backref.c 46.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/*
 * Copyright (C) 2011 STRATO.  All rights reserved.
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public
 * License v2 as published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * General Public License for more details.
 *
 * You should have received a copy of the GNU General Public
 * License along with this program; if not, write to the
 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
 * Boston, MA 021110-1307, USA.
 */

19
#include <linux/vmalloc.h>
20 21 22
#include "ctree.h"
#include "disk-io.h"
#include "backref.h"
23 24 25
#include "ulist.h"
#include "transaction.h"
#include "delayed-ref.h"
26
#include "locking.h"
27

28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100
struct extent_inode_elem {
	u64 inum;
	u64 offset;
	struct extent_inode_elem *next;
};

static int check_extent_in_eb(struct btrfs_key *key, struct extent_buffer *eb,
				struct btrfs_file_extent_item *fi,
				u64 extent_item_pos,
				struct extent_inode_elem **eie)
{
	u64 data_offset;
	u64 data_len;
	struct extent_inode_elem *e;

	data_offset = btrfs_file_extent_offset(eb, fi);
	data_len = btrfs_file_extent_num_bytes(eb, fi);

	if (extent_item_pos < data_offset ||
	    extent_item_pos >= data_offset + data_len)
		return 1;

	e = kmalloc(sizeof(*e), GFP_NOFS);
	if (!e)
		return -ENOMEM;

	e->next = *eie;
	e->inum = key->objectid;
	e->offset = key->offset + (extent_item_pos - data_offset);
	*eie = e;

	return 0;
}

static int find_extent_in_eb(struct extent_buffer *eb, u64 wanted_disk_byte,
				u64 extent_item_pos,
				struct extent_inode_elem **eie)
{
	u64 disk_byte;
	struct btrfs_key key;
	struct btrfs_file_extent_item *fi;
	int slot;
	int nritems;
	int extent_type;
	int ret;

	/*
	 * from the shared data ref, we only have the leaf but we need
	 * the key. thus, we must look into all items and see that we
	 * find one (some) with a reference to our extent item.
	 */
	nritems = btrfs_header_nritems(eb);
	for (slot = 0; slot < nritems; ++slot) {
		btrfs_item_key_to_cpu(eb, &key, slot);
		if (key.type != BTRFS_EXTENT_DATA_KEY)
			continue;
		fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
		extent_type = btrfs_file_extent_type(eb, fi);
		if (extent_type == BTRFS_FILE_EXTENT_INLINE)
			continue;
		/* don't skip BTRFS_FILE_EXTENT_PREALLOC, we can handle that */
		disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
		if (disk_byte != wanted_disk_byte)
			continue;

		ret = check_extent_in_eb(&key, eb, fi, extent_item_pos, eie);
		if (ret < 0)
			return ret;
	}

	return 0;
}

101 102 103 104 105 106
/*
 * this structure records all encountered refs on the way up to the root
 */
struct __prelim_ref {
	struct list_head list;
	u64 root_id;
107
	struct btrfs_key key_for_search;
108 109
	int level;
	int count;
110
	struct extent_inode_elem *inode_list;
111 112 113 114
	u64 parent;
	u64 wanted_disk_byte;
};

115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153
/*
 * the rules for all callers of this function are:
 * - obtaining the parent is the goal
 * - if you add a key, you must know that it is a correct key
 * - if you cannot add the parent or a correct key, then we will look into the
 *   block later to set a correct key
 *
 * delayed refs
 * ============
 *        backref type | shared | indirect | shared | indirect
 * information         |   tree |     tree |   data |     data
 * --------------------+--------+----------+--------+----------
 *      parent logical |    y   |     -    |    -   |     -
 *      key to resolve |    -   |     y    |    y   |     y
 *  tree block logical |    -   |     -    |    -   |     -
 *  root for resolving |    y   |     y    |    y   |     y
 *
 * - column 1:       we've the parent -> done
 * - column 2, 3, 4: we use the key to find the parent
 *
 * on disk refs (inline or keyed)
 * ==============================
 *        backref type | shared | indirect | shared | indirect
 * information         |   tree |     tree |   data |     data
 * --------------------+--------+----------+--------+----------
 *      parent logical |    y   |     -    |    y   |     -
 *      key to resolve |    -   |     -    |    -   |     y
 *  tree block logical |    y   |     y    |    y   |     y
 *  root for resolving |    -   |     y    |    y   |     y
 *
 * - column 1, 3: we've the parent -> done
 * - column 2:    we take the first key from the block to find the parent
 *                (see __add_missing_keys)
 * - column 4:    we use the key to find the parent
 *
 * additional information that's available but not required to find the parent
 * block might help in merging entries to gain some speed.
 */

154
static int __add_prelim_ref(struct list_head *head, u64 root_id,
155 156
			    struct btrfs_key *key, int level,
			    u64 parent, u64 wanted_disk_byte, int count)
157 158 159 160 161 162 163 164 165 166
{
	struct __prelim_ref *ref;

	/* in case we're adding delayed refs, we're holding the refs spinlock */
	ref = kmalloc(sizeof(*ref), GFP_ATOMIC);
	if (!ref)
		return -ENOMEM;

	ref->root_id = root_id;
	if (key)
167
		ref->key_for_search = *key;
168
	else
169
		memset(&ref->key_for_search, 0, sizeof(ref->key_for_search));
170

171
	ref->inode_list = NULL;
172 173 174 175 176 177 178 179 180 181
	ref->level = level;
	ref->count = count;
	ref->parent = parent;
	ref->wanted_disk_byte = wanted_disk_byte;
	list_add_tail(&ref->list, head);

	return 0;
}

static int add_all_parents(struct btrfs_root *root, struct btrfs_path *path,
182
				struct ulist *parents, int level,
183
				struct btrfs_key *key_for_search, u64 time_seq,
J
Jan Schmidt 已提交
184
				u64 wanted_disk_byte,
185
				const u64 *extent_item_pos)
186
{
187 188 189 190
	int ret = 0;
	int slot;
	struct extent_buffer *eb;
	struct btrfs_key key;
191
	struct btrfs_file_extent_item *fi;
192
	struct extent_inode_elem *eie = NULL;
193 194
	u64 disk_byte;

195 196 197
	if (level != 0) {
		eb = path->nodes[level];
		ret = ulist_add(parents, eb->start, 0, GFP_NOFS);
198 199
		if (ret < 0)
			return ret;
200
		return 0;
201
	}
202 203

	/*
204 205 206
	 * We normally enter this function with the path already pointing to
	 * the first item to check. But sometimes, we may enter it with
	 * slot==nritems. In that case, go to the next leaf before we continue.
207
	 */
208
	if (path->slots[0] >= btrfs_header_nritems(path->nodes[0]))
J
Jan Schmidt 已提交
209
		ret = btrfs_next_old_leaf(root, path, time_seq);
210

211
	while (!ret) {
212
		eb = path->nodes[0];
213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234
		slot = path->slots[0];

		btrfs_item_key_to_cpu(eb, &key, slot);

		if (key.objectid != key_for_search->objectid ||
		    key.type != BTRFS_EXTENT_DATA_KEY)
			break;

		fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
		disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);

		if (disk_byte == wanted_disk_byte) {
			eie = NULL;
			if (extent_item_pos) {
				ret = check_extent_in_eb(&key, eb, fi,
						*extent_item_pos,
						&eie);
				if (ret < 0)
					break;
			}
			if (!ret) {
				ret = ulist_add(parents, eb->start,
235
						(uintptr_t)eie, GFP_NOFS);
236 237 238 239 240 241 242 243
				if (ret < 0)
					break;
				if (!extent_item_pos) {
					ret = btrfs_next_old_leaf(root, path,
							time_seq);
					continue;
				}
			}
244
		}
245
		ret = btrfs_next_old_item(root, path, time_seq);
246 247
	}

248 249 250
	if (ret > 0)
		ret = 0;
	return ret;
251 252 253 254 255 256 257
}

/*
 * resolve an indirect backref in the form (root_id, key, level)
 * to a logical address
 */
static int __resolve_indirect_ref(struct btrfs_fs_info *fs_info,
258
					int search_commit_root,
259
					u64 time_seq,
260
					struct __prelim_ref *ref,
261 262
					struct ulist *parents,
					const u64 *extent_item_pos)
263 264 265 266 267 268 269 270 271 272 273 274
{
	struct btrfs_path *path;
	struct btrfs_root *root;
	struct btrfs_key root_key;
	struct extent_buffer *eb;
	int ret = 0;
	int root_level;
	int level = ref->level;

	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;
275
	path->search_commit_root = !!search_commit_root;
276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293

	root_key.objectid = ref->root_id;
	root_key.type = BTRFS_ROOT_ITEM_KEY;
	root_key.offset = (u64)-1;
	root = btrfs_read_fs_root_no_name(fs_info, &root_key);
	if (IS_ERR(root)) {
		ret = PTR_ERR(root);
		goto out;
	}

	rcu_read_lock();
	root_level = btrfs_header_level(root->node);
	rcu_read_unlock();

	if (root_level + 1 == level)
		goto out;

	path->lowest_level = level;
294
	ret = btrfs_search_old_slot(root, &ref->key_for_search, path, time_seq);
295 296 297
	pr_debug("search slot in root %llu (level %d, ref count %d) returned "
		 "%d for key (%llu %u %llu)\n",
		 (unsigned long long)ref->root_id, level, ref->count, ret,
298 299 300
		 (unsigned long long)ref->key_for_search.objectid,
		 ref->key_for_search.type,
		 (unsigned long long)ref->key_for_search.offset);
301 302 303 304
	if (ret < 0)
		goto out;

	eb = path->nodes[level];
305 306 307 308 309 310 311 312
	while (!eb) {
		if (!level) {
			WARN_ON(1);
			ret = 1;
			goto out;
		}
		level--;
		eb = path->nodes[level];
313 314
	}

315 316 317
	ret = add_all_parents(root, path, parents, level, &ref->key_for_search,
				time_seq, ref->wanted_disk_byte,
				extent_item_pos);
318 319 320 321 322 323 324 325 326
out:
	btrfs_free_path(path);
	return ret;
}

/*
 * resolve all indirect backrefs from the list
 */
static int __resolve_indirect_refs(struct btrfs_fs_info *fs_info,
327
				   int search_commit_root, u64 time_seq,
328 329
				   struct list_head *head,
				   const u64 *extent_item_pos)
330 331 332 333 334 335 336 337
{
	int err;
	int ret = 0;
	struct __prelim_ref *ref;
	struct __prelim_ref *ref_safe;
	struct __prelim_ref *new_ref;
	struct ulist *parents;
	struct ulist_node *node;
J
Jan Schmidt 已提交
338
	struct ulist_iterator uiter;
339 340 341 342 343 344 345 346 347 348 349 350 351 352 353

	parents = ulist_alloc(GFP_NOFS);
	if (!parents)
		return -ENOMEM;

	/*
	 * _safe allows us to insert directly after the current item without
	 * iterating over the newly inserted items.
	 * we're also allowed to re-assign ref during iteration.
	 */
	list_for_each_entry_safe(ref, ref_safe, head, list) {
		if (ref->parent)	/* already direct */
			continue;
		if (ref->count == 0)
			continue;
354
		err = __resolve_indirect_ref(fs_info, search_commit_root,
355 356
					     time_seq, ref, parents,
					     extent_item_pos);
357 358 359 360 361 362 363
		if (err) {
			if (ret == 0)
				ret = err;
			continue;
		}

		/* we put the first parent into the ref at hand */
J
Jan Schmidt 已提交
364 365
		ULIST_ITER_INIT(&uiter);
		node = ulist_next(parents, &uiter);
366
		ref->parent = node ? node->val : 0;
367 368
		ref->inode_list = node ?
			(struct extent_inode_elem *)(uintptr_t)node->aux : 0;
369 370

		/* additional parents require new refs being added here */
J
Jan Schmidt 已提交
371
		while ((node = ulist_next(parents, &uiter))) {
372 373 374 375 376 377 378
			new_ref = kmalloc(sizeof(*new_ref), GFP_NOFS);
			if (!new_ref) {
				ret = -ENOMEM;
				break;
			}
			memcpy(new_ref, ref, sizeof(*ref));
			new_ref->parent = node->val;
379 380
			new_ref->inode_list = (struct extent_inode_elem *)
							(uintptr_t)node->aux;
381 382 383 384 385 386 387 388 389
			list_add(&new_ref->list, &ref->list);
		}
		ulist_reinit(parents);
	}

	ulist_free(parents);
	return ret;
}

390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440
static inline int ref_for_same_block(struct __prelim_ref *ref1,
				     struct __prelim_ref *ref2)
{
	if (ref1->level != ref2->level)
		return 0;
	if (ref1->root_id != ref2->root_id)
		return 0;
	if (ref1->key_for_search.type != ref2->key_for_search.type)
		return 0;
	if (ref1->key_for_search.objectid != ref2->key_for_search.objectid)
		return 0;
	if (ref1->key_for_search.offset != ref2->key_for_search.offset)
		return 0;
	if (ref1->parent != ref2->parent)
		return 0;

	return 1;
}

/*
 * read tree blocks and add keys where required.
 */
static int __add_missing_keys(struct btrfs_fs_info *fs_info,
			      struct list_head *head)
{
	struct list_head *pos;
	struct extent_buffer *eb;

	list_for_each(pos, head) {
		struct __prelim_ref *ref;
		ref = list_entry(pos, struct __prelim_ref, list);

		if (ref->parent)
			continue;
		if (ref->key_for_search.type)
			continue;
		BUG_ON(!ref->wanted_disk_byte);
		eb = read_tree_block(fs_info->tree_root, ref->wanted_disk_byte,
				     fs_info->tree_root->leafsize, 0);
		BUG_ON(!eb);
		btrfs_tree_read_lock(eb);
		if (btrfs_header_level(eb) == 0)
			btrfs_item_key_to_cpu(eb, &ref->key_for_search, 0);
		else
			btrfs_node_key_to_cpu(eb, &ref->key_for_search, 0);
		btrfs_tree_read_unlock(eb);
		free_extent_buffer(eb);
	}
	return 0;
}

441 442 443 444
/*
 * merge two lists of backrefs and adjust counts accordingly
 *
 * mode = 1: merge identical keys, if key is set
445 446 447 448
 *    FIXME: if we add more keys in __add_prelim_ref, we can merge more here.
 *           additionally, we could even add a key range for the blocks we
 *           looked into to merge even more (-> replace unresolved refs by those
 *           having a parent).
449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464
 * mode = 2: merge identical parents
 */
static int __merge_refs(struct list_head *head, int mode)
{
	struct list_head *pos1;

	list_for_each(pos1, head) {
		struct list_head *n2;
		struct list_head *pos2;
		struct __prelim_ref *ref1;

		ref1 = list_entry(pos1, struct __prelim_ref, list);

		for (pos2 = pos1->next, n2 = pos2->next; pos2 != head;
		     pos2 = n2, n2 = pos2->next) {
			struct __prelim_ref *ref2;
465
			struct __prelim_ref *xchg;
466 467 468 469

			ref2 = list_entry(pos2, struct __prelim_ref, list);

			if (mode == 1) {
470
				if (!ref_for_same_block(ref1, ref2))
471
					continue;
472 473 474 475 476
				if (!ref1->parent && ref2->parent) {
					xchg = ref1;
					ref1 = ref2;
					ref2 = xchg;
				}
477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499
				ref1->count += ref2->count;
			} else {
				if (ref1->parent != ref2->parent)
					continue;
				ref1->count += ref2->count;
			}
			list_del(&ref2->list);
			kfree(ref2);
		}

	}
	return 0;
}

/*
 * add all currently queued delayed refs from this head whose seq nr is
 * smaller or equal that seq to the list
 */
static int __add_delayed_refs(struct btrfs_delayed_ref_head *head, u64 seq,
			      struct list_head *prefs)
{
	struct btrfs_delayed_extent_op *extent_op = head->extent_op;
	struct rb_node *n = &head->node.rb_node;
500 501
	struct btrfs_key key;
	struct btrfs_key op_key = {0};
502
	int sgn;
503
	int ret = 0;
504 505

	if (extent_op && extent_op->update_key)
506
		btrfs_disk_key_to_cpu(&op_key, &extent_op->key);
507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537

	while ((n = rb_prev(n))) {
		struct btrfs_delayed_ref_node *node;
		node = rb_entry(n, struct btrfs_delayed_ref_node,
				rb_node);
		if (node->bytenr != head->node.bytenr)
			break;
		WARN_ON(node->is_head);

		if (node->seq > seq)
			continue;

		switch (node->action) {
		case BTRFS_ADD_DELAYED_EXTENT:
		case BTRFS_UPDATE_DELAYED_HEAD:
			WARN_ON(1);
			continue;
		case BTRFS_ADD_DELAYED_REF:
			sgn = 1;
			break;
		case BTRFS_DROP_DELAYED_REF:
			sgn = -1;
			break;
		default:
			BUG_ON(1);
		}
		switch (node->type) {
		case BTRFS_TREE_BLOCK_REF_KEY: {
			struct btrfs_delayed_tree_ref *ref;

			ref = btrfs_delayed_node_to_tree_ref(node);
538
			ret = __add_prelim_ref(prefs, ref->root, &op_key,
539 540 541 542 543 544 545 546
					       ref->level + 1, 0, node->bytenr,
					       node->ref_mod * sgn);
			break;
		}
		case BTRFS_SHARED_BLOCK_REF_KEY: {
			struct btrfs_delayed_tree_ref *ref;

			ref = btrfs_delayed_node_to_tree_ref(node);
547
			ret = __add_prelim_ref(prefs, ref->root, NULL,
548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591
					       ref->level + 1, ref->parent,
					       node->bytenr,
					       node->ref_mod * sgn);
			break;
		}
		case BTRFS_EXTENT_DATA_REF_KEY: {
			struct btrfs_delayed_data_ref *ref;
			ref = btrfs_delayed_node_to_data_ref(node);

			key.objectid = ref->objectid;
			key.type = BTRFS_EXTENT_DATA_KEY;
			key.offset = ref->offset;
			ret = __add_prelim_ref(prefs, ref->root, &key, 0, 0,
					       node->bytenr,
					       node->ref_mod * sgn);
			break;
		}
		case BTRFS_SHARED_DATA_REF_KEY: {
			struct btrfs_delayed_data_ref *ref;

			ref = btrfs_delayed_node_to_data_ref(node);

			key.objectid = ref->objectid;
			key.type = BTRFS_EXTENT_DATA_KEY;
			key.offset = ref->offset;
			ret = __add_prelim_ref(prefs, ref->root, &key, 0,
					       ref->parent, node->bytenr,
					       node->ref_mod * sgn);
			break;
		}
		default:
			WARN_ON(1);
		}
		BUG_ON(ret);
	}

	return 0;
}

/*
 * add all inline backrefs for bytenr to the list
 */
static int __add_inline_refs(struct btrfs_fs_info *fs_info,
			     struct btrfs_path *path, u64 bytenr,
592
			     int *info_level, struct list_head *prefs)
593
{
594
	int ret = 0;
595 596 597 598 599 600 601 602 603 604 605 606 607
	int slot;
	struct extent_buffer *leaf;
	struct btrfs_key key;
	unsigned long ptr;
	unsigned long end;
	struct btrfs_extent_item *ei;
	u64 flags;
	u64 item_size;

	/*
	 * enumerate all inline refs
	 */
	leaf = path->nodes[0];
608
	slot = path->slots[0];
609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640

	item_size = btrfs_item_size_nr(leaf, slot);
	BUG_ON(item_size < sizeof(*ei));

	ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item);
	flags = btrfs_extent_flags(leaf, ei);

	ptr = (unsigned long)(ei + 1);
	end = (unsigned long)ei + item_size;

	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
		struct btrfs_tree_block_info *info;

		info = (struct btrfs_tree_block_info *)ptr;
		*info_level = btrfs_tree_block_level(leaf, info);
		ptr += sizeof(struct btrfs_tree_block_info);
		BUG_ON(ptr > end);
	} else {
		BUG_ON(!(flags & BTRFS_EXTENT_FLAG_DATA));
	}

	while (ptr < end) {
		struct btrfs_extent_inline_ref *iref;
		u64 offset;
		int type;

		iref = (struct btrfs_extent_inline_ref *)ptr;
		type = btrfs_extent_inline_ref_type(leaf, iref);
		offset = btrfs_extent_inline_ref_offset(leaf, iref);

		switch (type) {
		case BTRFS_SHARED_BLOCK_REF_KEY:
641
			ret = __add_prelim_ref(prefs, 0, NULL,
642 643 644 645 646 647 648 649 650 651 652 653 654 655
						*info_level + 1, offset,
						bytenr, 1);
			break;
		case BTRFS_SHARED_DATA_REF_KEY: {
			struct btrfs_shared_data_ref *sdref;
			int count;

			sdref = (struct btrfs_shared_data_ref *)(iref + 1);
			count = btrfs_shared_data_ref_count(leaf, sdref);
			ret = __add_prelim_ref(prefs, 0, NULL, 0, offset,
					       bytenr, count);
			break;
		}
		case BTRFS_TREE_BLOCK_REF_KEY:
656 657 658
			ret = __add_prelim_ref(prefs, offset, NULL,
					       *info_level + 1, 0,
					       bytenr, 1);
659 660 661 662 663 664 665 666 667 668 669 670 671
			break;
		case BTRFS_EXTENT_DATA_REF_KEY: {
			struct btrfs_extent_data_ref *dref;
			int count;
			u64 root;

			dref = (struct btrfs_extent_data_ref *)(&iref->offset);
			count = btrfs_extent_data_ref_count(leaf, dref);
			key.objectid = btrfs_extent_data_ref_objectid(leaf,
								      dref);
			key.type = BTRFS_EXTENT_DATA_KEY;
			key.offset = btrfs_extent_data_ref_offset(leaf, dref);
			root = btrfs_extent_data_ref_root(leaf, dref);
672 673
			ret = __add_prelim_ref(prefs, root, &key, 0, 0,
					       bytenr, count);
674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690
			break;
		}
		default:
			WARN_ON(1);
		}
		BUG_ON(ret);
		ptr += btrfs_extent_inline_ref_size(type);
	}

	return 0;
}

/*
 * add all non-inline backrefs for bytenr to the list
 */
static int __add_keyed_refs(struct btrfs_fs_info *fs_info,
			    struct btrfs_path *path, u64 bytenr,
691
			    int info_level, struct list_head *prefs)
692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720
{
	struct btrfs_root *extent_root = fs_info->extent_root;
	int ret;
	int slot;
	struct extent_buffer *leaf;
	struct btrfs_key key;

	while (1) {
		ret = btrfs_next_item(extent_root, path);
		if (ret < 0)
			break;
		if (ret) {
			ret = 0;
			break;
		}

		slot = path->slots[0];
		leaf = path->nodes[0];
		btrfs_item_key_to_cpu(leaf, &key, slot);

		if (key.objectid != bytenr)
			break;
		if (key.type < BTRFS_TREE_BLOCK_REF_KEY)
			continue;
		if (key.type > BTRFS_SHARED_DATA_REF_KEY)
			break;

		switch (key.type) {
		case BTRFS_SHARED_BLOCK_REF_KEY:
721
			ret = __add_prelim_ref(prefs, 0, NULL,
722 723 724 725 726 727 728 729 730 731 732 733 734 735 736
						info_level + 1, key.offset,
						bytenr, 1);
			break;
		case BTRFS_SHARED_DATA_REF_KEY: {
			struct btrfs_shared_data_ref *sdref;
			int count;

			sdref = btrfs_item_ptr(leaf, slot,
					      struct btrfs_shared_data_ref);
			count = btrfs_shared_data_ref_count(leaf, sdref);
			ret = __add_prelim_ref(prefs, 0, NULL, 0, key.offset,
						bytenr, count);
			break;
		}
		case BTRFS_TREE_BLOCK_REF_KEY:
737 738 739
			ret = __add_prelim_ref(prefs, key.offset, NULL,
					       info_level + 1, 0,
					       bytenr, 1);
740 741 742 743 744 745 746 747 748 749 750 751 752 753 754
			break;
		case BTRFS_EXTENT_DATA_REF_KEY: {
			struct btrfs_extent_data_ref *dref;
			int count;
			u64 root;

			dref = btrfs_item_ptr(leaf, slot,
					      struct btrfs_extent_data_ref);
			count = btrfs_extent_data_ref_count(leaf, dref);
			key.objectid = btrfs_extent_data_ref_objectid(leaf,
								      dref);
			key.type = BTRFS_EXTENT_DATA_KEY;
			key.offset = btrfs_extent_data_ref_offset(leaf, dref);
			root = btrfs_extent_data_ref_root(leaf, dref);
			ret = __add_prelim_ref(prefs, root, &key, 0, 0,
755
					       bytenr, count);
756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776
			break;
		}
		default:
			WARN_ON(1);
		}
		BUG_ON(ret);
	}

	return ret;
}

/*
 * this adds all existing backrefs (inline backrefs, backrefs and delayed
 * refs) for the given bytenr to the refs list, merges duplicates and resolves
 * indirect refs to their parent bytenr.
 * When roots are found, they're added to the roots list
 *
 * FIXME some caching might speed things up
 */
static int find_parent_nodes(struct btrfs_trans_handle *trans,
			     struct btrfs_fs_info *fs_info, u64 bytenr,
777 778
			     u64 time_seq, struct ulist *refs,
			     struct ulist *roots, const u64 *extent_item_pos)
779 780 781 782
{
	struct btrfs_key key;
	struct btrfs_path *path;
	struct btrfs_delayed_ref_root *delayed_refs = NULL;
783
	struct btrfs_delayed_ref_head *head;
784 785
	int info_level = 0;
	int ret;
786
	int search_commit_root = (trans == BTRFS_BACKREF_SEARCH_COMMIT_ROOT);
787 788 789 790 791 792 793 794 795 796 797 798 799 800
	struct list_head prefs_delayed;
	struct list_head prefs;
	struct __prelim_ref *ref;

	INIT_LIST_HEAD(&prefs);
	INIT_LIST_HEAD(&prefs_delayed);

	key.objectid = bytenr;
	key.type = BTRFS_EXTENT_ITEM_KEY;
	key.offset = (u64)-1;

	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;
801
	path->search_commit_root = !!search_commit_root;
802 803 804 805 806 807 808

	/*
	 * grab both a lock on the path and a lock on the delayed ref head.
	 * We need both to get a consistent picture of how the refs look
	 * at a specified point in time
	 */
again:
809 810
	head = NULL;

811 812 813 814 815
	ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 0);
	if (ret < 0)
		goto out;
	BUG_ON(ret == 0);

816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839
	if (trans != BTRFS_BACKREF_SEARCH_COMMIT_ROOT) {
		/*
		 * look if there are updates for this ref queued and lock the
		 * head
		 */
		delayed_refs = &trans->transaction->delayed_refs;
		spin_lock(&delayed_refs->lock);
		head = btrfs_find_delayed_ref_head(trans, bytenr);
		if (head) {
			if (!mutex_trylock(&head->mutex)) {
				atomic_inc(&head->node.refs);
				spin_unlock(&delayed_refs->lock);

				btrfs_release_path(path);

				/*
				 * Mutex was contended, block until it's
				 * released and try again
				 */
				mutex_lock(&head->mutex);
				mutex_unlock(&head->mutex);
				btrfs_put_delayed_ref(&head->node);
				goto again;
			}
840
			ret = __add_delayed_refs(head, time_seq,
841
						 &prefs_delayed);
842
			mutex_unlock(&head->mutex);
843 844 845 846
			if (ret) {
				spin_unlock(&delayed_refs->lock);
				goto out;
			}
847
		}
848
		spin_unlock(&delayed_refs->lock);
849 850 851 852 853 854
	}

	if (path->slots[0]) {
		struct extent_buffer *leaf;
		int slot;

855
		path->slots[0]--;
856
		leaf = path->nodes[0];
857
		slot = path->slots[0];
858 859 860 861
		btrfs_item_key_to_cpu(leaf, &key, slot);
		if (key.objectid == bytenr &&
		    key.type == BTRFS_EXTENT_ITEM_KEY) {
			ret = __add_inline_refs(fs_info, path, bytenr,
862
						&info_level, &prefs);
863 864
			if (ret)
				goto out;
865
			ret = __add_keyed_refs(fs_info, path, bytenr,
866 867 868 869 870 871 872 873 874
					       info_level, &prefs);
			if (ret)
				goto out;
		}
	}
	btrfs_release_path(path);

	list_splice_init(&prefs_delayed, &prefs);

875 876 877 878
	ret = __add_missing_keys(fs_info, &prefs);
	if (ret)
		goto out;

879 880 881 882
	ret = __merge_refs(&prefs, 1);
	if (ret)
		goto out;

883 884
	ret = __resolve_indirect_refs(fs_info, search_commit_root, time_seq,
				      &prefs, extent_item_pos);
885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902
	if (ret)
		goto out;

	ret = __merge_refs(&prefs, 2);
	if (ret)
		goto out;

	while (!list_empty(&prefs)) {
		ref = list_first_entry(&prefs, struct __prelim_ref, list);
		list_del(&ref->list);
		if (ref->count < 0)
			WARN_ON(1);
		if (ref->count && ref->root_id && ref->parent == 0) {
			/* no parent == root of tree */
			ret = ulist_add(roots, ref->root_id, 0, GFP_NOFS);
			BUG_ON(ret < 0);
		}
		if (ref->count && ref->parent) {
903
			struct extent_inode_elem *eie = NULL;
904
			if (extent_item_pos && !ref->inode_list) {
905 906 907 908 909 910 911 912 913
				u32 bsz;
				struct extent_buffer *eb;
				bsz = btrfs_level_size(fs_info->extent_root,
							info_level);
				eb = read_tree_block(fs_info->extent_root,
							   ref->parent, bsz, 0);
				BUG_ON(!eb);
				ret = find_extent_in_eb(eb, bytenr,
							*extent_item_pos, &eie);
914
				ref->inode_list = eie;
915 916
				free_extent_buffer(eb);
			}
917
			ret = ulist_add_merge(refs, ref->parent,
918
					      (uintptr_t)ref->inode_list,
919
					      (u64 *)&eie, GFP_NOFS);
920 921 922 923 924 925 926 927 928 929
			if (!ret && extent_item_pos) {
				/*
				 * we've recorded that parent, so we must extend
				 * its inode list here
				 */
				BUG_ON(!eie);
				while (eie->next)
					eie = eie->next;
				eie->next = ref->inode_list;
			}
930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951
			BUG_ON(ret < 0);
		}
		kfree(ref);
	}

out:
	btrfs_free_path(path);
	while (!list_empty(&prefs)) {
		ref = list_first_entry(&prefs, struct __prelim_ref, list);
		list_del(&ref->list);
		kfree(ref);
	}
	while (!list_empty(&prefs_delayed)) {
		ref = list_first_entry(&prefs_delayed, struct __prelim_ref,
				       list);
		list_del(&ref->list);
		kfree(ref);
	}

	return ret;
}

952 953 954 955 956 957 958 959 960 961 962
static void free_leaf_list(struct ulist *blocks)
{
	struct ulist_node *node = NULL;
	struct extent_inode_elem *eie;
	struct extent_inode_elem *eie_next;
	struct ulist_iterator uiter;

	ULIST_ITER_INIT(&uiter);
	while ((node = ulist_next(blocks, &uiter))) {
		if (!node->aux)
			continue;
963
		eie = (struct extent_inode_elem *)(uintptr_t)node->aux;
964 965 966 967 968 969 970 971 972 973
		for (; eie; eie = eie_next) {
			eie_next = eie->next;
			kfree(eie);
		}
		node->aux = 0;
	}

	ulist_free(blocks);
}

974 975 976 977 978 979 980 981 982 983
/*
 * Finds all leafs with a reference to the specified combination of bytenr and
 * offset. key_list_head will point to a list of corresponding keys (caller must
 * free each list element). The leafs will be stored in the leafs ulist, which
 * must be freed with ulist_free.
 *
 * returns 0 on success, <0 on error
 */
static int btrfs_find_all_leafs(struct btrfs_trans_handle *trans,
				struct btrfs_fs_info *fs_info, u64 bytenr,
984
				u64 time_seq, struct ulist **leafs,
985
				const u64 *extent_item_pos)
986 987 988 989 990 991 992 993 994 995 996 997 998
{
	struct ulist *tmp;
	int ret;

	tmp = ulist_alloc(GFP_NOFS);
	if (!tmp)
		return -ENOMEM;
	*leafs = ulist_alloc(GFP_NOFS);
	if (!*leafs) {
		ulist_free(tmp);
		return -ENOMEM;
	}

999
	ret = find_parent_nodes(trans, fs_info, bytenr,
1000
				time_seq, *leafs, tmp, extent_item_pos);
1001 1002 1003
	ulist_free(tmp);

	if (ret < 0 && ret != -ENOENT) {
1004
		free_leaf_list(*leafs);
1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025
		return ret;
	}

	return 0;
}

/*
 * walk all backrefs for a given extent to find all roots that reference this
 * extent. Walking a backref means finding all extents that reference this
 * extent and in turn walk the backrefs of those, too. Naturally this is a
 * recursive process, but here it is implemented in an iterative fashion: We
 * find all referencing extents for the extent in question and put them on a
 * list. In turn, we find all referencing extents for those, further appending
 * to the list. The way we iterate the list allows adding more elements after
 * the current while iterating. The process stops when we reach the end of the
 * list. Found roots are added to the roots list.
 *
 * returns 0 on success, < 0 on error.
 */
int btrfs_find_all_roots(struct btrfs_trans_handle *trans,
				struct btrfs_fs_info *fs_info, u64 bytenr,
1026
				u64 time_seq, struct ulist **roots)
1027 1028 1029
{
	struct ulist *tmp;
	struct ulist_node *node = NULL;
J
Jan Schmidt 已提交
1030
	struct ulist_iterator uiter;
1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041
	int ret;

	tmp = ulist_alloc(GFP_NOFS);
	if (!tmp)
		return -ENOMEM;
	*roots = ulist_alloc(GFP_NOFS);
	if (!*roots) {
		ulist_free(tmp);
		return -ENOMEM;
	}

J
Jan Schmidt 已提交
1042
	ULIST_ITER_INIT(&uiter);
1043
	while (1) {
1044
		ret = find_parent_nodes(trans, fs_info, bytenr,
1045
					time_seq, tmp, *roots, NULL);
1046 1047 1048 1049 1050
		if (ret < 0 && ret != -ENOENT) {
			ulist_free(tmp);
			ulist_free(*roots);
			return ret;
		}
J
Jan Schmidt 已提交
1051
		node = ulist_next(tmp, &uiter);
1052 1053 1054 1055 1056 1057 1058 1059 1060 1061
		if (!node)
			break;
		bytenr = node->val;
	}

	ulist_free(tmp);
	return 0;
}


1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111
static int __inode_info(u64 inum, u64 ioff, u8 key_type,
			struct btrfs_root *fs_root, struct btrfs_path *path,
			struct btrfs_key *found_key)
{
	int ret;
	struct btrfs_key key;
	struct extent_buffer *eb;

	key.type = key_type;
	key.objectid = inum;
	key.offset = ioff;

	ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0);
	if (ret < 0)
		return ret;

	eb = path->nodes[0];
	if (ret && path->slots[0] >= btrfs_header_nritems(eb)) {
		ret = btrfs_next_leaf(fs_root, path);
		if (ret)
			return ret;
		eb = path->nodes[0];
	}

	btrfs_item_key_to_cpu(eb, found_key, path->slots[0]);
	if (found_key->type != key.type || found_key->objectid != key.objectid)
		return 1;

	return 0;
}

/*
 * this makes the path point to (inum INODE_ITEM ioff)
 */
int inode_item_info(u64 inum, u64 ioff, struct btrfs_root *fs_root,
			struct btrfs_path *path)
{
	struct btrfs_key key;
	return __inode_info(inum, ioff, BTRFS_INODE_ITEM_KEY, fs_root, path,
				&key);
}

static int inode_ref_info(u64 inum, u64 ioff, struct btrfs_root *fs_root,
				struct btrfs_path *path,
				struct btrfs_key *found_key)
{
	return __inode_info(inum, ioff, BTRFS_INODE_REF_KEY, fs_root, path,
				found_key);
}

M
Mark Fasheh 已提交
1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179
int btrfs_find_one_extref(struct btrfs_root *root, u64 inode_objectid,
			  u64 start_off, struct btrfs_path *path,
			  struct btrfs_inode_extref **ret_extref,
			  u64 *found_off)
{
	int ret, slot;
	struct btrfs_key key;
	struct btrfs_key found_key;
	struct btrfs_inode_extref *extref;
	struct extent_buffer *leaf;
	unsigned long ptr;

	key.objectid = inode_objectid;
	btrfs_set_key_type(&key, BTRFS_INODE_EXTREF_KEY);
	key.offset = start_off;

	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
	if (ret < 0)
		return ret;

	while (1) {
		leaf = path->nodes[0];
		slot = path->slots[0];
		if (slot >= btrfs_header_nritems(leaf)) {
			/*
			 * If the item at offset is not found,
			 * btrfs_search_slot will point us to the slot
			 * where it should be inserted. In our case
			 * that will be the slot directly before the
			 * next INODE_REF_KEY_V2 item. In the case
			 * that we're pointing to the last slot in a
			 * leaf, we must move one leaf over.
			 */
			ret = btrfs_next_leaf(root, path);
			if (ret) {
				if (ret >= 1)
					ret = -ENOENT;
				break;
			}
			continue;
		}

		btrfs_item_key_to_cpu(leaf, &found_key, slot);

		/*
		 * Check that we're still looking at an extended ref key for
		 * this particular objectid. If we have different
		 * objectid or type then there are no more to be found
		 * in the tree and we can exit.
		 */
		ret = -ENOENT;
		if (found_key.objectid != inode_objectid)
			break;
		if (btrfs_key_type(&found_key) != BTRFS_INODE_EXTREF_KEY)
			break;

		ret = 0;
		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
		extref = (struct btrfs_inode_extref *)ptr;
		*ret_extref = extref;
		if (found_off)
			*found_off = found_key.offset;
		break;
	}

	return ret;
}

M
Mark Fasheh 已提交
1180 1181 1182
static char *ref_to_path(struct btrfs_root *fs_root,
			 struct btrfs_path *path,
			 u32 name_len, unsigned long name_off,
1183 1184
			 struct extent_buffer *eb_in, u64 parent,
			 char *dest, u32 size)
1185 1186 1187 1188
{
	int slot;
	u64 next_inum;
	int ret;
1189
	s64 bytes_left = ((s64)size) - 1;
1190 1191
	struct extent_buffer *eb = eb_in;
	struct btrfs_key found_key;
1192
	int leave_spinning = path->leave_spinning;
M
Mark Fasheh 已提交
1193
	struct btrfs_inode_ref *iref;
1194 1195 1196 1197

	if (bytes_left >= 0)
		dest[bytes_left] = '\0';

1198
	path->leave_spinning = 1;
1199
	while (1) {
M
Mark Fasheh 已提交
1200
		bytes_left -= name_len;
1201 1202
		if (bytes_left >= 0)
			read_extent_buffer(eb, dest + bytes_left,
M
Mark Fasheh 已提交
1203
					   name_off, name_len);
1204 1205
		if (eb != eb_in) {
			btrfs_tree_read_unlock_blocking(eb);
1206
			free_extent_buffer(eb);
1207
		}
1208
		ret = inode_ref_info(parent, 0, fs_root, path, &found_key);
1209 1210
		if (ret > 0)
			ret = -ENOENT;
1211 1212
		if (ret)
			break;
M
Mark Fasheh 已提交
1213

1214 1215 1216 1217 1218 1219 1220 1221 1222
		next_inum = found_key.offset;

		/* regular exit ahead */
		if (parent == next_inum)
			break;

		slot = path->slots[0];
		eb = path->nodes[0];
		/* make sure we can use eb after releasing the path */
1223
		if (eb != eb_in) {
1224
			atomic_inc(&eb->refs);
1225 1226 1227
			btrfs_tree_read_lock(eb);
			btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
		}
1228 1229
		btrfs_release_path(path);
		iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);
M
Mark Fasheh 已提交
1230 1231 1232 1233

		name_len = btrfs_inode_ref_name_len(eb, iref);
		name_off = (unsigned long)(iref + 1);

1234 1235 1236 1237 1238 1239 1240
		parent = next_inum;
		--bytes_left;
		if (bytes_left >= 0)
			dest[bytes_left] = '/';
	}

	btrfs_release_path(path);
1241
	path->leave_spinning = leave_spinning;
1242 1243 1244 1245 1246 1247 1248

	if (ret)
		return ERR_PTR(ret);

	return dest + bytes_left;
}

M
Mark Fasheh 已提交
1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274
/*
 * this iterates to turn a btrfs_inode_ref into a full filesystem path. elements
 * of the path are separated by '/' and the path is guaranteed to be
 * 0-terminated. the path is only given within the current file system.
 * Therefore, it never starts with a '/'. the caller is responsible to provide
 * "size" bytes in "dest". the dest buffer will be filled backwards. finally,
 * the start point of the resulting string is returned. this pointer is within
 * dest, normally.
 * in case the path buffer would overflow, the pointer is decremented further
 * as if output was written to the buffer, though no more output is actually
 * generated. that way, the caller can determine how much space would be
 * required for the path to fit into the buffer. in that case, the returned
 * value will be smaller than dest. callers must check this!
 */
char *btrfs_iref_to_path(struct btrfs_root *fs_root,
			 struct btrfs_path *path,
			 struct btrfs_inode_ref *iref,
			 struct extent_buffer *eb_in, u64 parent,
			 char *dest, u32 size)
{
	return ref_to_path(fs_root, path,
			   btrfs_inode_ref_name_len(eb_in, iref),
			   (unsigned long)(iref + 1),
			   eb_in, parent, dest, size);
}

1275 1276 1277 1278 1279 1280
/*
 * this makes the path point to (logical EXTENT_ITEM *)
 * returns BTRFS_EXTENT_FLAG_DATA for data, BTRFS_EXTENT_FLAG_TREE_BLOCK for
 * tree blocks and <0 on error.
 */
int extent_from_logical(struct btrfs_fs_info *fs_info, u64 logical,
1281 1282
			struct btrfs_path *path, struct btrfs_key *found_key,
			u64 *flags_ret)
1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305
{
	int ret;
	u64 flags;
	u32 item_size;
	struct extent_buffer *eb;
	struct btrfs_extent_item *ei;
	struct btrfs_key key;

	key.type = BTRFS_EXTENT_ITEM_KEY;
	key.objectid = logical;
	key.offset = (u64)-1;

	ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0);
	if (ret < 0)
		return ret;
	ret = btrfs_previous_item(fs_info->extent_root, path,
					0, BTRFS_EXTENT_ITEM_KEY);
	if (ret < 0)
		return ret;

	btrfs_item_key_to_cpu(path->nodes[0], found_key, path->slots[0]);
	if (found_key->type != BTRFS_EXTENT_ITEM_KEY ||
	    found_key->objectid > logical ||
J
Jan Schmidt 已提交
1306 1307 1308
	    found_key->objectid + found_key->offset <= logical) {
		pr_debug("logical %llu is not within any extent\n",
			 (unsigned long long)logical);
1309
		return -ENOENT;
J
Jan Schmidt 已提交
1310
	}
1311 1312 1313 1314 1315 1316 1317 1318

	eb = path->nodes[0];
	item_size = btrfs_item_size_nr(eb, path->slots[0]);
	BUG_ON(item_size < sizeof(*ei));

	ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
	flags = btrfs_extent_flags(eb, ei);

J
Jan Schmidt 已提交
1319 1320 1321 1322 1323 1324 1325
	pr_debug("logical %llu is at position %llu within the extent (%llu "
		 "EXTENT_ITEM %llu) flags %#llx size %u\n",
		 (unsigned long long)logical,
		 (unsigned long long)(logical - found_key->objectid),
		 (unsigned long long)found_key->objectid,
		 (unsigned long long)found_key->offset,
		 (unsigned long long)flags, item_size);
1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336

	WARN_ON(!flags_ret);
	if (flags_ret) {
		if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
			*flags_ret = BTRFS_EXTENT_FLAG_TREE_BLOCK;
		else if (flags & BTRFS_EXTENT_FLAG_DATA)
			*flags_ret = BTRFS_EXTENT_FLAG_DATA;
		else
			BUG_ON(1);
		return 0;
	}
1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428

	return -EIO;
}

/*
 * helper function to iterate extent inline refs. ptr must point to a 0 value
 * for the first call and may be modified. it is used to track state.
 * if more refs exist, 0 is returned and the next call to
 * __get_extent_inline_ref must pass the modified ptr parameter to get the
 * next ref. after the last ref was processed, 1 is returned.
 * returns <0 on error
 */
static int __get_extent_inline_ref(unsigned long *ptr, struct extent_buffer *eb,
				struct btrfs_extent_item *ei, u32 item_size,
				struct btrfs_extent_inline_ref **out_eiref,
				int *out_type)
{
	unsigned long end;
	u64 flags;
	struct btrfs_tree_block_info *info;

	if (!*ptr) {
		/* first call */
		flags = btrfs_extent_flags(eb, ei);
		if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
			info = (struct btrfs_tree_block_info *)(ei + 1);
			*out_eiref =
				(struct btrfs_extent_inline_ref *)(info + 1);
		} else {
			*out_eiref = (struct btrfs_extent_inline_ref *)(ei + 1);
		}
		*ptr = (unsigned long)*out_eiref;
		if ((void *)*ptr >= (void *)ei + item_size)
			return -ENOENT;
	}

	end = (unsigned long)ei + item_size;
	*out_eiref = (struct btrfs_extent_inline_ref *)*ptr;
	*out_type = btrfs_extent_inline_ref_type(eb, *out_eiref);

	*ptr += btrfs_extent_inline_ref_size(*out_type);
	WARN_ON(*ptr > end);
	if (*ptr == end)
		return 1; /* last */

	return 0;
}

/*
 * reads the tree block backref for an extent. tree level and root are returned
 * through out_level and out_root. ptr must point to a 0 value for the first
 * call and may be modified (see __get_extent_inline_ref comment).
 * returns 0 if data was provided, 1 if there was no more data to provide or
 * <0 on error.
 */
int tree_backref_for_extent(unsigned long *ptr, struct extent_buffer *eb,
				struct btrfs_extent_item *ei, u32 item_size,
				u64 *out_root, u8 *out_level)
{
	int ret;
	int type;
	struct btrfs_tree_block_info *info;
	struct btrfs_extent_inline_ref *eiref;

	if (*ptr == (unsigned long)-1)
		return 1;

	while (1) {
		ret = __get_extent_inline_ref(ptr, eb, ei, item_size,
						&eiref, &type);
		if (ret < 0)
			return ret;

		if (type == BTRFS_TREE_BLOCK_REF_KEY ||
		    type == BTRFS_SHARED_BLOCK_REF_KEY)
			break;

		if (ret == 1)
			return 1;
	}

	/* we can treat both ref types equally here */
	info = (struct btrfs_tree_block_info *)(ei + 1);
	*out_root = btrfs_extent_inline_ref_offset(eb, eiref);
	*out_level = btrfs_tree_block_level(eb, info);

	if (ret == 1)
		*ptr = (unsigned long)-1;

	return 0;
}

1429 1430
static int iterate_leaf_refs(struct extent_inode_elem *inode_list,
				u64 root, u64 extent_item_objectid,
J
Jan Schmidt 已提交
1431
				iterate_extent_inodes_t *iterate, void *ctx)
1432
{
1433
	struct extent_inode_elem *eie;
J
Jan Schmidt 已提交
1434 1435
	int ret = 0;

1436
	for (eie = inode_list; eie; eie = eie->next) {
J
Jan Schmidt 已提交
1437
		pr_debug("ref for %llu resolved, key (%llu EXTEND_DATA %llu), "
1438 1439 1440
			 "root %llu\n", extent_item_objectid,
			 eie->inum, eie->offset, root);
		ret = iterate(eie->inum, eie->offset, root, ctx);
J
Jan Schmidt 已提交
1441
		if (ret) {
1442 1443
			pr_debug("stopping iteration for %llu due to ret=%d\n",
				 extent_item_objectid, ret);
J
Jan Schmidt 已提交
1444 1445
			break;
		}
1446 1447 1448 1449 1450 1451 1452
	}

	return ret;
}

/*
 * calls iterate() for every inode that references the extent identified by
J
Jan Schmidt 已提交
1453
 * the given parameters.
1454 1455 1456
 * when the iterator function returns a non-zero value, iteration stops.
 */
int iterate_extent_inodes(struct btrfs_fs_info *fs_info,
J
Jan Schmidt 已提交
1457
				u64 extent_item_objectid, u64 extent_item_pos,
1458
				int search_commit_root,
1459 1460 1461 1462 1463
				iterate_extent_inodes_t *iterate, void *ctx)
{
	int ret;
	struct list_head data_refs = LIST_HEAD_INIT(data_refs);
	struct list_head shared_refs = LIST_HEAD_INIT(shared_refs);
J
Jan Schmidt 已提交
1464
	struct btrfs_trans_handle *trans;
1465 1466
	struct ulist *refs = NULL;
	struct ulist *roots = NULL;
J
Jan Schmidt 已提交
1467 1468
	struct ulist_node *ref_node = NULL;
	struct ulist_node *root_node = NULL;
1469
	struct seq_list tree_mod_seq_elem = {};
J
Jan Schmidt 已提交
1470 1471
	struct ulist_iterator ref_uiter;
	struct ulist_iterator root_uiter;
1472

J
Jan Schmidt 已提交
1473 1474
	pr_debug("resolving all inodes for extent %llu\n",
			extent_item_objectid);
1475

1476 1477 1478 1479 1480 1481
	if (search_commit_root) {
		trans = BTRFS_BACKREF_SEARCH_COMMIT_ROOT;
	} else {
		trans = btrfs_join_transaction(fs_info->extent_root);
		if (IS_ERR(trans))
			return PTR_ERR(trans);
1482
		btrfs_get_tree_mod_seq(fs_info, &tree_mod_seq_elem);
1483
	}
1484

J
Jan Schmidt 已提交
1485
	ret = btrfs_find_all_leafs(trans, fs_info, extent_item_objectid,
1486
				   tree_mod_seq_elem.seq, &refs,
1487
				   &extent_item_pos);
J
Jan Schmidt 已提交
1488 1489
	if (ret)
		goto out;
1490

J
Jan Schmidt 已提交
1491 1492
	ULIST_ITER_INIT(&ref_uiter);
	while (!ret && (ref_node = ulist_next(refs, &ref_uiter))) {
1493
		ret = btrfs_find_all_roots(trans, fs_info, ref_node->val,
1494
					   tree_mod_seq_elem.seq, &roots);
J
Jan Schmidt 已提交
1495 1496
		if (ret)
			break;
J
Jan Schmidt 已提交
1497 1498
		ULIST_ITER_INIT(&root_uiter);
		while (!ret && (root_node = ulist_next(roots, &root_uiter))) {
1499
			pr_debug("root %llu references leaf %llu, data list "
1500
				 "%#llx\n", root_node->val, ref_node->val,
1501 1502 1503 1504 1505 1506
				 (long long)ref_node->aux);
			ret = iterate_leaf_refs((struct extent_inode_elem *)
						(uintptr_t)ref_node->aux,
						root_node->val,
						extent_item_objectid,
						iterate, ctx);
J
Jan Schmidt 已提交
1507
		}
1508 1509
		ulist_free(roots);
		roots = NULL;
1510 1511
	}

1512
	free_leaf_list(refs);
J
Jan Schmidt 已提交
1513 1514
	ulist_free(roots);
out:
1515
	if (!search_commit_root) {
1516
		btrfs_put_tree_mod_seq(fs_info, &tree_mod_seq_elem);
1517 1518 1519
		btrfs_end_transaction(trans, fs_info->extent_root);
	}

1520 1521 1522 1523 1524 1525 1526 1527
	return ret;
}

int iterate_inodes_from_logical(u64 logical, struct btrfs_fs_info *fs_info,
				struct btrfs_path *path,
				iterate_extent_inodes_t *iterate, void *ctx)
{
	int ret;
J
Jan Schmidt 已提交
1528
	u64 extent_item_pos;
1529
	u64 flags = 0;
1530
	struct btrfs_key found_key;
1531
	int search_commit_root = path->search_commit_root;
1532

1533
	ret = extent_from_logical(fs_info, logical, path, &found_key, &flags);
J
Jan Schmidt 已提交
1534
	btrfs_release_path(path);
1535 1536
	if (ret < 0)
		return ret;
1537
	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1538
		return -EINVAL;
1539

J
Jan Schmidt 已提交
1540
	extent_item_pos = logical - found_key.objectid;
1541 1542 1543
	ret = iterate_extent_inodes(fs_info, found_key.objectid,
					extent_item_pos, search_commit_root,
					iterate, ctx);
1544 1545 1546 1547

	return ret;
}

M
Mark Fasheh 已提交
1548 1549 1550 1551 1552 1553
typedef int (iterate_irefs_t)(u64 parent, u32 name_len, unsigned long name_off,
			      struct extent_buffer *eb, void *ctx);

static int iterate_inode_refs(u64 inum, struct btrfs_root *fs_root,
			      struct btrfs_path *path,
			      iterate_irefs_t *iterate, void *ctx)
1554
{
1555
	int ret = 0;
1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566
	int slot;
	u32 cur;
	u32 len;
	u32 name_len;
	u64 parent = 0;
	int found = 0;
	struct extent_buffer *eb;
	struct btrfs_item *item;
	struct btrfs_inode_ref *iref;
	struct btrfs_key found_key;

1567
	while (!ret) {
1568
		path->leave_spinning = 1;
1569
		ret = inode_ref_info(inum, parent ? parent+1 : 0, fs_root, path,
M
Mark Fasheh 已提交
1570
				     &found_key);
1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583
		if (ret < 0)
			break;
		if (ret) {
			ret = found ? 0 : -ENOENT;
			break;
		}
		++found;

		parent = found_key.offset;
		slot = path->slots[0];
		eb = path->nodes[0];
		/* make sure we can use eb after releasing the path */
		atomic_inc(&eb->refs);
1584 1585
		btrfs_tree_read_lock(eb);
		btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
1586 1587 1588 1589 1590 1591 1592 1593
		btrfs_release_path(path);

		item = btrfs_item_nr(eb, slot);
		iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);

		for (cur = 0; cur < btrfs_item_size(eb, item); cur += len) {
			name_len = btrfs_inode_ref_name_len(eb, iref);
			/* path must be released before calling iterate()! */
J
Jan Schmidt 已提交
1594 1595 1596 1597
			pr_debug("following ref at offset %u for inode %llu in "
				 "tree %llu\n", cur,
				 (unsigned long long)found_key.objectid,
				 (unsigned long long)fs_root->objectid);
M
Mark Fasheh 已提交
1598 1599
			ret = iterate(parent, name_len,
				      (unsigned long)(iref + 1), eb, ctx);
1600
			if (ret)
1601 1602 1603 1604
				break;
			len = sizeof(*iref) + name_len;
			iref = (struct btrfs_inode_ref *)((char *)iref + len);
		}
1605
		btrfs_tree_read_unlock_blocking(eb);
1606 1607 1608 1609 1610 1611 1612 1613
		free_extent_buffer(eb);
	}

	btrfs_release_path(path);

	return ret;
}

M
Mark Fasheh 已提交
1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699
static int iterate_inode_extrefs(u64 inum, struct btrfs_root *fs_root,
				 struct btrfs_path *path,
				 iterate_irefs_t *iterate, void *ctx)
{
	int ret;
	int slot;
	u64 offset = 0;
	u64 parent;
	int found = 0;
	struct extent_buffer *eb;
	struct btrfs_inode_extref *extref;
	struct extent_buffer *leaf;
	u32 item_size;
	u32 cur_offset;
	unsigned long ptr;

	while (1) {
		ret = btrfs_find_one_extref(fs_root, inum, offset, path, &extref,
					    &offset);
		if (ret < 0)
			break;
		if (ret) {
			ret = found ? 0 : -ENOENT;
			break;
		}
		++found;

		slot = path->slots[0];
		eb = path->nodes[0];
		/* make sure we can use eb after releasing the path */
		atomic_inc(&eb->refs);

		btrfs_tree_read_lock(eb);
		btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
		btrfs_release_path(path);

		leaf = path->nodes[0];
		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
		cur_offset = 0;

		while (cur_offset < item_size) {
			u32 name_len;

			extref = (struct btrfs_inode_extref *)(ptr + cur_offset);
			parent = btrfs_inode_extref_parent(eb, extref);
			name_len = btrfs_inode_extref_name_len(eb, extref);
			ret = iterate(parent, name_len,
				      (unsigned long)&extref->name, eb, ctx);
			if (ret)
				break;

			cur_offset += btrfs_inode_extref_name_len(leaf, extref);
			cur_offset += sizeof(*extref);
		}
		btrfs_tree_read_unlock_blocking(eb);
		free_extent_buffer(eb);

		offset++;
	}

	btrfs_release_path(path);

	return ret;
}

static int iterate_irefs(u64 inum, struct btrfs_root *fs_root,
			 struct btrfs_path *path, iterate_irefs_t *iterate,
			 void *ctx)
{
	int ret;
	int found_refs = 0;

	ret = iterate_inode_refs(inum, fs_root, path, iterate, ctx);
	if (!ret)
		++found_refs;
	else if (ret != -ENOENT)
		return ret;

	ret = iterate_inode_extrefs(inum, fs_root, path, iterate, ctx);
	if (ret == -ENOENT && found_refs)
		return 0;

	return ret;
}

1700 1701 1702 1703
/*
 * returns 0 if the path could be dumped (probably truncated)
 * returns <0 in case of an error
 */
M
Mark Fasheh 已提交
1704 1705
static int inode_to_path(u64 inum, u32 name_len, unsigned long name_off,
			 struct extent_buffer *eb, void *ctx)
1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716
{
	struct inode_fs_paths *ipath = ctx;
	char *fspath;
	char *fspath_min;
	int i = ipath->fspath->elem_cnt;
	const int s_ptr = sizeof(char *);
	u32 bytes_left;

	bytes_left = ipath->fspath->bytes_left > s_ptr ?
					ipath->fspath->bytes_left - s_ptr : 0;

1717
	fspath_min = (char *)ipath->fspath->val + (i + 1) * s_ptr;
M
Mark Fasheh 已提交
1718 1719 1720
	fspath = ref_to_path(ipath->fs_root, ipath->btrfs_path, name_len,
			     name_off, eb, inum, fspath_min,
			     bytes_left);
1721 1722 1723 1724
	if (IS_ERR(fspath))
		return PTR_ERR(fspath);

	if (fspath > fspath_min) {
1725
		ipath->fspath->val[i] = (u64)(unsigned long)fspath;
1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739
		++ipath->fspath->elem_cnt;
		ipath->fspath->bytes_left = fspath - fspath_min;
	} else {
		++ipath->fspath->elem_missed;
		ipath->fspath->bytes_missing += fspath_min - fspath;
		ipath->fspath->bytes_left = 0;
	}

	return 0;
}

/*
 * this dumps all file system paths to the inode into the ipath struct, provided
 * is has been created large enough. each path is zero-terminated and accessed
1740
 * from ipath->fspath->val[i].
1741
 * when it returns, there are ipath->fspath->elem_cnt number of paths available
1742
 * in ipath->fspath->val[]. when the allocated space wasn't sufficient, the
1743 1744 1745 1746 1747 1748 1749
 * number of missed paths in recored in ipath->fspath->elem_missed, otherwise,
 * it's zero. ipath->fspath->bytes_missing holds the number of bytes that would
 * have been needed to return all paths.
 */
int paths_from_inode(u64 inum, struct inode_fs_paths *ipath)
{
	return iterate_irefs(inum, ipath->fs_root, ipath->btrfs_path,
M
Mark Fasheh 已提交
1750
			     inode_to_path, ipath);
1751 1752 1753 1754 1755 1756 1757 1758
}

struct btrfs_data_container *init_data_container(u32 total_bytes)
{
	struct btrfs_data_container *data;
	size_t alloc_bytes;

	alloc_bytes = max_t(size_t, total_bytes, sizeof(*data));
1759
	data = vmalloc(alloc_bytes);
1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807
	if (!data)
		return ERR_PTR(-ENOMEM);

	if (total_bytes >= sizeof(*data)) {
		data->bytes_left = total_bytes - sizeof(*data);
		data->bytes_missing = 0;
	} else {
		data->bytes_missing = sizeof(*data) - total_bytes;
		data->bytes_left = 0;
	}

	data->elem_cnt = 0;
	data->elem_missed = 0;

	return data;
}

/*
 * allocates space to return multiple file system paths for an inode.
 * total_bytes to allocate are passed, note that space usable for actual path
 * information will be total_bytes - sizeof(struct inode_fs_paths).
 * the returned pointer must be freed with free_ipath() in the end.
 */
struct inode_fs_paths *init_ipath(s32 total_bytes, struct btrfs_root *fs_root,
					struct btrfs_path *path)
{
	struct inode_fs_paths *ifp;
	struct btrfs_data_container *fspath;

	fspath = init_data_container(total_bytes);
	if (IS_ERR(fspath))
		return (void *)fspath;

	ifp = kmalloc(sizeof(*ifp), GFP_NOFS);
	if (!ifp) {
		kfree(fspath);
		return ERR_PTR(-ENOMEM);
	}

	ifp->btrfs_path = path;
	ifp->fspath = fspath;
	ifp->fs_root = fs_root;

	return ifp;
}

void free_ipath(struct inode_fs_paths *ipath)
{
1808 1809
	if (!ipath)
		return;
1810
	vfree(ipath->fspath);
1811 1812
	kfree(ipath);
}