backref.c 47.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/*
 * Copyright (C) 2011 STRATO.  All rights reserved.
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public
 * License v2 as published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * General Public License for more details.
 *
 * You should have received a copy of the GNU General Public
 * License along with this program; if not, write to the
 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
 * Boston, MA 021110-1307, USA.
 */

19
#include <linux/vmalloc.h>
20 21 22
#include "ctree.h"
#include "disk-io.h"
#include "backref.h"
23 24 25
#include "ulist.h"
#include "transaction.h"
#include "delayed-ref.h"
26
#include "locking.h"
27

28 29 30 31 32 33 34 35 36 37 38
struct extent_inode_elem {
	u64 inum;
	u64 offset;
	struct extent_inode_elem *next;
};

static int check_extent_in_eb(struct btrfs_key *key, struct extent_buffer *eb,
				struct btrfs_file_extent_item *fi,
				u64 extent_item_pos,
				struct extent_inode_elem **eie)
{
39
	u64 offset = 0;
40 41
	struct extent_inode_elem *e;

42 43 44 45 46
	if (!btrfs_file_extent_compression(eb, fi) &&
	    !btrfs_file_extent_encryption(eb, fi) &&
	    !btrfs_file_extent_other_encoding(eb, fi)) {
		u64 data_offset;
		u64 data_len;
47

48 49 50 51 52 53 54 55
		data_offset = btrfs_file_extent_offset(eb, fi);
		data_len = btrfs_file_extent_num_bytes(eb, fi);

		if (extent_item_pos < data_offset ||
		    extent_item_pos >= data_offset + data_len)
			return 1;
		offset = extent_item_pos - data_offset;
	}
56 57 58 59 60 61 62

	e = kmalloc(sizeof(*e), GFP_NOFS);
	if (!e)
		return -ENOMEM;

	e->next = *eie;
	e->inum = key->objectid;
63
	e->offset = key->offset + offset;
64 65 66 67 68
	*eie = e;

	return 0;
}

69 70 71 72 73 74 75 76 77 78
static void free_inode_elem_list(struct extent_inode_elem *eie)
{
	struct extent_inode_elem *eie_next;

	for (; eie; eie = eie_next) {
		eie_next = eie->next;
		kfree(eie);
	}
}

79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117
static int find_extent_in_eb(struct extent_buffer *eb, u64 wanted_disk_byte,
				u64 extent_item_pos,
				struct extent_inode_elem **eie)
{
	u64 disk_byte;
	struct btrfs_key key;
	struct btrfs_file_extent_item *fi;
	int slot;
	int nritems;
	int extent_type;
	int ret;

	/*
	 * from the shared data ref, we only have the leaf but we need
	 * the key. thus, we must look into all items and see that we
	 * find one (some) with a reference to our extent item.
	 */
	nritems = btrfs_header_nritems(eb);
	for (slot = 0; slot < nritems; ++slot) {
		btrfs_item_key_to_cpu(eb, &key, slot);
		if (key.type != BTRFS_EXTENT_DATA_KEY)
			continue;
		fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
		extent_type = btrfs_file_extent_type(eb, fi);
		if (extent_type == BTRFS_FILE_EXTENT_INLINE)
			continue;
		/* don't skip BTRFS_FILE_EXTENT_PREALLOC, we can handle that */
		disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
		if (disk_byte != wanted_disk_byte)
			continue;

		ret = check_extent_in_eb(&key, eb, fi, extent_item_pos, eie);
		if (ret < 0)
			return ret;
	}

	return 0;
}

118 119 120 121 122 123
/*
 * this structure records all encountered refs on the way up to the root
 */
struct __prelim_ref {
	struct list_head list;
	u64 root_id;
124
	struct btrfs_key key_for_search;
125 126
	int level;
	int count;
127
	struct extent_inode_elem *inode_list;
128 129 130 131
	u64 parent;
	u64 wanted_disk_byte;
};

132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151
static struct kmem_cache *btrfs_prelim_ref_cache;

int __init btrfs_prelim_ref_init(void)
{
	btrfs_prelim_ref_cache = kmem_cache_create("btrfs_prelim_ref",
					sizeof(struct __prelim_ref),
					0,
					SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
					NULL);
	if (!btrfs_prelim_ref_cache)
		return -ENOMEM;
	return 0;
}

void btrfs_prelim_ref_exit(void)
{
	if (btrfs_prelim_ref_cache)
		kmem_cache_destroy(btrfs_prelim_ref_cache);
}

152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190
/*
 * the rules for all callers of this function are:
 * - obtaining the parent is the goal
 * - if you add a key, you must know that it is a correct key
 * - if you cannot add the parent or a correct key, then we will look into the
 *   block later to set a correct key
 *
 * delayed refs
 * ============
 *        backref type | shared | indirect | shared | indirect
 * information         |   tree |     tree |   data |     data
 * --------------------+--------+----------+--------+----------
 *      parent logical |    y   |     -    |    -   |     -
 *      key to resolve |    -   |     y    |    y   |     y
 *  tree block logical |    -   |     -    |    -   |     -
 *  root for resolving |    y   |     y    |    y   |     y
 *
 * - column 1:       we've the parent -> done
 * - column 2, 3, 4: we use the key to find the parent
 *
 * on disk refs (inline or keyed)
 * ==============================
 *        backref type | shared | indirect | shared | indirect
 * information         |   tree |     tree |   data |     data
 * --------------------+--------+----------+--------+----------
 *      parent logical |    y   |     -    |    y   |     -
 *      key to resolve |    -   |     -    |    -   |     y
 *  tree block logical |    y   |     y    |    y   |     y
 *  root for resolving |    -   |     y    |    y   |     y
 *
 * - column 1, 3: we've the parent -> done
 * - column 2:    we take the first key from the block to find the parent
 *                (see __add_missing_keys)
 * - column 4:    we use the key to find the parent
 *
 * additional information that's available but not required to find the parent
 * block might help in merging entries to gain some speed.
 */

191
static int __add_prelim_ref(struct list_head *head, u64 root_id,
192
			    struct btrfs_key *key, int level,
193 194
			    u64 parent, u64 wanted_disk_byte, int count,
			    gfp_t gfp_mask)
195 196 197
{
	struct __prelim_ref *ref;

198 199 200
	if (root_id == BTRFS_DATA_RELOC_TREE_OBJECTID)
		return 0;

201
	ref = kmem_cache_alloc(btrfs_prelim_ref_cache, gfp_mask);
202 203 204 205 206
	if (!ref)
		return -ENOMEM;

	ref->root_id = root_id;
	if (key)
207
		ref->key_for_search = *key;
208
	else
209
		memset(&ref->key_for_search, 0, sizeof(ref->key_for_search));
210

211
	ref->inode_list = NULL;
212 213 214 215 216 217 218 219 220 221
	ref->level = level;
	ref->count = count;
	ref->parent = parent;
	ref->wanted_disk_byte = wanted_disk_byte;
	list_add_tail(&ref->list, head);

	return 0;
}

static int add_all_parents(struct btrfs_root *root, struct btrfs_path *path,
222
			   struct ulist *parents, struct __prelim_ref *ref,
223 224
			   int level, u64 time_seq, const u64 *extent_item_pos,
			   u64 total_refs)
225
{
226 227 228 229
	int ret = 0;
	int slot;
	struct extent_buffer *eb;
	struct btrfs_key key;
230
	struct btrfs_key *key_for_search = &ref->key_for_search;
231
	struct btrfs_file_extent_item *fi;
232
	struct extent_inode_elem *eie = NULL, *old = NULL;
233
	u64 disk_byte;
234 235
	u64 wanted_disk_byte = ref->wanted_disk_byte;
	u64 count = 0;
236

237 238 239
	if (level != 0) {
		eb = path->nodes[level];
		ret = ulist_add(parents, eb->start, 0, GFP_NOFS);
240 241
		if (ret < 0)
			return ret;
242
		return 0;
243
	}
244 245

	/*
246 247 248
	 * We normally enter this function with the path already pointing to
	 * the first item to check. But sometimes, we may enter it with
	 * slot==nritems. In that case, go to the next leaf before we continue.
249
	 */
250
	if (path->slots[0] >= btrfs_header_nritems(path->nodes[0]))
J
Jan Schmidt 已提交
251
		ret = btrfs_next_old_leaf(root, path, time_seq);
252

253
	while (!ret && count < total_refs) {
254
		eb = path->nodes[0];
255 256 257 258 259 260 261 262 263 264 265 266 267
		slot = path->slots[0];

		btrfs_item_key_to_cpu(eb, &key, slot);

		if (key.objectid != key_for_search->objectid ||
		    key.type != BTRFS_EXTENT_DATA_KEY)
			break;

		fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
		disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);

		if (disk_byte == wanted_disk_byte) {
			eie = NULL;
268
			old = NULL;
269
			count++;
270 271 272 273 274 275 276
			if (extent_item_pos) {
				ret = check_extent_in_eb(&key, eb, fi,
						*extent_item_pos,
						&eie);
				if (ret < 0)
					break;
			}
277 278 279 280 281 282 283 284 285 286 287
			if (ret > 0)
				goto next;
			ret = ulist_add_merge(parents, eb->start,
					      (uintptr_t)eie,
					      (u64 *)&old, GFP_NOFS);
			if (ret < 0)
				break;
			if (!ret && extent_item_pos) {
				while (old->next)
					old = old->next;
				old->next = eie;
288
			}
289
			eie = NULL;
290
		}
291
next:
292
		ret = btrfs_next_old_item(root, path, time_seq);
293 294
	}

295 296
	if (ret > 0)
		ret = 0;
297 298
	else if (ret < 0)
		free_inode_elem_list(eie);
299
	return ret;
300 301 302 303 304 305 306
}

/*
 * resolve an indirect backref in the form (root_id, key, level)
 * to a logical address
 */
static int __resolve_indirect_ref(struct btrfs_fs_info *fs_info,
307 308 309
				  struct btrfs_path *path, u64 time_seq,
				  struct __prelim_ref *ref,
				  struct ulist *parents,
310
				  const u64 *extent_item_pos, u64 total_refs)
311 312 313 314 315 316 317
{
	struct btrfs_root *root;
	struct btrfs_key root_key;
	struct extent_buffer *eb;
	int ret = 0;
	int root_level;
	int level = ref->level;
318
	int index;
319 320 321 322

	root_key.objectid = ref->root_id;
	root_key.type = BTRFS_ROOT_ITEM_KEY;
	root_key.offset = (u64)-1;
323 324 325

	index = srcu_read_lock(&fs_info->subvol_srcu);

326 327
	root = btrfs_read_fs_root_no_name(fs_info, &root_key);
	if (IS_ERR(root)) {
328
		srcu_read_unlock(&fs_info->subvol_srcu, index);
329 330 331 332
		ret = PTR_ERR(root);
		goto out;
	}

333 334 335 336
	if (path->search_commit_root)
		root_level = btrfs_header_level(root->commit_root);
	else
		root_level = btrfs_old_root_level(root, time_seq);
337

338 339
	if (root_level + 1 == level) {
		srcu_read_unlock(&fs_info->subvol_srcu, index);
340
		goto out;
341
	}
342 343

	path->lowest_level = level;
344
	ret = btrfs_search_old_slot(root, &ref->key_for_search, path, time_seq);
345 346 347 348

	/* root node has been locked, we can release @subvol_srcu safely here */
	srcu_read_unlock(&fs_info->subvol_srcu, index);

349 350
	pr_debug("search slot in root %llu (level %d, ref count %d) returned "
		 "%d for key (%llu %u %llu)\n",
351 352 353
		 ref->root_id, level, ref->count, ret,
		 ref->key_for_search.objectid, ref->key_for_search.type,
		 ref->key_for_search.offset);
354 355 356 357
	if (ret < 0)
		goto out;

	eb = path->nodes[level];
358
	while (!eb) {
359
		if (WARN_ON(!level)) {
360 361 362 363 364
			ret = 1;
			goto out;
		}
		level--;
		eb = path->nodes[level];
365 366
	}

367
	ret = add_all_parents(root, path, parents, ref, level, time_seq,
368
			      extent_item_pos, total_refs);
369
out:
370 371
	path->lowest_level = 0;
	btrfs_release_path(path);
372 373 374 375 376 377 378
	return ret;
}

/*
 * resolve all indirect backrefs from the list
 */
static int __resolve_indirect_refs(struct btrfs_fs_info *fs_info,
379
				   struct btrfs_path *path, u64 time_seq,
380
				   struct list_head *head,
381
				   const u64 *extent_item_pos, u64 total_refs)
382 383 384 385 386 387 388 389
{
	int err;
	int ret = 0;
	struct __prelim_ref *ref;
	struct __prelim_ref *ref_safe;
	struct __prelim_ref *new_ref;
	struct ulist *parents;
	struct ulist_node *node;
J
Jan Schmidt 已提交
390
	struct ulist_iterator uiter;
391 392 393 394 395 396 397 398 399 400 401 402 403 404 405

	parents = ulist_alloc(GFP_NOFS);
	if (!parents)
		return -ENOMEM;

	/*
	 * _safe allows us to insert directly after the current item without
	 * iterating over the newly inserted items.
	 * we're also allowed to re-assign ref during iteration.
	 */
	list_for_each_entry_safe(ref, ref_safe, head, list) {
		if (ref->parent)	/* already direct */
			continue;
		if (ref->count == 0)
			continue;
406
		err = __resolve_indirect_ref(fs_info, path, time_seq, ref,
407 408
					     parents, extent_item_pos,
					     total_refs);
409 410 411 412 413
		/*
		 * we can only tolerate ENOENT,otherwise,we should catch error
		 * and return directly.
		 */
		if (err == -ENOENT) {
414
			continue;
415 416 417 418
		} else if (err) {
			ret = err;
			goto out;
		}
419 420

		/* we put the first parent into the ref at hand */
J
Jan Schmidt 已提交
421 422
		ULIST_ITER_INIT(&uiter);
		node = ulist_next(parents, &uiter);
423
		ref->parent = node ? node->val : 0;
424
		ref->inode_list = node ?
425
			(struct extent_inode_elem *)(uintptr_t)node->aux : NULL;
426 427

		/* additional parents require new refs being added here */
J
Jan Schmidt 已提交
428
		while ((node = ulist_next(parents, &uiter))) {
429 430
			new_ref = kmem_cache_alloc(btrfs_prelim_ref_cache,
						   GFP_NOFS);
431 432
			if (!new_ref) {
				ret = -ENOMEM;
433
				goto out;
434 435 436
			}
			memcpy(new_ref, ref, sizeof(*ref));
			new_ref->parent = node->val;
437 438
			new_ref->inode_list = (struct extent_inode_elem *)
							(uintptr_t)node->aux;
439 440 441 442
			list_add(&new_ref->list, &ref->list);
		}
		ulist_reinit(parents);
	}
443
out:
444 445 446 447
	ulist_free(parents);
	return ret;
}

448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486
static inline int ref_for_same_block(struct __prelim_ref *ref1,
				     struct __prelim_ref *ref2)
{
	if (ref1->level != ref2->level)
		return 0;
	if (ref1->root_id != ref2->root_id)
		return 0;
	if (ref1->key_for_search.type != ref2->key_for_search.type)
		return 0;
	if (ref1->key_for_search.objectid != ref2->key_for_search.objectid)
		return 0;
	if (ref1->key_for_search.offset != ref2->key_for_search.offset)
		return 0;
	if (ref1->parent != ref2->parent)
		return 0;

	return 1;
}

/*
 * read tree blocks and add keys where required.
 */
static int __add_missing_keys(struct btrfs_fs_info *fs_info,
			      struct list_head *head)
{
	struct list_head *pos;
	struct extent_buffer *eb;

	list_for_each(pos, head) {
		struct __prelim_ref *ref;
		ref = list_entry(pos, struct __prelim_ref, list);

		if (ref->parent)
			continue;
		if (ref->key_for_search.type)
			continue;
		BUG_ON(!ref->wanted_disk_byte);
		eb = read_tree_block(fs_info->tree_root, ref->wanted_disk_byte,
				     fs_info->tree_root->leafsize, 0);
487 488 489 490
		if (!eb || !extent_buffer_uptodate(eb)) {
			free_extent_buffer(eb);
			return -EIO;
		}
491 492 493 494 495 496 497 498 499 500 501
		btrfs_tree_read_lock(eb);
		if (btrfs_header_level(eb) == 0)
			btrfs_item_key_to_cpu(eb, &ref->key_for_search, 0);
		else
			btrfs_node_key_to_cpu(eb, &ref->key_for_search, 0);
		btrfs_tree_read_unlock(eb);
		free_extent_buffer(eb);
	}
	return 0;
}

502 503 504 505
/*
 * merge two lists of backrefs and adjust counts accordingly
 *
 * mode = 1: merge identical keys, if key is set
506 507 508 509
 *    FIXME: if we add more keys in __add_prelim_ref, we can merge more here.
 *           additionally, we could even add a key range for the blocks we
 *           looked into to merge even more (-> replace unresolved refs by those
 *           having a parent).
510 511
 * mode = 2: merge identical parents
 */
512
static void __merge_refs(struct list_head *head, int mode)
513 514 515 516 517 518 519 520 521 522 523 524 525
{
	struct list_head *pos1;

	list_for_each(pos1, head) {
		struct list_head *n2;
		struct list_head *pos2;
		struct __prelim_ref *ref1;

		ref1 = list_entry(pos1, struct __prelim_ref, list);

		for (pos2 = pos1->next, n2 = pos2->next; pos2 != head;
		     pos2 = n2, n2 = pos2->next) {
			struct __prelim_ref *ref2;
526
			struct __prelim_ref *xchg;
527
			struct extent_inode_elem *eie;
528 529 530 531

			ref2 = list_entry(pos2, struct __prelim_ref, list);

			if (mode == 1) {
532
				if (!ref_for_same_block(ref1, ref2))
533
					continue;
534 535 536 537 538
				if (!ref1->parent && ref2->parent) {
					xchg = ref1;
					ref1 = ref2;
					ref2 = xchg;
				}
539 540 541 542
			} else {
				if (ref1->parent != ref2->parent)
					continue;
			}
543 544 545 546 547 548 549 550 551 552

			eie = ref1->inode_list;
			while (eie && eie->next)
				eie = eie->next;
			if (eie)
				eie->next = ref2->inode_list;
			else
				ref1->inode_list = ref2->inode_list;
			ref1->count += ref2->count;

553
			list_del(&ref2->list);
554
			kmem_cache_free(btrfs_prelim_ref_cache, ref2);
555 556 557 558 559 560 561 562 563 564
		}

	}
}

/*
 * add all currently queued delayed refs from this head whose seq nr is
 * smaller or equal that seq to the list
 */
static int __add_delayed_refs(struct btrfs_delayed_ref_head *head, u64 seq,
565
			      struct list_head *prefs, u64 *total_refs)
566 567 568
{
	struct btrfs_delayed_extent_op *extent_op = head->extent_op;
	struct rb_node *n = &head->node.rb_node;
569 570
	struct btrfs_key key;
	struct btrfs_key op_key = {0};
571
	int sgn;
572
	int ret = 0;
573 574

	if (extent_op && extent_op->update_key)
575
		btrfs_disk_key_to_cpu(&op_key, &extent_op->key);
576

577 578 579
	spin_lock(&head->lock);
	n = rb_first(&head->ref_root);
	while (n) {
580 581 582
		struct btrfs_delayed_ref_node *node;
		node = rb_entry(n, struct btrfs_delayed_ref_node,
				rb_node);
583
		n = rb_next(n);
584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600
		if (node->seq > seq)
			continue;

		switch (node->action) {
		case BTRFS_ADD_DELAYED_EXTENT:
		case BTRFS_UPDATE_DELAYED_HEAD:
			WARN_ON(1);
			continue;
		case BTRFS_ADD_DELAYED_REF:
			sgn = 1;
			break;
		case BTRFS_DROP_DELAYED_REF:
			sgn = -1;
			break;
		default:
			BUG_ON(1);
		}
601
		*total_refs += (node->ref_mod * sgn);
602 603 604 605 606
		switch (node->type) {
		case BTRFS_TREE_BLOCK_REF_KEY: {
			struct btrfs_delayed_tree_ref *ref;

			ref = btrfs_delayed_node_to_tree_ref(node);
607
			ret = __add_prelim_ref(prefs, ref->root, &op_key,
608
					       ref->level + 1, 0, node->bytenr,
609
					       node->ref_mod * sgn, GFP_ATOMIC);
610 611 612 613 614 615
			break;
		}
		case BTRFS_SHARED_BLOCK_REF_KEY: {
			struct btrfs_delayed_tree_ref *ref;

			ref = btrfs_delayed_node_to_tree_ref(node);
616
			ret = __add_prelim_ref(prefs, ref->root, NULL,
617 618
					       ref->level + 1, ref->parent,
					       node->bytenr,
619
					       node->ref_mod * sgn, GFP_ATOMIC);
620 621 622 623 624 625 626 627 628 629 630
			break;
		}
		case BTRFS_EXTENT_DATA_REF_KEY: {
			struct btrfs_delayed_data_ref *ref;
			ref = btrfs_delayed_node_to_data_ref(node);

			key.objectid = ref->objectid;
			key.type = BTRFS_EXTENT_DATA_KEY;
			key.offset = ref->offset;
			ret = __add_prelim_ref(prefs, ref->root, &key, 0, 0,
					       node->bytenr,
631
					       node->ref_mod * sgn, GFP_ATOMIC);
632 633 634 635 636 637 638 639 640 641 642 643
			break;
		}
		case BTRFS_SHARED_DATA_REF_KEY: {
			struct btrfs_delayed_data_ref *ref;

			ref = btrfs_delayed_node_to_data_ref(node);

			key.objectid = ref->objectid;
			key.type = BTRFS_EXTENT_DATA_KEY;
			key.offset = ref->offset;
			ret = __add_prelim_ref(prefs, ref->root, &key, 0,
					       ref->parent, node->bytenr,
644
					       node->ref_mod * sgn, GFP_ATOMIC);
645 646 647 648 649
			break;
		}
		default:
			WARN_ON(1);
		}
650
		if (ret)
651
			break;
652
	}
653 654
	spin_unlock(&head->lock);
	return ret;
655 656 657 658 659 660 661
}

/*
 * add all inline backrefs for bytenr to the list
 */
static int __add_inline_refs(struct btrfs_fs_info *fs_info,
			     struct btrfs_path *path, u64 bytenr,
662 663
			     int *info_level, struct list_head *prefs,
			     u64 *total_refs)
664
{
665
	int ret = 0;
666 667 668
	int slot;
	struct extent_buffer *leaf;
	struct btrfs_key key;
669
	struct btrfs_key found_key;
670 671 672 673 674 675 676 677 678 679
	unsigned long ptr;
	unsigned long end;
	struct btrfs_extent_item *ei;
	u64 flags;
	u64 item_size;

	/*
	 * enumerate all inline refs
	 */
	leaf = path->nodes[0];
680
	slot = path->slots[0];
681 682 683 684 685 686

	item_size = btrfs_item_size_nr(leaf, slot);
	BUG_ON(item_size < sizeof(*ei));

	ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item);
	flags = btrfs_extent_flags(leaf, ei);
687
	*total_refs += btrfs_extent_refs(leaf, ei);
688
	btrfs_item_key_to_cpu(leaf, &found_key, slot);
689 690 691 692

	ptr = (unsigned long)(ei + 1);
	end = (unsigned long)ei + item_size;

693 694
	if (found_key.type == BTRFS_EXTENT_ITEM_KEY &&
	    flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
695 696 697 698 699 700
		struct btrfs_tree_block_info *info;

		info = (struct btrfs_tree_block_info *)ptr;
		*info_level = btrfs_tree_block_level(leaf, info);
		ptr += sizeof(struct btrfs_tree_block_info);
		BUG_ON(ptr > end);
701 702
	} else if (found_key.type == BTRFS_METADATA_ITEM_KEY) {
		*info_level = found_key.offset;
703 704 705 706 707 708 709 710 711 712 713 714 715 716 717
	} else {
		BUG_ON(!(flags & BTRFS_EXTENT_FLAG_DATA));
	}

	while (ptr < end) {
		struct btrfs_extent_inline_ref *iref;
		u64 offset;
		int type;

		iref = (struct btrfs_extent_inline_ref *)ptr;
		type = btrfs_extent_inline_ref_type(leaf, iref);
		offset = btrfs_extent_inline_ref_offset(leaf, iref);

		switch (type) {
		case BTRFS_SHARED_BLOCK_REF_KEY:
718
			ret = __add_prelim_ref(prefs, 0, NULL,
719
						*info_level + 1, offset,
720
						bytenr, 1, GFP_NOFS);
721 722 723 724 725 726 727 728
			break;
		case BTRFS_SHARED_DATA_REF_KEY: {
			struct btrfs_shared_data_ref *sdref;
			int count;

			sdref = (struct btrfs_shared_data_ref *)(iref + 1);
			count = btrfs_shared_data_ref_count(leaf, sdref);
			ret = __add_prelim_ref(prefs, 0, NULL, 0, offset,
729
					       bytenr, count, GFP_NOFS);
730 731 732
			break;
		}
		case BTRFS_TREE_BLOCK_REF_KEY:
733 734
			ret = __add_prelim_ref(prefs, offset, NULL,
					       *info_level + 1, 0,
735
					       bytenr, 1, GFP_NOFS);
736 737 738 739 740 741 742 743 744 745 746 747 748
			break;
		case BTRFS_EXTENT_DATA_REF_KEY: {
			struct btrfs_extent_data_ref *dref;
			int count;
			u64 root;

			dref = (struct btrfs_extent_data_ref *)(&iref->offset);
			count = btrfs_extent_data_ref_count(leaf, dref);
			key.objectid = btrfs_extent_data_ref_objectid(leaf,
								      dref);
			key.type = BTRFS_EXTENT_DATA_KEY;
			key.offset = btrfs_extent_data_ref_offset(leaf, dref);
			root = btrfs_extent_data_ref_root(leaf, dref);
749
			ret = __add_prelim_ref(prefs, root, &key, 0, 0,
750
					       bytenr, count, GFP_NOFS);
751 752 753 754 755
			break;
		}
		default:
			WARN_ON(1);
		}
756 757
		if (ret)
			return ret;
758 759 760 761 762 763 764 765 766 767 768
		ptr += btrfs_extent_inline_ref_size(type);
	}

	return 0;
}

/*
 * add all non-inline backrefs for bytenr to the list
 */
static int __add_keyed_refs(struct btrfs_fs_info *fs_info,
			    struct btrfs_path *path, u64 bytenr,
769
			    int info_level, struct list_head *prefs)
770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798
{
	struct btrfs_root *extent_root = fs_info->extent_root;
	int ret;
	int slot;
	struct extent_buffer *leaf;
	struct btrfs_key key;

	while (1) {
		ret = btrfs_next_item(extent_root, path);
		if (ret < 0)
			break;
		if (ret) {
			ret = 0;
			break;
		}

		slot = path->slots[0];
		leaf = path->nodes[0];
		btrfs_item_key_to_cpu(leaf, &key, slot);

		if (key.objectid != bytenr)
			break;
		if (key.type < BTRFS_TREE_BLOCK_REF_KEY)
			continue;
		if (key.type > BTRFS_SHARED_DATA_REF_KEY)
			break;

		switch (key.type) {
		case BTRFS_SHARED_BLOCK_REF_KEY:
799
			ret = __add_prelim_ref(prefs, 0, NULL,
800
						info_level + 1, key.offset,
801
						bytenr, 1, GFP_NOFS);
802 803 804 805 806 807 808 809 810
			break;
		case BTRFS_SHARED_DATA_REF_KEY: {
			struct btrfs_shared_data_ref *sdref;
			int count;

			sdref = btrfs_item_ptr(leaf, slot,
					      struct btrfs_shared_data_ref);
			count = btrfs_shared_data_ref_count(leaf, sdref);
			ret = __add_prelim_ref(prefs, 0, NULL, 0, key.offset,
811
						bytenr, count, GFP_NOFS);
812 813 814
			break;
		}
		case BTRFS_TREE_BLOCK_REF_KEY:
815 816
			ret = __add_prelim_ref(prefs, key.offset, NULL,
					       info_level + 1, 0,
817
					       bytenr, 1, GFP_NOFS);
818 819 820 821 822 823 824 825 826 827 828 829 830 831 832
			break;
		case BTRFS_EXTENT_DATA_REF_KEY: {
			struct btrfs_extent_data_ref *dref;
			int count;
			u64 root;

			dref = btrfs_item_ptr(leaf, slot,
					      struct btrfs_extent_data_ref);
			count = btrfs_extent_data_ref_count(leaf, dref);
			key.objectid = btrfs_extent_data_ref_objectid(leaf,
								      dref);
			key.type = BTRFS_EXTENT_DATA_KEY;
			key.offset = btrfs_extent_data_ref_offset(leaf, dref);
			root = btrfs_extent_data_ref_root(leaf, dref);
			ret = __add_prelim_ref(prefs, root, &key, 0, 0,
833
					       bytenr, count, GFP_NOFS);
834 835 836 837 838
			break;
		}
		default:
			WARN_ON(1);
		}
839 840 841
		if (ret)
			return ret;

842 843 844 845 846 847 848 849 850 851 852 853 854 855 856
	}

	return ret;
}

/*
 * this adds all existing backrefs (inline backrefs, backrefs and delayed
 * refs) for the given bytenr to the refs list, merges duplicates and resolves
 * indirect refs to their parent bytenr.
 * When roots are found, they're added to the roots list
 *
 * FIXME some caching might speed things up
 */
static int find_parent_nodes(struct btrfs_trans_handle *trans,
			     struct btrfs_fs_info *fs_info, u64 bytenr,
857 858
			     u64 time_seq, struct ulist *refs,
			     struct ulist *roots, const u64 *extent_item_pos)
859 860 861 862
{
	struct btrfs_key key;
	struct btrfs_path *path;
	struct btrfs_delayed_ref_root *delayed_refs = NULL;
863
	struct btrfs_delayed_ref_head *head;
864 865 866 867 868
	int info_level = 0;
	int ret;
	struct list_head prefs_delayed;
	struct list_head prefs;
	struct __prelim_ref *ref;
869
	struct extent_inode_elem *eie = NULL;
870
	u64 total_refs = 0;
871 872 873 874 875 876

	INIT_LIST_HEAD(&prefs);
	INIT_LIST_HEAD(&prefs_delayed);

	key.objectid = bytenr;
	key.offset = (u64)-1;
877 878 879 880
	if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
		key.type = BTRFS_METADATA_ITEM_KEY;
	else
		key.type = BTRFS_EXTENT_ITEM_KEY;
881 882 883 884

	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;
885
	if (!trans) {
886
		path->search_commit_root = 1;
887 888
		path->skip_locking = 1;
	}
889 890 891 892 893 894 895

	/*
	 * grab both a lock on the path and a lock on the delayed ref head.
	 * We need both to get a consistent picture of how the refs look
	 * at a specified point in time
	 */
again:
896 897
	head = NULL;

898 899 900 901 902
	ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 0);
	if (ret < 0)
		goto out;
	BUG_ON(ret == 0);

903
	if (trans) {
904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926
		/*
		 * look if there are updates for this ref queued and lock the
		 * head
		 */
		delayed_refs = &trans->transaction->delayed_refs;
		spin_lock(&delayed_refs->lock);
		head = btrfs_find_delayed_ref_head(trans, bytenr);
		if (head) {
			if (!mutex_trylock(&head->mutex)) {
				atomic_inc(&head->node.refs);
				spin_unlock(&delayed_refs->lock);

				btrfs_release_path(path);

				/*
				 * Mutex was contended, block until it's
				 * released and try again
				 */
				mutex_lock(&head->mutex);
				mutex_unlock(&head->mutex);
				btrfs_put_delayed_ref(&head->node);
				goto again;
			}
927
			spin_unlock(&delayed_refs->lock);
928
			ret = __add_delayed_refs(head, time_seq,
929
						 &prefs_delayed, &total_refs);
930
			mutex_unlock(&head->mutex);
931
			if (ret)
932
				goto out;
933 934
		} else {
			spin_unlock(&delayed_refs->lock);
935
		}
936 937 938 939 940 941
	}

	if (path->slots[0]) {
		struct extent_buffer *leaf;
		int slot;

942
		path->slots[0]--;
943
		leaf = path->nodes[0];
944
		slot = path->slots[0];
945 946
		btrfs_item_key_to_cpu(leaf, &key, slot);
		if (key.objectid == bytenr &&
947 948
		    (key.type == BTRFS_EXTENT_ITEM_KEY ||
		     key.type == BTRFS_METADATA_ITEM_KEY)) {
949
			ret = __add_inline_refs(fs_info, path, bytenr,
950 951
						&info_level, &prefs,
						&total_refs);
952 953
			if (ret)
				goto out;
954
			ret = __add_keyed_refs(fs_info, path, bytenr,
955 956 957 958 959 960 961 962 963
					       info_level, &prefs);
			if (ret)
				goto out;
		}
	}
	btrfs_release_path(path);

	list_splice_init(&prefs_delayed, &prefs);

964 965 966 967
	ret = __add_missing_keys(fs_info, &prefs);
	if (ret)
		goto out;

968
	__merge_refs(&prefs, 1);
969

970
	ret = __resolve_indirect_refs(fs_info, path, time_seq, &prefs,
971
				      extent_item_pos, total_refs);
972 973 974
	if (ret)
		goto out;

975
	__merge_refs(&prefs, 2);
976 977 978

	while (!list_empty(&prefs)) {
		ref = list_first_entry(&prefs, struct __prelim_ref, list);
J
Julia Lawall 已提交
979
		WARN_ON(ref->count < 0);
980
		if (roots && ref->count && ref->root_id && ref->parent == 0) {
981 982
			/* no parent == root of tree */
			ret = ulist_add(roots, ref->root_id, 0, GFP_NOFS);
983 984
			if (ret < 0)
				goto out;
985 986
		}
		if (ref->count && ref->parent) {
987
			if (extent_item_pos && !ref->inode_list) {
988 989 990 991 992 993
				u32 bsz;
				struct extent_buffer *eb;
				bsz = btrfs_level_size(fs_info->extent_root,
							info_level);
				eb = read_tree_block(fs_info->extent_root,
							   ref->parent, bsz, 0);
994 995
				if (!eb || !extent_buffer_uptodate(eb)) {
					free_extent_buffer(eb);
996 997
					ret = -EIO;
					goto out;
998
				}
999 1000 1001
				ret = find_extent_in_eb(eb, bytenr,
							*extent_item_pos, &eie);
				free_extent_buffer(eb);
1002 1003 1004
				if (ret < 0)
					goto out;
				ref->inode_list = eie;
1005
			}
1006
			ret = ulist_add_merge(refs, ref->parent,
1007
					      (uintptr_t)ref->inode_list,
1008
					      (u64 *)&eie, GFP_NOFS);
1009 1010
			if (ret < 0)
				goto out;
1011 1012 1013 1014 1015 1016 1017 1018 1019 1020
			if (!ret && extent_item_pos) {
				/*
				 * we've recorded that parent, so we must extend
				 * its inode list here
				 */
				BUG_ON(!eie);
				while (eie->next)
					eie = eie->next;
				eie->next = ref->inode_list;
			}
1021
			eie = NULL;
1022
		}
1023
		list_del(&ref->list);
1024
		kmem_cache_free(btrfs_prelim_ref_cache, ref);
1025 1026 1027 1028 1029 1030 1031
	}

out:
	btrfs_free_path(path);
	while (!list_empty(&prefs)) {
		ref = list_first_entry(&prefs, struct __prelim_ref, list);
		list_del(&ref->list);
1032
		kmem_cache_free(btrfs_prelim_ref_cache, ref);
1033 1034 1035 1036 1037
	}
	while (!list_empty(&prefs_delayed)) {
		ref = list_first_entry(&prefs_delayed, struct __prelim_ref,
				       list);
		list_del(&ref->list);
1038
		kmem_cache_free(btrfs_prelim_ref_cache, ref);
1039
	}
1040 1041
	if (ret < 0)
		free_inode_elem_list(eie);
1042 1043 1044
	return ret;
}

1045 1046 1047 1048 1049 1050 1051 1052 1053 1054
static void free_leaf_list(struct ulist *blocks)
{
	struct ulist_node *node = NULL;
	struct extent_inode_elem *eie;
	struct ulist_iterator uiter;

	ULIST_ITER_INIT(&uiter);
	while ((node = ulist_next(blocks, &uiter))) {
		if (!node->aux)
			continue;
1055
		eie = (struct extent_inode_elem *)(uintptr_t)node->aux;
1056
		free_inode_elem_list(eie);
1057 1058 1059 1060 1061 1062
		node->aux = 0;
	}

	ulist_free(blocks);
}

1063 1064 1065 1066 1067 1068 1069 1070 1071 1072
/*
 * Finds all leafs with a reference to the specified combination of bytenr and
 * offset. key_list_head will point to a list of corresponding keys (caller must
 * free each list element). The leafs will be stored in the leafs ulist, which
 * must be freed with ulist_free.
 *
 * returns 0 on success, <0 on error
 */
static int btrfs_find_all_leafs(struct btrfs_trans_handle *trans,
				struct btrfs_fs_info *fs_info, u64 bytenr,
1073
				u64 time_seq, struct ulist **leafs,
1074
				const u64 *extent_item_pos)
1075 1076 1077 1078
{
	int ret;

	*leafs = ulist_alloc(GFP_NOFS);
1079
	if (!*leafs)
1080 1081
		return -ENOMEM;

1082
	ret = find_parent_nodes(trans, fs_info, bytenr,
1083
				time_seq, *leafs, NULL, extent_item_pos);
1084
	if (ret < 0 && ret != -ENOENT) {
1085
		free_leaf_list(*leafs);
1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104
		return ret;
	}

	return 0;
}

/*
 * walk all backrefs for a given extent to find all roots that reference this
 * extent. Walking a backref means finding all extents that reference this
 * extent and in turn walk the backrefs of those, too. Naturally this is a
 * recursive process, but here it is implemented in an iterative fashion: We
 * find all referencing extents for the extent in question and put them on a
 * list. In turn, we find all referencing extents for those, further appending
 * to the list. The way we iterate the list allows adding more elements after
 * the current while iterating. The process stops when we reach the end of the
 * list. Found roots are added to the roots list.
 *
 * returns 0 on success, < 0 on error.
 */
1105 1106 1107
static int __btrfs_find_all_roots(struct btrfs_trans_handle *trans,
				  struct btrfs_fs_info *fs_info, u64 bytenr,
				  u64 time_seq, struct ulist **roots)
1108 1109 1110
{
	struct ulist *tmp;
	struct ulist_node *node = NULL;
J
Jan Schmidt 已提交
1111
	struct ulist_iterator uiter;
1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122
	int ret;

	tmp = ulist_alloc(GFP_NOFS);
	if (!tmp)
		return -ENOMEM;
	*roots = ulist_alloc(GFP_NOFS);
	if (!*roots) {
		ulist_free(tmp);
		return -ENOMEM;
	}

J
Jan Schmidt 已提交
1123
	ULIST_ITER_INIT(&uiter);
1124
	while (1) {
1125
		ret = find_parent_nodes(trans, fs_info, bytenr,
1126
					time_seq, tmp, *roots, NULL);
1127 1128 1129 1130 1131
		if (ret < 0 && ret != -ENOENT) {
			ulist_free(tmp);
			ulist_free(*roots);
			return ret;
		}
J
Jan Schmidt 已提交
1132
		node = ulist_next(tmp, &uiter);
1133 1134 1135
		if (!node)
			break;
		bytenr = node->val;
1136
		cond_resched();
1137 1138 1139 1140 1141 1142
	}

	ulist_free(tmp);
	return 0;
}

1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156
int btrfs_find_all_roots(struct btrfs_trans_handle *trans,
			 struct btrfs_fs_info *fs_info, u64 bytenr,
			 u64 time_seq, struct ulist **roots)
{
	int ret;

	if (!trans)
		down_read(&fs_info->commit_root_sem);
	ret = __btrfs_find_all_roots(trans, fs_info, bytenr, time_seq, roots);
	if (!trans)
		up_read(&fs_info->commit_root_sem);
	return ret;
}

1157 1158 1159 1160 1161 1162 1163
/*
 * this makes the path point to (inum INODE_ITEM ioff)
 */
int inode_item_info(u64 inum, u64 ioff, struct btrfs_root *fs_root,
			struct btrfs_path *path)
{
	struct btrfs_key key;
1164 1165
	return btrfs_find_item(fs_root, path, inum, ioff,
			BTRFS_INODE_ITEM_KEY, &key);
1166 1167 1168 1169 1170 1171
}

static int inode_ref_info(u64 inum, u64 ioff, struct btrfs_root *fs_root,
				struct btrfs_path *path,
				struct btrfs_key *found_key)
{
1172 1173
	return btrfs_find_item(fs_root, path, inum, ioff,
			BTRFS_INODE_REF_KEY, found_key);
1174 1175
}

M
Mark Fasheh 已提交
1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243
int btrfs_find_one_extref(struct btrfs_root *root, u64 inode_objectid,
			  u64 start_off, struct btrfs_path *path,
			  struct btrfs_inode_extref **ret_extref,
			  u64 *found_off)
{
	int ret, slot;
	struct btrfs_key key;
	struct btrfs_key found_key;
	struct btrfs_inode_extref *extref;
	struct extent_buffer *leaf;
	unsigned long ptr;

	key.objectid = inode_objectid;
	btrfs_set_key_type(&key, BTRFS_INODE_EXTREF_KEY);
	key.offset = start_off;

	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
	if (ret < 0)
		return ret;

	while (1) {
		leaf = path->nodes[0];
		slot = path->slots[0];
		if (slot >= btrfs_header_nritems(leaf)) {
			/*
			 * If the item at offset is not found,
			 * btrfs_search_slot will point us to the slot
			 * where it should be inserted. In our case
			 * that will be the slot directly before the
			 * next INODE_REF_KEY_V2 item. In the case
			 * that we're pointing to the last slot in a
			 * leaf, we must move one leaf over.
			 */
			ret = btrfs_next_leaf(root, path);
			if (ret) {
				if (ret >= 1)
					ret = -ENOENT;
				break;
			}
			continue;
		}

		btrfs_item_key_to_cpu(leaf, &found_key, slot);

		/*
		 * Check that we're still looking at an extended ref key for
		 * this particular objectid. If we have different
		 * objectid or type then there are no more to be found
		 * in the tree and we can exit.
		 */
		ret = -ENOENT;
		if (found_key.objectid != inode_objectid)
			break;
		if (btrfs_key_type(&found_key) != BTRFS_INODE_EXTREF_KEY)
			break;

		ret = 0;
		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
		extref = (struct btrfs_inode_extref *)ptr;
		*ret_extref = extref;
		if (found_off)
			*found_off = found_key.offset;
		break;
	}

	return ret;
}

1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257
/*
 * this iterates to turn a name (from iref/extref) into a full filesystem path.
 * Elements of the path are separated by '/' and the path is guaranteed to be
 * 0-terminated. the path is only given within the current file system.
 * Therefore, it never starts with a '/'. the caller is responsible to provide
 * "size" bytes in "dest". the dest buffer will be filled backwards. finally,
 * the start point of the resulting string is returned. this pointer is within
 * dest, normally.
 * in case the path buffer would overflow, the pointer is decremented further
 * as if output was written to the buffer, though no more output is actually
 * generated. that way, the caller can determine how much space would be
 * required for the path to fit into the buffer. in that case, the returned
 * value will be smaller than dest. callers must check this!
 */
1258 1259 1260 1261
char *btrfs_ref_to_path(struct btrfs_root *fs_root, struct btrfs_path *path,
			u32 name_len, unsigned long name_off,
			struct extent_buffer *eb_in, u64 parent,
			char *dest, u32 size)
1262 1263 1264 1265
{
	int slot;
	u64 next_inum;
	int ret;
1266
	s64 bytes_left = ((s64)size) - 1;
1267 1268
	struct extent_buffer *eb = eb_in;
	struct btrfs_key found_key;
1269
	int leave_spinning = path->leave_spinning;
M
Mark Fasheh 已提交
1270
	struct btrfs_inode_ref *iref;
1271 1272 1273 1274

	if (bytes_left >= 0)
		dest[bytes_left] = '\0';

1275
	path->leave_spinning = 1;
1276
	while (1) {
M
Mark Fasheh 已提交
1277
		bytes_left -= name_len;
1278 1279
		if (bytes_left >= 0)
			read_extent_buffer(eb, dest + bytes_left,
M
Mark Fasheh 已提交
1280
					   name_off, name_len);
1281 1282
		if (eb != eb_in) {
			btrfs_tree_read_unlock_blocking(eb);
1283
			free_extent_buffer(eb);
1284
		}
1285
		ret = inode_ref_info(parent, 0, fs_root, path, &found_key);
1286 1287
		if (ret > 0)
			ret = -ENOENT;
1288 1289
		if (ret)
			break;
M
Mark Fasheh 已提交
1290

1291 1292 1293 1294 1295 1296 1297 1298 1299
		next_inum = found_key.offset;

		/* regular exit ahead */
		if (parent == next_inum)
			break;

		slot = path->slots[0];
		eb = path->nodes[0];
		/* make sure we can use eb after releasing the path */
1300
		if (eb != eb_in) {
1301
			atomic_inc(&eb->refs);
1302 1303 1304
			btrfs_tree_read_lock(eb);
			btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
		}
1305 1306
		btrfs_release_path(path);
		iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);
M
Mark Fasheh 已提交
1307 1308 1309 1310

		name_len = btrfs_inode_ref_name_len(eb, iref);
		name_off = (unsigned long)(iref + 1);

1311 1312 1313 1314 1315 1316 1317
		parent = next_inum;
		--bytes_left;
		if (bytes_left >= 0)
			dest[bytes_left] = '/';
	}

	btrfs_release_path(path);
1318
	path->leave_spinning = leave_spinning;
1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331

	if (ret)
		return ERR_PTR(ret);

	return dest + bytes_left;
}

/*
 * this makes the path point to (logical EXTENT_ITEM *)
 * returns BTRFS_EXTENT_FLAG_DATA for data, BTRFS_EXTENT_FLAG_TREE_BLOCK for
 * tree blocks and <0 on error.
 */
int extent_from_logical(struct btrfs_fs_info *fs_info, u64 logical,
1332 1333
			struct btrfs_path *path, struct btrfs_key *found_key,
			u64 *flags_ret)
1334 1335 1336
{
	int ret;
	u64 flags;
1337
	u64 size = 0;
1338 1339 1340 1341 1342
	u32 item_size;
	struct extent_buffer *eb;
	struct btrfs_extent_item *ei;
	struct btrfs_key key;

1343 1344 1345 1346
	if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
		key.type = BTRFS_METADATA_ITEM_KEY;
	else
		key.type = BTRFS_EXTENT_ITEM_KEY;
1347 1348 1349 1350 1351 1352 1353
	key.objectid = logical;
	key.offset = (u64)-1;

	ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0);
	if (ret < 0)
		return ret;

1354 1355 1356 1357 1358
	ret = btrfs_previous_extent_item(fs_info->extent_root, path, 0);
	if (ret) {
		if (ret > 0)
			ret = -ENOENT;
		return ret;
1359
	}
1360
	btrfs_item_key_to_cpu(path->nodes[0], found_key, path->slots[0]);
1361 1362 1363 1364 1365
	if (found_key->type == BTRFS_METADATA_ITEM_KEY)
		size = fs_info->extent_root->leafsize;
	else if (found_key->type == BTRFS_EXTENT_ITEM_KEY)
		size = found_key->offset;

1366
	if (found_key->objectid > logical ||
1367
	    found_key->objectid + size <= logical) {
1368
		pr_debug("logical %llu is not within any extent\n", logical);
1369
		return -ENOENT;
J
Jan Schmidt 已提交
1370
	}
1371 1372 1373 1374 1375 1376 1377 1378

	eb = path->nodes[0];
	item_size = btrfs_item_size_nr(eb, path->slots[0]);
	BUG_ON(item_size < sizeof(*ei));

	ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
	flags = btrfs_extent_flags(eb, ei);

J
Jan Schmidt 已提交
1379 1380
	pr_debug("logical %llu is at position %llu within the extent (%llu "
		 "EXTENT_ITEM %llu) flags %#llx size %u\n",
1381 1382
		 logical, logical - found_key->objectid, found_key->objectid,
		 found_key->offset, flags, item_size);
1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393

	WARN_ON(!flags_ret);
	if (flags_ret) {
		if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
			*flags_ret = BTRFS_EXTENT_FLAG_TREE_BLOCK;
		else if (flags & BTRFS_EXTENT_FLAG_DATA)
			*flags_ret = BTRFS_EXTENT_FLAG_DATA;
		else
			BUG_ON(1);
		return 0;
	}
1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485

	return -EIO;
}

/*
 * helper function to iterate extent inline refs. ptr must point to a 0 value
 * for the first call and may be modified. it is used to track state.
 * if more refs exist, 0 is returned and the next call to
 * __get_extent_inline_ref must pass the modified ptr parameter to get the
 * next ref. after the last ref was processed, 1 is returned.
 * returns <0 on error
 */
static int __get_extent_inline_ref(unsigned long *ptr, struct extent_buffer *eb,
				struct btrfs_extent_item *ei, u32 item_size,
				struct btrfs_extent_inline_ref **out_eiref,
				int *out_type)
{
	unsigned long end;
	u64 flags;
	struct btrfs_tree_block_info *info;

	if (!*ptr) {
		/* first call */
		flags = btrfs_extent_flags(eb, ei);
		if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
			info = (struct btrfs_tree_block_info *)(ei + 1);
			*out_eiref =
				(struct btrfs_extent_inline_ref *)(info + 1);
		} else {
			*out_eiref = (struct btrfs_extent_inline_ref *)(ei + 1);
		}
		*ptr = (unsigned long)*out_eiref;
		if ((void *)*ptr >= (void *)ei + item_size)
			return -ENOENT;
	}

	end = (unsigned long)ei + item_size;
	*out_eiref = (struct btrfs_extent_inline_ref *)*ptr;
	*out_type = btrfs_extent_inline_ref_type(eb, *out_eiref);

	*ptr += btrfs_extent_inline_ref_size(*out_type);
	WARN_ON(*ptr > end);
	if (*ptr == end)
		return 1; /* last */

	return 0;
}

/*
 * reads the tree block backref for an extent. tree level and root are returned
 * through out_level and out_root. ptr must point to a 0 value for the first
 * call and may be modified (see __get_extent_inline_ref comment).
 * returns 0 if data was provided, 1 if there was no more data to provide or
 * <0 on error.
 */
int tree_backref_for_extent(unsigned long *ptr, struct extent_buffer *eb,
				struct btrfs_extent_item *ei, u32 item_size,
				u64 *out_root, u8 *out_level)
{
	int ret;
	int type;
	struct btrfs_tree_block_info *info;
	struct btrfs_extent_inline_ref *eiref;

	if (*ptr == (unsigned long)-1)
		return 1;

	while (1) {
		ret = __get_extent_inline_ref(ptr, eb, ei, item_size,
						&eiref, &type);
		if (ret < 0)
			return ret;

		if (type == BTRFS_TREE_BLOCK_REF_KEY ||
		    type == BTRFS_SHARED_BLOCK_REF_KEY)
			break;

		if (ret == 1)
			return 1;
	}

	/* we can treat both ref types equally here */
	info = (struct btrfs_tree_block_info *)(ei + 1);
	*out_root = btrfs_extent_inline_ref_offset(eb, eiref);
	*out_level = btrfs_tree_block_level(eb, info);

	if (ret == 1)
		*ptr = (unsigned long)-1;

	return 0;
}

1486 1487
static int iterate_leaf_refs(struct extent_inode_elem *inode_list,
				u64 root, u64 extent_item_objectid,
J
Jan Schmidt 已提交
1488
				iterate_extent_inodes_t *iterate, void *ctx)
1489
{
1490
	struct extent_inode_elem *eie;
J
Jan Schmidt 已提交
1491 1492
	int ret = 0;

1493
	for (eie = inode_list; eie; eie = eie->next) {
J
Jan Schmidt 已提交
1494
		pr_debug("ref for %llu resolved, key (%llu EXTEND_DATA %llu), "
1495 1496 1497
			 "root %llu\n", extent_item_objectid,
			 eie->inum, eie->offset, root);
		ret = iterate(eie->inum, eie->offset, root, ctx);
J
Jan Schmidt 已提交
1498
		if (ret) {
1499 1500
			pr_debug("stopping iteration for %llu due to ret=%d\n",
				 extent_item_objectid, ret);
J
Jan Schmidt 已提交
1501 1502
			break;
		}
1503 1504 1505 1506 1507 1508 1509
	}

	return ret;
}

/*
 * calls iterate() for every inode that references the extent identified by
J
Jan Schmidt 已提交
1510
 * the given parameters.
1511 1512 1513
 * when the iterator function returns a non-zero value, iteration stops.
 */
int iterate_extent_inodes(struct btrfs_fs_info *fs_info,
J
Jan Schmidt 已提交
1514
				u64 extent_item_objectid, u64 extent_item_pos,
1515
				int search_commit_root,
1516 1517 1518
				iterate_extent_inodes_t *iterate, void *ctx)
{
	int ret;
1519
	struct btrfs_trans_handle *trans = NULL;
1520 1521
	struct ulist *refs = NULL;
	struct ulist *roots = NULL;
J
Jan Schmidt 已提交
1522 1523
	struct ulist_node *ref_node = NULL;
	struct ulist_node *root_node = NULL;
1524
	struct seq_list tree_mod_seq_elem = {};
J
Jan Schmidt 已提交
1525 1526
	struct ulist_iterator ref_uiter;
	struct ulist_iterator root_uiter;
1527

J
Jan Schmidt 已提交
1528 1529
	pr_debug("resolving all inodes for extent %llu\n",
			extent_item_objectid);
1530

1531
	if (!search_commit_root) {
1532 1533 1534
		trans = btrfs_join_transaction(fs_info->extent_root);
		if (IS_ERR(trans))
			return PTR_ERR(trans);
1535
		btrfs_get_tree_mod_seq(fs_info, &tree_mod_seq_elem);
1536 1537
	} else {
		down_read(&fs_info->commit_root_sem);
1538
	}
1539

J
Jan Schmidt 已提交
1540
	ret = btrfs_find_all_leafs(trans, fs_info, extent_item_objectid,
1541
				   tree_mod_seq_elem.seq, &refs,
1542
				   &extent_item_pos);
J
Jan Schmidt 已提交
1543 1544
	if (ret)
		goto out;
1545

J
Jan Schmidt 已提交
1546 1547
	ULIST_ITER_INIT(&ref_uiter);
	while (!ret && (ref_node = ulist_next(refs, &ref_uiter))) {
1548 1549
		ret = __btrfs_find_all_roots(trans, fs_info, ref_node->val,
					     tree_mod_seq_elem.seq, &roots);
J
Jan Schmidt 已提交
1550 1551
		if (ret)
			break;
J
Jan Schmidt 已提交
1552 1553
		ULIST_ITER_INIT(&root_uiter);
		while (!ret && (root_node = ulist_next(roots, &root_uiter))) {
1554
			pr_debug("root %llu references leaf %llu, data list "
1555
				 "%#llx\n", root_node->val, ref_node->val,
1556
				 ref_node->aux);
1557 1558 1559 1560 1561
			ret = iterate_leaf_refs((struct extent_inode_elem *)
						(uintptr_t)ref_node->aux,
						root_node->val,
						extent_item_objectid,
						iterate, ctx);
J
Jan Schmidt 已提交
1562
		}
1563
		ulist_free(roots);
1564 1565
	}

1566
	free_leaf_list(refs);
J
Jan Schmidt 已提交
1567
out:
1568
	if (!search_commit_root) {
1569
		btrfs_put_tree_mod_seq(fs_info, &tree_mod_seq_elem);
1570
		btrfs_end_transaction(trans, fs_info->extent_root);
1571 1572
	} else {
		up_read(&fs_info->commit_root_sem);
1573 1574
	}

1575 1576 1577 1578 1579 1580 1581 1582
	return ret;
}

int iterate_inodes_from_logical(u64 logical, struct btrfs_fs_info *fs_info,
				struct btrfs_path *path,
				iterate_extent_inodes_t *iterate, void *ctx)
{
	int ret;
J
Jan Schmidt 已提交
1583
	u64 extent_item_pos;
1584
	u64 flags = 0;
1585
	struct btrfs_key found_key;
1586
	int search_commit_root = path->search_commit_root;
1587

1588
	ret = extent_from_logical(fs_info, logical, path, &found_key, &flags);
J
Jan Schmidt 已提交
1589
	btrfs_release_path(path);
1590 1591
	if (ret < 0)
		return ret;
1592
	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1593
		return -EINVAL;
1594

J
Jan Schmidt 已提交
1595
	extent_item_pos = logical - found_key.objectid;
1596 1597 1598
	ret = iterate_extent_inodes(fs_info, found_key.objectid,
					extent_item_pos, search_commit_root,
					iterate, ctx);
1599 1600 1601 1602

	return ret;
}

M
Mark Fasheh 已提交
1603 1604 1605 1606 1607 1608
typedef int (iterate_irefs_t)(u64 parent, u32 name_len, unsigned long name_off,
			      struct extent_buffer *eb, void *ctx);

static int iterate_inode_refs(u64 inum, struct btrfs_root *fs_root,
			      struct btrfs_path *path,
			      iterate_irefs_t *iterate, void *ctx)
1609
{
1610
	int ret = 0;
1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621
	int slot;
	u32 cur;
	u32 len;
	u32 name_len;
	u64 parent = 0;
	int found = 0;
	struct extent_buffer *eb;
	struct btrfs_item *item;
	struct btrfs_inode_ref *iref;
	struct btrfs_key found_key;

1622
	while (!ret) {
1623
		ret = inode_ref_info(inum, parent ? parent+1 : 0, fs_root, path,
M
Mark Fasheh 已提交
1624
				     &found_key);
1625 1626 1627 1628 1629 1630 1631 1632 1633 1634
		if (ret < 0)
			break;
		if (ret) {
			ret = found ? 0 : -ENOENT;
			break;
		}
		++found;

		parent = found_key.offset;
		slot = path->slots[0];
1635 1636 1637 1638 1639 1640
		eb = btrfs_clone_extent_buffer(path->nodes[0]);
		if (!eb) {
			ret = -ENOMEM;
			break;
		}
		extent_buffer_get(eb);
1641 1642
		btrfs_tree_read_lock(eb);
		btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
1643 1644
		btrfs_release_path(path);

1645
		item = btrfs_item_nr(slot);
1646 1647 1648 1649 1650
		iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);

		for (cur = 0; cur < btrfs_item_size(eb, item); cur += len) {
			name_len = btrfs_inode_ref_name_len(eb, iref);
			/* path must be released before calling iterate()! */
J
Jan Schmidt 已提交
1651
			pr_debug("following ref at offset %u for inode %llu in "
1652 1653
				 "tree %llu\n", cur, found_key.objectid,
				 fs_root->objectid);
M
Mark Fasheh 已提交
1654 1655
			ret = iterate(parent, name_len,
				      (unsigned long)(iref + 1), eb, ctx);
1656
			if (ret)
1657 1658 1659 1660
				break;
			len = sizeof(*iref) + name_len;
			iref = (struct btrfs_inode_ref *)((char *)iref + len);
		}
1661
		btrfs_tree_read_unlock_blocking(eb);
1662 1663 1664 1665 1666 1667 1668 1669
		free_extent_buffer(eb);
	}

	btrfs_release_path(path);

	return ret;
}

M
Mark Fasheh 已提交
1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697
static int iterate_inode_extrefs(u64 inum, struct btrfs_root *fs_root,
				 struct btrfs_path *path,
				 iterate_irefs_t *iterate, void *ctx)
{
	int ret;
	int slot;
	u64 offset = 0;
	u64 parent;
	int found = 0;
	struct extent_buffer *eb;
	struct btrfs_inode_extref *extref;
	struct extent_buffer *leaf;
	u32 item_size;
	u32 cur_offset;
	unsigned long ptr;

	while (1) {
		ret = btrfs_find_one_extref(fs_root, inum, offset, path, &extref,
					    &offset);
		if (ret < 0)
			break;
		if (ret) {
			ret = found ? 0 : -ENOENT;
			break;
		}
		++found;

		slot = path->slots[0];
1698 1699 1700 1701 1702 1703
		eb = btrfs_clone_extent_buffer(path->nodes[0]);
		if (!eb) {
			ret = -ENOMEM;
			break;
		}
		extent_buffer_get(eb);
M
Mark Fasheh 已提交
1704 1705 1706 1707 1708 1709

		btrfs_tree_read_lock(eb);
		btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
		btrfs_release_path(path);

		leaf = path->nodes[0];
1710 1711
		item_size = btrfs_item_size_nr(leaf, slot);
		ptr = btrfs_item_ptr_offset(leaf, slot);
M
Mark Fasheh 已提交
1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758
		cur_offset = 0;

		while (cur_offset < item_size) {
			u32 name_len;

			extref = (struct btrfs_inode_extref *)(ptr + cur_offset);
			parent = btrfs_inode_extref_parent(eb, extref);
			name_len = btrfs_inode_extref_name_len(eb, extref);
			ret = iterate(parent, name_len,
				      (unsigned long)&extref->name, eb, ctx);
			if (ret)
				break;

			cur_offset += btrfs_inode_extref_name_len(leaf, extref);
			cur_offset += sizeof(*extref);
		}
		btrfs_tree_read_unlock_blocking(eb);
		free_extent_buffer(eb);

		offset++;
	}

	btrfs_release_path(path);

	return ret;
}

static int iterate_irefs(u64 inum, struct btrfs_root *fs_root,
			 struct btrfs_path *path, iterate_irefs_t *iterate,
			 void *ctx)
{
	int ret;
	int found_refs = 0;

	ret = iterate_inode_refs(inum, fs_root, path, iterate, ctx);
	if (!ret)
		++found_refs;
	else if (ret != -ENOENT)
		return ret;

	ret = iterate_inode_extrefs(inum, fs_root, path, iterate, ctx);
	if (ret == -ENOENT && found_refs)
		return 0;

	return ret;
}

1759 1760 1761 1762
/*
 * returns 0 if the path could be dumped (probably truncated)
 * returns <0 in case of an error
 */
M
Mark Fasheh 已提交
1763 1764
static int inode_to_path(u64 inum, u32 name_len, unsigned long name_off,
			 struct extent_buffer *eb, void *ctx)
1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775
{
	struct inode_fs_paths *ipath = ctx;
	char *fspath;
	char *fspath_min;
	int i = ipath->fspath->elem_cnt;
	const int s_ptr = sizeof(char *);
	u32 bytes_left;

	bytes_left = ipath->fspath->bytes_left > s_ptr ?
					ipath->fspath->bytes_left - s_ptr : 0;

1776
	fspath_min = (char *)ipath->fspath->val + (i + 1) * s_ptr;
1777 1778
	fspath = btrfs_ref_to_path(ipath->fs_root, ipath->btrfs_path, name_len,
				   name_off, eb, inum, fspath_min, bytes_left);
1779 1780 1781 1782
	if (IS_ERR(fspath))
		return PTR_ERR(fspath);

	if (fspath > fspath_min) {
1783
		ipath->fspath->val[i] = (u64)(unsigned long)fspath;
1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797
		++ipath->fspath->elem_cnt;
		ipath->fspath->bytes_left = fspath - fspath_min;
	} else {
		++ipath->fspath->elem_missed;
		ipath->fspath->bytes_missing += fspath_min - fspath;
		ipath->fspath->bytes_left = 0;
	}

	return 0;
}

/*
 * this dumps all file system paths to the inode into the ipath struct, provided
 * is has been created large enough. each path is zero-terminated and accessed
1798
 * from ipath->fspath->val[i].
1799
 * when it returns, there are ipath->fspath->elem_cnt number of paths available
1800
 * in ipath->fspath->val[]. when the allocated space wasn't sufficient, the
1801 1802 1803 1804 1805 1806 1807
 * number of missed paths in recored in ipath->fspath->elem_missed, otherwise,
 * it's zero. ipath->fspath->bytes_missing holds the number of bytes that would
 * have been needed to return all paths.
 */
int paths_from_inode(u64 inum, struct inode_fs_paths *ipath)
{
	return iterate_irefs(inum, ipath->fs_root, ipath->btrfs_path,
M
Mark Fasheh 已提交
1808
			     inode_to_path, ipath);
1809 1810 1811 1812 1813 1814 1815 1816
}

struct btrfs_data_container *init_data_container(u32 total_bytes)
{
	struct btrfs_data_container *data;
	size_t alloc_bytes;

	alloc_bytes = max_t(size_t, total_bytes, sizeof(*data));
1817
	data = vmalloc(alloc_bytes);
1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865
	if (!data)
		return ERR_PTR(-ENOMEM);

	if (total_bytes >= sizeof(*data)) {
		data->bytes_left = total_bytes - sizeof(*data);
		data->bytes_missing = 0;
	} else {
		data->bytes_missing = sizeof(*data) - total_bytes;
		data->bytes_left = 0;
	}

	data->elem_cnt = 0;
	data->elem_missed = 0;

	return data;
}

/*
 * allocates space to return multiple file system paths for an inode.
 * total_bytes to allocate are passed, note that space usable for actual path
 * information will be total_bytes - sizeof(struct inode_fs_paths).
 * the returned pointer must be freed with free_ipath() in the end.
 */
struct inode_fs_paths *init_ipath(s32 total_bytes, struct btrfs_root *fs_root,
					struct btrfs_path *path)
{
	struct inode_fs_paths *ifp;
	struct btrfs_data_container *fspath;

	fspath = init_data_container(total_bytes);
	if (IS_ERR(fspath))
		return (void *)fspath;

	ifp = kmalloc(sizeof(*ifp), GFP_NOFS);
	if (!ifp) {
		kfree(fspath);
		return ERR_PTR(-ENOMEM);
	}

	ifp->btrfs_path = path;
	ifp->fspath = fspath;
	ifp->fs_root = fs_root;

	return ifp;
}

void free_ipath(struct inode_fs_paths *ipath)
{
1866 1867
	if (!ipath)
		return;
1868
	vfree(ipath->fspath);
1869 1870
	kfree(ipath);
}