backref.c 42.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
/*
 * Copyright (C) 2011 STRATO.  All rights reserved.
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public
 * License v2 as published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * General Public License for more details.
 *
 * You should have received a copy of the GNU General Public
 * License along with this program; if not, write to the
 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
 * Boston, MA 021110-1307, USA.
 */

#include "ctree.h"
#include "disk-io.h"
#include "backref.h"
22 23 24
#include "ulist.h"
#include "transaction.h"
#include "delayed-ref.h"
25
#include "locking.h"
26

27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99
struct extent_inode_elem {
	u64 inum;
	u64 offset;
	struct extent_inode_elem *next;
};

static int check_extent_in_eb(struct btrfs_key *key, struct extent_buffer *eb,
				struct btrfs_file_extent_item *fi,
				u64 extent_item_pos,
				struct extent_inode_elem **eie)
{
	u64 data_offset;
	u64 data_len;
	struct extent_inode_elem *e;

	data_offset = btrfs_file_extent_offset(eb, fi);
	data_len = btrfs_file_extent_num_bytes(eb, fi);

	if (extent_item_pos < data_offset ||
	    extent_item_pos >= data_offset + data_len)
		return 1;

	e = kmalloc(sizeof(*e), GFP_NOFS);
	if (!e)
		return -ENOMEM;

	e->next = *eie;
	e->inum = key->objectid;
	e->offset = key->offset + (extent_item_pos - data_offset);
	*eie = e;

	return 0;
}

static int find_extent_in_eb(struct extent_buffer *eb, u64 wanted_disk_byte,
				u64 extent_item_pos,
				struct extent_inode_elem **eie)
{
	u64 disk_byte;
	struct btrfs_key key;
	struct btrfs_file_extent_item *fi;
	int slot;
	int nritems;
	int extent_type;
	int ret;

	/*
	 * from the shared data ref, we only have the leaf but we need
	 * the key. thus, we must look into all items and see that we
	 * find one (some) with a reference to our extent item.
	 */
	nritems = btrfs_header_nritems(eb);
	for (slot = 0; slot < nritems; ++slot) {
		btrfs_item_key_to_cpu(eb, &key, slot);
		if (key.type != BTRFS_EXTENT_DATA_KEY)
			continue;
		fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
		extent_type = btrfs_file_extent_type(eb, fi);
		if (extent_type == BTRFS_FILE_EXTENT_INLINE)
			continue;
		/* don't skip BTRFS_FILE_EXTENT_PREALLOC, we can handle that */
		disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
		if (disk_byte != wanted_disk_byte)
			continue;

		ret = check_extent_in_eb(&key, eb, fi, extent_item_pos, eie);
		if (ret < 0)
			return ret;
	}

	return 0;
}

100 101 102 103 104 105
/*
 * this structure records all encountered refs on the way up to the root
 */
struct __prelim_ref {
	struct list_head list;
	u64 root_id;
106
	struct btrfs_key key_for_search;
107 108
	int level;
	int count;
109
	struct extent_inode_elem *inode_list;
110 111 112 113
	u64 parent;
	u64 wanted_disk_byte;
};

114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152
/*
 * the rules for all callers of this function are:
 * - obtaining the parent is the goal
 * - if you add a key, you must know that it is a correct key
 * - if you cannot add the parent or a correct key, then we will look into the
 *   block later to set a correct key
 *
 * delayed refs
 * ============
 *        backref type | shared | indirect | shared | indirect
 * information         |   tree |     tree |   data |     data
 * --------------------+--------+----------+--------+----------
 *      parent logical |    y   |     -    |    -   |     -
 *      key to resolve |    -   |     y    |    y   |     y
 *  tree block logical |    -   |     -    |    -   |     -
 *  root for resolving |    y   |     y    |    y   |     y
 *
 * - column 1:       we've the parent -> done
 * - column 2, 3, 4: we use the key to find the parent
 *
 * on disk refs (inline or keyed)
 * ==============================
 *        backref type | shared | indirect | shared | indirect
 * information         |   tree |     tree |   data |     data
 * --------------------+--------+----------+--------+----------
 *      parent logical |    y   |     -    |    y   |     -
 *      key to resolve |    -   |     -    |    -   |     y
 *  tree block logical |    y   |     y    |    y   |     y
 *  root for resolving |    -   |     y    |    y   |     y
 *
 * - column 1, 3: we've the parent -> done
 * - column 2:    we take the first key from the block to find the parent
 *                (see __add_missing_keys)
 * - column 4:    we use the key to find the parent
 *
 * additional information that's available but not required to find the parent
 * block might help in merging entries to gain some speed.
 */

153
static int __add_prelim_ref(struct list_head *head, u64 root_id,
154 155
			    struct btrfs_key *key, int level,
			    u64 parent, u64 wanted_disk_byte, int count)
156 157 158 159 160 161 162 163 164 165
{
	struct __prelim_ref *ref;

	/* in case we're adding delayed refs, we're holding the refs spinlock */
	ref = kmalloc(sizeof(*ref), GFP_ATOMIC);
	if (!ref)
		return -ENOMEM;

	ref->root_id = root_id;
	if (key)
166
		ref->key_for_search = *key;
167
	else
168
		memset(&ref->key_for_search, 0, sizeof(ref->key_for_search));
169

170
	ref->inode_list = NULL;
171 172 173 174 175 176 177 178 179 180
	ref->level = level;
	ref->count = count;
	ref->parent = parent;
	ref->wanted_disk_byte = wanted_disk_byte;
	list_add_tail(&ref->list, head);

	return 0;
}

static int add_all_parents(struct btrfs_root *root, struct btrfs_path *path,
181
				struct ulist *parents, int level,
182
				struct btrfs_key *key_for_search, u64 time_seq,
J
Jan Schmidt 已提交
183
				u64 wanted_disk_byte,
184
				const u64 *extent_item_pos)
185
{
186 187 188 189
	int ret = 0;
	int slot;
	struct extent_buffer *eb;
	struct btrfs_key key;
190
	struct btrfs_file_extent_item *fi;
191
	struct extent_inode_elem *eie = NULL;
192 193
	u64 disk_byte;

194 195 196
	if (level != 0) {
		eb = path->nodes[level];
		ret = ulist_add(parents, eb->start, 0, GFP_NOFS);
197 198
		if (ret < 0)
			return ret;
199
		return 0;
200
	}
201 202

	/*
203 204 205
	 * We normally enter this function with the path already pointing to
	 * the first item to check. But sometimes, we may enter it with
	 * slot==nritems. In that case, go to the next leaf before we continue.
206
	 */
207
	if (path->slots[0] >= btrfs_header_nritems(path->nodes[0]))
J
Jan Schmidt 已提交
208
		ret = btrfs_next_old_leaf(root, path, time_seq);
209

210
	while (!ret) {
211
		eb = path->nodes[0];
212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242
		slot = path->slots[0];

		btrfs_item_key_to_cpu(eb, &key, slot);

		if (key.objectid != key_for_search->objectid ||
		    key.type != BTRFS_EXTENT_DATA_KEY)
			break;

		fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
		disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);

		if (disk_byte == wanted_disk_byte) {
			eie = NULL;
			if (extent_item_pos) {
				ret = check_extent_in_eb(&key, eb, fi,
						*extent_item_pos,
						&eie);
				if (ret < 0)
					break;
			}
			if (!ret) {
				ret = ulist_add(parents, eb->start,
						(unsigned long)eie, GFP_NOFS);
				if (ret < 0)
					break;
				if (!extent_item_pos) {
					ret = btrfs_next_old_leaf(root, path,
							time_seq);
					continue;
				}
			}
243
		}
244
		ret = btrfs_next_old_item(root, path, time_seq);
245 246
	}

247 248 249
	if (ret > 0)
		ret = 0;
	return ret;
250 251 252 253 254 255 256
}

/*
 * resolve an indirect backref in the form (root_id, key, level)
 * to a logical address
 */
static int __resolve_indirect_ref(struct btrfs_fs_info *fs_info,
257
					int search_commit_root,
258
					u64 time_seq,
259
					struct __prelim_ref *ref,
260 261
					struct ulist *parents,
					const u64 *extent_item_pos)
262 263 264 265 266 267 268 269 270 271 272 273
{
	struct btrfs_path *path;
	struct btrfs_root *root;
	struct btrfs_key root_key;
	struct extent_buffer *eb;
	int ret = 0;
	int root_level;
	int level = ref->level;

	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;
274
	path->search_commit_root = !!search_commit_root;
275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292

	root_key.objectid = ref->root_id;
	root_key.type = BTRFS_ROOT_ITEM_KEY;
	root_key.offset = (u64)-1;
	root = btrfs_read_fs_root_no_name(fs_info, &root_key);
	if (IS_ERR(root)) {
		ret = PTR_ERR(root);
		goto out;
	}

	rcu_read_lock();
	root_level = btrfs_header_level(root->node);
	rcu_read_unlock();

	if (root_level + 1 == level)
		goto out;

	path->lowest_level = level;
293
	ret = btrfs_search_old_slot(root, &ref->key_for_search, path, time_seq);
294 295 296
	pr_debug("search slot in root %llu (level %d, ref count %d) returned "
		 "%d for key (%llu %u %llu)\n",
		 (unsigned long long)ref->root_id, level, ref->count, ret,
297 298 299
		 (unsigned long long)ref->key_for_search.objectid,
		 ref->key_for_search.type,
		 (unsigned long long)ref->key_for_search.offset);
300 301 302 303
	if (ret < 0)
		goto out;

	eb = path->nodes[level];
304 305 306 307 308 309 310 311
	while (!eb) {
		if (!level) {
			WARN_ON(1);
			ret = 1;
			goto out;
		}
		level--;
		eb = path->nodes[level];
312 313
	}

314 315 316
	ret = add_all_parents(root, path, parents, level, &ref->key_for_search,
				time_seq, ref->wanted_disk_byte,
				extent_item_pos);
317 318 319 320 321 322 323 324 325
out:
	btrfs_free_path(path);
	return ret;
}

/*
 * resolve all indirect backrefs from the list
 */
static int __resolve_indirect_refs(struct btrfs_fs_info *fs_info,
326
				   int search_commit_root, u64 time_seq,
327 328
				   struct list_head *head,
				   const u64 *extent_item_pos)
329 330 331 332 333 334 335 336
{
	int err;
	int ret = 0;
	struct __prelim_ref *ref;
	struct __prelim_ref *ref_safe;
	struct __prelim_ref *new_ref;
	struct ulist *parents;
	struct ulist_node *node;
J
Jan Schmidt 已提交
337
	struct ulist_iterator uiter;
338 339 340 341 342 343 344 345 346 347 348 349 350 351 352

	parents = ulist_alloc(GFP_NOFS);
	if (!parents)
		return -ENOMEM;

	/*
	 * _safe allows us to insert directly after the current item without
	 * iterating over the newly inserted items.
	 * we're also allowed to re-assign ref during iteration.
	 */
	list_for_each_entry_safe(ref, ref_safe, head, list) {
		if (ref->parent)	/* already direct */
			continue;
		if (ref->count == 0)
			continue;
353
		err = __resolve_indirect_ref(fs_info, search_commit_root,
354 355
					     time_seq, ref, parents,
					     extent_item_pos);
356 357 358 359 360 361 362
		if (err) {
			if (ret == 0)
				ret = err;
			continue;
		}

		/* we put the first parent into the ref at hand */
J
Jan Schmidt 已提交
363 364
		ULIST_ITER_INIT(&uiter);
		node = ulist_next(parents, &uiter);
365
		ref->parent = node ? node->val : 0;
366 367
		ref->inode_list =
			node ? (struct extent_inode_elem *)node->aux : 0;
368 369

		/* additional parents require new refs being added here */
J
Jan Schmidt 已提交
370
		while ((node = ulist_next(parents, &uiter))) {
371 372 373 374 375 376 377
			new_ref = kmalloc(sizeof(*new_ref), GFP_NOFS);
			if (!new_ref) {
				ret = -ENOMEM;
				break;
			}
			memcpy(new_ref, ref, sizeof(*ref));
			new_ref->parent = node->val;
378 379
			new_ref->inode_list =
					(struct extent_inode_elem *)node->aux;
380 381 382 383 384 385 386 387 388
			list_add(&new_ref->list, &ref->list);
		}
		ulist_reinit(parents);
	}

	ulist_free(parents);
	return ret;
}

389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439
static inline int ref_for_same_block(struct __prelim_ref *ref1,
				     struct __prelim_ref *ref2)
{
	if (ref1->level != ref2->level)
		return 0;
	if (ref1->root_id != ref2->root_id)
		return 0;
	if (ref1->key_for_search.type != ref2->key_for_search.type)
		return 0;
	if (ref1->key_for_search.objectid != ref2->key_for_search.objectid)
		return 0;
	if (ref1->key_for_search.offset != ref2->key_for_search.offset)
		return 0;
	if (ref1->parent != ref2->parent)
		return 0;

	return 1;
}

/*
 * read tree blocks and add keys where required.
 */
static int __add_missing_keys(struct btrfs_fs_info *fs_info,
			      struct list_head *head)
{
	struct list_head *pos;
	struct extent_buffer *eb;

	list_for_each(pos, head) {
		struct __prelim_ref *ref;
		ref = list_entry(pos, struct __prelim_ref, list);

		if (ref->parent)
			continue;
		if (ref->key_for_search.type)
			continue;
		BUG_ON(!ref->wanted_disk_byte);
		eb = read_tree_block(fs_info->tree_root, ref->wanted_disk_byte,
				     fs_info->tree_root->leafsize, 0);
		BUG_ON(!eb);
		btrfs_tree_read_lock(eb);
		if (btrfs_header_level(eb) == 0)
			btrfs_item_key_to_cpu(eb, &ref->key_for_search, 0);
		else
			btrfs_node_key_to_cpu(eb, &ref->key_for_search, 0);
		btrfs_tree_read_unlock(eb);
		free_extent_buffer(eb);
	}
	return 0;
}

440 441 442 443
/*
 * merge two lists of backrefs and adjust counts accordingly
 *
 * mode = 1: merge identical keys, if key is set
444 445 446 447
 *    FIXME: if we add more keys in __add_prelim_ref, we can merge more here.
 *           additionally, we could even add a key range for the blocks we
 *           looked into to merge even more (-> replace unresolved refs by those
 *           having a parent).
448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463
 * mode = 2: merge identical parents
 */
static int __merge_refs(struct list_head *head, int mode)
{
	struct list_head *pos1;

	list_for_each(pos1, head) {
		struct list_head *n2;
		struct list_head *pos2;
		struct __prelim_ref *ref1;

		ref1 = list_entry(pos1, struct __prelim_ref, list);

		for (pos2 = pos1->next, n2 = pos2->next; pos2 != head;
		     pos2 = n2, n2 = pos2->next) {
			struct __prelim_ref *ref2;
464
			struct __prelim_ref *xchg;
465 466 467 468

			ref2 = list_entry(pos2, struct __prelim_ref, list);

			if (mode == 1) {
469
				if (!ref_for_same_block(ref1, ref2))
470
					continue;
471 472 473 474 475
				if (!ref1->parent && ref2->parent) {
					xchg = ref1;
					ref1 = ref2;
					ref2 = xchg;
				}
476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498
				ref1->count += ref2->count;
			} else {
				if (ref1->parent != ref2->parent)
					continue;
				ref1->count += ref2->count;
			}
			list_del(&ref2->list);
			kfree(ref2);
		}

	}
	return 0;
}

/*
 * add all currently queued delayed refs from this head whose seq nr is
 * smaller or equal that seq to the list
 */
static int __add_delayed_refs(struct btrfs_delayed_ref_head *head, u64 seq,
			      struct list_head *prefs)
{
	struct btrfs_delayed_extent_op *extent_op = head->extent_op;
	struct rb_node *n = &head->node.rb_node;
499 500
	struct btrfs_key key;
	struct btrfs_key op_key = {0};
501
	int sgn;
502
	int ret = 0;
503 504

	if (extent_op && extent_op->update_key)
505
		btrfs_disk_key_to_cpu(&op_key, &extent_op->key);
506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536

	while ((n = rb_prev(n))) {
		struct btrfs_delayed_ref_node *node;
		node = rb_entry(n, struct btrfs_delayed_ref_node,
				rb_node);
		if (node->bytenr != head->node.bytenr)
			break;
		WARN_ON(node->is_head);

		if (node->seq > seq)
			continue;

		switch (node->action) {
		case BTRFS_ADD_DELAYED_EXTENT:
		case BTRFS_UPDATE_DELAYED_HEAD:
			WARN_ON(1);
			continue;
		case BTRFS_ADD_DELAYED_REF:
			sgn = 1;
			break;
		case BTRFS_DROP_DELAYED_REF:
			sgn = -1;
			break;
		default:
			BUG_ON(1);
		}
		switch (node->type) {
		case BTRFS_TREE_BLOCK_REF_KEY: {
			struct btrfs_delayed_tree_ref *ref;

			ref = btrfs_delayed_node_to_tree_ref(node);
537
			ret = __add_prelim_ref(prefs, ref->root, &op_key,
538 539 540 541 542 543 544 545
					       ref->level + 1, 0, node->bytenr,
					       node->ref_mod * sgn);
			break;
		}
		case BTRFS_SHARED_BLOCK_REF_KEY: {
			struct btrfs_delayed_tree_ref *ref;

			ref = btrfs_delayed_node_to_tree_ref(node);
546
			ret = __add_prelim_ref(prefs, ref->root, NULL,
547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590
					       ref->level + 1, ref->parent,
					       node->bytenr,
					       node->ref_mod * sgn);
			break;
		}
		case BTRFS_EXTENT_DATA_REF_KEY: {
			struct btrfs_delayed_data_ref *ref;
			ref = btrfs_delayed_node_to_data_ref(node);

			key.objectid = ref->objectid;
			key.type = BTRFS_EXTENT_DATA_KEY;
			key.offset = ref->offset;
			ret = __add_prelim_ref(prefs, ref->root, &key, 0, 0,
					       node->bytenr,
					       node->ref_mod * sgn);
			break;
		}
		case BTRFS_SHARED_DATA_REF_KEY: {
			struct btrfs_delayed_data_ref *ref;

			ref = btrfs_delayed_node_to_data_ref(node);

			key.objectid = ref->objectid;
			key.type = BTRFS_EXTENT_DATA_KEY;
			key.offset = ref->offset;
			ret = __add_prelim_ref(prefs, ref->root, &key, 0,
					       ref->parent, node->bytenr,
					       node->ref_mod * sgn);
			break;
		}
		default:
			WARN_ON(1);
		}
		BUG_ON(ret);
	}

	return 0;
}

/*
 * add all inline backrefs for bytenr to the list
 */
static int __add_inline_refs(struct btrfs_fs_info *fs_info,
			     struct btrfs_path *path, u64 bytenr,
591
			     int *info_level, struct list_head *prefs)
592
{
593
	int ret = 0;
594 595 596 597 598 599 600 601 602 603 604 605 606
	int slot;
	struct extent_buffer *leaf;
	struct btrfs_key key;
	unsigned long ptr;
	unsigned long end;
	struct btrfs_extent_item *ei;
	u64 flags;
	u64 item_size;

	/*
	 * enumerate all inline refs
	 */
	leaf = path->nodes[0];
607
	slot = path->slots[0];
608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639

	item_size = btrfs_item_size_nr(leaf, slot);
	BUG_ON(item_size < sizeof(*ei));

	ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item);
	flags = btrfs_extent_flags(leaf, ei);

	ptr = (unsigned long)(ei + 1);
	end = (unsigned long)ei + item_size;

	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
		struct btrfs_tree_block_info *info;

		info = (struct btrfs_tree_block_info *)ptr;
		*info_level = btrfs_tree_block_level(leaf, info);
		ptr += sizeof(struct btrfs_tree_block_info);
		BUG_ON(ptr > end);
	} else {
		BUG_ON(!(flags & BTRFS_EXTENT_FLAG_DATA));
	}

	while (ptr < end) {
		struct btrfs_extent_inline_ref *iref;
		u64 offset;
		int type;

		iref = (struct btrfs_extent_inline_ref *)ptr;
		type = btrfs_extent_inline_ref_type(leaf, iref);
		offset = btrfs_extent_inline_ref_offset(leaf, iref);

		switch (type) {
		case BTRFS_SHARED_BLOCK_REF_KEY:
640
			ret = __add_prelim_ref(prefs, 0, NULL,
641 642 643 644 645 646 647 648 649 650 651 652 653 654
						*info_level + 1, offset,
						bytenr, 1);
			break;
		case BTRFS_SHARED_DATA_REF_KEY: {
			struct btrfs_shared_data_ref *sdref;
			int count;

			sdref = (struct btrfs_shared_data_ref *)(iref + 1);
			count = btrfs_shared_data_ref_count(leaf, sdref);
			ret = __add_prelim_ref(prefs, 0, NULL, 0, offset,
					       bytenr, count);
			break;
		}
		case BTRFS_TREE_BLOCK_REF_KEY:
655 656 657
			ret = __add_prelim_ref(prefs, offset, NULL,
					       *info_level + 1, 0,
					       bytenr, 1);
658 659 660 661 662 663 664 665 666 667 668 669 670
			break;
		case BTRFS_EXTENT_DATA_REF_KEY: {
			struct btrfs_extent_data_ref *dref;
			int count;
			u64 root;

			dref = (struct btrfs_extent_data_ref *)(&iref->offset);
			count = btrfs_extent_data_ref_count(leaf, dref);
			key.objectid = btrfs_extent_data_ref_objectid(leaf,
								      dref);
			key.type = BTRFS_EXTENT_DATA_KEY;
			key.offset = btrfs_extent_data_ref_offset(leaf, dref);
			root = btrfs_extent_data_ref_root(leaf, dref);
671 672
			ret = __add_prelim_ref(prefs, root, &key, 0, 0,
					       bytenr, count);
673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689
			break;
		}
		default:
			WARN_ON(1);
		}
		BUG_ON(ret);
		ptr += btrfs_extent_inline_ref_size(type);
	}

	return 0;
}

/*
 * add all non-inline backrefs for bytenr to the list
 */
static int __add_keyed_refs(struct btrfs_fs_info *fs_info,
			    struct btrfs_path *path, u64 bytenr,
690
			    int info_level, struct list_head *prefs)
691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719
{
	struct btrfs_root *extent_root = fs_info->extent_root;
	int ret;
	int slot;
	struct extent_buffer *leaf;
	struct btrfs_key key;

	while (1) {
		ret = btrfs_next_item(extent_root, path);
		if (ret < 0)
			break;
		if (ret) {
			ret = 0;
			break;
		}

		slot = path->slots[0];
		leaf = path->nodes[0];
		btrfs_item_key_to_cpu(leaf, &key, slot);

		if (key.objectid != bytenr)
			break;
		if (key.type < BTRFS_TREE_BLOCK_REF_KEY)
			continue;
		if (key.type > BTRFS_SHARED_DATA_REF_KEY)
			break;

		switch (key.type) {
		case BTRFS_SHARED_BLOCK_REF_KEY:
720
			ret = __add_prelim_ref(prefs, 0, NULL,
721 722 723 724 725 726 727 728 729 730 731 732 733 734 735
						info_level + 1, key.offset,
						bytenr, 1);
			break;
		case BTRFS_SHARED_DATA_REF_KEY: {
			struct btrfs_shared_data_ref *sdref;
			int count;

			sdref = btrfs_item_ptr(leaf, slot,
					      struct btrfs_shared_data_ref);
			count = btrfs_shared_data_ref_count(leaf, sdref);
			ret = __add_prelim_ref(prefs, 0, NULL, 0, key.offset,
						bytenr, count);
			break;
		}
		case BTRFS_TREE_BLOCK_REF_KEY:
736 737 738
			ret = __add_prelim_ref(prefs, key.offset, NULL,
					       info_level + 1, 0,
					       bytenr, 1);
739 740 741 742 743 744 745 746 747 748 749 750 751 752 753
			break;
		case BTRFS_EXTENT_DATA_REF_KEY: {
			struct btrfs_extent_data_ref *dref;
			int count;
			u64 root;

			dref = btrfs_item_ptr(leaf, slot,
					      struct btrfs_extent_data_ref);
			count = btrfs_extent_data_ref_count(leaf, dref);
			key.objectid = btrfs_extent_data_ref_objectid(leaf,
								      dref);
			key.type = BTRFS_EXTENT_DATA_KEY;
			key.offset = btrfs_extent_data_ref_offset(leaf, dref);
			root = btrfs_extent_data_ref_root(leaf, dref);
			ret = __add_prelim_ref(prefs, root, &key, 0, 0,
754
					       bytenr, count);
755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775
			break;
		}
		default:
			WARN_ON(1);
		}
		BUG_ON(ret);
	}

	return ret;
}

/*
 * this adds all existing backrefs (inline backrefs, backrefs and delayed
 * refs) for the given bytenr to the refs list, merges duplicates and resolves
 * indirect refs to their parent bytenr.
 * When roots are found, they're added to the roots list
 *
 * FIXME some caching might speed things up
 */
static int find_parent_nodes(struct btrfs_trans_handle *trans,
			     struct btrfs_fs_info *fs_info, u64 bytenr,
776 777
			     u64 delayed_ref_seq, u64 time_seq,
			     struct ulist *refs, struct ulist *roots,
778
			     const u64 *extent_item_pos)
779 780 781 782
{
	struct btrfs_key key;
	struct btrfs_path *path;
	struct btrfs_delayed_ref_root *delayed_refs = NULL;
783
	struct btrfs_delayed_ref_head *head;
784 785
	int info_level = 0;
	int ret;
786
	int search_commit_root = (trans == BTRFS_BACKREF_SEARCH_COMMIT_ROOT);
787 788 789 790 791 792 793 794 795 796 797 798 799 800
	struct list_head prefs_delayed;
	struct list_head prefs;
	struct __prelim_ref *ref;

	INIT_LIST_HEAD(&prefs);
	INIT_LIST_HEAD(&prefs_delayed);

	key.objectid = bytenr;
	key.type = BTRFS_EXTENT_ITEM_KEY;
	key.offset = (u64)-1;

	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;
801
	path->search_commit_root = !!search_commit_root;
802 803 804 805 806 807 808

	/*
	 * grab both a lock on the path and a lock on the delayed ref head.
	 * We need both to get a consistent picture of how the refs look
	 * at a specified point in time
	 */
again:
809 810
	head = NULL;

811 812 813 814 815
	ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 0);
	if (ret < 0)
		goto out;
	BUG_ON(ret == 0);

816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839
	if (trans != BTRFS_BACKREF_SEARCH_COMMIT_ROOT) {
		/*
		 * look if there are updates for this ref queued and lock the
		 * head
		 */
		delayed_refs = &trans->transaction->delayed_refs;
		spin_lock(&delayed_refs->lock);
		head = btrfs_find_delayed_ref_head(trans, bytenr);
		if (head) {
			if (!mutex_trylock(&head->mutex)) {
				atomic_inc(&head->node.refs);
				spin_unlock(&delayed_refs->lock);

				btrfs_release_path(path);

				/*
				 * Mutex was contended, block until it's
				 * released and try again
				 */
				mutex_lock(&head->mutex);
				mutex_unlock(&head->mutex);
				btrfs_put_delayed_ref(&head->node);
				goto again;
			}
840 841
			ret = __add_delayed_refs(head, delayed_ref_seq,
						 &prefs_delayed);
842
			mutex_unlock(&head->mutex);
843 844 845 846
			if (ret) {
				spin_unlock(&delayed_refs->lock);
				goto out;
			}
847
		}
848
		spin_unlock(&delayed_refs->lock);
849 850 851 852 853 854
	}

	if (path->slots[0]) {
		struct extent_buffer *leaf;
		int slot;

855
		path->slots[0]--;
856
		leaf = path->nodes[0];
857
		slot = path->slots[0];
858 859 860 861
		btrfs_item_key_to_cpu(leaf, &key, slot);
		if (key.objectid == bytenr &&
		    key.type == BTRFS_EXTENT_ITEM_KEY) {
			ret = __add_inline_refs(fs_info, path, bytenr,
862
						&info_level, &prefs);
863 864
			if (ret)
				goto out;
865
			ret = __add_keyed_refs(fs_info, path, bytenr,
866 867 868 869 870 871 872 873 874
					       info_level, &prefs);
			if (ret)
				goto out;
		}
	}
	btrfs_release_path(path);

	list_splice_init(&prefs_delayed, &prefs);

875 876 877 878
	ret = __add_missing_keys(fs_info, &prefs);
	if (ret)
		goto out;

879 880 881 882
	ret = __merge_refs(&prefs, 1);
	if (ret)
		goto out;

883 884
	ret = __resolve_indirect_refs(fs_info, search_commit_root, time_seq,
				      &prefs, extent_item_pos);
885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902
	if (ret)
		goto out;

	ret = __merge_refs(&prefs, 2);
	if (ret)
		goto out;

	while (!list_empty(&prefs)) {
		ref = list_first_entry(&prefs, struct __prelim_ref, list);
		list_del(&ref->list);
		if (ref->count < 0)
			WARN_ON(1);
		if (ref->count && ref->root_id && ref->parent == 0) {
			/* no parent == root of tree */
			ret = ulist_add(roots, ref->root_id, 0, GFP_NOFS);
			BUG_ON(ret < 0);
		}
		if (ref->count && ref->parent) {
903
			struct extent_inode_elem *eie = NULL;
904
			if (extent_item_pos && !ref->inode_list) {
905 906 907 908 909 910 911 912 913
				u32 bsz;
				struct extent_buffer *eb;
				bsz = btrfs_level_size(fs_info->extent_root,
							info_level);
				eb = read_tree_block(fs_info->extent_root,
							   ref->parent, bsz, 0);
				BUG_ON(!eb);
				ret = find_extent_in_eb(eb, bytenr,
							*extent_item_pos, &eie);
914
				ref->inode_list = eie;
915 916
				free_extent_buffer(eb);
			}
917 918 919 920 921 922 923 924 925 926 927 928 929
			ret = ulist_add_merge(refs, ref->parent,
					      (unsigned long)ref->inode_list,
					      (unsigned long *)&eie, GFP_NOFS);
			if (!ret && extent_item_pos) {
				/*
				 * we've recorded that parent, so we must extend
				 * its inode list here
				 */
				BUG_ON(!eie);
				while (eie->next)
					eie = eie->next;
				eie->next = ref->inode_list;
			}
930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951
			BUG_ON(ret < 0);
		}
		kfree(ref);
	}

out:
	btrfs_free_path(path);
	while (!list_empty(&prefs)) {
		ref = list_first_entry(&prefs, struct __prelim_ref, list);
		list_del(&ref->list);
		kfree(ref);
	}
	while (!list_empty(&prefs_delayed)) {
		ref = list_first_entry(&prefs_delayed, struct __prelim_ref,
				       list);
		list_del(&ref->list);
		kfree(ref);
	}

	return ret;
}

952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973
static void free_leaf_list(struct ulist *blocks)
{
	struct ulist_node *node = NULL;
	struct extent_inode_elem *eie;
	struct extent_inode_elem *eie_next;
	struct ulist_iterator uiter;

	ULIST_ITER_INIT(&uiter);
	while ((node = ulist_next(blocks, &uiter))) {
		if (!node->aux)
			continue;
		eie = (struct extent_inode_elem *)node->aux;
		for (; eie; eie = eie_next) {
			eie_next = eie->next;
			kfree(eie);
		}
		node->aux = 0;
	}

	ulist_free(blocks);
}

974 975 976 977 978 979 980 981 982 983
/*
 * Finds all leafs with a reference to the specified combination of bytenr and
 * offset. key_list_head will point to a list of corresponding keys (caller must
 * free each list element). The leafs will be stored in the leafs ulist, which
 * must be freed with ulist_free.
 *
 * returns 0 on success, <0 on error
 */
static int btrfs_find_all_leafs(struct btrfs_trans_handle *trans,
				struct btrfs_fs_info *fs_info, u64 bytenr,
984 985
				u64 delayed_ref_seq, u64 time_seq,
				struct ulist **leafs,
986
				const u64 *extent_item_pos)
987 988 989 990 991 992 993 994 995 996 997 998 999
{
	struct ulist *tmp;
	int ret;

	tmp = ulist_alloc(GFP_NOFS);
	if (!tmp)
		return -ENOMEM;
	*leafs = ulist_alloc(GFP_NOFS);
	if (!*leafs) {
		ulist_free(tmp);
		return -ENOMEM;
	}

1000 1001
	ret = find_parent_nodes(trans, fs_info, bytenr, delayed_ref_seq,
				time_seq, *leafs, tmp, extent_item_pos);
1002 1003 1004
	ulist_free(tmp);

	if (ret < 0 && ret != -ENOENT) {
1005
		free_leaf_list(*leafs);
1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026
		return ret;
	}

	return 0;
}

/*
 * walk all backrefs for a given extent to find all roots that reference this
 * extent. Walking a backref means finding all extents that reference this
 * extent and in turn walk the backrefs of those, too. Naturally this is a
 * recursive process, but here it is implemented in an iterative fashion: We
 * find all referencing extents for the extent in question and put them on a
 * list. In turn, we find all referencing extents for those, further appending
 * to the list. The way we iterate the list allows adding more elements after
 * the current while iterating. The process stops when we reach the end of the
 * list. Found roots are added to the roots list.
 *
 * returns 0 on success, < 0 on error.
 */
int btrfs_find_all_roots(struct btrfs_trans_handle *trans,
				struct btrfs_fs_info *fs_info, u64 bytenr,
1027 1028
				u64 delayed_ref_seq, u64 time_seq,
				struct ulist **roots)
1029 1030 1031
{
	struct ulist *tmp;
	struct ulist_node *node = NULL;
J
Jan Schmidt 已提交
1032
	struct ulist_iterator uiter;
1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043
	int ret;

	tmp = ulist_alloc(GFP_NOFS);
	if (!tmp)
		return -ENOMEM;
	*roots = ulist_alloc(GFP_NOFS);
	if (!*roots) {
		ulist_free(tmp);
		return -ENOMEM;
	}

J
Jan Schmidt 已提交
1044
	ULIST_ITER_INIT(&uiter);
1045
	while (1) {
1046 1047
		ret = find_parent_nodes(trans, fs_info, bytenr, delayed_ref_seq,
					time_seq, tmp, *roots, NULL);
1048 1049 1050 1051 1052
		if (ret < 0 && ret != -ENOENT) {
			ulist_free(tmp);
			ulist_free(*roots);
			return ret;
		}
J
Jan Schmidt 已提交
1053
		node = ulist_next(tmp, &uiter);
1054 1055 1056 1057 1058 1059 1060 1061 1062 1063
		if (!node)
			break;
		bytenr = node->val;
	}

	ulist_free(tmp);
	return 0;
}


1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139
static int __inode_info(u64 inum, u64 ioff, u8 key_type,
			struct btrfs_root *fs_root, struct btrfs_path *path,
			struct btrfs_key *found_key)
{
	int ret;
	struct btrfs_key key;
	struct extent_buffer *eb;

	key.type = key_type;
	key.objectid = inum;
	key.offset = ioff;

	ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0);
	if (ret < 0)
		return ret;

	eb = path->nodes[0];
	if (ret && path->slots[0] >= btrfs_header_nritems(eb)) {
		ret = btrfs_next_leaf(fs_root, path);
		if (ret)
			return ret;
		eb = path->nodes[0];
	}

	btrfs_item_key_to_cpu(eb, found_key, path->slots[0]);
	if (found_key->type != key.type || found_key->objectid != key.objectid)
		return 1;

	return 0;
}

/*
 * this makes the path point to (inum INODE_ITEM ioff)
 */
int inode_item_info(u64 inum, u64 ioff, struct btrfs_root *fs_root,
			struct btrfs_path *path)
{
	struct btrfs_key key;
	return __inode_info(inum, ioff, BTRFS_INODE_ITEM_KEY, fs_root, path,
				&key);
}

static int inode_ref_info(u64 inum, u64 ioff, struct btrfs_root *fs_root,
				struct btrfs_path *path,
				struct btrfs_key *found_key)
{
	return __inode_info(inum, ioff, BTRFS_INODE_REF_KEY, fs_root, path,
				found_key);
}

/*
 * this iterates to turn a btrfs_inode_ref into a full filesystem path. elements
 * of the path are separated by '/' and the path is guaranteed to be
 * 0-terminated. the path is only given within the current file system.
 * Therefore, it never starts with a '/'. the caller is responsible to provide
 * "size" bytes in "dest". the dest buffer will be filled backwards. finally,
 * the start point of the resulting string is returned. this pointer is within
 * dest, normally.
 * in case the path buffer would overflow, the pointer is decremented further
 * as if output was written to the buffer, though no more output is actually
 * generated. that way, the caller can determine how much space would be
 * required for the path to fit into the buffer. in that case, the returned
 * value will be smaller than dest. callers must check this!
 */
static char *iref_to_path(struct btrfs_root *fs_root, struct btrfs_path *path,
				struct btrfs_inode_ref *iref,
				struct extent_buffer *eb_in, u64 parent,
				char *dest, u32 size)
{
	u32 len;
	int slot;
	u64 next_inum;
	int ret;
	s64 bytes_left = size - 1;
	struct extent_buffer *eb = eb_in;
	struct btrfs_key found_key;
1140
	int leave_spinning = path->leave_spinning;
1141 1142 1143 1144

	if (bytes_left >= 0)
		dest[bytes_left] = '\0';

1145
	path->leave_spinning = 1;
1146 1147 1148 1149 1150 1151
	while (1) {
		len = btrfs_inode_ref_name_len(eb, iref);
		bytes_left -= len;
		if (bytes_left >= 0)
			read_extent_buffer(eb, dest + bytes_left,
						(unsigned long)(iref + 1), len);
1152 1153
		if (eb != eb_in) {
			btrfs_tree_read_unlock_blocking(eb);
1154
			free_extent_buffer(eb);
1155
		}
1156
		ret = inode_ref_info(parent, 0, fs_root, path, &found_key);
1157 1158
		if (ret > 0)
			ret = -ENOENT;
1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169
		if (ret)
			break;
		next_inum = found_key.offset;

		/* regular exit ahead */
		if (parent == next_inum)
			break;

		slot = path->slots[0];
		eb = path->nodes[0];
		/* make sure we can use eb after releasing the path */
1170
		if (eb != eb_in) {
1171
			atomic_inc(&eb->refs);
1172 1173 1174
			btrfs_tree_read_lock(eb);
			btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
		}
1175 1176 1177 1178 1179 1180 1181 1182 1183 1184
		btrfs_release_path(path);

		iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);
		parent = next_inum;
		--bytes_left;
		if (bytes_left >= 0)
			dest[bytes_left] = '/';
	}

	btrfs_release_path(path);
1185
	path->leave_spinning = leave_spinning;
1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222

	if (ret)
		return ERR_PTR(ret);

	return dest + bytes_left;
}

/*
 * this makes the path point to (logical EXTENT_ITEM *)
 * returns BTRFS_EXTENT_FLAG_DATA for data, BTRFS_EXTENT_FLAG_TREE_BLOCK for
 * tree blocks and <0 on error.
 */
int extent_from_logical(struct btrfs_fs_info *fs_info, u64 logical,
			struct btrfs_path *path, struct btrfs_key *found_key)
{
	int ret;
	u64 flags;
	u32 item_size;
	struct extent_buffer *eb;
	struct btrfs_extent_item *ei;
	struct btrfs_key key;

	key.type = BTRFS_EXTENT_ITEM_KEY;
	key.objectid = logical;
	key.offset = (u64)-1;

	ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0);
	if (ret < 0)
		return ret;
	ret = btrfs_previous_item(fs_info->extent_root, path,
					0, BTRFS_EXTENT_ITEM_KEY);
	if (ret < 0)
		return ret;

	btrfs_item_key_to_cpu(path->nodes[0], found_key, path->slots[0]);
	if (found_key->type != BTRFS_EXTENT_ITEM_KEY ||
	    found_key->objectid > logical ||
J
Jan Schmidt 已提交
1223 1224 1225
	    found_key->objectid + found_key->offset <= logical) {
		pr_debug("logical %llu is not within any extent\n",
			 (unsigned long long)logical);
1226
		return -ENOENT;
J
Jan Schmidt 已提交
1227
	}
1228 1229 1230 1231 1232 1233 1234 1235

	eb = path->nodes[0];
	item_size = btrfs_item_size_nr(eb, path->slots[0]);
	BUG_ON(item_size < sizeof(*ei));

	ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
	flags = btrfs_extent_flags(eb, ei);

J
Jan Schmidt 已提交
1236 1237 1238 1239 1240 1241 1242
	pr_debug("logical %llu is at position %llu within the extent (%llu "
		 "EXTENT_ITEM %llu) flags %#llx size %u\n",
		 (unsigned long long)logical,
		 (unsigned long long)(logical - found_key->objectid),
		 (unsigned long long)found_key->objectid,
		 (unsigned long long)found_key->offset,
		 (unsigned long long)flags, item_size);
1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338
	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
		return BTRFS_EXTENT_FLAG_TREE_BLOCK;
	if (flags & BTRFS_EXTENT_FLAG_DATA)
		return BTRFS_EXTENT_FLAG_DATA;

	return -EIO;
}

/*
 * helper function to iterate extent inline refs. ptr must point to a 0 value
 * for the first call and may be modified. it is used to track state.
 * if more refs exist, 0 is returned and the next call to
 * __get_extent_inline_ref must pass the modified ptr parameter to get the
 * next ref. after the last ref was processed, 1 is returned.
 * returns <0 on error
 */
static int __get_extent_inline_ref(unsigned long *ptr, struct extent_buffer *eb,
				struct btrfs_extent_item *ei, u32 item_size,
				struct btrfs_extent_inline_ref **out_eiref,
				int *out_type)
{
	unsigned long end;
	u64 flags;
	struct btrfs_tree_block_info *info;

	if (!*ptr) {
		/* first call */
		flags = btrfs_extent_flags(eb, ei);
		if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
			info = (struct btrfs_tree_block_info *)(ei + 1);
			*out_eiref =
				(struct btrfs_extent_inline_ref *)(info + 1);
		} else {
			*out_eiref = (struct btrfs_extent_inline_ref *)(ei + 1);
		}
		*ptr = (unsigned long)*out_eiref;
		if ((void *)*ptr >= (void *)ei + item_size)
			return -ENOENT;
	}

	end = (unsigned long)ei + item_size;
	*out_eiref = (struct btrfs_extent_inline_ref *)*ptr;
	*out_type = btrfs_extent_inline_ref_type(eb, *out_eiref);

	*ptr += btrfs_extent_inline_ref_size(*out_type);
	WARN_ON(*ptr > end);
	if (*ptr == end)
		return 1; /* last */

	return 0;
}

/*
 * reads the tree block backref for an extent. tree level and root are returned
 * through out_level and out_root. ptr must point to a 0 value for the first
 * call and may be modified (see __get_extent_inline_ref comment).
 * returns 0 if data was provided, 1 if there was no more data to provide or
 * <0 on error.
 */
int tree_backref_for_extent(unsigned long *ptr, struct extent_buffer *eb,
				struct btrfs_extent_item *ei, u32 item_size,
				u64 *out_root, u8 *out_level)
{
	int ret;
	int type;
	struct btrfs_tree_block_info *info;
	struct btrfs_extent_inline_ref *eiref;

	if (*ptr == (unsigned long)-1)
		return 1;

	while (1) {
		ret = __get_extent_inline_ref(ptr, eb, ei, item_size,
						&eiref, &type);
		if (ret < 0)
			return ret;

		if (type == BTRFS_TREE_BLOCK_REF_KEY ||
		    type == BTRFS_SHARED_BLOCK_REF_KEY)
			break;

		if (ret == 1)
			return 1;
	}

	/* we can treat both ref types equally here */
	info = (struct btrfs_tree_block_info *)(ei + 1);
	*out_root = btrfs_extent_inline_ref_offset(eb, eiref);
	*out_level = btrfs_tree_block_level(eb, info);

	if (ret == 1)
		*ptr = (unsigned long)-1;

	return 0;
}

1339 1340
static int iterate_leaf_refs(struct extent_inode_elem *inode_list,
				u64 root, u64 extent_item_objectid,
J
Jan Schmidt 已提交
1341
				iterate_extent_inodes_t *iterate, void *ctx)
1342
{
1343
	struct extent_inode_elem *eie;
J
Jan Schmidt 已提交
1344 1345
	int ret = 0;

1346
	for (eie = inode_list; eie; eie = eie->next) {
J
Jan Schmidt 已提交
1347
		pr_debug("ref for %llu resolved, key (%llu EXTEND_DATA %llu), "
1348 1349 1350
			 "root %llu\n", extent_item_objectid,
			 eie->inum, eie->offset, root);
		ret = iterate(eie->inum, eie->offset, root, ctx);
J
Jan Schmidt 已提交
1351
		if (ret) {
1352 1353
			pr_debug("stopping iteration for %llu due to ret=%d\n",
				 extent_item_objectid, ret);
J
Jan Schmidt 已提交
1354 1355
			break;
		}
1356 1357 1358 1359 1360 1361 1362
	}

	return ret;
}

/*
 * calls iterate() for every inode that references the extent identified by
J
Jan Schmidt 已提交
1363
 * the given parameters.
1364 1365 1366
 * when the iterator function returns a non-zero value, iteration stops.
 */
int iterate_extent_inodes(struct btrfs_fs_info *fs_info,
J
Jan Schmidt 已提交
1367
				u64 extent_item_objectid, u64 extent_item_pos,
1368
				int search_commit_root,
1369 1370 1371 1372 1373
				iterate_extent_inodes_t *iterate, void *ctx)
{
	int ret;
	struct list_head data_refs = LIST_HEAD_INIT(data_refs);
	struct list_head shared_refs = LIST_HEAD_INIT(shared_refs);
J
Jan Schmidt 已提交
1374
	struct btrfs_trans_handle *trans;
1375 1376
	struct ulist *refs = NULL;
	struct ulist *roots = NULL;
J
Jan Schmidt 已提交
1377 1378
	struct ulist_node *ref_node = NULL;
	struct ulist_node *root_node = NULL;
1379 1380
	struct seq_list seq_elem = {};
	struct seq_list tree_mod_seq_elem = {};
J
Jan Schmidt 已提交
1381 1382
	struct ulist_iterator ref_uiter;
	struct ulist_iterator root_uiter;
1383
	struct btrfs_delayed_ref_root *delayed_refs = NULL;
1384

J
Jan Schmidt 已提交
1385 1386
	pr_debug("resolving all inodes for extent %llu\n",
			extent_item_objectid);
1387

1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398
	if (search_commit_root) {
		trans = BTRFS_BACKREF_SEARCH_COMMIT_ROOT;
	} else {
		trans = btrfs_join_transaction(fs_info->extent_root);
		if (IS_ERR(trans))
			return PTR_ERR(trans);

		delayed_refs = &trans->transaction->delayed_refs;
		spin_lock(&delayed_refs->lock);
		btrfs_get_delayed_seq(delayed_refs, &seq_elem);
		spin_unlock(&delayed_refs->lock);
1399
		btrfs_get_tree_mod_seq(fs_info, &tree_mod_seq_elem);
1400
	}
1401

J
Jan Schmidt 已提交
1402
	ret = btrfs_find_all_leafs(trans, fs_info, extent_item_objectid,
1403 1404
				   seq_elem.seq, tree_mod_seq_elem.seq, &refs,
				   &extent_item_pos);
J
Jan Schmidt 已提交
1405 1406
	if (ret)
		goto out;
1407

J
Jan Schmidt 已提交
1408 1409
	ULIST_ITER_INIT(&ref_uiter);
	while (!ret && (ref_node = ulist_next(refs, &ref_uiter))) {
1410
		ret = btrfs_find_all_roots(trans, fs_info, ref_node->val,
1411 1412
						seq_elem.seq,
						tree_mod_seq_elem.seq, &roots);
J
Jan Schmidt 已提交
1413 1414
		if (ret)
			break;
J
Jan Schmidt 已提交
1415 1416
		ULIST_ITER_INIT(&root_uiter);
		while (!ret && (root_node = ulist_next(roots, &root_uiter))) {
1417 1418 1419 1420 1421 1422 1423
			pr_debug("root %llu references leaf %llu, data list "
				 "%#lx\n", root_node->val, ref_node->val,
				 ref_node->aux);
			ret = iterate_leaf_refs(
				(struct extent_inode_elem *)ref_node->aux,
				root_node->val, extent_item_objectid,
				iterate, ctx);
J
Jan Schmidt 已提交
1424
		}
1425 1426
		ulist_free(roots);
		roots = NULL;
1427 1428
	}

1429
	free_leaf_list(refs);
J
Jan Schmidt 已提交
1430 1431
	ulist_free(roots);
out:
1432
	if (!search_commit_root) {
1433
		btrfs_put_tree_mod_seq(fs_info, &tree_mod_seq_elem);
1434 1435 1436 1437
		btrfs_put_delayed_seq(delayed_refs, &seq_elem);
		btrfs_end_transaction(trans, fs_info->extent_root);
	}

1438 1439 1440 1441 1442 1443 1444 1445
	return ret;
}

int iterate_inodes_from_logical(u64 logical, struct btrfs_fs_info *fs_info,
				struct btrfs_path *path,
				iterate_extent_inodes_t *iterate, void *ctx)
{
	int ret;
J
Jan Schmidt 已提交
1446
	u64 extent_item_pos;
1447
	struct btrfs_key found_key;
1448
	int search_commit_root = path->search_commit_root;
1449 1450 1451

	ret = extent_from_logical(fs_info, logical, path,
					&found_key);
J
Jan Schmidt 已提交
1452
	btrfs_release_path(path);
1453 1454 1455 1456 1457
	if (ret & BTRFS_EXTENT_FLAG_TREE_BLOCK)
		ret = -EINVAL;
	if (ret < 0)
		return ret;

J
Jan Schmidt 已提交
1458
	extent_item_pos = logical - found_key.objectid;
1459 1460 1461
	ret = iterate_extent_inodes(fs_info, found_key.objectid,
					extent_item_pos, search_commit_root,
					iterate, ctx);
1462 1463 1464 1465 1466 1467 1468 1469

	return ret;
}

static int iterate_irefs(u64 inum, struct btrfs_root *fs_root,
				struct btrfs_path *path,
				iterate_irefs_t *iterate, void *ctx)
{
1470
	int ret = 0;
1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481
	int slot;
	u32 cur;
	u32 len;
	u32 name_len;
	u64 parent = 0;
	int found = 0;
	struct extent_buffer *eb;
	struct btrfs_item *item;
	struct btrfs_inode_ref *iref;
	struct btrfs_key found_key;

1482
	while (!ret) {
1483
		path->leave_spinning = 1;
1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498
		ret = inode_ref_info(inum, parent ? parent+1 : 0, fs_root, path,
					&found_key);
		if (ret < 0)
			break;
		if (ret) {
			ret = found ? 0 : -ENOENT;
			break;
		}
		++found;

		parent = found_key.offset;
		slot = path->slots[0];
		eb = path->nodes[0];
		/* make sure we can use eb after releasing the path */
		atomic_inc(&eb->refs);
1499 1500
		btrfs_tree_read_lock(eb);
		btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
1501 1502 1503 1504 1505 1506 1507 1508
		btrfs_release_path(path);

		item = btrfs_item_nr(eb, slot);
		iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);

		for (cur = 0; cur < btrfs_item_size(eb, item); cur += len) {
			name_len = btrfs_inode_ref_name_len(eb, iref);
			/* path must be released before calling iterate()! */
J
Jan Schmidt 已提交
1509 1510 1511 1512
			pr_debug("following ref at offset %u for inode %llu in "
				 "tree %llu\n", cur,
				 (unsigned long long)found_key.objectid,
				 (unsigned long long)fs_root->objectid);
1513
			ret = iterate(parent, iref, eb, ctx);
1514
			if (ret)
1515 1516 1517 1518
				break;
			len = sizeof(*iref) + name_len;
			iref = (struct btrfs_inode_ref *)((char *)iref + len);
		}
1519
		btrfs_tree_read_unlock_blocking(eb);
1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544
		free_extent_buffer(eb);
	}

	btrfs_release_path(path);

	return ret;
}

/*
 * returns 0 if the path could be dumped (probably truncated)
 * returns <0 in case of an error
 */
static int inode_to_path(u64 inum, struct btrfs_inode_ref *iref,
				struct extent_buffer *eb, void *ctx)
{
	struct inode_fs_paths *ipath = ctx;
	char *fspath;
	char *fspath_min;
	int i = ipath->fspath->elem_cnt;
	const int s_ptr = sizeof(char *);
	u32 bytes_left;

	bytes_left = ipath->fspath->bytes_left > s_ptr ?
					ipath->fspath->bytes_left - s_ptr : 0;

1545
	fspath_min = (char *)ipath->fspath->val + (i + 1) * s_ptr;
1546 1547 1548 1549 1550 1551
	fspath = iref_to_path(ipath->fs_root, ipath->btrfs_path, iref, eb,
				inum, fspath_min, bytes_left);
	if (IS_ERR(fspath))
		return PTR_ERR(fspath);

	if (fspath > fspath_min) {
J
Jan Schmidt 已提交
1552
		pr_debug("path resolved: %s\n", fspath);
1553
		ipath->fspath->val[i] = (u64)(unsigned long)fspath;
1554 1555 1556
		++ipath->fspath->elem_cnt;
		ipath->fspath->bytes_left = fspath - fspath_min;
	} else {
J
Jan Schmidt 已提交
1557 1558 1559
		pr_debug("missed path, not enough space. missing bytes: %lu, "
			 "constructed so far: %s\n",
			 (unsigned long)(fspath_min - fspath), fspath_min);
1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570
		++ipath->fspath->elem_missed;
		ipath->fspath->bytes_missing += fspath_min - fspath;
		ipath->fspath->bytes_left = 0;
	}

	return 0;
}

/*
 * this dumps all file system paths to the inode into the ipath struct, provided
 * is has been created large enough. each path is zero-terminated and accessed
1571
 * from ipath->fspath->val[i].
1572
 * when it returns, there are ipath->fspath->elem_cnt number of paths available
1573
 * in ipath->fspath->val[]. when the allocated space wasn't sufficient, the
1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638
 * number of missed paths in recored in ipath->fspath->elem_missed, otherwise,
 * it's zero. ipath->fspath->bytes_missing holds the number of bytes that would
 * have been needed to return all paths.
 */
int paths_from_inode(u64 inum, struct inode_fs_paths *ipath)
{
	return iterate_irefs(inum, ipath->fs_root, ipath->btrfs_path,
				inode_to_path, ipath);
}

struct btrfs_data_container *init_data_container(u32 total_bytes)
{
	struct btrfs_data_container *data;
	size_t alloc_bytes;

	alloc_bytes = max_t(size_t, total_bytes, sizeof(*data));
	data = kmalloc(alloc_bytes, GFP_NOFS);
	if (!data)
		return ERR_PTR(-ENOMEM);

	if (total_bytes >= sizeof(*data)) {
		data->bytes_left = total_bytes - sizeof(*data);
		data->bytes_missing = 0;
	} else {
		data->bytes_missing = sizeof(*data) - total_bytes;
		data->bytes_left = 0;
	}

	data->elem_cnt = 0;
	data->elem_missed = 0;

	return data;
}

/*
 * allocates space to return multiple file system paths for an inode.
 * total_bytes to allocate are passed, note that space usable for actual path
 * information will be total_bytes - sizeof(struct inode_fs_paths).
 * the returned pointer must be freed with free_ipath() in the end.
 */
struct inode_fs_paths *init_ipath(s32 total_bytes, struct btrfs_root *fs_root,
					struct btrfs_path *path)
{
	struct inode_fs_paths *ifp;
	struct btrfs_data_container *fspath;

	fspath = init_data_container(total_bytes);
	if (IS_ERR(fspath))
		return (void *)fspath;

	ifp = kmalloc(sizeof(*ifp), GFP_NOFS);
	if (!ifp) {
		kfree(fspath);
		return ERR_PTR(-ENOMEM);
	}

	ifp->btrfs_path = path;
	ifp->fspath = fspath;
	ifp->fs_root = fs_root;

	return ifp;
}

void free_ipath(struct inode_fs_paths *ipath)
{
1639 1640
	if (!ipath)
		return;
1641
	kfree(ipath->fspath);
1642 1643
	kfree(ipath);
}