backref.c 82.4 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
2 3 4 5
/*
 * Copyright (C) 2011 STRATO.  All rights reserved.
 */

6
#include <linux/mm.h>
7
#include <linux/rbtree.h>
8
#include <trace/events/btrfs.h>
9 10 11
#include "ctree.h"
#include "disk-io.h"
#include "backref.h"
12 13 14
#include "ulist.h"
#include "transaction.h"
#include "delayed-ref.h"
15
#include "locking.h"
16
#include "misc.h"
17

18 19 20
/* Just an arbitrary number so we can be sure this happened */
#define BACKREF_FOUND_SHARED 6

21 22 23 24 25 26
struct extent_inode_elem {
	u64 inum;
	u64 offset;
	struct extent_inode_elem *next;
};

27 28 29 30
static int check_extent_in_eb(const struct btrfs_key *key,
			      const struct extent_buffer *eb,
			      const struct btrfs_file_extent_item *fi,
			      u64 extent_item_pos,
31 32
			      struct extent_inode_elem **eie,
			      bool ignore_offset)
33
{
34
	u64 offset = 0;
35 36
	struct extent_inode_elem *e;

37 38
	if (!ignore_offset &&
	    !btrfs_file_extent_compression(eb, fi) &&
39 40 41 42
	    !btrfs_file_extent_encryption(eb, fi) &&
	    !btrfs_file_extent_other_encoding(eb, fi)) {
		u64 data_offset;
		u64 data_len;
43

44 45 46 47 48 49 50 51
		data_offset = btrfs_file_extent_offset(eb, fi);
		data_len = btrfs_file_extent_num_bytes(eb, fi);

		if (extent_item_pos < data_offset ||
		    extent_item_pos >= data_offset + data_len)
			return 1;
		offset = extent_item_pos - data_offset;
	}
52 53 54 55 56 57 58

	e = kmalloc(sizeof(*e), GFP_NOFS);
	if (!e)
		return -ENOMEM;

	e->next = *eie;
	e->inum = key->objectid;
59
	e->offset = key->offset + offset;
60 61 62 63 64
	*eie = e;

	return 0;
}

65 66 67 68 69 70 71 72 73 74
static void free_inode_elem_list(struct extent_inode_elem *eie)
{
	struct extent_inode_elem *eie_next;

	for (; eie; eie = eie_next) {
		eie_next = eie->next;
		kfree(eie);
	}
}

75 76
static int find_extent_in_eb(const struct extent_buffer *eb,
			     u64 wanted_disk_byte, u64 extent_item_pos,
77 78
			     struct extent_inode_elem **eie,
			     bool ignore_offset)
79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106
{
	u64 disk_byte;
	struct btrfs_key key;
	struct btrfs_file_extent_item *fi;
	int slot;
	int nritems;
	int extent_type;
	int ret;

	/*
	 * from the shared data ref, we only have the leaf but we need
	 * the key. thus, we must look into all items and see that we
	 * find one (some) with a reference to our extent item.
	 */
	nritems = btrfs_header_nritems(eb);
	for (slot = 0; slot < nritems; ++slot) {
		btrfs_item_key_to_cpu(eb, &key, slot);
		if (key.type != BTRFS_EXTENT_DATA_KEY)
			continue;
		fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
		extent_type = btrfs_file_extent_type(eb, fi);
		if (extent_type == BTRFS_FILE_EXTENT_INLINE)
			continue;
		/* don't skip BTRFS_FILE_EXTENT_PREALLOC, we can handle that */
		disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
		if (disk_byte != wanted_disk_byte)
			continue;

107
		ret = check_extent_in_eb(&key, eb, fi, extent_item_pos, eie, ignore_offset);
108 109 110 111 112 113 114
		if (ret < 0)
			return ret;
	}

	return 0;
}

115
struct preftree {
L
Liu Bo 已提交
116
	struct rb_root_cached root;
117
	unsigned int count;
118 119
};

L
Liu Bo 已提交
120
#define PREFTREE_INIT	{ .root = RB_ROOT_CACHED, .count = 0 }
121 122 123 124 125 126 127

struct preftrees {
	struct preftree direct;    /* BTRFS_SHARED_[DATA|BLOCK]_REF_KEY */
	struct preftree indirect;  /* BTRFS_[TREE_BLOCK|EXTENT_DATA]_REF_KEY */
	struct preftree indirect_missing_keys;
};

128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146
/*
 * Checks for a shared extent during backref search.
 *
 * The share_count tracks prelim_refs (direct and indirect) having a
 * ref->count >0:
 *  - incremented when a ref->count transitions to >0
 *  - decremented when a ref->count transitions to <1
 */
struct share_check {
	u64 root_objectid;
	u64 inum;
	int share_count;
};

static inline int extent_is_shared(struct share_check *sc)
{
	return (sc && sc->share_count > 1) ? BACKREF_FOUND_SHARED : 0;
}

147 148 149 150 151
static struct kmem_cache *btrfs_prelim_ref_cache;

int __init btrfs_prelim_ref_init(void)
{
	btrfs_prelim_ref_cache = kmem_cache_create("btrfs_prelim_ref",
152
					sizeof(struct prelim_ref),
153
					0,
154
					SLAB_MEM_SPREAD,
155 156 157 158 159 160
					NULL);
	if (!btrfs_prelim_ref_cache)
		return -ENOMEM;
	return 0;
}

161
void __cold btrfs_prelim_ref_exit(void)
162
{
163
	kmem_cache_destroy(btrfs_prelim_ref_cache);
164 165
}

166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206
static void free_pref(struct prelim_ref *ref)
{
	kmem_cache_free(btrfs_prelim_ref_cache, ref);
}

/*
 * Return 0 when both refs are for the same block (and can be merged).
 * A -1 return indicates ref1 is a 'lower' block than ref2, while 1
 * indicates a 'higher' block.
 */
static int prelim_ref_compare(struct prelim_ref *ref1,
			      struct prelim_ref *ref2)
{
	if (ref1->level < ref2->level)
		return -1;
	if (ref1->level > ref2->level)
		return 1;
	if (ref1->root_id < ref2->root_id)
		return -1;
	if (ref1->root_id > ref2->root_id)
		return 1;
	if (ref1->key_for_search.type < ref2->key_for_search.type)
		return -1;
	if (ref1->key_for_search.type > ref2->key_for_search.type)
		return 1;
	if (ref1->key_for_search.objectid < ref2->key_for_search.objectid)
		return -1;
	if (ref1->key_for_search.objectid > ref2->key_for_search.objectid)
		return 1;
	if (ref1->key_for_search.offset < ref2->key_for_search.offset)
		return -1;
	if (ref1->key_for_search.offset > ref2->key_for_search.offset)
		return 1;
	if (ref1->parent < ref2->parent)
		return -1;
	if (ref1->parent > ref2->parent)
		return 1;

	return 0;
}

207 208
static void update_share_count(struct share_check *sc, int oldcount,
			       int newcount)
209 210 211 212 213 214 215 216 217 218
{
	if ((!sc) || (oldcount == 0 && newcount < 1))
		return;

	if (oldcount > 0 && newcount < 1)
		sc->share_count--;
	else if (oldcount < 1 && newcount > 0)
		sc->share_count++;
}

219 220 221
/*
 * Add @newref to the @root rbtree, merging identical refs.
 *
222
 * Callers should assume that newref has been freed after calling.
223
 */
224 225
static void prelim_ref_insert(const struct btrfs_fs_info *fs_info,
			      struct preftree *preftree,
226 227
			      struct prelim_ref *newref,
			      struct share_check *sc)
228
{
L
Liu Bo 已提交
229
	struct rb_root_cached *root;
230 231 232 233
	struct rb_node **p;
	struct rb_node *parent = NULL;
	struct prelim_ref *ref;
	int result;
L
Liu Bo 已提交
234
	bool leftmost = true;
235 236

	root = &preftree->root;
L
Liu Bo 已提交
237
	p = &root->rb_root.rb_node;
238 239 240 241 242 243 244 245 246

	while (*p) {
		parent = *p;
		ref = rb_entry(parent, struct prelim_ref, rbnode);
		result = prelim_ref_compare(ref, newref);
		if (result < 0) {
			p = &(*p)->rb_left;
		} else if (result > 0) {
			p = &(*p)->rb_right;
L
Liu Bo 已提交
247
			leftmost = false;
248 249 250 251 252 253 254 255 256 257 258
		} else {
			/* Identical refs, merge them and free @newref */
			struct extent_inode_elem *eie = ref->inode_list;

			while (eie && eie->next)
				eie = eie->next;

			if (!eie)
				ref->inode_list = newref->inode_list;
			else
				eie->next = newref->inode_list;
259 260
			trace_btrfs_prelim_ref_merge(fs_info, ref, newref,
						     preftree->count);
261 262 263 264 265 266 267
			/*
			 * A delayed ref can have newref->count < 0.
			 * The ref->count is updated to follow any
			 * BTRFS_[ADD|DROP]_DELAYED_REF actions.
			 */
			update_share_count(sc, ref->count,
					   ref->count + newref->count);
268 269 270 271 272 273
			ref->count += newref->count;
			free_pref(newref);
			return;
		}
	}

274
	update_share_count(sc, 0, newref->count);
275
	preftree->count++;
276
	trace_btrfs_prelim_ref_insert(fs_info, newref, NULL, preftree->count);
277
	rb_link_node(&newref->rbnode, parent, p);
L
Liu Bo 已提交
278
	rb_insert_color_cached(&newref->rbnode, root, leftmost);
279 280 281 282 283 284 285 286 287 288
}

/*
 * Release the entire tree.  We don't care about internal consistency so
 * just free everything and then reset the tree root.
 */
static void prelim_release(struct preftree *preftree)
{
	struct prelim_ref *ref, *next_ref;

L
Liu Bo 已提交
289 290
	rbtree_postorder_for_each_entry_safe(ref, next_ref,
					     &preftree->root.rb_root, rbnode)
291 292
		free_pref(ref);

L
Liu Bo 已提交
293
	preftree->root = RB_ROOT_CACHED;
294
	preftree->count = 0;
295 296
}

297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328
/*
 * the rules for all callers of this function are:
 * - obtaining the parent is the goal
 * - if you add a key, you must know that it is a correct key
 * - if you cannot add the parent or a correct key, then we will look into the
 *   block later to set a correct key
 *
 * delayed refs
 * ============
 *        backref type | shared | indirect | shared | indirect
 * information         |   tree |     tree |   data |     data
 * --------------------+--------+----------+--------+----------
 *      parent logical |    y   |     -    |    -   |     -
 *      key to resolve |    -   |     y    |    y   |     y
 *  tree block logical |    -   |     -    |    -   |     -
 *  root for resolving |    y   |     y    |    y   |     y
 *
 * - column 1:       we've the parent -> done
 * - column 2, 3, 4: we use the key to find the parent
 *
 * on disk refs (inline or keyed)
 * ==============================
 *        backref type | shared | indirect | shared | indirect
 * information         |   tree |     tree |   data |     data
 * --------------------+--------+----------+--------+----------
 *      parent logical |    y   |     -    |    y   |     -
 *      key to resolve |    -   |     -    |    -   |     y
 *  tree block logical |    y   |     y    |    y   |     y
 *  root for resolving |    -   |     y    |    y   |     y
 *
 * - column 1, 3: we've the parent -> done
 * - column 2:    we take the first key from the block to find the parent
329
 *                (see add_missing_keys)
330 331 332 333 334
 * - column 4:    we use the key to find the parent
 *
 * additional information that's available but not required to find the parent
 * block might help in merging entries to gain some speed.
 */
335 336
static int add_prelim_ref(const struct btrfs_fs_info *fs_info,
			  struct preftree *preftree, u64 root_id,
337
			  const struct btrfs_key *key, int level, u64 parent,
338 339
			  u64 wanted_disk_byte, int count,
			  struct share_check *sc, gfp_t gfp_mask)
340
{
341
	struct prelim_ref *ref;
342

343 344 345
	if (root_id == BTRFS_DATA_RELOC_TREE_OBJECTID)
		return 0;

346
	ref = kmem_cache_alloc(btrfs_prelim_ref_cache, gfp_mask);
347 348 349 350
	if (!ref)
		return -ENOMEM;

	ref->root_id = root_id;
351
	if (key)
352
		ref->key_for_search = *key;
353
	else
354
		memset(&ref->key_for_search, 0, sizeof(ref->key_for_search));
355

356
	ref->inode_list = NULL;
357 358 359 360
	ref->level = level;
	ref->count = count;
	ref->parent = parent;
	ref->wanted_disk_byte = wanted_disk_byte;
361 362
	prelim_ref_insert(fs_info, preftree, ref, sc);
	return extent_is_shared(sc);
363 364
}

365
/* direct refs use root == 0, key == NULL */
366 367
static int add_direct_ref(const struct btrfs_fs_info *fs_info,
			  struct preftrees *preftrees, int level, u64 parent,
368 369
			  u64 wanted_disk_byte, int count,
			  struct share_check *sc, gfp_t gfp_mask)
370
{
371
	return add_prelim_ref(fs_info, &preftrees->direct, 0, NULL, level,
372
			      parent, wanted_disk_byte, count, sc, gfp_mask);
373 374 375
}

/* indirect refs use parent == 0 */
376 377
static int add_indirect_ref(const struct btrfs_fs_info *fs_info,
			    struct preftrees *preftrees, u64 root_id,
378
			    const struct btrfs_key *key, int level,
379 380
			    u64 wanted_disk_byte, int count,
			    struct share_check *sc, gfp_t gfp_mask)
381 382 383 384 385
{
	struct preftree *tree = &preftrees->indirect;

	if (!key)
		tree = &preftrees->indirect_missing_keys;
386
	return add_prelim_ref(fs_info, tree, root_id, key, level, 0,
387
			      wanted_disk_byte, count, sc, gfp_mask);
388 389
}

390 391 392 393 394
static int is_shared_data_backref(struct preftrees *preftrees, u64 bytenr)
{
	struct rb_node **p = &preftrees->direct.root.rb_root.rb_node;
	struct rb_node *parent = NULL;
	struct prelim_ref *ref = NULL;
395
	struct prelim_ref target = {};
396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414
	int result;

	target.parent = bytenr;

	while (*p) {
		parent = *p;
		ref = rb_entry(parent, struct prelim_ref, rbnode);
		result = prelim_ref_compare(ref, &target);

		if (result < 0)
			p = &(*p)->rb_left;
		else if (result > 0)
			p = &(*p)->rb_right;
		else
			return 1;
	}
	return 0;
}

415
static int add_all_parents(struct btrfs_root *root, struct btrfs_path *path,
416 417
			   struct ulist *parents,
			   struct preftrees *preftrees, struct prelim_ref *ref,
418
			   int level, u64 time_seq, const u64 *extent_item_pos,
419
			   bool ignore_offset)
420
{
421 422 423 424
	int ret = 0;
	int slot;
	struct extent_buffer *eb;
	struct btrfs_key key;
425
	struct btrfs_key *key_for_search = &ref->key_for_search;
426
	struct btrfs_file_extent_item *fi;
427
	struct extent_inode_elem *eie = NULL, *old = NULL;
428
	u64 disk_byte;
429 430
	u64 wanted_disk_byte = ref->wanted_disk_byte;
	u64 count = 0;
431
	u64 data_offset;
432

433 434 435
	if (level != 0) {
		eb = path->nodes[level];
		ret = ulist_add(parents, eb->start, 0, GFP_NOFS);
436 437
		if (ret < 0)
			return ret;
438
		return 0;
439
	}
440 441

	/*
442 443 444 445 446
	 * 1. We normally enter this function with the path already pointing to
	 *    the first item to check. But sometimes, we may enter it with
	 *    slot == nritems.
	 * 2. We are searching for normal backref but bytenr of this leaf
	 *    matches shared data backref
447 448
	 * 3. The leaf owner is not equal to the root we are searching
	 *
449
	 * For these cases, go to the next leaf before we continue.
450
	 */
451 452
	eb = path->nodes[0];
	if (path->slots[0] >= btrfs_header_nritems(eb) ||
453 454
	    is_shared_data_backref(preftrees, eb->start) ||
	    ref->root_id != btrfs_header_owner(eb)) {
455
		if (time_seq == SEQ_LAST)
456 457 458 459
			ret = btrfs_next_leaf(root, path);
		else
			ret = btrfs_next_old_leaf(root, path, time_seq);
	}
460

461
	while (!ret && count < ref->count) {
462
		eb = path->nodes[0];
463 464 465 466 467 468 469 470
		slot = path->slots[0];

		btrfs_item_key_to_cpu(eb, &key, slot);

		if (key.objectid != key_for_search->objectid ||
		    key.type != BTRFS_EXTENT_DATA_KEY)
			break;

471 472
		/*
		 * We are searching for normal backref but bytenr of this leaf
473 474
		 * matches shared data backref, OR
		 * the leaf owner is not equal to the root we are searching for
475
		 */
476 477 478
		if (slot == 0 &&
		    (is_shared_data_backref(preftrees, eb->start) ||
		     ref->root_id != btrfs_header_owner(eb))) {
479 480 481 482 483 484
			if (time_seq == SEQ_LAST)
				ret = btrfs_next_leaf(root, path);
			else
				ret = btrfs_next_old_leaf(root, path, time_seq);
			continue;
		}
485 486
		fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
		disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
487
		data_offset = btrfs_file_extent_offset(eb, fi);
488 489 490

		if (disk_byte == wanted_disk_byte) {
			eie = NULL;
491
			old = NULL;
492 493 494 495
			if (ref->key_for_search.offset == key.offset - data_offset)
				count++;
			else
				goto next;
496 497 498
			if (extent_item_pos) {
				ret = check_extent_in_eb(&key, eb, fi,
						*extent_item_pos,
499
						&eie, ignore_offset);
500 501 502
				if (ret < 0)
					break;
			}
503 504
			if (ret > 0)
				goto next;
505 506
			ret = ulist_add_merge_ptr(parents, eb->start,
						  eie, (void **)&old, GFP_NOFS);
507 508 509 510 511 512
			if (ret < 0)
				break;
			if (!ret && extent_item_pos) {
				while (old->next)
					old = old->next;
				old->next = eie;
513
			}
514
			eie = NULL;
515
		}
516
next:
517
		if (time_seq == SEQ_LAST)
518 519 520
			ret = btrfs_next_item(root, path);
		else
			ret = btrfs_next_old_item(root, path, time_seq);
521 522
	}

523 524
	if (ret > 0)
		ret = 0;
525 526
	else if (ret < 0)
		free_inode_elem_list(eie);
527
	return ret;
528 529 530 531 532 533
}

/*
 * resolve an indirect backref in the form (root_id, key, level)
 * to a logical address
 */
534 535
static int resolve_indirect_ref(struct btrfs_fs_info *fs_info,
				struct btrfs_path *path, u64 time_seq,
536
				struct preftrees *preftrees,
537
				struct prelim_ref *ref, struct ulist *parents,
538
				const u64 *extent_item_pos, bool ignore_offset)
539 540 541 542 543 544
{
	struct btrfs_root *root;
	struct extent_buffer *eb;
	int ret = 0;
	int root_level;
	int level = ref->level;
545
	struct btrfs_key search_key = ref->key_for_search;
546

547 548 549 550 551 552 553 554 555 556 557 558
	/*
	 * If we're search_commit_root we could possibly be holding locks on
	 * other tree nodes.  This happens when qgroups does backref walks when
	 * adding new delayed refs.  To deal with this we need to look in cache
	 * for the root, and if we don't find it then we need to search the
	 * tree_root's commit root, thus the btrfs_get_fs_root_commit_root usage
	 * here.
	 */
	if (path->search_commit_root)
		root = btrfs_get_fs_root_commit_root(fs_info, path, ref->root_id);
	else
		root = btrfs_get_fs_root(fs_info, ref->root_id, false);
559 560
	if (IS_ERR(root)) {
		ret = PTR_ERR(root);
561 562 563
		goto out_free;
	}

564 565 566 567 568 569
	if (!path->search_commit_root &&
	    test_bit(BTRFS_ROOT_DELETING, &root->state)) {
		ret = -ENOENT;
		goto out;
	}

570
	if (btrfs_is_testing(fs_info)) {
J
Josef Bacik 已提交
571 572 573 574
		ret = -ENOENT;
		goto out;
	}

575 576
	if (path->search_commit_root)
		root_level = btrfs_header_level(root->commit_root);
577
	else if (time_seq == SEQ_LAST)
578
		root_level = btrfs_header_level(root->node);
579 580
	else
		root_level = btrfs_old_root_level(root, time_seq);
581

J
Josef Bacik 已提交
582
	if (root_level + 1 == level)
583 584
		goto out;

585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606
	/*
	 * We can often find data backrefs with an offset that is too large
	 * (>= LLONG_MAX, maximum allowed file offset) due to underflows when
	 * subtracting a file's offset with the data offset of its
	 * corresponding extent data item. This can happen for example in the
	 * clone ioctl.
	 *
	 * So if we detect such case we set the search key's offset to zero to
	 * make sure we will find the matching file extent item at
	 * add_all_parents(), otherwise we will miss it because the offset
	 * taken form the backref is much larger then the offset of the file
	 * extent item. This can make us scan a very large number of file
	 * extent items, but at least it will not make us miss any.
	 *
	 * This is an ugly workaround for a behaviour that should have never
	 * existed, but it does and a fix for the clone ioctl would touch a lot
	 * of places, cause backwards incompatibility and would not fix the
	 * problem for extents cloned with older kernels.
	 */
	if (search_key.type == BTRFS_EXTENT_DATA_KEY &&
	    search_key.offset >= LLONG_MAX)
		search_key.offset = 0;
607
	path->lowest_level = level;
608
	if (time_seq == SEQ_LAST)
609
		ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
610
	else
611
		ret = btrfs_search_old_slot(root, &search_key, path, time_seq);
612

613 614
	btrfs_debug(fs_info,
		"search slot in root %llu (level %d, ref count %d) returned %d for key (%llu %u %llu)",
615 616 617
		 ref->root_id, level, ref->count, ret,
		 ref->key_for_search.objectid, ref->key_for_search.type,
		 ref->key_for_search.offset);
618 619 620 621
	if (ret < 0)
		goto out;

	eb = path->nodes[level];
622
	while (!eb) {
623
		if (WARN_ON(!level)) {
624 625 626 627 628
			ret = 1;
			goto out;
		}
		level--;
		eb = path->nodes[level];
629 630
	}

631
	ret = add_all_parents(root, path, parents, preftrees, ref, level,
632
			      time_seq, extent_item_pos, ignore_offset);
633
out:
634
	btrfs_put_root(root);
635
out_free:
636 637
	path->lowest_level = 0;
	btrfs_release_path(path);
638 639 640
	return ret;
}

641 642 643 644 645 646 647 648
static struct extent_inode_elem *
unode_aux_to_inode_list(struct ulist_node *node)
{
	if (!node)
		return NULL;
	return (struct extent_inode_elem *)(uintptr_t)node->aux;
}

649
/*
650
 * We maintain three separate rbtrees: one for direct refs, one for
651 652 653 654 655 656 657 658 659 660 661 662 663
 * indirect refs which have a key, and one for indirect refs which do not
 * have a key. Each tree does merge on insertion.
 *
 * Once all of the references are located, we iterate over the tree of
 * indirect refs with missing keys. An appropriate key is located and
 * the ref is moved onto the tree for indirect refs. After all missing
 * keys are thus located, we iterate over the indirect ref tree, resolve
 * each reference, and then insert the resolved reference onto the
 * direct tree (merging there too).
 *
 * New backrefs (i.e., for parent nodes) are added to the appropriate
 * rbtree as they are encountered. The new backrefs are subsequently
 * resolved as above.
664
 */
665 666
static int resolve_indirect_refs(struct btrfs_fs_info *fs_info,
				 struct btrfs_path *path, u64 time_seq,
667
				 struct preftrees *preftrees,
668
				 const u64 *extent_item_pos,
669
				 struct share_check *sc, bool ignore_offset)
670 671 672 673 674
{
	int err;
	int ret = 0;
	struct ulist *parents;
	struct ulist_node *node;
J
Jan Schmidt 已提交
675
	struct ulist_iterator uiter;
676
	struct rb_node *rnode;
677 678 679 680 681 682

	parents = ulist_alloc(GFP_NOFS);
	if (!parents)
		return -ENOMEM;

	/*
683 684 685 686
	 * We could trade memory usage for performance here by iterating
	 * the tree, allocating new refs for each insertion, and then
	 * freeing the entire indirect tree when we're done.  In some test
	 * cases, the tree can grow quite large (~200k objects).
687
	 */
L
Liu Bo 已提交
688
	while ((rnode = rb_first_cached(&preftrees->indirect.root))) {
689 690 691 692 693 694 695 696 697
		struct prelim_ref *ref;

		ref = rb_entry(rnode, struct prelim_ref, rbnode);
		if (WARN(ref->parent,
			 "BUG: direct ref found in indirect tree")) {
			ret = -EINVAL;
			goto out;
		}

L
Liu Bo 已提交
698
		rb_erase_cached(&ref->rbnode, &preftrees->indirect.root);
699
		preftrees->indirect.count--;
700 701 702

		if (ref->count == 0) {
			free_pref(ref);
703
			continue;
704 705
		}

706 707
		if (sc && sc->root_objectid &&
		    ref->root_id != sc->root_objectid) {
708
			free_pref(ref);
709 710 711
			ret = BACKREF_FOUND_SHARED;
			goto out;
		}
712 713
		err = resolve_indirect_ref(fs_info, path, time_seq, preftrees,
					   ref, parents, extent_item_pos,
714
					   ignore_offset);
715 716 717 718 719
		/*
		 * we can only tolerate ENOENT,otherwise,we should catch error
		 * and return directly.
		 */
		if (err == -ENOENT) {
720 721
			prelim_ref_insert(fs_info, &preftrees->direct, ref,
					  NULL);
722
			continue;
723
		} else if (err) {
724
			free_pref(ref);
725 726 727
			ret = err;
			goto out;
		}
728 729

		/* we put the first parent into the ref at hand */
J
Jan Schmidt 已提交
730 731
		ULIST_ITER_INIT(&uiter);
		node = ulist_next(parents, &uiter);
732
		ref->parent = node ? node->val : 0;
733
		ref->inode_list = unode_aux_to_inode_list(node);
734

735
		/* Add a prelim_ref(s) for any other parent(s). */
J
Jan Schmidt 已提交
736
		while ((node = ulist_next(parents, &uiter))) {
737 738
			struct prelim_ref *new_ref;

739 740
			new_ref = kmem_cache_alloc(btrfs_prelim_ref_cache,
						   GFP_NOFS);
741
			if (!new_ref) {
742
				free_pref(ref);
743
				ret = -ENOMEM;
744
				goto out;
745 746 747
			}
			memcpy(new_ref, ref, sizeof(*ref));
			new_ref->parent = node->val;
748
			new_ref->inode_list = unode_aux_to_inode_list(node);
749 750
			prelim_ref_insert(fs_info, &preftrees->direct,
					  new_ref, NULL);
751
		}
752

753
		/*
754
		 * Now it's a direct ref, put it in the direct tree. We must
755 756 757
		 * do this last because the ref could be merged/freed here.
		 */
		prelim_ref_insert(fs_info, &preftrees->direct, ref, NULL);
758

759
		ulist_reinit(parents);
760
		cond_resched();
761
	}
762
out:
763 764 765 766
	ulist_free(parents);
	return ret;
}

767 768 769
/*
 * read tree blocks and add keys where required.
 */
770
static int add_missing_keys(struct btrfs_fs_info *fs_info,
771
			    struct preftrees *preftrees, bool lock)
772
{
773
	struct prelim_ref *ref;
774
	struct extent_buffer *eb;
775 776
	struct preftree *tree = &preftrees->indirect_missing_keys;
	struct rb_node *node;
777

L
Liu Bo 已提交
778
	while ((node = rb_first_cached(&tree->root))) {
779
		ref = rb_entry(node, struct prelim_ref, rbnode);
L
Liu Bo 已提交
780
		rb_erase_cached(node, &tree->root);
781 782 783

		BUG_ON(ref->parent);	/* should not be a direct ref */
		BUG_ON(ref->key_for_search.type);
784
		BUG_ON(!ref->wanted_disk_byte);
785

786 787
		eb = read_tree_block(fs_info, ref->wanted_disk_byte,
				     ref->root_id, 0, ref->level - 1, NULL);
788
		if (IS_ERR(eb)) {
789
			free_pref(ref);
790 791
			return PTR_ERR(eb);
		} else if (!extent_buffer_uptodate(eb)) {
792
			free_pref(ref);
793 794 795
			free_extent_buffer(eb);
			return -EIO;
		}
796 797
		if (lock)
			btrfs_tree_read_lock(eb);
798 799 800 801
		if (btrfs_header_level(eb) == 0)
			btrfs_item_key_to_cpu(eb, &ref->key_for_search, 0);
		else
			btrfs_node_key_to_cpu(eb, &ref->key_for_search, 0);
802 803
		if (lock)
			btrfs_tree_read_unlock(eb);
804
		free_extent_buffer(eb);
805
		prelim_ref_insert(fs_info, &preftrees->indirect, ref, NULL);
806
		cond_resched();
807 808 809 810
	}
	return 0;
}

811 812 813 814
/*
 * add all currently queued delayed refs from this head whose seq nr is
 * smaller or equal that seq to the list
 */
815 816
static int add_delayed_refs(const struct btrfs_fs_info *fs_info,
			    struct btrfs_delayed_ref_head *head, u64 seq,
817
			    struct preftrees *preftrees, struct share_check *sc)
818
{
819
	struct btrfs_delayed_ref_node *node;
820
	struct btrfs_delayed_extent_op *extent_op = head->extent_op;
821
	struct btrfs_key key;
822
	struct btrfs_key tmp_op_key;
823
	struct rb_node *n;
824
	int count;
825
	int ret = 0;
826

827
	if (extent_op && extent_op->update_key)
828
		btrfs_disk_key_to_cpu(&tmp_op_key, &extent_op->key);
829

830
	spin_lock(&head->lock);
831
	for (n = rb_first_cached(&head->ref_tree); n; n = rb_next(n)) {
832 833
		node = rb_entry(n, struct btrfs_delayed_ref_node,
				ref_node);
834 835 836 837 838 839 840 841 842
		if (node->seq > seq)
			continue;

		switch (node->action) {
		case BTRFS_ADD_DELAYED_EXTENT:
		case BTRFS_UPDATE_DELAYED_HEAD:
			WARN_ON(1);
			continue;
		case BTRFS_ADD_DELAYED_REF:
843
			count = node->ref_mod;
844 845
			break;
		case BTRFS_DROP_DELAYED_REF:
846
			count = node->ref_mod * -1;
847 848
			break;
		default:
849
			BUG();
850 851 852
		}
		switch (node->type) {
		case BTRFS_TREE_BLOCK_REF_KEY: {
853
			/* NORMAL INDIRECT METADATA backref */
854 855 856
			struct btrfs_delayed_tree_ref *ref;

			ref = btrfs_delayed_node_to_tree_ref(node);
857 858
			ret = add_indirect_ref(fs_info, preftrees, ref->root,
					       &tmp_op_key, ref->level + 1,
859 860
					       node->bytenr, count, sc,
					       GFP_ATOMIC);
861 862 863
			break;
		}
		case BTRFS_SHARED_BLOCK_REF_KEY: {
864
			/* SHARED DIRECT METADATA backref */
865 866 867
			struct btrfs_delayed_tree_ref *ref;

			ref = btrfs_delayed_node_to_tree_ref(node);
868

869 870
			ret = add_direct_ref(fs_info, preftrees, ref->level + 1,
					     ref->parent, node->bytenr, count,
871
					     sc, GFP_ATOMIC);
872 873 874
			break;
		}
		case BTRFS_EXTENT_DATA_REF_KEY: {
875
			/* NORMAL INDIRECT DATA backref */
876 877 878 879 880 881
			struct btrfs_delayed_data_ref *ref;
			ref = btrfs_delayed_node_to_data_ref(node);

			key.objectid = ref->objectid;
			key.type = BTRFS_EXTENT_DATA_KEY;
			key.offset = ref->offset;
882 883 884 885 886

			/*
			 * Found a inum that doesn't match our known inum, we
			 * know it's shared.
			 */
887
			if (sc && sc->inum && ref->objectid != sc->inum) {
888
				ret = BACKREF_FOUND_SHARED;
889
				goto out;
890 891
			}

892
			ret = add_indirect_ref(fs_info, preftrees, ref->root,
893 894
					       &key, 0, node->bytenr, count, sc,
					       GFP_ATOMIC);
895 896 897
			break;
		}
		case BTRFS_SHARED_DATA_REF_KEY: {
898
			/* SHARED DIRECT FULL backref */
899 900 901
			struct btrfs_delayed_data_ref *ref;

			ref = btrfs_delayed_node_to_data_ref(node);
902

903 904 905
			ret = add_direct_ref(fs_info, preftrees, 0, ref->parent,
					     node->bytenr, count, sc,
					     GFP_ATOMIC);
906 907 908 909 910
			break;
		}
		default:
			WARN_ON(1);
		}
911 912 913 914 915
		/*
		 * We must ignore BACKREF_FOUND_SHARED until all delayed
		 * refs have been checked.
		 */
		if (ret && (ret != BACKREF_FOUND_SHARED))
916
			break;
917
	}
918 919 920
	if (!ret)
		ret = extent_is_shared(sc);
out:
921 922
	spin_unlock(&head->lock);
	return ret;
923 924 925 926
}

/*
 * add all inline backrefs for bytenr to the list
927 928
 *
 * Returns 0 on success, <0 on error, or BACKREF_FOUND_SHARED.
929
 */
930 931
static int add_inline_refs(const struct btrfs_fs_info *fs_info,
			   struct btrfs_path *path, u64 bytenr,
932
			   int *info_level, struct preftrees *preftrees,
933
			   struct share_check *sc)
934
{
935
	int ret = 0;
936 937 938
	int slot;
	struct extent_buffer *leaf;
	struct btrfs_key key;
939
	struct btrfs_key found_key;
940 941 942 943 944 945 946 947 948 949
	unsigned long ptr;
	unsigned long end;
	struct btrfs_extent_item *ei;
	u64 flags;
	u64 item_size;

	/*
	 * enumerate all inline refs
	 */
	leaf = path->nodes[0];
950
	slot = path->slots[0];
951 952 953 954 955 956

	item_size = btrfs_item_size_nr(leaf, slot);
	BUG_ON(item_size < sizeof(*ei));

	ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item);
	flags = btrfs_extent_flags(leaf, ei);
957
	btrfs_item_key_to_cpu(leaf, &found_key, slot);
958 959 960 961

	ptr = (unsigned long)(ei + 1);
	end = (unsigned long)ei + item_size;

962 963
	if (found_key.type == BTRFS_EXTENT_ITEM_KEY &&
	    flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
964 965 966 967 968 969
		struct btrfs_tree_block_info *info;

		info = (struct btrfs_tree_block_info *)ptr;
		*info_level = btrfs_tree_block_level(leaf, info);
		ptr += sizeof(struct btrfs_tree_block_info);
		BUG_ON(ptr > end);
970 971
	} else if (found_key.type == BTRFS_METADATA_ITEM_KEY) {
		*info_level = found_key.offset;
972 973 974 975 976 977 978 979 980 981
	} else {
		BUG_ON(!(flags & BTRFS_EXTENT_FLAG_DATA));
	}

	while (ptr < end) {
		struct btrfs_extent_inline_ref *iref;
		u64 offset;
		int type;

		iref = (struct btrfs_extent_inline_ref *)ptr;
982 983 984
		type = btrfs_get_extent_inline_ref_type(leaf, iref,
							BTRFS_REF_TYPE_ANY);
		if (type == BTRFS_REF_TYPE_INVALID)
985
			return -EUCLEAN;
986

987 988 989 990
		offset = btrfs_extent_inline_ref_offset(leaf, iref);

		switch (type) {
		case BTRFS_SHARED_BLOCK_REF_KEY:
991 992
			ret = add_direct_ref(fs_info, preftrees,
					     *info_level + 1, offset,
993
					     bytenr, 1, NULL, GFP_NOFS);
994 995 996 997 998 999 1000
			break;
		case BTRFS_SHARED_DATA_REF_KEY: {
			struct btrfs_shared_data_ref *sdref;
			int count;

			sdref = (struct btrfs_shared_data_ref *)(iref + 1);
			count = btrfs_shared_data_ref_count(leaf, sdref);
1001

1002
			ret = add_direct_ref(fs_info, preftrees, 0, offset,
1003
					     bytenr, count, sc, GFP_NOFS);
1004 1005 1006
			break;
		}
		case BTRFS_TREE_BLOCK_REF_KEY:
1007 1008
			ret = add_indirect_ref(fs_info, preftrees, offset,
					       NULL, *info_level + 1,
1009
					       bytenr, 1, NULL, GFP_NOFS);
1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021
			break;
		case BTRFS_EXTENT_DATA_REF_KEY: {
			struct btrfs_extent_data_ref *dref;
			int count;
			u64 root;

			dref = (struct btrfs_extent_data_ref *)(&iref->offset);
			count = btrfs_extent_data_ref_count(leaf, dref);
			key.objectid = btrfs_extent_data_ref_objectid(leaf,
								      dref);
			key.type = BTRFS_EXTENT_DATA_KEY;
			key.offset = btrfs_extent_data_ref_offset(leaf, dref);
1022

1023
			if (sc && sc->inum && key.objectid != sc->inum) {
1024 1025 1026 1027
				ret = BACKREF_FOUND_SHARED;
				break;
			}

1028
			root = btrfs_extent_data_ref_root(leaf, dref);
1029

1030 1031
			ret = add_indirect_ref(fs_info, preftrees, root,
					       &key, 0, bytenr, count,
1032
					       sc, GFP_NOFS);
1033 1034 1035 1036 1037
			break;
		}
		default:
			WARN_ON(1);
		}
1038 1039
		if (ret)
			return ret;
1040 1041 1042 1043 1044 1045 1046 1047
		ptr += btrfs_extent_inline_ref_size(type);
	}

	return 0;
}

/*
 * add all non-inline backrefs for bytenr to the list
1048 1049
 *
 * Returns 0 on success, <0 on error, or BACKREF_FOUND_SHARED.
1050
 */
1051 1052
static int add_keyed_refs(struct btrfs_fs_info *fs_info,
			  struct btrfs_path *path, u64 bytenr,
1053
			  int info_level, struct preftrees *preftrees,
1054
			  struct share_check *sc)
1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083
{
	struct btrfs_root *extent_root = fs_info->extent_root;
	int ret;
	int slot;
	struct extent_buffer *leaf;
	struct btrfs_key key;

	while (1) {
		ret = btrfs_next_item(extent_root, path);
		if (ret < 0)
			break;
		if (ret) {
			ret = 0;
			break;
		}

		slot = path->slots[0];
		leaf = path->nodes[0];
		btrfs_item_key_to_cpu(leaf, &key, slot);

		if (key.objectid != bytenr)
			break;
		if (key.type < BTRFS_TREE_BLOCK_REF_KEY)
			continue;
		if (key.type > BTRFS_SHARED_DATA_REF_KEY)
			break;

		switch (key.type) {
		case BTRFS_SHARED_BLOCK_REF_KEY:
1084
			/* SHARED DIRECT METADATA backref */
1085 1086
			ret = add_direct_ref(fs_info, preftrees,
					     info_level + 1, key.offset,
1087
					     bytenr, 1, NULL, GFP_NOFS);
1088 1089
			break;
		case BTRFS_SHARED_DATA_REF_KEY: {
1090
			/* SHARED DIRECT FULL backref */
1091 1092 1093 1094 1095 1096
			struct btrfs_shared_data_ref *sdref;
			int count;

			sdref = btrfs_item_ptr(leaf, slot,
					      struct btrfs_shared_data_ref);
			count = btrfs_shared_data_ref_count(leaf, sdref);
1097 1098
			ret = add_direct_ref(fs_info, preftrees, 0,
					     key.offset, bytenr, count,
1099
					     sc, GFP_NOFS);
1100 1101 1102
			break;
		}
		case BTRFS_TREE_BLOCK_REF_KEY:
1103
			/* NORMAL INDIRECT METADATA backref */
1104 1105
			ret = add_indirect_ref(fs_info, preftrees, key.offset,
					       NULL, info_level + 1, bytenr,
1106
					       1, NULL, GFP_NOFS);
1107 1108
			break;
		case BTRFS_EXTENT_DATA_REF_KEY: {
1109
			/* NORMAL INDIRECT DATA backref */
1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120
			struct btrfs_extent_data_ref *dref;
			int count;
			u64 root;

			dref = btrfs_item_ptr(leaf, slot,
					      struct btrfs_extent_data_ref);
			count = btrfs_extent_data_ref_count(leaf, dref);
			key.objectid = btrfs_extent_data_ref_objectid(leaf,
								      dref);
			key.type = BTRFS_EXTENT_DATA_KEY;
			key.offset = btrfs_extent_data_ref_offset(leaf, dref);
1121

1122
			if (sc && sc->inum && key.objectid != sc->inum) {
1123 1124 1125 1126
				ret = BACKREF_FOUND_SHARED;
				break;
			}

1127
			root = btrfs_extent_data_ref_root(leaf, dref);
1128 1129
			ret = add_indirect_ref(fs_info, preftrees, root,
					       &key, 0, bytenr, count,
1130
					       sc, GFP_NOFS);
1131 1132 1133 1134 1135
			break;
		}
		default:
			WARN_ON(1);
		}
1136 1137 1138
		if (ret)
			return ret;

1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149
	}

	return ret;
}

/*
 * this adds all existing backrefs (inline backrefs, backrefs and delayed
 * refs) for the given bytenr to the refs list, merges duplicates and resolves
 * indirect refs to their parent bytenr.
 * When roots are found, they're added to the roots list
 *
1150
 * If time_seq is set to SEQ_LAST, it will not search delayed_refs, and behave
1151 1152 1153 1154
 * much like trans == NULL case, the difference only lies in it will not
 * commit root.
 * The special case is for qgroup to search roots in commit_transaction().
 *
1155 1156 1157 1158 1159
 * @sc - if !NULL, then immediately return BACKREF_FOUND_SHARED when a
 * shared extent is detected.
 *
 * Otherwise this returns 0 for success and <0 for an error.
 *
1160 1161 1162 1163
 * If ignore_offset is set to false, only extent refs whose offsets match
 * extent_item_pos are returned.  If true, every extent ref is returned
 * and extent_item_pos is ignored.
 *
1164 1165 1166 1167
 * FIXME some caching might speed things up
 */
static int find_parent_nodes(struct btrfs_trans_handle *trans,
			     struct btrfs_fs_info *fs_info, u64 bytenr,
1168
			     u64 time_seq, struct ulist *refs,
1169
			     struct ulist *roots, const u64 *extent_item_pos,
1170
			     struct share_check *sc, bool ignore_offset)
1171 1172 1173 1174
{
	struct btrfs_key key;
	struct btrfs_path *path;
	struct btrfs_delayed_ref_root *delayed_refs = NULL;
1175
	struct btrfs_delayed_ref_head *head;
1176 1177
	int info_level = 0;
	int ret;
1178
	struct prelim_ref *ref;
1179
	struct rb_node *node;
1180
	struct extent_inode_elem *eie = NULL;
1181 1182 1183 1184 1185
	struct preftrees preftrees = {
		.direct = PREFTREE_INIT,
		.indirect = PREFTREE_INIT,
		.indirect_missing_keys = PREFTREE_INIT
	};
1186 1187 1188

	key.objectid = bytenr;
	key.offset = (u64)-1;
1189 1190 1191 1192
	if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
		key.type = BTRFS_METADATA_ITEM_KEY;
	else
		key.type = BTRFS_EXTENT_ITEM_KEY;
1193 1194 1195 1196

	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;
1197
	if (!trans) {
1198
		path->search_commit_root = 1;
1199 1200
		path->skip_locking = 1;
	}
1201

1202
	if (time_seq == SEQ_LAST)
1203 1204
		path->skip_locking = 1;

1205 1206 1207 1208 1209 1210
	/*
	 * grab both a lock on the path and a lock on the delayed ref head.
	 * We need both to get a consistent picture of how the refs look
	 * at a specified point in time
	 */
again:
1211 1212
	head = NULL;

1213 1214 1215 1216 1217
	ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 0);
	if (ret < 0)
		goto out;
	BUG_ON(ret == 0);

1218
#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1219
	if (trans && likely(trans->type != __TRANS_DUMMY) &&
1220
	    time_seq != SEQ_LAST) {
1221
#else
1222
	if (trans && time_seq != SEQ_LAST) {
1223
#endif
1224 1225 1226 1227 1228 1229
		/*
		 * look if there are updates for this ref queued and lock the
		 * head
		 */
		delayed_refs = &trans->transaction->delayed_refs;
		spin_lock(&delayed_refs->lock);
1230
		head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
1231 1232
		if (head) {
			if (!mutex_trylock(&head->mutex)) {
1233
				refcount_inc(&head->refs);
1234 1235 1236 1237 1238 1239 1240 1241 1242 1243
				spin_unlock(&delayed_refs->lock);

				btrfs_release_path(path);

				/*
				 * Mutex was contended, block until it's
				 * released and try again
				 */
				mutex_lock(&head->mutex);
				mutex_unlock(&head->mutex);
1244
				btrfs_put_delayed_ref_head(head);
1245 1246
				goto again;
			}
1247
			spin_unlock(&delayed_refs->lock);
1248
			ret = add_delayed_refs(fs_info, head, time_seq,
1249
					       &preftrees, sc);
1250
			mutex_unlock(&head->mutex);
1251
			if (ret)
1252
				goto out;
1253 1254
		} else {
			spin_unlock(&delayed_refs->lock);
1255
		}
1256 1257 1258 1259 1260 1261
	}

	if (path->slots[0]) {
		struct extent_buffer *leaf;
		int slot;

1262
		path->slots[0]--;
1263
		leaf = path->nodes[0];
1264
		slot = path->slots[0];
1265 1266
		btrfs_item_key_to_cpu(leaf, &key, slot);
		if (key.objectid == bytenr &&
1267 1268
		    (key.type == BTRFS_EXTENT_ITEM_KEY ||
		     key.type == BTRFS_METADATA_ITEM_KEY)) {
1269
			ret = add_inline_refs(fs_info, path, bytenr,
1270
					      &info_level, &preftrees, sc);
1271 1272
			if (ret)
				goto out;
1273
			ret = add_keyed_refs(fs_info, path, bytenr, info_level,
1274
					     &preftrees, sc);
1275 1276 1277 1278 1279
			if (ret)
				goto out;
		}
	}

1280
	btrfs_release_path(path);
1281

1282
	ret = add_missing_keys(fs_info, &preftrees, path->skip_locking == 0);
1283 1284 1285
	if (ret)
		goto out;

L
Liu Bo 已提交
1286
	WARN_ON(!RB_EMPTY_ROOT(&preftrees.indirect_missing_keys.root.rb_root));
1287

1288
	ret = resolve_indirect_refs(fs_info, path, time_seq, &preftrees,
1289
				    extent_item_pos, sc, ignore_offset);
1290 1291 1292
	if (ret)
		goto out;

L
Liu Bo 已提交
1293
	WARN_ON(!RB_EMPTY_ROOT(&preftrees.indirect.root.rb_root));
1294

1295 1296 1297 1298 1299 1300 1301
	/*
	 * This walks the tree of merged and resolved refs. Tree blocks are
	 * read in as needed. Unique entries are added to the ulist, and
	 * the list of found roots is updated.
	 *
	 * We release the entire tree in one go before returning.
	 */
L
Liu Bo 已提交
1302
	node = rb_first_cached(&preftrees.direct.root);
1303 1304 1305
	while (node) {
		ref = rb_entry(node, struct prelim_ref, rbnode);
		node = rb_next(&ref->rbnode);
1306 1307 1308 1309 1310 1311 1312 1313 1314 1315
		/*
		 * ref->count < 0 can happen here if there are delayed
		 * refs with a node->action of BTRFS_DROP_DELAYED_REF.
		 * prelim_ref_insert() relies on this when merging
		 * identical refs to keep the overall count correct.
		 * prelim_ref_insert() will merge only those refs
		 * which compare identically.  Any refs having
		 * e.g. different offsets would not be merged,
		 * and would retain their original ref->count < 0.
		 */
1316
		if (roots && ref->count && ref->root_id && ref->parent == 0) {
1317 1318
			if (sc && sc->root_objectid &&
			    ref->root_id != sc->root_objectid) {
1319 1320 1321 1322
				ret = BACKREF_FOUND_SHARED;
				goto out;
			}

1323 1324
			/* no parent == root of tree */
			ret = ulist_add(roots, ref->root_id, 0, GFP_NOFS);
1325 1326
			if (ret < 0)
				goto out;
1327 1328
		}
		if (ref->count && ref->parent) {
1329 1330
			if (extent_item_pos && !ref->inode_list &&
			    ref->level == 0) {
1331
				struct extent_buffer *eb;
1332

1333
				eb = read_tree_block(fs_info, ref->parent, 0,
1334
						     0, ref->level, NULL);
1335 1336 1337 1338
				if (IS_ERR(eb)) {
					ret = PTR_ERR(eb);
					goto out;
				} else if (!extent_buffer_uptodate(eb)) {
1339
					free_extent_buffer(eb);
1340 1341
					ret = -EIO;
					goto out;
1342
				}
1343

1344
				if (!path->skip_locking)
1345
					btrfs_tree_read_lock(eb);
1346
				ret = find_extent_in_eb(eb, bytenr,
1347
							*extent_item_pos, &eie, ignore_offset);
1348
				if (!path->skip_locking)
1349
					btrfs_tree_read_unlock(eb);
1350
				free_extent_buffer(eb);
1351 1352 1353
				if (ret < 0)
					goto out;
				ref->inode_list = eie;
1354
			}
1355 1356 1357
			ret = ulist_add_merge_ptr(refs, ref->parent,
						  ref->inode_list,
						  (void **)&eie, GFP_NOFS);
1358 1359
			if (ret < 0)
				goto out;
1360 1361 1362 1363 1364 1365 1366 1367 1368 1369
			if (!ret && extent_item_pos) {
				/*
				 * we've recorded that parent, so we must extend
				 * its inode list here
				 */
				BUG_ON(!eie);
				while (eie->next)
					eie = eie->next;
				eie->next = ref->inode_list;
			}
1370
			eie = NULL;
1371
		}
1372
		cond_resched();
1373 1374 1375 1376
	}

out:
	btrfs_free_path(path);
1377 1378 1379 1380 1381

	prelim_release(&preftrees.direct);
	prelim_release(&preftrees.indirect);
	prelim_release(&preftrees.indirect_missing_keys);

1382 1383
	if (ret < 0)
		free_inode_elem_list(eie);
1384 1385 1386
	return ret;
}

1387 1388 1389 1390 1391 1392 1393 1394 1395 1396
static void free_leaf_list(struct ulist *blocks)
{
	struct ulist_node *node = NULL;
	struct extent_inode_elem *eie;
	struct ulist_iterator uiter;

	ULIST_ITER_INIT(&uiter);
	while ((node = ulist_next(blocks, &uiter))) {
		if (!node->aux)
			continue;
1397
		eie = unode_aux_to_inode_list(node);
1398
		free_inode_elem_list(eie);
1399 1400 1401 1402 1403 1404
		node->aux = 0;
	}

	ulist_free(blocks);
}

1405 1406 1407 1408 1409 1410 1411 1412
/*
 * Finds all leafs with a reference to the specified combination of bytenr and
 * offset. key_list_head will point to a list of corresponding keys (caller must
 * free each list element). The leafs will be stored in the leafs ulist, which
 * must be freed with ulist_free.
 *
 * returns 0 on success, <0 on error
 */
1413 1414 1415 1416
int btrfs_find_all_leafs(struct btrfs_trans_handle *trans,
			 struct btrfs_fs_info *fs_info, u64 bytenr,
			 u64 time_seq, struct ulist **leafs,
			 const u64 *extent_item_pos, bool ignore_offset)
1417 1418 1419 1420
{
	int ret;

	*leafs = ulist_alloc(GFP_NOFS);
1421
	if (!*leafs)
1422 1423
		return -ENOMEM;

1424
	ret = find_parent_nodes(trans, fs_info, bytenr, time_seq,
1425
				*leafs, NULL, extent_item_pos, NULL, ignore_offset);
1426
	if (ret < 0 && ret != -ENOENT) {
1427
		free_leaf_list(*leafs);
1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446
		return ret;
	}

	return 0;
}

/*
 * walk all backrefs for a given extent to find all roots that reference this
 * extent. Walking a backref means finding all extents that reference this
 * extent and in turn walk the backrefs of those, too. Naturally this is a
 * recursive process, but here it is implemented in an iterative fashion: We
 * find all referencing extents for the extent in question and put them on a
 * list. In turn, we find all referencing extents for those, further appending
 * to the list. The way we iterate the list allows adding more elements after
 * the current while iterating. The process stops when we reach the end of the
 * list. Found roots are added to the roots list.
 *
 * returns 0 on success, < 0 on error.
 */
1447 1448
static int btrfs_find_all_roots_safe(struct btrfs_trans_handle *trans,
				     struct btrfs_fs_info *fs_info, u64 bytenr,
1449 1450
				     u64 time_seq, struct ulist **roots,
				     bool ignore_offset)
1451 1452 1453
{
	struct ulist *tmp;
	struct ulist_node *node = NULL;
J
Jan Schmidt 已提交
1454
	struct ulist_iterator uiter;
1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465
	int ret;

	tmp = ulist_alloc(GFP_NOFS);
	if (!tmp)
		return -ENOMEM;
	*roots = ulist_alloc(GFP_NOFS);
	if (!*roots) {
		ulist_free(tmp);
		return -ENOMEM;
	}

J
Jan Schmidt 已提交
1466
	ULIST_ITER_INIT(&uiter);
1467
	while (1) {
1468
		ret = find_parent_nodes(trans, fs_info, bytenr, time_seq,
1469
					tmp, *roots, NULL, NULL, ignore_offset);
1470 1471 1472
		if (ret < 0 && ret != -ENOENT) {
			ulist_free(tmp);
			ulist_free(*roots);
1473
			*roots = NULL;
1474 1475
			return ret;
		}
J
Jan Schmidt 已提交
1476
		node = ulist_next(tmp, &uiter);
1477 1478 1479
		if (!node)
			break;
		bytenr = node->val;
1480
		cond_resched();
1481 1482 1483 1484 1485 1486
	}

	ulist_free(tmp);
	return 0;
}

1487 1488
int btrfs_find_all_roots(struct btrfs_trans_handle *trans,
			 struct btrfs_fs_info *fs_info, u64 bytenr,
1489 1490
			 u64 time_seq, struct ulist **roots,
			 bool ignore_offset)
1491 1492 1493 1494 1495
{
	int ret;

	if (!trans)
		down_read(&fs_info->commit_root_sem);
1496
	ret = btrfs_find_all_roots_safe(trans, fs_info, bytenr,
1497
					time_seq, roots, ignore_offset);
1498 1499 1500 1501 1502
	if (!trans)
		up_read(&fs_info->commit_root_sem);
	return ret;
}

1503 1504 1505 1506 1507 1508 1509 1510 1511
/**
 * btrfs_check_shared - tell us whether an extent is shared
 *
 * btrfs_check_shared uses the backref walking code but will short
 * circuit as soon as it finds a root or inode that doesn't match the
 * one passed in. This provides a significant performance benefit for
 * callers (such as fiemap) which want to know whether the extent is
 * shared but do not need a ref count.
 *
1512 1513
 * This attempts to attach to the running transaction in order to account for
 * delayed refs, but continues on even when no running transaction exists.
1514
 *
1515 1516
 * Return: 0 if extent is not shared, 1 if it is shared, < 0 on error.
 */
1517 1518
int btrfs_check_shared(struct btrfs_root *root, u64 inum, u64 bytenr,
		struct ulist *roots, struct ulist *tmp)
1519
{
1520 1521
	struct btrfs_fs_info *fs_info = root->fs_info;
	struct btrfs_trans_handle *trans;
1522 1523
	struct ulist_iterator uiter;
	struct ulist_node *node;
1524
	struct seq_list elem = SEQ_LIST_INIT(elem);
1525
	int ret = 0;
1526
	struct share_check shared = {
1527
		.root_objectid = root->root_key.objectid,
1528 1529 1530
		.inum = inum,
		.share_count = 0,
	};
1531

1532 1533
	ulist_init(roots);
	ulist_init(tmp);
1534

1535
	trans = btrfs_join_transaction_nostart(root);
1536
	if (IS_ERR(trans)) {
1537 1538 1539 1540
		if (PTR_ERR(trans) != -ENOENT && PTR_ERR(trans) != -EROFS) {
			ret = PTR_ERR(trans);
			goto out;
		}
1541
		trans = NULL;
1542
		down_read(&fs_info->commit_root_sem);
1543 1544 1545 1546
	} else {
		btrfs_get_tree_mod_seq(fs_info, &elem);
	}

1547 1548 1549
	ULIST_ITER_INIT(&uiter);
	while (1) {
		ret = find_parent_nodes(trans, fs_info, bytenr, elem.seq, tmp,
1550
					roots, NULL, &shared, false);
1551
		if (ret == BACKREF_FOUND_SHARED) {
1552
			/* this is the only condition under which we return 1 */
1553 1554 1555 1556 1557
			ret = 1;
			break;
		}
		if (ret < 0 && ret != -ENOENT)
			break;
1558
		ret = 0;
1559 1560 1561 1562
		node = ulist_next(tmp, &uiter);
		if (!node)
			break;
		bytenr = node->val;
1563
		shared.share_count = 0;
1564 1565
		cond_resched();
	}
1566 1567

	if (trans) {
1568
		btrfs_put_tree_mod_seq(fs_info, &elem);
1569 1570
		btrfs_end_transaction(trans);
	} else {
1571
		up_read(&fs_info->commit_root_sem);
1572
	}
1573
out:
1574 1575
	ulist_release(roots);
	ulist_release(tmp);
1576 1577 1578
	return ret;
}

M
Mark Fasheh 已提交
1579 1580 1581 1582 1583 1584 1585 1586 1587
int btrfs_find_one_extref(struct btrfs_root *root, u64 inode_objectid,
			  u64 start_off, struct btrfs_path *path,
			  struct btrfs_inode_extref **ret_extref,
			  u64 *found_off)
{
	int ret, slot;
	struct btrfs_key key;
	struct btrfs_key found_key;
	struct btrfs_inode_extref *extref;
1588
	const struct extent_buffer *leaf;
M
Mark Fasheh 已提交
1589 1590 1591
	unsigned long ptr;

	key.objectid = inode_objectid;
1592
	key.type = BTRFS_INODE_EXTREF_KEY;
M
Mark Fasheh 已提交
1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631
	key.offset = start_off;

	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
	if (ret < 0)
		return ret;

	while (1) {
		leaf = path->nodes[0];
		slot = path->slots[0];
		if (slot >= btrfs_header_nritems(leaf)) {
			/*
			 * If the item at offset is not found,
			 * btrfs_search_slot will point us to the slot
			 * where it should be inserted. In our case
			 * that will be the slot directly before the
			 * next INODE_REF_KEY_V2 item. In the case
			 * that we're pointing to the last slot in a
			 * leaf, we must move one leaf over.
			 */
			ret = btrfs_next_leaf(root, path);
			if (ret) {
				if (ret >= 1)
					ret = -ENOENT;
				break;
			}
			continue;
		}

		btrfs_item_key_to_cpu(leaf, &found_key, slot);

		/*
		 * Check that we're still looking at an extended ref key for
		 * this particular objectid. If we have different
		 * objectid or type then there are no more to be found
		 * in the tree and we can exit.
		 */
		ret = -ENOENT;
		if (found_key.objectid != inode_objectid)
			break;
1632
		if (found_key.type != BTRFS_INODE_EXTREF_KEY)
M
Mark Fasheh 已提交
1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646
			break;

		ret = 0;
		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
		extref = (struct btrfs_inode_extref *)ptr;
		*ret_extref = extref;
		if (found_off)
			*found_off = found_key.offset;
		break;
	}

	return ret;
}

1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660
/*
 * this iterates to turn a name (from iref/extref) into a full filesystem path.
 * Elements of the path are separated by '/' and the path is guaranteed to be
 * 0-terminated. the path is only given within the current file system.
 * Therefore, it never starts with a '/'. the caller is responsible to provide
 * "size" bytes in "dest". the dest buffer will be filled backwards. finally,
 * the start point of the resulting string is returned. this pointer is within
 * dest, normally.
 * in case the path buffer would overflow, the pointer is decremented further
 * as if output was written to the buffer, though no more output is actually
 * generated. that way, the caller can determine how much space would be
 * required for the path to fit into the buffer. in that case, the returned
 * value will be smaller than dest. callers must check this!
 */
1661 1662 1663 1664
char *btrfs_ref_to_path(struct btrfs_root *fs_root, struct btrfs_path *path,
			u32 name_len, unsigned long name_off,
			struct extent_buffer *eb_in, u64 parent,
			char *dest, u32 size)
1665 1666 1667 1668
{
	int slot;
	u64 next_inum;
	int ret;
1669
	s64 bytes_left = ((s64)size) - 1;
1670 1671
	struct extent_buffer *eb = eb_in;
	struct btrfs_key found_key;
M
Mark Fasheh 已提交
1672
	struct btrfs_inode_ref *iref;
1673 1674 1675 1676 1677

	if (bytes_left >= 0)
		dest[bytes_left] = '\0';

	while (1) {
M
Mark Fasheh 已提交
1678
		bytes_left -= name_len;
1679 1680
		if (bytes_left >= 0)
			read_extent_buffer(eb, dest + bytes_left,
M
Mark Fasheh 已提交
1681
					   name_off, name_len);
1682
		if (eb != eb_in) {
1683
			if (!path->skip_locking)
1684
				btrfs_tree_read_unlock(eb);
1685
			free_extent_buffer(eb);
1686
		}
1687 1688
		ret = btrfs_find_item(fs_root, path, parent, 0,
				BTRFS_INODE_REF_KEY, &found_key);
1689 1690
		if (ret > 0)
			ret = -ENOENT;
1691 1692
		if (ret)
			break;
M
Mark Fasheh 已提交
1693

1694 1695 1696 1697 1698 1699 1700 1701 1702
		next_inum = found_key.offset;

		/* regular exit ahead */
		if (parent == next_inum)
			break;

		slot = path->slots[0];
		eb = path->nodes[0];
		/* make sure we can use eb after releasing the path */
1703
		if (eb != eb_in) {
1704 1705
			path->nodes[0] = NULL;
			path->locks[0] = 0;
1706
		}
1707 1708
		btrfs_release_path(path);
		iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);
M
Mark Fasheh 已提交
1709 1710 1711 1712

		name_len = btrfs_inode_ref_name_len(eb, iref);
		name_off = (unsigned long)(iref + 1);

1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732
		parent = next_inum;
		--bytes_left;
		if (bytes_left >= 0)
			dest[bytes_left] = '/';
	}

	btrfs_release_path(path);

	if (ret)
		return ERR_PTR(ret);

	return dest + bytes_left;
}

/*
 * this makes the path point to (logical EXTENT_ITEM *)
 * returns BTRFS_EXTENT_FLAG_DATA for data, BTRFS_EXTENT_FLAG_TREE_BLOCK for
 * tree blocks and <0 on error.
 */
int extent_from_logical(struct btrfs_fs_info *fs_info, u64 logical,
1733 1734
			struct btrfs_path *path, struct btrfs_key *found_key,
			u64 *flags_ret)
1735 1736 1737
{
	int ret;
	u64 flags;
1738
	u64 size = 0;
1739
	u32 item_size;
1740
	const struct extent_buffer *eb;
1741 1742 1743
	struct btrfs_extent_item *ei;
	struct btrfs_key key;

1744 1745 1746 1747
	if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
		key.type = BTRFS_METADATA_ITEM_KEY;
	else
		key.type = BTRFS_EXTENT_ITEM_KEY;
1748 1749 1750 1751 1752 1753 1754
	key.objectid = logical;
	key.offset = (u64)-1;

	ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0);
	if (ret < 0)
		return ret;

1755 1756 1757 1758 1759
	ret = btrfs_previous_extent_item(fs_info->extent_root, path, 0);
	if (ret) {
		if (ret > 0)
			ret = -ENOENT;
		return ret;
1760
	}
1761
	btrfs_item_key_to_cpu(path->nodes[0], found_key, path->slots[0]);
1762
	if (found_key->type == BTRFS_METADATA_ITEM_KEY)
1763
		size = fs_info->nodesize;
1764 1765 1766
	else if (found_key->type == BTRFS_EXTENT_ITEM_KEY)
		size = found_key->offset;

1767
	if (found_key->objectid > logical ||
1768
	    found_key->objectid + size <= logical) {
1769 1770
		btrfs_debug(fs_info,
			"logical %llu is not within any extent", logical);
1771
		return -ENOENT;
J
Jan Schmidt 已提交
1772
	}
1773 1774 1775 1776 1777 1778 1779 1780

	eb = path->nodes[0];
	item_size = btrfs_item_size_nr(eb, path->slots[0]);
	BUG_ON(item_size < sizeof(*ei));

	ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
	flags = btrfs_extent_flags(eb, ei);

1781 1782
	btrfs_debug(fs_info,
		"logical %llu is at position %llu within the extent (%llu EXTENT_ITEM %llu) flags %#llx size %u",
1783 1784
		 logical, logical - found_key->objectid, found_key->objectid,
		 found_key->offset, flags, item_size);
1785 1786 1787 1788 1789 1790 1791 1792

	WARN_ON(!flags_ret);
	if (flags_ret) {
		if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
			*flags_ret = BTRFS_EXTENT_FLAG_TREE_BLOCK;
		else if (flags & BTRFS_EXTENT_FLAG_DATA)
			*flags_ret = BTRFS_EXTENT_FLAG_DATA;
		else
1793
			BUG();
1794 1795
		return 0;
	}
1796 1797 1798 1799 1800 1801 1802 1803

	return -EIO;
}

/*
 * helper function to iterate extent inline refs. ptr must point to a 0 value
 * for the first call and may be modified. it is used to track state.
 * if more refs exist, 0 is returned and the next call to
1804
 * get_extent_inline_ref must pass the modified ptr parameter to get the
1805 1806 1807
 * next ref. after the last ref was processed, 1 is returned.
 * returns <0 on error
 */
1808 1809 1810 1811 1812 1813 1814
static int get_extent_inline_ref(unsigned long *ptr,
				 const struct extent_buffer *eb,
				 const struct btrfs_key *key,
				 const struct btrfs_extent_item *ei,
				 u32 item_size,
				 struct btrfs_extent_inline_ref **out_eiref,
				 int *out_type)
1815 1816 1817 1818 1819 1820 1821 1822 1823
{
	unsigned long end;
	u64 flags;
	struct btrfs_tree_block_info *info;

	if (!*ptr) {
		/* first call */
		flags = btrfs_extent_flags(eb, ei);
		if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
1824 1825 1826 1827 1828 1829 1830 1831 1832 1833
			if (key->type == BTRFS_METADATA_ITEM_KEY) {
				/* a skinny metadata extent */
				*out_eiref =
				     (struct btrfs_extent_inline_ref *)(ei + 1);
			} else {
				WARN_ON(key->type != BTRFS_EXTENT_ITEM_KEY);
				info = (struct btrfs_tree_block_info *)(ei + 1);
				*out_eiref =
				   (struct btrfs_extent_inline_ref *)(info + 1);
			}
1834 1835 1836 1837
		} else {
			*out_eiref = (struct btrfs_extent_inline_ref *)(ei + 1);
		}
		*ptr = (unsigned long)*out_eiref;
1838
		if ((unsigned long)(*ptr) >= (unsigned long)ei + item_size)
1839 1840 1841 1842
			return -ENOENT;
	}

	end = (unsigned long)ei + item_size;
1843
	*out_eiref = (struct btrfs_extent_inline_ref *)(*ptr);
1844 1845 1846
	*out_type = btrfs_get_extent_inline_ref_type(eb, *out_eiref,
						     BTRFS_REF_TYPE_ANY);
	if (*out_type == BTRFS_REF_TYPE_INVALID)
1847
		return -EUCLEAN;
1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859

	*ptr += btrfs_extent_inline_ref_size(*out_type);
	WARN_ON(*ptr > end);
	if (*ptr == end)
		return 1; /* last */

	return 0;
}

/*
 * reads the tree block backref for an extent. tree level and root are returned
 * through out_level and out_root. ptr must point to a 0 value for the first
1860
 * call and may be modified (see get_extent_inline_ref comment).
1861 1862 1863 1864
 * returns 0 if data was provided, 1 if there was no more data to provide or
 * <0 on error.
 */
int tree_backref_for_extent(unsigned long *ptr, struct extent_buffer *eb,
1865 1866
			    struct btrfs_key *key, struct btrfs_extent_item *ei,
			    u32 item_size, u64 *out_root, u8 *out_level)
1867 1868 1869 1870 1871 1872 1873 1874 1875
{
	int ret;
	int type;
	struct btrfs_extent_inline_ref *eiref;

	if (*ptr == (unsigned long)-1)
		return 1;

	while (1) {
1876
		ret = get_extent_inline_ref(ptr, eb, key, ei, item_size,
1877
					      &eiref, &type);
1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890
		if (ret < 0)
			return ret;

		if (type == BTRFS_TREE_BLOCK_REF_KEY ||
		    type == BTRFS_SHARED_BLOCK_REF_KEY)
			break;

		if (ret == 1)
			return 1;
	}

	/* we can treat both ref types equally here */
	*out_root = btrfs_extent_inline_ref_offset(eb, eiref);
1891 1892 1893 1894 1895 1896 1897 1898 1899 1900

	if (key->type == BTRFS_EXTENT_ITEM_KEY) {
		struct btrfs_tree_block_info *info;

		info = (struct btrfs_tree_block_info *)(ei + 1);
		*out_level = btrfs_tree_block_level(eb, info);
	} else {
		ASSERT(key->type == BTRFS_METADATA_ITEM_KEY);
		*out_level = (u8)key->offset;
	}
1901 1902 1903 1904 1905 1906 1907

	if (ret == 1)
		*ptr = (unsigned long)-1;

	return 0;
}

1908 1909 1910 1911
static int iterate_leaf_refs(struct btrfs_fs_info *fs_info,
			     struct extent_inode_elem *inode_list,
			     u64 root, u64 extent_item_objectid,
			     iterate_extent_inodes_t *iterate, void *ctx)
1912
{
1913
	struct extent_inode_elem *eie;
J
Jan Schmidt 已提交
1914 1915
	int ret = 0;

1916
	for (eie = inode_list; eie; eie = eie->next) {
1917 1918 1919 1920
		btrfs_debug(fs_info,
			    "ref for %llu resolved, key (%llu EXTEND_DATA %llu), root %llu",
			    extent_item_objectid, eie->inum,
			    eie->offset, root);
1921
		ret = iterate(eie->inum, eie->offset, root, ctx);
J
Jan Schmidt 已提交
1922
		if (ret) {
1923 1924 1925
			btrfs_debug(fs_info,
				    "stopping iteration for %llu due to ret=%d",
				    extent_item_objectid, ret);
J
Jan Schmidt 已提交
1926 1927
			break;
		}
1928 1929 1930 1931 1932 1933 1934
	}

	return ret;
}

/*
 * calls iterate() for every inode that references the extent identified by
J
Jan Schmidt 已提交
1935
 * the given parameters.
1936 1937 1938
 * when the iterator function returns a non-zero value, iteration stops.
 */
int iterate_extent_inodes(struct btrfs_fs_info *fs_info,
J
Jan Schmidt 已提交
1939
				u64 extent_item_objectid, u64 extent_item_pos,
1940
				int search_commit_root,
1941 1942
				iterate_extent_inodes_t *iterate, void *ctx,
				bool ignore_offset)
1943 1944
{
	int ret;
1945
	struct btrfs_trans_handle *trans = NULL;
1946 1947
	struct ulist *refs = NULL;
	struct ulist *roots = NULL;
J
Jan Schmidt 已提交
1948 1949
	struct ulist_node *ref_node = NULL;
	struct ulist_node *root_node = NULL;
1950
	struct seq_list tree_mod_seq_elem = SEQ_LIST_INIT(tree_mod_seq_elem);
J
Jan Schmidt 已提交
1951 1952
	struct ulist_iterator ref_uiter;
	struct ulist_iterator root_uiter;
1953

1954
	btrfs_debug(fs_info, "resolving all inodes for extent %llu",
J
Jan Schmidt 已提交
1955
			extent_item_objectid);
1956

1957
	if (!search_commit_root) {
1958 1959 1960 1961 1962 1963 1964 1965 1966 1967
		trans = btrfs_attach_transaction(fs_info->extent_root);
		if (IS_ERR(trans)) {
			if (PTR_ERR(trans) != -ENOENT &&
			    PTR_ERR(trans) != -EROFS)
				return PTR_ERR(trans);
			trans = NULL;
		}
	}

	if (trans)
1968
		btrfs_get_tree_mod_seq(fs_info, &tree_mod_seq_elem);
1969
	else
1970
		down_read(&fs_info->commit_root_sem);
1971

J
Jan Schmidt 已提交
1972
	ret = btrfs_find_all_leafs(trans, fs_info, extent_item_objectid,
1973
				   tree_mod_seq_elem.seq, &refs,
1974
				   &extent_item_pos, ignore_offset);
J
Jan Schmidt 已提交
1975 1976
	if (ret)
		goto out;
1977

J
Jan Schmidt 已提交
1978 1979
	ULIST_ITER_INIT(&ref_uiter);
	while (!ret && (ref_node = ulist_next(refs, &ref_uiter))) {
1980
		ret = btrfs_find_all_roots_safe(trans, fs_info, ref_node->val,
1981 1982
						tree_mod_seq_elem.seq, &roots,
						ignore_offset);
J
Jan Schmidt 已提交
1983 1984
		if (ret)
			break;
J
Jan Schmidt 已提交
1985 1986
		ULIST_ITER_INIT(&root_uiter);
		while (!ret && (root_node = ulist_next(roots, &root_uiter))) {
1987 1988 1989 1990 1991 1992
			btrfs_debug(fs_info,
				    "root %llu references leaf %llu, data list %#llx",
				    root_node->val, ref_node->val,
				    ref_node->aux);
			ret = iterate_leaf_refs(fs_info,
						(struct extent_inode_elem *)
1993 1994 1995 1996
						(uintptr_t)ref_node->aux,
						root_node->val,
						extent_item_objectid,
						iterate, ctx);
J
Jan Schmidt 已提交
1997
		}
1998
		ulist_free(roots);
1999 2000
	}

2001
	free_leaf_list(refs);
J
Jan Schmidt 已提交
2002
out:
2003
	if (trans) {
2004
		btrfs_put_tree_mod_seq(fs_info, &tree_mod_seq_elem);
2005
		btrfs_end_transaction(trans);
2006 2007
	} else {
		up_read(&fs_info->commit_root_sem);
2008 2009
	}

2010 2011 2012 2013 2014
	return ret;
}

int iterate_inodes_from_logical(u64 logical, struct btrfs_fs_info *fs_info,
				struct btrfs_path *path,
2015 2016
				iterate_extent_inodes_t *iterate, void *ctx,
				bool ignore_offset)
2017 2018
{
	int ret;
J
Jan Schmidt 已提交
2019
	u64 extent_item_pos;
2020
	u64 flags = 0;
2021
	struct btrfs_key found_key;
2022
	int search_commit_root = path->search_commit_root;
2023

2024
	ret = extent_from_logical(fs_info, logical, path, &found_key, &flags);
J
Jan Schmidt 已提交
2025
	btrfs_release_path(path);
2026 2027
	if (ret < 0)
		return ret;
2028
	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
2029
		return -EINVAL;
2030

J
Jan Schmidt 已提交
2031
	extent_item_pos = logical - found_key.objectid;
2032 2033
	ret = iterate_extent_inodes(fs_info, found_key.objectid,
					extent_item_pos, search_commit_root,
2034
					iterate, ctx, ignore_offset);
2035 2036 2037 2038

	return ret;
}

M
Mark Fasheh 已提交
2039 2040 2041 2042 2043 2044
typedef int (iterate_irefs_t)(u64 parent, u32 name_len, unsigned long name_off,
			      struct extent_buffer *eb, void *ctx);

static int iterate_inode_refs(u64 inum, struct btrfs_root *fs_root,
			      struct btrfs_path *path,
			      iterate_irefs_t *iterate, void *ctx)
2045
{
2046
	int ret = 0;
2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057
	int slot;
	u32 cur;
	u32 len;
	u32 name_len;
	u64 parent = 0;
	int found = 0;
	struct extent_buffer *eb;
	struct btrfs_item *item;
	struct btrfs_inode_ref *iref;
	struct btrfs_key found_key;

2058
	while (!ret) {
2059 2060 2061 2062
		ret = btrfs_find_item(fs_root, path, inum,
				parent ? parent + 1 : 0, BTRFS_INODE_REF_KEY,
				&found_key);

2063 2064 2065 2066 2067 2068 2069 2070 2071 2072
		if (ret < 0)
			break;
		if (ret) {
			ret = found ? 0 : -ENOENT;
			break;
		}
		++found;

		parent = found_key.offset;
		slot = path->slots[0];
2073 2074 2075 2076 2077
		eb = btrfs_clone_extent_buffer(path->nodes[0]);
		if (!eb) {
			ret = -ENOMEM;
			break;
		}
2078 2079
		btrfs_release_path(path);

2080
		item = btrfs_item_nr(slot);
2081 2082 2083 2084 2085
		iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);

		for (cur = 0; cur < btrfs_item_size(eb, item); cur += len) {
			name_len = btrfs_inode_ref_name_len(eb, iref);
			/* path must be released before calling iterate()! */
2086 2087
			btrfs_debug(fs_root->fs_info,
				"following ref at offset %u for inode %llu in tree %llu",
2088 2089
				cur, found_key.objectid,
				fs_root->root_key.objectid);
M
Mark Fasheh 已提交
2090 2091
			ret = iterate(parent, name_len,
				      (unsigned long)(iref + 1), eb, ctx);
2092
			if (ret)
2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104
				break;
			len = sizeof(*iref) + name_len;
			iref = (struct btrfs_inode_ref *)((char *)iref + len);
		}
		free_extent_buffer(eb);
	}

	btrfs_release_path(path);

	return ret;
}

M
Mark Fasheh 已提交
2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131
static int iterate_inode_extrefs(u64 inum, struct btrfs_root *fs_root,
				 struct btrfs_path *path,
				 iterate_irefs_t *iterate, void *ctx)
{
	int ret;
	int slot;
	u64 offset = 0;
	u64 parent;
	int found = 0;
	struct extent_buffer *eb;
	struct btrfs_inode_extref *extref;
	u32 item_size;
	u32 cur_offset;
	unsigned long ptr;

	while (1) {
		ret = btrfs_find_one_extref(fs_root, inum, offset, path, &extref,
					    &offset);
		if (ret < 0)
			break;
		if (ret) {
			ret = found ? 0 : -ENOENT;
			break;
		}
		++found;

		slot = path->slots[0];
2132 2133 2134 2135 2136
		eb = btrfs_clone_extent_buffer(path->nodes[0]);
		if (!eb) {
			ret = -ENOMEM;
			break;
		}
M
Mark Fasheh 已提交
2137 2138
		btrfs_release_path(path);

2139 2140
		item_size = btrfs_item_size_nr(eb, slot);
		ptr = btrfs_item_ptr_offset(eb, slot);
M
Mark Fasheh 已提交
2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153
		cur_offset = 0;

		while (cur_offset < item_size) {
			u32 name_len;

			extref = (struct btrfs_inode_extref *)(ptr + cur_offset);
			parent = btrfs_inode_extref_parent(eb, extref);
			name_len = btrfs_inode_extref_name_len(eb, extref);
			ret = iterate(parent, name_len,
				      (unsigned long)&extref->name, eb, ctx);
			if (ret)
				break;

2154
			cur_offset += btrfs_inode_extref_name_len(eb, extref);
M
Mark Fasheh 已提交
2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186
			cur_offset += sizeof(*extref);
		}
		free_extent_buffer(eb);

		offset++;
	}

	btrfs_release_path(path);

	return ret;
}

static int iterate_irefs(u64 inum, struct btrfs_root *fs_root,
			 struct btrfs_path *path, iterate_irefs_t *iterate,
			 void *ctx)
{
	int ret;
	int found_refs = 0;

	ret = iterate_inode_refs(inum, fs_root, path, iterate, ctx);
	if (!ret)
		++found_refs;
	else if (ret != -ENOENT)
		return ret;

	ret = iterate_inode_extrefs(inum, fs_root, path, iterate, ctx);
	if (ret == -ENOENT && found_refs)
		return 0;

	return ret;
}

2187 2188 2189 2190
/*
 * returns 0 if the path could be dumped (probably truncated)
 * returns <0 in case of an error
 */
M
Mark Fasheh 已提交
2191 2192
static int inode_to_path(u64 inum, u32 name_len, unsigned long name_off,
			 struct extent_buffer *eb, void *ctx)
2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203
{
	struct inode_fs_paths *ipath = ctx;
	char *fspath;
	char *fspath_min;
	int i = ipath->fspath->elem_cnt;
	const int s_ptr = sizeof(char *);
	u32 bytes_left;

	bytes_left = ipath->fspath->bytes_left > s_ptr ?
					ipath->fspath->bytes_left - s_ptr : 0;

2204
	fspath_min = (char *)ipath->fspath->val + (i + 1) * s_ptr;
2205 2206
	fspath = btrfs_ref_to_path(ipath->fs_root, ipath->btrfs_path, name_len,
				   name_off, eb, inum, fspath_min, bytes_left);
2207 2208 2209 2210
	if (IS_ERR(fspath))
		return PTR_ERR(fspath);

	if (fspath > fspath_min) {
2211
		ipath->fspath->val[i] = (u64)(unsigned long)fspath;
2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225
		++ipath->fspath->elem_cnt;
		ipath->fspath->bytes_left = fspath - fspath_min;
	} else {
		++ipath->fspath->elem_missed;
		ipath->fspath->bytes_missing += fspath_min - fspath;
		ipath->fspath->bytes_left = 0;
	}

	return 0;
}

/*
 * this dumps all file system paths to the inode into the ipath struct, provided
 * is has been created large enough. each path is zero-terminated and accessed
2226
 * from ipath->fspath->val[i].
2227
 * when it returns, there are ipath->fspath->elem_cnt number of paths available
2228
 * in ipath->fspath->val[]. when the allocated space wasn't sufficient, the
2229
 * number of missed paths is recorded in ipath->fspath->elem_missed, otherwise,
2230 2231 2232 2233 2234 2235
 * it's zero. ipath->fspath->bytes_missing holds the number of bytes that would
 * have been needed to return all paths.
 */
int paths_from_inode(u64 inum, struct inode_fs_paths *ipath)
{
	return iterate_irefs(inum, ipath->fs_root, ipath->btrfs_path,
M
Mark Fasheh 已提交
2236
			     inode_to_path, ipath);
2237 2238 2239 2240 2241 2242 2243 2244
}

struct btrfs_data_container *init_data_container(u32 total_bytes)
{
	struct btrfs_data_container *data;
	size_t alloc_bytes;

	alloc_bytes = max_t(size_t, total_bytes, sizeof(*data));
2245
	data = kvmalloc(alloc_bytes, GFP_KERNEL);
2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276
	if (!data)
		return ERR_PTR(-ENOMEM);

	if (total_bytes >= sizeof(*data)) {
		data->bytes_left = total_bytes - sizeof(*data);
		data->bytes_missing = 0;
	} else {
		data->bytes_missing = sizeof(*data) - total_bytes;
		data->bytes_left = 0;
	}

	data->elem_cnt = 0;
	data->elem_missed = 0;

	return data;
}

/*
 * allocates space to return multiple file system paths for an inode.
 * total_bytes to allocate are passed, note that space usable for actual path
 * information will be total_bytes - sizeof(struct inode_fs_paths).
 * the returned pointer must be freed with free_ipath() in the end.
 */
struct inode_fs_paths *init_ipath(s32 total_bytes, struct btrfs_root *fs_root,
					struct btrfs_path *path)
{
	struct inode_fs_paths *ifp;
	struct btrfs_data_container *fspath;

	fspath = init_data_container(total_bytes);
	if (IS_ERR(fspath))
2277
		return ERR_CAST(fspath);
2278

2279
	ifp = kmalloc(sizeof(*ifp), GFP_KERNEL);
2280
	if (!ifp) {
2281
		kvfree(fspath);
2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293
		return ERR_PTR(-ENOMEM);
	}

	ifp->btrfs_path = path;
	ifp->fspath = fspath;
	ifp->fs_root = fs_root;

	return ifp;
}

void free_ipath(struct inode_fs_paths *ipath)
{
2294 2295
	if (!ipath)
		return;
2296
	kvfree(ipath->fspath);
2297 2298
	kfree(ipath);
}
2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309

struct btrfs_backref_iter *btrfs_backref_iter_alloc(
		struct btrfs_fs_info *fs_info, gfp_t gfp_flag)
{
	struct btrfs_backref_iter *ret;

	ret = kzalloc(sizeof(*ret), gfp_flag);
	if (!ret)
		return NULL;

	ret->path = btrfs_alloc_path();
2310
	if (!ret->path) {
2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408
		kfree(ret);
		return NULL;
	}

	/* Current backref iterator only supports iteration in commit root */
	ret->path->search_commit_root = 1;
	ret->path->skip_locking = 1;
	ret->fs_info = fs_info;

	return ret;
}

int btrfs_backref_iter_start(struct btrfs_backref_iter *iter, u64 bytenr)
{
	struct btrfs_fs_info *fs_info = iter->fs_info;
	struct btrfs_path *path = iter->path;
	struct btrfs_extent_item *ei;
	struct btrfs_key key;
	int ret;

	key.objectid = bytenr;
	key.type = BTRFS_METADATA_ITEM_KEY;
	key.offset = (u64)-1;
	iter->bytenr = bytenr;

	ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0);
	if (ret < 0)
		return ret;
	if (ret == 0) {
		ret = -EUCLEAN;
		goto release;
	}
	if (path->slots[0] == 0) {
		WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
		ret = -EUCLEAN;
		goto release;
	}
	path->slots[0]--;

	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
	if ((key.type != BTRFS_EXTENT_ITEM_KEY &&
	     key.type != BTRFS_METADATA_ITEM_KEY) || key.objectid != bytenr) {
		ret = -ENOENT;
		goto release;
	}
	memcpy(&iter->cur_key, &key, sizeof(key));
	iter->item_ptr = (u32)btrfs_item_ptr_offset(path->nodes[0],
						    path->slots[0]);
	iter->end_ptr = (u32)(iter->item_ptr +
			btrfs_item_size_nr(path->nodes[0], path->slots[0]));
	ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
			    struct btrfs_extent_item);

	/*
	 * Only support iteration on tree backref yet.
	 *
	 * This is an extra precaution for non skinny-metadata, where
	 * EXTENT_ITEM is also used for tree blocks, that we can only use
	 * extent flags to determine if it's a tree block.
	 */
	if (btrfs_extent_flags(path->nodes[0], ei) & BTRFS_EXTENT_FLAG_DATA) {
		ret = -ENOTSUPP;
		goto release;
	}
	iter->cur_ptr = (u32)(iter->item_ptr + sizeof(*ei));

	/* If there is no inline backref, go search for keyed backref */
	if (iter->cur_ptr >= iter->end_ptr) {
		ret = btrfs_next_item(fs_info->extent_root, path);

		/* No inline nor keyed ref */
		if (ret > 0) {
			ret = -ENOENT;
			goto release;
		}
		if (ret < 0)
			goto release;

		btrfs_item_key_to_cpu(path->nodes[0], &iter->cur_key,
				path->slots[0]);
		if (iter->cur_key.objectid != bytenr ||
		    (iter->cur_key.type != BTRFS_SHARED_BLOCK_REF_KEY &&
		     iter->cur_key.type != BTRFS_TREE_BLOCK_REF_KEY)) {
			ret = -ENOENT;
			goto release;
		}
		iter->cur_ptr = (u32)btrfs_item_ptr_offset(path->nodes[0],
							   path->slots[0]);
		iter->item_ptr = iter->cur_ptr;
		iter->end_ptr = (u32)(iter->item_ptr + btrfs_item_size_nr(
				      path->nodes[0], path->slots[0]));
	}

	return 0;
release:
	btrfs_backref_iter_release(iter);
	return ret;
}
2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468

/*
 * Go to the next backref item of current bytenr, can be either inlined or
 * keyed.
 *
 * Caller needs to check whether it's inline ref or not by iter->cur_key.
 *
 * Return 0 if we get next backref without problem.
 * Return >0 if there is no extra backref for this bytenr.
 * Return <0 if there is something wrong happened.
 */
int btrfs_backref_iter_next(struct btrfs_backref_iter *iter)
{
	struct extent_buffer *eb = btrfs_backref_get_eb(iter);
	struct btrfs_path *path = iter->path;
	struct btrfs_extent_inline_ref *iref;
	int ret;
	u32 size;

	if (btrfs_backref_iter_is_inline_ref(iter)) {
		/* We're still inside the inline refs */
		ASSERT(iter->cur_ptr < iter->end_ptr);

		if (btrfs_backref_has_tree_block_info(iter)) {
			/* First tree block info */
			size = sizeof(struct btrfs_tree_block_info);
		} else {
			/* Use inline ref type to determine the size */
			int type;

			iref = (struct btrfs_extent_inline_ref *)
				((unsigned long)iter->cur_ptr);
			type = btrfs_extent_inline_ref_type(eb, iref);

			size = btrfs_extent_inline_ref_size(type);
		}
		iter->cur_ptr += size;
		if (iter->cur_ptr < iter->end_ptr)
			return 0;

		/* All inline items iterated, fall through */
	}

	/* We're at keyed items, there is no inline item, go to the next one */
	ret = btrfs_next_item(iter->fs_info->extent_root, iter->path);
	if (ret)
		return ret;

	btrfs_item_key_to_cpu(path->nodes[0], &iter->cur_key, path->slots[0]);
	if (iter->cur_key.objectid != iter->bytenr ||
	    (iter->cur_key.type != BTRFS_TREE_BLOCK_REF_KEY &&
	     iter->cur_key.type != BTRFS_SHARED_BLOCK_REF_KEY))
		return 1;
	iter->item_ptr = (u32)btrfs_item_ptr_offset(path->nodes[0],
					path->slots[0]);
	iter->cur_ptr = iter->item_ptr;
	iter->end_ptr = iter->item_ptr + (u32)btrfs_item_size_nr(path->nodes[0],
						path->slots[0]);
	return 0;
}
2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485

void btrfs_backref_init_cache(struct btrfs_fs_info *fs_info,
			      struct btrfs_backref_cache *cache, int is_reloc)
{
	int i;

	cache->rb_root = RB_ROOT;
	for (i = 0; i < BTRFS_MAX_LEVEL; i++)
		INIT_LIST_HEAD(&cache->pending[i]);
	INIT_LIST_HEAD(&cache->changed);
	INIT_LIST_HEAD(&cache->detached);
	INIT_LIST_HEAD(&cache->leaves);
	INIT_LIST_HEAD(&cache->pending_edge);
	INIT_LIST_HEAD(&cache->useless_node);
	cache->fs_info = fs_info;
	cache->is_reloc = is_reloc;
}
2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506

struct btrfs_backref_node *btrfs_backref_alloc_node(
		struct btrfs_backref_cache *cache, u64 bytenr, int level)
{
	struct btrfs_backref_node *node;

	ASSERT(level >= 0 && level < BTRFS_MAX_LEVEL);
	node = kzalloc(sizeof(*node), GFP_NOFS);
	if (!node)
		return node;

	INIT_LIST_HEAD(&node->list);
	INIT_LIST_HEAD(&node->upper);
	INIT_LIST_HEAD(&node->lower);
	RB_CLEAR_NODE(&node->rb_node);
	cache->nr_nodes++;
	node->level = level;
	node->bytenr = bytenr;

	return node;
}
2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517

struct btrfs_backref_edge *btrfs_backref_alloc_edge(
		struct btrfs_backref_cache *cache)
{
	struct btrfs_backref_edge *edge;

	edge = kzalloc(sizeof(*edge), GFP_NOFS);
	if (edge)
		cache->nr_edges++;
	return edge;
}
2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555

/*
 * Drop the backref node from cache, also cleaning up all its
 * upper edges and any uncached nodes in the path.
 *
 * This cleanup happens bottom up, thus the node should either
 * be the lowest node in the cache or a detached node.
 */
void btrfs_backref_cleanup_node(struct btrfs_backref_cache *cache,
				struct btrfs_backref_node *node)
{
	struct btrfs_backref_node *upper;
	struct btrfs_backref_edge *edge;

	if (!node)
		return;

	BUG_ON(!node->lowest && !node->detached);
	while (!list_empty(&node->upper)) {
		edge = list_entry(node->upper.next, struct btrfs_backref_edge,
				  list[LOWER]);
		upper = edge->node[UPPER];
		list_del(&edge->list[LOWER]);
		list_del(&edge->list[UPPER]);
		btrfs_backref_free_edge(cache, edge);

		/*
		 * Add the node to leaf node list if no other child block
		 * cached.
		 */
		if (list_empty(&upper->lower)) {
			list_add_tail(&upper->lower, &cache->leaves);
			upper->lowest = 1;
		}
	}

	btrfs_backref_drop_node(cache, node);
}
2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588

/*
 * Release all nodes/edges from current cache
 */
void btrfs_backref_release_cache(struct btrfs_backref_cache *cache)
{
	struct btrfs_backref_node *node;
	int i;

	while (!list_empty(&cache->detached)) {
		node = list_entry(cache->detached.next,
				  struct btrfs_backref_node, list);
		btrfs_backref_cleanup_node(cache, node);
	}

	while (!list_empty(&cache->leaves)) {
		node = list_entry(cache->leaves.next,
				  struct btrfs_backref_node, lower);
		btrfs_backref_cleanup_node(cache, node);
	}

	cache->last_trans = 0;

	for (i = 0; i < BTRFS_MAX_LEVEL; i++)
		ASSERT(list_empty(&cache->pending[i]));
	ASSERT(list_empty(&cache->pending_edge));
	ASSERT(list_empty(&cache->useless_node));
	ASSERT(list_empty(&cache->changed));
	ASSERT(list_empty(&cache->detached));
	ASSERT(RB_EMPTY_ROOT(&cache->rb_root));
	ASSERT(!cache->nr_nodes);
	ASSERT(!cache->nr_edges);
}
2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690

/*
 * Handle direct tree backref
 *
 * Direct tree backref means, the backref item shows its parent bytenr
 * directly. This is for SHARED_BLOCK_REF backref (keyed or inlined).
 *
 * @ref_key:	The converted backref key.
 *		For keyed backref, it's the item key.
 *		For inlined backref, objectid is the bytenr,
 *		type is btrfs_inline_ref_type, offset is
 *		btrfs_inline_ref_offset.
 */
static int handle_direct_tree_backref(struct btrfs_backref_cache *cache,
				      struct btrfs_key *ref_key,
				      struct btrfs_backref_node *cur)
{
	struct btrfs_backref_edge *edge;
	struct btrfs_backref_node *upper;
	struct rb_node *rb_node;

	ASSERT(ref_key->type == BTRFS_SHARED_BLOCK_REF_KEY);

	/* Only reloc root uses backref pointing to itself */
	if (ref_key->objectid == ref_key->offset) {
		struct btrfs_root *root;

		cur->is_reloc_root = 1;
		/* Only reloc backref cache cares about a specific root */
		if (cache->is_reloc) {
			root = find_reloc_root(cache->fs_info, cur->bytenr);
			if (WARN_ON(!root))
				return -ENOENT;
			cur->root = root;
		} else {
			/*
			 * For generic purpose backref cache, reloc root node
			 * is useless.
			 */
			list_add(&cur->list, &cache->useless_node);
		}
		return 0;
	}

	edge = btrfs_backref_alloc_edge(cache);
	if (!edge)
		return -ENOMEM;

	rb_node = rb_simple_search(&cache->rb_root, ref_key->offset);
	if (!rb_node) {
		/* Parent node not yet cached */
		upper = btrfs_backref_alloc_node(cache, ref_key->offset,
					   cur->level + 1);
		if (!upper) {
			btrfs_backref_free_edge(cache, edge);
			return -ENOMEM;
		}

		/*
		 *  Backrefs for the upper level block isn't cached, add the
		 *  block to pending list
		 */
		list_add_tail(&edge->list[UPPER], &cache->pending_edge);
	} else {
		/* Parent node already cached */
		upper = rb_entry(rb_node, struct btrfs_backref_node, rb_node);
		ASSERT(upper->checked);
		INIT_LIST_HEAD(&edge->list[UPPER]);
	}
	btrfs_backref_link_edge(edge, cur, upper, LINK_LOWER);
	return 0;
}

/*
 * Handle indirect tree backref
 *
 * Indirect tree backref means, we only know which tree the node belongs to.
 * We still need to do a tree search to find out the parents. This is for
 * TREE_BLOCK_REF backref (keyed or inlined).
 *
 * @ref_key:	The same as @ref_key in  handle_direct_tree_backref()
 * @tree_key:	The first key of this tree block.
 * @path:	A clean (released) path, to avoid allocating path everytime
 *		the function get called.
 */
static int handle_indirect_tree_backref(struct btrfs_backref_cache *cache,
					struct btrfs_path *path,
					struct btrfs_key *ref_key,
					struct btrfs_key *tree_key,
					struct btrfs_backref_node *cur)
{
	struct btrfs_fs_info *fs_info = cache->fs_info;
	struct btrfs_backref_node *upper;
	struct btrfs_backref_node *lower;
	struct btrfs_backref_edge *edge;
	struct extent_buffer *eb;
	struct btrfs_root *root;
	struct rb_node *rb_node;
	int level;
	bool need_check = true;
	int ret;

D
David Sterba 已提交
2691
	root = btrfs_get_fs_root(fs_info, ref_key->offset, false);
2692 2693
	if (IS_ERR(root))
		return PTR_ERR(root);
2694
	if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
2695 2696 2697 2698 2699
		cur->cowonly = 1;

	if (btrfs_root_level(&root->root_item) == cur->level) {
		/* Tree root */
		ASSERT(btrfs_root_bytenr(&root->root_item) == cur->bytenr);
2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710
		/*
		 * For reloc backref cache, we may ignore reloc root.  But for
		 * general purpose backref cache, we can't rely on
		 * btrfs_should_ignore_reloc_root() as it may conflict with
		 * current running relocation and lead to missing root.
		 *
		 * For general purpose backref cache, reloc root detection is
		 * completely relying on direct backref (key->offset is parent
		 * bytenr), thus only do such check for reloc cache.
		 */
		if (btrfs_should_ignore_reloc_root(root) && cache->is_reloc) {
2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750
			btrfs_put_root(root);
			list_add(&cur->list, &cache->useless_node);
		} else {
			cur->root = root;
		}
		return 0;
	}

	level = cur->level + 1;

	/* Search the tree to find parent blocks referring to the block */
	path->search_commit_root = 1;
	path->skip_locking = 1;
	path->lowest_level = level;
	ret = btrfs_search_slot(NULL, root, tree_key, path, 0, 0);
	path->lowest_level = 0;
	if (ret < 0) {
		btrfs_put_root(root);
		return ret;
	}
	if (ret > 0 && path->slots[level] > 0)
		path->slots[level]--;

	eb = path->nodes[level];
	if (btrfs_node_blockptr(eb, path->slots[level]) != cur->bytenr) {
		btrfs_err(fs_info,
"couldn't find block (%llu) (level %d) in tree (%llu) with key (%llu %u %llu)",
			  cur->bytenr, level - 1, root->root_key.objectid,
			  tree_key->objectid, tree_key->type, tree_key->offset);
		btrfs_put_root(root);
		ret = -ENOENT;
		goto out;
	}
	lower = cur;

	/* Add all nodes and edges in the path */
	for (; level < BTRFS_MAX_LEVEL; level++) {
		if (!path->nodes[level]) {
			ASSERT(btrfs_root_bytenr(&root->root_item) ==
			       lower->bytenr);
2751 2752 2753
			/* Same as previous should_ignore_reloc_root() call */
			if (btrfs_should_ignore_reloc_root(root) &&
			    cache->is_reloc) {
2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780
				btrfs_put_root(root);
				list_add(&lower->list, &cache->useless_node);
			} else {
				lower->root = root;
			}
			break;
		}

		edge = btrfs_backref_alloc_edge(cache);
		if (!edge) {
			btrfs_put_root(root);
			ret = -ENOMEM;
			goto out;
		}

		eb = path->nodes[level];
		rb_node = rb_simple_search(&cache->rb_root, eb->start);
		if (!rb_node) {
			upper = btrfs_backref_alloc_node(cache, eb->start,
							 lower->level + 1);
			if (!upper) {
				btrfs_put_root(root);
				btrfs_backref_free_edge(cache, edge);
				ret = -ENOMEM;
				goto out;
			}
			upper->owner = btrfs_header_owner(eb);
2781
			if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833
				upper->cowonly = 1;

			/*
			 * If we know the block isn't shared we can avoid
			 * checking its backrefs.
			 */
			if (btrfs_block_can_be_shared(root, eb))
				upper->checked = 0;
			else
				upper->checked = 1;

			/*
			 * Add the block to pending list if we need to check its
			 * backrefs, we only do this once while walking up a
			 * tree as we will catch anything else later on.
			 */
			if (!upper->checked && need_check) {
				need_check = false;
				list_add_tail(&edge->list[UPPER],
					      &cache->pending_edge);
			} else {
				if (upper->checked)
					need_check = true;
				INIT_LIST_HEAD(&edge->list[UPPER]);
			}
		} else {
			upper = rb_entry(rb_node, struct btrfs_backref_node,
					 rb_node);
			ASSERT(upper->checked);
			INIT_LIST_HEAD(&edge->list[UPPER]);
			if (!upper->owner)
				upper->owner = btrfs_header_owner(eb);
		}
		btrfs_backref_link_edge(edge, lower, upper, LINK_LOWER);

		if (rb_node) {
			btrfs_put_root(root);
			break;
		}
		lower = upper;
		upper = NULL;
	}
out:
	btrfs_release_path(path);
	return ret;
}

/*
 * Add backref node @cur into @cache.
 *
 * NOTE: Even if the function returned 0, @cur is not yet cached as its upper
 *	 links aren't yet bi-directional. Needs to finish such links.
2834
 *	 Use btrfs_backref_finish_upper_links() to finish such linkage.
2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961
 *
 * @path:	Released path for indirect tree backref lookup
 * @iter:	Released backref iter for extent tree search
 * @node_key:	The first key of the tree block
 */
int btrfs_backref_add_tree_node(struct btrfs_backref_cache *cache,
				struct btrfs_path *path,
				struct btrfs_backref_iter *iter,
				struct btrfs_key *node_key,
				struct btrfs_backref_node *cur)
{
	struct btrfs_fs_info *fs_info = cache->fs_info;
	struct btrfs_backref_edge *edge;
	struct btrfs_backref_node *exist;
	int ret;

	ret = btrfs_backref_iter_start(iter, cur->bytenr);
	if (ret < 0)
		return ret;
	/*
	 * We skip the first btrfs_tree_block_info, as we don't use the key
	 * stored in it, but fetch it from the tree block
	 */
	if (btrfs_backref_has_tree_block_info(iter)) {
		ret = btrfs_backref_iter_next(iter);
		if (ret < 0)
			goto out;
		/* No extra backref? This means the tree block is corrupted */
		if (ret > 0) {
			ret = -EUCLEAN;
			goto out;
		}
	}
	WARN_ON(cur->checked);
	if (!list_empty(&cur->upper)) {
		/*
		 * The backref was added previously when processing backref of
		 * type BTRFS_TREE_BLOCK_REF_KEY
		 */
		ASSERT(list_is_singular(&cur->upper));
		edge = list_entry(cur->upper.next, struct btrfs_backref_edge,
				  list[LOWER]);
		ASSERT(list_empty(&edge->list[UPPER]));
		exist = edge->node[UPPER];
		/*
		 * Add the upper level block to pending list if we need check
		 * its backrefs
		 */
		if (!exist->checked)
			list_add_tail(&edge->list[UPPER], &cache->pending_edge);
	} else {
		exist = NULL;
	}

	for (; ret == 0; ret = btrfs_backref_iter_next(iter)) {
		struct extent_buffer *eb;
		struct btrfs_key key;
		int type;

		cond_resched();
		eb = btrfs_backref_get_eb(iter);

		key.objectid = iter->bytenr;
		if (btrfs_backref_iter_is_inline_ref(iter)) {
			struct btrfs_extent_inline_ref *iref;

			/* Update key for inline backref */
			iref = (struct btrfs_extent_inline_ref *)
				((unsigned long)iter->cur_ptr);
			type = btrfs_get_extent_inline_ref_type(eb, iref,
							BTRFS_REF_TYPE_BLOCK);
			if (type == BTRFS_REF_TYPE_INVALID) {
				ret = -EUCLEAN;
				goto out;
			}
			key.type = type;
			key.offset = btrfs_extent_inline_ref_offset(eb, iref);
		} else {
			key.type = iter->cur_key.type;
			key.offset = iter->cur_key.offset;
		}

		/*
		 * Parent node found and matches current inline ref, no need to
		 * rebuild this node for this inline ref
		 */
		if (exist &&
		    ((key.type == BTRFS_TREE_BLOCK_REF_KEY &&
		      exist->owner == key.offset) ||
		     (key.type == BTRFS_SHARED_BLOCK_REF_KEY &&
		      exist->bytenr == key.offset))) {
			exist = NULL;
			continue;
		}

		/* SHARED_BLOCK_REF means key.offset is the parent bytenr */
		if (key.type == BTRFS_SHARED_BLOCK_REF_KEY) {
			ret = handle_direct_tree_backref(cache, &key, cur);
			if (ret < 0)
				goto out;
			continue;
		} else if (unlikely(key.type == BTRFS_EXTENT_REF_V0_KEY)) {
			ret = -EINVAL;
			btrfs_print_v0_err(fs_info);
			btrfs_handle_fs_error(fs_info, ret, NULL);
			goto out;
		} else if (key.type != BTRFS_TREE_BLOCK_REF_KEY) {
			continue;
		}

		/*
		 * key.type == BTRFS_TREE_BLOCK_REF_KEY, inline ref offset
		 * means the root objectid. We need to search the tree to get
		 * its parent bytenr.
		 */
		ret = handle_indirect_tree_backref(cache, path, &key, node_key,
						   cur);
		if (ret < 0)
			goto out;
	}
	ret = 0;
	cur->checked = 1;
	WARN_ON(exist);
out:
	btrfs_backref_iter_release(iter);
	return ret;
}
2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065

/*
 * Finish the upwards linkage created by btrfs_backref_add_tree_node()
 */
int btrfs_backref_finish_upper_links(struct btrfs_backref_cache *cache,
				     struct btrfs_backref_node *start)
{
	struct list_head *useless_node = &cache->useless_node;
	struct btrfs_backref_edge *edge;
	struct rb_node *rb_node;
	LIST_HEAD(pending_edge);

	ASSERT(start->checked);

	/* Insert this node to cache if it's not COW-only */
	if (!start->cowonly) {
		rb_node = rb_simple_insert(&cache->rb_root, start->bytenr,
					   &start->rb_node);
		if (rb_node)
			btrfs_backref_panic(cache->fs_info, start->bytenr,
					    -EEXIST);
		list_add_tail(&start->lower, &cache->leaves);
	}

	/*
	 * Use breadth first search to iterate all related edges.
	 *
	 * The starting points are all the edges of this node
	 */
	list_for_each_entry(edge, &start->upper, list[LOWER])
		list_add_tail(&edge->list[UPPER], &pending_edge);

	while (!list_empty(&pending_edge)) {
		struct btrfs_backref_node *upper;
		struct btrfs_backref_node *lower;

		edge = list_first_entry(&pending_edge,
				struct btrfs_backref_edge, list[UPPER]);
		list_del_init(&edge->list[UPPER]);
		upper = edge->node[UPPER];
		lower = edge->node[LOWER];

		/* Parent is detached, no need to keep any edges */
		if (upper->detached) {
			list_del(&edge->list[LOWER]);
			btrfs_backref_free_edge(cache, edge);

			/* Lower node is orphan, queue for cleanup */
			if (list_empty(&lower->upper))
				list_add(&lower->list, useless_node);
			continue;
		}

		/*
		 * All new nodes added in current build_backref_tree() haven't
		 * been linked to the cache rb tree.
		 * So if we have upper->rb_node populated, this means a cache
		 * hit. We only need to link the edge, as @upper and all its
		 * parents have already been linked.
		 */
		if (!RB_EMPTY_NODE(&upper->rb_node)) {
			if (upper->lowest) {
				list_del_init(&upper->lower);
				upper->lowest = 0;
			}

			list_add_tail(&edge->list[UPPER], &upper->lower);
			continue;
		}

		/* Sanity check, we shouldn't have any unchecked nodes */
		if (!upper->checked) {
			ASSERT(0);
			return -EUCLEAN;
		}

		/* Sanity check, COW-only node has non-COW-only parent */
		if (start->cowonly != upper->cowonly) {
			ASSERT(0);
			return -EUCLEAN;
		}

		/* Only cache non-COW-only (subvolume trees) tree blocks */
		if (!upper->cowonly) {
			rb_node = rb_simple_insert(&cache->rb_root, upper->bytenr,
						   &upper->rb_node);
			if (rb_node) {
				btrfs_backref_panic(cache->fs_info,
						upper->bytenr, -EEXIST);
				return -EUCLEAN;
			}
		}

		list_add_tail(&edge->list[UPPER], &upper->lower);

		/*
		 * Also queue all the parent edges of this uncached node
		 * to finish the upper linkage
		 */
		list_for_each_entry(edge, &upper->upper, list[LOWER])
			list_add_tail(&edge->list[UPPER], &pending_edge);
	}
	return 0;
}
3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112

void btrfs_backref_error_cleanup(struct btrfs_backref_cache *cache,
				 struct btrfs_backref_node *node)
{
	struct btrfs_backref_node *lower;
	struct btrfs_backref_node *upper;
	struct btrfs_backref_edge *edge;

	while (!list_empty(&cache->useless_node)) {
		lower = list_first_entry(&cache->useless_node,
				   struct btrfs_backref_node, list);
		list_del_init(&lower->list);
	}
	while (!list_empty(&cache->pending_edge)) {
		edge = list_first_entry(&cache->pending_edge,
				struct btrfs_backref_edge, list[UPPER]);
		list_del(&edge->list[UPPER]);
		list_del(&edge->list[LOWER]);
		lower = edge->node[LOWER];
		upper = edge->node[UPPER];
		btrfs_backref_free_edge(cache, edge);

		/*
		 * Lower is no longer linked to any upper backref nodes and
		 * isn't in the cache, we can free it ourselves.
		 */
		if (list_empty(&lower->upper) &&
		    RB_EMPTY_NODE(&lower->rb_node))
			list_add(&lower->list, &cache->useless_node);

		if (!RB_EMPTY_NODE(&upper->rb_node))
			continue;

		/* Add this guy's upper edges to the list to process */
		list_for_each_entry(edge, &upper->upper, list[LOWER])
			list_add_tail(&edge->list[UPPER],
				      &cache->pending_edge);
		if (list_empty(&upper->upper))
			list_add(&upper->list, &cache->useless_node);
	}

	while (!list_empty(&cache->useless_node)) {
		lower = list_first_entry(&cache->useless_node,
				   struct btrfs_backref_node, list);
		list_del_init(&lower->list);
		if (lower == node)
			node = NULL;
3113
		btrfs_backref_drop_node(cache, lower);
3114 3115 3116 3117 3118 3119
	}

	btrfs_backref_cleanup_node(cache, node);
	ASSERT(list_empty(&cache->useless_node) &&
	       list_empty(&cache->pending_edge));
}