random.c 49.9 KB
Newer Older
1
// SPDX-License-Identifier: (GPL-2.0 OR BSD-3-Clause)
L
Linus Torvalds 已提交
2
/*
3
 * Copyright (C) 2017-2022 Jason A. Donenfeld <Jason@zx2c4.com>. All Rights Reserved.
4
 * Copyright Matt Mackall <mpm@selenic.com>, 2003, 2004, 2005
5 6 7 8 9 10 11 12 13 14 15 16 17
 * Copyright Theodore Ts'o, 1994, 1995, 1996, 1997, 1998, 1999. All rights reserved.
 *
 * This driver produces cryptographically secure pseudorandom data. It is divided
 * into roughly six sections, each with a section header:
 *
 *   - Initialization and readiness waiting.
 *   - Fast key erasure RNG, the "crng".
 *   - Entropy accumulation and extraction routines.
 *   - Entropy collection routines.
 *   - Userspace reader/writer interfaces.
 *   - Sysctl interface.
 *
 * The high level overview is that there is one input pool, into which
18 19 20 21 22 23
 * various pieces of data are hashed. Prior to initialization, some of that
 * data is then "credited" as having a certain number of bits of entropy.
 * When enough bits of entropy are available, the hash is finalized and
 * handed as a key to a stream cipher that expands it indefinitely for
 * various consumers. This key is periodically refreshed as the various
 * entropy collectors, described below, add data to the input pool.
L
Linus Torvalds 已提交
24 25
 */

Y
Yangtao Li 已提交
26 27
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

L
Linus Torvalds 已提交
28 29 30 31 32 33 34 35 36 37 38
#include <linux/utsname.h>
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/major.h>
#include <linux/string.h>
#include <linux/fcntl.h>
#include <linux/slab.h>
#include <linux/random.h>
#include <linux/poll.h>
#include <linux/init.h>
#include <linux/fs.h>
C
Christoph Hellwig 已提交
39
#include <linux/blkdev.h>
L
Linus Torvalds 已提交
40
#include <linux/interrupt.h>
41
#include <linux/mm.h>
42
#include <linux/nodemask.h>
L
Linus Torvalds 已提交
43
#include <linux/spinlock.h>
44
#include <linux/kthread.h>
L
Linus Torvalds 已提交
45
#include <linux/percpu.h>
46
#include <linux/ptrace.h>
47
#include <linux/workqueue.h>
48
#include <linux/irq.h>
49
#include <linux/ratelimit.h>
50 51
#include <linux/syscalls.h>
#include <linux/completion.h>
52
#include <linux/uuid.h>
53
#include <linux/uaccess.h>
54
#include <linux/suspend.h>
55
#include <linux/siphash.h>
56
#include <crypto/chacha.h>
57
#include <crypto/blake2s.h>
L
Linus Torvalds 已提交
58 59
#include <asm/processor.h>
#include <asm/irq.h>
60
#include <asm/irq_regs.h>
L
Linus Torvalds 已提交
61 62
#include <asm/io.h>

63 64 65 66 67 68 69 70 71
/*********************************************************************
 *
 * Initialization and readiness waiting.
 *
 * Much of the RNG infrastructure is devoted to various dependencies
 * being able to wait until the RNG has collected enough entropy and
 * is ready for safe consumption.
 *
 *********************************************************************/
72

73
/*
74
 * crng_init is protected by base_crng->lock, and only increases
75
 * its value (from empty->early->ready).
76
 */
77 78 79 80
static enum {
	CRNG_EMPTY = 0, /* Little to no entropy collected */
	CRNG_EARLY = 1, /* At least POOL_EARLY_BITS collected */
	CRNG_READY = 2  /* Fully initialized with POOL_READY_BITS collected */
81 82 83
} crng_init __read_mostly = CRNG_EMPTY;
static DEFINE_STATIC_KEY_FALSE(crng_is_ready);
#define crng_ready() (static_branch_likely(&crng_is_ready) || crng_init >= CRNG_READY)
84
/* Various types of waiters for crng_init->CRNG_READY transition. */
85 86
static DECLARE_WAIT_QUEUE_HEAD(crng_init_wait);
static struct fasync_struct *fasync;
87 88
static DEFINE_SPINLOCK(random_ready_chain_lock);
static RAW_NOTIFIER_HEAD(random_ready_chain);
89

90
/* Control how we warn userspace. */
91 92
static struct ratelimit_state urandom_warning =
	RATELIMIT_STATE_INIT("warn_urandom_randomness", HZ, 3);
93 94
static int ratelimit_disable __read_mostly =
	IS_ENABLED(CONFIG_WARN_ALL_UNSEEDED_RANDOM);
95 96 97
module_param_named(ratelimit_disable, ratelimit_disable, int, 0644);
MODULE_PARM_DESC(ratelimit_disable, "Disable random ratelimit suppression");

98 99
/*
 * Returns whether or not the input pool has been seeded and thus guaranteed
100 101 102
 * to supply cryptographically secure random numbers. This applies to: the
 * /dev/urandom device, the get_random_bytes function, and the get_random_{u32,
 * ,u64,int,long} family of functions.
103 104 105 106 107 108 109 110 111 112
 *
 * Returns: true if the input pool has been seeded.
 *          false if the input pool has not been seeded.
 */
bool rng_is_initialized(void)
{
	return crng_ready();
}
EXPORT_SYMBOL(rng_is_initialized);

113 114 115 116 117
static void crng_set_ready(struct work_struct *work)
{
	static_branch_enable(&crng_is_ready);
}

118 119 120 121 122
/* Used by wait_for_random_bytes(), and considered an entropy collector, below. */
static void try_to_generate_entropy(void);

/*
 * Wait for the input pool to be seeded and thus guaranteed to supply
123 124 125 126
 * cryptographically secure random numbers. This applies to: the /dev/urandom
 * device, the get_random_bytes function, and the get_random_{u32,u64,int,long}
 * family of functions. Using any of these functions without first calling
 * this function forfeits the guarantee of security.
127 128 129 130 131 132
 *
 * Returns: 0 if the input pool has been seeded.
 *          -ERESTARTSYS if the function was interrupted by a signal.
 */
int wait_for_random_bytes(void)
{
133
	while (!crng_ready()) {
134
		int ret;
135 136

		try_to_generate_entropy();
137 138 139
		ret = wait_event_interruptible_timeout(crng_init_wait, crng_ready(), HZ);
		if (ret)
			return ret > 0 ? 0 : ret;
140
	}
141 142 143 144 145 146 147 148 149 150 151
	return 0;
}
EXPORT_SYMBOL(wait_for_random_bytes);

/*
 * Add a callback function that will be invoked when the input
 * pool is initialised.
 *
 * returns: 0 if callback is successfully added
 *	    -EALREADY if pool is already initialised (callback not called)
 */
152
int register_random_ready_notifier(struct notifier_block *nb)
153 154
{
	unsigned long flags;
155
	int ret = -EALREADY;
156 157

	if (crng_ready())
158
		return ret;
159

160 161 162 163 164
	spin_lock_irqsave(&random_ready_chain_lock, flags);
	if (!crng_ready())
		ret = raw_notifier_chain_register(&random_ready_chain, nb);
	spin_unlock_irqrestore(&random_ready_chain_lock, flags);
	return ret;
165 166 167 168 169
}

/*
 * Delete a previously registered readiness callback function.
 */
170
int unregister_random_ready_notifier(struct notifier_block *nb)
171 172
{
	unsigned long flags;
173
	int ret;
174

175 176 177 178
	spin_lock_irqsave(&random_ready_chain_lock, flags);
	ret = raw_notifier_chain_unregister(&random_ready_chain, nb);
	spin_unlock_irqrestore(&random_ready_chain_lock, flags);
	return ret;
179 180 181 182 183 184
}

static void process_random_ready_list(void)
{
	unsigned long flags;

185 186 187
	spin_lock_irqsave(&random_ready_chain_lock, flags);
	raw_notifier_call_chain(&random_ready_chain, 0, NULL);
	spin_unlock_irqrestore(&random_ready_chain_lock, flags);
188 189
}

190 191
#define warn_unseeded_randomness() \
	_warn_unseeded_randomness(__func__, (void *)_RET_IP_)
192

193
static void _warn_unseeded_randomness(const char *func_name, void *caller)
194
{
195
	if (!IS_ENABLED(CONFIG_WARN_ALL_UNSEEDED_RANDOM) || crng_ready())
196
		return;
197 198
	printk_deferred(KERN_NOTICE "random: %s called from %pS with crng_init=%d\n",
			func_name, caller, crng_init);
199 200 201
}


202
/*********************************************************************
L
Linus Torvalds 已提交
203
 *
204
 * Fast key erasure RNG, the "crng".
L
Linus Torvalds 已提交
205
 *
206 207 208
 * These functions expand entropy from the entropy extractor into
 * long streams for external consumption using the "fast key erasure"
 * RNG described at <https://blog.cr.yp.to/20170723-random.html>.
209
 *
210 211 212 213 214 215 216 217 218
 * There are a few exported interfaces for use by other drivers:
 *
 *	void get_random_bytes(void *buf, size_t nbytes)
 *	u32 get_random_u32()
 *	u64 get_random_u64()
 *	unsigned int get_random_int()
 *	unsigned long get_random_long()
 *
 * These interfaces will return the requested number of random bytes
219
 * into the given buffer or as a return value. This is equivalent to
220 221 222 223
 * a read from /dev/urandom. The u32, u64, int, and long family of
 * functions may be higher performance for one-off random integers,
 * because they do a bit of buffering and do not invoke reseeding
 * until the buffer is emptied.
224 225 226
 *
 *********************************************************************/

227 228 229 230
enum {
	CRNG_RESEED_START_INTERVAL = HZ,
	CRNG_RESEED_INTERVAL = 60 * HZ
};
231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250

static struct {
	u8 key[CHACHA_KEY_SIZE] __aligned(__alignof__(long));
	unsigned long birth;
	unsigned long generation;
	spinlock_t lock;
} base_crng = {
	.lock = __SPIN_LOCK_UNLOCKED(base_crng.lock)
};

struct crng {
	u8 key[CHACHA_KEY_SIZE];
	unsigned long generation;
	local_lock_t lock;
};

static DEFINE_PER_CPU(struct crng, crngs) = {
	.generation = ULONG_MAX,
	.lock = INIT_LOCAL_LOCK(crngs.lock),
};
251

252
/* Used by crng_reseed() and crng_make_state() to extract a new seed from the input pool. */
253
static void extract_entropy(void *buf, size_t nbytes);
254

255 256
/* This extracts a new crng key from the input pool. */
static void crng_reseed(void)
257
{
258
	unsigned long flags;
259 260
	unsigned long next_gen;
	u8 key[CHACHA_KEY_SIZE];
261

262
	extract_entropy(key, sizeof(key));
263

264 265 266 267 268 269 270 271 272 273 274 275 276
	/*
	 * We copy the new key into the base_crng, overwriting the old one,
	 * and update the generation counter. We avoid hitting ULONG_MAX,
	 * because the per-cpu crngs are initialized to ULONG_MAX, so this
	 * forces new CPUs that come online to always initialize.
	 */
	spin_lock_irqsave(&base_crng.lock, flags);
	memcpy(base_crng.key, key, sizeof(base_crng.key));
	next_gen = base_crng.generation + 1;
	if (next_gen == ULONG_MAX)
		++next_gen;
	WRITE_ONCE(base_crng.generation, next_gen);
	WRITE_ONCE(base_crng.birth, jiffies);
277
	if (!static_branch_likely(&crng_is_ready))
278
		crng_init = CRNG_READY;
279 280
	spin_unlock_irqrestore(&base_crng.lock, flags);
	memzero_explicit(key, sizeof(key));
281 282
}

283
/*
284 285 286 287 288
 * This generates a ChaCha block using the provided key, and then
 * immediately overwites that key with half the block. It returns
 * the resultant ChaCha state to the user, along with the second
 * half of the block containing 32 bytes of random data that may
 * be used; random_data_len may not be greater than 32.
289 290 291 292 293 294 295
 *
 * The returned ChaCha state contains within it a copy of the old
 * key value, at index 4, so the state should always be zeroed out
 * immediately after using in order to maintain forward secrecy.
 * If the state cannot be erased in a timely manner, then it is
 * safer to set the random_data parameter to &chacha_state[4] so
 * that this function overwrites it before returning.
296 297 298 299
 */
static void crng_fast_key_erasure(u8 key[CHACHA_KEY_SIZE],
				  u32 chacha_state[CHACHA_STATE_WORDS],
				  u8 *random_data, size_t random_data_len)
300
{
301
	u8 first_block[CHACHA_BLOCK_SIZE];
302

303 304 305 306 307 308 309 310
	BUG_ON(random_data_len > 32);

	chacha_init_consts(chacha_state);
	memcpy(&chacha_state[4], key, CHACHA_KEY_SIZE);
	memset(&chacha_state[12], 0, sizeof(u32) * 4);
	chacha20_block(chacha_state, first_block);

	memcpy(key, first_block, CHACHA_KEY_SIZE);
311
	memcpy(random_data, first_block + CHACHA_KEY_SIZE, random_data_len);
312
	memzero_explicit(first_block, sizeof(first_block));
313 314
}

315
/*
316 317 318 319
 * Return whether the crng seed is considered to be sufficiently old
 * that a reseeding is needed. This happens if the last reseeding
 * was CRNG_RESEED_INTERVAL ago, or during early boot, at an interval
 * proportional to the uptime.
320 321 322 323 324 325 326 327 328 329 330
 */
static bool crng_has_old_seed(void)
{
	static bool early_boot = true;
	unsigned long interval = CRNG_RESEED_INTERVAL;

	if (unlikely(READ_ONCE(early_boot))) {
		time64_t uptime = ktime_get_seconds();
		if (uptime >= CRNG_RESEED_INTERVAL / HZ * 2)
			WRITE_ONCE(early_boot, false);
		else
331
			interval = max_t(unsigned int, CRNG_RESEED_START_INTERVAL,
332 333
					 (unsigned int)uptime / 2 * HZ);
	}
334
	return time_is_before_jiffies(READ_ONCE(base_crng.birth) + interval);
335 336
}

337
/*
338 339 340
 * This function returns a ChaCha state that you may use for generating
 * random data. It also returns up to 32 bytes on its own of random data
 * that may be used; random_data_len may not be greater than 32.
341
 */
342 343
static void crng_make_state(u32 chacha_state[CHACHA_STATE_WORDS],
			    u8 *random_data, size_t random_data_len)
344
{
345
	unsigned long flags;
346
	struct crng *crng;
347

348 349 350 351 352
	BUG_ON(random_data_len > 32);

	/*
	 * For the fast path, we check whether we're ready, unlocked first, and
	 * then re-check once locked later. In the case where we're really not
353
	 * ready, we do fast key erasure with the base_crng directly, extracting
354
	 * when crng_init is CRNG_EMPTY.
355
	 */
356
	if (!crng_ready()) {
357 358 359 360
		bool ready;

		spin_lock_irqsave(&base_crng.lock, flags);
		ready = crng_ready();
361
		if (!ready) {
362
			if (crng_init == CRNG_EMPTY)
363
				extract_entropy(base_crng.key, sizeof(base_crng.key));
364 365
			crng_fast_key_erasure(base_crng.key, chacha_state,
					      random_data, random_data_len);
366
		}
367 368 369
		spin_unlock_irqrestore(&base_crng.lock, flags);
		if (!ready)
			return;
370
	}
371 372

	/*
373 374
	 * If the base_crng is old enough, we reseed, which in turn bumps the
	 * generation counter that we check below.
375
	 */
376
	if (unlikely(crng_has_old_seed()))
377
		crng_reseed();
378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404

	local_lock_irqsave(&crngs.lock, flags);
	crng = raw_cpu_ptr(&crngs);

	/*
	 * If our per-cpu crng is older than the base_crng, then it means
	 * somebody reseeded the base_crng. In that case, we do fast key
	 * erasure on the base_crng, and use its output as the new key
	 * for our per-cpu crng. This brings us up to date with base_crng.
	 */
	if (unlikely(crng->generation != READ_ONCE(base_crng.generation))) {
		spin_lock(&base_crng.lock);
		crng_fast_key_erasure(base_crng.key, chacha_state,
				      crng->key, sizeof(crng->key));
		crng->generation = base_crng.generation;
		spin_unlock(&base_crng.lock);
	}

	/*
	 * Finally, when we've made it this far, our per-cpu crng has an up
	 * to date key, and we can do fast key erasure with it to produce
	 * some random data and a ChaCha state for the caller. All other
	 * branches of this function are "unlikely", so most of the time we
	 * should wind up here immediately.
	 */
	crng_fast_key_erasure(crng->key, chacha_state, random_data, random_data_len);
	local_unlock_irqrestore(&crngs.lock, flags);
405 406
}

407
static void _get_random_bytes(void *buf, size_t nbytes)
408
{
409
	u32 chacha_state[CHACHA_STATE_WORDS];
410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450
	u8 tmp[CHACHA_BLOCK_SIZE];
	size_t len;

	if (!nbytes)
		return;

	len = min_t(size_t, 32, nbytes);
	crng_make_state(chacha_state, buf, len);
	nbytes -= len;
	buf += len;

	while (nbytes) {
		if (nbytes < CHACHA_BLOCK_SIZE) {
			chacha20_block(chacha_state, tmp);
			memcpy(buf, tmp, nbytes);
			memzero_explicit(tmp, sizeof(tmp));
			break;
		}

		chacha20_block(chacha_state, buf);
		if (unlikely(chacha_state[12] == 0))
			++chacha_state[13];
		nbytes -= CHACHA_BLOCK_SIZE;
		buf += CHACHA_BLOCK_SIZE;
	}

	memzero_explicit(chacha_state, sizeof(chacha_state));
}

/*
 * This function is the exported kernel interface.  It returns some
 * number of good random numbers, suitable for key generation, seeding
 * TCP sequence numbers, etc.  It does not rely on the hardware random
 * number generator.  For random bytes direct from the hardware RNG
 * (when available), use get_random_bytes_arch(). In order to ensure
 * that the randomness provided by this function is okay, the function
 * wait_for_random_bytes() should be called and return 0 at least once
 * at any point prior.
 */
void get_random_bytes(void *buf, size_t nbytes)
{
451
	warn_unseeded_randomness();
452 453 454 455 456 457
	_get_random_bytes(buf, nbytes);
}
EXPORT_SYMBOL(get_random_bytes);

static ssize_t get_random_bytes_user(void __user *buf, size_t nbytes)
{
458
	size_t len, left, ret = 0;
459 460 461 462 463 464
	u32 chacha_state[CHACHA_STATE_WORDS];
	u8 output[CHACHA_BLOCK_SIZE];

	if (!nbytes)
		return 0;

465 466 467 468 469 470 471 472 473 474 475 476
	/*
	 * Immediately overwrite the ChaCha key at index 4 with random
	 * bytes, in case userspace causes copy_to_user() below to sleep
	 * forever, so that we still retain forward secrecy in that case.
	 */
	crng_make_state(chacha_state, (u8 *)&chacha_state[4], CHACHA_KEY_SIZE);
	/*
	 * However, if we're doing a read of len <= 32, we don't need to
	 * use chacha_state after, so we can simply return those bytes to
	 * the user directly.
	 */
	if (nbytes <= CHACHA_KEY_SIZE) {
477
		ret = nbytes - copy_to_user(buf, &chacha_state[4], nbytes);
478 479
		goto out_zero_chacha;
	}
480

481
	for (;;) {
482 483 484 485 486
		chacha20_block(chacha_state, output);
		if (unlikely(chacha_state[12] == 0))
			++chacha_state[13];

		len = min_t(size_t, nbytes, CHACHA_BLOCK_SIZE);
487 488 489
		left = copy_to_user(buf, output, len);
		if (left) {
			ret += len - left;
490 491 492 493 494
			break;
		}

		buf += len;
		ret += len;
495 496 497
		nbytes -= len;
		if (!nbytes)
			break;
498 499

		BUILD_BUG_ON(PAGE_SIZE % CHACHA_BLOCK_SIZE != 0);
500
		if (ret % PAGE_SIZE == 0) {
501 502 503 504
			if (signal_pending(current))
				break;
			cond_resched();
		}
505
	}
506 507

	memzero_explicit(output, sizeof(output));
508 509
out_zero_chacha:
	memzero_explicit(chacha_state, sizeof(chacha_state));
510
	return ret ? ret : -EFAULT;
511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548
}

/*
 * Batched entropy returns random integers. The quality of the random
 * number is good as /dev/urandom. In order to ensure that the randomness
 * provided by this function is okay, the function wait_for_random_bytes()
 * should be called and return 0 at least once at any point prior.
 */
struct batched_entropy {
	union {
		/*
		 * We make this 1.5x a ChaCha block, so that we get the
		 * remaining 32 bytes from fast key erasure, plus one full
		 * block from the detached ChaCha state. We can increase
		 * the size of this later if needed so long as we keep the
		 * formula of (integer_blocks + 0.5) * CHACHA_BLOCK_SIZE.
		 */
		u64 entropy_u64[CHACHA_BLOCK_SIZE * 3 / (2 * sizeof(u64))];
		u32 entropy_u32[CHACHA_BLOCK_SIZE * 3 / (2 * sizeof(u32))];
	};
	local_lock_t lock;
	unsigned long generation;
	unsigned int position;
};


static DEFINE_PER_CPU(struct batched_entropy, batched_entropy_u64) = {
	.lock = INIT_LOCAL_LOCK(batched_entropy_u64.lock),
	.position = UINT_MAX
};

u64 get_random_u64(void)
{
	u64 ret;
	unsigned long flags;
	struct batched_entropy *batch;
	unsigned long next_gen;

549
	warn_unseeded_randomness();
550

551 552 553 554 555
	if  (!crng_ready()) {
		_get_random_bytes(&ret, sizeof(ret));
		return ret;
	}

556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586
	local_lock_irqsave(&batched_entropy_u64.lock, flags);
	batch = raw_cpu_ptr(&batched_entropy_u64);

	next_gen = READ_ONCE(base_crng.generation);
	if (batch->position >= ARRAY_SIZE(batch->entropy_u64) ||
	    next_gen != batch->generation) {
		_get_random_bytes(batch->entropy_u64, sizeof(batch->entropy_u64));
		batch->position = 0;
		batch->generation = next_gen;
	}

	ret = batch->entropy_u64[batch->position];
	batch->entropy_u64[batch->position] = 0;
	++batch->position;
	local_unlock_irqrestore(&batched_entropy_u64.lock, flags);
	return ret;
}
EXPORT_SYMBOL(get_random_u64);

static DEFINE_PER_CPU(struct batched_entropy, batched_entropy_u32) = {
	.lock = INIT_LOCAL_LOCK(batched_entropy_u32.lock),
	.position = UINT_MAX
};

u32 get_random_u32(void)
{
	u32 ret;
	unsigned long flags;
	struct batched_entropy *batch;
	unsigned long next_gen;

587
	warn_unseeded_randomness();
588

589 590 591 592 593
	if  (!crng_ready()) {
		_get_random_bytes(&ret, sizeof(ret));
		return ret;
	}

594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612
	local_lock_irqsave(&batched_entropy_u32.lock, flags);
	batch = raw_cpu_ptr(&batched_entropy_u32);

	next_gen = READ_ONCE(base_crng.generation);
	if (batch->position >= ARRAY_SIZE(batch->entropy_u32) ||
	    next_gen != batch->generation) {
		_get_random_bytes(batch->entropy_u32, sizeof(batch->entropy_u32));
		batch->position = 0;
		batch->generation = next_gen;
	}

	ret = batch->entropy_u32[batch->position];
	batch->entropy_u32[batch->position] = 0;
	++batch->position;
	local_unlock_irqrestore(&batched_entropy_u32.lock, flags);
	return ret;
}
EXPORT_SYMBOL(get_random_u32);

613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631
#ifdef CONFIG_SMP
/*
 * This function is called when the CPU is coming up, with entry
 * CPUHP_RANDOM_PREPARE, which comes before CPUHP_WORKQUEUE_PREP.
 */
int random_prepare_cpu(unsigned int cpu)
{
	/*
	 * When the cpu comes back online, immediately invalidate both
	 * the per-cpu crng and all batches, so that we serve fresh
	 * randomness.
	 */
	per_cpu_ptr(&crngs, cpu)->generation = ULONG_MAX;
	per_cpu_ptr(&batched_entropy_u32, cpu)->position = UINT_MAX;
	per_cpu_ptr(&batched_entropy_u64, cpu)->position = UINT_MAX;
	return 0;
}
#endif

632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690
/**
 * randomize_page - Generate a random, page aligned address
 * @start:	The smallest acceptable address the caller will take.
 * @range:	The size of the area, starting at @start, within which the
 *		random address must fall.
 *
 * If @start + @range would overflow, @range is capped.
 *
 * NOTE: Historical use of randomize_range, which this replaces, presumed that
 * @start was already page aligned.  We now align it regardless.
 *
 * Return: A page aligned address within [start, start + range).  On error,
 * @start is returned.
 */
unsigned long randomize_page(unsigned long start, unsigned long range)
{
	if (!PAGE_ALIGNED(start)) {
		range -= PAGE_ALIGN(start) - start;
		start = PAGE_ALIGN(start);
	}

	if (start > ULONG_MAX - range)
		range = ULONG_MAX - start;

	range >>= PAGE_SHIFT;

	if (range == 0)
		return start;

	return start + (get_random_long() % range << PAGE_SHIFT);
}

/*
 * This function will use the architecture-specific hardware random
 * number generator if it is available. It is not recommended for
 * use. Use get_random_bytes() instead. It returns the number of
 * bytes filled in.
 */
size_t __must_check get_random_bytes_arch(void *buf, size_t nbytes)
{
	size_t left = nbytes;
	u8 *p = buf;

	while (left) {
		unsigned long v;
		size_t chunk = min_t(size_t, left, sizeof(unsigned long));

		if (!arch_get_random_long(&v))
			break;

		memcpy(p, &v, chunk);
		p += chunk;
		left -= chunk;
	}

	return nbytes - left;
}
EXPORT_SYMBOL(get_random_bytes_arch);

691 692 693 694 695 696 697 698 699 700 701

/**********************************************************************
 *
 * Entropy accumulation and extraction routines.
 *
 * Callers may add entropy via:
 *
 *     static void mix_pool_bytes(const void *in, size_t nbytes)
 *
 * After which, if added entropy should be credited:
 *
702
 *     static void credit_init_bits(size_t nbits)
703
 *
704
 * Finally, extract entropy via:
705 706 707 708 709
 *
 *     static void extract_entropy(void *buf, size_t nbytes)
 *
 **********************************************************************/

710 711
enum {
	POOL_BITS = BLAKE2S_HASH_SIZE * 8,
712 713
	POOL_READY_BITS = POOL_BITS, /* When crng_init->CRNG_READY */
	POOL_EARLY_BITS = POOL_READY_BITS / 2 /* When crng_init->CRNG_EARLY */
714 715 716 717 718
};

static struct {
	struct blake2s_state hash;
	spinlock_t lock;
719
	unsigned int init_bits;
720 721 722 723 724 725 726 727
} input_pool = {
	.hash.h = { BLAKE2S_IV0 ^ (0x01010000 | BLAKE2S_HASH_SIZE),
		    BLAKE2S_IV1, BLAKE2S_IV2, BLAKE2S_IV3, BLAKE2S_IV4,
		    BLAKE2S_IV5, BLAKE2S_IV6, BLAKE2S_IV7 },
	.hash.outlen = BLAKE2S_HASH_SIZE,
	.lock = __SPIN_LOCK_UNLOCKED(input_pool.lock),
};

728 729 730 731
static void _mix_pool_bytes(const void *in, size_t nbytes)
{
	blake2s_update(&input_pool.hash, in, nbytes);
}
732 733

/*
734 735 736
 * This function adds bytes into the input pool. It does not
 * update the initialization bit counter; the caller should call
 * credit_init_bits if this is appropriate.
737
 */
738
static void mix_pool_bytes(const void *in, size_t nbytes)
739
{
740 741 742 743 744
	unsigned long flags;

	spin_lock_irqsave(&input_pool.lock, flags);
	_mix_pool_bytes(in, nbytes);
	spin_unlock_irqrestore(&input_pool.lock, flags);
745 746
}

747 748 749 750 751
/*
 * This is an HKDF-like construction for using the hashed collected entropy
 * as a PRF key, that's then expanded block-by-block.
 */
static void extract_entropy(void *buf, size_t nbytes)
752 753
{
	unsigned long flags;
754 755 756 757 758 759 760 761 762 763 764 765
	u8 seed[BLAKE2S_HASH_SIZE], next_key[BLAKE2S_HASH_SIZE];
	struct {
		unsigned long rdseed[32 / sizeof(long)];
		size_t counter;
	} block;
	size_t i;

	for (i = 0; i < ARRAY_SIZE(block.rdseed); ++i) {
		if (!arch_get_random_seed_long(&block.rdseed[i]) &&
		    !arch_get_random_long(&block.rdseed[i]))
			block.rdseed[i] = random_get_entropy();
	}
766 767

	spin_lock_irqsave(&input_pool.lock, flags);
768 769 770 771 772 773 774 775 776

	/* seed = HASHPRF(last_key, entropy_input) */
	blake2s_final(&input_pool.hash, seed);

	/* next_key = HASHPRF(seed, RDSEED || 0) */
	block.counter = 0;
	blake2s(next_key, (u8 *)&block, seed, sizeof(next_key), sizeof(block), sizeof(seed));
	blake2s_init_key(&input_pool.hash, BLAKE2S_HASH_SIZE, next_key, sizeof(next_key));

777
	spin_unlock_irqrestore(&input_pool.lock, flags);
778 779 780 781 782 783 784 785 786 787 788 789 790 791 792
	memzero_explicit(next_key, sizeof(next_key));

	while (nbytes) {
		i = min_t(size_t, nbytes, BLAKE2S_HASH_SIZE);
		/* output = HASHPRF(seed, RDSEED || ++counter) */
		++block.counter;
		blake2s(buf, (u8 *)&block, seed, i, sizeof(block), sizeof(seed));
		nbytes -= i;
		buf += i;
	}

	memzero_explicit(seed, sizeof(seed));
	memzero_explicit(&block, sizeof(block));
}

793
static void credit_init_bits(size_t nbits)
794
{
795
	static struct execute_work set_ready;
796
	unsigned int new, orig, add;
797 798
	unsigned long flags;

799
	if (crng_ready() || !nbits)
800 801 802 803 804
		return;

	add = min_t(size_t, nbits, POOL_BITS);

	do {
805
		orig = READ_ONCE(input_pool.init_bits);
806 807
		new = min_t(unsigned int, POOL_BITS, orig + add);
	} while (cmpxchg(&input_pool.init_bits, orig, new) != orig);
808

809 810
	if (orig < POOL_READY_BITS && new >= POOL_READY_BITS) {
		crng_reseed(); /* Sets crng_init to CRNG_READY under base_crng.lock. */
811
		execute_in_process_context(crng_set_ready, &set_ready);
812 813 814 815
		process_random_ready_list();
		wake_up_interruptible(&crng_init_wait);
		kill_fasync(&fasync, SIGIO, POLL_IN);
		pr_notice("crng init done\n");
816
		if (urandom_warning.missed)
817 818 819
			pr_notice("%d urandom warning(s) missed due to ratelimiting\n",
				  urandom_warning.missed);
	} else if (orig < POOL_EARLY_BITS && new >= POOL_EARLY_BITS) {
820
		spin_lock_irqsave(&base_crng.lock, flags);
821
		/* Check if crng_init is CRNG_EMPTY, to avoid race with crng_reseed(). */
822
		if (crng_init == CRNG_EMPTY) {
823
			extract_entropy(base_crng.key, sizeof(base_crng.key));
824
			crng_init = CRNG_EARLY;
825 826 827 828 829
		}
		spin_unlock_irqrestore(&base_crng.lock, flags);
	}
}

830 831 832 833 834 835 836 837 838 839 840 841

/**********************************************************************
 *
 * Entropy collection routines.
 *
 * The following exported functions are used for pushing entropy into
 * the above entropy accumulation routines:
 *
 *	void add_device_randomness(const void *buf, size_t size);
 *	void add_hwgenerator_randomness(const void *buffer, size_t count,
 *					size_t entropy);
 *	void add_bootloader_randomness(const void *buf, size_t size);
842
 *	void add_vmfork_randomness(const void *unique_vm_id, size_t size);
843
 *	void add_interrupt_randomness(int irq);
844 845 846
 *	void add_input_randomness(unsigned int type, unsigned int code,
 *	                          unsigned int value);
 *	void add_disk_randomness(struct gendisk *disk);
847 848 849 850 851 852 853 854 855 856 857 858 859
 *
 * add_device_randomness() adds data to the input pool that
 * is likely to differ between two devices (or possibly even per boot).
 * This would be things like MAC addresses or serial numbers, or the
 * read-out of the RTC. This does *not* credit any actual entropy to
 * the pool, but it initializes the pool to different values for devices
 * that might otherwise be identical and have very little entropy
 * available to them (particularly common in the embedded world).
 *
 * add_hwgenerator_randomness() is for true hardware RNGs, and will credit
 * entropy as specified by the caller. If the entropy pool is full it will
 * block until more entropy is needed.
 *
860 861 862
 * add_bootloader_randomness() is called by bootloader drivers, such as EFI
 * and device tree, and credits its input depending on whether or not the
 * configuration option CONFIG_RANDOM_TRUST_BOOTLOADER is set.
863
 *
864 865 866 867
 * add_vmfork_randomness() adds a unique (but not necessarily secret) ID
 * representing the current instance of a VM to the pool, without crediting,
 * and then force-reseeds the crng so that it takes effect immediately.
 *
868 869 870 871 872
 * add_interrupt_randomness() uses the interrupt timing as random
 * inputs to the entropy pool. Using the cycle counters and the irq source
 * as inputs, it feeds the input pool roughly once a second or after 64
 * interrupts, crediting 1 bit of entropy for whichever comes first.
 *
873 874 875 876 877 878 879 880 881 882 883 884 885
 * add_input_randomness() uses the input layer interrupt timing, as well
 * as the event type information from the hardware.
 *
 * add_disk_randomness() uses what amounts to the seek time of block
 * layer request events, on a per-disk_devt basis, as input to the
 * entropy pool. Note that high-speed solid state drives with very low
 * seek times do not make for good sources of entropy, as their seek
 * times are usually fairly consistent.
 *
 * The last two routines try to estimate how many bits of entropy
 * to credit. They do this by keeping track of the first and second
 * order deltas of the event timings.
 *
886 887 888
 **********************************************************************/

static bool trust_cpu __ro_after_init = IS_ENABLED(CONFIG_RANDOM_TRUST_CPU);
889
static bool trust_bootloader __ro_after_init = IS_ENABLED(CONFIG_RANDOM_TRUST_BOOTLOADER);
890 891 892 893
static int __init parse_trust_cpu(char *arg)
{
	return kstrtobool(arg, &trust_cpu);
}
894 895 896 897
static int __init parse_trust_bootloader(char *arg)
{
	return kstrtobool(arg, &trust_bootloader);
}
898
early_param("random.trust_cpu", parse_trust_cpu);
899
early_param("random.trust_bootloader", parse_trust_bootloader);
900

901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919
static int random_pm_notification(struct notifier_block *nb, unsigned long action, void *data)
{
	unsigned long flags, entropy = random_get_entropy();

	/*
	 * Encode a representation of how long the system has been suspended,
	 * in a way that is distinct from prior system suspends.
	 */
	ktime_t stamps[] = { ktime_get(), ktime_get_boottime(), ktime_get_real() };

	spin_lock_irqsave(&input_pool.lock, flags);
	_mix_pool_bytes(&action, sizeof(action));
	_mix_pool_bytes(stamps, sizeof(stamps));
	_mix_pool_bytes(&entropy, sizeof(entropy));
	spin_unlock_irqrestore(&input_pool.lock, flags);

	if (crng_ready() && (action == PM_RESTORE_PREPARE ||
	    (action == PM_POST_SUSPEND &&
	     !IS_ENABLED(CONFIG_PM_AUTOSLEEP) && !IS_ENABLED(CONFIG_ANDROID)))) {
920
		crng_reseed();
921 922 923 924 925 926 927
		pr_notice("crng reseeded on system resumption\n");
	}
	return 0;
}

static struct notifier_block pm_notifier = { .notifier_call = random_pm_notification };

928
/*
929
 * The first collection of entropy occurs at system boot while interrupts
930 931 932 933 934
 * are still turned off. Here we push in latent entropy, RDSEED, a timestamp,
 * utsname(), and the command line. Depending on the above configuration knob,
 * RDSEED may be considered sufficient for initialization. Note that much
 * earlier setup may already have pushed entropy into the input pool by the
 * time we get here.
935
 */
936
int __init random_init(const char *command_line)
937
{
938
	ktime_t now = ktime_get_real();
939
	unsigned int i, arch_bytes;
940
	unsigned long rv;
941

942 943 944 945 946
#if defined(LATENT_ENTROPY_PLUGIN)
	static const u8 compiletime_seed[BLAKE2S_BLOCK_SIZE] __initconst __latent_entropy;
	_mix_pool_bytes(compiletime_seed, sizeof(compiletime_seed));
#endif

947 948
	for (i = 0, arch_bytes = BLAKE2S_BLOCK_SIZE;
	     i < BLAKE2S_BLOCK_SIZE; i += sizeof(rv)) {
949 950 951
		if (!arch_get_random_seed_long_early(&rv) &&
		    !arch_get_random_long_early(&rv)) {
			rv = random_get_entropy();
952
			arch_bytes -= sizeof(rv);
953
		}
954
		_mix_pool_bytes(&rv, sizeof(rv));
955
	}
956 957
	_mix_pool_bytes(&now, sizeof(now));
	_mix_pool_bytes(utsname(), sizeof(*(utsname())));
958 959
	_mix_pool_bytes(command_line, strlen(command_line));
	add_latent_entropy();
960

961 962
	if (crng_ready())
		crng_reseed();
963 964
	else if (trust_cpu)
		credit_init_bits(arch_bytes * 8);
965

966 967
	WARN_ON(register_pm_notifier(&pm_notifier));

968 969
	WARN(!random_get_entropy(), "Missing cycle counter and fallback timer; RNG "
				    "entropy collection will consequently suffer.");
970
	return 0;
971
}
972

973
/*
974 975
 * Add device- or boot-specific data to the input pool to help
 * initialize it.
976
 *
977 978 979
 * None of this adds any entropy; it is meant to avoid the problem of
 * the entropy pool having similar initial state across largely
 * identical devices.
980
 */
981
void add_device_randomness(const void *buf, size_t size)
982
{
983 984
	unsigned long entropy = random_get_entropy();
	unsigned long flags;
985

986
	spin_lock_irqsave(&input_pool.lock, flags);
987
	_mix_pool_bytes(&entropy, sizeof(entropy));
988
	_mix_pool_bytes(buf, size);
989
	spin_unlock_irqrestore(&input_pool.lock, flags);
990 991 992
}
EXPORT_SYMBOL(add_device_randomness);

993 994 995 996 997 998 999 1000
/*
 * Interface for in-kernel drivers of true hardware RNGs.
 * Those devices may produce endless random bits and will be throttled
 * when our pool is full.
 */
void add_hwgenerator_randomness(const void *buffer, size_t count,
				size_t entropy)
{
1001 1002 1003
	mix_pool_bytes(buffer, count);
	credit_init_bits(entropy);

1004
	/*
1005 1006
	 * Throttle writing to once every CRNG_RESEED_INTERVAL, unless
	 * we're not yet initialized.
1007
	 */
1008 1009
	if (!kthread_should_stop() && crng_ready())
		schedule_timeout_interruptible(CRNG_RESEED_INTERVAL);
1010 1011 1012 1013
}
EXPORT_SYMBOL_GPL(add_hwgenerator_randomness);

/*
1014 1015
 * Handle random seed passed by bootloader, and credit it if
 * CONFIG_RANDOM_TRUST_BOOTLOADER is set.
1016 1017 1018
 */
void add_bootloader_randomness(const void *buf, size_t size)
{
1019
	mix_pool_bytes(buf, size);
1020
	if (trust_bootloader)
1021
		credit_init_bits(size * 8);
1022 1023 1024
}
EXPORT_SYMBOL_GPL(add_bootloader_randomness);

1025
#if IS_ENABLED(CONFIG_VMGENID)
1026 1027
static BLOCKING_NOTIFIER_HEAD(vmfork_chain);

1028 1029 1030 1031 1032 1033 1034 1035 1036
/*
 * Handle a new unique VM ID, which is unique, not secret, so we
 * don't credit it, but we do immediately force a reseed after so
 * that it's used by the crng posthaste.
 */
void add_vmfork_randomness(const void *unique_vm_id, size_t size)
{
	add_device_randomness(unique_vm_id, size);
	if (crng_ready()) {
1037
		crng_reseed();
1038 1039
		pr_notice("crng reseeded due to virtual machine fork\n");
	}
1040
	blocking_notifier_call_chain(&vmfork_chain, 0, NULL);
1041
}
1042
#if IS_MODULE(CONFIG_VMGENID)
1043
EXPORT_SYMBOL_GPL(add_vmfork_randomness);
1044
#endif
1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056

int register_random_vmfork_notifier(struct notifier_block *nb)
{
	return blocking_notifier_chain_register(&vmfork_chain, nb);
}
EXPORT_SYMBOL_GPL(register_random_vmfork_notifier);

int unregister_random_vmfork_notifier(struct notifier_block *nb)
{
	return blocking_notifier_chain_unregister(&vmfork_chain, nb);
}
EXPORT_SYMBOL_GPL(unregister_random_vmfork_notifier);
1057
#endif
1058

1059
struct fast_pool {
1060
	struct work_struct mix;
1061
	unsigned long pool[4];
1062
	unsigned long last;
1063
	unsigned int count;
1064 1065
};

1066 1067
static DEFINE_PER_CPU(struct fast_pool, irq_randomness) = {
#ifdef CONFIG_64BIT
1068 1069
#define FASTMIX_PERM SIPHASH_PERMUTATION
	.pool = { SIPHASH_CONST_0, SIPHASH_CONST_1, SIPHASH_CONST_2, SIPHASH_CONST_3 }
1070
#else
1071 1072
#define FASTMIX_PERM HSIPHASH_PERMUTATION
	.pool = { HSIPHASH_CONST_0, HSIPHASH_CONST_1, HSIPHASH_CONST_2, HSIPHASH_CONST_3 }
1073 1074 1075
#endif
};

1076
/*
1077 1078 1079
 * This is [Half]SipHash-1-x, starting from an empty key. Because
 * the key is fixed, it assumes that its inputs are non-malicious,
 * and therefore this has no security on its own. s represents the
1080
 * four-word SipHash state, while v represents a two-word input.
1081
 */
1082
static void fast_mix(unsigned long s[4], unsigned long v1, unsigned long v2)
1083
{
1084
	s[3] ^= v1;
1085
	FASTMIX_PERM(s[0], s[1], s[2], s[3]);
1086 1087
	s[0] ^= v1;
	s[3] ^= v2;
1088
	FASTMIX_PERM(s[0], s[1], s[2], s[3]);
1089
	s[0] ^= v2;
1090 1091
}

1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114
#ifdef CONFIG_SMP
/*
 * This function is called when the CPU has just come online, with
 * entry CPUHP_AP_RANDOM_ONLINE, just after CPUHP_AP_WORKQUEUE_ONLINE.
 */
int random_online_cpu(unsigned int cpu)
{
	/*
	 * During CPU shutdown and before CPU onlining, add_interrupt_
	 * randomness() may schedule mix_interrupt_randomness(), and
	 * set the MIX_INFLIGHT flag. However, because the worker can
	 * be scheduled on a different CPU during this period, that
	 * flag will never be cleared. For that reason, we zero out
	 * the flag here, which runs just after workqueues are onlined
	 * for the CPU again. This also has the effect of setting the
	 * irq randomness count to zero so that new accumulated irqs
	 * are fresh.
	 */
	per_cpu_ptr(&irq_randomness, cpu)->count = 0;
	return 0;
}
#endif

1115 1116 1117
static void mix_interrupt_randomness(struct work_struct *work)
{
	struct fast_pool *fast_pool = container_of(work, struct fast_pool, mix);
1118
	/*
1119 1120 1121 1122 1123
	 * The size of the copied stack pool is explicitly 2 longs so that we
	 * only ever ingest half of the siphash output each time, retaining
	 * the other half as the next "key" that carries over. The entropy is
	 * supposed to be sufficiently dispersed between bits so on average
	 * we don't wind up "losing" some.
1124
	 */
1125
	unsigned long pool[2];
1126
	unsigned int count;
1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138

	/* Check to see if we're running on the wrong CPU due to hotplug. */
	local_irq_disable();
	if (fast_pool != this_cpu_ptr(&irq_randomness)) {
		local_irq_enable();
		return;
	}

	/*
	 * Copy the pool to the stack so that the mixer always has a
	 * consistent view, before we reenable irqs again.
	 */
1139
	memcpy(pool, fast_pool->pool, sizeof(pool));
1140
	count = fast_pool->count;
1141
	fast_pool->count = 0;
1142 1143 1144
	fast_pool->last = jiffies;
	local_irq_enable();

1145
	mix_pool_bytes(pool, sizeof(pool));
1146
	credit_init_bits(max(1u, (count & U16_MAX) / 64));
1147

1148 1149 1150
	memzero_explicit(pool, sizeof(pool));
}

1151
void add_interrupt_randomness(int irq)
L
Linus Torvalds 已提交
1152
{
1153
	enum { MIX_INFLIGHT = 1U << 31 };
1154
	unsigned long entropy = random_get_entropy();
1155 1156
	struct fast_pool *fast_pool = this_cpu_ptr(&irq_randomness);
	struct pt_regs *regs = get_irq_regs();
1157
	unsigned int new_count;
1158

1159 1160
	fast_mix(fast_pool->pool, entropy,
		 (regs ? instruction_pointer(regs) : _RET_IP_) ^ swab(irq));
1161
	new_count = ++fast_pool->count;
1162

1163
	if (new_count & MIX_INFLIGHT)
L
Linus Torvalds 已提交
1164 1165
		return;

1166
	if (new_count < 64 && !time_is_before_jiffies(fast_pool->last + HZ))
1167
		return;
1168

1169 1170
	if (unlikely(!fast_pool->mix.func))
		INIT_WORK(&fast_pool->mix, mix_interrupt_randomness);
1171
	fast_pool->count |= MIX_INFLIGHT;
1172
	queue_work_on(raw_smp_processor_id(), system_highpri_wq, &fast_pool->mix);
L
Linus Torvalds 已提交
1173
}
1174
EXPORT_SYMBOL_GPL(add_interrupt_randomness);
L
Linus Torvalds 已提交
1175

1176 1177 1178 1179 1180 1181 1182 1183
/* There is one of these per entropy source */
struct timer_rand_state {
	unsigned long last_time;
	long last_delta, last_delta2;
};

/*
 * This function adds entropy to the entropy "pool" by using timing
1184 1185 1186 1187
 * delays. It uses the timer_rand_state structure to make an estimate
 * of how many bits of entropy this call has added to the pool. The
 * value "num" is also added to the pool; it should somehow describe
 * the type of event that just happened.
1188 1189 1190 1191 1192
 */
static void add_timer_randomness(struct timer_rand_state *state, unsigned int num)
{
	unsigned long entropy = random_get_entropy(), now = jiffies, flags;
	long delta, delta2, delta3;
1193
	unsigned int bits;
1194

1195 1196 1197 1198 1199
	/*
	 * If we're in a hard IRQ, add_interrupt_randomness() will be called
	 * sometime after, so mix into the fast pool.
	 */
	if (in_hardirq()) {
1200
		fast_mix(this_cpu_ptr(&irq_randomness)->pool, entropy, num);
1201 1202 1203 1204 1205 1206
	} else {
		spin_lock_irqsave(&input_pool.lock, flags);
		_mix_pool_bytes(&entropy, sizeof(entropy));
		_mix_pool_bytes(&num, sizeof(num));
		spin_unlock_irqrestore(&input_pool.lock, flags);
	}
1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236

	if (crng_ready())
		return;

	/*
	 * Calculate number of bits of randomness we probably added.
	 * We take into account the first, second and third-order deltas
	 * in order to make our estimate.
	 */
	delta = now - READ_ONCE(state->last_time);
	WRITE_ONCE(state->last_time, now);

	delta2 = delta - READ_ONCE(state->last_delta);
	WRITE_ONCE(state->last_delta, delta);

	delta3 = delta2 - READ_ONCE(state->last_delta2);
	WRITE_ONCE(state->last_delta2, delta2);

	if (delta < 0)
		delta = -delta;
	if (delta2 < 0)
		delta2 = -delta2;
	if (delta3 < 0)
		delta3 = -delta3;
	if (delta > delta2)
		delta = delta2;
	if (delta > delta3)
		delta = delta3;

	/*
1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247
	 * delta is now minimum absolute delta. Round down by 1 bit
	 * on general principles, and limit entropy estimate to 11 bits.
	 */
	bits = min(fls(delta >> 1), 11);

	/*
	 * As mentioned above, if we're in a hard IRQ, add_interrupt_randomness()
	 * will run after this, which uses a different crediting scheme of 1 bit
	 * per every 64 interrupts. In order to let that function do accounting
	 * close to the one in this function, we credit a full 64/64 bit per bit,
	 * and then subtract one to account for the extra one added.
1248
	 */
1249 1250 1251 1252
	if (in_hardirq())
		this_cpu_ptr(&irq_randomness)->count += max(1u, bits * 64) - 1;
	else
		credit_init_bits(bits);
1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296
}

void add_input_randomness(unsigned int type, unsigned int code,
			  unsigned int value)
{
	static unsigned char last_value;
	static struct timer_rand_state input_timer_state = { INITIAL_JIFFIES };

	/* Ignore autorepeat and the like. */
	if (value == last_value)
		return;

	last_value = value;
	add_timer_randomness(&input_timer_state,
			     (type << 4) ^ code ^ (code >> 4) ^ value);
}
EXPORT_SYMBOL_GPL(add_input_randomness);

#ifdef CONFIG_BLOCK
void add_disk_randomness(struct gendisk *disk)
{
	if (!disk || !disk->random)
		return;
	/* First major is 1, so we get >= 0x200 here. */
	add_timer_randomness(disk->random, 0x100 + disk_devt(disk));
}
EXPORT_SYMBOL_GPL(add_disk_randomness);

void rand_initialize_disk(struct gendisk *disk)
{
	struct timer_rand_state *state;

	/*
	 * If kzalloc returns null, we just won't use that entropy
	 * source.
	 */
	state = kzalloc(sizeof(struct timer_rand_state), GFP_KERNEL);
	if (state) {
		state->last_time = INITIAL_JIFFIES;
		disk->random = state;
	}
}
#endif

1297 1298 1299 1300 1301 1302
struct entropy_timer_state {
	unsigned long entropy;
	struct timer_list timer;
	unsigned int samples, samples_per_bit;
};

1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315
/*
 * Each time the timer fires, we expect that we got an unpredictable
 * jump in the cycle counter. Even if the timer is running on another
 * CPU, the timer activity will be touching the stack of the CPU that is
 * generating entropy..
 *
 * Note that we don't re-arm the timer in the timer itself - we are
 * happy to be scheduled away, since that just makes the load more
 * complex, but we do not want the timer to keep ticking unless the
 * entropy loop is running.
 *
 * So the re-arming always happens in the entropy loop itself.
 */
1316
static void entropy_timer(struct timer_list *timer)
1317
{
1318 1319 1320
	struct entropy_timer_state *state = container_of(timer, struct entropy_timer_state, timer);

	if (++state->samples == state->samples_per_bit) {
1321
		credit_init_bits(1);
1322 1323
		state->samples = 0;
	}
1324 1325 1326 1327 1328 1329 1330 1331
}

/*
 * If we have an actual cycle counter, see if we can
 * generate enough entropy with timing noise
 */
static void try_to_generate_entropy(void)
{
1332 1333 1334 1335
	enum { NUM_TRIAL_SAMPLES = 8192, MAX_SAMPLES_PER_BIT = 32 };
	struct entropy_timer_state stack;
	unsigned int i, num_different = 0;
	unsigned long last = random_get_entropy();
1336

1337 1338 1339 1340 1341 1342 1343 1344
	for (i = 0; i < NUM_TRIAL_SAMPLES - 1; ++i) {
		stack.entropy = random_get_entropy();
		if (stack.entropy != last)
			++num_different;
		last = stack.entropy;
	}
	stack.samples_per_bit = DIV_ROUND_UP(NUM_TRIAL_SAMPLES, num_different + 1);
	if (stack.samples_per_bit > MAX_SAMPLES_PER_BIT)
1345 1346
		return;

1347
	stack.samples = 0;
1348
	timer_setup_on_stack(&stack.timer, entropy_timer, 0);
1349
	while (!crng_ready() && !signal_pending(current)) {
1350
		if (!timer_pending(&stack.timer))
1351
			mod_timer(&stack.timer, jiffies + 1);
1352
		mix_pool_bytes(&stack.entropy, sizeof(stack.entropy));
1353
		schedule();
1354
		stack.entropy = random_get_entropy();
1355 1356 1357 1358
	}

	del_timer_sync(&stack.timer);
	destroy_timer_on_stack(&stack.timer);
1359
	mix_pool_bytes(&stack.entropy, sizeof(stack.entropy));
1360 1361
}

1362 1363 1364 1365 1366 1367 1368 1369

/**********************************************************************
 *
 * Userspace reader/writer interfaces.
 *
 * getrandom(2) is the primary modern interface into the RNG and should
 * be used in preference to anything else.
 *
1370 1371 1372 1373 1374 1375 1376 1377
 * Reading from /dev/random has the same functionality as calling
 * getrandom(2) with flags=0. In earlier versions, however, it had
 * vastly different semantics and should therefore be avoided, to
 * prevent backwards compatibility issues.
 *
 * Reading from /dev/urandom has the same functionality as calling
 * getrandom(2) with flags=GRND_INSECURE. Because it does not block
 * waiting for the RNG to be ready, it should not be used.
1378 1379 1380 1381
 *
 * Writing to either /dev/random or /dev/urandom adds entropy to
 * the input pool but does not credit it.
 *
1382 1383
 * Polling on /dev/random indicates when the RNG is initialized, on
 * the read side, and when it wants new entropy, on the write side.
1384 1385 1386 1387 1388 1389 1390 1391 1392
 *
 * Both /dev/random and /dev/urandom have the same set of ioctls for
 * adding entropy, getting the entropy count, zeroing the count, and
 * reseeding the crng.
 *
 **********************************************************************/

SYSCALL_DEFINE3(getrandom, char __user *, buf, size_t, count, unsigned int,
		flags)
L
Linus Torvalds 已提交
1393
{
1394 1395
	if (flags & ~(GRND_NONBLOCK | GRND_RANDOM | GRND_INSECURE))
		return -EINVAL;
1396

1397 1398 1399 1400 1401 1402
	/*
	 * Requesting insecure and blocking randomness at the same time makes
	 * no sense.
	 */
	if ((flags & (GRND_INSECURE | GRND_RANDOM)) == (GRND_INSECURE | GRND_RANDOM))
		return -EINVAL;
1403

1404 1405
	if (count > INT_MAX)
		count = INT_MAX;
L
Linus Torvalds 已提交
1406

1407
	if (!crng_ready() && !(flags & GRND_INSECURE)) {
1408
		int ret;
1409

1410 1411 1412 1413 1414 1415 1416
		if (flags & GRND_NONBLOCK)
			return -EAGAIN;
		ret = wait_for_random_bytes();
		if (unlikely(ret))
			return ret;
	}
	return get_random_bytes_user(buf, count);
1417 1418
}

1419
static __poll_t random_poll(struct file *file, poll_table *wait)
L
Linus Torvalds 已提交
1420
{
1421
	poll_wait(file, &crng_init_wait, wait);
1422
	return crng_ready() ? EPOLLIN | EPOLLRDNORM : EPOLLOUT | EPOLLWRNORM;
L
Linus Torvalds 已提交
1423 1424
}

1425
static int write_pool(const char __user *ubuf, size_t count)
L
Linus Torvalds 已提交
1426
{
1427
	size_t len;
1428
	int ret = 0;
1429
	u8 block[BLAKE2S_BLOCK_SIZE];
L
Linus Torvalds 已提交
1430

1431 1432
	while (count) {
		len = min(count, sizeof(block));
1433 1434 1435 1436
		if (copy_from_user(block, ubuf, len)) {
			ret = -EFAULT;
			goto out;
		}
1437 1438 1439
		count -= len;
		ubuf += len;
		mix_pool_bytes(block, len);
1440
		cond_resched();
L
Linus Torvalds 已提交
1441
	}
1442

1443 1444 1445
out:
	memzero_explicit(block, sizeof(block));
	return ret;
1446 1447
}

1448 1449
static ssize_t random_write(struct file *file, const char __user *buffer,
			    size_t count, loff_t *ppos)
1450
{
1451
	int ret;
1452

1453
	ret = write_pool(buffer, count);
1454 1455 1456 1457
	if (ret)
		return ret;

	return (ssize_t)count;
L
Linus Torvalds 已提交
1458 1459
}

1460 1461 1462 1463 1464
static ssize_t urandom_read(struct file *file, char __user *buf, size_t nbytes,
			    loff_t *ppos)
{
	static int maxwarn = 10;

1465 1466 1467 1468 1469 1470 1471
	/*
	 * Opportunistically attempt to initialize the RNG on platforms that
	 * have fast cycle counters, but don't (for now) require it to succeed.
	 */
	if (!crng_ready())
		try_to_generate_entropy();

1472 1473 1474 1475 1476
	if (!crng_ready()) {
		if (!ratelimit_disable && maxwarn <= 0)
			++urandom_warning.missed;
		else if (ratelimit_disable || __ratelimit(&urandom_warning)) {
			--maxwarn;
1477 1478
			pr_notice("%s: uninitialized urandom read (%zd bytes read)\n",
				  current->comm, nbytes);
1479
		}
1480 1481 1482 1483 1484
	}

	return get_random_bytes_user(buf, nbytes);
}

1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495
static ssize_t random_read(struct file *file, char __user *buf, size_t nbytes,
			   loff_t *ppos)
{
	int ret;

	ret = wait_for_random_bytes();
	if (ret != 0)
		return ret;
	return get_random_bytes_user(buf, nbytes);
}

M
Matt Mackall 已提交
1496
static long random_ioctl(struct file *f, unsigned int cmd, unsigned long arg)
L
Linus Torvalds 已提交
1497 1498 1499 1500 1501 1502 1503
{
	int size, ent_count;
	int __user *p = (int __user *)arg;
	int retval;

	switch (cmd) {
	case RNDGETENTCNT:
1504
		/* Inherently racy, no point locking. */
1505
		if (put_user(input_pool.init_bits, p))
L
Linus Torvalds 已提交
1506 1507 1508 1509 1510 1511 1512
			return -EFAULT;
		return 0;
	case RNDADDTOENTCNT:
		if (!capable(CAP_SYS_ADMIN))
			return -EPERM;
		if (get_user(ent_count, p))
			return -EFAULT;
1513 1514
		if (ent_count < 0)
			return -EINVAL;
1515
		credit_init_bits(ent_count);
1516
		return 0;
L
Linus Torvalds 已提交
1517 1518 1519 1520 1521 1522 1523 1524 1525
	case RNDADDENTROPY:
		if (!capable(CAP_SYS_ADMIN))
			return -EPERM;
		if (get_user(ent_count, p++))
			return -EFAULT;
		if (ent_count < 0)
			return -EINVAL;
		if (get_user(size, p++))
			return -EFAULT;
1526
		retval = write_pool((const char __user *)p, size);
L
Linus Torvalds 已提交
1527 1528
		if (retval < 0)
			return retval;
1529
		credit_init_bits(ent_count);
1530
		return 0;
L
Linus Torvalds 已提交
1531 1532
	case RNDZAPENTCNT:
	case RNDCLEARPOOL:
1533
		/* No longer has any effect. */
L
Linus Torvalds 已提交
1534 1535 1536
		if (!capable(CAP_SYS_ADMIN))
			return -EPERM;
		return 0;
1537 1538 1539
	case RNDRESEEDCRNG:
		if (!capable(CAP_SYS_ADMIN))
			return -EPERM;
1540
		if (!crng_ready())
1541
			return -ENODATA;
1542
		crng_reseed();
1543
		return 0;
L
Linus Torvalds 已提交
1544 1545 1546 1547 1548
	default:
		return -EINVAL;
	}
}

1549 1550 1551 1552 1553
static int random_fasync(int fd, struct file *filp, int on)
{
	return fasync_helper(fd, filp, on, &fasync);
}

1554
const struct file_operations random_fops = {
1555
	.read = random_read,
L
Linus Torvalds 已提交
1556
	.write = random_write,
1557
	.poll = random_poll,
M
Matt Mackall 已提交
1558
	.unlocked_ioctl = random_ioctl,
1559
	.compat_ioctl = compat_ptr_ioctl,
1560
	.fasync = random_fasync,
1561
	.llseek = noop_llseek,
L
Linus Torvalds 已提交
1562 1563
};

1564 1565 1566 1567 1568 1569 1570 1571 1572
const struct file_operations urandom_fops = {
	.read = urandom_read,
	.write = random_write,
	.unlocked_ioctl = random_ioctl,
	.compat_ioctl = compat_ptr_ioctl,
	.fasync = random_fasync,
	.llseek = noop_llseek,
};

1573

L
Linus Torvalds 已提交
1574 1575
/********************************************************************
 *
1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593
 * Sysctl interface.
 *
 * These are partly unused legacy knobs with dummy values to not break
 * userspace and partly still useful things. They are usually accessible
 * in /proc/sys/kernel/random/ and are as follows:
 *
 * - boot_id - a UUID representing the current boot.
 *
 * - uuid - a random UUID, different each time the file is read.
 *
 * - poolsize - the number of bits of entropy that the input pool can
 *   hold, tied to the POOL_BITS constant.
 *
 * - entropy_avail - the number of bits of entropy currently in the
 *   input pool. Always <= poolsize.
 *
 * - write_wakeup_threshold - the amount of entropy in the input pool
 *   below which write polls to /dev/random will unblock, requesting
1594
 *   more entropy, tied to the POOL_READY_BITS constant. It is writable
1595 1596 1597
 *   to avoid breaking old userspaces, but writing to it does not
 *   change any behavior of the RNG.
 *
1598
 * - urandom_min_reseed_secs - fixed to the value CRNG_RESEED_INTERVAL.
1599 1600
 *   It is writable to avoid breaking old userspaces, but writing
 *   to it does not change any behavior of the RNG.
L
Linus Torvalds 已提交
1601 1602 1603 1604 1605 1606 1607
 *
 ********************************************************************/

#ifdef CONFIG_SYSCTL

#include <linux/sysctl.h>

1608
static int sysctl_random_min_urandom_seed = CRNG_RESEED_INTERVAL / HZ;
1609
static int sysctl_random_write_wakeup_bits = POOL_READY_BITS;
1610
static int sysctl_poolsize = POOL_BITS;
1611
static u8 sysctl_bootid[UUID_SIZE];
L
Linus Torvalds 已提交
1612 1613

/*
G
Greg Price 已提交
1614
 * This function is used to return both the bootid UUID, and random
1615
 * UUID. The difference is in whether table->data is NULL; if it is,
L
Linus Torvalds 已提交
1616 1617
 * then a new UUID is generated and returned to the user.
 */
1618 1619
static int proc_do_uuid(struct ctl_table *table, int write, void *buffer,
			size_t *lenp, loff_t *ppos)
L
Linus Torvalds 已提交
1620
{
1621 1622 1623 1624 1625 1626 1627 1628 1629
	u8 tmp_uuid[UUID_SIZE], *uuid;
	char uuid_string[UUID_STRING_LEN + 1];
	struct ctl_table fake_table = {
		.data = uuid_string,
		.maxlen = UUID_STRING_LEN
	};

	if (write)
		return -EPERM;
L
Linus Torvalds 已提交
1630 1631 1632 1633 1634

	uuid = table->data;
	if (!uuid) {
		uuid = tmp_uuid;
		generate_random_uuid(uuid);
1635 1636 1637 1638 1639 1640 1641 1642
	} else {
		static DEFINE_SPINLOCK(bootid_spinlock);

		spin_lock(&bootid_spinlock);
		if (!uuid[8])
			generate_random_uuid(uuid);
		spin_unlock(&bootid_spinlock);
	}
L
Linus Torvalds 已提交
1643

1644 1645
	snprintf(uuid_string, sizeof(uuid_string), "%pU", uuid);
	return proc_dostring(&fake_table, 0, buffer, lenp, ppos);
L
Linus Torvalds 已提交
1646 1647
}

1648 1649 1650 1651 1652 1653 1654
/* The same as proc_dointvec, but writes don't change anything. */
static int proc_do_rointvec(struct ctl_table *table, int write, void *buffer,
			    size_t *lenp, loff_t *ppos)
{
	return write ? 0 : proc_dointvec(table, 0, buffer, lenp, ppos);
}

1655
static struct ctl_table random_table[] = {
L
Linus Torvalds 已提交
1656 1657 1658 1659 1660
	{
		.procname	= "poolsize",
		.data		= &sysctl_poolsize,
		.maxlen		= sizeof(int),
		.mode		= 0444,
1661
		.proc_handler	= proc_dointvec,
L
Linus Torvalds 已提交
1662 1663 1664
	},
	{
		.procname	= "entropy_avail",
1665
		.data		= &input_pool.init_bits,
L
Linus Torvalds 已提交
1666 1667
		.maxlen		= sizeof(int),
		.mode		= 0444,
1668
		.proc_handler	= proc_dointvec,
L
Linus Torvalds 已提交
1669 1670 1671
	},
	{
		.procname	= "write_wakeup_threshold",
1672
		.data		= &sysctl_random_write_wakeup_bits,
L
Linus Torvalds 已提交
1673 1674
		.maxlen		= sizeof(int),
		.mode		= 0644,
1675
		.proc_handler	= proc_do_rointvec,
L
Linus Torvalds 已提交
1676
	},
1677 1678
	{
		.procname	= "urandom_min_reseed_secs",
1679
		.data		= &sysctl_random_min_urandom_seed,
1680 1681
		.maxlen		= sizeof(int),
		.mode		= 0644,
1682
		.proc_handler	= proc_do_rointvec,
1683
	},
L
Linus Torvalds 已提交
1684 1685 1686 1687
	{
		.procname	= "boot_id",
		.data		= &sysctl_bootid,
		.mode		= 0444,
1688
		.proc_handler	= proc_do_uuid,
L
Linus Torvalds 已提交
1689 1690 1691 1692
	},
	{
		.procname	= "uuid",
		.mode		= 0444,
1693
		.proc_handler	= proc_do_uuid,
L
Linus Torvalds 已提交
1694
	},
1695
	{ }
L
Linus Torvalds 已提交
1696
};
1697 1698

/*
1699 1700
 * random_init() is called before sysctl_init(),
 * so we cannot call register_sysctl_init() in random_init()
1701 1702 1703 1704 1705 1706 1707
 */
static int __init random_sysctls_init(void)
{
	register_sysctl_init("kernel/random", random_table);
	return 0;
}
device_initcall(random_sysctls_init);
1708
#endif