backref.c 59.2 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
2 3 4 5
/*
 * Copyright (C) 2011 STRATO.  All rights reserved.
 */

6
#include <linux/mm.h>
7
#include <linux/rbtree.h>
8
#include <trace/events/btrfs.h>
9 10 11
#include "ctree.h"
#include "disk-io.h"
#include "backref.h"
12 13 14
#include "ulist.h"
#include "transaction.h"
#include "delayed-ref.h"
15
#include "locking.h"
16

17 18 19
/* Just an arbitrary number so we can be sure this happened */
#define BACKREF_FOUND_SHARED 6

20 21 22 23 24 25
struct extent_inode_elem {
	u64 inum;
	u64 offset;
	struct extent_inode_elem *next;
};

26 27 28 29
static int check_extent_in_eb(const struct btrfs_key *key,
			      const struct extent_buffer *eb,
			      const struct btrfs_file_extent_item *fi,
			      u64 extent_item_pos,
30 31
			      struct extent_inode_elem **eie,
			      bool ignore_offset)
32
{
33
	u64 offset = 0;
34 35
	struct extent_inode_elem *e;

36 37
	if (!ignore_offset &&
	    !btrfs_file_extent_compression(eb, fi) &&
38 39 40 41
	    !btrfs_file_extent_encryption(eb, fi) &&
	    !btrfs_file_extent_other_encoding(eb, fi)) {
		u64 data_offset;
		u64 data_len;
42

43 44 45 46 47 48 49 50
		data_offset = btrfs_file_extent_offset(eb, fi);
		data_len = btrfs_file_extent_num_bytes(eb, fi);

		if (extent_item_pos < data_offset ||
		    extent_item_pos >= data_offset + data_len)
			return 1;
		offset = extent_item_pos - data_offset;
	}
51 52 53 54 55 56 57

	e = kmalloc(sizeof(*e), GFP_NOFS);
	if (!e)
		return -ENOMEM;

	e->next = *eie;
	e->inum = key->objectid;
58
	e->offset = key->offset + offset;
59 60 61 62 63
	*eie = e;

	return 0;
}

64 65 66 67 68 69 70 71 72 73
static void free_inode_elem_list(struct extent_inode_elem *eie)
{
	struct extent_inode_elem *eie_next;

	for (; eie; eie = eie_next) {
		eie_next = eie->next;
		kfree(eie);
	}
}

74 75
static int find_extent_in_eb(const struct extent_buffer *eb,
			     u64 wanted_disk_byte, u64 extent_item_pos,
76 77
			     struct extent_inode_elem **eie,
			     bool ignore_offset)
78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105
{
	u64 disk_byte;
	struct btrfs_key key;
	struct btrfs_file_extent_item *fi;
	int slot;
	int nritems;
	int extent_type;
	int ret;

	/*
	 * from the shared data ref, we only have the leaf but we need
	 * the key. thus, we must look into all items and see that we
	 * find one (some) with a reference to our extent item.
	 */
	nritems = btrfs_header_nritems(eb);
	for (slot = 0; slot < nritems; ++slot) {
		btrfs_item_key_to_cpu(eb, &key, slot);
		if (key.type != BTRFS_EXTENT_DATA_KEY)
			continue;
		fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
		extent_type = btrfs_file_extent_type(eb, fi);
		if (extent_type == BTRFS_FILE_EXTENT_INLINE)
			continue;
		/* don't skip BTRFS_FILE_EXTENT_PREALLOC, we can handle that */
		disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
		if (disk_byte != wanted_disk_byte)
			continue;

106
		ret = check_extent_in_eb(&key, eb, fi, extent_item_pos, eie, ignore_offset);
107 108 109 110 111 112 113
		if (ret < 0)
			return ret;
	}

	return 0;
}

114
struct preftree {
L
Liu Bo 已提交
115
	struct rb_root_cached root;
116
	unsigned int count;
117 118
};

L
Liu Bo 已提交
119
#define PREFTREE_INIT	{ .root = RB_ROOT_CACHED, .count = 0 }
120 121 122 123 124 125 126

struct preftrees {
	struct preftree direct;    /* BTRFS_SHARED_[DATA|BLOCK]_REF_KEY */
	struct preftree indirect;  /* BTRFS_[TREE_BLOCK|EXTENT_DATA]_REF_KEY */
	struct preftree indirect_missing_keys;
};

127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145
/*
 * Checks for a shared extent during backref search.
 *
 * The share_count tracks prelim_refs (direct and indirect) having a
 * ref->count >0:
 *  - incremented when a ref->count transitions to >0
 *  - decremented when a ref->count transitions to <1
 */
struct share_check {
	u64 root_objectid;
	u64 inum;
	int share_count;
};

static inline int extent_is_shared(struct share_check *sc)
{
	return (sc && sc->share_count > 1) ? BACKREF_FOUND_SHARED : 0;
}

146 147 148 149 150
static struct kmem_cache *btrfs_prelim_ref_cache;

int __init btrfs_prelim_ref_init(void)
{
	btrfs_prelim_ref_cache = kmem_cache_create("btrfs_prelim_ref",
151
					sizeof(struct prelim_ref),
152
					0,
153
					SLAB_MEM_SPREAD,
154 155 156 157 158 159
					NULL);
	if (!btrfs_prelim_ref_cache)
		return -ENOMEM;
	return 0;
}

160
void __cold btrfs_prelim_ref_exit(void)
161
{
162
	kmem_cache_destroy(btrfs_prelim_ref_cache);
163 164
}

165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205
static void free_pref(struct prelim_ref *ref)
{
	kmem_cache_free(btrfs_prelim_ref_cache, ref);
}

/*
 * Return 0 when both refs are for the same block (and can be merged).
 * A -1 return indicates ref1 is a 'lower' block than ref2, while 1
 * indicates a 'higher' block.
 */
static int prelim_ref_compare(struct prelim_ref *ref1,
			      struct prelim_ref *ref2)
{
	if (ref1->level < ref2->level)
		return -1;
	if (ref1->level > ref2->level)
		return 1;
	if (ref1->root_id < ref2->root_id)
		return -1;
	if (ref1->root_id > ref2->root_id)
		return 1;
	if (ref1->key_for_search.type < ref2->key_for_search.type)
		return -1;
	if (ref1->key_for_search.type > ref2->key_for_search.type)
		return 1;
	if (ref1->key_for_search.objectid < ref2->key_for_search.objectid)
		return -1;
	if (ref1->key_for_search.objectid > ref2->key_for_search.objectid)
		return 1;
	if (ref1->key_for_search.offset < ref2->key_for_search.offset)
		return -1;
	if (ref1->key_for_search.offset > ref2->key_for_search.offset)
		return 1;
	if (ref1->parent < ref2->parent)
		return -1;
	if (ref1->parent > ref2->parent)
		return 1;

	return 0;
}

206 207
static void update_share_count(struct share_check *sc, int oldcount,
			       int newcount)
208 209 210 211 212 213 214 215 216 217
{
	if ((!sc) || (oldcount == 0 && newcount < 1))
		return;

	if (oldcount > 0 && newcount < 1)
		sc->share_count--;
	else if (oldcount < 1 && newcount > 0)
		sc->share_count++;
}

218 219 220
/*
 * Add @newref to the @root rbtree, merging identical refs.
 *
221
 * Callers should assume that newref has been freed after calling.
222
 */
223 224
static void prelim_ref_insert(const struct btrfs_fs_info *fs_info,
			      struct preftree *preftree,
225 226
			      struct prelim_ref *newref,
			      struct share_check *sc)
227
{
L
Liu Bo 已提交
228
	struct rb_root_cached *root;
229 230 231 232
	struct rb_node **p;
	struct rb_node *parent = NULL;
	struct prelim_ref *ref;
	int result;
L
Liu Bo 已提交
233
	bool leftmost = true;
234 235

	root = &preftree->root;
L
Liu Bo 已提交
236
	p = &root->rb_root.rb_node;
237 238 239 240 241 242 243 244 245

	while (*p) {
		parent = *p;
		ref = rb_entry(parent, struct prelim_ref, rbnode);
		result = prelim_ref_compare(ref, newref);
		if (result < 0) {
			p = &(*p)->rb_left;
		} else if (result > 0) {
			p = &(*p)->rb_right;
L
Liu Bo 已提交
246
			leftmost = false;
247 248 249 250 251 252 253 254 255 256 257
		} else {
			/* Identical refs, merge them and free @newref */
			struct extent_inode_elem *eie = ref->inode_list;

			while (eie && eie->next)
				eie = eie->next;

			if (!eie)
				ref->inode_list = newref->inode_list;
			else
				eie->next = newref->inode_list;
258 259
			trace_btrfs_prelim_ref_merge(fs_info, ref, newref,
						     preftree->count);
260 261 262 263 264 265 266
			/*
			 * A delayed ref can have newref->count < 0.
			 * The ref->count is updated to follow any
			 * BTRFS_[ADD|DROP]_DELAYED_REF actions.
			 */
			update_share_count(sc, ref->count,
					   ref->count + newref->count);
267 268 269 270 271 272
			ref->count += newref->count;
			free_pref(newref);
			return;
		}
	}

273
	update_share_count(sc, 0, newref->count);
274
	preftree->count++;
275
	trace_btrfs_prelim_ref_insert(fs_info, newref, NULL, preftree->count);
276
	rb_link_node(&newref->rbnode, parent, p);
L
Liu Bo 已提交
277
	rb_insert_color_cached(&newref->rbnode, root, leftmost);
278 279 280 281 282 283 284 285 286 287
}

/*
 * Release the entire tree.  We don't care about internal consistency so
 * just free everything and then reset the tree root.
 */
static void prelim_release(struct preftree *preftree)
{
	struct prelim_ref *ref, *next_ref;

L
Liu Bo 已提交
288 289
	rbtree_postorder_for_each_entry_safe(ref, next_ref,
					     &preftree->root.rb_root, rbnode)
290 291
		free_pref(ref);

L
Liu Bo 已提交
292
	preftree->root = RB_ROOT_CACHED;
293
	preftree->count = 0;
294 295
}

296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327
/*
 * the rules for all callers of this function are:
 * - obtaining the parent is the goal
 * - if you add a key, you must know that it is a correct key
 * - if you cannot add the parent or a correct key, then we will look into the
 *   block later to set a correct key
 *
 * delayed refs
 * ============
 *        backref type | shared | indirect | shared | indirect
 * information         |   tree |     tree |   data |     data
 * --------------------+--------+----------+--------+----------
 *      parent logical |    y   |     -    |    -   |     -
 *      key to resolve |    -   |     y    |    y   |     y
 *  tree block logical |    -   |     -    |    -   |     -
 *  root for resolving |    y   |     y    |    y   |     y
 *
 * - column 1:       we've the parent -> done
 * - column 2, 3, 4: we use the key to find the parent
 *
 * on disk refs (inline or keyed)
 * ==============================
 *        backref type | shared | indirect | shared | indirect
 * information         |   tree |     tree |   data |     data
 * --------------------+--------+----------+--------+----------
 *      parent logical |    y   |     -    |    y   |     -
 *      key to resolve |    -   |     -    |    -   |     y
 *  tree block logical |    y   |     y    |    y   |     y
 *  root for resolving |    -   |     y    |    y   |     y
 *
 * - column 1, 3: we've the parent -> done
 * - column 2:    we take the first key from the block to find the parent
328
 *                (see add_missing_keys)
329 330 331 332 333
 * - column 4:    we use the key to find the parent
 *
 * additional information that's available but not required to find the parent
 * block might help in merging entries to gain some speed.
 */
334 335
static int add_prelim_ref(const struct btrfs_fs_info *fs_info,
			  struct preftree *preftree, u64 root_id,
336
			  const struct btrfs_key *key, int level, u64 parent,
337 338
			  u64 wanted_disk_byte, int count,
			  struct share_check *sc, gfp_t gfp_mask)
339
{
340
	struct prelim_ref *ref;
341

342 343 344
	if (root_id == BTRFS_DATA_RELOC_TREE_OBJECTID)
		return 0;

345
	ref = kmem_cache_alloc(btrfs_prelim_ref_cache, gfp_mask);
346 347 348 349
	if (!ref)
		return -ENOMEM;

	ref->root_id = root_id;
350
	if (key) {
351
		ref->key_for_search = *key;
352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374
		/*
		 * We can often find data backrefs with an offset that is too
		 * large (>= LLONG_MAX, maximum allowed file offset) due to
		 * underflows when subtracting a file's offset with the data
		 * offset of its corresponding extent data item. This can
		 * happen for example in the clone ioctl.
		 * So if we detect such case we set the search key's offset to
		 * zero to make sure we will find the matching file extent item
		 * at add_all_parents(), otherwise we will miss it because the
		 * offset taken form the backref is much larger then the offset
		 * of the file extent item. This can make us scan a very large
		 * number of file extent items, but at least it will not make
		 * us miss any.
		 * This is an ugly workaround for a behaviour that should have
		 * never existed, but it does and a fix for the clone ioctl
		 * would touch a lot of places, cause backwards incompatibility
		 * and would not fix the problem for extents cloned with older
		 * kernels.
		 */
		if (ref->key_for_search.type == BTRFS_EXTENT_DATA_KEY &&
		    ref->key_for_search.offset >= LLONG_MAX)
			ref->key_for_search.offset = 0;
	} else {
375
		memset(&ref->key_for_search, 0, sizeof(ref->key_for_search));
376
	}
377

378
	ref->inode_list = NULL;
379 380 381 382
	ref->level = level;
	ref->count = count;
	ref->parent = parent;
	ref->wanted_disk_byte = wanted_disk_byte;
383 384
	prelim_ref_insert(fs_info, preftree, ref, sc);
	return extent_is_shared(sc);
385 386
}

387
/* direct refs use root == 0, key == NULL */
388 389
static int add_direct_ref(const struct btrfs_fs_info *fs_info,
			  struct preftrees *preftrees, int level, u64 parent,
390 391
			  u64 wanted_disk_byte, int count,
			  struct share_check *sc, gfp_t gfp_mask)
392
{
393
	return add_prelim_ref(fs_info, &preftrees->direct, 0, NULL, level,
394
			      parent, wanted_disk_byte, count, sc, gfp_mask);
395 396 397
}

/* indirect refs use parent == 0 */
398 399
static int add_indirect_ref(const struct btrfs_fs_info *fs_info,
			    struct preftrees *preftrees, u64 root_id,
400
			    const struct btrfs_key *key, int level,
401 402
			    u64 wanted_disk_byte, int count,
			    struct share_check *sc, gfp_t gfp_mask)
403 404 405 406 407
{
	struct preftree *tree = &preftrees->indirect;

	if (!key)
		tree = &preftrees->indirect_missing_keys;
408
	return add_prelim_ref(fs_info, tree, root_id, key, level, 0,
409
			      wanted_disk_byte, count, sc, gfp_mask);
410 411
}

412
static int add_all_parents(struct btrfs_root *root, struct btrfs_path *path,
413
			   struct ulist *parents, struct prelim_ref *ref,
414
			   int level, u64 time_seq, const u64 *extent_item_pos,
415
			   u64 total_refs, bool ignore_offset)
416
{
417 418 419 420
	int ret = 0;
	int slot;
	struct extent_buffer *eb;
	struct btrfs_key key;
421
	struct btrfs_key *key_for_search = &ref->key_for_search;
422
	struct btrfs_file_extent_item *fi;
423
	struct extent_inode_elem *eie = NULL, *old = NULL;
424
	u64 disk_byte;
425 426
	u64 wanted_disk_byte = ref->wanted_disk_byte;
	u64 count = 0;
427

428 429 430
	if (level != 0) {
		eb = path->nodes[level];
		ret = ulist_add(parents, eb->start, 0, GFP_NOFS);
431 432
		if (ret < 0)
			return ret;
433
		return 0;
434
	}
435 436

	/*
437 438 439
	 * We normally enter this function with the path already pointing to
	 * the first item to check. But sometimes, we may enter it with
	 * slot==nritems. In that case, go to the next leaf before we continue.
440
	 */
441
	if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
442
		if (time_seq == SEQ_LAST)
443 444 445 446
			ret = btrfs_next_leaf(root, path);
		else
			ret = btrfs_next_old_leaf(root, path, time_seq);
	}
447

448
	while (!ret && count < total_refs) {
449
		eb = path->nodes[0];
450 451 452 453 454 455 456 457 458 459 460 461 462
		slot = path->slots[0];

		btrfs_item_key_to_cpu(eb, &key, slot);

		if (key.objectid != key_for_search->objectid ||
		    key.type != BTRFS_EXTENT_DATA_KEY)
			break;

		fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
		disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);

		if (disk_byte == wanted_disk_byte) {
			eie = NULL;
463
			old = NULL;
464
			count++;
465 466 467
			if (extent_item_pos) {
				ret = check_extent_in_eb(&key, eb, fi,
						*extent_item_pos,
468
						&eie, ignore_offset);
469 470 471
				if (ret < 0)
					break;
			}
472 473
			if (ret > 0)
				goto next;
474 475
			ret = ulist_add_merge_ptr(parents, eb->start,
						  eie, (void **)&old, GFP_NOFS);
476 477 478 479 480 481
			if (ret < 0)
				break;
			if (!ret && extent_item_pos) {
				while (old->next)
					old = old->next;
				old->next = eie;
482
			}
483
			eie = NULL;
484
		}
485
next:
486
		if (time_seq == SEQ_LAST)
487 488 489
			ret = btrfs_next_item(root, path);
		else
			ret = btrfs_next_old_item(root, path, time_seq);
490 491
	}

492 493
	if (ret > 0)
		ret = 0;
494 495
	else if (ret < 0)
		free_inode_elem_list(eie);
496
	return ret;
497 498 499 500 501 502
}

/*
 * resolve an indirect backref in the form (root_id, key, level)
 * to a logical address
 */
503 504 505
static int resolve_indirect_ref(struct btrfs_fs_info *fs_info,
				struct btrfs_path *path, u64 time_seq,
				struct prelim_ref *ref, struct ulist *parents,
506 507
				const u64 *extent_item_pos, u64 total_refs,
				bool ignore_offset)
508 509 510 511 512 513 514
{
	struct btrfs_root *root;
	struct btrfs_key root_key;
	struct extent_buffer *eb;
	int ret = 0;
	int root_level;
	int level = ref->level;
515
	int index;
516 517 518 519

	root_key.objectid = ref->root_id;
	root_key.type = BTRFS_ROOT_ITEM_KEY;
	root_key.offset = (u64)-1;
520 521 522

	index = srcu_read_lock(&fs_info->subvol_srcu);

523
	root = btrfs_get_fs_root(fs_info, &root_key, false);
524
	if (IS_ERR(root)) {
525
		srcu_read_unlock(&fs_info->subvol_srcu, index);
526 527 528 529
		ret = PTR_ERR(root);
		goto out;
	}

530
	if (btrfs_is_testing(fs_info)) {
J
Josef Bacik 已提交
531 532 533 534 535
		srcu_read_unlock(&fs_info->subvol_srcu, index);
		ret = -ENOENT;
		goto out;
	}

536 537
	if (path->search_commit_root)
		root_level = btrfs_header_level(root->commit_root);
538
	else if (time_seq == SEQ_LAST)
539
		root_level = btrfs_header_level(root->node);
540 541
	else
		root_level = btrfs_old_root_level(root, time_seq);
542

543 544
	if (root_level + 1 == level) {
		srcu_read_unlock(&fs_info->subvol_srcu, index);
545
		goto out;
546
	}
547 548

	path->lowest_level = level;
549
	if (time_seq == SEQ_LAST)
550 551 552 553 554
		ret = btrfs_search_slot(NULL, root, &ref->key_for_search, path,
					0, 0);
	else
		ret = btrfs_search_old_slot(root, &ref->key_for_search, path,
					    time_seq);
555 556 557 558

	/* root node has been locked, we can release @subvol_srcu safely here */
	srcu_read_unlock(&fs_info->subvol_srcu, index);

559 560
	btrfs_debug(fs_info,
		"search slot in root %llu (level %d, ref count %d) returned %d for key (%llu %u %llu)",
561 562 563
		 ref->root_id, level, ref->count, ret,
		 ref->key_for_search.objectid, ref->key_for_search.type,
		 ref->key_for_search.offset);
564 565 566 567
	if (ret < 0)
		goto out;

	eb = path->nodes[level];
568
	while (!eb) {
569
		if (WARN_ON(!level)) {
570 571 572 573 574
			ret = 1;
			goto out;
		}
		level--;
		eb = path->nodes[level];
575 576
	}

577
	ret = add_all_parents(root, path, parents, ref, level, time_seq,
578
			      extent_item_pos, total_refs, ignore_offset);
579
out:
580 581
	path->lowest_level = 0;
	btrfs_release_path(path);
582 583 584
	return ret;
}

585 586 587 588 589 590 591 592
static struct extent_inode_elem *
unode_aux_to_inode_list(struct ulist_node *node)
{
	if (!node)
		return NULL;
	return (struct extent_inode_elem *)(uintptr_t)node->aux;
}

593
/*
594
 * We maintain three separate rbtrees: one for direct refs, one for
595 596 597 598 599 600 601 602 603 604 605 606 607
 * indirect refs which have a key, and one for indirect refs which do not
 * have a key. Each tree does merge on insertion.
 *
 * Once all of the references are located, we iterate over the tree of
 * indirect refs with missing keys. An appropriate key is located and
 * the ref is moved onto the tree for indirect refs. After all missing
 * keys are thus located, we iterate over the indirect ref tree, resolve
 * each reference, and then insert the resolved reference onto the
 * direct tree (merging there too).
 *
 * New backrefs (i.e., for parent nodes) are added to the appropriate
 * rbtree as they are encountered. The new backrefs are subsequently
 * resolved as above.
608
 */
609 610
static int resolve_indirect_refs(struct btrfs_fs_info *fs_info,
				 struct btrfs_path *path, u64 time_seq,
611
				 struct preftrees *preftrees,
612
				 const u64 *extent_item_pos, u64 total_refs,
613
				 struct share_check *sc, bool ignore_offset)
614 615 616 617 618
{
	int err;
	int ret = 0;
	struct ulist *parents;
	struct ulist_node *node;
J
Jan Schmidt 已提交
619
	struct ulist_iterator uiter;
620
	struct rb_node *rnode;
621 622 623 624 625 626

	parents = ulist_alloc(GFP_NOFS);
	if (!parents)
		return -ENOMEM;

	/*
627 628 629 630
	 * We could trade memory usage for performance here by iterating
	 * the tree, allocating new refs for each insertion, and then
	 * freeing the entire indirect tree when we're done.  In some test
	 * cases, the tree can grow quite large (~200k objects).
631
	 */
L
Liu Bo 已提交
632
	while ((rnode = rb_first_cached(&preftrees->indirect.root))) {
633 634 635 636 637 638 639 640 641
		struct prelim_ref *ref;

		ref = rb_entry(rnode, struct prelim_ref, rbnode);
		if (WARN(ref->parent,
			 "BUG: direct ref found in indirect tree")) {
			ret = -EINVAL;
			goto out;
		}

L
Liu Bo 已提交
642
		rb_erase_cached(&ref->rbnode, &preftrees->indirect.root);
643
		preftrees->indirect.count--;
644 645 646

		if (ref->count == 0) {
			free_pref(ref);
647
			continue;
648 649
		}

650 651
		if (sc && sc->root_objectid &&
		    ref->root_id != sc->root_objectid) {
652
			free_pref(ref);
653 654 655
			ret = BACKREF_FOUND_SHARED;
			goto out;
		}
656 657
		err = resolve_indirect_ref(fs_info, path, time_seq, ref,
					   parents, extent_item_pos,
658
					   total_refs, ignore_offset);
659 660 661 662 663
		/*
		 * we can only tolerate ENOENT,otherwise,we should catch error
		 * and return directly.
		 */
		if (err == -ENOENT) {
664 665
			prelim_ref_insert(fs_info, &preftrees->direct, ref,
					  NULL);
666
			continue;
667
		} else if (err) {
668
			free_pref(ref);
669 670 671
			ret = err;
			goto out;
		}
672 673

		/* we put the first parent into the ref at hand */
J
Jan Schmidt 已提交
674 675
		ULIST_ITER_INIT(&uiter);
		node = ulist_next(parents, &uiter);
676
		ref->parent = node ? node->val : 0;
677
		ref->inode_list = unode_aux_to_inode_list(node);
678

679
		/* Add a prelim_ref(s) for any other parent(s). */
J
Jan Schmidt 已提交
680
		while ((node = ulist_next(parents, &uiter))) {
681 682
			struct prelim_ref *new_ref;

683 684
			new_ref = kmem_cache_alloc(btrfs_prelim_ref_cache,
						   GFP_NOFS);
685
			if (!new_ref) {
686
				free_pref(ref);
687
				ret = -ENOMEM;
688
				goto out;
689 690 691
			}
			memcpy(new_ref, ref, sizeof(*ref));
			new_ref->parent = node->val;
692
			new_ref->inode_list = unode_aux_to_inode_list(node);
693 694
			prelim_ref_insert(fs_info, &preftrees->direct,
					  new_ref, NULL);
695
		}
696

697
		/*
698
		 * Now it's a direct ref, put it in the direct tree. We must
699 700 701
		 * do this last because the ref could be merged/freed here.
		 */
		prelim_ref_insert(fs_info, &preftrees->direct, ref, NULL);
702

703
		ulist_reinit(parents);
704
		cond_resched();
705
	}
706
out:
707 708 709 710
	ulist_free(parents);
	return ret;
}

711 712 713
/*
 * read tree blocks and add keys where required.
 */
714
static int add_missing_keys(struct btrfs_fs_info *fs_info,
715
			    struct preftrees *preftrees, bool lock)
716
{
717
	struct prelim_ref *ref;
718
	struct extent_buffer *eb;
719 720
	struct preftree *tree = &preftrees->indirect_missing_keys;
	struct rb_node *node;
721

L
Liu Bo 已提交
722
	while ((node = rb_first_cached(&tree->root))) {
723
		ref = rb_entry(node, struct prelim_ref, rbnode);
L
Liu Bo 已提交
724
		rb_erase_cached(node, &tree->root);
725 726 727

		BUG_ON(ref->parent);	/* should not be a direct ref */
		BUG_ON(ref->key_for_search.type);
728
		BUG_ON(!ref->wanted_disk_byte);
729

730 731
		eb = read_tree_block(fs_info, ref->wanted_disk_byte, 0,
				     ref->level - 1, NULL);
732
		if (IS_ERR(eb)) {
733
			free_pref(ref);
734 735
			return PTR_ERR(eb);
		} else if (!extent_buffer_uptodate(eb)) {
736
			free_pref(ref);
737 738 739
			free_extent_buffer(eb);
			return -EIO;
		}
740 741
		if (lock)
			btrfs_tree_read_lock(eb);
742 743 744 745
		if (btrfs_header_level(eb) == 0)
			btrfs_item_key_to_cpu(eb, &ref->key_for_search, 0);
		else
			btrfs_node_key_to_cpu(eb, &ref->key_for_search, 0);
746 747
		if (lock)
			btrfs_tree_read_unlock(eb);
748
		free_extent_buffer(eb);
749
		prelim_ref_insert(fs_info, &preftrees->indirect, ref, NULL);
750
		cond_resched();
751 752 753 754
	}
	return 0;
}

755 756 757 758
/*
 * add all currently queued delayed refs from this head whose seq nr is
 * smaller or equal that seq to the list
 */
759 760
static int add_delayed_refs(const struct btrfs_fs_info *fs_info,
			    struct btrfs_delayed_ref_head *head, u64 seq,
761
			    struct preftrees *preftrees, u64 *total_refs,
762
			    struct share_check *sc)
763
{
764
	struct btrfs_delayed_ref_node *node;
765
	struct btrfs_delayed_extent_op *extent_op = head->extent_op;
766
	struct btrfs_key key;
767
	struct btrfs_key tmp_op_key;
768
	struct rb_node *n;
769
	int count;
770
	int ret = 0;
771

772
	if (extent_op && extent_op->update_key)
773
		btrfs_disk_key_to_cpu(&tmp_op_key, &extent_op->key);
774

775
	spin_lock(&head->lock);
776
	for (n = rb_first_cached(&head->ref_tree); n; n = rb_next(n)) {
777 778
		node = rb_entry(n, struct btrfs_delayed_ref_node,
				ref_node);
779 780 781 782 783 784 785 786 787
		if (node->seq > seq)
			continue;

		switch (node->action) {
		case BTRFS_ADD_DELAYED_EXTENT:
		case BTRFS_UPDATE_DELAYED_HEAD:
			WARN_ON(1);
			continue;
		case BTRFS_ADD_DELAYED_REF:
788
			count = node->ref_mod;
789 790
			break;
		case BTRFS_DROP_DELAYED_REF:
791
			count = node->ref_mod * -1;
792 793 794 795
			break;
		default:
			BUG_ON(1);
		}
796
		*total_refs += count;
797 798
		switch (node->type) {
		case BTRFS_TREE_BLOCK_REF_KEY: {
799
			/* NORMAL INDIRECT METADATA backref */
800 801 802
			struct btrfs_delayed_tree_ref *ref;

			ref = btrfs_delayed_node_to_tree_ref(node);
803 804
			ret = add_indirect_ref(fs_info, preftrees, ref->root,
					       &tmp_op_key, ref->level + 1,
805 806
					       node->bytenr, count, sc,
					       GFP_ATOMIC);
807 808 809
			break;
		}
		case BTRFS_SHARED_BLOCK_REF_KEY: {
810
			/* SHARED DIRECT METADATA backref */
811 812 813
			struct btrfs_delayed_tree_ref *ref;

			ref = btrfs_delayed_node_to_tree_ref(node);
814

815 816
			ret = add_direct_ref(fs_info, preftrees, ref->level + 1,
					     ref->parent, node->bytenr, count,
817
					     sc, GFP_ATOMIC);
818 819 820
			break;
		}
		case BTRFS_EXTENT_DATA_REF_KEY: {
821
			/* NORMAL INDIRECT DATA backref */
822 823 824 825 826 827
			struct btrfs_delayed_data_ref *ref;
			ref = btrfs_delayed_node_to_data_ref(node);

			key.objectid = ref->objectid;
			key.type = BTRFS_EXTENT_DATA_KEY;
			key.offset = ref->offset;
828 829 830 831 832

			/*
			 * Found a inum that doesn't match our known inum, we
			 * know it's shared.
			 */
833
			if (sc && sc->inum && ref->objectid != sc->inum) {
834
				ret = BACKREF_FOUND_SHARED;
835
				goto out;
836 837
			}

838
			ret = add_indirect_ref(fs_info, preftrees, ref->root,
839 840
					       &key, 0, node->bytenr, count, sc,
					       GFP_ATOMIC);
841 842 843
			break;
		}
		case BTRFS_SHARED_DATA_REF_KEY: {
844
			/* SHARED DIRECT FULL backref */
845 846 847
			struct btrfs_delayed_data_ref *ref;

			ref = btrfs_delayed_node_to_data_ref(node);
848

849 850 851
			ret = add_direct_ref(fs_info, preftrees, 0, ref->parent,
					     node->bytenr, count, sc,
					     GFP_ATOMIC);
852 853 854 855 856
			break;
		}
		default:
			WARN_ON(1);
		}
857 858 859 860 861
		/*
		 * We must ignore BACKREF_FOUND_SHARED until all delayed
		 * refs have been checked.
		 */
		if (ret && (ret != BACKREF_FOUND_SHARED))
862
			break;
863
	}
864 865 866
	if (!ret)
		ret = extent_is_shared(sc);
out:
867 868
	spin_unlock(&head->lock);
	return ret;
869 870 871 872
}

/*
 * add all inline backrefs for bytenr to the list
873 874
 *
 * Returns 0 on success, <0 on error, or BACKREF_FOUND_SHARED.
875
 */
876 877
static int add_inline_refs(const struct btrfs_fs_info *fs_info,
			   struct btrfs_path *path, u64 bytenr,
878
			   int *info_level, struct preftrees *preftrees,
879
			   u64 *total_refs, struct share_check *sc)
880
{
881
	int ret = 0;
882 883 884
	int slot;
	struct extent_buffer *leaf;
	struct btrfs_key key;
885
	struct btrfs_key found_key;
886 887 888 889 890 891 892 893 894 895
	unsigned long ptr;
	unsigned long end;
	struct btrfs_extent_item *ei;
	u64 flags;
	u64 item_size;

	/*
	 * enumerate all inline refs
	 */
	leaf = path->nodes[0];
896
	slot = path->slots[0];
897 898 899 900 901 902

	item_size = btrfs_item_size_nr(leaf, slot);
	BUG_ON(item_size < sizeof(*ei));

	ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item);
	flags = btrfs_extent_flags(leaf, ei);
903
	*total_refs += btrfs_extent_refs(leaf, ei);
904
	btrfs_item_key_to_cpu(leaf, &found_key, slot);
905 906 907 908

	ptr = (unsigned long)(ei + 1);
	end = (unsigned long)ei + item_size;

909 910
	if (found_key.type == BTRFS_EXTENT_ITEM_KEY &&
	    flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
911 912 913 914 915 916
		struct btrfs_tree_block_info *info;

		info = (struct btrfs_tree_block_info *)ptr;
		*info_level = btrfs_tree_block_level(leaf, info);
		ptr += sizeof(struct btrfs_tree_block_info);
		BUG_ON(ptr > end);
917 918
	} else if (found_key.type == BTRFS_METADATA_ITEM_KEY) {
		*info_level = found_key.offset;
919 920 921 922 923 924 925 926 927 928
	} else {
		BUG_ON(!(flags & BTRFS_EXTENT_FLAG_DATA));
	}

	while (ptr < end) {
		struct btrfs_extent_inline_ref *iref;
		u64 offset;
		int type;

		iref = (struct btrfs_extent_inline_ref *)ptr;
929 930 931
		type = btrfs_get_extent_inline_ref_type(leaf, iref,
							BTRFS_REF_TYPE_ANY);
		if (type == BTRFS_REF_TYPE_INVALID)
932
			return -EUCLEAN;
933

934 935 936 937
		offset = btrfs_extent_inline_ref_offset(leaf, iref);

		switch (type) {
		case BTRFS_SHARED_BLOCK_REF_KEY:
938 939
			ret = add_direct_ref(fs_info, preftrees,
					     *info_level + 1, offset,
940
					     bytenr, 1, NULL, GFP_NOFS);
941 942 943 944 945 946 947
			break;
		case BTRFS_SHARED_DATA_REF_KEY: {
			struct btrfs_shared_data_ref *sdref;
			int count;

			sdref = (struct btrfs_shared_data_ref *)(iref + 1);
			count = btrfs_shared_data_ref_count(leaf, sdref);
948

949
			ret = add_direct_ref(fs_info, preftrees, 0, offset,
950
					     bytenr, count, sc, GFP_NOFS);
951 952 953
			break;
		}
		case BTRFS_TREE_BLOCK_REF_KEY:
954 955
			ret = add_indirect_ref(fs_info, preftrees, offset,
					       NULL, *info_level + 1,
956
					       bytenr, 1, NULL, GFP_NOFS);
957 958 959 960 961 962 963 964 965 966 967 968
			break;
		case BTRFS_EXTENT_DATA_REF_KEY: {
			struct btrfs_extent_data_ref *dref;
			int count;
			u64 root;

			dref = (struct btrfs_extent_data_ref *)(&iref->offset);
			count = btrfs_extent_data_ref_count(leaf, dref);
			key.objectid = btrfs_extent_data_ref_objectid(leaf,
								      dref);
			key.type = BTRFS_EXTENT_DATA_KEY;
			key.offset = btrfs_extent_data_ref_offset(leaf, dref);
969

970
			if (sc && sc->inum && key.objectid != sc->inum) {
971 972 973 974
				ret = BACKREF_FOUND_SHARED;
				break;
			}

975
			root = btrfs_extent_data_ref_root(leaf, dref);
976

977 978
			ret = add_indirect_ref(fs_info, preftrees, root,
					       &key, 0, bytenr, count,
979
					       sc, GFP_NOFS);
980 981 982 983 984
			break;
		}
		default:
			WARN_ON(1);
		}
985 986
		if (ret)
			return ret;
987 988 989 990 991 992 993 994
		ptr += btrfs_extent_inline_ref_size(type);
	}

	return 0;
}

/*
 * add all non-inline backrefs for bytenr to the list
995 996
 *
 * Returns 0 on success, <0 on error, or BACKREF_FOUND_SHARED.
997
 */
998 999
static int add_keyed_refs(struct btrfs_fs_info *fs_info,
			  struct btrfs_path *path, u64 bytenr,
1000
			  int info_level, struct preftrees *preftrees,
1001
			  struct share_check *sc)
1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030
{
	struct btrfs_root *extent_root = fs_info->extent_root;
	int ret;
	int slot;
	struct extent_buffer *leaf;
	struct btrfs_key key;

	while (1) {
		ret = btrfs_next_item(extent_root, path);
		if (ret < 0)
			break;
		if (ret) {
			ret = 0;
			break;
		}

		slot = path->slots[0];
		leaf = path->nodes[0];
		btrfs_item_key_to_cpu(leaf, &key, slot);

		if (key.objectid != bytenr)
			break;
		if (key.type < BTRFS_TREE_BLOCK_REF_KEY)
			continue;
		if (key.type > BTRFS_SHARED_DATA_REF_KEY)
			break;

		switch (key.type) {
		case BTRFS_SHARED_BLOCK_REF_KEY:
1031
			/* SHARED DIRECT METADATA backref */
1032 1033
			ret = add_direct_ref(fs_info, preftrees,
					     info_level + 1, key.offset,
1034
					     bytenr, 1, NULL, GFP_NOFS);
1035 1036
			break;
		case BTRFS_SHARED_DATA_REF_KEY: {
1037
			/* SHARED DIRECT FULL backref */
1038 1039 1040 1041 1042 1043
			struct btrfs_shared_data_ref *sdref;
			int count;

			sdref = btrfs_item_ptr(leaf, slot,
					      struct btrfs_shared_data_ref);
			count = btrfs_shared_data_ref_count(leaf, sdref);
1044 1045
			ret = add_direct_ref(fs_info, preftrees, 0,
					     key.offset, bytenr, count,
1046
					     sc, GFP_NOFS);
1047 1048 1049
			break;
		}
		case BTRFS_TREE_BLOCK_REF_KEY:
1050
			/* NORMAL INDIRECT METADATA backref */
1051 1052
			ret = add_indirect_ref(fs_info, preftrees, key.offset,
					       NULL, info_level + 1, bytenr,
1053
					       1, NULL, GFP_NOFS);
1054 1055
			break;
		case BTRFS_EXTENT_DATA_REF_KEY: {
1056
			/* NORMAL INDIRECT DATA backref */
1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067
			struct btrfs_extent_data_ref *dref;
			int count;
			u64 root;

			dref = btrfs_item_ptr(leaf, slot,
					      struct btrfs_extent_data_ref);
			count = btrfs_extent_data_ref_count(leaf, dref);
			key.objectid = btrfs_extent_data_ref_objectid(leaf,
								      dref);
			key.type = BTRFS_EXTENT_DATA_KEY;
			key.offset = btrfs_extent_data_ref_offset(leaf, dref);
1068

1069
			if (sc && sc->inum && key.objectid != sc->inum) {
1070 1071 1072 1073
				ret = BACKREF_FOUND_SHARED;
				break;
			}

1074
			root = btrfs_extent_data_ref_root(leaf, dref);
1075 1076
			ret = add_indirect_ref(fs_info, preftrees, root,
					       &key, 0, bytenr, count,
1077
					       sc, GFP_NOFS);
1078 1079 1080 1081 1082
			break;
		}
		default:
			WARN_ON(1);
		}
1083 1084 1085
		if (ret)
			return ret;

1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096
	}

	return ret;
}

/*
 * this adds all existing backrefs (inline backrefs, backrefs and delayed
 * refs) for the given bytenr to the refs list, merges duplicates and resolves
 * indirect refs to their parent bytenr.
 * When roots are found, they're added to the roots list
 *
1097
 * If time_seq is set to SEQ_LAST, it will not search delayed_refs, and behave
1098 1099 1100 1101
 * much like trans == NULL case, the difference only lies in it will not
 * commit root.
 * The special case is for qgroup to search roots in commit_transaction().
 *
1102 1103 1104 1105 1106
 * @sc - if !NULL, then immediately return BACKREF_FOUND_SHARED when a
 * shared extent is detected.
 *
 * Otherwise this returns 0 for success and <0 for an error.
 *
1107 1108 1109 1110
 * If ignore_offset is set to false, only extent refs whose offsets match
 * extent_item_pos are returned.  If true, every extent ref is returned
 * and extent_item_pos is ignored.
 *
1111 1112 1113 1114
 * FIXME some caching might speed things up
 */
static int find_parent_nodes(struct btrfs_trans_handle *trans,
			     struct btrfs_fs_info *fs_info, u64 bytenr,
1115
			     u64 time_seq, struct ulist *refs,
1116
			     struct ulist *roots, const u64 *extent_item_pos,
1117
			     struct share_check *sc, bool ignore_offset)
1118 1119 1120 1121
{
	struct btrfs_key key;
	struct btrfs_path *path;
	struct btrfs_delayed_ref_root *delayed_refs = NULL;
1122
	struct btrfs_delayed_ref_head *head;
1123 1124
	int info_level = 0;
	int ret;
1125
	struct prelim_ref *ref;
1126
	struct rb_node *node;
1127
	struct extent_inode_elem *eie = NULL;
1128
	/* total of both direct AND indirect refs! */
1129
	u64 total_refs = 0;
1130 1131 1132 1133 1134
	struct preftrees preftrees = {
		.direct = PREFTREE_INIT,
		.indirect = PREFTREE_INIT,
		.indirect_missing_keys = PREFTREE_INIT
	};
1135 1136 1137

	key.objectid = bytenr;
	key.offset = (u64)-1;
1138 1139 1140 1141
	if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
		key.type = BTRFS_METADATA_ITEM_KEY;
	else
		key.type = BTRFS_EXTENT_ITEM_KEY;
1142 1143 1144 1145

	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;
1146
	if (!trans) {
1147
		path->search_commit_root = 1;
1148 1149
		path->skip_locking = 1;
	}
1150

1151
	if (time_seq == SEQ_LAST)
1152 1153
		path->skip_locking = 1;

1154 1155 1156 1157 1158 1159
	/*
	 * grab both a lock on the path and a lock on the delayed ref head.
	 * We need both to get a consistent picture of how the refs look
	 * at a specified point in time
	 */
again:
1160 1161
	head = NULL;

1162 1163 1164 1165 1166
	ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 0);
	if (ret < 0)
		goto out;
	BUG_ON(ret == 0);

1167
#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1168
	if (trans && likely(trans->type != __TRANS_DUMMY) &&
1169
	    time_seq != SEQ_LAST) {
1170
#else
1171
	if (trans && time_seq != SEQ_LAST) {
1172
#endif
1173 1174 1175 1176 1177 1178
		/*
		 * look if there are updates for this ref queued and lock the
		 * head
		 */
		delayed_refs = &trans->transaction->delayed_refs;
		spin_lock(&delayed_refs->lock);
1179
		head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
1180 1181
		if (head) {
			if (!mutex_trylock(&head->mutex)) {
1182
				refcount_inc(&head->refs);
1183 1184 1185 1186 1187 1188 1189 1190 1191 1192
				spin_unlock(&delayed_refs->lock);

				btrfs_release_path(path);

				/*
				 * Mutex was contended, block until it's
				 * released and try again
				 */
				mutex_lock(&head->mutex);
				mutex_unlock(&head->mutex);
1193
				btrfs_put_delayed_ref_head(head);
1194 1195
				goto again;
			}
1196
			spin_unlock(&delayed_refs->lock);
1197
			ret = add_delayed_refs(fs_info, head, time_seq,
1198
					       &preftrees, &total_refs, sc);
1199
			mutex_unlock(&head->mutex);
1200
			if (ret)
1201
				goto out;
1202 1203
		} else {
			spin_unlock(&delayed_refs->lock);
1204
		}
1205 1206 1207 1208 1209 1210
	}

	if (path->slots[0]) {
		struct extent_buffer *leaf;
		int slot;

1211
		path->slots[0]--;
1212
		leaf = path->nodes[0];
1213
		slot = path->slots[0];
1214 1215
		btrfs_item_key_to_cpu(leaf, &key, slot);
		if (key.objectid == bytenr &&
1216 1217
		    (key.type == BTRFS_EXTENT_ITEM_KEY ||
		     key.type == BTRFS_METADATA_ITEM_KEY)) {
1218 1219
			ret = add_inline_refs(fs_info, path, bytenr,
					      &info_level, &preftrees,
1220
					      &total_refs, sc);
1221 1222
			if (ret)
				goto out;
1223
			ret = add_keyed_refs(fs_info, path, bytenr, info_level,
1224
					     &preftrees, sc);
1225 1226 1227 1228 1229
			if (ret)
				goto out;
		}
	}

1230
	btrfs_release_path(path);
1231

1232
	ret = add_missing_keys(fs_info, &preftrees, path->skip_locking == 0);
1233 1234 1235
	if (ret)
		goto out;

L
Liu Bo 已提交
1236
	WARN_ON(!RB_EMPTY_ROOT(&preftrees.indirect_missing_keys.root.rb_root));
1237

1238
	ret = resolve_indirect_refs(fs_info, path, time_seq, &preftrees,
1239
				    extent_item_pos, total_refs, sc, ignore_offset);
1240 1241 1242
	if (ret)
		goto out;

L
Liu Bo 已提交
1243
	WARN_ON(!RB_EMPTY_ROOT(&preftrees.indirect.root.rb_root));
1244

1245 1246 1247 1248 1249 1250 1251
	/*
	 * This walks the tree of merged and resolved refs. Tree blocks are
	 * read in as needed. Unique entries are added to the ulist, and
	 * the list of found roots is updated.
	 *
	 * We release the entire tree in one go before returning.
	 */
L
Liu Bo 已提交
1252
	node = rb_first_cached(&preftrees.direct.root);
1253 1254 1255
	while (node) {
		ref = rb_entry(node, struct prelim_ref, rbnode);
		node = rb_next(&ref->rbnode);
1256 1257 1258 1259 1260 1261 1262 1263 1264 1265
		/*
		 * ref->count < 0 can happen here if there are delayed
		 * refs with a node->action of BTRFS_DROP_DELAYED_REF.
		 * prelim_ref_insert() relies on this when merging
		 * identical refs to keep the overall count correct.
		 * prelim_ref_insert() will merge only those refs
		 * which compare identically.  Any refs having
		 * e.g. different offsets would not be merged,
		 * and would retain their original ref->count < 0.
		 */
1266
		if (roots && ref->count && ref->root_id && ref->parent == 0) {
1267 1268
			if (sc && sc->root_objectid &&
			    ref->root_id != sc->root_objectid) {
1269 1270 1271 1272
				ret = BACKREF_FOUND_SHARED;
				goto out;
			}

1273 1274
			/* no parent == root of tree */
			ret = ulist_add(roots, ref->root_id, 0, GFP_NOFS);
1275 1276
			if (ret < 0)
				goto out;
1277 1278
		}
		if (ref->count && ref->parent) {
1279 1280
			if (extent_item_pos && !ref->inode_list &&
			    ref->level == 0) {
1281
				struct extent_buffer *eb;
1282

1283 1284
				eb = read_tree_block(fs_info, ref->parent, 0,
						     ref->level, NULL);
1285 1286 1287 1288
				if (IS_ERR(eb)) {
					ret = PTR_ERR(eb);
					goto out;
				} else if (!extent_buffer_uptodate(eb)) {
1289
					free_extent_buffer(eb);
1290 1291
					ret = -EIO;
					goto out;
1292
				}
1293 1294 1295 1296 1297

				if (!path->skip_locking) {
					btrfs_tree_read_lock(eb);
					btrfs_set_lock_blocking_read(eb);
				}
1298
				ret = find_extent_in_eb(eb, bytenr,
1299
							*extent_item_pos, &eie, ignore_offset);
1300 1301
				if (!path->skip_locking)
					btrfs_tree_read_unlock_blocking(eb);
1302
				free_extent_buffer(eb);
1303 1304 1305
				if (ret < 0)
					goto out;
				ref->inode_list = eie;
1306
			}
1307 1308 1309
			ret = ulist_add_merge_ptr(refs, ref->parent,
						  ref->inode_list,
						  (void **)&eie, GFP_NOFS);
1310 1311
			if (ret < 0)
				goto out;
1312 1313 1314 1315 1316 1317 1318 1319 1320 1321
			if (!ret && extent_item_pos) {
				/*
				 * we've recorded that parent, so we must extend
				 * its inode list here
				 */
				BUG_ON(!eie);
				while (eie->next)
					eie = eie->next;
				eie->next = ref->inode_list;
			}
1322
			eie = NULL;
1323
		}
1324
		cond_resched();
1325 1326 1327 1328
	}

out:
	btrfs_free_path(path);
1329 1330 1331 1332 1333

	prelim_release(&preftrees.direct);
	prelim_release(&preftrees.indirect);
	prelim_release(&preftrees.indirect_missing_keys);

1334 1335
	if (ret < 0)
		free_inode_elem_list(eie);
1336 1337 1338
	return ret;
}

1339 1340 1341 1342 1343 1344 1345 1346 1347 1348
static void free_leaf_list(struct ulist *blocks)
{
	struct ulist_node *node = NULL;
	struct extent_inode_elem *eie;
	struct ulist_iterator uiter;

	ULIST_ITER_INIT(&uiter);
	while ((node = ulist_next(blocks, &uiter))) {
		if (!node->aux)
			continue;
1349
		eie = unode_aux_to_inode_list(node);
1350
		free_inode_elem_list(eie);
1351 1352 1353 1354 1355 1356
		node->aux = 0;
	}

	ulist_free(blocks);
}

1357 1358 1359 1360 1361 1362 1363 1364 1365 1366
/*
 * Finds all leafs with a reference to the specified combination of bytenr and
 * offset. key_list_head will point to a list of corresponding keys (caller must
 * free each list element). The leafs will be stored in the leafs ulist, which
 * must be freed with ulist_free.
 *
 * returns 0 on success, <0 on error
 */
static int btrfs_find_all_leafs(struct btrfs_trans_handle *trans,
				struct btrfs_fs_info *fs_info, u64 bytenr,
1367
				u64 time_seq, struct ulist **leafs,
1368
				const u64 *extent_item_pos, bool ignore_offset)
1369 1370 1371 1372
{
	int ret;

	*leafs = ulist_alloc(GFP_NOFS);
1373
	if (!*leafs)
1374 1375
		return -ENOMEM;

1376
	ret = find_parent_nodes(trans, fs_info, bytenr, time_seq,
1377
				*leafs, NULL, extent_item_pos, NULL, ignore_offset);
1378
	if (ret < 0 && ret != -ENOENT) {
1379
		free_leaf_list(*leafs);
1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398
		return ret;
	}

	return 0;
}

/*
 * walk all backrefs for a given extent to find all roots that reference this
 * extent. Walking a backref means finding all extents that reference this
 * extent and in turn walk the backrefs of those, too. Naturally this is a
 * recursive process, but here it is implemented in an iterative fashion: We
 * find all referencing extents for the extent in question and put them on a
 * list. In turn, we find all referencing extents for those, further appending
 * to the list. The way we iterate the list allows adding more elements after
 * the current while iterating. The process stops when we reach the end of the
 * list. Found roots are added to the roots list.
 *
 * returns 0 on success, < 0 on error.
 */
1399 1400
static int btrfs_find_all_roots_safe(struct btrfs_trans_handle *trans,
				     struct btrfs_fs_info *fs_info, u64 bytenr,
1401 1402
				     u64 time_seq, struct ulist **roots,
				     bool ignore_offset)
1403 1404 1405
{
	struct ulist *tmp;
	struct ulist_node *node = NULL;
J
Jan Schmidt 已提交
1406
	struct ulist_iterator uiter;
1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417
	int ret;

	tmp = ulist_alloc(GFP_NOFS);
	if (!tmp)
		return -ENOMEM;
	*roots = ulist_alloc(GFP_NOFS);
	if (!*roots) {
		ulist_free(tmp);
		return -ENOMEM;
	}

J
Jan Schmidt 已提交
1418
	ULIST_ITER_INIT(&uiter);
1419
	while (1) {
1420
		ret = find_parent_nodes(trans, fs_info, bytenr, time_seq,
1421
					tmp, *roots, NULL, NULL, ignore_offset);
1422 1423 1424 1425 1426
		if (ret < 0 && ret != -ENOENT) {
			ulist_free(tmp);
			ulist_free(*roots);
			return ret;
		}
J
Jan Schmidt 已提交
1427
		node = ulist_next(tmp, &uiter);
1428 1429 1430
		if (!node)
			break;
		bytenr = node->val;
1431
		cond_resched();
1432 1433 1434 1435 1436 1437
	}

	ulist_free(tmp);
	return 0;
}

1438 1439
int btrfs_find_all_roots(struct btrfs_trans_handle *trans,
			 struct btrfs_fs_info *fs_info, u64 bytenr,
1440 1441
			 u64 time_seq, struct ulist **roots,
			 bool ignore_offset)
1442 1443 1444 1445 1446
{
	int ret;

	if (!trans)
		down_read(&fs_info->commit_root_sem);
1447
	ret = btrfs_find_all_roots_safe(trans, fs_info, bytenr,
1448
					time_seq, roots, ignore_offset);
1449 1450 1451 1452 1453
	if (!trans)
		up_read(&fs_info->commit_root_sem);
	return ret;
}

1454 1455 1456 1457 1458 1459 1460 1461 1462
/**
 * btrfs_check_shared - tell us whether an extent is shared
 *
 * btrfs_check_shared uses the backref walking code but will short
 * circuit as soon as it finds a root or inode that doesn't match the
 * one passed in. This provides a significant performance benefit for
 * callers (such as fiemap) which want to know whether the extent is
 * shared but do not need a ref count.
 *
1463 1464 1465
 * This attempts to allocate a transaction in order to account for
 * delayed refs, but continues on even when the alloc fails.
 *
1466 1467
 * Return: 0 if extent is not shared, 1 if it is shared, < 0 on error.
 */
1468
int btrfs_check_shared(struct btrfs_root *root, u64 inum, u64 bytenr)
1469
{
1470 1471
	struct btrfs_fs_info *fs_info = root->fs_info;
	struct btrfs_trans_handle *trans;
1472 1473 1474 1475
	struct ulist *tmp = NULL;
	struct ulist *roots = NULL;
	struct ulist_iterator uiter;
	struct ulist_node *node;
1476
	struct seq_list elem = SEQ_LIST_INIT(elem);
1477
	int ret = 0;
1478
	struct share_check shared = {
1479
		.root_objectid = root->root_key.objectid,
1480 1481 1482
		.inum = inum,
		.share_count = 0,
	};
1483 1484 1485 1486 1487 1488 1489 1490 1491

	tmp = ulist_alloc(GFP_NOFS);
	roots = ulist_alloc(GFP_NOFS);
	if (!tmp || !roots) {
		ulist_free(tmp);
		ulist_free(roots);
		return -ENOMEM;
	}

1492 1493 1494
	trans = btrfs_join_transaction(root);
	if (IS_ERR(trans)) {
		trans = NULL;
1495
		down_read(&fs_info->commit_root_sem);
1496 1497 1498 1499
	} else {
		btrfs_get_tree_mod_seq(fs_info, &elem);
	}

1500 1501 1502
	ULIST_ITER_INIT(&uiter);
	while (1) {
		ret = find_parent_nodes(trans, fs_info, bytenr, elem.seq, tmp,
1503
					roots, NULL, &shared, false);
1504
		if (ret == BACKREF_FOUND_SHARED) {
1505
			/* this is the only condition under which we return 1 */
1506 1507 1508 1509 1510
			ret = 1;
			break;
		}
		if (ret < 0 && ret != -ENOENT)
			break;
1511
		ret = 0;
1512 1513 1514 1515
		node = ulist_next(tmp, &uiter);
		if (!node)
			break;
		bytenr = node->val;
1516
		shared.share_count = 0;
1517 1518
		cond_resched();
	}
1519 1520

	if (trans) {
1521
		btrfs_put_tree_mod_seq(fs_info, &elem);
1522 1523
		btrfs_end_transaction(trans);
	} else {
1524
		up_read(&fs_info->commit_root_sem);
1525
	}
1526 1527 1528 1529 1530
	ulist_free(tmp);
	ulist_free(roots);
	return ret;
}

M
Mark Fasheh 已提交
1531 1532 1533 1534 1535 1536 1537 1538 1539
int btrfs_find_one_extref(struct btrfs_root *root, u64 inode_objectid,
			  u64 start_off, struct btrfs_path *path,
			  struct btrfs_inode_extref **ret_extref,
			  u64 *found_off)
{
	int ret, slot;
	struct btrfs_key key;
	struct btrfs_key found_key;
	struct btrfs_inode_extref *extref;
1540
	const struct extent_buffer *leaf;
M
Mark Fasheh 已提交
1541 1542 1543
	unsigned long ptr;

	key.objectid = inode_objectid;
1544
	key.type = BTRFS_INODE_EXTREF_KEY;
M
Mark Fasheh 已提交
1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583
	key.offset = start_off;

	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
	if (ret < 0)
		return ret;

	while (1) {
		leaf = path->nodes[0];
		slot = path->slots[0];
		if (slot >= btrfs_header_nritems(leaf)) {
			/*
			 * If the item at offset is not found,
			 * btrfs_search_slot will point us to the slot
			 * where it should be inserted. In our case
			 * that will be the slot directly before the
			 * next INODE_REF_KEY_V2 item. In the case
			 * that we're pointing to the last slot in a
			 * leaf, we must move one leaf over.
			 */
			ret = btrfs_next_leaf(root, path);
			if (ret) {
				if (ret >= 1)
					ret = -ENOENT;
				break;
			}
			continue;
		}

		btrfs_item_key_to_cpu(leaf, &found_key, slot);

		/*
		 * Check that we're still looking at an extended ref key for
		 * this particular objectid. If we have different
		 * objectid or type then there are no more to be found
		 * in the tree and we can exit.
		 */
		ret = -ENOENT;
		if (found_key.objectid != inode_objectid)
			break;
1584
		if (found_key.type != BTRFS_INODE_EXTREF_KEY)
M
Mark Fasheh 已提交
1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598
			break;

		ret = 0;
		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
		extref = (struct btrfs_inode_extref *)ptr;
		*ret_extref = extref;
		if (found_off)
			*found_off = found_key.offset;
		break;
	}

	return ret;
}

1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612
/*
 * this iterates to turn a name (from iref/extref) into a full filesystem path.
 * Elements of the path are separated by '/' and the path is guaranteed to be
 * 0-terminated. the path is only given within the current file system.
 * Therefore, it never starts with a '/'. the caller is responsible to provide
 * "size" bytes in "dest". the dest buffer will be filled backwards. finally,
 * the start point of the resulting string is returned. this pointer is within
 * dest, normally.
 * in case the path buffer would overflow, the pointer is decremented further
 * as if output was written to the buffer, though no more output is actually
 * generated. that way, the caller can determine how much space would be
 * required for the path to fit into the buffer. in that case, the returned
 * value will be smaller than dest. callers must check this!
 */
1613 1614 1615 1616
char *btrfs_ref_to_path(struct btrfs_root *fs_root, struct btrfs_path *path,
			u32 name_len, unsigned long name_off,
			struct extent_buffer *eb_in, u64 parent,
			char *dest, u32 size)
1617 1618 1619 1620
{
	int slot;
	u64 next_inum;
	int ret;
1621
	s64 bytes_left = ((s64)size) - 1;
1622 1623
	struct extent_buffer *eb = eb_in;
	struct btrfs_key found_key;
1624
	int leave_spinning = path->leave_spinning;
M
Mark Fasheh 已提交
1625
	struct btrfs_inode_ref *iref;
1626 1627 1628 1629

	if (bytes_left >= 0)
		dest[bytes_left] = '\0';

1630
	path->leave_spinning = 1;
1631
	while (1) {
M
Mark Fasheh 已提交
1632
		bytes_left -= name_len;
1633 1634
		if (bytes_left >= 0)
			read_extent_buffer(eb, dest + bytes_left,
M
Mark Fasheh 已提交
1635
					   name_off, name_len);
1636
		if (eb != eb_in) {
1637 1638
			if (!path->skip_locking)
				btrfs_tree_read_unlock_blocking(eb);
1639
			free_extent_buffer(eb);
1640
		}
1641 1642
		ret = btrfs_find_item(fs_root, path, parent, 0,
				BTRFS_INODE_REF_KEY, &found_key);
1643 1644
		if (ret > 0)
			ret = -ENOENT;
1645 1646
		if (ret)
			break;
M
Mark Fasheh 已提交
1647

1648 1649 1650 1651 1652 1653 1654 1655 1656
		next_inum = found_key.offset;

		/* regular exit ahead */
		if (parent == next_inum)
			break;

		slot = path->slots[0];
		eb = path->nodes[0];
		/* make sure we can use eb after releasing the path */
1657
		if (eb != eb_in) {
1658
			if (!path->skip_locking)
1659
				btrfs_set_lock_blocking_read(eb);
1660 1661
			path->nodes[0] = NULL;
			path->locks[0] = 0;
1662
		}
1663 1664
		btrfs_release_path(path);
		iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);
M
Mark Fasheh 已提交
1665 1666 1667 1668

		name_len = btrfs_inode_ref_name_len(eb, iref);
		name_off = (unsigned long)(iref + 1);

1669 1670 1671 1672 1673 1674 1675
		parent = next_inum;
		--bytes_left;
		if (bytes_left >= 0)
			dest[bytes_left] = '/';
	}

	btrfs_release_path(path);
1676
	path->leave_spinning = leave_spinning;
1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689

	if (ret)
		return ERR_PTR(ret);

	return dest + bytes_left;
}

/*
 * this makes the path point to (logical EXTENT_ITEM *)
 * returns BTRFS_EXTENT_FLAG_DATA for data, BTRFS_EXTENT_FLAG_TREE_BLOCK for
 * tree blocks and <0 on error.
 */
int extent_from_logical(struct btrfs_fs_info *fs_info, u64 logical,
1690 1691
			struct btrfs_path *path, struct btrfs_key *found_key,
			u64 *flags_ret)
1692 1693 1694
{
	int ret;
	u64 flags;
1695
	u64 size = 0;
1696
	u32 item_size;
1697
	const struct extent_buffer *eb;
1698 1699 1700
	struct btrfs_extent_item *ei;
	struct btrfs_key key;

1701 1702 1703 1704
	if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
		key.type = BTRFS_METADATA_ITEM_KEY;
	else
		key.type = BTRFS_EXTENT_ITEM_KEY;
1705 1706 1707 1708 1709 1710 1711
	key.objectid = logical;
	key.offset = (u64)-1;

	ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0);
	if (ret < 0)
		return ret;

1712 1713 1714 1715 1716
	ret = btrfs_previous_extent_item(fs_info->extent_root, path, 0);
	if (ret) {
		if (ret > 0)
			ret = -ENOENT;
		return ret;
1717
	}
1718
	btrfs_item_key_to_cpu(path->nodes[0], found_key, path->slots[0]);
1719
	if (found_key->type == BTRFS_METADATA_ITEM_KEY)
1720
		size = fs_info->nodesize;
1721 1722 1723
	else if (found_key->type == BTRFS_EXTENT_ITEM_KEY)
		size = found_key->offset;

1724
	if (found_key->objectid > logical ||
1725
	    found_key->objectid + size <= logical) {
1726 1727
		btrfs_debug(fs_info,
			"logical %llu is not within any extent", logical);
1728
		return -ENOENT;
J
Jan Schmidt 已提交
1729
	}
1730 1731 1732 1733 1734 1735 1736 1737

	eb = path->nodes[0];
	item_size = btrfs_item_size_nr(eb, path->slots[0]);
	BUG_ON(item_size < sizeof(*ei));

	ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
	flags = btrfs_extent_flags(eb, ei);

1738 1739
	btrfs_debug(fs_info,
		"logical %llu is at position %llu within the extent (%llu EXTENT_ITEM %llu) flags %#llx size %u",
1740 1741
		 logical, logical - found_key->objectid, found_key->objectid,
		 found_key->offset, flags, item_size);
1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752

	WARN_ON(!flags_ret);
	if (flags_ret) {
		if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
			*flags_ret = BTRFS_EXTENT_FLAG_TREE_BLOCK;
		else if (flags & BTRFS_EXTENT_FLAG_DATA)
			*flags_ret = BTRFS_EXTENT_FLAG_DATA;
		else
			BUG_ON(1);
		return 0;
	}
1753 1754 1755 1756 1757 1758 1759 1760

	return -EIO;
}

/*
 * helper function to iterate extent inline refs. ptr must point to a 0 value
 * for the first call and may be modified. it is used to track state.
 * if more refs exist, 0 is returned and the next call to
1761
 * get_extent_inline_ref must pass the modified ptr parameter to get the
1762 1763 1764
 * next ref. after the last ref was processed, 1 is returned.
 * returns <0 on error
 */
1765 1766 1767 1768 1769 1770 1771
static int get_extent_inline_ref(unsigned long *ptr,
				 const struct extent_buffer *eb,
				 const struct btrfs_key *key,
				 const struct btrfs_extent_item *ei,
				 u32 item_size,
				 struct btrfs_extent_inline_ref **out_eiref,
				 int *out_type)
1772 1773 1774 1775 1776 1777 1778 1779 1780
{
	unsigned long end;
	u64 flags;
	struct btrfs_tree_block_info *info;

	if (!*ptr) {
		/* first call */
		flags = btrfs_extent_flags(eb, ei);
		if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
1781 1782 1783 1784 1785 1786 1787 1788 1789 1790
			if (key->type == BTRFS_METADATA_ITEM_KEY) {
				/* a skinny metadata extent */
				*out_eiref =
				     (struct btrfs_extent_inline_ref *)(ei + 1);
			} else {
				WARN_ON(key->type != BTRFS_EXTENT_ITEM_KEY);
				info = (struct btrfs_tree_block_info *)(ei + 1);
				*out_eiref =
				   (struct btrfs_extent_inline_ref *)(info + 1);
			}
1791 1792 1793 1794
		} else {
			*out_eiref = (struct btrfs_extent_inline_ref *)(ei + 1);
		}
		*ptr = (unsigned long)*out_eiref;
1795
		if ((unsigned long)(*ptr) >= (unsigned long)ei + item_size)
1796 1797 1798 1799
			return -ENOENT;
	}

	end = (unsigned long)ei + item_size;
1800
	*out_eiref = (struct btrfs_extent_inline_ref *)(*ptr);
1801 1802 1803
	*out_type = btrfs_get_extent_inline_ref_type(eb, *out_eiref,
						     BTRFS_REF_TYPE_ANY);
	if (*out_type == BTRFS_REF_TYPE_INVALID)
1804
		return -EUCLEAN;
1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816

	*ptr += btrfs_extent_inline_ref_size(*out_type);
	WARN_ON(*ptr > end);
	if (*ptr == end)
		return 1; /* last */

	return 0;
}

/*
 * reads the tree block backref for an extent. tree level and root are returned
 * through out_level and out_root. ptr must point to a 0 value for the first
1817
 * call and may be modified (see get_extent_inline_ref comment).
1818 1819 1820 1821
 * returns 0 if data was provided, 1 if there was no more data to provide or
 * <0 on error.
 */
int tree_backref_for_extent(unsigned long *ptr, struct extent_buffer *eb,
1822 1823
			    struct btrfs_key *key, struct btrfs_extent_item *ei,
			    u32 item_size, u64 *out_root, u8 *out_level)
1824 1825 1826 1827 1828 1829 1830 1831 1832
{
	int ret;
	int type;
	struct btrfs_extent_inline_ref *eiref;

	if (*ptr == (unsigned long)-1)
		return 1;

	while (1) {
1833
		ret = get_extent_inline_ref(ptr, eb, key, ei, item_size,
1834
					      &eiref, &type);
1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847
		if (ret < 0)
			return ret;

		if (type == BTRFS_TREE_BLOCK_REF_KEY ||
		    type == BTRFS_SHARED_BLOCK_REF_KEY)
			break;

		if (ret == 1)
			return 1;
	}

	/* we can treat both ref types equally here */
	*out_root = btrfs_extent_inline_ref_offset(eb, eiref);
1848 1849 1850 1851 1852 1853 1854 1855 1856 1857

	if (key->type == BTRFS_EXTENT_ITEM_KEY) {
		struct btrfs_tree_block_info *info;

		info = (struct btrfs_tree_block_info *)(ei + 1);
		*out_level = btrfs_tree_block_level(eb, info);
	} else {
		ASSERT(key->type == BTRFS_METADATA_ITEM_KEY);
		*out_level = (u8)key->offset;
	}
1858 1859 1860 1861 1862 1863 1864

	if (ret == 1)
		*ptr = (unsigned long)-1;

	return 0;
}

1865 1866 1867 1868
static int iterate_leaf_refs(struct btrfs_fs_info *fs_info,
			     struct extent_inode_elem *inode_list,
			     u64 root, u64 extent_item_objectid,
			     iterate_extent_inodes_t *iterate, void *ctx)
1869
{
1870
	struct extent_inode_elem *eie;
J
Jan Schmidt 已提交
1871 1872
	int ret = 0;

1873
	for (eie = inode_list; eie; eie = eie->next) {
1874 1875 1876 1877
		btrfs_debug(fs_info,
			    "ref for %llu resolved, key (%llu EXTEND_DATA %llu), root %llu",
			    extent_item_objectid, eie->inum,
			    eie->offset, root);
1878
		ret = iterate(eie->inum, eie->offset, root, ctx);
J
Jan Schmidt 已提交
1879
		if (ret) {
1880 1881 1882
			btrfs_debug(fs_info,
				    "stopping iteration for %llu due to ret=%d",
				    extent_item_objectid, ret);
J
Jan Schmidt 已提交
1883 1884
			break;
		}
1885 1886 1887 1888 1889 1890 1891
	}

	return ret;
}

/*
 * calls iterate() for every inode that references the extent identified by
J
Jan Schmidt 已提交
1892
 * the given parameters.
1893 1894 1895
 * when the iterator function returns a non-zero value, iteration stops.
 */
int iterate_extent_inodes(struct btrfs_fs_info *fs_info,
J
Jan Schmidt 已提交
1896
				u64 extent_item_objectid, u64 extent_item_pos,
1897
				int search_commit_root,
1898 1899
				iterate_extent_inodes_t *iterate, void *ctx,
				bool ignore_offset)
1900 1901
{
	int ret;
1902
	struct btrfs_trans_handle *trans = NULL;
1903 1904
	struct ulist *refs = NULL;
	struct ulist *roots = NULL;
J
Jan Schmidt 已提交
1905 1906
	struct ulist_node *ref_node = NULL;
	struct ulist_node *root_node = NULL;
1907
	struct seq_list tree_mod_seq_elem = SEQ_LIST_INIT(tree_mod_seq_elem);
J
Jan Schmidt 已提交
1908 1909
	struct ulist_iterator ref_uiter;
	struct ulist_iterator root_uiter;
1910

1911
	btrfs_debug(fs_info, "resolving all inodes for extent %llu",
J
Jan Schmidt 已提交
1912
			extent_item_objectid);
1913

1914
	if (!search_commit_root) {
1915 1916 1917
		trans = btrfs_join_transaction(fs_info->extent_root);
		if (IS_ERR(trans))
			return PTR_ERR(trans);
1918
		btrfs_get_tree_mod_seq(fs_info, &tree_mod_seq_elem);
1919 1920
	} else {
		down_read(&fs_info->commit_root_sem);
1921
	}
1922

J
Jan Schmidt 已提交
1923
	ret = btrfs_find_all_leafs(trans, fs_info, extent_item_objectid,
1924
				   tree_mod_seq_elem.seq, &refs,
1925
				   &extent_item_pos, ignore_offset);
J
Jan Schmidt 已提交
1926 1927
	if (ret)
		goto out;
1928

J
Jan Schmidt 已提交
1929 1930
	ULIST_ITER_INIT(&ref_uiter);
	while (!ret && (ref_node = ulist_next(refs, &ref_uiter))) {
1931
		ret = btrfs_find_all_roots_safe(trans, fs_info, ref_node->val,
1932 1933
						tree_mod_seq_elem.seq, &roots,
						ignore_offset);
J
Jan Schmidt 已提交
1934 1935
		if (ret)
			break;
J
Jan Schmidt 已提交
1936 1937
		ULIST_ITER_INIT(&root_uiter);
		while (!ret && (root_node = ulist_next(roots, &root_uiter))) {
1938 1939 1940 1941 1942 1943
			btrfs_debug(fs_info,
				    "root %llu references leaf %llu, data list %#llx",
				    root_node->val, ref_node->val,
				    ref_node->aux);
			ret = iterate_leaf_refs(fs_info,
						(struct extent_inode_elem *)
1944 1945 1946 1947
						(uintptr_t)ref_node->aux,
						root_node->val,
						extent_item_objectid,
						iterate, ctx);
J
Jan Schmidt 已提交
1948
		}
1949
		ulist_free(roots);
1950 1951
	}

1952
	free_leaf_list(refs);
J
Jan Schmidt 已提交
1953
out:
1954
	if (!search_commit_root) {
1955
		btrfs_put_tree_mod_seq(fs_info, &tree_mod_seq_elem);
1956
		btrfs_end_transaction(trans);
1957 1958
	} else {
		up_read(&fs_info->commit_root_sem);
1959 1960
	}

1961 1962 1963 1964 1965
	return ret;
}

int iterate_inodes_from_logical(u64 logical, struct btrfs_fs_info *fs_info,
				struct btrfs_path *path,
1966 1967
				iterate_extent_inodes_t *iterate, void *ctx,
				bool ignore_offset)
1968 1969
{
	int ret;
J
Jan Schmidt 已提交
1970
	u64 extent_item_pos;
1971
	u64 flags = 0;
1972
	struct btrfs_key found_key;
1973
	int search_commit_root = path->search_commit_root;
1974

1975
	ret = extent_from_logical(fs_info, logical, path, &found_key, &flags);
J
Jan Schmidt 已提交
1976
	btrfs_release_path(path);
1977 1978
	if (ret < 0)
		return ret;
1979
	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1980
		return -EINVAL;
1981

J
Jan Schmidt 已提交
1982
	extent_item_pos = logical - found_key.objectid;
1983 1984
	ret = iterate_extent_inodes(fs_info, found_key.objectid,
					extent_item_pos, search_commit_root,
1985
					iterate, ctx, ignore_offset);
1986 1987 1988 1989

	return ret;
}

M
Mark Fasheh 已提交
1990 1991 1992 1993 1994 1995
typedef int (iterate_irefs_t)(u64 parent, u32 name_len, unsigned long name_off,
			      struct extent_buffer *eb, void *ctx);

static int iterate_inode_refs(u64 inum, struct btrfs_root *fs_root,
			      struct btrfs_path *path,
			      iterate_irefs_t *iterate, void *ctx)
1996
{
1997
	int ret = 0;
1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008
	int slot;
	u32 cur;
	u32 len;
	u32 name_len;
	u64 parent = 0;
	int found = 0;
	struct extent_buffer *eb;
	struct btrfs_item *item;
	struct btrfs_inode_ref *iref;
	struct btrfs_key found_key;

2009
	while (!ret) {
2010 2011 2012 2013
		ret = btrfs_find_item(fs_root, path, inum,
				parent ? parent + 1 : 0, BTRFS_INODE_REF_KEY,
				&found_key);

2014 2015 2016 2017 2018 2019 2020 2021 2022 2023
		if (ret < 0)
			break;
		if (ret) {
			ret = found ? 0 : -ENOENT;
			break;
		}
		++found;

		parent = found_key.offset;
		slot = path->slots[0];
2024 2025 2026 2027 2028
		eb = btrfs_clone_extent_buffer(path->nodes[0]);
		if (!eb) {
			ret = -ENOMEM;
			break;
		}
2029 2030
		btrfs_release_path(path);

2031
		item = btrfs_item_nr(slot);
2032 2033 2034 2035 2036
		iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);

		for (cur = 0; cur < btrfs_item_size(eb, item); cur += len) {
			name_len = btrfs_inode_ref_name_len(eb, iref);
			/* path must be released before calling iterate()! */
2037 2038
			btrfs_debug(fs_root->fs_info,
				"following ref at offset %u for inode %llu in tree %llu",
2039 2040
				cur, found_key.objectid,
				fs_root->root_key.objectid);
M
Mark Fasheh 已提交
2041 2042
			ret = iterate(parent, name_len,
				      (unsigned long)(iref + 1), eb, ctx);
2043
			if (ret)
2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055
				break;
			len = sizeof(*iref) + name_len;
			iref = (struct btrfs_inode_ref *)((char *)iref + len);
		}
		free_extent_buffer(eb);
	}

	btrfs_release_path(path);

	return ret;
}

M
Mark Fasheh 已提交
2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082
static int iterate_inode_extrefs(u64 inum, struct btrfs_root *fs_root,
				 struct btrfs_path *path,
				 iterate_irefs_t *iterate, void *ctx)
{
	int ret;
	int slot;
	u64 offset = 0;
	u64 parent;
	int found = 0;
	struct extent_buffer *eb;
	struct btrfs_inode_extref *extref;
	u32 item_size;
	u32 cur_offset;
	unsigned long ptr;

	while (1) {
		ret = btrfs_find_one_extref(fs_root, inum, offset, path, &extref,
					    &offset);
		if (ret < 0)
			break;
		if (ret) {
			ret = found ? 0 : -ENOENT;
			break;
		}
		++found;

		slot = path->slots[0];
2083 2084 2085 2086 2087
		eb = btrfs_clone_extent_buffer(path->nodes[0]);
		if (!eb) {
			ret = -ENOMEM;
			break;
		}
M
Mark Fasheh 已提交
2088 2089
		btrfs_release_path(path);

2090 2091
		item_size = btrfs_item_size_nr(eb, slot);
		ptr = btrfs_item_ptr_offset(eb, slot);
M
Mark Fasheh 已提交
2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104
		cur_offset = 0;

		while (cur_offset < item_size) {
			u32 name_len;

			extref = (struct btrfs_inode_extref *)(ptr + cur_offset);
			parent = btrfs_inode_extref_parent(eb, extref);
			name_len = btrfs_inode_extref_name_len(eb, extref);
			ret = iterate(parent, name_len,
				      (unsigned long)&extref->name, eb, ctx);
			if (ret)
				break;

2105
			cur_offset += btrfs_inode_extref_name_len(eb, extref);
M
Mark Fasheh 已提交
2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137
			cur_offset += sizeof(*extref);
		}
		free_extent_buffer(eb);

		offset++;
	}

	btrfs_release_path(path);

	return ret;
}

static int iterate_irefs(u64 inum, struct btrfs_root *fs_root,
			 struct btrfs_path *path, iterate_irefs_t *iterate,
			 void *ctx)
{
	int ret;
	int found_refs = 0;

	ret = iterate_inode_refs(inum, fs_root, path, iterate, ctx);
	if (!ret)
		++found_refs;
	else if (ret != -ENOENT)
		return ret;

	ret = iterate_inode_extrefs(inum, fs_root, path, iterate, ctx);
	if (ret == -ENOENT && found_refs)
		return 0;

	return ret;
}

2138 2139 2140 2141
/*
 * returns 0 if the path could be dumped (probably truncated)
 * returns <0 in case of an error
 */
M
Mark Fasheh 已提交
2142 2143
static int inode_to_path(u64 inum, u32 name_len, unsigned long name_off,
			 struct extent_buffer *eb, void *ctx)
2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154
{
	struct inode_fs_paths *ipath = ctx;
	char *fspath;
	char *fspath_min;
	int i = ipath->fspath->elem_cnt;
	const int s_ptr = sizeof(char *);
	u32 bytes_left;

	bytes_left = ipath->fspath->bytes_left > s_ptr ?
					ipath->fspath->bytes_left - s_ptr : 0;

2155
	fspath_min = (char *)ipath->fspath->val + (i + 1) * s_ptr;
2156 2157
	fspath = btrfs_ref_to_path(ipath->fs_root, ipath->btrfs_path, name_len,
				   name_off, eb, inum, fspath_min, bytes_left);
2158 2159 2160 2161
	if (IS_ERR(fspath))
		return PTR_ERR(fspath);

	if (fspath > fspath_min) {
2162
		ipath->fspath->val[i] = (u64)(unsigned long)fspath;
2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176
		++ipath->fspath->elem_cnt;
		ipath->fspath->bytes_left = fspath - fspath_min;
	} else {
		++ipath->fspath->elem_missed;
		ipath->fspath->bytes_missing += fspath_min - fspath;
		ipath->fspath->bytes_left = 0;
	}

	return 0;
}

/*
 * this dumps all file system paths to the inode into the ipath struct, provided
 * is has been created large enough. each path is zero-terminated and accessed
2177
 * from ipath->fspath->val[i].
2178
 * when it returns, there are ipath->fspath->elem_cnt number of paths available
2179
 * in ipath->fspath->val[]. when the allocated space wasn't sufficient, the
2180
 * number of missed paths is recorded in ipath->fspath->elem_missed, otherwise,
2181 2182 2183 2184 2185 2186
 * it's zero. ipath->fspath->bytes_missing holds the number of bytes that would
 * have been needed to return all paths.
 */
int paths_from_inode(u64 inum, struct inode_fs_paths *ipath)
{
	return iterate_irefs(inum, ipath->fs_root, ipath->btrfs_path,
M
Mark Fasheh 已提交
2187
			     inode_to_path, ipath);
2188 2189 2190 2191 2192 2193 2194 2195
}

struct btrfs_data_container *init_data_container(u32 total_bytes)
{
	struct btrfs_data_container *data;
	size_t alloc_bytes;

	alloc_bytes = max_t(size_t, total_bytes, sizeof(*data));
2196
	data = kvmalloc(alloc_bytes, GFP_KERNEL);
2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227
	if (!data)
		return ERR_PTR(-ENOMEM);

	if (total_bytes >= sizeof(*data)) {
		data->bytes_left = total_bytes - sizeof(*data);
		data->bytes_missing = 0;
	} else {
		data->bytes_missing = sizeof(*data) - total_bytes;
		data->bytes_left = 0;
	}

	data->elem_cnt = 0;
	data->elem_missed = 0;

	return data;
}

/*
 * allocates space to return multiple file system paths for an inode.
 * total_bytes to allocate are passed, note that space usable for actual path
 * information will be total_bytes - sizeof(struct inode_fs_paths).
 * the returned pointer must be freed with free_ipath() in the end.
 */
struct inode_fs_paths *init_ipath(s32 total_bytes, struct btrfs_root *fs_root,
					struct btrfs_path *path)
{
	struct inode_fs_paths *ifp;
	struct btrfs_data_container *fspath;

	fspath = init_data_container(total_bytes);
	if (IS_ERR(fspath))
2228
		return ERR_CAST(fspath);
2229

2230
	ifp = kmalloc(sizeof(*ifp), GFP_KERNEL);
2231
	if (!ifp) {
2232
		kvfree(fspath);
2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244
		return ERR_PTR(-ENOMEM);
	}

	ifp->btrfs_path = path;
	ifp->fspath = fspath;
	ifp->fs_root = fs_root;

	return ifp;
}

void free_ipath(struct inode_fs_paths *ipath)
{
2245 2246
	if (!ipath)
		return;
2247
	kvfree(ipath->fspath);
2248 2249
	kfree(ipath);
}