backref.c 82.8 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
2 3 4 5
/*
 * Copyright (C) 2011 STRATO.  All rights reserved.
 */

6
#include <linux/mm.h>
7
#include <linux/rbtree.h>
8
#include <trace/events/btrfs.h>
9 10 11
#include "ctree.h"
#include "disk-io.h"
#include "backref.h"
12 13 14
#include "ulist.h"
#include "transaction.h"
#include "delayed-ref.h"
15
#include "locking.h"
16
#include "misc.h"
17
#include "tree-mod-log.h"
18

19 20 21
/* Just an arbitrary number so we can be sure this happened */
#define BACKREF_FOUND_SHARED 6

22 23 24 25 26 27
struct extent_inode_elem {
	u64 inum;
	u64 offset;
	struct extent_inode_elem *next;
};

28 29 30 31
static int check_extent_in_eb(const struct btrfs_key *key,
			      const struct extent_buffer *eb,
			      const struct btrfs_file_extent_item *fi,
			      u64 extent_item_pos,
32 33
			      struct extent_inode_elem **eie,
			      bool ignore_offset)
34
{
35
	u64 offset = 0;
36 37
	struct extent_inode_elem *e;

38 39
	if (!ignore_offset &&
	    !btrfs_file_extent_compression(eb, fi) &&
40 41 42 43
	    !btrfs_file_extent_encryption(eb, fi) &&
	    !btrfs_file_extent_other_encoding(eb, fi)) {
		u64 data_offset;
		u64 data_len;
44

45 46 47 48 49 50 51 52
		data_offset = btrfs_file_extent_offset(eb, fi);
		data_len = btrfs_file_extent_num_bytes(eb, fi);

		if (extent_item_pos < data_offset ||
		    extent_item_pos >= data_offset + data_len)
			return 1;
		offset = extent_item_pos - data_offset;
	}
53 54 55 56 57 58 59

	e = kmalloc(sizeof(*e), GFP_NOFS);
	if (!e)
		return -ENOMEM;

	e->next = *eie;
	e->inum = key->objectid;
60
	e->offset = key->offset + offset;
61 62 63 64 65
	*eie = e;

	return 0;
}

66 67 68 69 70 71 72 73 74 75
static void free_inode_elem_list(struct extent_inode_elem *eie)
{
	struct extent_inode_elem *eie_next;

	for (; eie; eie = eie_next) {
		eie_next = eie->next;
		kfree(eie);
	}
}

76 77
static int find_extent_in_eb(const struct extent_buffer *eb,
			     u64 wanted_disk_byte, u64 extent_item_pos,
78 79
			     struct extent_inode_elem **eie,
			     bool ignore_offset)
80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107
{
	u64 disk_byte;
	struct btrfs_key key;
	struct btrfs_file_extent_item *fi;
	int slot;
	int nritems;
	int extent_type;
	int ret;

	/*
	 * from the shared data ref, we only have the leaf but we need
	 * the key. thus, we must look into all items and see that we
	 * find one (some) with a reference to our extent item.
	 */
	nritems = btrfs_header_nritems(eb);
	for (slot = 0; slot < nritems; ++slot) {
		btrfs_item_key_to_cpu(eb, &key, slot);
		if (key.type != BTRFS_EXTENT_DATA_KEY)
			continue;
		fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
		extent_type = btrfs_file_extent_type(eb, fi);
		if (extent_type == BTRFS_FILE_EXTENT_INLINE)
			continue;
		/* don't skip BTRFS_FILE_EXTENT_PREALLOC, we can handle that */
		disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
		if (disk_byte != wanted_disk_byte)
			continue;

108
		ret = check_extent_in_eb(&key, eb, fi, extent_item_pos, eie, ignore_offset);
109 110 111 112 113 114 115
		if (ret < 0)
			return ret;
	}

	return 0;
}

116
struct preftree {
L
Liu Bo 已提交
117
	struct rb_root_cached root;
118
	unsigned int count;
119 120
};

L
Liu Bo 已提交
121
#define PREFTREE_INIT	{ .root = RB_ROOT_CACHED, .count = 0 }
122 123 124 125 126 127 128

struct preftrees {
	struct preftree direct;    /* BTRFS_SHARED_[DATA|BLOCK]_REF_KEY */
	struct preftree indirect;  /* BTRFS_[TREE_BLOCK|EXTENT_DATA]_REF_KEY */
	struct preftree indirect_missing_keys;
};

129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147
/*
 * Checks for a shared extent during backref search.
 *
 * The share_count tracks prelim_refs (direct and indirect) having a
 * ref->count >0:
 *  - incremented when a ref->count transitions to >0
 *  - decremented when a ref->count transitions to <1
 */
struct share_check {
	u64 root_objectid;
	u64 inum;
	int share_count;
};

static inline int extent_is_shared(struct share_check *sc)
{
	return (sc && sc->share_count > 1) ? BACKREF_FOUND_SHARED : 0;
}

148 149 150 151 152
static struct kmem_cache *btrfs_prelim_ref_cache;

int __init btrfs_prelim_ref_init(void)
{
	btrfs_prelim_ref_cache = kmem_cache_create("btrfs_prelim_ref",
153
					sizeof(struct prelim_ref),
154
					0,
155
					SLAB_MEM_SPREAD,
156 157 158 159 160 161
					NULL);
	if (!btrfs_prelim_ref_cache)
		return -ENOMEM;
	return 0;
}

162
void __cold btrfs_prelim_ref_exit(void)
163
{
164
	kmem_cache_destroy(btrfs_prelim_ref_cache);
165 166
}

167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207
static void free_pref(struct prelim_ref *ref)
{
	kmem_cache_free(btrfs_prelim_ref_cache, ref);
}

/*
 * Return 0 when both refs are for the same block (and can be merged).
 * A -1 return indicates ref1 is a 'lower' block than ref2, while 1
 * indicates a 'higher' block.
 */
static int prelim_ref_compare(struct prelim_ref *ref1,
			      struct prelim_ref *ref2)
{
	if (ref1->level < ref2->level)
		return -1;
	if (ref1->level > ref2->level)
		return 1;
	if (ref1->root_id < ref2->root_id)
		return -1;
	if (ref1->root_id > ref2->root_id)
		return 1;
	if (ref1->key_for_search.type < ref2->key_for_search.type)
		return -1;
	if (ref1->key_for_search.type > ref2->key_for_search.type)
		return 1;
	if (ref1->key_for_search.objectid < ref2->key_for_search.objectid)
		return -1;
	if (ref1->key_for_search.objectid > ref2->key_for_search.objectid)
		return 1;
	if (ref1->key_for_search.offset < ref2->key_for_search.offset)
		return -1;
	if (ref1->key_for_search.offset > ref2->key_for_search.offset)
		return 1;
	if (ref1->parent < ref2->parent)
		return -1;
	if (ref1->parent > ref2->parent)
		return 1;

	return 0;
}

208 209
static void update_share_count(struct share_check *sc, int oldcount,
			       int newcount)
210 211 212 213 214 215 216 217 218 219
{
	if ((!sc) || (oldcount == 0 && newcount < 1))
		return;

	if (oldcount > 0 && newcount < 1)
		sc->share_count--;
	else if (oldcount < 1 && newcount > 0)
		sc->share_count++;
}

220 221 222
/*
 * Add @newref to the @root rbtree, merging identical refs.
 *
223
 * Callers should assume that newref has been freed after calling.
224
 */
225 226
static void prelim_ref_insert(const struct btrfs_fs_info *fs_info,
			      struct preftree *preftree,
227 228
			      struct prelim_ref *newref,
			      struct share_check *sc)
229
{
L
Liu Bo 已提交
230
	struct rb_root_cached *root;
231 232 233 234
	struct rb_node **p;
	struct rb_node *parent = NULL;
	struct prelim_ref *ref;
	int result;
L
Liu Bo 已提交
235
	bool leftmost = true;
236 237

	root = &preftree->root;
L
Liu Bo 已提交
238
	p = &root->rb_root.rb_node;
239 240 241 242 243 244 245 246 247

	while (*p) {
		parent = *p;
		ref = rb_entry(parent, struct prelim_ref, rbnode);
		result = prelim_ref_compare(ref, newref);
		if (result < 0) {
			p = &(*p)->rb_left;
		} else if (result > 0) {
			p = &(*p)->rb_right;
L
Liu Bo 已提交
248
			leftmost = false;
249 250 251 252 253 254 255 256 257 258 259
		} else {
			/* Identical refs, merge them and free @newref */
			struct extent_inode_elem *eie = ref->inode_list;

			while (eie && eie->next)
				eie = eie->next;

			if (!eie)
				ref->inode_list = newref->inode_list;
			else
				eie->next = newref->inode_list;
260 261
			trace_btrfs_prelim_ref_merge(fs_info, ref, newref,
						     preftree->count);
262 263 264 265 266 267 268
			/*
			 * A delayed ref can have newref->count < 0.
			 * The ref->count is updated to follow any
			 * BTRFS_[ADD|DROP]_DELAYED_REF actions.
			 */
			update_share_count(sc, ref->count,
					   ref->count + newref->count);
269 270 271 272 273 274
			ref->count += newref->count;
			free_pref(newref);
			return;
		}
	}

275
	update_share_count(sc, 0, newref->count);
276
	preftree->count++;
277
	trace_btrfs_prelim_ref_insert(fs_info, newref, NULL, preftree->count);
278
	rb_link_node(&newref->rbnode, parent, p);
L
Liu Bo 已提交
279
	rb_insert_color_cached(&newref->rbnode, root, leftmost);
280 281 282 283 284 285 286 287 288 289
}

/*
 * Release the entire tree.  We don't care about internal consistency so
 * just free everything and then reset the tree root.
 */
static void prelim_release(struct preftree *preftree)
{
	struct prelim_ref *ref, *next_ref;

L
Liu Bo 已提交
290 291
	rbtree_postorder_for_each_entry_safe(ref, next_ref,
					     &preftree->root.rb_root, rbnode)
292 293
		free_pref(ref);

L
Liu Bo 已提交
294
	preftree->root = RB_ROOT_CACHED;
295
	preftree->count = 0;
296 297
}

298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329
/*
 * the rules for all callers of this function are:
 * - obtaining the parent is the goal
 * - if you add a key, you must know that it is a correct key
 * - if you cannot add the parent or a correct key, then we will look into the
 *   block later to set a correct key
 *
 * delayed refs
 * ============
 *        backref type | shared | indirect | shared | indirect
 * information         |   tree |     tree |   data |     data
 * --------------------+--------+----------+--------+----------
 *      parent logical |    y   |     -    |    -   |     -
 *      key to resolve |    -   |     y    |    y   |     y
 *  tree block logical |    -   |     -    |    -   |     -
 *  root for resolving |    y   |     y    |    y   |     y
 *
 * - column 1:       we've the parent -> done
 * - column 2, 3, 4: we use the key to find the parent
 *
 * on disk refs (inline or keyed)
 * ==============================
 *        backref type | shared | indirect | shared | indirect
 * information         |   tree |     tree |   data |     data
 * --------------------+--------+----------+--------+----------
 *      parent logical |    y   |     -    |    y   |     -
 *      key to resolve |    -   |     -    |    -   |     y
 *  tree block logical |    y   |     y    |    y   |     y
 *  root for resolving |    -   |     y    |    y   |     y
 *
 * - column 1, 3: we've the parent -> done
 * - column 2:    we take the first key from the block to find the parent
330
 *                (see add_missing_keys)
331 332 333 334 335
 * - column 4:    we use the key to find the parent
 *
 * additional information that's available but not required to find the parent
 * block might help in merging entries to gain some speed.
 */
336 337
static int add_prelim_ref(const struct btrfs_fs_info *fs_info,
			  struct preftree *preftree, u64 root_id,
338
			  const struct btrfs_key *key, int level, u64 parent,
339 340
			  u64 wanted_disk_byte, int count,
			  struct share_check *sc, gfp_t gfp_mask)
341
{
342
	struct prelim_ref *ref;
343

344 345 346
	if (root_id == BTRFS_DATA_RELOC_TREE_OBJECTID)
		return 0;

347
	ref = kmem_cache_alloc(btrfs_prelim_ref_cache, gfp_mask);
348 349 350 351
	if (!ref)
		return -ENOMEM;

	ref->root_id = root_id;
352
	if (key)
353
		ref->key_for_search = *key;
354
	else
355
		memset(&ref->key_for_search, 0, sizeof(ref->key_for_search));
356

357
	ref->inode_list = NULL;
358 359 360 361
	ref->level = level;
	ref->count = count;
	ref->parent = parent;
	ref->wanted_disk_byte = wanted_disk_byte;
362 363
	prelim_ref_insert(fs_info, preftree, ref, sc);
	return extent_is_shared(sc);
364 365
}

366
/* direct refs use root == 0, key == NULL */
367 368
static int add_direct_ref(const struct btrfs_fs_info *fs_info,
			  struct preftrees *preftrees, int level, u64 parent,
369 370
			  u64 wanted_disk_byte, int count,
			  struct share_check *sc, gfp_t gfp_mask)
371
{
372
	return add_prelim_ref(fs_info, &preftrees->direct, 0, NULL, level,
373
			      parent, wanted_disk_byte, count, sc, gfp_mask);
374 375 376
}

/* indirect refs use parent == 0 */
377 378
static int add_indirect_ref(const struct btrfs_fs_info *fs_info,
			    struct preftrees *preftrees, u64 root_id,
379
			    const struct btrfs_key *key, int level,
380 381
			    u64 wanted_disk_byte, int count,
			    struct share_check *sc, gfp_t gfp_mask)
382 383 384 385 386
{
	struct preftree *tree = &preftrees->indirect;

	if (!key)
		tree = &preftrees->indirect_missing_keys;
387
	return add_prelim_ref(fs_info, tree, root_id, key, level, 0,
388
			      wanted_disk_byte, count, sc, gfp_mask);
389 390
}

391 392 393 394 395
static int is_shared_data_backref(struct preftrees *preftrees, u64 bytenr)
{
	struct rb_node **p = &preftrees->direct.root.rb_root.rb_node;
	struct rb_node *parent = NULL;
	struct prelim_ref *ref = NULL;
396
	struct prelim_ref target = {};
397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415
	int result;

	target.parent = bytenr;

	while (*p) {
		parent = *p;
		ref = rb_entry(parent, struct prelim_ref, rbnode);
		result = prelim_ref_compare(ref, &target);

		if (result < 0)
			p = &(*p)->rb_left;
		else if (result > 0)
			p = &(*p)->rb_right;
		else
			return 1;
	}
	return 0;
}

416
static int add_all_parents(struct btrfs_root *root, struct btrfs_path *path,
417 418
			   struct ulist *parents,
			   struct preftrees *preftrees, struct prelim_ref *ref,
419
			   int level, u64 time_seq, const u64 *extent_item_pos,
420
			   bool ignore_offset)
421
{
422 423 424 425
	int ret = 0;
	int slot;
	struct extent_buffer *eb;
	struct btrfs_key key;
426
	struct btrfs_key *key_for_search = &ref->key_for_search;
427
	struct btrfs_file_extent_item *fi;
428
	struct extent_inode_elem *eie = NULL, *old = NULL;
429
	u64 disk_byte;
430 431
	u64 wanted_disk_byte = ref->wanted_disk_byte;
	u64 count = 0;
432
	u64 data_offset;
433

434 435 436
	if (level != 0) {
		eb = path->nodes[level];
		ret = ulist_add(parents, eb->start, 0, GFP_NOFS);
437 438
		if (ret < 0)
			return ret;
439
		return 0;
440
	}
441 442

	/*
443 444 445 446 447
	 * 1. We normally enter this function with the path already pointing to
	 *    the first item to check. But sometimes, we may enter it with
	 *    slot == nritems.
	 * 2. We are searching for normal backref but bytenr of this leaf
	 *    matches shared data backref
448 449
	 * 3. The leaf owner is not equal to the root we are searching
	 *
450
	 * For these cases, go to the next leaf before we continue.
451
	 */
452 453
	eb = path->nodes[0];
	if (path->slots[0] >= btrfs_header_nritems(eb) ||
454 455
	    is_shared_data_backref(preftrees, eb->start) ||
	    ref->root_id != btrfs_header_owner(eb)) {
456
		if (time_seq == BTRFS_SEQ_LAST)
457 458 459 460
			ret = btrfs_next_leaf(root, path);
		else
			ret = btrfs_next_old_leaf(root, path, time_seq);
	}
461

462
	while (!ret && count < ref->count) {
463
		eb = path->nodes[0];
464 465 466 467 468 469 470 471
		slot = path->slots[0];

		btrfs_item_key_to_cpu(eb, &key, slot);

		if (key.objectid != key_for_search->objectid ||
		    key.type != BTRFS_EXTENT_DATA_KEY)
			break;

472 473
		/*
		 * We are searching for normal backref but bytenr of this leaf
474 475
		 * matches shared data backref, OR
		 * the leaf owner is not equal to the root we are searching for
476
		 */
477 478 479
		if (slot == 0 &&
		    (is_shared_data_backref(preftrees, eb->start) ||
		     ref->root_id != btrfs_header_owner(eb))) {
480
			if (time_seq == BTRFS_SEQ_LAST)
481 482 483 484 485
				ret = btrfs_next_leaf(root, path);
			else
				ret = btrfs_next_old_leaf(root, path, time_seq);
			continue;
		}
486 487
		fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
		disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
488
		data_offset = btrfs_file_extent_offset(eb, fi);
489 490 491

		if (disk_byte == wanted_disk_byte) {
			eie = NULL;
492
			old = NULL;
493 494 495 496
			if (ref->key_for_search.offset == key.offset - data_offset)
				count++;
			else
				goto next;
497 498 499
			if (extent_item_pos) {
				ret = check_extent_in_eb(&key, eb, fi,
						*extent_item_pos,
500
						&eie, ignore_offset);
501 502 503
				if (ret < 0)
					break;
			}
504 505
			if (ret > 0)
				goto next;
506 507
			ret = ulist_add_merge_ptr(parents, eb->start,
						  eie, (void **)&old, GFP_NOFS);
508 509 510 511 512 513
			if (ret < 0)
				break;
			if (!ret && extent_item_pos) {
				while (old->next)
					old = old->next;
				old->next = eie;
514
			}
515
			eie = NULL;
516
		}
517
next:
518
		if (time_seq == BTRFS_SEQ_LAST)
519 520 521
			ret = btrfs_next_item(root, path);
		else
			ret = btrfs_next_old_item(root, path, time_seq);
522 523
	}

524 525
	if (ret > 0)
		ret = 0;
526 527
	else if (ret < 0)
		free_inode_elem_list(eie);
528
	return ret;
529 530 531 532 533 534
}

/*
 * resolve an indirect backref in the form (root_id, key, level)
 * to a logical address
 */
535 536
static int resolve_indirect_ref(struct btrfs_fs_info *fs_info,
				struct btrfs_path *path, u64 time_seq,
537
				struct preftrees *preftrees,
538
				struct prelim_ref *ref, struct ulist *parents,
539
				const u64 *extent_item_pos, bool ignore_offset)
540 541 542 543 544 545
{
	struct btrfs_root *root;
	struct extent_buffer *eb;
	int ret = 0;
	int root_level;
	int level = ref->level;
546
	struct btrfs_key search_key = ref->key_for_search;
547

548 549 550 551 552 553 554 555 556 557 558 559
	/*
	 * If we're search_commit_root we could possibly be holding locks on
	 * other tree nodes.  This happens when qgroups does backref walks when
	 * adding new delayed refs.  To deal with this we need to look in cache
	 * for the root, and if we don't find it then we need to search the
	 * tree_root's commit root, thus the btrfs_get_fs_root_commit_root usage
	 * here.
	 */
	if (path->search_commit_root)
		root = btrfs_get_fs_root_commit_root(fs_info, path, ref->root_id);
	else
		root = btrfs_get_fs_root(fs_info, ref->root_id, false);
560 561
	if (IS_ERR(root)) {
		ret = PTR_ERR(root);
562 563 564
		goto out_free;
	}

565 566 567 568 569 570
	if (!path->search_commit_root &&
	    test_bit(BTRFS_ROOT_DELETING, &root->state)) {
		ret = -ENOENT;
		goto out;
	}

571
	if (btrfs_is_testing(fs_info)) {
J
Josef Bacik 已提交
572 573 574 575
		ret = -ENOENT;
		goto out;
	}

576 577
	if (path->search_commit_root)
		root_level = btrfs_header_level(root->commit_root);
578
	else if (time_seq == BTRFS_SEQ_LAST)
579
		root_level = btrfs_header_level(root->node);
580 581
	else
		root_level = btrfs_old_root_level(root, time_seq);
582

J
Josef Bacik 已提交
583
	if (root_level + 1 == level)
584 585
		goto out;

586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607
	/*
	 * We can often find data backrefs with an offset that is too large
	 * (>= LLONG_MAX, maximum allowed file offset) due to underflows when
	 * subtracting a file's offset with the data offset of its
	 * corresponding extent data item. This can happen for example in the
	 * clone ioctl.
	 *
	 * So if we detect such case we set the search key's offset to zero to
	 * make sure we will find the matching file extent item at
	 * add_all_parents(), otherwise we will miss it because the offset
	 * taken form the backref is much larger then the offset of the file
	 * extent item. This can make us scan a very large number of file
	 * extent items, but at least it will not make us miss any.
	 *
	 * This is an ugly workaround for a behaviour that should have never
	 * existed, but it does and a fix for the clone ioctl would touch a lot
	 * of places, cause backwards incompatibility and would not fix the
	 * problem for extents cloned with older kernels.
	 */
	if (search_key.type == BTRFS_EXTENT_DATA_KEY &&
	    search_key.offset >= LLONG_MAX)
		search_key.offset = 0;
608
	path->lowest_level = level;
609
	if (time_seq == BTRFS_SEQ_LAST)
610
		ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
611
	else
612
		ret = btrfs_search_old_slot(root, &search_key, path, time_seq);
613

614 615
	btrfs_debug(fs_info,
		"search slot in root %llu (level %d, ref count %d) returned %d for key (%llu %u %llu)",
616 617 618
		 ref->root_id, level, ref->count, ret,
		 ref->key_for_search.objectid, ref->key_for_search.type,
		 ref->key_for_search.offset);
619 620 621 622
	if (ret < 0)
		goto out;

	eb = path->nodes[level];
623
	while (!eb) {
624
		if (WARN_ON(!level)) {
625 626 627 628 629
			ret = 1;
			goto out;
		}
		level--;
		eb = path->nodes[level];
630 631
	}

632
	ret = add_all_parents(root, path, parents, preftrees, ref, level,
633
			      time_seq, extent_item_pos, ignore_offset);
634
out:
635
	btrfs_put_root(root);
636
out_free:
637 638
	path->lowest_level = 0;
	btrfs_release_path(path);
639 640 641
	return ret;
}

642 643 644 645 646 647 648 649
static struct extent_inode_elem *
unode_aux_to_inode_list(struct ulist_node *node)
{
	if (!node)
		return NULL;
	return (struct extent_inode_elem *)(uintptr_t)node->aux;
}

650
/*
651
 * We maintain three separate rbtrees: one for direct refs, one for
652 653 654 655 656 657 658 659 660 661 662 663 664
 * indirect refs which have a key, and one for indirect refs which do not
 * have a key. Each tree does merge on insertion.
 *
 * Once all of the references are located, we iterate over the tree of
 * indirect refs with missing keys. An appropriate key is located and
 * the ref is moved onto the tree for indirect refs. After all missing
 * keys are thus located, we iterate over the indirect ref tree, resolve
 * each reference, and then insert the resolved reference onto the
 * direct tree (merging there too).
 *
 * New backrefs (i.e., for parent nodes) are added to the appropriate
 * rbtree as they are encountered. The new backrefs are subsequently
 * resolved as above.
665
 */
666 667
static int resolve_indirect_refs(struct btrfs_fs_info *fs_info,
				 struct btrfs_path *path, u64 time_seq,
668
				 struct preftrees *preftrees,
669
				 const u64 *extent_item_pos,
670
				 struct share_check *sc, bool ignore_offset)
671 672 673 674 675
{
	int err;
	int ret = 0;
	struct ulist *parents;
	struct ulist_node *node;
J
Jan Schmidt 已提交
676
	struct ulist_iterator uiter;
677
	struct rb_node *rnode;
678 679 680 681 682 683

	parents = ulist_alloc(GFP_NOFS);
	if (!parents)
		return -ENOMEM;

	/*
684 685 686 687
	 * We could trade memory usage for performance here by iterating
	 * the tree, allocating new refs for each insertion, and then
	 * freeing the entire indirect tree when we're done.  In some test
	 * cases, the tree can grow quite large (~200k objects).
688
	 */
L
Liu Bo 已提交
689
	while ((rnode = rb_first_cached(&preftrees->indirect.root))) {
690 691 692 693 694 695 696 697 698
		struct prelim_ref *ref;

		ref = rb_entry(rnode, struct prelim_ref, rbnode);
		if (WARN(ref->parent,
			 "BUG: direct ref found in indirect tree")) {
			ret = -EINVAL;
			goto out;
		}

L
Liu Bo 已提交
699
		rb_erase_cached(&ref->rbnode, &preftrees->indirect.root);
700
		preftrees->indirect.count--;
701 702 703

		if (ref->count == 0) {
			free_pref(ref);
704
			continue;
705 706
		}

707 708
		if (sc && sc->root_objectid &&
		    ref->root_id != sc->root_objectid) {
709
			free_pref(ref);
710 711 712
			ret = BACKREF_FOUND_SHARED;
			goto out;
		}
713 714
		err = resolve_indirect_ref(fs_info, path, time_seq, preftrees,
					   ref, parents, extent_item_pos,
715
					   ignore_offset);
716 717 718 719 720
		/*
		 * we can only tolerate ENOENT,otherwise,we should catch error
		 * and return directly.
		 */
		if (err == -ENOENT) {
721 722
			prelim_ref_insert(fs_info, &preftrees->direct, ref,
					  NULL);
723
			continue;
724
		} else if (err) {
725
			free_pref(ref);
726 727 728
			ret = err;
			goto out;
		}
729 730

		/* we put the first parent into the ref at hand */
J
Jan Schmidt 已提交
731 732
		ULIST_ITER_INIT(&uiter);
		node = ulist_next(parents, &uiter);
733
		ref->parent = node ? node->val : 0;
734
		ref->inode_list = unode_aux_to_inode_list(node);
735

736
		/* Add a prelim_ref(s) for any other parent(s). */
J
Jan Schmidt 已提交
737
		while ((node = ulist_next(parents, &uiter))) {
738 739
			struct prelim_ref *new_ref;

740 741
			new_ref = kmem_cache_alloc(btrfs_prelim_ref_cache,
						   GFP_NOFS);
742
			if (!new_ref) {
743
				free_pref(ref);
744
				ret = -ENOMEM;
745
				goto out;
746 747 748
			}
			memcpy(new_ref, ref, sizeof(*ref));
			new_ref->parent = node->val;
749
			new_ref->inode_list = unode_aux_to_inode_list(node);
750 751
			prelim_ref_insert(fs_info, &preftrees->direct,
					  new_ref, NULL);
752
		}
753

754
		/*
755
		 * Now it's a direct ref, put it in the direct tree. We must
756 757 758
		 * do this last because the ref could be merged/freed here.
		 */
		prelim_ref_insert(fs_info, &preftrees->direct, ref, NULL);
759

760
		ulist_reinit(parents);
761
		cond_resched();
762
	}
763
out:
764 765 766 767
	ulist_free(parents);
	return ret;
}

768 769 770
/*
 * read tree blocks and add keys where required.
 */
771
static int add_missing_keys(struct btrfs_fs_info *fs_info,
772
			    struct preftrees *preftrees, bool lock)
773
{
774
	struct prelim_ref *ref;
775
	struct extent_buffer *eb;
776 777
	struct preftree *tree = &preftrees->indirect_missing_keys;
	struct rb_node *node;
778

L
Liu Bo 已提交
779
	while ((node = rb_first_cached(&tree->root))) {
780
		ref = rb_entry(node, struct prelim_ref, rbnode);
L
Liu Bo 已提交
781
		rb_erase_cached(node, &tree->root);
782 783 784

		BUG_ON(ref->parent);	/* should not be a direct ref */
		BUG_ON(ref->key_for_search.type);
785
		BUG_ON(!ref->wanted_disk_byte);
786

787 788
		eb = read_tree_block(fs_info, ref->wanted_disk_byte,
				     ref->root_id, 0, ref->level - 1, NULL);
789
		if (IS_ERR(eb)) {
790
			free_pref(ref);
791 792
			return PTR_ERR(eb);
		} else if (!extent_buffer_uptodate(eb)) {
793
			free_pref(ref);
794 795 796
			free_extent_buffer(eb);
			return -EIO;
		}
797 798
		if (lock)
			btrfs_tree_read_lock(eb);
799 800 801 802
		if (btrfs_header_level(eb) == 0)
			btrfs_item_key_to_cpu(eb, &ref->key_for_search, 0);
		else
			btrfs_node_key_to_cpu(eb, &ref->key_for_search, 0);
803 804
		if (lock)
			btrfs_tree_read_unlock(eb);
805
		free_extent_buffer(eb);
806
		prelim_ref_insert(fs_info, &preftrees->indirect, ref, NULL);
807
		cond_resched();
808 809 810 811
	}
	return 0;
}

812 813 814 815
/*
 * add all currently queued delayed refs from this head whose seq nr is
 * smaller or equal that seq to the list
 */
816 817
static int add_delayed_refs(const struct btrfs_fs_info *fs_info,
			    struct btrfs_delayed_ref_head *head, u64 seq,
818
			    struct preftrees *preftrees, struct share_check *sc)
819
{
820
	struct btrfs_delayed_ref_node *node;
821
	struct btrfs_delayed_extent_op *extent_op = head->extent_op;
822
	struct btrfs_key key;
823
	struct btrfs_key tmp_op_key;
824
	struct rb_node *n;
825
	int count;
826
	int ret = 0;
827

828
	if (extent_op && extent_op->update_key)
829
		btrfs_disk_key_to_cpu(&tmp_op_key, &extent_op->key);
830

831
	spin_lock(&head->lock);
832
	for (n = rb_first_cached(&head->ref_tree); n; n = rb_next(n)) {
833 834
		node = rb_entry(n, struct btrfs_delayed_ref_node,
				ref_node);
835 836 837 838 839 840 841 842 843
		if (node->seq > seq)
			continue;

		switch (node->action) {
		case BTRFS_ADD_DELAYED_EXTENT:
		case BTRFS_UPDATE_DELAYED_HEAD:
			WARN_ON(1);
			continue;
		case BTRFS_ADD_DELAYED_REF:
844
			count = node->ref_mod;
845 846
			break;
		case BTRFS_DROP_DELAYED_REF:
847
			count = node->ref_mod * -1;
848 849
			break;
		default:
850
			BUG();
851 852 853
		}
		switch (node->type) {
		case BTRFS_TREE_BLOCK_REF_KEY: {
854
			/* NORMAL INDIRECT METADATA backref */
855 856 857
			struct btrfs_delayed_tree_ref *ref;

			ref = btrfs_delayed_node_to_tree_ref(node);
858 859
			ret = add_indirect_ref(fs_info, preftrees, ref->root,
					       &tmp_op_key, ref->level + 1,
860 861
					       node->bytenr, count, sc,
					       GFP_ATOMIC);
862 863 864
			break;
		}
		case BTRFS_SHARED_BLOCK_REF_KEY: {
865
			/* SHARED DIRECT METADATA backref */
866 867 868
			struct btrfs_delayed_tree_ref *ref;

			ref = btrfs_delayed_node_to_tree_ref(node);
869

870 871
			ret = add_direct_ref(fs_info, preftrees, ref->level + 1,
					     ref->parent, node->bytenr, count,
872
					     sc, GFP_ATOMIC);
873 874 875
			break;
		}
		case BTRFS_EXTENT_DATA_REF_KEY: {
876
			/* NORMAL INDIRECT DATA backref */
877 878 879 880 881 882
			struct btrfs_delayed_data_ref *ref;
			ref = btrfs_delayed_node_to_data_ref(node);

			key.objectid = ref->objectid;
			key.type = BTRFS_EXTENT_DATA_KEY;
			key.offset = ref->offset;
883 884 885 886 887

			/*
			 * Found a inum that doesn't match our known inum, we
			 * know it's shared.
			 */
888
			if (sc && sc->inum && ref->objectid != sc->inum) {
889
				ret = BACKREF_FOUND_SHARED;
890
				goto out;
891 892
			}

893
			ret = add_indirect_ref(fs_info, preftrees, ref->root,
894 895
					       &key, 0, node->bytenr, count, sc,
					       GFP_ATOMIC);
896 897 898
			break;
		}
		case BTRFS_SHARED_DATA_REF_KEY: {
899
			/* SHARED DIRECT FULL backref */
900 901 902
			struct btrfs_delayed_data_ref *ref;

			ref = btrfs_delayed_node_to_data_ref(node);
903

904 905 906
			ret = add_direct_ref(fs_info, preftrees, 0, ref->parent,
					     node->bytenr, count, sc,
					     GFP_ATOMIC);
907 908 909 910 911
			break;
		}
		default:
			WARN_ON(1);
		}
912 913 914 915 916
		/*
		 * We must ignore BACKREF_FOUND_SHARED until all delayed
		 * refs have been checked.
		 */
		if (ret && (ret != BACKREF_FOUND_SHARED))
917
			break;
918
	}
919 920 921
	if (!ret)
		ret = extent_is_shared(sc);
out:
922 923
	spin_unlock(&head->lock);
	return ret;
924 925 926 927
}

/*
 * add all inline backrefs for bytenr to the list
928 929
 *
 * Returns 0 on success, <0 on error, or BACKREF_FOUND_SHARED.
930
 */
931 932
static int add_inline_refs(const struct btrfs_fs_info *fs_info,
			   struct btrfs_path *path, u64 bytenr,
933
			   int *info_level, struct preftrees *preftrees,
934
			   struct share_check *sc)
935
{
936
	int ret = 0;
937 938 939
	int slot;
	struct extent_buffer *leaf;
	struct btrfs_key key;
940
	struct btrfs_key found_key;
941 942 943 944 945 946 947 948 949 950
	unsigned long ptr;
	unsigned long end;
	struct btrfs_extent_item *ei;
	u64 flags;
	u64 item_size;

	/*
	 * enumerate all inline refs
	 */
	leaf = path->nodes[0];
951
	slot = path->slots[0];
952 953 954 955 956 957

	item_size = btrfs_item_size_nr(leaf, slot);
	BUG_ON(item_size < sizeof(*ei));

	ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item);
	flags = btrfs_extent_flags(leaf, ei);
958
	btrfs_item_key_to_cpu(leaf, &found_key, slot);
959 960 961 962

	ptr = (unsigned long)(ei + 1);
	end = (unsigned long)ei + item_size;

963 964
	if (found_key.type == BTRFS_EXTENT_ITEM_KEY &&
	    flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
965 966 967 968 969 970
		struct btrfs_tree_block_info *info;

		info = (struct btrfs_tree_block_info *)ptr;
		*info_level = btrfs_tree_block_level(leaf, info);
		ptr += sizeof(struct btrfs_tree_block_info);
		BUG_ON(ptr > end);
971 972
	} else if (found_key.type == BTRFS_METADATA_ITEM_KEY) {
		*info_level = found_key.offset;
973 974 975 976 977 978 979 980 981 982
	} else {
		BUG_ON(!(flags & BTRFS_EXTENT_FLAG_DATA));
	}

	while (ptr < end) {
		struct btrfs_extent_inline_ref *iref;
		u64 offset;
		int type;

		iref = (struct btrfs_extent_inline_ref *)ptr;
983 984 985
		type = btrfs_get_extent_inline_ref_type(leaf, iref,
							BTRFS_REF_TYPE_ANY);
		if (type == BTRFS_REF_TYPE_INVALID)
986
			return -EUCLEAN;
987

988 989 990 991
		offset = btrfs_extent_inline_ref_offset(leaf, iref);

		switch (type) {
		case BTRFS_SHARED_BLOCK_REF_KEY:
992 993
			ret = add_direct_ref(fs_info, preftrees,
					     *info_level + 1, offset,
994
					     bytenr, 1, NULL, GFP_NOFS);
995 996 997 998 999 1000 1001
			break;
		case BTRFS_SHARED_DATA_REF_KEY: {
			struct btrfs_shared_data_ref *sdref;
			int count;

			sdref = (struct btrfs_shared_data_ref *)(iref + 1);
			count = btrfs_shared_data_ref_count(leaf, sdref);
1002

1003
			ret = add_direct_ref(fs_info, preftrees, 0, offset,
1004
					     bytenr, count, sc, GFP_NOFS);
1005 1006 1007
			break;
		}
		case BTRFS_TREE_BLOCK_REF_KEY:
1008 1009
			ret = add_indirect_ref(fs_info, preftrees, offset,
					       NULL, *info_level + 1,
1010
					       bytenr, 1, NULL, GFP_NOFS);
1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022
			break;
		case BTRFS_EXTENT_DATA_REF_KEY: {
			struct btrfs_extent_data_ref *dref;
			int count;
			u64 root;

			dref = (struct btrfs_extent_data_ref *)(&iref->offset);
			count = btrfs_extent_data_ref_count(leaf, dref);
			key.objectid = btrfs_extent_data_ref_objectid(leaf,
								      dref);
			key.type = BTRFS_EXTENT_DATA_KEY;
			key.offset = btrfs_extent_data_ref_offset(leaf, dref);
1023

1024
			if (sc && sc->inum && key.objectid != sc->inum) {
1025 1026 1027 1028
				ret = BACKREF_FOUND_SHARED;
				break;
			}

1029
			root = btrfs_extent_data_ref_root(leaf, dref);
1030

1031 1032
			ret = add_indirect_ref(fs_info, preftrees, root,
					       &key, 0, bytenr, count,
1033
					       sc, GFP_NOFS);
1034 1035 1036 1037 1038
			break;
		}
		default:
			WARN_ON(1);
		}
1039 1040
		if (ret)
			return ret;
1041 1042 1043 1044 1045 1046 1047 1048
		ptr += btrfs_extent_inline_ref_size(type);
	}

	return 0;
}

/*
 * add all non-inline backrefs for bytenr to the list
1049 1050
 *
 * Returns 0 on success, <0 on error, or BACKREF_FOUND_SHARED.
1051
 */
1052 1053
static int add_keyed_refs(struct btrfs_fs_info *fs_info,
			  struct btrfs_path *path, u64 bytenr,
1054
			  int info_level, struct preftrees *preftrees,
1055
			  struct share_check *sc)
1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084
{
	struct btrfs_root *extent_root = fs_info->extent_root;
	int ret;
	int slot;
	struct extent_buffer *leaf;
	struct btrfs_key key;

	while (1) {
		ret = btrfs_next_item(extent_root, path);
		if (ret < 0)
			break;
		if (ret) {
			ret = 0;
			break;
		}

		slot = path->slots[0];
		leaf = path->nodes[0];
		btrfs_item_key_to_cpu(leaf, &key, slot);

		if (key.objectid != bytenr)
			break;
		if (key.type < BTRFS_TREE_BLOCK_REF_KEY)
			continue;
		if (key.type > BTRFS_SHARED_DATA_REF_KEY)
			break;

		switch (key.type) {
		case BTRFS_SHARED_BLOCK_REF_KEY:
1085
			/* SHARED DIRECT METADATA backref */
1086 1087
			ret = add_direct_ref(fs_info, preftrees,
					     info_level + 1, key.offset,
1088
					     bytenr, 1, NULL, GFP_NOFS);
1089 1090
			break;
		case BTRFS_SHARED_DATA_REF_KEY: {
1091
			/* SHARED DIRECT FULL backref */
1092 1093 1094 1095 1096 1097
			struct btrfs_shared_data_ref *sdref;
			int count;

			sdref = btrfs_item_ptr(leaf, slot,
					      struct btrfs_shared_data_ref);
			count = btrfs_shared_data_ref_count(leaf, sdref);
1098 1099
			ret = add_direct_ref(fs_info, preftrees, 0,
					     key.offset, bytenr, count,
1100
					     sc, GFP_NOFS);
1101 1102 1103
			break;
		}
		case BTRFS_TREE_BLOCK_REF_KEY:
1104
			/* NORMAL INDIRECT METADATA backref */
1105 1106
			ret = add_indirect_ref(fs_info, preftrees, key.offset,
					       NULL, info_level + 1, bytenr,
1107
					       1, NULL, GFP_NOFS);
1108 1109
			break;
		case BTRFS_EXTENT_DATA_REF_KEY: {
1110
			/* NORMAL INDIRECT DATA backref */
1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121
			struct btrfs_extent_data_ref *dref;
			int count;
			u64 root;

			dref = btrfs_item_ptr(leaf, slot,
					      struct btrfs_extent_data_ref);
			count = btrfs_extent_data_ref_count(leaf, dref);
			key.objectid = btrfs_extent_data_ref_objectid(leaf,
								      dref);
			key.type = BTRFS_EXTENT_DATA_KEY;
			key.offset = btrfs_extent_data_ref_offset(leaf, dref);
1122

1123
			if (sc && sc->inum && key.objectid != sc->inum) {
1124 1125 1126 1127
				ret = BACKREF_FOUND_SHARED;
				break;
			}

1128
			root = btrfs_extent_data_ref_root(leaf, dref);
1129 1130
			ret = add_indirect_ref(fs_info, preftrees, root,
					       &key, 0, bytenr, count,
1131
					       sc, GFP_NOFS);
1132 1133 1134 1135 1136
			break;
		}
		default:
			WARN_ON(1);
		}
1137 1138 1139
		if (ret)
			return ret;

1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150
	}

	return ret;
}

/*
 * this adds all existing backrefs (inline backrefs, backrefs and delayed
 * refs) for the given bytenr to the refs list, merges duplicates and resolves
 * indirect refs to their parent bytenr.
 * When roots are found, they're added to the roots list
 *
1151 1152
 * If time_seq is set to BTRFS_SEQ_LAST, it will not search delayed_refs, and
 * behave much like trans == NULL case, the difference only lies in it will not
1153 1154 1155
 * commit root.
 * The special case is for qgroup to search roots in commit_transaction().
 *
1156 1157 1158 1159 1160
 * @sc - if !NULL, then immediately return BACKREF_FOUND_SHARED when a
 * shared extent is detected.
 *
 * Otherwise this returns 0 for success and <0 for an error.
 *
1161 1162 1163 1164
 * If ignore_offset is set to false, only extent refs whose offsets match
 * extent_item_pos are returned.  If true, every extent ref is returned
 * and extent_item_pos is ignored.
 *
1165 1166 1167 1168
 * FIXME some caching might speed things up
 */
static int find_parent_nodes(struct btrfs_trans_handle *trans,
			     struct btrfs_fs_info *fs_info, u64 bytenr,
1169
			     u64 time_seq, struct ulist *refs,
1170
			     struct ulist *roots, const u64 *extent_item_pos,
1171
			     struct share_check *sc, bool ignore_offset)
1172 1173 1174 1175
{
	struct btrfs_key key;
	struct btrfs_path *path;
	struct btrfs_delayed_ref_root *delayed_refs = NULL;
1176
	struct btrfs_delayed_ref_head *head;
1177 1178
	int info_level = 0;
	int ret;
1179
	struct prelim_ref *ref;
1180
	struct rb_node *node;
1181
	struct extent_inode_elem *eie = NULL;
1182 1183 1184 1185 1186
	struct preftrees preftrees = {
		.direct = PREFTREE_INIT,
		.indirect = PREFTREE_INIT,
		.indirect_missing_keys = PREFTREE_INIT
	};
1187 1188 1189

	key.objectid = bytenr;
	key.offset = (u64)-1;
1190 1191 1192 1193
	if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
		key.type = BTRFS_METADATA_ITEM_KEY;
	else
		key.type = BTRFS_EXTENT_ITEM_KEY;
1194 1195 1196 1197

	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;
1198
	if (!trans) {
1199
		path->search_commit_root = 1;
1200 1201
		path->skip_locking = 1;
	}
1202

1203
	if (time_seq == BTRFS_SEQ_LAST)
1204 1205
		path->skip_locking = 1;

1206 1207 1208 1209 1210 1211
	/*
	 * grab both a lock on the path and a lock on the delayed ref head.
	 * We need both to get a consistent picture of how the refs look
	 * at a specified point in time
	 */
again:
1212 1213
	head = NULL;

1214 1215 1216 1217 1218
	ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 0);
	if (ret < 0)
		goto out;
	BUG_ON(ret == 0);

1219
#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1220
	if (trans && likely(trans->type != __TRANS_DUMMY) &&
1221
	    time_seq != BTRFS_SEQ_LAST) {
1222
#else
1223
	if (trans && time_seq != BTRFS_SEQ_LAST) {
1224
#endif
1225 1226 1227 1228 1229 1230
		/*
		 * look if there are updates for this ref queued and lock the
		 * head
		 */
		delayed_refs = &trans->transaction->delayed_refs;
		spin_lock(&delayed_refs->lock);
1231
		head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
1232 1233
		if (head) {
			if (!mutex_trylock(&head->mutex)) {
1234
				refcount_inc(&head->refs);
1235 1236 1237 1238 1239 1240 1241 1242 1243 1244
				spin_unlock(&delayed_refs->lock);

				btrfs_release_path(path);

				/*
				 * Mutex was contended, block until it's
				 * released and try again
				 */
				mutex_lock(&head->mutex);
				mutex_unlock(&head->mutex);
1245
				btrfs_put_delayed_ref_head(head);
1246 1247
				goto again;
			}
1248
			spin_unlock(&delayed_refs->lock);
1249
			ret = add_delayed_refs(fs_info, head, time_seq,
1250
					       &preftrees, sc);
1251
			mutex_unlock(&head->mutex);
1252
			if (ret)
1253
				goto out;
1254 1255
		} else {
			spin_unlock(&delayed_refs->lock);
1256
		}
1257 1258 1259 1260 1261 1262
	}

	if (path->slots[0]) {
		struct extent_buffer *leaf;
		int slot;

1263
		path->slots[0]--;
1264
		leaf = path->nodes[0];
1265
		slot = path->slots[0];
1266 1267
		btrfs_item_key_to_cpu(leaf, &key, slot);
		if (key.objectid == bytenr &&
1268 1269
		    (key.type == BTRFS_EXTENT_ITEM_KEY ||
		     key.type == BTRFS_METADATA_ITEM_KEY)) {
1270
			ret = add_inline_refs(fs_info, path, bytenr,
1271
					      &info_level, &preftrees, sc);
1272 1273
			if (ret)
				goto out;
1274
			ret = add_keyed_refs(fs_info, path, bytenr, info_level,
1275
					     &preftrees, sc);
1276 1277 1278 1279 1280
			if (ret)
				goto out;
		}
	}

1281
	btrfs_release_path(path);
1282

1283
	ret = add_missing_keys(fs_info, &preftrees, path->skip_locking == 0);
1284 1285 1286
	if (ret)
		goto out;

L
Liu Bo 已提交
1287
	WARN_ON(!RB_EMPTY_ROOT(&preftrees.indirect_missing_keys.root.rb_root));
1288

1289
	ret = resolve_indirect_refs(fs_info, path, time_seq, &preftrees,
1290
				    extent_item_pos, sc, ignore_offset);
1291 1292 1293
	if (ret)
		goto out;

L
Liu Bo 已提交
1294
	WARN_ON(!RB_EMPTY_ROOT(&preftrees.indirect.root.rb_root));
1295

1296 1297 1298 1299 1300 1301 1302
	/*
	 * This walks the tree of merged and resolved refs. Tree blocks are
	 * read in as needed. Unique entries are added to the ulist, and
	 * the list of found roots is updated.
	 *
	 * We release the entire tree in one go before returning.
	 */
L
Liu Bo 已提交
1303
	node = rb_first_cached(&preftrees.direct.root);
1304 1305 1306
	while (node) {
		ref = rb_entry(node, struct prelim_ref, rbnode);
		node = rb_next(&ref->rbnode);
1307 1308 1309 1310 1311 1312 1313 1314 1315 1316
		/*
		 * ref->count < 0 can happen here if there are delayed
		 * refs with a node->action of BTRFS_DROP_DELAYED_REF.
		 * prelim_ref_insert() relies on this when merging
		 * identical refs to keep the overall count correct.
		 * prelim_ref_insert() will merge only those refs
		 * which compare identically.  Any refs having
		 * e.g. different offsets would not be merged,
		 * and would retain their original ref->count < 0.
		 */
1317
		if (roots && ref->count && ref->root_id && ref->parent == 0) {
1318 1319
			if (sc && sc->root_objectid &&
			    ref->root_id != sc->root_objectid) {
1320 1321 1322 1323
				ret = BACKREF_FOUND_SHARED;
				goto out;
			}

1324 1325
			/* no parent == root of tree */
			ret = ulist_add(roots, ref->root_id, 0, GFP_NOFS);
1326 1327
			if (ret < 0)
				goto out;
1328 1329
		}
		if (ref->count && ref->parent) {
1330 1331
			if (extent_item_pos && !ref->inode_list &&
			    ref->level == 0) {
1332
				struct extent_buffer *eb;
1333

1334
				eb = read_tree_block(fs_info, ref->parent, 0,
1335
						     0, ref->level, NULL);
1336 1337 1338 1339
				if (IS_ERR(eb)) {
					ret = PTR_ERR(eb);
					goto out;
				} else if (!extent_buffer_uptodate(eb)) {
1340
					free_extent_buffer(eb);
1341 1342
					ret = -EIO;
					goto out;
1343
				}
1344

1345
				if (!path->skip_locking)
1346
					btrfs_tree_read_lock(eb);
1347
				ret = find_extent_in_eb(eb, bytenr,
1348
							*extent_item_pos, &eie, ignore_offset);
1349
				if (!path->skip_locking)
1350
					btrfs_tree_read_unlock(eb);
1351
				free_extent_buffer(eb);
1352 1353 1354
				if (ret < 0)
					goto out;
				ref->inode_list = eie;
1355
			}
1356 1357 1358
			ret = ulist_add_merge_ptr(refs, ref->parent,
						  ref->inode_list,
						  (void **)&eie, GFP_NOFS);
1359 1360
			if (ret < 0)
				goto out;
1361 1362 1363 1364 1365 1366 1367 1368 1369 1370
			if (!ret && extent_item_pos) {
				/*
				 * we've recorded that parent, so we must extend
				 * its inode list here
				 */
				BUG_ON(!eie);
				while (eie->next)
					eie = eie->next;
				eie->next = ref->inode_list;
			}
1371
			eie = NULL;
1372
		}
1373
		cond_resched();
1374 1375 1376 1377
	}

out:
	btrfs_free_path(path);
1378 1379 1380 1381 1382

	prelim_release(&preftrees.direct);
	prelim_release(&preftrees.indirect);
	prelim_release(&preftrees.indirect_missing_keys);

1383 1384
	if (ret < 0)
		free_inode_elem_list(eie);
1385 1386 1387
	return ret;
}

1388 1389 1390 1391 1392 1393 1394 1395 1396 1397
static void free_leaf_list(struct ulist *blocks)
{
	struct ulist_node *node = NULL;
	struct extent_inode_elem *eie;
	struct ulist_iterator uiter;

	ULIST_ITER_INIT(&uiter);
	while ((node = ulist_next(blocks, &uiter))) {
		if (!node->aux)
			continue;
1398
		eie = unode_aux_to_inode_list(node);
1399
		free_inode_elem_list(eie);
1400 1401 1402 1403 1404 1405
		node->aux = 0;
	}

	ulist_free(blocks);
}

1406 1407 1408 1409 1410 1411 1412 1413
/*
 * Finds all leafs with a reference to the specified combination of bytenr and
 * offset. key_list_head will point to a list of corresponding keys (caller must
 * free each list element). The leafs will be stored in the leafs ulist, which
 * must be freed with ulist_free.
 *
 * returns 0 on success, <0 on error
 */
1414 1415 1416 1417
int btrfs_find_all_leafs(struct btrfs_trans_handle *trans,
			 struct btrfs_fs_info *fs_info, u64 bytenr,
			 u64 time_seq, struct ulist **leafs,
			 const u64 *extent_item_pos, bool ignore_offset)
1418 1419 1420 1421
{
	int ret;

	*leafs = ulist_alloc(GFP_NOFS);
1422
	if (!*leafs)
1423 1424
		return -ENOMEM;

1425
	ret = find_parent_nodes(trans, fs_info, bytenr, time_seq,
1426
				*leafs, NULL, extent_item_pos, NULL, ignore_offset);
1427
	if (ret < 0 && ret != -ENOENT) {
1428
		free_leaf_list(*leafs);
1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447
		return ret;
	}

	return 0;
}

/*
 * walk all backrefs for a given extent to find all roots that reference this
 * extent. Walking a backref means finding all extents that reference this
 * extent and in turn walk the backrefs of those, too. Naturally this is a
 * recursive process, but here it is implemented in an iterative fashion: We
 * find all referencing extents for the extent in question and put them on a
 * list. In turn, we find all referencing extents for those, further appending
 * to the list. The way we iterate the list allows adding more elements after
 * the current while iterating. The process stops when we reach the end of the
 * list. Found roots are added to the roots list.
 *
 * returns 0 on success, < 0 on error.
 */
1448 1449
static int btrfs_find_all_roots_safe(struct btrfs_trans_handle *trans,
				     struct btrfs_fs_info *fs_info, u64 bytenr,
1450 1451
				     u64 time_seq, struct ulist **roots,
				     bool ignore_offset)
1452 1453 1454
{
	struct ulist *tmp;
	struct ulist_node *node = NULL;
J
Jan Schmidt 已提交
1455
	struct ulist_iterator uiter;
1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466
	int ret;

	tmp = ulist_alloc(GFP_NOFS);
	if (!tmp)
		return -ENOMEM;
	*roots = ulist_alloc(GFP_NOFS);
	if (!*roots) {
		ulist_free(tmp);
		return -ENOMEM;
	}

J
Jan Schmidt 已提交
1467
	ULIST_ITER_INIT(&uiter);
1468
	while (1) {
1469
		ret = find_parent_nodes(trans, fs_info, bytenr, time_seq,
1470
					tmp, *roots, NULL, NULL, ignore_offset);
1471 1472 1473
		if (ret < 0 && ret != -ENOENT) {
			ulist_free(tmp);
			ulist_free(*roots);
1474
			*roots = NULL;
1475 1476
			return ret;
		}
J
Jan Schmidt 已提交
1477
		node = ulist_next(tmp, &uiter);
1478 1479 1480
		if (!node)
			break;
		bytenr = node->val;
1481
		cond_resched();
1482 1483 1484 1485 1486 1487
	}

	ulist_free(tmp);
	return 0;
}

1488 1489
int btrfs_find_all_roots(struct btrfs_trans_handle *trans,
			 struct btrfs_fs_info *fs_info, u64 bytenr,
1490
			 u64 time_seq, struct ulist **roots,
1491
			 bool ignore_offset, bool skip_commit_root_sem)
1492 1493 1494
{
	int ret;

1495
	if (!trans && !skip_commit_root_sem)
1496
		down_read(&fs_info->commit_root_sem);
1497
	ret = btrfs_find_all_roots_safe(trans, fs_info, bytenr,
1498
					time_seq, roots, ignore_offset);
1499
	if (!trans && !skip_commit_root_sem)
1500 1501 1502 1503
		up_read(&fs_info->commit_root_sem);
	return ret;
}

1504
/**
1505 1506 1507 1508 1509 1510 1511
 * Check if an extent is shared or not
 *
 * @root:   root inode belongs to
 * @inum:   inode number of the inode whose extent we are checking
 * @bytenr: logical bytenr of the extent we are checking
 * @roots:  list of roots this extent is shared among
 * @tmp:    temporary list used for iteration
1512 1513 1514 1515 1516 1517 1518
 *
 * btrfs_check_shared uses the backref walking code but will short
 * circuit as soon as it finds a root or inode that doesn't match the
 * one passed in. This provides a significant performance benefit for
 * callers (such as fiemap) which want to know whether the extent is
 * shared but do not need a ref count.
 *
1519 1520
 * This attempts to attach to the running transaction in order to account for
 * delayed refs, but continues on even when no running transaction exists.
1521
 *
1522 1523
 * Return: 0 if extent is not shared, 1 if it is shared, < 0 on error.
 */
1524 1525
int btrfs_check_shared(struct btrfs_root *root, u64 inum, u64 bytenr,
		struct ulist *roots, struct ulist *tmp)
1526
{
1527 1528
	struct btrfs_fs_info *fs_info = root->fs_info;
	struct btrfs_trans_handle *trans;
1529 1530
	struct ulist_iterator uiter;
	struct ulist_node *node;
1531
	struct btrfs_seq_list elem = BTRFS_SEQ_LIST_INIT(elem);
1532
	int ret = 0;
1533
	struct share_check shared = {
1534
		.root_objectid = root->root_key.objectid,
1535 1536 1537
		.inum = inum,
		.share_count = 0,
	};
1538

1539 1540
	ulist_init(roots);
	ulist_init(tmp);
1541

1542
	trans = btrfs_join_transaction_nostart(root);
1543
	if (IS_ERR(trans)) {
1544 1545 1546 1547
		if (PTR_ERR(trans) != -ENOENT && PTR_ERR(trans) != -EROFS) {
			ret = PTR_ERR(trans);
			goto out;
		}
1548
		trans = NULL;
1549
		down_read(&fs_info->commit_root_sem);
1550 1551 1552 1553
	} else {
		btrfs_get_tree_mod_seq(fs_info, &elem);
	}

1554 1555 1556
	ULIST_ITER_INIT(&uiter);
	while (1) {
		ret = find_parent_nodes(trans, fs_info, bytenr, elem.seq, tmp,
1557
					roots, NULL, &shared, false);
1558
		if (ret == BACKREF_FOUND_SHARED) {
1559
			/* this is the only condition under which we return 1 */
1560 1561 1562 1563 1564
			ret = 1;
			break;
		}
		if (ret < 0 && ret != -ENOENT)
			break;
1565
		ret = 0;
1566 1567 1568 1569
		node = ulist_next(tmp, &uiter);
		if (!node)
			break;
		bytenr = node->val;
1570
		shared.share_count = 0;
1571 1572
		cond_resched();
	}
1573 1574

	if (trans) {
1575
		btrfs_put_tree_mod_seq(fs_info, &elem);
1576 1577
		btrfs_end_transaction(trans);
	} else {
1578
		up_read(&fs_info->commit_root_sem);
1579
	}
1580
out:
1581 1582
	ulist_release(roots);
	ulist_release(tmp);
1583 1584 1585
	return ret;
}

M
Mark Fasheh 已提交
1586 1587 1588 1589 1590 1591 1592 1593 1594
int btrfs_find_one_extref(struct btrfs_root *root, u64 inode_objectid,
			  u64 start_off, struct btrfs_path *path,
			  struct btrfs_inode_extref **ret_extref,
			  u64 *found_off)
{
	int ret, slot;
	struct btrfs_key key;
	struct btrfs_key found_key;
	struct btrfs_inode_extref *extref;
1595
	const struct extent_buffer *leaf;
M
Mark Fasheh 已提交
1596 1597 1598
	unsigned long ptr;

	key.objectid = inode_objectid;
1599
	key.type = BTRFS_INODE_EXTREF_KEY;
M
Mark Fasheh 已提交
1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638
	key.offset = start_off;

	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
	if (ret < 0)
		return ret;

	while (1) {
		leaf = path->nodes[0];
		slot = path->slots[0];
		if (slot >= btrfs_header_nritems(leaf)) {
			/*
			 * If the item at offset is not found,
			 * btrfs_search_slot will point us to the slot
			 * where it should be inserted. In our case
			 * that will be the slot directly before the
			 * next INODE_REF_KEY_V2 item. In the case
			 * that we're pointing to the last slot in a
			 * leaf, we must move one leaf over.
			 */
			ret = btrfs_next_leaf(root, path);
			if (ret) {
				if (ret >= 1)
					ret = -ENOENT;
				break;
			}
			continue;
		}

		btrfs_item_key_to_cpu(leaf, &found_key, slot);

		/*
		 * Check that we're still looking at an extended ref key for
		 * this particular objectid. If we have different
		 * objectid or type then there are no more to be found
		 * in the tree and we can exit.
		 */
		ret = -ENOENT;
		if (found_key.objectid != inode_objectid)
			break;
1639
		if (found_key.type != BTRFS_INODE_EXTREF_KEY)
M
Mark Fasheh 已提交
1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653
			break;

		ret = 0;
		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
		extref = (struct btrfs_inode_extref *)ptr;
		*ret_extref = extref;
		if (found_off)
			*found_off = found_key.offset;
		break;
	}

	return ret;
}

1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667
/*
 * this iterates to turn a name (from iref/extref) into a full filesystem path.
 * Elements of the path are separated by '/' and the path is guaranteed to be
 * 0-terminated. the path is only given within the current file system.
 * Therefore, it never starts with a '/'. the caller is responsible to provide
 * "size" bytes in "dest". the dest buffer will be filled backwards. finally,
 * the start point of the resulting string is returned. this pointer is within
 * dest, normally.
 * in case the path buffer would overflow, the pointer is decremented further
 * as if output was written to the buffer, though no more output is actually
 * generated. that way, the caller can determine how much space would be
 * required for the path to fit into the buffer. in that case, the returned
 * value will be smaller than dest. callers must check this!
 */
1668 1669 1670 1671
char *btrfs_ref_to_path(struct btrfs_root *fs_root, struct btrfs_path *path,
			u32 name_len, unsigned long name_off,
			struct extent_buffer *eb_in, u64 parent,
			char *dest, u32 size)
1672 1673 1674 1675
{
	int slot;
	u64 next_inum;
	int ret;
1676
	s64 bytes_left = ((s64)size) - 1;
1677 1678
	struct extent_buffer *eb = eb_in;
	struct btrfs_key found_key;
M
Mark Fasheh 已提交
1679
	struct btrfs_inode_ref *iref;
1680 1681 1682 1683 1684

	if (bytes_left >= 0)
		dest[bytes_left] = '\0';

	while (1) {
M
Mark Fasheh 已提交
1685
		bytes_left -= name_len;
1686 1687
		if (bytes_left >= 0)
			read_extent_buffer(eb, dest + bytes_left,
M
Mark Fasheh 已提交
1688
					   name_off, name_len);
1689
		if (eb != eb_in) {
1690
			if (!path->skip_locking)
1691
				btrfs_tree_read_unlock(eb);
1692
			free_extent_buffer(eb);
1693
		}
1694 1695
		ret = btrfs_find_item(fs_root, path, parent, 0,
				BTRFS_INODE_REF_KEY, &found_key);
1696 1697
		if (ret > 0)
			ret = -ENOENT;
1698 1699
		if (ret)
			break;
M
Mark Fasheh 已提交
1700

1701 1702 1703 1704 1705 1706 1707 1708 1709
		next_inum = found_key.offset;

		/* regular exit ahead */
		if (parent == next_inum)
			break;

		slot = path->slots[0];
		eb = path->nodes[0];
		/* make sure we can use eb after releasing the path */
1710
		if (eb != eb_in) {
1711 1712
			path->nodes[0] = NULL;
			path->locks[0] = 0;
1713
		}
1714 1715
		btrfs_release_path(path);
		iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);
M
Mark Fasheh 已提交
1716 1717 1718 1719

		name_len = btrfs_inode_ref_name_len(eb, iref);
		name_off = (unsigned long)(iref + 1);

1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739
		parent = next_inum;
		--bytes_left;
		if (bytes_left >= 0)
			dest[bytes_left] = '/';
	}

	btrfs_release_path(path);

	if (ret)
		return ERR_PTR(ret);

	return dest + bytes_left;
}

/*
 * this makes the path point to (logical EXTENT_ITEM *)
 * returns BTRFS_EXTENT_FLAG_DATA for data, BTRFS_EXTENT_FLAG_TREE_BLOCK for
 * tree blocks and <0 on error.
 */
int extent_from_logical(struct btrfs_fs_info *fs_info, u64 logical,
1740 1741
			struct btrfs_path *path, struct btrfs_key *found_key,
			u64 *flags_ret)
1742 1743 1744
{
	int ret;
	u64 flags;
1745
	u64 size = 0;
1746
	u32 item_size;
1747
	const struct extent_buffer *eb;
1748 1749 1750
	struct btrfs_extent_item *ei;
	struct btrfs_key key;

1751 1752 1753 1754
	if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
		key.type = BTRFS_METADATA_ITEM_KEY;
	else
		key.type = BTRFS_EXTENT_ITEM_KEY;
1755 1756 1757 1758 1759 1760 1761
	key.objectid = logical;
	key.offset = (u64)-1;

	ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0);
	if (ret < 0)
		return ret;

1762 1763 1764 1765 1766
	ret = btrfs_previous_extent_item(fs_info->extent_root, path, 0);
	if (ret) {
		if (ret > 0)
			ret = -ENOENT;
		return ret;
1767
	}
1768
	btrfs_item_key_to_cpu(path->nodes[0], found_key, path->slots[0]);
1769
	if (found_key->type == BTRFS_METADATA_ITEM_KEY)
1770
		size = fs_info->nodesize;
1771 1772 1773
	else if (found_key->type == BTRFS_EXTENT_ITEM_KEY)
		size = found_key->offset;

1774
	if (found_key->objectid > logical ||
1775
	    found_key->objectid + size <= logical) {
1776 1777
		btrfs_debug(fs_info,
			"logical %llu is not within any extent", logical);
1778
		return -ENOENT;
J
Jan Schmidt 已提交
1779
	}
1780 1781 1782 1783 1784 1785 1786 1787

	eb = path->nodes[0];
	item_size = btrfs_item_size_nr(eb, path->slots[0]);
	BUG_ON(item_size < sizeof(*ei));

	ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
	flags = btrfs_extent_flags(eb, ei);

1788 1789
	btrfs_debug(fs_info,
		"logical %llu is at position %llu within the extent (%llu EXTENT_ITEM %llu) flags %#llx size %u",
1790 1791
		 logical, logical - found_key->objectid, found_key->objectid,
		 found_key->offset, flags, item_size);
1792 1793 1794 1795 1796 1797 1798 1799

	WARN_ON(!flags_ret);
	if (flags_ret) {
		if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
			*flags_ret = BTRFS_EXTENT_FLAG_TREE_BLOCK;
		else if (flags & BTRFS_EXTENT_FLAG_DATA)
			*flags_ret = BTRFS_EXTENT_FLAG_DATA;
		else
1800
			BUG();
1801 1802
		return 0;
	}
1803 1804 1805 1806 1807 1808 1809 1810

	return -EIO;
}

/*
 * helper function to iterate extent inline refs. ptr must point to a 0 value
 * for the first call and may be modified. it is used to track state.
 * if more refs exist, 0 is returned and the next call to
1811
 * get_extent_inline_ref must pass the modified ptr parameter to get the
1812 1813 1814
 * next ref. after the last ref was processed, 1 is returned.
 * returns <0 on error
 */
1815 1816 1817 1818 1819 1820 1821
static int get_extent_inline_ref(unsigned long *ptr,
				 const struct extent_buffer *eb,
				 const struct btrfs_key *key,
				 const struct btrfs_extent_item *ei,
				 u32 item_size,
				 struct btrfs_extent_inline_ref **out_eiref,
				 int *out_type)
1822 1823 1824 1825 1826 1827 1828 1829 1830
{
	unsigned long end;
	u64 flags;
	struct btrfs_tree_block_info *info;

	if (!*ptr) {
		/* first call */
		flags = btrfs_extent_flags(eb, ei);
		if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
1831 1832 1833 1834 1835 1836 1837 1838 1839 1840
			if (key->type == BTRFS_METADATA_ITEM_KEY) {
				/* a skinny metadata extent */
				*out_eiref =
				     (struct btrfs_extent_inline_ref *)(ei + 1);
			} else {
				WARN_ON(key->type != BTRFS_EXTENT_ITEM_KEY);
				info = (struct btrfs_tree_block_info *)(ei + 1);
				*out_eiref =
				   (struct btrfs_extent_inline_ref *)(info + 1);
			}
1841 1842 1843 1844
		} else {
			*out_eiref = (struct btrfs_extent_inline_ref *)(ei + 1);
		}
		*ptr = (unsigned long)*out_eiref;
1845
		if ((unsigned long)(*ptr) >= (unsigned long)ei + item_size)
1846 1847 1848 1849
			return -ENOENT;
	}

	end = (unsigned long)ei + item_size;
1850
	*out_eiref = (struct btrfs_extent_inline_ref *)(*ptr);
1851 1852 1853
	*out_type = btrfs_get_extent_inline_ref_type(eb, *out_eiref,
						     BTRFS_REF_TYPE_ANY);
	if (*out_type == BTRFS_REF_TYPE_INVALID)
1854
		return -EUCLEAN;
1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866

	*ptr += btrfs_extent_inline_ref_size(*out_type);
	WARN_ON(*ptr > end);
	if (*ptr == end)
		return 1; /* last */

	return 0;
}

/*
 * reads the tree block backref for an extent. tree level and root are returned
 * through out_level and out_root. ptr must point to a 0 value for the first
1867
 * call and may be modified (see get_extent_inline_ref comment).
1868 1869 1870 1871
 * returns 0 if data was provided, 1 if there was no more data to provide or
 * <0 on error.
 */
int tree_backref_for_extent(unsigned long *ptr, struct extent_buffer *eb,
1872 1873
			    struct btrfs_key *key, struct btrfs_extent_item *ei,
			    u32 item_size, u64 *out_root, u8 *out_level)
1874 1875 1876 1877 1878 1879 1880 1881 1882
{
	int ret;
	int type;
	struct btrfs_extent_inline_ref *eiref;

	if (*ptr == (unsigned long)-1)
		return 1;

	while (1) {
1883
		ret = get_extent_inline_ref(ptr, eb, key, ei, item_size,
1884
					      &eiref, &type);
1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897
		if (ret < 0)
			return ret;

		if (type == BTRFS_TREE_BLOCK_REF_KEY ||
		    type == BTRFS_SHARED_BLOCK_REF_KEY)
			break;

		if (ret == 1)
			return 1;
	}

	/* we can treat both ref types equally here */
	*out_root = btrfs_extent_inline_ref_offset(eb, eiref);
1898 1899 1900 1901 1902 1903 1904 1905 1906 1907

	if (key->type == BTRFS_EXTENT_ITEM_KEY) {
		struct btrfs_tree_block_info *info;

		info = (struct btrfs_tree_block_info *)(ei + 1);
		*out_level = btrfs_tree_block_level(eb, info);
	} else {
		ASSERT(key->type == BTRFS_METADATA_ITEM_KEY);
		*out_level = (u8)key->offset;
	}
1908 1909 1910 1911 1912 1913 1914

	if (ret == 1)
		*ptr = (unsigned long)-1;

	return 0;
}

1915 1916 1917 1918
static int iterate_leaf_refs(struct btrfs_fs_info *fs_info,
			     struct extent_inode_elem *inode_list,
			     u64 root, u64 extent_item_objectid,
			     iterate_extent_inodes_t *iterate, void *ctx)
1919
{
1920
	struct extent_inode_elem *eie;
J
Jan Schmidt 已提交
1921 1922
	int ret = 0;

1923
	for (eie = inode_list; eie; eie = eie->next) {
1924 1925 1926 1927
		btrfs_debug(fs_info,
			    "ref for %llu resolved, key (%llu EXTEND_DATA %llu), root %llu",
			    extent_item_objectid, eie->inum,
			    eie->offset, root);
1928
		ret = iterate(eie->inum, eie->offset, root, ctx);
J
Jan Schmidt 已提交
1929
		if (ret) {
1930 1931 1932
			btrfs_debug(fs_info,
				    "stopping iteration for %llu due to ret=%d",
				    extent_item_objectid, ret);
J
Jan Schmidt 已提交
1933 1934
			break;
		}
1935 1936 1937 1938 1939 1940 1941
	}

	return ret;
}

/*
 * calls iterate() for every inode that references the extent identified by
J
Jan Schmidt 已提交
1942
 * the given parameters.
1943 1944 1945
 * when the iterator function returns a non-zero value, iteration stops.
 */
int iterate_extent_inodes(struct btrfs_fs_info *fs_info,
J
Jan Schmidt 已提交
1946
				u64 extent_item_objectid, u64 extent_item_pos,
1947
				int search_commit_root,
1948 1949
				iterate_extent_inodes_t *iterate, void *ctx,
				bool ignore_offset)
1950 1951
{
	int ret;
1952
	struct btrfs_trans_handle *trans = NULL;
1953 1954
	struct ulist *refs = NULL;
	struct ulist *roots = NULL;
J
Jan Schmidt 已提交
1955 1956
	struct ulist_node *ref_node = NULL;
	struct ulist_node *root_node = NULL;
1957
	struct btrfs_seq_list seq_elem = BTRFS_SEQ_LIST_INIT(seq_elem);
J
Jan Schmidt 已提交
1958 1959
	struct ulist_iterator ref_uiter;
	struct ulist_iterator root_uiter;
1960

1961
	btrfs_debug(fs_info, "resolving all inodes for extent %llu",
J
Jan Schmidt 已提交
1962
			extent_item_objectid);
1963

1964
	if (!search_commit_root) {
1965 1966 1967 1968 1969 1970 1971 1972 1973 1974
		trans = btrfs_attach_transaction(fs_info->extent_root);
		if (IS_ERR(trans)) {
			if (PTR_ERR(trans) != -ENOENT &&
			    PTR_ERR(trans) != -EROFS)
				return PTR_ERR(trans);
			trans = NULL;
		}
	}

	if (trans)
1975
		btrfs_get_tree_mod_seq(fs_info, &seq_elem);
1976
	else
1977
		down_read(&fs_info->commit_root_sem);
1978

J
Jan Schmidt 已提交
1979
	ret = btrfs_find_all_leafs(trans, fs_info, extent_item_objectid,
1980
				   seq_elem.seq, &refs,
1981
				   &extent_item_pos, ignore_offset);
J
Jan Schmidt 已提交
1982 1983
	if (ret)
		goto out;
1984

J
Jan Schmidt 已提交
1985 1986
	ULIST_ITER_INIT(&ref_uiter);
	while (!ret && (ref_node = ulist_next(refs, &ref_uiter))) {
1987
		ret = btrfs_find_all_roots_safe(trans, fs_info, ref_node->val,
1988
						seq_elem.seq, &roots,
1989
						ignore_offset);
J
Jan Schmidt 已提交
1990 1991
		if (ret)
			break;
J
Jan Schmidt 已提交
1992 1993
		ULIST_ITER_INIT(&root_uiter);
		while (!ret && (root_node = ulist_next(roots, &root_uiter))) {
1994 1995 1996 1997 1998 1999
			btrfs_debug(fs_info,
				    "root %llu references leaf %llu, data list %#llx",
				    root_node->val, ref_node->val,
				    ref_node->aux);
			ret = iterate_leaf_refs(fs_info,
						(struct extent_inode_elem *)
2000 2001 2002 2003
						(uintptr_t)ref_node->aux,
						root_node->val,
						extent_item_objectid,
						iterate, ctx);
J
Jan Schmidt 已提交
2004
		}
2005
		ulist_free(roots);
2006 2007
	}

2008
	free_leaf_list(refs);
J
Jan Schmidt 已提交
2009
out:
2010
	if (trans) {
2011
		btrfs_put_tree_mod_seq(fs_info, &seq_elem);
2012
		btrfs_end_transaction(trans);
2013 2014
	} else {
		up_read(&fs_info->commit_root_sem);
2015 2016
	}

2017 2018 2019 2020 2021
	return ret;
}

int iterate_inodes_from_logical(u64 logical, struct btrfs_fs_info *fs_info,
				struct btrfs_path *path,
2022 2023
				iterate_extent_inodes_t *iterate, void *ctx,
				bool ignore_offset)
2024 2025
{
	int ret;
J
Jan Schmidt 已提交
2026
	u64 extent_item_pos;
2027
	u64 flags = 0;
2028
	struct btrfs_key found_key;
2029
	int search_commit_root = path->search_commit_root;
2030

2031
	ret = extent_from_logical(fs_info, logical, path, &found_key, &flags);
J
Jan Schmidt 已提交
2032
	btrfs_release_path(path);
2033 2034
	if (ret < 0)
		return ret;
2035
	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
2036
		return -EINVAL;
2037

J
Jan Schmidt 已提交
2038
	extent_item_pos = logical - found_key.objectid;
2039 2040
	ret = iterate_extent_inodes(fs_info, found_key.objectid,
					extent_item_pos, search_commit_root,
2041
					iterate, ctx, ignore_offset);
2042 2043 2044 2045

	return ret;
}

M
Mark Fasheh 已提交
2046 2047 2048 2049 2050 2051
typedef int (iterate_irefs_t)(u64 parent, u32 name_len, unsigned long name_off,
			      struct extent_buffer *eb, void *ctx);

static int iterate_inode_refs(u64 inum, struct btrfs_root *fs_root,
			      struct btrfs_path *path,
			      iterate_irefs_t *iterate, void *ctx)
2052
{
2053
	int ret = 0;
2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064
	int slot;
	u32 cur;
	u32 len;
	u32 name_len;
	u64 parent = 0;
	int found = 0;
	struct extent_buffer *eb;
	struct btrfs_item *item;
	struct btrfs_inode_ref *iref;
	struct btrfs_key found_key;

2065
	while (!ret) {
2066 2067 2068 2069
		ret = btrfs_find_item(fs_root, path, inum,
				parent ? parent + 1 : 0, BTRFS_INODE_REF_KEY,
				&found_key);

2070 2071 2072 2073 2074 2075 2076 2077 2078 2079
		if (ret < 0)
			break;
		if (ret) {
			ret = found ? 0 : -ENOENT;
			break;
		}
		++found;

		parent = found_key.offset;
		slot = path->slots[0];
2080 2081 2082 2083 2084
		eb = btrfs_clone_extent_buffer(path->nodes[0]);
		if (!eb) {
			ret = -ENOMEM;
			break;
		}
2085 2086
		btrfs_release_path(path);

2087
		item = btrfs_item_nr(slot);
2088 2089 2090 2091 2092
		iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);

		for (cur = 0; cur < btrfs_item_size(eb, item); cur += len) {
			name_len = btrfs_inode_ref_name_len(eb, iref);
			/* path must be released before calling iterate()! */
2093 2094
			btrfs_debug(fs_root->fs_info,
				"following ref at offset %u for inode %llu in tree %llu",
2095 2096
				cur, found_key.objectid,
				fs_root->root_key.objectid);
M
Mark Fasheh 已提交
2097 2098
			ret = iterate(parent, name_len,
				      (unsigned long)(iref + 1), eb, ctx);
2099
			if (ret)
2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111
				break;
			len = sizeof(*iref) + name_len;
			iref = (struct btrfs_inode_ref *)((char *)iref + len);
		}
		free_extent_buffer(eb);
	}

	btrfs_release_path(path);

	return ret;
}

M
Mark Fasheh 已提交
2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138
static int iterate_inode_extrefs(u64 inum, struct btrfs_root *fs_root,
				 struct btrfs_path *path,
				 iterate_irefs_t *iterate, void *ctx)
{
	int ret;
	int slot;
	u64 offset = 0;
	u64 parent;
	int found = 0;
	struct extent_buffer *eb;
	struct btrfs_inode_extref *extref;
	u32 item_size;
	u32 cur_offset;
	unsigned long ptr;

	while (1) {
		ret = btrfs_find_one_extref(fs_root, inum, offset, path, &extref,
					    &offset);
		if (ret < 0)
			break;
		if (ret) {
			ret = found ? 0 : -ENOENT;
			break;
		}
		++found;

		slot = path->slots[0];
2139 2140 2141 2142 2143
		eb = btrfs_clone_extent_buffer(path->nodes[0]);
		if (!eb) {
			ret = -ENOMEM;
			break;
		}
M
Mark Fasheh 已提交
2144 2145
		btrfs_release_path(path);

2146 2147
		item_size = btrfs_item_size_nr(eb, slot);
		ptr = btrfs_item_ptr_offset(eb, slot);
M
Mark Fasheh 已提交
2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160
		cur_offset = 0;

		while (cur_offset < item_size) {
			u32 name_len;

			extref = (struct btrfs_inode_extref *)(ptr + cur_offset);
			parent = btrfs_inode_extref_parent(eb, extref);
			name_len = btrfs_inode_extref_name_len(eb, extref);
			ret = iterate(parent, name_len,
				      (unsigned long)&extref->name, eb, ctx);
			if (ret)
				break;

2161
			cur_offset += btrfs_inode_extref_name_len(eb, extref);
M
Mark Fasheh 已提交
2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193
			cur_offset += sizeof(*extref);
		}
		free_extent_buffer(eb);

		offset++;
	}

	btrfs_release_path(path);

	return ret;
}

static int iterate_irefs(u64 inum, struct btrfs_root *fs_root,
			 struct btrfs_path *path, iterate_irefs_t *iterate,
			 void *ctx)
{
	int ret;
	int found_refs = 0;

	ret = iterate_inode_refs(inum, fs_root, path, iterate, ctx);
	if (!ret)
		++found_refs;
	else if (ret != -ENOENT)
		return ret;

	ret = iterate_inode_extrefs(inum, fs_root, path, iterate, ctx);
	if (ret == -ENOENT && found_refs)
		return 0;

	return ret;
}

2194 2195 2196 2197
/*
 * returns 0 if the path could be dumped (probably truncated)
 * returns <0 in case of an error
 */
M
Mark Fasheh 已提交
2198 2199
static int inode_to_path(u64 inum, u32 name_len, unsigned long name_off,
			 struct extent_buffer *eb, void *ctx)
2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210
{
	struct inode_fs_paths *ipath = ctx;
	char *fspath;
	char *fspath_min;
	int i = ipath->fspath->elem_cnt;
	const int s_ptr = sizeof(char *);
	u32 bytes_left;

	bytes_left = ipath->fspath->bytes_left > s_ptr ?
					ipath->fspath->bytes_left - s_ptr : 0;

2211
	fspath_min = (char *)ipath->fspath->val + (i + 1) * s_ptr;
2212 2213
	fspath = btrfs_ref_to_path(ipath->fs_root, ipath->btrfs_path, name_len,
				   name_off, eb, inum, fspath_min, bytes_left);
2214 2215 2216 2217
	if (IS_ERR(fspath))
		return PTR_ERR(fspath);

	if (fspath > fspath_min) {
2218
		ipath->fspath->val[i] = (u64)(unsigned long)fspath;
2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232
		++ipath->fspath->elem_cnt;
		ipath->fspath->bytes_left = fspath - fspath_min;
	} else {
		++ipath->fspath->elem_missed;
		ipath->fspath->bytes_missing += fspath_min - fspath;
		ipath->fspath->bytes_left = 0;
	}

	return 0;
}

/*
 * this dumps all file system paths to the inode into the ipath struct, provided
 * is has been created large enough. each path is zero-terminated and accessed
2233
 * from ipath->fspath->val[i].
2234
 * when it returns, there are ipath->fspath->elem_cnt number of paths available
2235
 * in ipath->fspath->val[]. when the allocated space wasn't sufficient, the
2236
 * number of missed paths is recorded in ipath->fspath->elem_missed, otherwise,
2237 2238 2239 2240 2241 2242
 * it's zero. ipath->fspath->bytes_missing holds the number of bytes that would
 * have been needed to return all paths.
 */
int paths_from_inode(u64 inum, struct inode_fs_paths *ipath)
{
	return iterate_irefs(inum, ipath->fs_root, ipath->btrfs_path,
M
Mark Fasheh 已提交
2243
			     inode_to_path, ipath);
2244 2245 2246 2247 2248 2249 2250 2251
}

struct btrfs_data_container *init_data_container(u32 total_bytes)
{
	struct btrfs_data_container *data;
	size_t alloc_bytes;

	alloc_bytes = max_t(size_t, total_bytes, sizeof(*data));
2252
	data = kvmalloc(alloc_bytes, GFP_KERNEL);
2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283
	if (!data)
		return ERR_PTR(-ENOMEM);

	if (total_bytes >= sizeof(*data)) {
		data->bytes_left = total_bytes - sizeof(*data);
		data->bytes_missing = 0;
	} else {
		data->bytes_missing = sizeof(*data) - total_bytes;
		data->bytes_left = 0;
	}

	data->elem_cnt = 0;
	data->elem_missed = 0;

	return data;
}

/*
 * allocates space to return multiple file system paths for an inode.
 * total_bytes to allocate are passed, note that space usable for actual path
 * information will be total_bytes - sizeof(struct inode_fs_paths).
 * the returned pointer must be freed with free_ipath() in the end.
 */
struct inode_fs_paths *init_ipath(s32 total_bytes, struct btrfs_root *fs_root,
					struct btrfs_path *path)
{
	struct inode_fs_paths *ifp;
	struct btrfs_data_container *fspath;

	fspath = init_data_container(total_bytes);
	if (IS_ERR(fspath))
2284
		return ERR_CAST(fspath);
2285

2286
	ifp = kmalloc(sizeof(*ifp), GFP_KERNEL);
2287
	if (!ifp) {
2288
		kvfree(fspath);
2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300
		return ERR_PTR(-ENOMEM);
	}

	ifp->btrfs_path = path;
	ifp->fspath = fspath;
	ifp->fs_root = fs_root;

	return ifp;
}

void free_ipath(struct inode_fs_paths *ipath)
{
2301 2302
	if (!ipath)
		return;
2303
	kvfree(ipath->fspath);
2304 2305
	kfree(ipath);
}
2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316

struct btrfs_backref_iter *btrfs_backref_iter_alloc(
		struct btrfs_fs_info *fs_info, gfp_t gfp_flag)
{
	struct btrfs_backref_iter *ret;

	ret = kzalloc(sizeof(*ret), gfp_flag);
	if (!ret)
		return NULL;

	ret->path = btrfs_alloc_path();
2317
	if (!ret->path) {
2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415
		kfree(ret);
		return NULL;
	}

	/* Current backref iterator only supports iteration in commit root */
	ret->path->search_commit_root = 1;
	ret->path->skip_locking = 1;
	ret->fs_info = fs_info;

	return ret;
}

int btrfs_backref_iter_start(struct btrfs_backref_iter *iter, u64 bytenr)
{
	struct btrfs_fs_info *fs_info = iter->fs_info;
	struct btrfs_path *path = iter->path;
	struct btrfs_extent_item *ei;
	struct btrfs_key key;
	int ret;

	key.objectid = bytenr;
	key.type = BTRFS_METADATA_ITEM_KEY;
	key.offset = (u64)-1;
	iter->bytenr = bytenr;

	ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0);
	if (ret < 0)
		return ret;
	if (ret == 0) {
		ret = -EUCLEAN;
		goto release;
	}
	if (path->slots[0] == 0) {
		WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
		ret = -EUCLEAN;
		goto release;
	}
	path->slots[0]--;

	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
	if ((key.type != BTRFS_EXTENT_ITEM_KEY &&
	     key.type != BTRFS_METADATA_ITEM_KEY) || key.objectid != bytenr) {
		ret = -ENOENT;
		goto release;
	}
	memcpy(&iter->cur_key, &key, sizeof(key));
	iter->item_ptr = (u32)btrfs_item_ptr_offset(path->nodes[0],
						    path->slots[0]);
	iter->end_ptr = (u32)(iter->item_ptr +
			btrfs_item_size_nr(path->nodes[0], path->slots[0]));
	ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
			    struct btrfs_extent_item);

	/*
	 * Only support iteration on tree backref yet.
	 *
	 * This is an extra precaution for non skinny-metadata, where
	 * EXTENT_ITEM is also used for tree blocks, that we can only use
	 * extent flags to determine if it's a tree block.
	 */
	if (btrfs_extent_flags(path->nodes[0], ei) & BTRFS_EXTENT_FLAG_DATA) {
		ret = -ENOTSUPP;
		goto release;
	}
	iter->cur_ptr = (u32)(iter->item_ptr + sizeof(*ei));

	/* If there is no inline backref, go search for keyed backref */
	if (iter->cur_ptr >= iter->end_ptr) {
		ret = btrfs_next_item(fs_info->extent_root, path);

		/* No inline nor keyed ref */
		if (ret > 0) {
			ret = -ENOENT;
			goto release;
		}
		if (ret < 0)
			goto release;

		btrfs_item_key_to_cpu(path->nodes[0], &iter->cur_key,
				path->slots[0]);
		if (iter->cur_key.objectid != bytenr ||
		    (iter->cur_key.type != BTRFS_SHARED_BLOCK_REF_KEY &&
		     iter->cur_key.type != BTRFS_TREE_BLOCK_REF_KEY)) {
			ret = -ENOENT;
			goto release;
		}
		iter->cur_ptr = (u32)btrfs_item_ptr_offset(path->nodes[0],
							   path->slots[0]);
		iter->item_ptr = iter->cur_ptr;
		iter->end_ptr = (u32)(iter->item_ptr + btrfs_item_size_nr(
				      path->nodes[0], path->slots[0]));
	}

	return 0;
release:
	btrfs_backref_iter_release(iter);
	return ret;
}
2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475

/*
 * Go to the next backref item of current bytenr, can be either inlined or
 * keyed.
 *
 * Caller needs to check whether it's inline ref or not by iter->cur_key.
 *
 * Return 0 if we get next backref without problem.
 * Return >0 if there is no extra backref for this bytenr.
 * Return <0 if there is something wrong happened.
 */
int btrfs_backref_iter_next(struct btrfs_backref_iter *iter)
{
	struct extent_buffer *eb = btrfs_backref_get_eb(iter);
	struct btrfs_path *path = iter->path;
	struct btrfs_extent_inline_ref *iref;
	int ret;
	u32 size;

	if (btrfs_backref_iter_is_inline_ref(iter)) {
		/* We're still inside the inline refs */
		ASSERT(iter->cur_ptr < iter->end_ptr);

		if (btrfs_backref_has_tree_block_info(iter)) {
			/* First tree block info */
			size = sizeof(struct btrfs_tree_block_info);
		} else {
			/* Use inline ref type to determine the size */
			int type;

			iref = (struct btrfs_extent_inline_ref *)
				((unsigned long)iter->cur_ptr);
			type = btrfs_extent_inline_ref_type(eb, iref);

			size = btrfs_extent_inline_ref_size(type);
		}
		iter->cur_ptr += size;
		if (iter->cur_ptr < iter->end_ptr)
			return 0;

		/* All inline items iterated, fall through */
	}

	/* We're at keyed items, there is no inline item, go to the next one */
	ret = btrfs_next_item(iter->fs_info->extent_root, iter->path);
	if (ret)
		return ret;

	btrfs_item_key_to_cpu(path->nodes[0], &iter->cur_key, path->slots[0]);
	if (iter->cur_key.objectid != iter->bytenr ||
	    (iter->cur_key.type != BTRFS_TREE_BLOCK_REF_KEY &&
	     iter->cur_key.type != BTRFS_SHARED_BLOCK_REF_KEY))
		return 1;
	iter->item_ptr = (u32)btrfs_item_ptr_offset(path->nodes[0],
					path->slots[0]);
	iter->cur_ptr = iter->item_ptr;
	iter->end_ptr = iter->item_ptr + (u32)btrfs_item_size_nr(path->nodes[0],
						path->slots[0]);
	return 0;
}
2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492

void btrfs_backref_init_cache(struct btrfs_fs_info *fs_info,
			      struct btrfs_backref_cache *cache, int is_reloc)
{
	int i;

	cache->rb_root = RB_ROOT;
	for (i = 0; i < BTRFS_MAX_LEVEL; i++)
		INIT_LIST_HEAD(&cache->pending[i]);
	INIT_LIST_HEAD(&cache->changed);
	INIT_LIST_HEAD(&cache->detached);
	INIT_LIST_HEAD(&cache->leaves);
	INIT_LIST_HEAD(&cache->pending_edge);
	INIT_LIST_HEAD(&cache->useless_node);
	cache->fs_info = fs_info;
	cache->is_reloc = is_reloc;
}
2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513

struct btrfs_backref_node *btrfs_backref_alloc_node(
		struct btrfs_backref_cache *cache, u64 bytenr, int level)
{
	struct btrfs_backref_node *node;

	ASSERT(level >= 0 && level < BTRFS_MAX_LEVEL);
	node = kzalloc(sizeof(*node), GFP_NOFS);
	if (!node)
		return node;

	INIT_LIST_HEAD(&node->list);
	INIT_LIST_HEAD(&node->upper);
	INIT_LIST_HEAD(&node->lower);
	RB_CLEAR_NODE(&node->rb_node);
	cache->nr_nodes++;
	node->level = level;
	node->bytenr = bytenr;

	return node;
}
2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524

struct btrfs_backref_edge *btrfs_backref_alloc_edge(
		struct btrfs_backref_cache *cache)
{
	struct btrfs_backref_edge *edge;

	edge = kzalloc(sizeof(*edge), GFP_NOFS);
	if (edge)
		cache->nr_edges++;
	return edge;
}
2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562

/*
 * Drop the backref node from cache, also cleaning up all its
 * upper edges and any uncached nodes in the path.
 *
 * This cleanup happens bottom up, thus the node should either
 * be the lowest node in the cache or a detached node.
 */
void btrfs_backref_cleanup_node(struct btrfs_backref_cache *cache,
				struct btrfs_backref_node *node)
{
	struct btrfs_backref_node *upper;
	struct btrfs_backref_edge *edge;

	if (!node)
		return;

	BUG_ON(!node->lowest && !node->detached);
	while (!list_empty(&node->upper)) {
		edge = list_entry(node->upper.next, struct btrfs_backref_edge,
				  list[LOWER]);
		upper = edge->node[UPPER];
		list_del(&edge->list[LOWER]);
		list_del(&edge->list[UPPER]);
		btrfs_backref_free_edge(cache, edge);

		/*
		 * Add the node to leaf node list if no other child block
		 * cached.
		 */
		if (list_empty(&upper->lower)) {
			list_add_tail(&upper->lower, &cache->leaves);
			upper->lowest = 1;
		}
	}

	btrfs_backref_drop_node(cache, node);
}
2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595

/*
 * Release all nodes/edges from current cache
 */
void btrfs_backref_release_cache(struct btrfs_backref_cache *cache)
{
	struct btrfs_backref_node *node;
	int i;

	while (!list_empty(&cache->detached)) {
		node = list_entry(cache->detached.next,
				  struct btrfs_backref_node, list);
		btrfs_backref_cleanup_node(cache, node);
	}

	while (!list_empty(&cache->leaves)) {
		node = list_entry(cache->leaves.next,
				  struct btrfs_backref_node, lower);
		btrfs_backref_cleanup_node(cache, node);
	}

	cache->last_trans = 0;

	for (i = 0; i < BTRFS_MAX_LEVEL; i++)
		ASSERT(list_empty(&cache->pending[i]));
	ASSERT(list_empty(&cache->pending_edge));
	ASSERT(list_empty(&cache->useless_node));
	ASSERT(list_empty(&cache->changed));
	ASSERT(list_empty(&cache->detached));
	ASSERT(RB_EMPTY_ROOT(&cache->rb_root));
	ASSERT(!cache->nr_nodes);
	ASSERT(!cache->nr_edges);
}
2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626

/*
 * Handle direct tree backref
 *
 * Direct tree backref means, the backref item shows its parent bytenr
 * directly. This is for SHARED_BLOCK_REF backref (keyed or inlined).
 *
 * @ref_key:	The converted backref key.
 *		For keyed backref, it's the item key.
 *		For inlined backref, objectid is the bytenr,
 *		type is btrfs_inline_ref_type, offset is
 *		btrfs_inline_ref_offset.
 */
static int handle_direct_tree_backref(struct btrfs_backref_cache *cache,
				      struct btrfs_key *ref_key,
				      struct btrfs_backref_node *cur)
{
	struct btrfs_backref_edge *edge;
	struct btrfs_backref_node *upper;
	struct rb_node *rb_node;

	ASSERT(ref_key->type == BTRFS_SHARED_BLOCK_REF_KEY);

	/* Only reloc root uses backref pointing to itself */
	if (ref_key->objectid == ref_key->offset) {
		struct btrfs_root *root;

		cur->is_reloc_root = 1;
		/* Only reloc backref cache cares about a specific root */
		if (cache->is_reloc) {
			root = find_reloc_root(cache->fs_info, cur->bytenr);
2627
			if (!root)
2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677
				return -ENOENT;
			cur->root = root;
		} else {
			/*
			 * For generic purpose backref cache, reloc root node
			 * is useless.
			 */
			list_add(&cur->list, &cache->useless_node);
		}
		return 0;
	}

	edge = btrfs_backref_alloc_edge(cache);
	if (!edge)
		return -ENOMEM;

	rb_node = rb_simple_search(&cache->rb_root, ref_key->offset);
	if (!rb_node) {
		/* Parent node not yet cached */
		upper = btrfs_backref_alloc_node(cache, ref_key->offset,
					   cur->level + 1);
		if (!upper) {
			btrfs_backref_free_edge(cache, edge);
			return -ENOMEM;
		}

		/*
		 *  Backrefs for the upper level block isn't cached, add the
		 *  block to pending list
		 */
		list_add_tail(&edge->list[UPPER], &cache->pending_edge);
	} else {
		/* Parent node already cached */
		upper = rb_entry(rb_node, struct btrfs_backref_node, rb_node);
		ASSERT(upper->checked);
		INIT_LIST_HEAD(&edge->list[UPPER]);
	}
	btrfs_backref_link_edge(edge, cur, upper, LINK_LOWER);
	return 0;
}

/*
 * Handle indirect tree backref
 *
 * Indirect tree backref means, we only know which tree the node belongs to.
 * We still need to do a tree search to find out the parents. This is for
 * TREE_BLOCK_REF backref (keyed or inlined).
 *
 * @ref_key:	The same as @ref_key in  handle_direct_tree_backref()
 * @tree_key:	The first key of this tree block.
D
David Sterba 已提交
2678
 * @path:	A clean (released) path, to avoid allocating path every time
2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697
 *		the function get called.
 */
static int handle_indirect_tree_backref(struct btrfs_backref_cache *cache,
					struct btrfs_path *path,
					struct btrfs_key *ref_key,
					struct btrfs_key *tree_key,
					struct btrfs_backref_node *cur)
{
	struct btrfs_fs_info *fs_info = cache->fs_info;
	struct btrfs_backref_node *upper;
	struct btrfs_backref_node *lower;
	struct btrfs_backref_edge *edge;
	struct extent_buffer *eb;
	struct btrfs_root *root;
	struct rb_node *rb_node;
	int level;
	bool need_check = true;
	int ret;

D
David Sterba 已提交
2698
	root = btrfs_get_fs_root(fs_info, ref_key->offset, false);
2699 2700
	if (IS_ERR(root))
		return PTR_ERR(root);
2701
	if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
2702 2703 2704 2705 2706
		cur->cowonly = 1;

	if (btrfs_root_level(&root->root_item) == cur->level) {
		/* Tree root */
		ASSERT(btrfs_root_bytenr(&root->root_item) == cur->bytenr);
2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717
		/*
		 * For reloc backref cache, we may ignore reloc root.  But for
		 * general purpose backref cache, we can't rely on
		 * btrfs_should_ignore_reloc_root() as it may conflict with
		 * current running relocation and lead to missing root.
		 *
		 * For general purpose backref cache, reloc root detection is
		 * completely relying on direct backref (key->offset is parent
		 * bytenr), thus only do such check for reloc cache.
		 */
		if (btrfs_should_ignore_reloc_root(root) && cache->is_reloc) {
2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757
			btrfs_put_root(root);
			list_add(&cur->list, &cache->useless_node);
		} else {
			cur->root = root;
		}
		return 0;
	}

	level = cur->level + 1;

	/* Search the tree to find parent blocks referring to the block */
	path->search_commit_root = 1;
	path->skip_locking = 1;
	path->lowest_level = level;
	ret = btrfs_search_slot(NULL, root, tree_key, path, 0, 0);
	path->lowest_level = 0;
	if (ret < 0) {
		btrfs_put_root(root);
		return ret;
	}
	if (ret > 0 && path->slots[level] > 0)
		path->slots[level]--;

	eb = path->nodes[level];
	if (btrfs_node_blockptr(eb, path->slots[level]) != cur->bytenr) {
		btrfs_err(fs_info,
"couldn't find block (%llu) (level %d) in tree (%llu) with key (%llu %u %llu)",
			  cur->bytenr, level - 1, root->root_key.objectid,
			  tree_key->objectid, tree_key->type, tree_key->offset);
		btrfs_put_root(root);
		ret = -ENOENT;
		goto out;
	}
	lower = cur;

	/* Add all nodes and edges in the path */
	for (; level < BTRFS_MAX_LEVEL; level++) {
		if (!path->nodes[level]) {
			ASSERT(btrfs_root_bytenr(&root->root_item) ==
			       lower->bytenr);
2758 2759 2760
			/* Same as previous should_ignore_reloc_root() call */
			if (btrfs_should_ignore_reloc_root(root) &&
			    cache->is_reloc) {
2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787
				btrfs_put_root(root);
				list_add(&lower->list, &cache->useless_node);
			} else {
				lower->root = root;
			}
			break;
		}

		edge = btrfs_backref_alloc_edge(cache);
		if (!edge) {
			btrfs_put_root(root);
			ret = -ENOMEM;
			goto out;
		}

		eb = path->nodes[level];
		rb_node = rb_simple_search(&cache->rb_root, eb->start);
		if (!rb_node) {
			upper = btrfs_backref_alloc_node(cache, eb->start,
							 lower->level + 1);
			if (!upper) {
				btrfs_put_root(root);
				btrfs_backref_free_edge(cache, edge);
				ret = -ENOMEM;
				goto out;
			}
			upper->owner = btrfs_header_owner(eb);
2788
			if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840
				upper->cowonly = 1;

			/*
			 * If we know the block isn't shared we can avoid
			 * checking its backrefs.
			 */
			if (btrfs_block_can_be_shared(root, eb))
				upper->checked = 0;
			else
				upper->checked = 1;

			/*
			 * Add the block to pending list if we need to check its
			 * backrefs, we only do this once while walking up a
			 * tree as we will catch anything else later on.
			 */
			if (!upper->checked && need_check) {
				need_check = false;
				list_add_tail(&edge->list[UPPER],
					      &cache->pending_edge);
			} else {
				if (upper->checked)
					need_check = true;
				INIT_LIST_HEAD(&edge->list[UPPER]);
			}
		} else {
			upper = rb_entry(rb_node, struct btrfs_backref_node,
					 rb_node);
			ASSERT(upper->checked);
			INIT_LIST_HEAD(&edge->list[UPPER]);
			if (!upper->owner)
				upper->owner = btrfs_header_owner(eb);
		}
		btrfs_backref_link_edge(edge, lower, upper, LINK_LOWER);

		if (rb_node) {
			btrfs_put_root(root);
			break;
		}
		lower = upper;
		upper = NULL;
	}
out:
	btrfs_release_path(path);
	return ret;
}

/*
 * Add backref node @cur into @cache.
 *
 * NOTE: Even if the function returned 0, @cur is not yet cached as its upper
 *	 links aren't yet bi-directional. Needs to finish such links.
2841
 *	 Use btrfs_backref_finish_upper_links() to finish such linkage.
2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968
 *
 * @path:	Released path for indirect tree backref lookup
 * @iter:	Released backref iter for extent tree search
 * @node_key:	The first key of the tree block
 */
int btrfs_backref_add_tree_node(struct btrfs_backref_cache *cache,
				struct btrfs_path *path,
				struct btrfs_backref_iter *iter,
				struct btrfs_key *node_key,
				struct btrfs_backref_node *cur)
{
	struct btrfs_fs_info *fs_info = cache->fs_info;
	struct btrfs_backref_edge *edge;
	struct btrfs_backref_node *exist;
	int ret;

	ret = btrfs_backref_iter_start(iter, cur->bytenr);
	if (ret < 0)
		return ret;
	/*
	 * We skip the first btrfs_tree_block_info, as we don't use the key
	 * stored in it, but fetch it from the tree block
	 */
	if (btrfs_backref_has_tree_block_info(iter)) {
		ret = btrfs_backref_iter_next(iter);
		if (ret < 0)
			goto out;
		/* No extra backref? This means the tree block is corrupted */
		if (ret > 0) {
			ret = -EUCLEAN;
			goto out;
		}
	}
	WARN_ON(cur->checked);
	if (!list_empty(&cur->upper)) {
		/*
		 * The backref was added previously when processing backref of
		 * type BTRFS_TREE_BLOCK_REF_KEY
		 */
		ASSERT(list_is_singular(&cur->upper));
		edge = list_entry(cur->upper.next, struct btrfs_backref_edge,
				  list[LOWER]);
		ASSERT(list_empty(&edge->list[UPPER]));
		exist = edge->node[UPPER];
		/*
		 * Add the upper level block to pending list if we need check
		 * its backrefs
		 */
		if (!exist->checked)
			list_add_tail(&edge->list[UPPER], &cache->pending_edge);
	} else {
		exist = NULL;
	}

	for (; ret == 0; ret = btrfs_backref_iter_next(iter)) {
		struct extent_buffer *eb;
		struct btrfs_key key;
		int type;

		cond_resched();
		eb = btrfs_backref_get_eb(iter);

		key.objectid = iter->bytenr;
		if (btrfs_backref_iter_is_inline_ref(iter)) {
			struct btrfs_extent_inline_ref *iref;

			/* Update key for inline backref */
			iref = (struct btrfs_extent_inline_ref *)
				((unsigned long)iter->cur_ptr);
			type = btrfs_get_extent_inline_ref_type(eb, iref,
							BTRFS_REF_TYPE_BLOCK);
			if (type == BTRFS_REF_TYPE_INVALID) {
				ret = -EUCLEAN;
				goto out;
			}
			key.type = type;
			key.offset = btrfs_extent_inline_ref_offset(eb, iref);
		} else {
			key.type = iter->cur_key.type;
			key.offset = iter->cur_key.offset;
		}

		/*
		 * Parent node found and matches current inline ref, no need to
		 * rebuild this node for this inline ref
		 */
		if (exist &&
		    ((key.type == BTRFS_TREE_BLOCK_REF_KEY &&
		      exist->owner == key.offset) ||
		     (key.type == BTRFS_SHARED_BLOCK_REF_KEY &&
		      exist->bytenr == key.offset))) {
			exist = NULL;
			continue;
		}

		/* SHARED_BLOCK_REF means key.offset is the parent bytenr */
		if (key.type == BTRFS_SHARED_BLOCK_REF_KEY) {
			ret = handle_direct_tree_backref(cache, &key, cur);
			if (ret < 0)
				goto out;
			continue;
		} else if (unlikely(key.type == BTRFS_EXTENT_REF_V0_KEY)) {
			ret = -EINVAL;
			btrfs_print_v0_err(fs_info);
			btrfs_handle_fs_error(fs_info, ret, NULL);
			goto out;
		} else if (key.type != BTRFS_TREE_BLOCK_REF_KEY) {
			continue;
		}

		/*
		 * key.type == BTRFS_TREE_BLOCK_REF_KEY, inline ref offset
		 * means the root objectid. We need to search the tree to get
		 * its parent bytenr.
		 */
		ret = handle_indirect_tree_backref(cache, path, &key, node_key,
						   cur);
		if (ret < 0)
			goto out;
	}
	ret = 0;
	cur->checked = 1;
	WARN_ON(exist);
out:
	btrfs_backref_iter_release(iter);
	return ret;
}
2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072

/*
 * Finish the upwards linkage created by btrfs_backref_add_tree_node()
 */
int btrfs_backref_finish_upper_links(struct btrfs_backref_cache *cache,
				     struct btrfs_backref_node *start)
{
	struct list_head *useless_node = &cache->useless_node;
	struct btrfs_backref_edge *edge;
	struct rb_node *rb_node;
	LIST_HEAD(pending_edge);

	ASSERT(start->checked);

	/* Insert this node to cache if it's not COW-only */
	if (!start->cowonly) {
		rb_node = rb_simple_insert(&cache->rb_root, start->bytenr,
					   &start->rb_node);
		if (rb_node)
			btrfs_backref_panic(cache->fs_info, start->bytenr,
					    -EEXIST);
		list_add_tail(&start->lower, &cache->leaves);
	}

	/*
	 * Use breadth first search to iterate all related edges.
	 *
	 * The starting points are all the edges of this node
	 */
	list_for_each_entry(edge, &start->upper, list[LOWER])
		list_add_tail(&edge->list[UPPER], &pending_edge);

	while (!list_empty(&pending_edge)) {
		struct btrfs_backref_node *upper;
		struct btrfs_backref_node *lower;

		edge = list_first_entry(&pending_edge,
				struct btrfs_backref_edge, list[UPPER]);
		list_del_init(&edge->list[UPPER]);
		upper = edge->node[UPPER];
		lower = edge->node[LOWER];

		/* Parent is detached, no need to keep any edges */
		if (upper->detached) {
			list_del(&edge->list[LOWER]);
			btrfs_backref_free_edge(cache, edge);

			/* Lower node is orphan, queue for cleanup */
			if (list_empty(&lower->upper))
				list_add(&lower->list, useless_node);
			continue;
		}

		/*
		 * All new nodes added in current build_backref_tree() haven't
		 * been linked to the cache rb tree.
		 * So if we have upper->rb_node populated, this means a cache
		 * hit. We only need to link the edge, as @upper and all its
		 * parents have already been linked.
		 */
		if (!RB_EMPTY_NODE(&upper->rb_node)) {
			if (upper->lowest) {
				list_del_init(&upper->lower);
				upper->lowest = 0;
			}

			list_add_tail(&edge->list[UPPER], &upper->lower);
			continue;
		}

		/* Sanity check, we shouldn't have any unchecked nodes */
		if (!upper->checked) {
			ASSERT(0);
			return -EUCLEAN;
		}

		/* Sanity check, COW-only node has non-COW-only parent */
		if (start->cowonly != upper->cowonly) {
			ASSERT(0);
			return -EUCLEAN;
		}

		/* Only cache non-COW-only (subvolume trees) tree blocks */
		if (!upper->cowonly) {
			rb_node = rb_simple_insert(&cache->rb_root, upper->bytenr,
						   &upper->rb_node);
			if (rb_node) {
				btrfs_backref_panic(cache->fs_info,
						upper->bytenr, -EEXIST);
				return -EUCLEAN;
			}
		}

		list_add_tail(&edge->list[UPPER], &upper->lower);

		/*
		 * Also queue all the parent edges of this uncached node
		 * to finish the upper linkage
		 */
		list_for_each_entry(edge, &upper->upper, list[LOWER])
			list_add_tail(&edge->list[UPPER], &pending_edge);
	}
	return 0;
}
3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119

void btrfs_backref_error_cleanup(struct btrfs_backref_cache *cache,
				 struct btrfs_backref_node *node)
{
	struct btrfs_backref_node *lower;
	struct btrfs_backref_node *upper;
	struct btrfs_backref_edge *edge;

	while (!list_empty(&cache->useless_node)) {
		lower = list_first_entry(&cache->useless_node,
				   struct btrfs_backref_node, list);
		list_del_init(&lower->list);
	}
	while (!list_empty(&cache->pending_edge)) {
		edge = list_first_entry(&cache->pending_edge,
				struct btrfs_backref_edge, list[UPPER]);
		list_del(&edge->list[UPPER]);
		list_del(&edge->list[LOWER]);
		lower = edge->node[LOWER];
		upper = edge->node[UPPER];
		btrfs_backref_free_edge(cache, edge);

		/*
		 * Lower is no longer linked to any upper backref nodes and
		 * isn't in the cache, we can free it ourselves.
		 */
		if (list_empty(&lower->upper) &&
		    RB_EMPTY_NODE(&lower->rb_node))
			list_add(&lower->list, &cache->useless_node);

		if (!RB_EMPTY_NODE(&upper->rb_node))
			continue;

		/* Add this guy's upper edges to the list to process */
		list_for_each_entry(edge, &upper->upper, list[LOWER])
			list_add_tail(&edge->list[UPPER],
				      &cache->pending_edge);
		if (list_empty(&upper->upper))
			list_add(&upper->list, &cache->useless_node);
	}

	while (!list_empty(&cache->useless_node)) {
		lower = list_first_entry(&cache->useless_node,
				   struct btrfs_backref_node, list);
		list_del_init(&lower->list);
		if (lower == node)
			node = NULL;
3120
		btrfs_backref_drop_node(cache, lower);
3121 3122 3123 3124 3125 3126
	}

	btrfs_backref_cleanup_node(cache, node);
	ASSERT(list_empty(&cache->useless_node) &&
	       list_empty(&cache->pending_edge));
}