emit(batch, index, (PIPE_CONTROL_CS_STALL |
				   PIPE_CONTROL_DC_FLUSH_ENABLE));
	wa_ctx_emit(batch, index, 0);
	wa_ctx_emit(batch, index, 0);
	wa_ctx_emit(batch, index, 0);
	wa_ctx_emit(batch, index, 0);

983
	wa_ctx_emit(batch, index, (MI_LOAD_REGISTER_MEM_GEN8 |
984
				   MI_SRM_LRM_GLOBAL_GTT));
V
Ville Syrjälä 已提交
985
	wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
986
	wa_ctx_emit(batch, index, i915_ggtt_offset(engine->scratch) + 256);
987
	wa_ctx_emit(batch, index, 0);
988 989 990 991

	return index;
}

992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010
static inline uint32_t wa_ctx_start(struct i915_wa_ctx_bb *wa_ctx,
				    uint32_t offset,
				    uint32_t start_alignment)
{
	return wa_ctx->offset = ALIGN(offset, start_alignment);
}

static inline int wa_ctx_end(struct i915_wa_ctx_bb *wa_ctx,
			     uint32_t offset,
			     uint32_t size_alignment)
{
	wa_ctx->size = offset - wa_ctx->offset;

	WARN(wa_ctx->size % size_alignment,
	     "wa_ctx_bb failed sanity checks: size %d is not aligned to %d\n",
	     wa_ctx->size, size_alignment);
	return 0;
}

1011 1012 1013 1014 1015 1016
/*
 * Typically we only have one indirect_ctx and per_ctx batch buffer which are
 * initialized at the beginning and shared across all contexts but this field
 * helps us to have multiple batches at different offsets and select them based
 * on a criteria. At the moment this batch always start at the beginning of the page
 * and at this point we don't have multiple wa_ctx batch buffers.
1017
 *
1018 1019
 * The number of WA applied are not known at the beginning; we use this field
 * to return the no of DWORDS written.
1020
 *
1021 1022 1023 1024
 * It is to be noted that this batch does not contain MI_BATCH_BUFFER_END
 * so it adds NOOPs as padding to make it cacheline aligned.
 * MI_BATCH_BUFFER_END will be added to perctx batch and both of them together
 * makes a complete batch buffer.
1025
 */
1026
static int gen8_init_indirectctx_bb(struct intel_engine_cs *engine,
1027
				    struct i915_wa_ctx_bb *wa_ctx,
1028
				    uint32_t *batch,
1029 1030
				    uint32_t *offset)
{
1031
	uint32_t scratch_addr;
1032 1033
	uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);

1034
	/* WaDisableCtxRestoreArbitration:bdw,chv */
1035
	wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_DISABLE);
1036

1037
	/* WaFlushCoherentL3CacheLinesAtContextSwitch:bdw */
1038
	if (IS_BROADWELL(engine->i915)) {
1039
		int rc = gen8_emit_flush_coherentl3_wa(engine, batch, index);
1040 1041 1042
		if (rc < 0)
			return rc;
		index = rc;
1043 1044
	}

1045 1046
	/* WaClearSlmSpaceAtContextSwitch:bdw,chv */
	/* Actual scratch location is at 128 bytes offset */
1047
	scratch_addr = i915_ggtt_offset(engine->scratch) + 2 * CACHELINE_BYTES;
1048

1049 1050 1051 1052 1053 1054 1055 1056 1057
	wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
	wa_ctx_emit(batch, index, (PIPE_CONTROL_FLUSH_L3 |
				   PIPE_CONTROL_GLOBAL_GTT_IVB |
				   PIPE_CONTROL_CS_STALL |
				   PIPE_CONTROL_QW_WRITE));
	wa_ctx_emit(batch, index, scratch_addr);
	wa_ctx_emit(batch, index, 0);
	wa_ctx_emit(batch, index, 0);
	wa_ctx_emit(batch, index, 0);
1058

1059 1060
	/* Pad to end of cacheline */
	while (index % CACHELINE_DWORDS)
1061
		wa_ctx_emit(batch, index, MI_NOOP);
1062 1063 1064 1065 1066 1067 1068 1069 1070 1071

	/*
	 * MI_BATCH_BUFFER_END is not required in Indirect ctx BB because
	 * execution depends on the length specified in terms of cache lines
	 * in the register CTX_RCS_INDIRECT_CTX
	 */

	return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
}

1072 1073 1074
/*
 *  This batch is started immediately after indirect_ctx batch. Since we ensure
 *  that indirect_ctx ends on a cacheline this batch is aligned automatically.
1075
 *
1076
 *  The number of DWORDS written are returned using this field.
1077 1078 1079 1080
 *
 *  This batch is terminated with MI_BATCH_BUFFER_END and so we need not add padding
 *  to align it with cacheline as padding after MI_BATCH_BUFFER_END is redundant.
 */
1081
static int gen8_init_perctx_bb(struct intel_engine_cs *engine,
1082
			       struct i915_wa_ctx_bb *wa_ctx,
1083
			       uint32_t *batch,
1084 1085 1086 1087
			       uint32_t *offset)
{
	uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);

1088
	/* WaDisableCtxRestoreArbitration:bdw,chv */
1089
	wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_ENABLE);
1090

1091
	wa_ctx_emit(batch, index, MI_BATCH_BUFFER_END);
1092 1093 1094 1095

	return wa_ctx_end(wa_ctx, *offset = index, 1);
}

1096
static int gen9_init_indirectctx_bb(struct intel_engine_cs *engine,
1097
				    struct i915_wa_ctx_bb *wa_ctx,
1098
				    uint32_t *batch,
1099 1100
				    uint32_t *offset)
{
1101
	int ret;
D
Dave Airlie 已提交
1102
	struct drm_i915_private *dev_priv = engine->i915;
1103 1104
	uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);

1105 1106
	/* WaDisableCtxRestoreArbitration:bxt */
	if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1))
1107
		wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_DISABLE);
1108

1109
	/* WaFlushCoherentL3CacheLinesAtContextSwitch:skl,bxt */
1110
	ret = gen8_emit_flush_coherentl3_wa(engine, batch, index);
1111 1112 1113 1114
	if (ret < 0)
		return ret;
	index = ret;

1115 1116 1117 1118 1119 1120 1121
	/* WaDisableGatherAtSetShaderCommonSlice:skl,bxt,kbl */
	wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
	wa_ctx_emit_reg(batch, index, COMMON_SLICE_CHICKEN2);
	wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(
			    GEN9_DISABLE_GATHER_AT_SET_SHADER_COMMON_SLICE));
	wa_ctx_emit(batch, index, MI_NOOP);

1122 1123
	/* WaClearSlmSpaceAtContextSwitch:kbl */
	/* Actual scratch location is at 128 bytes offset */
1124
	if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_A0)) {
1125
		u32 scratch_addr =
1126
			i915_ggtt_offset(engine->scratch) + 2 * CACHELINE_BYTES;
1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137

		wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
		wa_ctx_emit(batch, index, (PIPE_CONTROL_FLUSH_L3 |
					   PIPE_CONTROL_GLOBAL_GTT_IVB |
					   PIPE_CONTROL_CS_STALL |
					   PIPE_CONTROL_QW_WRITE));
		wa_ctx_emit(batch, index, scratch_addr);
		wa_ctx_emit(batch, index, 0);
		wa_ctx_emit(batch, index, 0);
		wa_ctx_emit(batch, index, 0);
	}
1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162

	/* WaMediaPoolStateCmdInWABB:bxt */
	if (HAS_POOLED_EU(engine->i915)) {
		/*
		 * EU pool configuration is setup along with golden context
		 * during context initialization. This value depends on
		 * device type (2x6 or 3x6) and needs to be updated based
		 * on which subslice is disabled especially for 2x6
		 * devices, however it is safe to load default
		 * configuration of 3x6 device instead of masking off
		 * corresponding bits because HW ignores bits of a disabled
		 * subslice and drops down to appropriate config. Please
		 * see render_state_setup() in i915_gem_render_state.c for
		 * possible configurations, to avoid duplication they are
		 * not shown here again.
		 */
		u32 eu_pool_config = 0x00777000;
		wa_ctx_emit(batch, index, GEN9_MEDIA_POOL_STATE);
		wa_ctx_emit(batch, index, GEN9_MEDIA_POOL_ENABLE);
		wa_ctx_emit(batch, index, eu_pool_config);
		wa_ctx_emit(batch, index, 0);
		wa_ctx_emit(batch, index, 0);
		wa_ctx_emit(batch, index, 0);
	}

1163 1164 1165 1166 1167 1168 1169
	/* Pad to end of cacheline */
	while (index % CACHELINE_DWORDS)
		wa_ctx_emit(batch, index, MI_NOOP);

	return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
}

1170
static int gen9_init_perctx_bb(struct intel_engine_cs *engine,
1171
			       struct i915_wa_ctx_bb *wa_ctx,
1172
			       uint32_t *batch,
1173 1174 1175 1176
			       uint32_t *offset)
{
	uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);

1177 1178
	/* WaSetDisablePixMaskCammingAndRhwoInCommonSliceChicken:bxt */
	if (IS_BXT_REVID(engine->i915, 0, BXT_REVID_A1)) {
1179
		wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
V
Ville Syrjälä 已提交
1180
		wa_ctx_emit_reg(batch, index, GEN9_SLICE_COMMON_ECO_CHICKEN0);
1181 1182 1183 1184 1185
		wa_ctx_emit(batch, index,
			    _MASKED_BIT_ENABLE(DISABLE_PIXEL_MASK_CAMMING));
		wa_ctx_emit(batch, index, MI_NOOP);
	}

1186
	/* WaClearTdlStateAckDirtyBits:bxt */
1187
	if (IS_BXT_REVID(engine->i915, 0, BXT_REVID_B0)) {
1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204
		wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(4));

		wa_ctx_emit_reg(batch, index, GEN8_STATE_ACK);
		wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(GEN9_SUBSLICE_TDL_ACK_BITS));

		wa_ctx_emit_reg(batch, index, GEN9_STATE_ACK_SLICE1);
		wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(GEN9_SUBSLICE_TDL_ACK_BITS));

		wa_ctx_emit_reg(batch, index, GEN9_STATE_ACK_SLICE2);
		wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(GEN9_SUBSLICE_TDL_ACK_BITS));

		wa_ctx_emit_reg(batch, index, GEN7_ROW_CHICKEN2);
		/* dummy write to CS, mask bits are 0 to ensure the register is not modified */
		wa_ctx_emit(batch, index, 0x0);
		wa_ctx_emit(batch, index, MI_NOOP);
	}

1205 1206
	/* WaDisableCtxRestoreArbitration:bxt */
	if (IS_BXT_REVID(engine->i915, 0, BXT_REVID_A1))
1207 1208
		wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_ENABLE);

1209 1210 1211 1212 1213
	wa_ctx_emit(batch, index, MI_BATCH_BUFFER_END);

	return wa_ctx_end(wa_ctx, *offset = index, 1);
}

1214
static int lrc_setup_wa_ctx_obj(struct intel_engine_cs *engine, u32 size)
1215
{
1216 1217 1218
	struct drm_i915_gem_object *obj;
	struct i915_vma *vma;
	int err;
1219

1220
	obj = i915_gem_object_create(engine->i915, PAGE_ALIGN(size));
1221 1222
	if (IS_ERR(obj))
		return PTR_ERR(obj);
1223

1224
	vma = i915_vma_instance(obj, &engine->i915->ggtt.base, NULL);
1225 1226 1227
	if (IS_ERR(vma)) {
		err = PTR_ERR(vma);
		goto err;
1228 1229
	}

1230 1231 1232 1233 1234
	err = i915_vma_pin(vma, 0, PAGE_SIZE, PIN_GLOBAL | PIN_HIGH);
	if (err)
		goto err;

	engine->wa_ctx.vma = vma;
1235
	return 0;
1236 1237 1238 1239

err:
	i915_gem_object_put(obj);
	return err;
1240 1241
}

1242
static void lrc_destroy_wa_ctx_obj(struct intel_engine_cs *engine)
1243
{
1244
	i915_vma_unpin_and_release(&engine->wa_ctx.vma);
1245 1246
}

1247
static int intel_init_workaround_bb(struct intel_engine_cs *engine)
1248
{
1249
	struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
1250 1251 1252
	uint32_t *batch;
	uint32_t offset;
	struct page *page;
1253
	int ret;
1254

1255
	WARN_ON(engine->id != RCS);
1256

1257
	/* update this when WA for higher Gen are added */
1258
	if (INTEL_GEN(engine->i915) > 9) {
1259
		DRM_ERROR("WA batch buffer is not initialized for Gen%d\n",
1260
			  INTEL_GEN(engine->i915));
1261
		return 0;
1262
	}
1263

1264
	/* some WA perform writes to scratch page, ensure it is valid */
1265
	if (!engine->scratch) {
1266
		DRM_ERROR("scratch page not allocated for %s\n", engine->name);
1267 1268 1269
		return -EINVAL;
	}

1270
	ret = lrc_setup_wa_ctx_obj(engine, PAGE_SIZE);
1271 1272 1273 1274 1275
	if (ret) {
		DRM_DEBUG_DRIVER("Failed to setup context WA page: %d\n", ret);
		return ret;
	}

1276
	page = i915_gem_object_get_dirty_page(wa_ctx->vma->obj, 0);
1277 1278 1279
	batch = kmap_atomic(page);
	offset = 0;

1280
	if (IS_GEN8(engine->i915)) {
1281
		ret = gen8_init_indirectctx_bb(engine,
1282 1283 1284 1285 1286 1287
					       &wa_ctx->indirect_ctx,
					       batch,
					       &offset);
		if (ret)
			goto out;

1288
		ret = gen8_init_perctx_bb(engine,
1289 1290 1291 1292 1293
					  &wa_ctx->per_ctx,
					  batch,
					  &offset);
		if (ret)
			goto out;
1294
	} else if (IS_GEN9(engine->i915)) {
1295
		ret = gen9_init_indirectctx_bb(engine,
1296 1297 1298 1299 1300 1301
					       &wa_ctx->indirect_ctx,
					       batch,
					       &offset);
		if (ret)
			goto out;

1302
		ret = gen9_init_perctx_bb(engine,
1303 1304 1305 1306 1307
					  &wa_ctx->per_ctx,
					  batch,
					  &offset);
		if (ret)
			goto out;
1308 1309 1310 1311 1312
	}

out:
	kunmap_atomic(batch);
	if (ret)
1313
		lrc_destroy_wa_ctx_obj(engine);
1314 1315 1316 1317

	return ret;
}

1318
static int gen8_init_common_ring(struct intel_engine_cs *engine)
1319
{
1320
	struct drm_i915_private *dev_priv = engine->i915;
1321 1322 1323 1324 1325
	int ret;

	ret = intel_mocs_init_engine(engine);
	if (ret)
		return ret;
1326

1327
	intel_engine_reset_breadcrumbs(engine);
1328
	intel_engine_init_hangcheck(engine);
1329

1330 1331
	I915_WRITE(RING_HWSTAM(engine->mmio_base), 0xffffffff);
	I915_WRITE(RING_MODE_GEN7(engine),
1332 1333
		   _MASKED_BIT_DISABLE(GFX_REPLAY_MODE) |
		   _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE));
1334 1335 1336
	I915_WRITE(RING_HWS_PGA(engine->mmio_base),
		   engine->status_page.ggtt_offset);
	POSTING_READ(RING_HWS_PGA(engine->mmio_base));
1337

1338
	DRM_DEBUG_DRIVER("Execlists enabled for %s\n", engine->name);
1339

1340 1341 1342 1343
	/* After a GPU reset, we may have requests to replay */
	if (!execlists_elsp_idle(engine)) {
		engine->execlist_port[0].count = 0;
		engine->execlist_port[1].count = 0;
1344
		execlists_submit_ports(engine);
1345
	}
1346 1347

	return 0;
1348 1349
}

1350
static int gen8_init_render_ring(struct intel_engine_cs *engine)
1351
{
1352
	struct drm_i915_private *dev_priv = engine->i915;
1353 1354
	int ret;

1355
	ret = gen8_init_common_ring(engine);
1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368
	if (ret)
		return ret;

	/* We need to disable the AsyncFlip performance optimisations in order
	 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
	 * programmed to '1' on all products.
	 *
	 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
	 */
	I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));

	I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));

1369
	return init_workarounds_ring(engine);
1370 1371
}

1372
static int gen9_init_render_ring(struct intel_engine_cs *engine)
1373 1374 1375
{
	int ret;

1376
	ret = gen8_init_common_ring(engine);
1377 1378 1379
	if (ret)
		return ret;

1380
	return init_workarounds_ring(engine);
1381 1382
}

1383 1384 1385 1386 1387 1388 1389
static void reset_common_ring(struct intel_engine_cs *engine,
			      struct drm_i915_gem_request *request)
{
	struct drm_i915_private *dev_priv = engine->i915;
	struct execlist_port *port = engine->execlist_port;
	struct intel_context *ce = &request->ctx->engine[engine->id];

1390 1391 1392 1393 1394 1395 1396 1397 1398 1399
	/* We want a simple context + ring to execute the breadcrumb update.
	 * We cannot rely on the context being intact across the GPU hang,
	 * so clear it and rebuild just what we need for the breadcrumb.
	 * All pending requests for this context will be zapped, and any
	 * future request will be after userspace has had the opportunity
	 * to recreate its own state.
	 */
	execlists_init_reg_state(ce->lrc_reg_state,
				 request->ctx, engine, ce->ring);

1400
	/* Move the RING_HEAD onto the breadcrumb, past the hanging batch */
1401 1402
	ce->lrc_reg_state[CTX_RING_BUFFER_START+1] =
		i915_ggtt_offset(ce->ring->vma);
1403
	ce->lrc_reg_state[CTX_RING_HEAD+1] = request->postfix;
1404

1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420
	request->ring->head = request->postfix;
	request->ring->last_retired_head = -1;
	intel_ring_update_space(request->ring);

	if (i915.enable_guc_submission)
		return;

	/* Catch up with any missed context-switch interrupts */
	I915_WRITE(RING_CONTEXT_STATUS_PTR(engine), _MASKED_FIELD(0xffff, 0));
	if (request->ctx != port[0].request->ctx) {
		i915_gem_request_put(port[0].request);
		port[0] = port[1];
		memset(&port[1], 0, sizeof(port[1]));
	}

	GEM_BUG_ON(request->ctx != port[0].request->ctx);
1421 1422 1423

	/* Reset WaIdleLiteRestore:bdw,skl as well */
	request->tail = request->wa_tail - WA_TAIL_DWORDS * sizeof(u32);
1424 1425
}

1426 1427 1428
static int intel_logical_ring_emit_pdps(struct drm_i915_gem_request *req)
{
	struct i915_hw_ppgtt *ppgtt = req->ctx->ppgtt;
1429
	struct intel_ring *ring = req->ring;
1430
	struct intel_engine_cs *engine = req->engine;
1431 1432 1433
	const int num_lri_cmds = GEN8_LEGACY_PDPES * 2;
	int i, ret;

1434
	ret = intel_ring_begin(req, num_lri_cmds * 2 + 2);
1435 1436 1437
	if (ret)
		return ret;

1438
	intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(num_lri_cmds));
1439 1440 1441
	for (i = GEN8_LEGACY_PDPES - 1; i >= 0; i--) {
		const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);

1442 1443 1444 1445
		intel_ring_emit_reg(ring, GEN8_RING_PDP_UDW(engine, i));
		intel_ring_emit(ring, upper_32_bits(pd_daddr));
		intel_ring_emit_reg(ring, GEN8_RING_PDP_LDW(engine, i));
		intel_ring_emit(ring, lower_32_bits(pd_daddr));
1446 1447
	}

1448 1449
	intel_ring_emit(ring, MI_NOOP);
	intel_ring_advance(ring);
1450 1451 1452 1453

	return 0;
}

1454
static int gen8_emit_bb_start(struct drm_i915_gem_request *req,
1455 1456
			      u64 offset, u32 len,
			      unsigned int dispatch_flags)
1457
{
1458
	struct intel_ring *ring = req->ring;
1459
	bool ppgtt = !(dispatch_flags & I915_DISPATCH_SECURE);
1460 1461
	int ret;

1462 1463 1464 1465
	/* Don't rely in hw updating PDPs, specially in lite-restore.
	 * Ideally, we should set Force PD Restore in ctx descriptor,
	 * but we can't. Force Restore would be a second option, but
	 * it is unsafe in case of lite-restore (because the ctx is
1466 1467
	 * not idle). PML4 is allocated during ppgtt init so this is
	 * not needed in 48-bit.*/
1468
	if (req->ctx->ppgtt &&
1469
	    (intel_engine_flag(req->engine) & req->ctx->ppgtt->pd_dirty_rings)) {
1470
		if (!USES_FULL_48BIT_PPGTT(req->i915) &&
1471
		    !intel_vgpu_active(req->i915)) {
1472 1473 1474 1475
			ret = intel_logical_ring_emit_pdps(req);
			if (ret)
				return ret;
		}
1476

1477
		req->ctx->ppgtt->pd_dirty_rings &= ~intel_engine_flag(req->engine);
1478 1479
	}

1480
	ret = intel_ring_begin(req, 4);
1481 1482 1483 1484
	if (ret)
		return ret;

	/* FIXME(BDW): Address space and security selectors. */
1485 1486 1487 1488 1489 1490 1491 1492
	intel_ring_emit(ring, MI_BATCH_BUFFER_START_GEN8 |
			(ppgtt<<8) |
			(dispatch_flags & I915_DISPATCH_RS ?
			 MI_BATCH_RESOURCE_STREAMER : 0));
	intel_ring_emit(ring, lower_32_bits(offset));
	intel_ring_emit(ring, upper_32_bits(offset));
	intel_ring_emit(ring, MI_NOOP);
	intel_ring_advance(ring);
1493 1494 1495 1496

	return 0;
}

1497
static void gen8_logical_ring_enable_irq(struct intel_engine_cs *engine)
1498
{
1499
	struct drm_i915_private *dev_priv = engine->i915;
1500 1501 1502
	I915_WRITE_IMR(engine,
		       ~(engine->irq_enable_mask | engine->irq_keep_mask));
	POSTING_READ_FW(RING_IMR(engine->mmio_base));
1503 1504
}

1505
static void gen8_logical_ring_disable_irq(struct intel_engine_cs *engine)
1506
{
1507
	struct drm_i915_private *dev_priv = engine->i915;
1508
	I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
1509 1510
}

1511
static int gen8_emit_flush(struct drm_i915_gem_request *request, u32 mode)
1512
{
1513 1514
	struct intel_ring *ring = request->ring;
	u32 cmd;
1515 1516
	int ret;

1517
	ret = intel_ring_begin(request, 4);
1518 1519 1520 1521 1522
	if (ret)
		return ret;

	cmd = MI_FLUSH_DW + 1;

1523 1524 1525 1526 1527 1528 1529
	/* We always require a command barrier so that subsequent
	 * commands, such as breadcrumb interrupts, are strictly ordered
	 * wrt the contents of the write cache being flushed to memory
	 * (and thus being coherent from the CPU).
	 */
	cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;

1530
	if (mode & EMIT_INVALIDATE) {
1531
		cmd |= MI_INVALIDATE_TLB;
1532
		if (request->engine->id == VCS)
1533
			cmd |= MI_INVALIDATE_BSD;
1534 1535
	}

1536 1537 1538 1539 1540 1541 1542
	intel_ring_emit(ring, cmd);
	intel_ring_emit(ring,
			I915_GEM_HWS_SCRATCH_ADDR |
			MI_FLUSH_DW_USE_GTT);
	intel_ring_emit(ring, 0); /* upper addr */
	intel_ring_emit(ring, 0); /* value */
	intel_ring_advance(ring);
1543 1544 1545 1546

	return 0;
}

1547
static int gen8_emit_flush_render(struct drm_i915_gem_request *request,
1548
				  u32 mode)
1549
{
1550
	struct intel_ring *ring = request->ring;
1551
	struct intel_engine_cs *engine = request->engine;
1552 1553
	u32 scratch_addr =
		i915_ggtt_offset(engine->scratch) + 2 * CACHELINE_BYTES;
M
Mika Kuoppala 已提交
1554
	bool vf_flush_wa = false, dc_flush_wa = false;
1555 1556
	u32 flags = 0;
	int ret;
M
Mika Kuoppala 已提交
1557
	int len;
1558 1559 1560

	flags |= PIPE_CONTROL_CS_STALL;

1561
	if (mode & EMIT_FLUSH) {
1562 1563
		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
1564
		flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
1565
		flags |= PIPE_CONTROL_FLUSH_ENABLE;
1566 1567
	}

1568
	if (mode & EMIT_INVALIDATE) {
1569 1570 1571 1572 1573 1574 1575 1576 1577
		flags |= PIPE_CONTROL_TLB_INVALIDATE;
		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_QW_WRITE;
		flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;

1578 1579 1580 1581
		/*
		 * On GEN9: before VF_CACHE_INVALIDATE we need to emit a NULL
		 * pipe control.
		 */
1582
		if (IS_GEN9(request->i915))
1583
			vf_flush_wa = true;
M
Mika Kuoppala 已提交
1584 1585 1586 1587

		/* WaForGAMHang:kbl */
		if (IS_KBL_REVID(request->i915, 0, KBL_REVID_B0))
			dc_flush_wa = true;
1588
	}
1589

M
Mika Kuoppala 已提交
1590 1591 1592 1593 1594 1595 1596 1597 1598
	len = 6;

	if (vf_flush_wa)
		len += 6;

	if (dc_flush_wa)
		len += 12;

	ret = intel_ring_begin(request, len);
1599 1600 1601
	if (ret)
		return ret;

1602
	if (vf_flush_wa) {
1603 1604 1605 1606 1607 1608
		intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
		intel_ring_emit(ring, 0);
		intel_ring_emit(ring, 0);
		intel_ring_emit(ring, 0);
		intel_ring_emit(ring, 0);
		intel_ring_emit(ring, 0);
1609 1610
	}

M
Mika Kuoppala 已提交
1611
	if (dc_flush_wa) {
1612 1613 1614 1615 1616 1617
		intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
		intel_ring_emit(ring, PIPE_CONTROL_DC_FLUSH_ENABLE);
		intel_ring_emit(ring, 0);
		intel_ring_emit(ring, 0);
		intel_ring_emit(ring, 0);
		intel_ring_emit(ring, 0);
M
Mika Kuoppala 已提交
1618 1619
	}

1620 1621 1622 1623 1624 1625
	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
	intel_ring_emit(ring, flags);
	intel_ring_emit(ring, scratch_addr);
	intel_ring_emit(ring, 0);
	intel_ring_emit(ring, 0);
	intel_ring_emit(ring, 0);
M
Mika Kuoppala 已提交
1626 1627

	if (dc_flush_wa) {
1628 1629 1630 1631 1632 1633
		intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
		intel_ring_emit(ring, PIPE_CONTROL_CS_STALL);
		intel_ring_emit(ring, 0);
		intel_ring_emit(ring, 0);
		intel_ring_emit(ring, 0);
		intel_ring_emit(ring, 0);
M
Mika Kuoppala 已提交
1634 1635
	}

1636
	intel_ring_advance(ring);
1637 1638 1639 1640

	return 0;
}

1641 1642 1643 1644 1645
/*
 * Reserve space for 2 NOOPs at the end of each request to be
 * used as a workaround for not being allowed to do lite
 * restore with HEAD==TAIL (WaIdleLiteRestore).
 */
C
Chris Wilson 已提交
1646
static void gen8_emit_wa_tail(struct drm_i915_gem_request *request, u32 *out)
1647
{
C
Chris Wilson 已提交
1648 1649 1650 1651
	*out++ = MI_NOOP;
	*out++ = MI_NOOP;
	request->wa_tail = intel_ring_offset(request->ring, out);
}
1652

C
Chris Wilson 已提交
1653 1654 1655
static void gen8_emit_breadcrumb(struct drm_i915_gem_request *request,
				 u32 *out)
{
1656 1657
	/* w/a: bit 5 needs to be zero for MI_FLUSH_DW address. */
	BUILD_BUG_ON(I915_GEM_HWS_INDEX_ADDR & (1 << 5));
1658

C
Chris Wilson 已提交
1659 1660 1661 1662 1663 1664 1665 1666 1667
	*out++ = (MI_FLUSH_DW + 1) | MI_FLUSH_DW_OP_STOREDW;
	*out++ = intel_hws_seqno_address(request->engine) | MI_FLUSH_DW_USE_GTT;
	*out++ = 0;
	*out++ = request->global_seqno;
	*out++ = MI_USER_INTERRUPT;
	*out++ = MI_NOOP;
	request->tail = intel_ring_offset(request->ring, out);

	gen8_emit_wa_tail(request, out);
1668
}
1669

1670 1671
static const int gen8_emit_breadcrumb_sz = 6 + WA_TAIL_DWORDS;

C
Chris Wilson 已提交
1672 1673
static void gen8_emit_breadcrumb_render(struct drm_i915_gem_request *request,
					u32 *out)
1674
{
1675 1676 1677
	/* We're using qword write, seqno should be aligned to 8 bytes. */
	BUILD_BUG_ON(I915_GEM_HWS_INDEX & 1);

1678 1679 1680 1681
	/* w/a for post sync ops following a GPGPU operation we
	 * need a prior CS_STALL, which is emitted by the flush
	 * following the batch.
	 */
C
Chris Wilson 已提交
1682 1683 1684 1685 1686 1687 1688
	*out++ = GFX_OP_PIPE_CONTROL(6);
	*out++ = (PIPE_CONTROL_GLOBAL_GTT_IVB |
		  PIPE_CONTROL_CS_STALL |
		  PIPE_CONTROL_QW_WRITE);
	*out++ = intel_hws_seqno_address(request->engine);
	*out++ = 0;
	*out++ = request->global_seqno;
1689
	/* We're thrashing one dword of HWS. */
C
Chris Wilson 已提交
1690 1691 1692 1693 1694 1695
	*out++ = 0;
	*out++ = MI_USER_INTERRUPT;
	*out++ = MI_NOOP;
	request->tail = intel_ring_offset(request->ring, out);

	gen8_emit_wa_tail(request, out);
1696 1697
}

1698 1699
static const int gen8_emit_breadcrumb_render_sz = 8 + WA_TAIL_DWORDS;

1700
static int gen8_init_rcs_context(struct drm_i915_gem_request *req)
1701 1702 1703
{
	int ret;

1704
	ret = intel_logical_ring_workarounds_emit(req);
1705 1706 1707
	if (ret)
		return ret;

1708 1709 1710 1711 1712 1713 1714 1715
	ret = intel_rcs_context_init_mocs(req);
	/*
	 * Failing to program the MOCS is non-fatal.The system will not
	 * run at peak performance. So generate an error and carry on.
	 */
	if (ret)
		DRM_ERROR("MOCS failed to program: expect performance issues.\n");

1716
	return i915_gem_render_state_emit(req);
1717 1718
}

1719 1720
/**
 * intel_logical_ring_cleanup() - deallocate the Engine Command Streamer
1721
 * @engine: Engine Command Streamer.
1722
 */
1723
void intel_logical_ring_cleanup(struct intel_engine_cs *engine)
1724
{
1725
	struct drm_i915_private *dev_priv;
1726

1727 1728 1729 1730 1731 1732 1733
	/*
	 * Tasklet cannot be active at this point due intel_mark_active/idle
	 * so this is just for documentation.
	 */
	if (WARN_ON(test_bit(TASKLET_STATE_SCHED, &engine->irq_tasklet.state)))
		tasklet_kill(&engine->irq_tasklet);

1734
	dev_priv = engine->i915;
1735

1736 1737
	if (engine->buffer) {
		WARN_ON((I915_READ_MODE(engine) & MODE_IDLE) == 0);
1738
	}
1739

1740 1741
	if (engine->cleanup)
		engine->cleanup(engine);
1742

1743 1744 1745
	if (engine->status_page.vma) {
		i915_gem_object_unpin_map(engine->status_page.vma->obj);
		engine->status_page.vma = NULL;
1746
	}
1747 1748

	intel_engine_cleanup_common(engine);
1749

1750
	lrc_destroy_wa_ctx_obj(engine);
1751
	engine->i915 = NULL;
1752 1753
	dev_priv->engine[engine->id] = NULL;
	kfree(engine);
1754 1755
}

1756 1757 1758
void intel_execlists_enable_submission(struct drm_i915_private *dev_priv)
{
	struct intel_engine_cs *engine;
1759
	enum intel_engine_id id;
1760

1761
	for_each_engine(engine, dev_priv, id) {
1762
		engine->submit_request = execlists_submit_request;
1763 1764
		engine->schedule = execlists_schedule;
	}
1765 1766
}

1767
static void
1768
logical_ring_default_vfuncs(struct intel_engine_cs *engine)
1769 1770
{
	/* Default vfuncs which can be overriden by each engine. */
1771
	engine->init_hw = gen8_init_common_ring;
1772
	engine->reset_hw = reset_common_ring;
1773 1774 1775 1776

	engine->context_pin = execlists_context_pin;
	engine->context_unpin = execlists_context_unpin;

1777 1778
	engine->request_alloc = execlists_request_alloc;

1779
	engine->emit_flush = gen8_emit_flush;
1780
	engine->emit_breadcrumb = gen8_emit_breadcrumb;
1781
	engine->emit_breadcrumb_sz = gen8_emit_breadcrumb_sz;
1782
	engine->submit_request = execlists_submit_request;
1783
	engine->schedule = execlists_schedule;
1784

1785 1786
	engine->irq_enable = gen8_logical_ring_enable_irq;
	engine->irq_disable = gen8_logical_ring_disable_irq;
1787
	engine->emit_bb_start = gen8_emit_bb_start;
1788 1789
}

1790
static inline void
1791
logical_ring_default_irqs(struct intel_engine_cs *engine)
1792
{
1793
	unsigned shift = engine->irq_shift;
1794 1795
	engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT << shift;
	engine->irq_keep_mask = GT_CONTEXT_SWITCH_INTERRUPT << shift;
1796 1797
}

1798
static int
1799
lrc_setup_hws(struct intel_engine_cs *engine, struct i915_vma *vma)
1800
{
1801
	const int hws_offset = LRC_PPHWSP_PN * PAGE_SIZE;
1802
	void *hws;
1803 1804

	/* The HWSP is part of the default context object in LRC mode. */
1805
	hws = i915_gem_object_pin_map(vma->obj, I915_MAP_WB);
1806 1807
	if (IS_ERR(hws))
		return PTR_ERR(hws);
1808 1809

	engine->status_page.page_addr = hws + hws_offset;
1810
	engine->status_page.ggtt_offset = i915_ggtt_offset(vma) + hws_offset;
1811
	engine->status_page.vma = vma;
1812 1813

	return 0;
1814 1815
}

1816 1817 1818 1819 1820 1821
static void
logical_ring_setup(struct intel_engine_cs *engine)
{
	struct drm_i915_private *dev_priv = engine->i915;
	enum forcewake_domains fw_domains;

1822 1823
	intel_engine_setup_common(engine);

1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848
	/* Intentionally left blank. */
	engine->buffer = NULL;

	fw_domains = intel_uncore_forcewake_for_reg(dev_priv,
						    RING_ELSP(engine),
						    FW_REG_WRITE);

	fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
						     RING_CONTEXT_STATUS_PTR(engine),
						     FW_REG_READ | FW_REG_WRITE);

	fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
						     RING_CONTEXT_STATUS_BUF_BASE(engine),
						     FW_REG_READ);

	engine->fw_domains = fw_domains;

	tasklet_init(&engine->irq_tasklet,
		     intel_lrc_irq_handler, (unsigned long)engine);

	logical_ring_init_platform_invariants(engine);
	logical_ring_default_vfuncs(engine);
	logical_ring_default_irqs(engine);
}

1849 1850 1851 1852 1853 1854
static int
logical_ring_init(struct intel_engine_cs *engine)
{
	struct i915_gem_context *dctx = engine->i915->kernel_context;
	int ret;

1855
	ret = intel_engine_init_common(engine);
1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872
	if (ret)
		goto error;

	/* And setup the hardware status page. */
	ret = lrc_setup_hws(engine, dctx->engine[engine->id].state);
	if (ret) {
		DRM_ERROR("Failed to set up hws %s: %d\n", engine->name, ret);
		goto error;
	}

	return 0;

error:
	intel_logical_ring_cleanup(engine);
	return ret;
}

1873
int logical_render_ring_init(struct intel_engine_cs *engine)
1874 1875 1876 1877
{
	struct drm_i915_private *dev_priv = engine->i915;
	int ret;

1878 1879
	logical_ring_setup(engine);

1880 1881 1882 1883 1884 1885 1886 1887 1888 1889
	if (HAS_L3_DPF(dev_priv))
		engine->irq_keep_mask |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;

	/* Override some for render ring. */
	if (INTEL_GEN(dev_priv) >= 9)
		engine->init_hw = gen9_init_render_ring;
	else
		engine->init_hw = gen8_init_render_ring;
	engine->init_context = gen8_init_rcs_context;
	engine->emit_flush = gen8_emit_flush_render;
1890
	engine->emit_breadcrumb = gen8_emit_breadcrumb_render;
1891
	engine->emit_breadcrumb_sz = gen8_emit_breadcrumb_render_sz;
1892

1893
	ret = intel_engine_create_scratch(engine, PAGE_SIZE);
1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907
	if (ret)
		return ret;

	ret = intel_init_workaround_bb(engine);
	if (ret) {
		/*
		 * We continue even if we fail to initialize WA batch
		 * because we only expect rare glitches but nothing
		 * critical to prevent us from using GPU
		 */
		DRM_ERROR("WA batch buffer initialization failed: %d\n",
			  ret);
	}

1908
	return logical_ring_init(engine);
1909 1910
}

1911
int logical_xcs_ring_init(struct intel_engine_cs *engine)
1912 1913 1914 1915
{
	logical_ring_setup(engine);

	return logical_ring_init(engine);
1916 1917
}

1918
static u32
1919
make_rpcs(struct drm_i915_private *dev_priv)
1920 1921 1922 1923 1924 1925 1926
{
	u32 rpcs = 0;

	/*
	 * No explicit RPCS request is needed to ensure full
	 * slice/subslice/EU enablement prior to Gen9.
	*/
1927
	if (INTEL_GEN(dev_priv) < 9)
1928 1929 1930 1931 1932 1933 1934 1935
		return 0;

	/*
	 * Starting in Gen9, render power gating can leave
	 * slice/subslice/EU in a partially enabled state. We
	 * must make an explicit request through RPCS for full
	 * enablement.
	*/
1936
	if (INTEL_INFO(dev_priv)->sseu.has_slice_pg) {
1937
		rpcs |= GEN8_RPCS_S_CNT_ENABLE;
1938
		rpcs |= hweight8(INTEL_INFO(dev_priv)->sseu.slice_mask) <<
1939 1940 1941 1942
			GEN8_RPCS_S_CNT_SHIFT;
		rpcs |= GEN8_RPCS_ENABLE;
	}

1943
	if (INTEL_INFO(dev_priv)->sseu.has_subslice_pg) {
1944
		rpcs |= GEN8_RPCS_SS_CNT_ENABLE;
1945
		rpcs |= hweight8(INTEL_INFO(dev_priv)->sseu.subslice_mask) <<
1946 1947 1948 1949
			GEN8_RPCS_SS_CNT_SHIFT;
		rpcs |= GEN8_RPCS_ENABLE;
	}

1950 1951
	if (INTEL_INFO(dev_priv)->sseu.has_eu_pg) {
		rpcs |= INTEL_INFO(dev_priv)->sseu.eu_per_subslice <<
1952
			GEN8_RPCS_EU_MIN_SHIFT;
1953
		rpcs |= INTEL_INFO(dev_priv)->sseu.eu_per_subslice <<
1954 1955 1956 1957 1958 1959 1960
			GEN8_RPCS_EU_MAX_SHIFT;
		rpcs |= GEN8_RPCS_ENABLE;
	}

	return rpcs;
}

1961
static u32 intel_lr_indirect_ctx_offset(struct intel_engine_cs *engine)
1962 1963 1964
{
	u32 indirect_ctx_offset;

1965
	switch (INTEL_GEN(engine->i915)) {
1966
	default:
1967
		MISSING_CASE(INTEL_GEN(engine->i915));
1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981
		/* fall through */
	case 9:
		indirect_ctx_offset =
			GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
		break;
	case 8:
		indirect_ctx_offset =
			GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
		break;
	}

	return indirect_ctx_offset;
}

1982 1983 1984 1985
static void execlists_init_reg_state(u32 *reg_state,
				     struct i915_gem_context *ctx,
				     struct intel_engine_cs *engine,
				     struct intel_ring *ring)
1986
{
1987 1988
	struct drm_i915_private *dev_priv = engine->i915;
	struct i915_hw_ppgtt *ppgtt = ctx->ppgtt ?: dev_priv->mm.aliasing_ppgtt;
1989 1990 1991 1992 1993 1994

	/* A context is actually a big batch buffer with several MI_LOAD_REGISTER_IMM
	 * commands followed by (reg, value) pairs. The values we are setting here are
	 * only for the first context restore: on a subsequent save, the GPU will
	 * recreate this batchbuffer with new values (including all the missing
	 * MI_LOAD_REGISTER_IMM commands that we are not initializing here). */
1995
	reg_state[CTX_LRI_HEADER_0] =
1996 1997 1998
		MI_LOAD_REGISTER_IMM(engine->id == RCS ? 14 : 11) | MI_LRI_FORCE_POSTED;
	ASSIGN_CTX_REG(reg_state, CTX_CONTEXT_CONTROL,
		       RING_CONTEXT_CONTROL(engine),
1999 2000
		       _MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH |
					  CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
2001
					  (HAS_RESOURCE_STREAMER(dev_priv) ?
2002
					   CTX_CTRL_RS_CTX_ENABLE : 0)));
2003 2004 2005 2006 2007 2008 2009 2010
	ASSIGN_CTX_REG(reg_state, CTX_RING_HEAD, RING_HEAD(engine->mmio_base),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_RING_TAIL, RING_TAIL(engine->mmio_base),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_RING_BUFFER_START,
		       RING_START(engine->mmio_base), 0);
	ASSIGN_CTX_REG(reg_state, CTX_RING_BUFFER_CONTROL,
		       RING_CTL(engine->mmio_base),
2011
		       RING_CTL_SIZE(ring->size) | RING_VALID);
2012 2013 2014 2015 2016 2017
	ASSIGN_CTX_REG(reg_state, CTX_BB_HEAD_U,
		       RING_BBADDR_UDW(engine->mmio_base), 0);
	ASSIGN_CTX_REG(reg_state, CTX_BB_HEAD_L,
		       RING_BBADDR(engine->mmio_base), 0);
	ASSIGN_CTX_REG(reg_state, CTX_BB_STATE,
		       RING_BBSTATE(engine->mmio_base),
2018
		       RING_BB_PPGTT);
2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031
	ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_HEAD_U,
		       RING_SBBADDR_UDW(engine->mmio_base), 0);
	ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_HEAD_L,
		       RING_SBBADDR(engine->mmio_base), 0);
	ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_STATE,
		       RING_SBBSTATE(engine->mmio_base), 0);
	if (engine->id == RCS) {
		ASSIGN_CTX_REG(reg_state, CTX_BB_PER_CTX_PTR,
			       RING_BB_PER_CTX_PTR(engine->mmio_base), 0);
		ASSIGN_CTX_REG(reg_state, CTX_RCS_INDIRECT_CTX,
			       RING_INDIRECT_CTX(engine->mmio_base), 0);
		ASSIGN_CTX_REG(reg_state, CTX_RCS_INDIRECT_CTX_OFFSET,
			       RING_INDIRECT_CTX_OFFSET(engine->mmio_base), 0);
2032
		if (engine->wa_ctx.vma) {
2033
			struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
2034
			u32 ggtt_offset = i915_ggtt_offset(wa_ctx->vma);
2035 2036 2037 2038 2039 2040

			reg_state[CTX_RCS_INDIRECT_CTX+1] =
				(ggtt_offset + wa_ctx->indirect_ctx.offset * sizeof(uint32_t)) |
				(wa_ctx->indirect_ctx.size / CACHELINE_DWORDS);

			reg_state[CTX_RCS_INDIRECT_CTX_OFFSET+1] =
2041
				intel_lr_indirect_ctx_offset(engine) << 6;
2042 2043 2044 2045 2046

			reg_state[CTX_BB_PER_CTX_PTR+1] =
				(ggtt_offset + wa_ctx->per_ctx.offset * sizeof(uint32_t)) |
				0x01;
		}
2047
	}
2048
	reg_state[CTX_LRI_HEADER_1] = MI_LOAD_REGISTER_IMM(9) | MI_LRI_FORCE_POSTED;
2049 2050
	ASSIGN_CTX_REG(reg_state, CTX_CTX_TIMESTAMP,
		       RING_CTX_TIMESTAMP(engine->mmio_base), 0);
2051
	/* PDP values well be assigned later if needed */
2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067
	ASSIGN_CTX_REG(reg_state, CTX_PDP3_UDW, GEN8_RING_PDP_UDW(engine, 3),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_PDP3_LDW, GEN8_RING_PDP_LDW(engine, 3),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_PDP2_UDW, GEN8_RING_PDP_UDW(engine, 2),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_PDP2_LDW, GEN8_RING_PDP_LDW(engine, 2),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_PDP1_UDW, GEN8_RING_PDP_UDW(engine, 1),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_PDP1_LDW, GEN8_RING_PDP_LDW(engine, 1),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_PDP0_UDW, GEN8_RING_PDP_UDW(engine, 0),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_PDP0_LDW, GEN8_RING_PDP_LDW(engine, 0),
		       0);
2068

2069
	if (ppgtt && USES_FULL_48BIT_PPGTT(ppgtt->base.dev)) {
2070 2071 2072 2073 2074 2075 2076
		/* 64b PPGTT (48bit canonical)
		 * PDP0_DESCRIPTOR contains the base address to PML4 and
		 * other PDP Descriptors are ignored.
		 */
		ASSIGN_CTX_PML4(ppgtt, reg_state);
	}

2077
	if (engine->id == RCS) {
2078
		reg_state[CTX_LRI_HEADER_2] = MI_LOAD_REGISTER_IMM(1);
2079
		ASSIGN_CTX_REG(reg_state, CTX_R_PWR_CLK_STATE, GEN8_R_PWR_CLK_STATE,
2080
			       make_rpcs(dev_priv));
2081
	}
2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104
}

static int
populate_lr_context(struct i915_gem_context *ctx,
		    struct drm_i915_gem_object *ctx_obj,
		    struct intel_engine_cs *engine,
		    struct intel_ring *ring)
{
	void *vaddr;
	int ret;

	ret = i915_gem_object_set_to_cpu_domain(ctx_obj, true);
	if (ret) {
		DRM_DEBUG_DRIVER("Could not set to CPU domain\n");
		return ret;
	}

	vaddr = i915_gem_object_pin_map(ctx_obj, I915_MAP_WB);
	if (IS_ERR(vaddr)) {
		ret = PTR_ERR(vaddr);
		DRM_DEBUG_DRIVER("Could not map object pages! (%d)\n", ret);
		return ret;
	}
C
Chris Wilson 已提交
2105
	ctx_obj->mm.dirty = true;
2106 2107 2108 2109 2110 2111

	/* The second page of the context object contains some fields which must
	 * be set up prior to the first execution. */

	execlists_init_reg_state(vaddr + LRC_STATE_PN * PAGE_SIZE,
				 ctx, engine, ring);
2112

2113
	i915_gem_object_unpin_map(ctx_obj);
2114 2115 2116 2117

	return 0;
}

2118 2119
/**
 * intel_lr_context_size() - return the size of the context for an engine
2120
 * @engine: which engine to find the context size for
2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131
 *
 * Each engine may require a different amount of space for a context image,
 * so when allocating (or copying) an image, this function can be used to
 * find the right size for the specific engine.
 *
 * Return: size (in bytes) of an engine-specific context image
 *
 * Note: this size includes the HWSP, which is part of the context image
 * in LRC mode, but does not include the "shared data page" used with
 * GuC submission. The caller should account for this if using the GuC.
 */
2132
uint32_t intel_lr_context_size(struct intel_engine_cs *engine)
2133 2134 2135
{
	int ret = 0;

2136
	WARN_ON(INTEL_GEN(engine->i915) < 8);
2137

2138
	switch (engine->id) {
2139
	case RCS:
2140
		if (INTEL_GEN(engine->i915) >= 9)
2141 2142 2143
			ret = GEN9_LR_CONTEXT_RENDER_SIZE;
		else
			ret = GEN8_LR_CONTEXT_RENDER_SIZE;
2144 2145 2146 2147 2148 2149 2150 2151 2152 2153
		break;
	case VCS:
	case BCS:
	case VECS:
	case VCS2:
		ret = GEN8_LR_CONTEXT_OTHER_SIZE;
		break;
	}

	return ret;
2154 2155
}

2156
static int execlists_context_deferred_alloc(struct i915_gem_context *ctx,
2157
					    struct intel_engine_cs *engine)
2158
{
2159
	struct drm_i915_gem_object *ctx_obj;
2160
	struct intel_context *ce = &ctx->engine[engine->id];
2161
	struct i915_vma *vma;
2162
	uint32_t context_size;
2163
	struct intel_ring *ring;
2164 2165
	int ret;

2166
	WARN_ON(ce->state);
2167

2168 2169
	context_size = round_up(intel_lr_context_size(engine),
				I915_GTT_PAGE_SIZE);
2170

2171 2172 2173
	/* One extra page as the sharing data between driver and GuC */
	context_size += PAGE_SIZE * LRC_PPHWSP_PN;

2174
	ctx_obj = i915_gem_object_create(ctx->i915, context_size);
2175
	if (IS_ERR(ctx_obj)) {
2176
		DRM_DEBUG_DRIVER("Alloc LRC backing obj failed.\n");
2177
		return PTR_ERR(ctx_obj);
2178 2179
	}

2180
	vma = i915_vma_instance(ctx_obj, &ctx->i915->ggtt.base, NULL);
2181 2182 2183 2184 2185
	if (IS_ERR(vma)) {
		ret = PTR_ERR(vma);
		goto error_deref_obj;
	}

2186
	ring = intel_engine_create_ring(engine, ctx->ring_size);
2187 2188
	if (IS_ERR(ring)) {
		ret = PTR_ERR(ring);
2189
		goto error_deref_obj;
2190 2191
	}

2192
	ret = populate_lr_context(ctx, ctx_obj, engine, ring);
2193 2194
	if (ret) {
		DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret);
2195
		goto error_ring_free;
2196 2197
	}

2198
	ce->ring = ring;
2199
	ce->state = vma;
2200
	ce->initialised = engine->init_context == NULL;
2201 2202

	return 0;
2203

2204
error_ring_free:
2205
	intel_ring_free(ring);
2206
error_deref_obj:
2207
	i915_gem_object_put(ctx_obj);
2208
	return ret;
2209
}
2210

2211
void intel_lr_context_resume(struct drm_i915_private *dev_priv)
2212
{
2213
	struct intel_engine_cs *engine;
2214
	struct i915_gem_context *ctx;
2215
	enum intel_engine_id id;
2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227

	/* Because we emit WA_TAIL_DWORDS there may be a disparity
	 * between our bookkeeping in ce->ring->head and ce->ring->tail and
	 * that stored in context. As we only write new commands from
	 * ce->ring->tail onwards, everything before that is junk. If the GPU
	 * starts reading from its RING_HEAD from the context, it may try to
	 * execute that junk and die.
	 *
	 * So to avoid that we reset the context images upon resume. For
	 * simplicity, we just zero everything out.
	 */
	list_for_each_entry(ctx, &dev_priv->context_list, link) {
2228
		for_each_engine(engine, dev_priv, id) {
2229 2230
			struct intel_context *ce = &ctx->engine[engine->id];
			u32 *reg;
2231

2232 2233
			if (!ce->state)
				continue;
2234

2235 2236 2237 2238
			reg = i915_gem_object_pin_map(ce->state->obj,
						      I915_MAP_WB);
			if (WARN_ON(IS_ERR(reg)))
				continue;
2239

2240 2241 2242
			reg += LRC_STATE_PN * PAGE_SIZE / sizeof(*reg);
			reg[CTX_RING_HEAD+1] = 0;
			reg[CTX_RING_TAIL+1] = 0;
2243

C
Chris Wilson 已提交
2244
			ce->state->obj->mm.dirty = true;
2245
			i915_gem_object_unpin_map(ce->state->obj);
2246

2247 2248 2249 2250
			ce->ring->head = ce->ring->tail = 0;
			ce->ring->last_retired_head = -1;
			intel_ring_update_space(ce->ring);
		}
2251 2252
	}
}