backref.c 60.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/*
 * Copyright (C) 2011 STRATO.  All rights reserved.
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public
 * License v2 as published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * General Public License for more details.
 *
 * You should have received a copy of the GNU General Public
 * License along with this program; if not, write to the
 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
 * Boston, MA 021110-1307, USA.
 */

19
#include <linux/vmalloc.h>
20
#include <linux/rbtree.h>
21 22 23
#include "ctree.h"
#include "disk-io.h"
#include "backref.h"
24 25 26
#include "ulist.h"
#include "transaction.h"
#include "delayed-ref.h"
27
#include "locking.h"
28

29 30 31
/* Just an arbitrary number so we can be sure this happened */
#define BACKREF_FOUND_SHARED 6

32 33 34 35 36 37
struct extent_inode_elem {
	u64 inum;
	u64 offset;
	struct extent_inode_elem *next;
};

38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296
/*
 * ref_root is used as the root of the ref tree that hold a collection
 * of unique references.
 */
struct ref_root {
	struct rb_root rb_root;

	/*
	 * The unique_refs represents the number of ref_nodes with a positive
	 * count stored in the tree. Even if a ref_node (the count is greater
	 * than one) is added, the unique_refs will only increase by one.
	 */
	unsigned int unique_refs;
};

/* ref_node is used to store a unique reference to the ref tree. */
struct ref_node {
	struct rb_node rb_node;

	/* For NORMAL_REF, otherwise all these fields should be set to 0 */
	u64 root_id;
	u64 object_id;
	u64 offset;

	/* For SHARED_REF, otherwise parent field should be set to 0 */
	u64 parent;

	/* Ref to the ref_mod of btrfs_delayed_ref_node */
	int ref_mod;
};

/* Dynamically allocate and initialize a ref_root */
static struct ref_root *ref_root_alloc(void)
{
	struct ref_root *ref_tree;

	ref_tree = kmalloc(sizeof(*ref_tree), GFP_NOFS);
	if (!ref_tree)
		return NULL;

	ref_tree->rb_root = RB_ROOT;
	ref_tree->unique_refs = 0;

	return ref_tree;
}

/* Free all nodes in the ref tree, and reinit ref_root */
static void ref_root_fini(struct ref_root *ref_tree)
{
	struct ref_node *node;
	struct rb_node *next;

	while ((next = rb_first(&ref_tree->rb_root)) != NULL) {
		node = rb_entry(next, struct ref_node, rb_node);
		rb_erase(next, &ref_tree->rb_root);
		kfree(node);
	}

	ref_tree->rb_root = RB_ROOT;
	ref_tree->unique_refs = 0;
}

static void ref_root_free(struct ref_root *ref_tree)
{
	if (!ref_tree)
		return;

	ref_root_fini(ref_tree);
	kfree(ref_tree);
}

/*
 * Compare ref_node with (root_id, object_id, offset, parent)
 *
 * The function compares two ref_node a and b. It returns an integer less
 * than, equal to, or greater than zero , respectively, to be less than, to
 * equal, or be greater than b.
 */
static int ref_node_cmp(struct ref_node *a, struct ref_node *b)
{
	if (a->root_id < b->root_id)
		return -1;
	else if (a->root_id > b->root_id)
		return 1;

	if (a->object_id < b->object_id)
		return -1;
	else if (a->object_id > b->object_id)
		return 1;

	if (a->offset < b->offset)
		return -1;
	else if (a->offset > b->offset)
		return 1;

	if (a->parent < b->parent)
		return -1;
	else if (a->parent > b->parent)
		return 1;

	return 0;
}

/*
 * Search ref_node with (root_id, object_id, offset, parent) in the tree
 *
 * if found, the pointer of the ref_node will be returned;
 * if not found, NULL will be returned and pos will point to the rb_node for
 * insert, pos_parent will point to pos'parent for insert;
*/
static struct ref_node *__ref_tree_search(struct ref_root *ref_tree,
					  struct rb_node ***pos,
					  struct rb_node **pos_parent,
					  u64 root_id, u64 object_id,
					  u64 offset, u64 parent)
{
	struct ref_node *cur = NULL;
	struct ref_node entry;
	int ret;

	entry.root_id = root_id;
	entry.object_id = object_id;
	entry.offset = offset;
	entry.parent = parent;

	*pos = &ref_tree->rb_root.rb_node;

	while (**pos) {
		*pos_parent = **pos;
		cur = rb_entry(*pos_parent, struct ref_node, rb_node);

		ret = ref_node_cmp(cur, &entry);
		if (ret > 0)
			*pos = &(**pos)->rb_left;
		else if (ret < 0)
			*pos = &(**pos)->rb_right;
		else
			return cur;
	}

	return NULL;
}

/*
 * Insert a ref_node to the ref tree
 * @pos used for specifiy the position to insert
 * @pos_parent for specifiy pos's parent
 *
 * success, return 0;
 * ref_node already exists, return -EEXIST;
*/
static int ref_tree_insert(struct ref_root *ref_tree, struct rb_node **pos,
			   struct rb_node *pos_parent, struct ref_node *ins)
{
	struct rb_node **p = NULL;
	struct rb_node *parent = NULL;
	struct ref_node *cur = NULL;

	if (!pos) {
		cur = __ref_tree_search(ref_tree, &p, &parent, ins->root_id,
					ins->object_id, ins->offset,
					ins->parent);
		if (cur)
			return -EEXIST;
	} else {
		p = pos;
		parent = pos_parent;
	}

	rb_link_node(&ins->rb_node, parent, p);
	rb_insert_color(&ins->rb_node, &ref_tree->rb_root);

	return 0;
}

/* Erase and free ref_node, caller should update ref_root->unique_refs */
static void ref_tree_remove(struct ref_root *ref_tree, struct ref_node *node)
{
	rb_erase(&node->rb_node, &ref_tree->rb_root);
	kfree(node);
}

/*
 * Update ref_root->unique_refs
 *
 * Call __ref_tree_search
 *	1. if ref_node doesn't exist, ref_tree_insert this node, and update
 *	ref_root->unique_refs:
 *		if ref_node->ref_mod > 0, ref_root->unique_refs++;
 *		if ref_node->ref_mod < 0, do noting;
 *
 *	2. if ref_node is found, then get origin ref_node->ref_mod, and update
 *	ref_node->ref_mod.
 *		if ref_node->ref_mod is equal to 0,then call ref_tree_remove
 *
 *		according to origin_mod and new_mod, update ref_root->items
 *		+----------------+--------------+-------------+
 *		|		 |new_count <= 0|new_count > 0|
 *		+----------------+--------------+-------------+
 *		|origin_count < 0|       0      |      1      |
 *		+----------------+--------------+-------------+
 *		|origin_count > 0|      -1      |      0      |
 *		+----------------+--------------+-------------+
 *
 * In case of allocation failure, -ENOMEM is returned and the ref_tree stays
 * unaltered.
 * Success, return 0
 */
static int ref_tree_add(struct ref_root *ref_tree, u64 root_id, u64 object_id,
			u64 offset, u64 parent, int count)
{
	struct ref_node *node = NULL;
	struct rb_node **pos = NULL;
	struct rb_node *pos_parent = NULL;
	int origin_count;
	int ret;

	if (!count)
		return 0;

	node = __ref_tree_search(ref_tree, &pos, &pos_parent, root_id,
				 object_id, offset, parent);
	if (node == NULL) {
		node = kmalloc(sizeof(*node), GFP_NOFS);
		if (!node)
			return -ENOMEM;

		node->root_id = root_id;
		node->object_id = object_id;
		node->offset = offset;
		node->parent = parent;
		node->ref_mod = count;

		ret = ref_tree_insert(ref_tree, pos, pos_parent, node);
		ASSERT(!ret);
		if (ret) {
			kfree(node);
			return ret;
		}

		ref_tree->unique_refs += node->ref_mod > 0 ? 1 : 0;

		return 0;
	}

	origin_count = node->ref_mod;
	node->ref_mod += count;

	if (node->ref_mod > 0)
		ref_tree->unique_refs += origin_count > 0 ? 0 : 1;
	else if (node->ref_mod <= 0)
		ref_tree->unique_refs += origin_count > 0 ? -1 : 0;

	if (!node->ref_mod)
		ref_tree_remove(ref_tree, node);

	return 0;
}

297 298 299 300 301
static int check_extent_in_eb(struct btrfs_key *key, struct extent_buffer *eb,
				struct btrfs_file_extent_item *fi,
				u64 extent_item_pos,
				struct extent_inode_elem **eie)
{
302
	u64 offset = 0;
303 304
	struct extent_inode_elem *e;

305 306 307 308 309
	if (!btrfs_file_extent_compression(eb, fi) &&
	    !btrfs_file_extent_encryption(eb, fi) &&
	    !btrfs_file_extent_other_encoding(eb, fi)) {
		u64 data_offset;
		u64 data_len;
310

311 312 313 314 315 316 317 318
		data_offset = btrfs_file_extent_offset(eb, fi);
		data_len = btrfs_file_extent_num_bytes(eb, fi);

		if (extent_item_pos < data_offset ||
		    extent_item_pos >= data_offset + data_len)
			return 1;
		offset = extent_item_pos - data_offset;
	}
319 320 321 322 323 324 325

	e = kmalloc(sizeof(*e), GFP_NOFS);
	if (!e)
		return -ENOMEM;

	e->next = *eie;
	e->inum = key->objectid;
326
	e->offset = key->offset + offset;
327 328 329 330 331
	*eie = e;

	return 0;
}

332 333 334 335 336 337 338 339 340 341
static void free_inode_elem_list(struct extent_inode_elem *eie)
{
	struct extent_inode_elem *eie_next;

	for (; eie; eie = eie_next) {
		eie_next = eie->next;
		kfree(eie);
	}
}

342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380
static int find_extent_in_eb(struct extent_buffer *eb, u64 wanted_disk_byte,
				u64 extent_item_pos,
				struct extent_inode_elem **eie)
{
	u64 disk_byte;
	struct btrfs_key key;
	struct btrfs_file_extent_item *fi;
	int slot;
	int nritems;
	int extent_type;
	int ret;

	/*
	 * from the shared data ref, we only have the leaf but we need
	 * the key. thus, we must look into all items and see that we
	 * find one (some) with a reference to our extent item.
	 */
	nritems = btrfs_header_nritems(eb);
	for (slot = 0; slot < nritems; ++slot) {
		btrfs_item_key_to_cpu(eb, &key, slot);
		if (key.type != BTRFS_EXTENT_DATA_KEY)
			continue;
		fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
		extent_type = btrfs_file_extent_type(eb, fi);
		if (extent_type == BTRFS_FILE_EXTENT_INLINE)
			continue;
		/* don't skip BTRFS_FILE_EXTENT_PREALLOC, we can handle that */
		disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
		if (disk_byte != wanted_disk_byte)
			continue;

		ret = check_extent_in_eb(&key, eb, fi, extent_item_pos, eie);
		if (ret < 0)
			return ret;
	}

	return 0;
}

381 382 383 384 385 386
/*
 * this structure records all encountered refs on the way up to the root
 */
struct __prelim_ref {
	struct list_head list;
	u64 root_id;
387
	struct btrfs_key key_for_search;
388 389
	int level;
	int count;
390
	struct extent_inode_elem *inode_list;
391 392 393 394
	u64 parent;
	u64 wanted_disk_byte;
};

395 396 397 398 399 400 401
static struct kmem_cache *btrfs_prelim_ref_cache;

int __init btrfs_prelim_ref_init(void)
{
	btrfs_prelim_ref_cache = kmem_cache_create("btrfs_prelim_ref",
					sizeof(struct __prelim_ref),
					0,
402
					SLAB_MEM_SPREAD,
403 404 405 406 407 408 409 410
					NULL);
	if (!btrfs_prelim_ref_cache)
		return -ENOMEM;
	return 0;
}

void btrfs_prelim_ref_exit(void)
{
411
	kmem_cache_destroy(btrfs_prelim_ref_cache);
412 413
}

414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452
/*
 * the rules for all callers of this function are:
 * - obtaining the parent is the goal
 * - if you add a key, you must know that it is a correct key
 * - if you cannot add the parent or a correct key, then we will look into the
 *   block later to set a correct key
 *
 * delayed refs
 * ============
 *        backref type | shared | indirect | shared | indirect
 * information         |   tree |     tree |   data |     data
 * --------------------+--------+----------+--------+----------
 *      parent logical |    y   |     -    |    -   |     -
 *      key to resolve |    -   |     y    |    y   |     y
 *  tree block logical |    -   |     -    |    -   |     -
 *  root for resolving |    y   |     y    |    y   |     y
 *
 * - column 1:       we've the parent -> done
 * - column 2, 3, 4: we use the key to find the parent
 *
 * on disk refs (inline or keyed)
 * ==============================
 *        backref type | shared | indirect | shared | indirect
 * information         |   tree |     tree |   data |     data
 * --------------------+--------+----------+--------+----------
 *      parent logical |    y   |     -    |    y   |     -
 *      key to resolve |    -   |     -    |    -   |     y
 *  tree block logical |    y   |     y    |    y   |     y
 *  root for resolving |    -   |     y    |    y   |     y
 *
 * - column 1, 3: we've the parent -> done
 * - column 2:    we take the first key from the block to find the parent
 *                (see __add_missing_keys)
 * - column 4:    we use the key to find the parent
 *
 * additional information that's available but not required to find the parent
 * block might help in merging entries to gain some speed.
 */

453
static int __add_prelim_ref(struct list_head *head, u64 root_id,
454
			    struct btrfs_key *key, int level,
455 456
			    u64 parent, u64 wanted_disk_byte, int count,
			    gfp_t gfp_mask)
457 458 459
{
	struct __prelim_ref *ref;

460 461 462
	if (root_id == BTRFS_DATA_RELOC_TREE_OBJECTID)
		return 0;

463
	ref = kmem_cache_alloc(btrfs_prelim_ref_cache, gfp_mask);
464 465 466 467
	if (!ref)
		return -ENOMEM;

	ref->root_id = root_id;
468
	if (key) {
469
		ref->key_for_search = *key;
470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492
		/*
		 * We can often find data backrefs with an offset that is too
		 * large (>= LLONG_MAX, maximum allowed file offset) due to
		 * underflows when subtracting a file's offset with the data
		 * offset of its corresponding extent data item. This can
		 * happen for example in the clone ioctl.
		 * So if we detect such case we set the search key's offset to
		 * zero to make sure we will find the matching file extent item
		 * at add_all_parents(), otherwise we will miss it because the
		 * offset taken form the backref is much larger then the offset
		 * of the file extent item. This can make us scan a very large
		 * number of file extent items, but at least it will not make
		 * us miss any.
		 * This is an ugly workaround for a behaviour that should have
		 * never existed, but it does and a fix for the clone ioctl
		 * would touch a lot of places, cause backwards incompatibility
		 * and would not fix the problem for extents cloned with older
		 * kernels.
		 */
		if (ref->key_for_search.type == BTRFS_EXTENT_DATA_KEY &&
		    ref->key_for_search.offset >= LLONG_MAX)
			ref->key_for_search.offset = 0;
	} else {
493
		memset(&ref->key_for_search, 0, sizeof(ref->key_for_search));
494
	}
495

496
	ref->inode_list = NULL;
497 498 499 500 501 502 503 504 505 506
	ref->level = level;
	ref->count = count;
	ref->parent = parent;
	ref->wanted_disk_byte = wanted_disk_byte;
	list_add_tail(&ref->list, head);

	return 0;
}

static int add_all_parents(struct btrfs_root *root, struct btrfs_path *path,
507
			   struct ulist *parents, struct __prelim_ref *ref,
508 509
			   int level, u64 time_seq, const u64 *extent_item_pos,
			   u64 total_refs)
510
{
511 512 513 514
	int ret = 0;
	int slot;
	struct extent_buffer *eb;
	struct btrfs_key key;
515
	struct btrfs_key *key_for_search = &ref->key_for_search;
516
	struct btrfs_file_extent_item *fi;
517
	struct extent_inode_elem *eie = NULL, *old = NULL;
518
	u64 disk_byte;
519 520
	u64 wanted_disk_byte = ref->wanted_disk_byte;
	u64 count = 0;
521

522 523 524
	if (level != 0) {
		eb = path->nodes[level];
		ret = ulist_add(parents, eb->start, 0, GFP_NOFS);
525 526
		if (ret < 0)
			return ret;
527
		return 0;
528
	}
529 530

	/*
531 532 533
	 * We normally enter this function with the path already pointing to
	 * the first item to check. But sometimes, we may enter it with
	 * slot==nritems. In that case, go to the next leaf before we continue.
534
	 */
535 536 537 538 539 540
	if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
		if (time_seq == (u64)-1)
			ret = btrfs_next_leaf(root, path);
		else
			ret = btrfs_next_old_leaf(root, path, time_seq);
	}
541

542
	while (!ret && count < total_refs) {
543
		eb = path->nodes[0];
544 545 546 547 548 549 550 551 552 553 554 555 556
		slot = path->slots[0];

		btrfs_item_key_to_cpu(eb, &key, slot);

		if (key.objectid != key_for_search->objectid ||
		    key.type != BTRFS_EXTENT_DATA_KEY)
			break;

		fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
		disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);

		if (disk_byte == wanted_disk_byte) {
			eie = NULL;
557
			old = NULL;
558
			count++;
559 560 561 562 563 564 565
			if (extent_item_pos) {
				ret = check_extent_in_eb(&key, eb, fi,
						*extent_item_pos,
						&eie);
				if (ret < 0)
					break;
			}
566 567
			if (ret > 0)
				goto next;
568 569
			ret = ulist_add_merge_ptr(parents, eb->start,
						  eie, (void **)&old, GFP_NOFS);
570 571 572 573 574 575
			if (ret < 0)
				break;
			if (!ret && extent_item_pos) {
				while (old->next)
					old = old->next;
				old->next = eie;
576
			}
577
			eie = NULL;
578
		}
579
next:
580 581 582 583
		if (time_seq == (u64)-1)
			ret = btrfs_next_item(root, path);
		else
			ret = btrfs_next_old_item(root, path, time_seq);
584 585
	}

586 587
	if (ret > 0)
		ret = 0;
588 589
	else if (ret < 0)
		free_inode_elem_list(eie);
590
	return ret;
591 592 593 594 595 596 597
}

/*
 * resolve an indirect backref in the form (root_id, key, level)
 * to a logical address
 */
static int __resolve_indirect_ref(struct btrfs_fs_info *fs_info,
598 599 600
				  struct btrfs_path *path, u64 time_seq,
				  struct __prelim_ref *ref,
				  struct ulist *parents,
601
				  const u64 *extent_item_pos, u64 total_refs)
602 603 604 605 606 607 608
{
	struct btrfs_root *root;
	struct btrfs_key root_key;
	struct extent_buffer *eb;
	int ret = 0;
	int root_level;
	int level = ref->level;
609
	int index;
610 611 612 613

	root_key.objectid = ref->root_id;
	root_key.type = BTRFS_ROOT_ITEM_KEY;
	root_key.offset = (u64)-1;
614 615 616

	index = srcu_read_lock(&fs_info->subvol_srcu);

617
	root = btrfs_get_fs_root(fs_info, &root_key, false);
618
	if (IS_ERR(root)) {
619
		srcu_read_unlock(&fs_info->subvol_srcu, index);
620 621 622 623
		ret = PTR_ERR(root);
		goto out;
	}

624
	if (btrfs_is_testing(fs_info)) {
J
Josef Bacik 已提交
625 626 627 628 629
		srcu_read_unlock(&fs_info->subvol_srcu, index);
		ret = -ENOENT;
		goto out;
	}

630 631
	if (path->search_commit_root)
		root_level = btrfs_header_level(root->commit_root);
632 633
	else if (time_seq == (u64)-1)
		root_level = btrfs_header_level(root->node);
634 635
	else
		root_level = btrfs_old_root_level(root, time_seq);
636

637 638
	if (root_level + 1 == level) {
		srcu_read_unlock(&fs_info->subvol_srcu, index);
639
		goto out;
640
	}
641 642

	path->lowest_level = level;
643 644 645 646 647 648
	if (time_seq == (u64)-1)
		ret = btrfs_search_slot(NULL, root, &ref->key_for_search, path,
					0, 0);
	else
		ret = btrfs_search_old_slot(root, &ref->key_for_search, path,
					    time_seq);
649 650 651 652

	/* root node has been locked, we can release @subvol_srcu safely here */
	srcu_read_unlock(&fs_info->subvol_srcu, index);

653 654
	btrfs_debug(fs_info,
		"search slot in root %llu (level %d, ref count %d) returned %d for key (%llu %u %llu)",
655 656 657
		 ref->root_id, level, ref->count, ret,
		 ref->key_for_search.objectid, ref->key_for_search.type,
		 ref->key_for_search.offset);
658 659 660 661
	if (ret < 0)
		goto out;

	eb = path->nodes[level];
662
	while (!eb) {
663
		if (WARN_ON(!level)) {
664 665 666 667 668
			ret = 1;
			goto out;
		}
		level--;
		eb = path->nodes[level];
669 670
	}

671
	ret = add_all_parents(root, path, parents, ref, level, time_seq,
672
			      extent_item_pos, total_refs);
673
out:
674 675
	path->lowest_level = 0;
	btrfs_release_path(path);
676 677 678 679 680 681 682
	return ret;
}

/*
 * resolve all indirect backrefs from the list
 */
static int __resolve_indirect_refs(struct btrfs_fs_info *fs_info,
683
				   struct btrfs_path *path, u64 time_seq,
684
				   struct list_head *head,
685 686
				   const u64 *extent_item_pos, u64 total_refs,
				   u64 root_objectid)
687 688 689 690 691 692 693 694
{
	int err;
	int ret = 0;
	struct __prelim_ref *ref;
	struct __prelim_ref *ref_safe;
	struct __prelim_ref *new_ref;
	struct ulist *parents;
	struct ulist_node *node;
J
Jan Schmidt 已提交
695
	struct ulist_iterator uiter;
696 697 698 699 700 701 702 703 704 705 706 707 708 709 710

	parents = ulist_alloc(GFP_NOFS);
	if (!parents)
		return -ENOMEM;

	/*
	 * _safe allows us to insert directly after the current item without
	 * iterating over the newly inserted items.
	 * we're also allowed to re-assign ref during iteration.
	 */
	list_for_each_entry_safe(ref, ref_safe, head, list) {
		if (ref->parent)	/* already direct */
			continue;
		if (ref->count == 0)
			continue;
711 712 713 714
		if (root_objectid && ref->root_id != root_objectid) {
			ret = BACKREF_FOUND_SHARED;
			goto out;
		}
715
		err = __resolve_indirect_ref(fs_info, path, time_seq, ref,
716 717
					     parents, extent_item_pos,
					     total_refs);
718 719 720 721 722
		/*
		 * we can only tolerate ENOENT,otherwise,we should catch error
		 * and return directly.
		 */
		if (err == -ENOENT) {
723
			continue;
724 725 726 727
		} else if (err) {
			ret = err;
			goto out;
		}
728 729

		/* we put the first parent into the ref at hand */
J
Jan Schmidt 已提交
730 731
		ULIST_ITER_INIT(&uiter);
		node = ulist_next(parents, &uiter);
732
		ref->parent = node ? node->val : 0;
733
		ref->inode_list = node ?
734
			(struct extent_inode_elem *)(uintptr_t)node->aux : NULL;
735 736

		/* additional parents require new refs being added here */
J
Jan Schmidt 已提交
737
		while ((node = ulist_next(parents, &uiter))) {
738 739
			new_ref = kmem_cache_alloc(btrfs_prelim_ref_cache,
						   GFP_NOFS);
740 741
			if (!new_ref) {
				ret = -ENOMEM;
742
				goto out;
743 744 745
			}
			memcpy(new_ref, ref, sizeof(*ref));
			new_ref->parent = node->val;
746 747
			new_ref->inode_list = (struct extent_inode_elem *)
							(uintptr_t)node->aux;
748 749 750 751
			list_add(&new_ref->list, &ref->list);
		}
		ulist_reinit(parents);
	}
752
out:
753 754 755 756
	ulist_free(parents);
	return ret;
}

757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781
static inline int ref_for_same_block(struct __prelim_ref *ref1,
				     struct __prelim_ref *ref2)
{
	if (ref1->level != ref2->level)
		return 0;
	if (ref1->root_id != ref2->root_id)
		return 0;
	if (ref1->key_for_search.type != ref2->key_for_search.type)
		return 0;
	if (ref1->key_for_search.objectid != ref2->key_for_search.objectid)
		return 0;
	if (ref1->key_for_search.offset != ref2->key_for_search.offset)
		return 0;
	if (ref1->parent != ref2->parent)
		return 0;

	return 1;
}

/*
 * read tree blocks and add keys where required.
 */
static int __add_missing_keys(struct btrfs_fs_info *fs_info,
			      struct list_head *head)
{
782
	struct __prelim_ref *ref;
783 784
	struct extent_buffer *eb;

785
	list_for_each_entry(ref, head, list) {
786 787 788 789 790
		if (ref->parent)
			continue;
		if (ref->key_for_search.type)
			continue;
		BUG_ON(!ref->wanted_disk_byte);
791
		eb = read_tree_block(fs_info, ref->wanted_disk_byte, 0);
792 793 794
		if (IS_ERR(eb)) {
			return PTR_ERR(eb);
		} else if (!extent_buffer_uptodate(eb)) {
795 796 797
			free_extent_buffer(eb);
			return -EIO;
		}
798 799 800 801 802 803 804 805 806 807 808
		btrfs_tree_read_lock(eb);
		if (btrfs_header_level(eb) == 0)
			btrfs_item_key_to_cpu(eb, &ref->key_for_search, 0);
		else
			btrfs_node_key_to_cpu(eb, &ref->key_for_search, 0);
		btrfs_tree_read_unlock(eb);
		free_extent_buffer(eb);
	}
	return 0;
}

809
/*
810
 * merge backrefs and adjust counts accordingly
811 812
 *
 * mode = 1: merge identical keys, if key is set
813 814 815 816
 *    FIXME: if we add more keys in __add_prelim_ref, we can merge more here.
 *           additionally, we could even add a key range for the blocks we
 *           looked into to merge even more (-> replace unresolved refs by those
 *           having a parent).
817 818
 * mode = 2: merge identical parents
 */
819
static void __merge_refs(struct list_head *head, int mode)
820
{
821
	struct __prelim_ref *pos1;
822

823 824
	list_for_each_entry(pos1, head, list) {
		struct __prelim_ref *pos2 = pos1, *tmp;
825

826
		list_for_each_entry_safe_continue(pos2, tmp, head, list) {
827
			struct __prelim_ref *ref1 = pos1, *ref2 = pos2;
828
			struct extent_inode_elem *eie;
829

830 831
			if (!ref_for_same_block(ref1, ref2))
				continue;
832
			if (mode == 1) {
833 834
				if (!ref1->parent && ref2->parent)
					swap(ref1, ref2);
835 836 837 838
			} else {
				if (ref1->parent != ref2->parent)
					continue;
			}
839 840 841 842 843 844 845 846 847 848

			eie = ref1->inode_list;
			while (eie && eie->next)
				eie = eie->next;
			if (eie)
				eie->next = ref2->inode_list;
			else
				ref1->inode_list = ref2->inode_list;
			ref1->count += ref2->count;

849
			list_del(&ref2->list);
850
			kmem_cache_free(btrfs_prelim_ref_cache, ref2);
851
			cond_resched();
852 853 854 855 856 857 858 859 860 861
		}

	}
}

/*
 * add all currently queued delayed refs from this head whose seq nr is
 * smaller or equal that seq to the list
 */
static int __add_delayed_refs(struct btrfs_delayed_ref_head *head, u64 seq,
862 863
			      struct list_head *prefs, u64 *total_refs,
			      u64 inum)
864
{
865
	struct btrfs_delayed_ref_node *node;
866
	struct btrfs_delayed_extent_op *extent_op = head->extent_op;
867 868
	struct btrfs_key key;
	struct btrfs_key op_key = {0};
869
	int sgn;
870
	int ret = 0;
871 872

	if (extent_op && extent_op->update_key)
873
		btrfs_disk_key_to_cpu(&op_key, &extent_op->key);
874

875
	spin_lock(&head->lock);
876
	list_for_each_entry(node, &head->ref_list, list) {
877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893
		if (node->seq > seq)
			continue;

		switch (node->action) {
		case BTRFS_ADD_DELAYED_EXTENT:
		case BTRFS_UPDATE_DELAYED_HEAD:
			WARN_ON(1);
			continue;
		case BTRFS_ADD_DELAYED_REF:
			sgn = 1;
			break;
		case BTRFS_DROP_DELAYED_REF:
			sgn = -1;
			break;
		default:
			BUG_ON(1);
		}
894
		*total_refs += (node->ref_mod * sgn);
895 896 897 898 899
		switch (node->type) {
		case BTRFS_TREE_BLOCK_REF_KEY: {
			struct btrfs_delayed_tree_ref *ref;

			ref = btrfs_delayed_node_to_tree_ref(node);
900
			ret = __add_prelim_ref(prefs, ref->root, &op_key,
901
					       ref->level + 1, 0, node->bytenr,
902
					       node->ref_mod * sgn, GFP_ATOMIC);
903 904 905 906 907 908
			break;
		}
		case BTRFS_SHARED_BLOCK_REF_KEY: {
			struct btrfs_delayed_tree_ref *ref;

			ref = btrfs_delayed_node_to_tree_ref(node);
L
Liu Bo 已提交
909
			ret = __add_prelim_ref(prefs, 0, NULL,
910 911
					       ref->level + 1, ref->parent,
					       node->bytenr,
912
					       node->ref_mod * sgn, GFP_ATOMIC);
913 914 915 916 917 918 919 920 921
			break;
		}
		case BTRFS_EXTENT_DATA_REF_KEY: {
			struct btrfs_delayed_data_ref *ref;
			ref = btrfs_delayed_node_to_data_ref(node);

			key.objectid = ref->objectid;
			key.type = BTRFS_EXTENT_DATA_KEY;
			key.offset = ref->offset;
922 923 924 925 926 927 928 929 930 931

			/*
			 * Found a inum that doesn't match our known inum, we
			 * know it's shared.
			 */
			if (inum && ref->objectid != inum) {
				ret = BACKREF_FOUND_SHARED;
				break;
			}

932 933
			ret = __add_prelim_ref(prefs, ref->root, &key, 0, 0,
					       node->bytenr,
934
					       node->ref_mod * sgn, GFP_ATOMIC);
935 936 937 938 939 940
			break;
		}
		case BTRFS_SHARED_DATA_REF_KEY: {
			struct btrfs_delayed_data_ref *ref;

			ref = btrfs_delayed_node_to_data_ref(node);
L
Liu Bo 已提交
941
			ret = __add_prelim_ref(prefs, 0, NULL, 0,
942
					       ref->parent, node->bytenr,
943
					       node->ref_mod * sgn, GFP_ATOMIC);
944 945 946 947 948
			break;
		}
		default:
			WARN_ON(1);
		}
949
		if (ret)
950
			break;
951
	}
952 953
	spin_unlock(&head->lock);
	return ret;
954 955 956 957 958 959 960
}

/*
 * add all inline backrefs for bytenr to the list
 */
static int __add_inline_refs(struct btrfs_fs_info *fs_info,
			     struct btrfs_path *path, u64 bytenr,
961
			     int *info_level, struct list_head *prefs,
962
			     struct ref_root *ref_tree,
963
			     u64 *total_refs, u64 inum)
964
{
965
	int ret = 0;
966 967 968
	int slot;
	struct extent_buffer *leaf;
	struct btrfs_key key;
969
	struct btrfs_key found_key;
970 971 972 973 974 975 976 977 978 979
	unsigned long ptr;
	unsigned long end;
	struct btrfs_extent_item *ei;
	u64 flags;
	u64 item_size;

	/*
	 * enumerate all inline refs
	 */
	leaf = path->nodes[0];
980
	slot = path->slots[0];
981 982 983 984 985 986

	item_size = btrfs_item_size_nr(leaf, slot);
	BUG_ON(item_size < sizeof(*ei));

	ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item);
	flags = btrfs_extent_flags(leaf, ei);
987
	*total_refs += btrfs_extent_refs(leaf, ei);
988
	btrfs_item_key_to_cpu(leaf, &found_key, slot);
989 990 991 992

	ptr = (unsigned long)(ei + 1);
	end = (unsigned long)ei + item_size;

993 994
	if (found_key.type == BTRFS_EXTENT_ITEM_KEY &&
	    flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
995 996 997 998 999 1000
		struct btrfs_tree_block_info *info;

		info = (struct btrfs_tree_block_info *)ptr;
		*info_level = btrfs_tree_block_level(leaf, info);
		ptr += sizeof(struct btrfs_tree_block_info);
		BUG_ON(ptr > end);
1001 1002
	} else if (found_key.type == BTRFS_METADATA_ITEM_KEY) {
		*info_level = found_key.offset;
1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017
	} else {
		BUG_ON(!(flags & BTRFS_EXTENT_FLAG_DATA));
	}

	while (ptr < end) {
		struct btrfs_extent_inline_ref *iref;
		u64 offset;
		int type;

		iref = (struct btrfs_extent_inline_ref *)ptr;
		type = btrfs_extent_inline_ref_type(leaf, iref);
		offset = btrfs_extent_inline_ref_offset(leaf, iref);

		switch (type) {
		case BTRFS_SHARED_BLOCK_REF_KEY:
1018
			ret = __add_prelim_ref(prefs, 0, NULL,
1019
						*info_level + 1, offset,
1020
						bytenr, 1, GFP_NOFS);
1021 1022 1023 1024 1025 1026 1027 1028
			break;
		case BTRFS_SHARED_DATA_REF_KEY: {
			struct btrfs_shared_data_ref *sdref;
			int count;

			sdref = (struct btrfs_shared_data_ref *)(iref + 1);
			count = btrfs_shared_data_ref_count(leaf, sdref);
			ret = __add_prelim_ref(prefs, 0, NULL, 0, offset,
1029
					       bytenr, count, GFP_NOFS);
1030 1031 1032 1033 1034 1035 1036
			if (ref_tree) {
				if (!ret)
					ret = ref_tree_add(ref_tree, 0, 0, 0,
							   bytenr, count);
				if (!ret && ref_tree->unique_refs > 1)
					ret = BACKREF_FOUND_SHARED;
			}
1037 1038 1039
			break;
		}
		case BTRFS_TREE_BLOCK_REF_KEY:
1040 1041
			ret = __add_prelim_ref(prefs, offset, NULL,
					       *info_level + 1, 0,
1042
					       bytenr, 1, GFP_NOFS);
1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054
			break;
		case BTRFS_EXTENT_DATA_REF_KEY: {
			struct btrfs_extent_data_ref *dref;
			int count;
			u64 root;

			dref = (struct btrfs_extent_data_ref *)(&iref->offset);
			count = btrfs_extent_data_ref_count(leaf, dref);
			key.objectid = btrfs_extent_data_ref_objectid(leaf,
								      dref);
			key.type = BTRFS_EXTENT_DATA_KEY;
			key.offset = btrfs_extent_data_ref_offset(leaf, dref);
1055 1056 1057 1058 1059 1060

			if (inum && key.objectid != inum) {
				ret = BACKREF_FOUND_SHARED;
				break;
			}

1061
			root = btrfs_extent_data_ref_root(leaf, dref);
1062
			ret = __add_prelim_ref(prefs, root, &key, 0, 0,
1063
					       bytenr, count, GFP_NOFS);
1064 1065 1066 1067 1068 1069 1070 1071 1072
			if (ref_tree) {
				if (!ret)
					ret = ref_tree_add(ref_tree, root,
							   key.objectid,
							   key.offset, 0,
							   count);
				if (!ret && ref_tree->unique_refs > 1)
					ret = BACKREF_FOUND_SHARED;
			}
1073 1074 1075 1076 1077
			break;
		}
		default:
			WARN_ON(1);
		}
1078 1079
		if (ret)
			return ret;
1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090
		ptr += btrfs_extent_inline_ref_size(type);
	}

	return 0;
}

/*
 * add all non-inline backrefs for bytenr to the list
 */
static int __add_keyed_refs(struct btrfs_fs_info *fs_info,
			    struct btrfs_path *path, u64 bytenr,
1091 1092
			    int info_level, struct list_head *prefs,
			    struct ref_root *ref_tree, u64 inum)
1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121
{
	struct btrfs_root *extent_root = fs_info->extent_root;
	int ret;
	int slot;
	struct extent_buffer *leaf;
	struct btrfs_key key;

	while (1) {
		ret = btrfs_next_item(extent_root, path);
		if (ret < 0)
			break;
		if (ret) {
			ret = 0;
			break;
		}

		slot = path->slots[0];
		leaf = path->nodes[0];
		btrfs_item_key_to_cpu(leaf, &key, slot);

		if (key.objectid != bytenr)
			break;
		if (key.type < BTRFS_TREE_BLOCK_REF_KEY)
			continue;
		if (key.type > BTRFS_SHARED_DATA_REF_KEY)
			break;

		switch (key.type) {
		case BTRFS_SHARED_BLOCK_REF_KEY:
1122
			ret = __add_prelim_ref(prefs, 0, NULL,
1123
						info_level + 1, key.offset,
1124
						bytenr, 1, GFP_NOFS);
1125 1126 1127 1128 1129 1130 1131 1132 1133
			break;
		case BTRFS_SHARED_DATA_REF_KEY: {
			struct btrfs_shared_data_ref *sdref;
			int count;

			sdref = btrfs_item_ptr(leaf, slot,
					      struct btrfs_shared_data_ref);
			count = btrfs_shared_data_ref_count(leaf, sdref);
			ret = __add_prelim_ref(prefs, 0, NULL, 0, key.offset,
1134
						bytenr, count, GFP_NOFS);
1135 1136 1137 1138 1139 1140 1141
			if (ref_tree) {
				if (!ret)
					ret = ref_tree_add(ref_tree, 0, 0, 0,
							   bytenr, count);
				if (!ret && ref_tree->unique_refs > 1)
					ret = BACKREF_FOUND_SHARED;
			}
1142 1143 1144
			break;
		}
		case BTRFS_TREE_BLOCK_REF_KEY:
1145 1146
			ret = __add_prelim_ref(prefs, key.offset, NULL,
					       info_level + 1, 0,
1147
					       bytenr, 1, GFP_NOFS);
1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160
			break;
		case BTRFS_EXTENT_DATA_REF_KEY: {
			struct btrfs_extent_data_ref *dref;
			int count;
			u64 root;

			dref = btrfs_item_ptr(leaf, slot,
					      struct btrfs_extent_data_ref);
			count = btrfs_extent_data_ref_count(leaf, dref);
			key.objectid = btrfs_extent_data_ref_objectid(leaf,
								      dref);
			key.type = BTRFS_EXTENT_DATA_KEY;
			key.offset = btrfs_extent_data_ref_offset(leaf, dref);
1161 1162 1163 1164 1165 1166

			if (inum && key.objectid != inum) {
				ret = BACKREF_FOUND_SHARED;
				break;
			}

1167 1168
			root = btrfs_extent_data_ref_root(leaf, dref);
			ret = __add_prelim_ref(prefs, root, &key, 0, 0,
1169
					       bytenr, count, GFP_NOFS);
1170 1171 1172 1173 1174 1175 1176 1177 1178
			if (ref_tree) {
				if (!ret)
					ret = ref_tree_add(ref_tree, root,
							   key.objectid,
							   key.offset, 0,
							   count);
				if (!ret && ref_tree->unique_refs > 1)
					ret = BACKREF_FOUND_SHARED;
			}
1179 1180 1181 1182 1183
			break;
		}
		default:
			WARN_ON(1);
		}
1184 1185 1186
		if (ret)
			return ret;

1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197
	}

	return ret;
}

/*
 * this adds all existing backrefs (inline backrefs, backrefs and delayed
 * refs) for the given bytenr to the refs list, merges duplicates and resolves
 * indirect refs to their parent bytenr.
 * When roots are found, they're added to the roots list
 *
1198 1199
 * NOTE: This can return values > 0
 *
1200 1201 1202 1203 1204
 * If time_seq is set to (u64)-1, it will not search delayed_refs, and behave
 * much like trans == NULL case, the difference only lies in it will not
 * commit root.
 * The special case is for qgroup to search roots in commit_transaction().
 *
1205 1206 1207
 * If check_shared is set to 1, any extent has more than one ref item, will
 * be returned BACKREF_FOUND_SHARED immediately.
 *
1208 1209 1210 1211
 * FIXME some caching might speed things up
 */
static int find_parent_nodes(struct btrfs_trans_handle *trans,
			     struct btrfs_fs_info *fs_info, u64 bytenr,
1212
			     u64 time_seq, struct ulist *refs,
1213
			     struct ulist *roots, const u64 *extent_item_pos,
1214
			     u64 root_objectid, u64 inum, int check_shared)
1215 1216 1217 1218
{
	struct btrfs_key key;
	struct btrfs_path *path;
	struct btrfs_delayed_ref_root *delayed_refs = NULL;
1219
	struct btrfs_delayed_ref_head *head;
1220 1221 1222 1223 1224
	int info_level = 0;
	int ret;
	struct list_head prefs_delayed;
	struct list_head prefs;
	struct __prelim_ref *ref;
1225
	struct extent_inode_elem *eie = NULL;
1226
	struct ref_root *ref_tree = NULL;
1227
	u64 total_refs = 0;
1228 1229 1230 1231 1232 1233

	INIT_LIST_HEAD(&prefs);
	INIT_LIST_HEAD(&prefs_delayed);

	key.objectid = bytenr;
	key.offset = (u64)-1;
1234 1235 1236 1237
	if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
		key.type = BTRFS_METADATA_ITEM_KEY;
	else
		key.type = BTRFS_EXTENT_ITEM_KEY;
1238 1239 1240 1241

	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;
1242
	if (!trans) {
1243
		path->search_commit_root = 1;
1244 1245
		path->skip_locking = 1;
	}
1246

1247 1248 1249
	if (time_seq == (u64)-1)
		path->skip_locking = 1;

1250 1251 1252 1253 1254 1255
	/*
	 * grab both a lock on the path and a lock on the delayed ref head.
	 * We need both to get a consistent picture of how the refs look
	 * at a specified point in time
	 */
again:
1256 1257
	head = NULL;

1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269
	if (check_shared) {
		if (!ref_tree) {
			ref_tree = ref_root_alloc();
			if (!ref_tree) {
				ret = -ENOMEM;
				goto out;
			}
		} else {
			ref_root_fini(ref_tree);
		}
	}

1270 1271 1272 1273 1274
	ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 0);
	if (ret < 0)
		goto out;
	BUG_ON(ret == 0);

1275
#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1276 1277
	if (trans && likely(trans->type != __TRANS_DUMMY) &&
	    time_seq != (u64)-1) {
1278
#else
1279
	if (trans && time_seq != (u64)-1) {
1280
#endif
1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303
		/*
		 * look if there are updates for this ref queued and lock the
		 * head
		 */
		delayed_refs = &trans->transaction->delayed_refs;
		spin_lock(&delayed_refs->lock);
		head = btrfs_find_delayed_ref_head(trans, bytenr);
		if (head) {
			if (!mutex_trylock(&head->mutex)) {
				atomic_inc(&head->node.refs);
				spin_unlock(&delayed_refs->lock);

				btrfs_release_path(path);

				/*
				 * Mutex was contended, block until it's
				 * released and try again
				 */
				mutex_lock(&head->mutex);
				mutex_unlock(&head->mutex);
				btrfs_put_delayed_ref(&head->node);
				goto again;
			}
1304
			spin_unlock(&delayed_refs->lock);
1305
			ret = __add_delayed_refs(head, time_seq,
1306 1307
						 &prefs_delayed, &total_refs,
						 inum);
1308
			mutex_unlock(&head->mutex);
1309
			if (ret)
1310
				goto out;
1311 1312
		} else {
			spin_unlock(&delayed_refs->lock);
1313
		}
1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343

		if (check_shared && !list_empty(&prefs_delayed)) {
			/*
			 * Add all delay_ref to the ref_tree and check if there
			 * are multiple ref items added.
			 */
			list_for_each_entry(ref, &prefs_delayed, list) {
				if (ref->key_for_search.type) {
					ret = ref_tree_add(ref_tree,
						ref->root_id,
						ref->key_for_search.objectid,
						ref->key_for_search.offset,
						0, ref->count);
					if (ret)
						goto out;
				} else {
					ret = ref_tree_add(ref_tree, 0, 0, 0,
						     ref->parent, ref->count);
					if (ret)
						goto out;
				}

			}

			if (ref_tree->unique_refs > 1) {
				ret = BACKREF_FOUND_SHARED;
				goto out;
			}

		}
1344 1345 1346 1347 1348 1349
	}

	if (path->slots[0]) {
		struct extent_buffer *leaf;
		int slot;

1350
		path->slots[0]--;
1351
		leaf = path->nodes[0];
1352
		slot = path->slots[0];
1353 1354
		btrfs_item_key_to_cpu(leaf, &key, slot);
		if (key.objectid == bytenr &&
1355 1356
		    (key.type == BTRFS_EXTENT_ITEM_KEY ||
		     key.type == BTRFS_METADATA_ITEM_KEY)) {
1357
			ret = __add_inline_refs(fs_info, path, bytenr,
1358
						&info_level, &prefs,
1359 1360
						ref_tree, &total_refs,
						inum);
1361 1362
			if (ret)
				goto out;
1363
			ret = __add_keyed_refs(fs_info, path, bytenr,
1364 1365
					       info_level, &prefs,
					       ref_tree, inum);
1366 1367 1368 1369 1370 1371 1372 1373
			if (ret)
				goto out;
		}
	}
	btrfs_release_path(path);

	list_splice_init(&prefs_delayed, &prefs);

1374 1375 1376 1377
	ret = __add_missing_keys(fs_info, &prefs);
	if (ret)
		goto out;

1378
	__merge_refs(&prefs, 1);
1379

1380
	ret = __resolve_indirect_refs(fs_info, path, time_seq, &prefs,
1381 1382
				      extent_item_pos, total_refs,
				      root_objectid);
1383 1384 1385
	if (ret)
		goto out;

1386
	__merge_refs(&prefs, 2);
1387 1388 1389

	while (!list_empty(&prefs)) {
		ref = list_first_entry(&prefs, struct __prelim_ref, list);
J
Julia Lawall 已提交
1390
		WARN_ON(ref->count < 0);
1391
		if (roots && ref->count && ref->root_id && ref->parent == 0) {
1392 1393 1394 1395 1396
			if (root_objectid && ref->root_id != root_objectid) {
				ret = BACKREF_FOUND_SHARED;
				goto out;
			}

1397 1398
			/* no parent == root of tree */
			ret = ulist_add(roots, ref->root_id, 0, GFP_NOFS);
1399 1400
			if (ret < 0)
				goto out;
1401 1402
		}
		if (ref->count && ref->parent) {
1403 1404
			if (extent_item_pos && !ref->inode_list &&
			    ref->level == 0) {
1405
				struct extent_buffer *eb;
1406

1407
				eb = read_tree_block(fs_info, ref->parent, 0);
1408 1409 1410 1411
				if (IS_ERR(eb)) {
					ret = PTR_ERR(eb);
					goto out;
				} else if (!extent_buffer_uptodate(eb)) {
1412
					free_extent_buffer(eb);
1413 1414
					ret = -EIO;
					goto out;
1415
				}
1416 1417
				btrfs_tree_read_lock(eb);
				btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
1418 1419
				ret = find_extent_in_eb(eb, bytenr,
							*extent_item_pos, &eie);
1420
				btrfs_tree_read_unlock_blocking(eb);
1421
				free_extent_buffer(eb);
1422 1423 1424
				if (ret < 0)
					goto out;
				ref->inode_list = eie;
1425
			}
1426 1427 1428
			ret = ulist_add_merge_ptr(refs, ref->parent,
						  ref->inode_list,
						  (void **)&eie, GFP_NOFS);
1429 1430
			if (ret < 0)
				goto out;
1431 1432 1433 1434 1435 1436 1437 1438 1439 1440
			if (!ret && extent_item_pos) {
				/*
				 * we've recorded that parent, so we must extend
				 * its inode list here
				 */
				BUG_ON(!eie);
				while (eie->next)
					eie = eie->next;
				eie->next = ref->inode_list;
			}
1441
			eie = NULL;
1442
		}
1443
		list_del(&ref->list);
1444
		kmem_cache_free(btrfs_prelim_ref_cache, ref);
1445 1446 1447 1448
	}

out:
	btrfs_free_path(path);
1449
	ref_root_free(ref_tree);
1450 1451 1452
	while (!list_empty(&prefs)) {
		ref = list_first_entry(&prefs, struct __prelim_ref, list);
		list_del(&ref->list);
1453
		kmem_cache_free(btrfs_prelim_ref_cache, ref);
1454 1455 1456 1457 1458
	}
	while (!list_empty(&prefs_delayed)) {
		ref = list_first_entry(&prefs_delayed, struct __prelim_ref,
				       list);
		list_del(&ref->list);
1459
		kmem_cache_free(btrfs_prelim_ref_cache, ref);
1460
	}
1461 1462
	if (ret < 0)
		free_inode_elem_list(eie);
1463 1464 1465
	return ret;
}

1466 1467 1468 1469 1470 1471 1472 1473 1474 1475
static void free_leaf_list(struct ulist *blocks)
{
	struct ulist_node *node = NULL;
	struct extent_inode_elem *eie;
	struct ulist_iterator uiter;

	ULIST_ITER_INIT(&uiter);
	while ((node = ulist_next(blocks, &uiter))) {
		if (!node->aux)
			continue;
1476
		eie = (struct extent_inode_elem *)(uintptr_t)node->aux;
1477
		free_inode_elem_list(eie);
1478 1479 1480 1481 1482 1483
		node->aux = 0;
	}

	ulist_free(blocks);
}

1484 1485 1486 1487 1488 1489 1490 1491 1492 1493
/*
 * Finds all leafs with a reference to the specified combination of bytenr and
 * offset. key_list_head will point to a list of corresponding keys (caller must
 * free each list element). The leafs will be stored in the leafs ulist, which
 * must be freed with ulist_free.
 *
 * returns 0 on success, <0 on error
 */
static int btrfs_find_all_leafs(struct btrfs_trans_handle *trans,
				struct btrfs_fs_info *fs_info, u64 bytenr,
1494
				u64 time_seq, struct ulist **leafs,
1495
				const u64 *extent_item_pos)
1496 1497 1498 1499
{
	int ret;

	*leafs = ulist_alloc(GFP_NOFS);
1500
	if (!*leafs)
1501 1502
		return -ENOMEM;

1503 1504
	ret = find_parent_nodes(trans, fs_info, bytenr, time_seq,
				*leafs, NULL, extent_item_pos, 0, 0, 0);
1505
	if (ret < 0 && ret != -ENOENT) {
1506
		free_leaf_list(*leafs);
1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525
		return ret;
	}

	return 0;
}

/*
 * walk all backrefs for a given extent to find all roots that reference this
 * extent. Walking a backref means finding all extents that reference this
 * extent and in turn walk the backrefs of those, too. Naturally this is a
 * recursive process, but here it is implemented in an iterative fashion: We
 * find all referencing extents for the extent in question and put them on a
 * list. In turn, we find all referencing extents for those, further appending
 * to the list. The way we iterate the list allows adding more elements after
 * the current while iterating. The process stops when we reach the end of the
 * list. Found roots are added to the roots list.
 *
 * returns 0 on success, < 0 on error.
 */
1526 1527 1528
static int __btrfs_find_all_roots(struct btrfs_trans_handle *trans,
				  struct btrfs_fs_info *fs_info, u64 bytenr,
				  u64 time_seq, struct ulist **roots)
1529 1530 1531
{
	struct ulist *tmp;
	struct ulist_node *node = NULL;
J
Jan Schmidt 已提交
1532
	struct ulist_iterator uiter;
1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543
	int ret;

	tmp = ulist_alloc(GFP_NOFS);
	if (!tmp)
		return -ENOMEM;
	*roots = ulist_alloc(GFP_NOFS);
	if (!*roots) {
		ulist_free(tmp);
		return -ENOMEM;
	}

J
Jan Schmidt 已提交
1544
	ULIST_ITER_INIT(&uiter);
1545
	while (1) {
1546 1547
		ret = find_parent_nodes(trans, fs_info, bytenr, time_seq,
					tmp, *roots, NULL, 0, 0, 0);
1548 1549 1550 1551 1552
		if (ret < 0 && ret != -ENOENT) {
			ulist_free(tmp);
			ulist_free(*roots);
			return ret;
		}
J
Jan Schmidt 已提交
1553
		node = ulist_next(tmp, &uiter);
1554 1555 1556
		if (!node)
			break;
		bytenr = node->val;
1557
		cond_resched();
1558 1559 1560 1561 1562 1563
	}

	ulist_free(tmp);
	return 0;
}

1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577
int btrfs_find_all_roots(struct btrfs_trans_handle *trans,
			 struct btrfs_fs_info *fs_info, u64 bytenr,
			 u64 time_seq, struct ulist **roots)
{
	int ret;

	if (!trans)
		down_read(&fs_info->commit_root_sem);
	ret = __btrfs_find_all_roots(trans, fs_info, bytenr, time_seq, roots);
	if (!trans)
		up_read(&fs_info->commit_root_sem);
	return ret;
}

1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590
/**
 * btrfs_check_shared - tell us whether an extent is shared
 *
 * @trans: optional trans handle
 *
 * btrfs_check_shared uses the backref walking code but will short
 * circuit as soon as it finds a root or inode that doesn't match the
 * one passed in. This provides a significant performance benefit for
 * callers (such as fiemap) which want to know whether the extent is
 * shared but do not need a ref count.
 *
 * Return: 0 if extent is not shared, 1 if it is shared, < 0 on error.
 */
1591 1592 1593 1594 1595 1596 1597 1598
int btrfs_check_shared(struct btrfs_trans_handle *trans,
		       struct btrfs_fs_info *fs_info, u64 root_objectid,
		       u64 inum, u64 bytenr)
{
	struct ulist *tmp = NULL;
	struct ulist *roots = NULL;
	struct ulist_iterator uiter;
	struct ulist_node *node;
1599
	struct seq_list elem = SEQ_LIST_INIT(elem);
1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616
	int ret = 0;

	tmp = ulist_alloc(GFP_NOFS);
	roots = ulist_alloc(GFP_NOFS);
	if (!tmp || !roots) {
		ulist_free(tmp);
		ulist_free(roots);
		return -ENOMEM;
	}

	if (trans)
		btrfs_get_tree_mod_seq(fs_info, &elem);
	else
		down_read(&fs_info->commit_root_sem);
	ULIST_ITER_INIT(&uiter);
	while (1) {
		ret = find_parent_nodes(trans, fs_info, bytenr, elem.seq, tmp,
1617
					roots, NULL, root_objectid, inum, 1);
1618
		if (ret == BACKREF_FOUND_SHARED) {
1619
			/* this is the only condition under which we return 1 */
1620 1621 1622 1623 1624
			ret = 1;
			break;
		}
		if (ret < 0 && ret != -ENOENT)
			break;
1625
		ret = 0;
1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640
		node = ulist_next(tmp, &uiter);
		if (!node)
			break;
		bytenr = node->val;
		cond_resched();
	}
	if (trans)
		btrfs_put_tree_mod_seq(fs_info, &elem);
	else
		up_read(&fs_info->commit_root_sem);
	ulist_free(tmp);
	ulist_free(roots);
	return ret;
}

M
Mark Fasheh 已提交
1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653
int btrfs_find_one_extref(struct btrfs_root *root, u64 inode_objectid,
			  u64 start_off, struct btrfs_path *path,
			  struct btrfs_inode_extref **ret_extref,
			  u64 *found_off)
{
	int ret, slot;
	struct btrfs_key key;
	struct btrfs_key found_key;
	struct btrfs_inode_extref *extref;
	struct extent_buffer *leaf;
	unsigned long ptr;

	key.objectid = inode_objectid;
1654
	key.type = BTRFS_INODE_EXTREF_KEY;
M
Mark Fasheh 已提交
1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693
	key.offset = start_off;

	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
	if (ret < 0)
		return ret;

	while (1) {
		leaf = path->nodes[0];
		slot = path->slots[0];
		if (slot >= btrfs_header_nritems(leaf)) {
			/*
			 * If the item at offset is not found,
			 * btrfs_search_slot will point us to the slot
			 * where it should be inserted. In our case
			 * that will be the slot directly before the
			 * next INODE_REF_KEY_V2 item. In the case
			 * that we're pointing to the last slot in a
			 * leaf, we must move one leaf over.
			 */
			ret = btrfs_next_leaf(root, path);
			if (ret) {
				if (ret >= 1)
					ret = -ENOENT;
				break;
			}
			continue;
		}

		btrfs_item_key_to_cpu(leaf, &found_key, slot);

		/*
		 * Check that we're still looking at an extended ref key for
		 * this particular objectid. If we have different
		 * objectid or type then there are no more to be found
		 * in the tree and we can exit.
		 */
		ret = -ENOENT;
		if (found_key.objectid != inode_objectid)
			break;
1694
		if (found_key.type != BTRFS_INODE_EXTREF_KEY)
M
Mark Fasheh 已提交
1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708
			break;

		ret = 0;
		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
		extref = (struct btrfs_inode_extref *)ptr;
		*ret_extref = extref;
		if (found_off)
			*found_off = found_key.offset;
		break;
	}

	return ret;
}

1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722
/*
 * this iterates to turn a name (from iref/extref) into a full filesystem path.
 * Elements of the path are separated by '/' and the path is guaranteed to be
 * 0-terminated. the path is only given within the current file system.
 * Therefore, it never starts with a '/'. the caller is responsible to provide
 * "size" bytes in "dest". the dest buffer will be filled backwards. finally,
 * the start point of the resulting string is returned. this pointer is within
 * dest, normally.
 * in case the path buffer would overflow, the pointer is decremented further
 * as if output was written to the buffer, though no more output is actually
 * generated. that way, the caller can determine how much space would be
 * required for the path to fit into the buffer. in that case, the returned
 * value will be smaller than dest. callers must check this!
 */
1723 1724 1725 1726
char *btrfs_ref_to_path(struct btrfs_root *fs_root, struct btrfs_path *path,
			u32 name_len, unsigned long name_off,
			struct extent_buffer *eb_in, u64 parent,
			char *dest, u32 size)
1727 1728 1729 1730
{
	int slot;
	u64 next_inum;
	int ret;
1731
	s64 bytes_left = ((s64)size) - 1;
1732 1733
	struct extent_buffer *eb = eb_in;
	struct btrfs_key found_key;
1734
	int leave_spinning = path->leave_spinning;
M
Mark Fasheh 已提交
1735
	struct btrfs_inode_ref *iref;
1736 1737 1738 1739

	if (bytes_left >= 0)
		dest[bytes_left] = '\0';

1740
	path->leave_spinning = 1;
1741
	while (1) {
M
Mark Fasheh 已提交
1742
		bytes_left -= name_len;
1743 1744
		if (bytes_left >= 0)
			read_extent_buffer(eb, dest + bytes_left,
M
Mark Fasheh 已提交
1745
					   name_off, name_len);
1746
		if (eb != eb_in) {
1747 1748
			if (!path->skip_locking)
				btrfs_tree_read_unlock_blocking(eb);
1749
			free_extent_buffer(eb);
1750
		}
1751 1752
		ret = btrfs_find_item(fs_root, path, parent, 0,
				BTRFS_INODE_REF_KEY, &found_key);
1753 1754
		if (ret > 0)
			ret = -ENOENT;
1755 1756
		if (ret)
			break;
M
Mark Fasheh 已提交
1757

1758 1759 1760 1761 1762 1763 1764 1765 1766
		next_inum = found_key.offset;

		/* regular exit ahead */
		if (parent == next_inum)
			break;

		slot = path->slots[0];
		eb = path->nodes[0];
		/* make sure we can use eb after releasing the path */
1767
		if (eb != eb_in) {
1768 1769 1770 1771
			if (!path->skip_locking)
				btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
			path->nodes[0] = NULL;
			path->locks[0] = 0;
1772
		}
1773 1774
		btrfs_release_path(path);
		iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);
M
Mark Fasheh 已提交
1775 1776 1777 1778

		name_len = btrfs_inode_ref_name_len(eb, iref);
		name_off = (unsigned long)(iref + 1);

1779 1780 1781 1782 1783 1784 1785
		parent = next_inum;
		--bytes_left;
		if (bytes_left >= 0)
			dest[bytes_left] = '/';
	}

	btrfs_release_path(path);
1786
	path->leave_spinning = leave_spinning;
1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799

	if (ret)
		return ERR_PTR(ret);

	return dest + bytes_left;
}

/*
 * this makes the path point to (logical EXTENT_ITEM *)
 * returns BTRFS_EXTENT_FLAG_DATA for data, BTRFS_EXTENT_FLAG_TREE_BLOCK for
 * tree blocks and <0 on error.
 */
int extent_from_logical(struct btrfs_fs_info *fs_info, u64 logical,
1800 1801
			struct btrfs_path *path, struct btrfs_key *found_key,
			u64 *flags_ret)
1802 1803 1804
{
	int ret;
	u64 flags;
1805
	u64 size = 0;
1806 1807 1808 1809 1810
	u32 item_size;
	struct extent_buffer *eb;
	struct btrfs_extent_item *ei;
	struct btrfs_key key;

1811 1812 1813 1814
	if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
		key.type = BTRFS_METADATA_ITEM_KEY;
	else
		key.type = BTRFS_EXTENT_ITEM_KEY;
1815 1816 1817 1818 1819 1820 1821
	key.objectid = logical;
	key.offset = (u64)-1;

	ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0);
	if (ret < 0)
		return ret;

1822 1823 1824 1825 1826
	ret = btrfs_previous_extent_item(fs_info->extent_root, path, 0);
	if (ret) {
		if (ret > 0)
			ret = -ENOENT;
		return ret;
1827
	}
1828
	btrfs_item_key_to_cpu(path->nodes[0], found_key, path->slots[0]);
1829
	if (found_key->type == BTRFS_METADATA_ITEM_KEY)
1830
		size = fs_info->nodesize;
1831 1832 1833
	else if (found_key->type == BTRFS_EXTENT_ITEM_KEY)
		size = found_key->offset;

1834
	if (found_key->objectid > logical ||
1835
	    found_key->objectid + size <= logical) {
1836 1837
		btrfs_debug(fs_info,
			"logical %llu is not within any extent", logical);
1838
		return -ENOENT;
J
Jan Schmidt 已提交
1839
	}
1840 1841 1842 1843 1844 1845 1846 1847

	eb = path->nodes[0];
	item_size = btrfs_item_size_nr(eb, path->slots[0]);
	BUG_ON(item_size < sizeof(*ei));

	ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
	flags = btrfs_extent_flags(eb, ei);

1848 1849
	btrfs_debug(fs_info,
		"logical %llu is at position %llu within the extent (%llu EXTENT_ITEM %llu) flags %#llx size %u",
1850 1851
		 logical, logical - found_key->objectid, found_key->objectid,
		 found_key->offset, flags, item_size);
1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862

	WARN_ON(!flags_ret);
	if (flags_ret) {
		if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
			*flags_ret = BTRFS_EXTENT_FLAG_TREE_BLOCK;
		else if (flags & BTRFS_EXTENT_FLAG_DATA)
			*flags_ret = BTRFS_EXTENT_FLAG_DATA;
		else
			BUG_ON(1);
		return 0;
	}
1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875

	return -EIO;
}

/*
 * helper function to iterate extent inline refs. ptr must point to a 0 value
 * for the first call and may be modified. it is used to track state.
 * if more refs exist, 0 is returned and the next call to
 * __get_extent_inline_ref must pass the modified ptr parameter to get the
 * next ref. after the last ref was processed, 1 is returned.
 * returns <0 on error
 */
static int __get_extent_inline_ref(unsigned long *ptr, struct extent_buffer *eb,
1876 1877 1878 1879
				   struct btrfs_key *key,
				   struct btrfs_extent_item *ei, u32 item_size,
				   struct btrfs_extent_inline_ref **out_eiref,
				   int *out_type)
1880 1881 1882 1883 1884 1885 1886 1887 1888
{
	unsigned long end;
	u64 flags;
	struct btrfs_tree_block_info *info;

	if (!*ptr) {
		/* first call */
		flags = btrfs_extent_flags(eb, ei);
		if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
1889 1890 1891 1892 1893 1894 1895 1896 1897 1898
			if (key->type == BTRFS_METADATA_ITEM_KEY) {
				/* a skinny metadata extent */
				*out_eiref =
				     (struct btrfs_extent_inline_ref *)(ei + 1);
			} else {
				WARN_ON(key->type != BTRFS_EXTENT_ITEM_KEY);
				info = (struct btrfs_tree_block_info *)(ei + 1);
				*out_eiref =
				   (struct btrfs_extent_inline_ref *)(info + 1);
			}
1899 1900 1901 1902
		} else {
			*out_eiref = (struct btrfs_extent_inline_ref *)(ei + 1);
		}
		*ptr = (unsigned long)*out_eiref;
1903
		if ((unsigned long)(*ptr) >= (unsigned long)ei + item_size)
1904 1905 1906 1907
			return -ENOENT;
	}

	end = (unsigned long)ei + item_size;
1908
	*out_eiref = (struct btrfs_extent_inline_ref *)(*ptr);
1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926
	*out_type = btrfs_extent_inline_ref_type(eb, *out_eiref);

	*ptr += btrfs_extent_inline_ref_size(*out_type);
	WARN_ON(*ptr > end);
	if (*ptr == end)
		return 1; /* last */

	return 0;
}

/*
 * reads the tree block backref for an extent. tree level and root are returned
 * through out_level and out_root. ptr must point to a 0 value for the first
 * call and may be modified (see __get_extent_inline_ref comment).
 * returns 0 if data was provided, 1 if there was no more data to provide or
 * <0 on error.
 */
int tree_backref_for_extent(unsigned long *ptr, struct extent_buffer *eb,
1927 1928
			    struct btrfs_key *key, struct btrfs_extent_item *ei,
			    u32 item_size, u64 *out_root, u8 *out_level)
1929 1930 1931 1932 1933 1934 1935 1936 1937
{
	int ret;
	int type;
	struct btrfs_extent_inline_ref *eiref;

	if (*ptr == (unsigned long)-1)
		return 1;

	while (1) {
1938 1939
		ret = __get_extent_inline_ref(ptr, eb, key, ei, item_size,
					      &eiref, &type);
1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952
		if (ret < 0)
			return ret;

		if (type == BTRFS_TREE_BLOCK_REF_KEY ||
		    type == BTRFS_SHARED_BLOCK_REF_KEY)
			break;

		if (ret == 1)
			return 1;
	}

	/* we can treat both ref types equally here */
	*out_root = btrfs_extent_inline_ref_offset(eb, eiref);
1953 1954 1955 1956 1957 1958 1959 1960 1961 1962

	if (key->type == BTRFS_EXTENT_ITEM_KEY) {
		struct btrfs_tree_block_info *info;

		info = (struct btrfs_tree_block_info *)(ei + 1);
		*out_level = btrfs_tree_block_level(eb, info);
	} else {
		ASSERT(key->type == BTRFS_METADATA_ITEM_KEY);
		*out_level = (u8)key->offset;
	}
1963 1964 1965 1966 1967 1968 1969

	if (ret == 1)
		*ptr = (unsigned long)-1;

	return 0;
}

1970 1971 1972 1973
static int iterate_leaf_refs(struct btrfs_fs_info *fs_info,
			     struct extent_inode_elem *inode_list,
			     u64 root, u64 extent_item_objectid,
			     iterate_extent_inodes_t *iterate, void *ctx)
1974
{
1975
	struct extent_inode_elem *eie;
J
Jan Schmidt 已提交
1976 1977
	int ret = 0;

1978
	for (eie = inode_list; eie; eie = eie->next) {
1979 1980 1981 1982
		btrfs_debug(fs_info,
			    "ref for %llu resolved, key (%llu EXTEND_DATA %llu), root %llu",
			    extent_item_objectid, eie->inum,
			    eie->offset, root);
1983
		ret = iterate(eie->inum, eie->offset, root, ctx);
J
Jan Schmidt 已提交
1984
		if (ret) {
1985 1986 1987
			btrfs_debug(fs_info,
				    "stopping iteration for %llu due to ret=%d",
				    extent_item_objectid, ret);
J
Jan Schmidt 已提交
1988 1989
			break;
		}
1990 1991 1992 1993 1994 1995 1996
	}

	return ret;
}

/*
 * calls iterate() for every inode that references the extent identified by
J
Jan Schmidt 已提交
1997
 * the given parameters.
1998 1999 2000
 * when the iterator function returns a non-zero value, iteration stops.
 */
int iterate_extent_inodes(struct btrfs_fs_info *fs_info,
J
Jan Schmidt 已提交
2001
				u64 extent_item_objectid, u64 extent_item_pos,
2002
				int search_commit_root,
2003 2004 2005
				iterate_extent_inodes_t *iterate, void *ctx)
{
	int ret;
2006
	struct btrfs_trans_handle *trans = NULL;
2007 2008
	struct ulist *refs = NULL;
	struct ulist *roots = NULL;
J
Jan Schmidt 已提交
2009 2010
	struct ulist_node *ref_node = NULL;
	struct ulist_node *root_node = NULL;
2011
	struct seq_list tree_mod_seq_elem = SEQ_LIST_INIT(tree_mod_seq_elem);
J
Jan Schmidt 已提交
2012 2013
	struct ulist_iterator ref_uiter;
	struct ulist_iterator root_uiter;
2014

2015
	btrfs_debug(fs_info, "resolving all inodes for extent %llu",
J
Jan Schmidt 已提交
2016
			extent_item_objectid);
2017

2018
	if (!search_commit_root) {
2019 2020 2021
		trans = btrfs_join_transaction(fs_info->extent_root);
		if (IS_ERR(trans))
			return PTR_ERR(trans);
2022
		btrfs_get_tree_mod_seq(fs_info, &tree_mod_seq_elem);
2023 2024
	} else {
		down_read(&fs_info->commit_root_sem);
2025
	}
2026

J
Jan Schmidt 已提交
2027
	ret = btrfs_find_all_leafs(trans, fs_info, extent_item_objectid,
2028
				   tree_mod_seq_elem.seq, &refs,
2029
				   &extent_item_pos);
J
Jan Schmidt 已提交
2030 2031
	if (ret)
		goto out;
2032

J
Jan Schmidt 已提交
2033 2034
	ULIST_ITER_INIT(&ref_uiter);
	while (!ret && (ref_node = ulist_next(refs, &ref_uiter))) {
2035 2036
		ret = __btrfs_find_all_roots(trans, fs_info, ref_node->val,
					     tree_mod_seq_elem.seq, &roots);
J
Jan Schmidt 已提交
2037 2038
		if (ret)
			break;
J
Jan Schmidt 已提交
2039 2040
		ULIST_ITER_INIT(&root_uiter);
		while (!ret && (root_node = ulist_next(roots, &root_uiter))) {
2041 2042 2043 2044 2045 2046
			btrfs_debug(fs_info,
				    "root %llu references leaf %llu, data list %#llx",
				    root_node->val, ref_node->val,
				    ref_node->aux);
			ret = iterate_leaf_refs(fs_info,
						(struct extent_inode_elem *)
2047 2048 2049 2050
						(uintptr_t)ref_node->aux,
						root_node->val,
						extent_item_objectid,
						iterate, ctx);
J
Jan Schmidt 已提交
2051
		}
2052
		ulist_free(roots);
2053 2054
	}

2055
	free_leaf_list(refs);
J
Jan Schmidt 已提交
2056
out:
2057
	if (!search_commit_root) {
2058
		btrfs_put_tree_mod_seq(fs_info, &tree_mod_seq_elem);
2059
		btrfs_end_transaction(trans, fs_info->extent_root);
2060 2061
	} else {
		up_read(&fs_info->commit_root_sem);
2062 2063
	}

2064 2065 2066 2067 2068 2069 2070 2071
	return ret;
}

int iterate_inodes_from_logical(u64 logical, struct btrfs_fs_info *fs_info,
				struct btrfs_path *path,
				iterate_extent_inodes_t *iterate, void *ctx)
{
	int ret;
J
Jan Schmidt 已提交
2072
	u64 extent_item_pos;
2073
	u64 flags = 0;
2074
	struct btrfs_key found_key;
2075
	int search_commit_root = path->search_commit_root;
2076

2077
	ret = extent_from_logical(fs_info, logical, path, &found_key, &flags);
J
Jan Schmidt 已提交
2078
	btrfs_release_path(path);
2079 2080
	if (ret < 0)
		return ret;
2081
	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
2082
		return -EINVAL;
2083

J
Jan Schmidt 已提交
2084
	extent_item_pos = logical - found_key.objectid;
2085 2086 2087
	ret = iterate_extent_inodes(fs_info, found_key.objectid,
					extent_item_pos, search_commit_root,
					iterate, ctx);
2088 2089 2090 2091

	return ret;
}

M
Mark Fasheh 已提交
2092 2093 2094 2095 2096 2097
typedef int (iterate_irefs_t)(u64 parent, u32 name_len, unsigned long name_off,
			      struct extent_buffer *eb, void *ctx);

static int iterate_inode_refs(u64 inum, struct btrfs_root *fs_root,
			      struct btrfs_path *path,
			      iterate_irefs_t *iterate, void *ctx)
2098
{
2099
	int ret = 0;
2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110
	int slot;
	u32 cur;
	u32 len;
	u32 name_len;
	u64 parent = 0;
	int found = 0;
	struct extent_buffer *eb;
	struct btrfs_item *item;
	struct btrfs_inode_ref *iref;
	struct btrfs_key found_key;

2111
	while (!ret) {
2112 2113 2114 2115
		ret = btrfs_find_item(fs_root, path, inum,
				parent ? parent + 1 : 0, BTRFS_INODE_REF_KEY,
				&found_key);

2116 2117 2118 2119 2120 2121 2122 2123 2124 2125
		if (ret < 0)
			break;
		if (ret) {
			ret = found ? 0 : -ENOENT;
			break;
		}
		++found;

		parent = found_key.offset;
		slot = path->slots[0];
2126 2127 2128 2129 2130 2131
		eb = btrfs_clone_extent_buffer(path->nodes[0]);
		if (!eb) {
			ret = -ENOMEM;
			break;
		}
		extent_buffer_get(eb);
2132 2133
		btrfs_tree_read_lock(eb);
		btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
2134 2135
		btrfs_release_path(path);

2136
		item = btrfs_item_nr(slot);
2137 2138 2139 2140 2141
		iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);

		for (cur = 0; cur < btrfs_item_size(eb, item); cur += len) {
			name_len = btrfs_inode_ref_name_len(eb, iref);
			/* path must be released before calling iterate()! */
2142 2143 2144
			btrfs_debug(fs_root->fs_info,
				"following ref at offset %u for inode %llu in tree %llu",
				cur, found_key.objectid, fs_root->objectid);
M
Mark Fasheh 已提交
2145 2146
			ret = iterate(parent, name_len,
				      (unsigned long)(iref + 1), eb, ctx);
2147
			if (ret)
2148 2149 2150 2151
				break;
			len = sizeof(*iref) + name_len;
			iref = (struct btrfs_inode_ref *)((char *)iref + len);
		}
2152
		btrfs_tree_read_unlock_blocking(eb);
2153 2154 2155 2156 2157 2158 2159 2160
		free_extent_buffer(eb);
	}

	btrfs_release_path(path);

	return ret;
}

M
Mark Fasheh 已提交
2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187
static int iterate_inode_extrefs(u64 inum, struct btrfs_root *fs_root,
				 struct btrfs_path *path,
				 iterate_irefs_t *iterate, void *ctx)
{
	int ret;
	int slot;
	u64 offset = 0;
	u64 parent;
	int found = 0;
	struct extent_buffer *eb;
	struct btrfs_inode_extref *extref;
	u32 item_size;
	u32 cur_offset;
	unsigned long ptr;

	while (1) {
		ret = btrfs_find_one_extref(fs_root, inum, offset, path, &extref,
					    &offset);
		if (ret < 0)
			break;
		if (ret) {
			ret = found ? 0 : -ENOENT;
			break;
		}
		++found;

		slot = path->slots[0];
2188 2189 2190 2191 2192 2193
		eb = btrfs_clone_extent_buffer(path->nodes[0]);
		if (!eb) {
			ret = -ENOMEM;
			break;
		}
		extent_buffer_get(eb);
M
Mark Fasheh 已提交
2194 2195 2196 2197 2198

		btrfs_tree_read_lock(eb);
		btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
		btrfs_release_path(path);

2199 2200
		item_size = btrfs_item_size_nr(eb, slot);
		ptr = btrfs_item_ptr_offset(eb, slot);
M
Mark Fasheh 已提交
2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213
		cur_offset = 0;

		while (cur_offset < item_size) {
			u32 name_len;

			extref = (struct btrfs_inode_extref *)(ptr + cur_offset);
			parent = btrfs_inode_extref_parent(eb, extref);
			name_len = btrfs_inode_extref_name_len(eb, extref);
			ret = iterate(parent, name_len,
				      (unsigned long)&extref->name, eb, ctx);
			if (ret)
				break;

2214
			cur_offset += btrfs_inode_extref_name_len(eb, extref);
M
Mark Fasheh 已提交
2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247
			cur_offset += sizeof(*extref);
		}
		btrfs_tree_read_unlock_blocking(eb);
		free_extent_buffer(eb);

		offset++;
	}

	btrfs_release_path(path);

	return ret;
}

static int iterate_irefs(u64 inum, struct btrfs_root *fs_root,
			 struct btrfs_path *path, iterate_irefs_t *iterate,
			 void *ctx)
{
	int ret;
	int found_refs = 0;

	ret = iterate_inode_refs(inum, fs_root, path, iterate, ctx);
	if (!ret)
		++found_refs;
	else if (ret != -ENOENT)
		return ret;

	ret = iterate_inode_extrefs(inum, fs_root, path, iterate, ctx);
	if (ret == -ENOENT && found_refs)
		return 0;

	return ret;
}

2248 2249 2250 2251
/*
 * returns 0 if the path could be dumped (probably truncated)
 * returns <0 in case of an error
 */
M
Mark Fasheh 已提交
2252 2253
static int inode_to_path(u64 inum, u32 name_len, unsigned long name_off,
			 struct extent_buffer *eb, void *ctx)
2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264
{
	struct inode_fs_paths *ipath = ctx;
	char *fspath;
	char *fspath_min;
	int i = ipath->fspath->elem_cnt;
	const int s_ptr = sizeof(char *);
	u32 bytes_left;

	bytes_left = ipath->fspath->bytes_left > s_ptr ?
					ipath->fspath->bytes_left - s_ptr : 0;

2265
	fspath_min = (char *)ipath->fspath->val + (i + 1) * s_ptr;
2266 2267
	fspath = btrfs_ref_to_path(ipath->fs_root, ipath->btrfs_path, name_len,
				   name_off, eb, inum, fspath_min, bytes_left);
2268 2269 2270 2271
	if (IS_ERR(fspath))
		return PTR_ERR(fspath);

	if (fspath > fspath_min) {
2272
		ipath->fspath->val[i] = (u64)(unsigned long)fspath;
2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286
		++ipath->fspath->elem_cnt;
		ipath->fspath->bytes_left = fspath - fspath_min;
	} else {
		++ipath->fspath->elem_missed;
		ipath->fspath->bytes_missing += fspath_min - fspath;
		ipath->fspath->bytes_left = 0;
	}

	return 0;
}

/*
 * this dumps all file system paths to the inode into the ipath struct, provided
 * is has been created large enough. each path is zero-terminated and accessed
2287
 * from ipath->fspath->val[i].
2288
 * when it returns, there are ipath->fspath->elem_cnt number of paths available
2289
 * in ipath->fspath->val[]. when the allocated space wasn't sufficient, the
2290
 * number of missed paths is recorded in ipath->fspath->elem_missed, otherwise,
2291 2292 2293 2294 2295 2296
 * it's zero. ipath->fspath->bytes_missing holds the number of bytes that would
 * have been needed to return all paths.
 */
int paths_from_inode(u64 inum, struct inode_fs_paths *ipath)
{
	return iterate_irefs(inum, ipath->fs_root, ipath->btrfs_path,
M
Mark Fasheh 已提交
2297
			     inode_to_path, ipath);
2298 2299 2300 2301 2302 2303 2304 2305
}

struct btrfs_data_container *init_data_container(u32 total_bytes)
{
	struct btrfs_data_container *data;
	size_t alloc_bytes;

	alloc_bytes = max_t(size_t, total_bytes, sizeof(*data));
2306
	data = vmalloc(alloc_bytes);
2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341
	if (!data)
		return ERR_PTR(-ENOMEM);

	if (total_bytes >= sizeof(*data)) {
		data->bytes_left = total_bytes - sizeof(*data);
		data->bytes_missing = 0;
	} else {
		data->bytes_missing = sizeof(*data) - total_bytes;
		data->bytes_left = 0;
	}

	data->elem_cnt = 0;
	data->elem_missed = 0;

	return data;
}

/*
 * allocates space to return multiple file system paths for an inode.
 * total_bytes to allocate are passed, note that space usable for actual path
 * information will be total_bytes - sizeof(struct inode_fs_paths).
 * the returned pointer must be freed with free_ipath() in the end.
 */
struct inode_fs_paths *init_ipath(s32 total_bytes, struct btrfs_root *fs_root,
					struct btrfs_path *path)
{
	struct inode_fs_paths *ifp;
	struct btrfs_data_container *fspath;

	fspath = init_data_container(total_bytes);
	if (IS_ERR(fspath))
		return (void *)fspath;

	ifp = kmalloc(sizeof(*ifp), GFP_NOFS);
	if (!ifp) {
2342
		vfree(fspath);
2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354
		return ERR_PTR(-ENOMEM);
	}

	ifp->btrfs_path = path;
	ifp->fspath = fspath;
	ifp->fs_root = fs_root;

	return ifp;
}

void free_ipath(struct inode_fs_paths *ipath)
{
2355 2356
	if (!ipath)
		return;
2357
	vfree(ipath->fspath);
2358 2359
	kfree(ipath);
}