backref.c 48.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/*
 * Copyright (C) 2011 STRATO.  All rights reserved.
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public
 * License v2 as published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * General Public License for more details.
 *
 * You should have received a copy of the GNU General Public
 * License along with this program; if not, write to the
 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
 * Boston, MA 021110-1307, USA.
 */

19
#include <linux/vmalloc.h>
20 21 22
#include "ctree.h"
#include "disk-io.h"
#include "backref.h"
23 24 25
#include "ulist.h"
#include "transaction.h"
#include "delayed-ref.h"
26
#include "locking.h"
27

28 29 30 31 32 33 34 35 36 37 38
struct extent_inode_elem {
	u64 inum;
	u64 offset;
	struct extent_inode_elem *next;
};

static int check_extent_in_eb(struct btrfs_key *key, struct extent_buffer *eb,
				struct btrfs_file_extent_item *fi,
				u64 extent_item_pos,
				struct extent_inode_elem **eie)
{
39
	u64 offset = 0;
40 41
	struct extent_inode_elem *e;

42 43 44 45 46
	if (!btrfs_file_extent_compression(eb, fi) &&
	    !btrfs_file_extent_encryption(eb, fi) &&
	    !btrfs_file_extent_other_encoding(eb, fi)) {
		u64 data_offset;
		u64 data_len;
47

48 49 50 51 52 53 54 55
		data_offset = btrfs_file_extent_offset(eb, fi);
		data_len = btrfs_file_extent_num_bytes(eb, fi);

		if (extent_item_pos < data_offset ||
		    extent_item_pos >= data_offset + data_len)
			return 1;
		offset = extent_item_pos - data_offset;
	}
56 57 58 59 60 61 62

	e = kmalloc(sizeof(*e), GFP_NOFS);
	if (!e)
		return -ENOMEM;

	e->next = *eie;
	e->inum = key->objectid;
63
	e->offset = key->offset + offset;
64 65 66 67 68
	*eie = e;

	return 0;
}

69 70 71 72 73 74 75 76 77 78
static void free_inode_elem_list(struct extent_inode_elem *eie)
{
	struct extent_inode_elem *eie_next;

	for (; eie; eie = eie_next) {
		eie_next = eie->next;
		kfree(eie);
	}
}

79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117
static int find_extent_in_eb(struct extent_buffer *eb, u64 wanted_disk_byte,
				u64 extent_item_pos,
				struct extent_inode_elem **eie)
{
	u64 disk_byte;
	struct btrfs_key key;
	struct btrfs_file_extent_item *fi;
	int slot;
	int nritems;
	int extent_type;
	int ret;

	/*
	 * from the shared data ref, we only have the leaf but we need
	 * the key. thus, we must look into all items and see that we
	 * find one (some) with a reference to our extent item.
	 */
	nritems = btrfs_header_nritems(eb);
	for (slot = 0; slot < nritems; ++slot) {
		btrfs_item_key_to_cpu(eb, &key, slot);
		if (key.type != BTRFS_EXTENT_DATA_KEY)
			continue;
		fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
		extent_type = btrfs_file_extent_type(eb, fi);
		if (extent_type == BTRFS_FILE_EXTENT_INLINE)
			continue;
		/* don't skip BTRFS_FILE_EXTENT_PREALLOC, we can handle that */
		disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
		if (disk_byte != wanted_disk_byte)
			continue;

		ret = check_extent_in_eb(&key, eb, fi, extent_item_pos, eie);
		if (ret < 0)
			return ret;
	}

	return 0;
}

118 119 120 121 122 123
/*
 * this structure records all encountered refs on the way up to the root
 */
struct __prelim_ref {
	struct list_head list;
	u64 root_id;
124
	struct btrfs_key key_for_search;
125 126
	int level;
	int count;
127
	struct extent_inode_elem *inode_list;
128 129 130 131
	u64 parent;
	u64 wanted_disk_byte;
};

132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151
static struct kmem_cache *btrfs_prelim_ref_cache;

int __init btrfs_prelim_ref_init(void)
{
	btrfs_prelim_ref_cache = kmem_cache_create("btrfs_prelim_ref",
					sizeof(struct __prelim_ref),
					0,
					SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
					NULL);
	if (!btrfs_prelim_ref_cache)
		return -ENOMEM;
	return 0;
}

void btrfs_prelim_ref_exit(void)
{
	if (btrfs_prelim_ref_cache)
		kmem_cache_destroy(btrfs_prelim_ref_cache);
}

152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190
/*
 * the rules for all callers of this function are:
 * - obtaining the parent is the goal
 * - if you add a key, you must know that it is a correct key
 * - if you cannot add the parent or a correct key, then we will look into the
 *   block later to set a correct key
 *
 * delayed refs
 * ============
 *        backref type | shared | indirect | shared | indirect
 * information         |   tree |     tree |   data |     data
 * --------------------+--------+----------+--------+----------
 *      parent logical |    y   |     -    |    -   |     -
 *      key to resolve |    -   |     y    |    y   |     y
 *  tree block logical |    -   |     -    |    -   |     -
 *  root for resolving |    y   |     y    |    y   |     y
 *
 * - column 1:       we've the parent -> done
 * - column 2, 3, 4: we use the key to find the parent
 *
 * on disk refs (inline or keyed)
 * ==============================
 *        backref type | shared | indirect | shared | indirect
 * information         |   tree |     tree |   data |     data
 * --------------------+--------+----------+--------+----------
 *      parent logical |    y   |     -    |    y   |     -
 *      key to resolve |    -   |     -    |    -   |     y
 *  tree block logical |    y   |     y    |    y   |     y
 *  root for resolving |    -   |     y    |    y   |     y
 *
 * - column 1, 3: we've the parent -> done
 * - column 2:    we take the first key from the block to find the parent
 *                (see __add_missing_keys)
 * - column 4:    we use the key to find the parent
 *
 * additional information that's available but not required to find the parent
 * block might help in merging entries to gain some speed.
 */

191
static int __add_prelim_ref(struct list_head *head, u64 root_id,
192
			    struct btrfs_key *key, int level,
193 194
			    u64 parent, u64 wanted_disk_byte, int count,
			    gfp_t gfp_mask)
195 196 197
{
	struct __prelim_ref *ref;

198 199 200
	if (root_id == BTRFS_DATA_RELOC_TREE_OBJECTID)
		return 0;

201
	ref = kmem_cache_alloc(btrfs_prelim_ref_cache, gfp_mask);
202 203 204 205 206
	if (!ref)
		return -ENOMEM;

	ref->root_id = root_id;
	if (key)
207
		ref->key_for_search = *key;
208
	else
209
		memset(&ref->key_for_search, 0, sizeof(ref->key_for_search));
210

211
	ref->inode_list = NULL;
212 213 214 215 216 217 218 219 220 221
	ref->level = level;
	ref->count = count;
	ref->parent = parent;
	ref->wanted_disk_byte = wanted_disk_byte;
	list_add_tail(&ref->list, head);

	return 0;
}

static int add_all_parents(struct btrfs_root *root, struct btrfs_path *path,
222
			   struct ulist *parents, struct __prelim_ref *ref,
223 224
			   int level, u64 time_seq, const u64 *extent_item_pos,
			   u64 total_refs)
225
{
226 227 228 229
	int ret = 0;
	int slot;
	struct extent_buffer *eb;
	struct btrfs_key key;
230
	struct btrfs_key *key_for_search = &ref->key_for_search;
231
	struct btrfs_file_extent_item *fi;
232
	struct extent_inode_elem *eie = NULL, *old = NULL;
233
	u64 disk_byte;
234 235
	u64 wanted_disk_byte = ref->wanted_disk_byte;
	u64 count = 0;
236

237 238 239
	if (level != 0) {
		eb = path->nodes[level];
		ret = ulist_add(parents, eb->start, 0, GFP_NOFS);
240 241
		if (ret < 0)
			return ret;
242
		return 0;
243
	}
244 245

	/*
246 247 248
	 * We normally enter this function with the path already pointing to
	 * the first item to check. But sometimes, we may enter it with
	 * slot==nritems. In that case, go to the next leaf before we continue.
249
	 */
250
	if (path->slots[0] >= btrfs_header_nritems(path->nodes[0]))
J
Jan Schmidt 已提交
251
		ret = btrfs_next_old_leaf(root, path, time_seq);
252

253
	while (!ret && count < total_refs) {
254
		eb = path->nodes[0];
255 256 257 258 259 260 261 262 263 264 265 266 267
		slot = path->slots[0];

		btrfs_item_key_to_cpu(eb, &key, slot);

		if (key.objectid != key_for_search->objectid ||
		    key.type != BTRFS_EXTENT_DATA_KEY)
			break;

		fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
		disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);

		if (disk_byte == wanted_disk_byte) {
			eie = NULL;
268
			old = NULL;
269
			count++;
270 271 272 273 274 275 276
			if (extent_item_pos) {
				ret = check_extent_in_eb(&key, eb, fi,
						*extent_item_pos,
						&eie);
				if (ret < 0)
					break;
			}
277 278
			if (ret > 0)
				goto next;
279 280
			ret = ulist_add_merge_ptr(parents, eb->start,
						  eie, (void **)&old, GFP_NOFS);
281 282 283 284 285 286
			if (ret < 0)
				break;
			if (!ret && extent_item_pos) {
				while (old->next)
					old = old->next;
				old->next = eie;
287
			}
288
			eie = NULL;
289
		}
290
next:
291
		ret = btrfs_next_old_item(root, path, time_seq);
292 293
	}

294 295
	if (ret > 0)
		ret = 0;
296 297
	else if (ret < 0)
		free_inode_elem_list(eie);
298
	return ret;
299 300 301 302 303 304 305
}

/*
 * resolve an indirect backref in the form (root_id, key, level)
 * to a logical address
 */
static int __resolve_indirect_ref(struct btrfs_fs_info *fs_info,
306 307 308
				  struct btrfs_path *path, u64 time_seq,
				  struct __prelim_ref *ref,
				  struct ulist *parents,
309
				  const u64 *extent_item_pos, u64 total_refs)
310 311 312 313 314 315 316
{
	struct btrfs_root *root;
	struct btrfs_key root_key;
	struct extent_buffer *eb;
	int ret = 0;
	int root_level;
	int level = ref->level;
317
	int index;
318 319 320 321

	root_key.objectid = ref->root_id;
	root_key.type = BTRFS_ROOT_ITEM_KEY;
	root_key.offset = (u64)-1;
322 323 324

	index = srcu_read_lock(&fs_info->subvol_srcu);

325 326
	root = btrfs_read_fs_root_no_name(fs_info, &root_key);
	if (IS_ERR(root)) {
327
		srcu_read_unlock(&fs_info->subvol_srcu, index);
328 329 330 331
		ret = PTR_ERR(root);
		goto out;
	}

332 333 334 335
	if (path->search_commit_root)
		root_level = btrfs_header_level(root->commit_root);
	else
		root_level = btrfs_old_root_level(root, time_seq);
336

337 338
	if (root_level + 1 == level) {
		srcu_read_unlock(&fs_info->subvol_srcu, index);
339
		goto out;
340
	}
341 342

	path->lowest_level = level;
343
	ret = btrfs_search_old_slot(root, &ref->key_for_search, path, time_seq);
344 345 346 347

	/* root node has been locked, we can release @subvol_srcu safely here */
	srcu_read_unlock(&fs_info->subvol_srcu, index);

348 349
	pr_debug("search slot in root %llu (level %d, ref count %d) returned "
		 "%d for key (%llu %u %llu)\n",
350 351 352
		 ref->root_id, level, ref->count, ret,
		 ref->key_for_search.objectid, ref->key_for_search.type,
		 ref->key_for_search.offset);
353 354 355 356
	if (ret < 0)
		goto out;

	eb = path->nodes[level];
357
	while (!eb) {
358
		if (WARN_ON(!level)) {
359 360 361 362 363
			ret = 1;
			goto out;
		}
		level--;
		eb = path->nodes[level];
364 365
	}

366
	ret = add_all_parents(root, path, parents, ref, level, time_seq,
367
			      extent_item_pos, total_refs);
368
out:
369 370
	path->lowest_level = 0;
	btrfs_release_path(path);
371 372 373 374 375 376 377
	return ret;
}

/*
 * resolve all indirect backrefs from the list
 */
static int __resolve_indirect_refs(struct btrfs_fs_info *fs_info,
378
				   struct btrfs_path *path, u64 time_seq,
379
				   struct list_head *head,
380
				   const u64 *extent_item_pos, u64 total_refs)
381 382 383 384 385 386 387 388
{
	int err;
	int ret = 0;
	struct __prelim_ref *ref;
	struct __prelim_ref *ref_safe;
	struct __prelim_ref *new_ref;
	struct ulist *parents;
	struct ulist_node *node;
J
Jan Schmidt 已提交
389
	struct ulist_iterator uiter;
390 391 392 393 394 395 396 397 398 399 400 401 402 403 404

	parents = ulist_alloc(GFP_NOFS);
	if (!parents)
		return -ENOMEM;

	/*
	 * _safe allows us to insert directly after the current item without
	 * iterating over the newly inserted items.
	 * we're also allowed to re-assign ref during iteration.
	 */
	list_for_each_entry_safe(ref, ref_safe, head, list) {
		if (ref->parent)	/* already direct */
			continue;
		if (ref->count == 0)
			continue;
405
		err = __resolve_indirect_ref(fs_info, path, time_seq, ref,
406 407
					     parents, extent_item_pos,
					     total_refs);
408 409 410 411 412
		/*
		 * we can only tolerate ENOENT,otherwise,we should catch error
		 * and return directly.
		 */
		if (err == -ENOENT) {
413
			continue;
414 415 416 417
		} else if (err) {
			ret = err;
			goto out;
		}
418 419

		/* we put the first parent into the ref at hand */
J
Jan Schmidt 已提交
420 421
		ULIST_ITER_INIT(&uiter);
		node = ulist_next(parents, &uiter);
422
		ref->parent = node ? node->val : 0;
423
		ref->inode_list = node ?
424
			(struct extent_inode_elem *)(uintptr_t)node->aux : NULL;
425 426

		/* additional parents require new refs being added here */
J
Jan Schmidt 已提交
427
		while ((node = ulist_next(parents, &uiter))) {
428 429
			new_ref = kmem_cache_alloc(btrfs_prelim_ref_cache,
						   GFP_NOFS);
430 431
			if (!new_ref) {
				ret = -ENOMEM;
432
				goto out;
433 434 435
			}
			memcpy(new_ref, ref, sizeof(*ref));
			new_ref->parent = node->val;
436 437
			new_ref->inode_list = (struct extent_inode_elem *)
							(uintptr_t)node->aux;
438 439 440 441
			list_add(&new_ref->list, &ref->list);
		}
		ulist_reinit(parents);
	}
442
out:
443 444 445 446
	ulist_free(parents);
	return ret;
}

447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484
static inline int ref_for_same_block(struct __prelim_ref *ref1,
				     struct __prelim_ref *ref2)
{
	if (ref1->level != ref2->level)
		return 0;
	if (ref1->root_id != ref2->root_id)
		return 0;
	if (ref1->key_for_search.type != ref2->key_for_search.type)
		return 0;
	if (ref1->key_for_search.objectid != ref2->key_for_search.objectid)
		return 0;
	if (ref1->key_for_search.offset != ref2->key_for_search.offset)
		return 0;
	if (ref1->parent != ref2->parent)
		return 0;

	return 1;
}

/*
 * read tree blocks and add keys where required.
 */
static int __add_missing_keys(struct btrfs_fs_info *fs_info,
			      struct list_head *head)
{
	struct list_head *pos;
	struct extent_buffer *eb;

	list_for_each(pos, head) {
		struct __prelim_ref *ref;
		ref = list_entry(pos, struct __prelim_ref, list);

		if (ref->parent)
			continue;
		if (ref->key_for_search.type)
			continue;
		BUG_ON(!ref->wanted_disk_byte);
		eb = read_tree_block(fs_info->tree_root, ref->wanted_disk_byte,
485
				     fs_info->tree_root->nodesize, 0);
486 487 488 489
		if (!eb || !extent_buffer_uptodate(eb)) {
			free_extent_buffer(eb);
			return -EIO;
		}
490 491 492 493 494 495 496 497 498 499 500
		btrfs_tree_read_lock(eb);
		if (btrfs_header_level(eb) == 0)
			btrfs_item_key_to_cpu(eb, &ref->key_for_search, 0);
		else
			btrfs_node_key_to_cpu(eb, &ref->key_for_search, 0);
		btrfs_tree_read_unlock(eb);
		free_extent_buffer(eb);
	}
	return 0;
}

501 502 503 504
/*
 * merge two lists of backrefs and adjust counts accordingly
 *
 * mode = 1: merge identical keys, if key is set
505 506 507 508
 *    FIXME: if we add more keys in __add_prelim_ref, we can merge more here.
 *           additionally, we could even add a key range for the blocks we
 *           looked into to merge even more (-> replace unresolved refs by those
 *           having a parent).
509 510
 * mode = 2: merge identical parents
 */
511
static void __merge_refs(struct list_head *head, int mode)
512 513 514 515 516 517 518 519 520 521 522 523 524
{
	struct list_head *pos1;

	list_for_each(pos1, head) {
		struct list_head *n2;
		struct list_head *pos2;
		struct __prelim_ref *ref1;

		ref1 = list_entry(pos1, struct __prelim_ref, list);

		for (pos2 = pos1->next, n2 = pos2->next; pos2 != head;
		     pos2 = n2, n2 = pos2->next) {
			struct __prelim_ref *ref2;
525
			struct __prelim_ref *xchg;
526
			struct extent_inode_elem *eie;
527 528 529 530

			ref2 = list_entry(pos2, struct __prelim_ref, list);

			if (mode == 1) {
531
				if (!ref_for_same_block(ref1, ref2))
532
					continue;
533 534 535 536 537
				if (!ref1->parent && ref2->parent) {
					xchg = ref1;
					ref1 = ref2;
					ref2 = xchg;
				}
538 539 540 541
			} else {
				if (ref1->parent != ref2->parent)
					continue;
			}
542 543 544 545 546 547 548 549 550 551

			eie = ref1->inode_list;
			while (eie && eie->next)
				eie = eie->next;
			if (eie)
				eie->next = ref2->inode_list;
			else
				ref1->inode_list = ref2->inode_list;
			ref1->count += ref2->count;

552
			list_del(&ref2->list);
553
			kmem_cache_free(btrfs_prelim_ref_cache, ref2);
554 555 556 557 558 559 560 561 562 563
		}

	}
}

/*
 * add all currently queued delayed refs from this head whose seq nr is
 * smaller or equal that seq to the list
 */
static int __add_delayed_refs(struct btrfs_delayed_ref_head *head, u64 seq,
564
			      struct list_head *prefs, u64 *total_refs)
565 566 567
{
	struct btrfs_delayed_extent_op *extent_op = head->extent_op;
	struct rb_node *n = &head->node.rb_node;
568 569
	struct btrfs_key key;
	struct btrfs_key op_key = {0};
570
	int sgn;
571
	int ret = 0;
572 573

	if (extent_op && extent_op->update_key)
574
		btrfs_disk_key_to_cpu(&op_key, &extent_op->key);
575

576 577 578
	spin_lock(&head->lock);
	n = rb_first(&head->ref_root);
	while (n) {
579 580 581
		struct btrfs_delayed_ref_node *node;
		node = rb_entry(n, struct btrfs_delayed_ref_node,
				rb_node);
582
		n = rb_next(n);
583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599
		if (node->seq > seq)
			continue;

		switch (node->action) {
		case BTRFS_ADD_DELAYED_EXTENT:
		case BTRFS_UPDATE_DELAYED_HEAD:
			WARN_ON(1);
			continue;
		case BTRFS_ADD_DELAYED_REF:
			sgn = 1;
			break;
		case BTRFS_DROP_DELAYED_REF:
			sgn = -1;
			break;
		default:
			BUG_ON(1);
		}
600
		*total_refs += (node->ref_mod * sgn);
601 602 603 604 605
		switch (node->type) {
		case BTRFS_TREE_BLOCK_REF_KEY: {
			struct btrfs_delayed_tree_ref *ref;

			ref = btrfs_delayed_node_to_tree_ref(node);
606
			ret = __add_prelim_ref(prefs, ref->root, &op_key,
607
					       ref->level + 1, 0, node->bytenr,
608
					       node->ref_mod * sgn, GFP_ATOMIC);
609 610 611 612 613 614
			break;
		}
		case BTRFS_SHARED_BLOCK_REF_KEY: {
			struct btrfs_delayed_tree_ref *ref;

			ref = btrfs_delayed_node_to_tree_ref(node);
615
			ret = __add_prelim_ref(prefs, ref->root, NULL,
616 617
					       ref->level + 1, ref->parent,
					       node->bytenr,
618
					       node->ref_mod * sgn, GFP_ATOMIC);
619 620 621 622 623 624 625 626 627 628 629
			break;
		}
		case BTRFS_EXTENT_DATA_REF_KEY: {
			struct btrfs_delayed_data_ref *ref;
			ref = btrfs_delayed_node_to_data_ref(node);

			key.objectid = ref->objectid;
			key.type = BTRFS_EXTENT_DATA_KEY;
			key.offset = ref->offset;
			ret = __add_prelim_ref(prefs, ref->root, &key, 0, 0,
					       node->bytenr,
630
					       node->ref_mod * sgn, GFP_ATOMIC);
631 632 633 634 635 636 637 638 639 640 641 642
			break;
		}
		case BTRFS_SHARED_DATA_REF_KEY: {
			struct btrfs_delayed_data_ref *ref;

			ref = btrfs_delayed_node_to_data_ref(node);

			key.objectid = ref->objectid;
			key.type = BTRFS_EXTENT_DATA_KEY;
			key.offset = ref->offset;
			ret = __add_prelim_ref(prefs, ref->root, &key, 0,
					       ref->parent, node->bytenr,
643
					       node->ref_mod * sgn, GFP_ATOMIC);
644 645 646 647 648
			break;
		}
		default:
			WARN_ON(1);
		}
649
		if (ret)
650
			break;
651
	}
652 653
	spin_unlock(&head->lock);
	return ret;
654 655 656 657 658 659 660
}

/*
 * add all inline backrefs for bytenr to the list
 */
static int __add_inline_refs(struct btrfs_fs_info *fs_info,
			     struct btrfs_path *path, u64 bytenr,
661 662
			     int *info_level, struct list_head *prefs,
			     u64 *total_refs)
663
{
664
	int ret = 0;
665 666 667
	int slot;
	struct extent_buffer *leaf;
	struct btrfs_key key;
668
	struct btrfs_key found_key;
669 670 671 672 673 674 675 676 677 678
	unsigned long ptr;
	unsigned long end;
	struct btrfs_extent_item *ei;
	u64 flags;
	u64 item_size;

	/*
	 * enumerate all inline refs
	 */
	leaf = path->nodes[0];
679
	slot = path->slots[0];
680 681 682 683 684 685

	item_size = btrfs_item_size_nr(leaf, slot);
	BUG_ON(item_size < sizeof(*ei));

	ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item);
	flags = btrfs_extent_flags(leaf, ei);
686
	*total_refs += btrfs_extent_refs(leaf, ei);
687
	btrfs_item_key_to_cpu(leaf, &found_key, slot);
688 689 690 691

	ptr = (unsigned long)(ei + 1);
	end = (unsigned long)ei + item_size;

692 693
	if (found_key.type == BTRFS_EXTENT_ITEM_KEY &&
	    flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
694 695 696 697 698 699
		struct btrfs_tree_block_info *info;

		info = (struct btrfs_tree_block_info *)ptr;
		*info_level = btrfs_tree_block_level(leaf, info);
		ptr += sizeof(struct btrfs_tree_block_info);
		BUG_ON(ptr > end);
700 701
	} else if (found_key.type == BTRFS_METADATA_ITEM_KEY) {
		*info_level = found_key.offset;
702 703 704 705 706 707 708 709 710 711 712 713 714 715 716
	} else {
		BUG_ON(!(flags & BTRFS_EXTENT_FLAG_DATA));
	}

	while (ptr < end) {
		struct btrfs_extent_inline_ref *iref;
		u64 offset;
		int type;

		iref = (struct btrfs_extent_inline_ref *)ptr;
		type = btrfs_extent_inline_ref_type(leaf, iref);
		offset = btrfs_extent_inline_ref_offset(leaf, iref);

		switch (type) {
		case BTRFS_SHARED_BLOCK_REF_KEY:
717
			ret = __add_prelim_ref(prefs, 0, NULL,
718
						*info_level + 1, offset,
719
						bytenr, 1, GFP_NOFS);
720 721 722 723 724 725 726 727
			break;
		case BTRFS_SHARED_DATA_REF_KEY: {
			struct btrfs_shared_data_ref *sdref;
			int count;

			sdref = (struct btrfs_shared_data_ref *)(iref + 1);
			count = btrfs_shared_data_ref_count(leaf, sdref);
			ret = __add_prelim_ref(prefs, 0, NULL, 0, offset,
728
					       bytenr, count, GFP_NOFS);
729 730 731
			break;
		}
		case BTRFS_TREE_BLOCK_REF_KEY:
732 733
			ret = __add_prelim_ref(prefs, offset, NULL,
					       *info_level + 1, 0,
734
					       bytenr, 1, GFP_NOFS);
735 736 737 738 739 740 741 742 743 744 745 746 747
			break;
		case BTRFS_EXTENT_DATA_REF_KEY: {
			struct btrfs_extent_data_ref *dref;
			int count;
			u64 root;

			dref = (struct btrfs_extent_data_ref *)(&iref->offset);
			count = btrfs_extent_data_ref_count(leaf, dref);
			key.objectid = btrfs_extent_data_ref_objectid(leaf,
								      dref);
			key.type = BTRFS_EXTENT_DATA_KEY;
			key.offset = btrfs_extent_data_ref_offset(leaf, dref);
			root = btrfs_extent_data_ref_root(leaf, dref);
748
			ret = __add_prelim_ref(prefs, root, &key, 0, 0,
749
					       bytenr, count, GFP_NOFS);
750 751 752 753 754
			break;
		}
		default:
			WARN_ON(1);
		}
755 756
		if (ret)
			return ret;
757 758 759 760 761 762 763 764 765 766 767
		ptr += btrfs_extent_inline_ref_size(type);
	}

	return 0;
}

/*
 * add all non-inline backrefs for bytenr to the list
 */
static int __add_keyed_refs(struct btrfs_fs_info *fs_info,
			    struct btrfs_path *path, u64 bytenr,
768
			    int info_level, struct list_head *prefs)
769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797
{
	struct btrfs_root *extent_root = fs_info->extent_root;
	int ret;
	int slot;
	struct extent_buffer *leaf;
	struct btrfs_key key;

	while (1) {
		ret = btrfs_next_item(extent_root, path);
		if (ret < 0)
			break;
		if (ret) {
			ret = 0;
			break;
		}

		slot = path->slots[0];
		leaf = path->nodes[0];
		btrfs_item_key_to_cpu(leaf, &key, slot);

		if (key.objectid != bytenr)
			break;
		if (key.type < BTRFS_TREE_BLOCK_REF_KEY)
			continue;
		if (key.type > BTRFS_SHARED_DATA_REF_KEY)
			break;

		switch (key.type) {
		case BTRFS_SHARED_BLOCK_REF_KEY:
798
			ret = __add_prelim_ref(prefs, 0, NULL,
799
						info_level + 1, key.offset,
800
						bytenr, 1, GFP_NOFS);
801 802 803 804 805 806 807 808 809
			break;
		case BTRFS_SHARED_DATA_REF_KEY: {
			struct btrfs_shared_data_ref *sdref;
			int count;

			sdref = btrfs_item_ptr(leaf, slot,
					      struct btrfs_shared_data_ref);
			count = btrfs_shared_data_ref_count(leaf, sdref);
			ret = __add_prelim_ref(prefs, 0, NULL, 0, key.offset,
810
						bytenr, count, GFP_NOFS);
811 812 813
			break;
		}
		case BTRFS_TREE_BLOCK_REF_KEY:
814 815
			ret = __add_prelim_ref(prefs, key.offset, NULL,
					       info_level + 1, 0,
816
					       bytenr, 1, GFP_NOFS);
817 818 819 820 821 822 823 824 825 826 827 828 829 830 831
			break;
		case BTRFS_EXTENT_DATA_REF_KEY: {
			struct btrfs_extent_data_ref *dref;
			int count;
			u64 root;

			dref = btrfs_item_ptr(leaf, slot,
					      struct btrfs_extent_data_ref);
			count = btrfs_extent_data_ref_count(leaf, dref);
			key.objectid = btrfs_extent_data_ref_objectid(leaf,
								      dref);
			key.type = BTRFS_EXTENT_DATA_KEY;
			key.offset = btrfs_extent_data_ref_offset(leaf, dref);
			root = btrfs_extent_data_ref_root(leaf, dref);
			ret = __add_prelim_ref(prefs, root, &key, 0, 0,
832
					       bytenr, count, GFP_NOFS);
833 834 835 836 837
			break;
		}
		default:
			WARN_ON(1);
		}
838 839 840
		if (ret)
			return ret;

841 842 843 844 845 846 847 848 849 850 851 852 853 854 855
	}

	return ret;
}

/*
 * this adds all existing backrefs (inline backrefs, backrefs and delayed
 * refs) for the given bytenr to the refs list, merges duplicates and resolves
 * indirect refs to their parent bytenr.
 * When roots are found, they're added to the roots list
 *
 * FIXME some caching might speed things up
 */
static int find_parent_nodes(struct btrfs_trans_handle *trans,
			     struct btrfs_fs_info *fs_info, u64 bytenr,
856 857
			     u64 time_seq, struct ulist *refs,
			     struct ulist *roots, const u64 *extent_item_pos)
858 859 860 861
{
	struct btrfs_key key;
	struct btrfs_path *path;
	struct btrfs_delayed_ref_root *delayed_refs = NULL;
862
	struct btrfs_delayed_ref_head *head;
863 864 865 866 867
	int info_level = 0;
	int ret;
	struct list_head prefs_delayed;
	struct list_head prefs;
	struct __prelim_ref *ref;
868
	struct extent_inode_elem *eie = NULL;
869
	u64 total_refs = 0;
870 871 872 873 874 875

	INIT_LIST_HEAD(&prefs);
	INIT_LIST_HEAD(&prefs_delayed);

	key.objectid = bytenr;
	key.offset = (u64)-1;
876 877 878 879
	if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
		key.type = BTRFS_METADATA_ITEM_KEY;
	else
		key.type = BTRFS_EXTENT_ITEM_KEY;
880 881 882 883

	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;
884
	if (!trans) {
885
		path->search_commit_root = 1;
886 887
		path->skip_locking = 1;
	}
888 889 890 891 892 893 894

	/*
	 * grab both a lock on the path and a lock on the delayed ref head.
	 * We need both to get a consistent picture of how the refs look
	 * at a specified point in time
	 */
again:
895 896
	head = NULL;

897 898 899 900 901
	ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 0);
	if (ret < 0)
		goto out;
	BUG_ON(ret == 0);

902 903 904
#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
	if (trans && likely(trans->type != __TRANS_DUMMY)) {
#else
905
	if (trans) {
906
#endif
907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929
		/*
		 * look if there are updates for this ref queued and lock the
		 * head
		 */
		delayed_refs = &trans->transaction->delayed_refs;
		spin_lock(&delayed_refs->lock);
		head = btrfs_find_delayed_ref_head(trans, bytenr);
		if (head) {
			if (!mutex_trylock(&head->mutex)) {
				atomic_inc(&head->node.refs);
				spin_unlock(&delayed_refs->lock);

				btrfs_release_path(path);

				/*
				 * Mutex was contended, block until it's
				 * released and try again
				 */
				mutex_lock(&head->mutex);
				mutex_unlock(&head->mutex);
				btrfs_put_delayed_ref(&head->node);
				goto again;
			}
930
			spin_unlock(&delayed_refs->lock);
931
			ret = __add_delayed_refs(head, time_seq,
932
						 &prefs_delayed, &total_refs);
933
			mutex_unlock(&head->mutex);
934
			if (ret)
935
				goto out;
936 937
		} else {
			spin_unlock(&delayed_refs->lock);
938
		}
939 940 941 942 943 944
	}

	if (path->slots[0]) {
		struct extent_buffer *leaf;
		int slot;

945
		path->slots[0]--;
946
		leaf = path->nodes[0];
947
		slot = path->slots[0];
948 949
		btrfs_item_key_to_cpu(leaf, &key, slot);
		if (key.objectid == bytenr &&
950 951
		    (key.type == BTRFS_EXTENT_ITEM_KEY ||
		     key.type == BTRFS_METADATA_ITEM_KEY)) {
952
			ret = __add_inline_refs(fs_info, path, bytenr,
953 954
						&info_level, &prefs,
						&total_refs);
955 956
			if (ret)
				goto out;
957
			ret = __add_keyed_refs(fs_info, path, bytenr,
958 959 960 961 962 963 964 965 966
					       info_level, &prefs);
			if (ret)
				goto out;
		}
	}
	btrfs_release_path(path);

	list_splice_init(&prefs_delayed, &prefs);

967 968 969 970
	ret = __add_missing_keys(fs_info, &prefs);
	if (ret)
		goto out;

971
	__merge_refs(&prefs, 1);
972

973
	ret = __resolve_indirect_refs(fs_info, path, time_seq, &prefs,
974
				      extent_item_pos, total_refs);
975 976 977
	if (ret)
		goto out;

978
	__merge_refs(&prefs, 2);
979 980 981

	while (!list_empty(&prefs)) {
		ref = list_first_entry(&prefs, struct __prelim_ref, list);
J
Julia Lawall 已提交
982
		WARN_ON(ref->count < 0);
983
		if (roots && ref->count && ref->root_id && ref->parent == 0) {
984 985
			/* no parent == root of tree */
			ret = ulist_add(roots, ref->root_id, 0, GFP_NOFS);
986 987
			if (ret < 0)
				goto out;
988 989
		}
		if (ref->count && ref->parent) {
990 991
			if (extent_item_pos && !ref->inode_list &&
			    ref->level == 0) {
992 993
				u32 bsz;
				struct extent_buffer *eb;
994 995

				bsz = fs_info->extent_root->nodesize;
996 997
				eb = read_tree_block(fs_info->extent_root,
							   ref->parent, bsz, 0);
998 999
				if (!eb || !extent_buffer_uptodate(eb)) {
					free_extent_buffer(eb);
1000 1001
					ret = -EIO;
					goto out;
1002
				}
1003 1004
				btrfs_tree_read_lock(eb);
				btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
1005 1006
				ret = find_extent_in_eb(eb, bytenr,
							*extent_item_pos, &eie);
1007
				btrfs_tree_read_unlock_blocking(eb);
1008
				free_extent_buffer(eb);
1009 1010 1011
				if (ret < 0)
					goto out;
				ref->inode_list = eie;
1012
			}
1013 1014 1015
			ret = ulist_add_merge_ptr(refs, ref->parent,
						  ref->inode_list,
						  (void **)&eie, GFP_NOFS);
1016 1017
			if (ret < 0)
				goto out;
1018 1019 1020 1021 1022 1023 1024 1025 1026 1027
			if (!ret && extent_item_pos) {
				/*
				 * we've recorded that parent, so we must extend
				 * its inode list here
				 */
				BUG_ON(!eie);
				while (eie->next)
					eie = eie->next;
				eie->next = ref->inode_list;
			}
1028
			eie = NULL;
1029
		}
1030
		list_del(&ref->list);
1031
		kmem_cache_free(btrfs_prelim_ref_cache, ref);
1032 1033 1034 1035 1036 1037 1038
	}

out:
	btrfs_free_path(path);
	while (!list_empty(&prefs)) {
		ref = list_first_entry(&prefs, struct __prelim_ref, list);
		list_del(&ref->list);
1039
		kmem_cache_free(btrfs_prelim_ref_cache, ref);
1040 1041 1042 1043 1044
	}
	while (!list_empty(&prefs_delayed)) {
		ref = list_first_entry(&prefs_delayed, struct __prelim_ref,
				       list);
		list_del(&ref->list);
1045
		kmem_cache_free(btrfs_prelim_ref_cache, ref);
1046
	}
1047 1048
	if (ret < 0)
		free_inode_elem_list(eie);
1049 1050 1051
	return ret;
}

1052 1053 1054 1055 1056 1057 1058 1059 1060 1061
static void free_leaf_list(struct ulist *blocks)
{
	struct ulist_node *node = NULL;
	struct extent_inode_elem *eie;
	struct ulist_iterator uiter;

	ULIST_ITER_INIT(&uiter);
	while ((node = ulist_next(blocks, &uiter))) {
		if (!node->aux)
			continue;
1062
		eie = (struct extent_inode_elem *)(uintptr_t)node->aux;
1063
		free_inode_elem_list(eie);
1064 1065 1066 1067 1068 1069
		node->aux = 0;
	}

	ulist_free(blocks);
}

1070 1071 1072 1073 1074 1075 1076 1077 1078 1079
/*
 * Finds all leafs with a reference to the specified combination of bytenr and
 * offset. key_list_head will point to a list of corresponding keys (caller must
 * free each list element). The leafs will be stored in the leafs ulist, which
 * must be freed with ulist_free.
 *
 * returns 0 on success, <0 on error
 */
static int btrfs_find_all_leafs(struct btrfs_trans_handle *trans,
				struct btrfs_fs_info *fs_info, u64 bytenr,
1080
				u64 time_seq, struct ulist **leafs,
1081
				const u64 *extent_item_pos)
1082 1083 1084 1085
{
	int ret;

	*leafs = ulist_alloc(GFP_NOFS);
1086
	if (!*leafs)
1087 1088
		return -ENOMEM;

1089
	ret = find_parent_nodes(trans, fs_info, bytenr,
1090
				time_seq, *leafs, NULL, extent_item_pos);
1091
	if (ret < 0 && ret != -ENOENT) {
1092
		free_leaf_list(*leafs);
1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111
		return ret;
	}

	return 0;
}

/*
 * walk all backrefs for a given extent to find all roots that reference this
 * extent. Walking a backref means finding all extents that reference this
 * extent and in turn walk the backrefs of those, too. Naturally this is a
 * recursive process, but here it is implemented in an iterative fashion: We
 * find all referencing extents for the extent in question and put them on a
 * list. In turn, we find all referencing extents for those, further appending
 * to the list. The way we iterate the list allows adding more elements after
 * the current while iterating. The process stops when we reach the end of the
 * list. Found roots are added to the roots list.
 *
 * returns 0 on success, < 0 on error.
 */
1112 1113 1114
static int __btrfs_find_all_roots(struct btrfs_trans_handle *trans,
				  struct btrfs_fs_info *fs_info, u64 bytenr,
				  u64 time_seq, struct ulist **roots)
1115 1116 1117
{
	struct ulist *tmp;
	struct ulist_node *node = NULL;
J
Jan Schmidt 已提交
1118
	struct ulist_iterator uiter;
1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129
	int ret;

	tmp = ulist_alloc(GFP_NOFS);
	if (!tmp)
		return -ENOMEM;
	*roots = ulist_alloc(GFP_NOFS);
	if (!*roots) {
		ulist_free(tmp);
		return -ENOMEM;
	}

J
Jan Schmidt 已提交
1130
	ULIST_ITER_INIT(&uiter);
1131
	while (1) {
1132
		ret = find_parent_nodes(trans, fs_info, bytenr,
1133
					time_seq, tmp, *roots, NULL);
1134 1135 1136 1137 1138
		if (ret < 0 && ret != -ENOENT) {
			ulist_free(tmp);
			ulist_free(*roots);
			return ret;
		}
J
Jan Schmidt 已提交
1139
		node = ulist_next(tmp, &uiter);
1140 1141 1142
		if (!node)
			break;
		bytenr = node->val;
1143
		cond_resched();
1144 1145 1146 1147 1148 1149
	}

	ulist_free(tmp);
	return 0;
}

1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163
int btrfs_find_all_roots(struct btrfs_trans_handle *trans,
			 struct btrfs_fs_info *fs_info, u64 bytenr,
			 u64 time_seq, struct ulist **roots)
{
	int ret;

	if (!trans)
		down_read(&fs_info->commit_root_sem);
	ret = __btrfs_find_all_roots(trans, fs_info, bytenr, time_seq, roots);
	if (!trans)
		up_read(&fs_info->commit_root_sem);
	return ret;
}

1164 1165 1166 1167 1168 1169 1170
/*
 * this makes the path point to (inum INODE_ITEM ioff)
 */
int inode_item_info(u64 inum, u64 ioff, struct btrfs_root *fs_root,
			struct btrfs_path *path)
{
	struct btrfs_key key;
1171 1172
	return btrfs_find_item(fs_root, path, inum, ioff,
			BTRFS_INODE_ITEM_KEY, &key);
1173 1174 1175 1176 1177 1178
}

static int inode_ref_info(u64 inum, u64 ioff, struct btrfs_root *fs_root,
				struct btrfs_path *path,
				struct btrfs_key *found_key)
{
1179 1180
	return btrfs_find_item(fs_root, path, inum, ioff,
			BTRFS_INODE_REF_KEY, found_key);
1181 1182
}

M
Mark Fasheh 已提交
1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195
int btrfs_find_one_extref(struct btrfs_root *root, u64 inode_objectid,
			  u64 start_off, struct btrfs_path *path,
			  struct btrfs_inode_extref **ret_extref,
			  u64 *found_off)
{
	int ret, slot;
	struct btrfs_key key;
	struct btrfs_key found_key;
	struct btrfs_inode_extref *extref;
	struct extent_buffer *leaf;
	unsigned long ptr;

	key.objectid = inode_objectid;
1196
	key.type = BTRFS_INODE_EXTREF_KEY;
M
Mark Fasheh 已提交
1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235
	key.offset = start_off;

	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
	if (ret < 0)
		return ret;

	while (1) {
		leaf = path->nodes[0];
		slot = path->slots[0];
		if (slot >= btrfs_header_nritems(leaf)) {
			/*
			 * If the item at offset is not found,
			 * btrfs_search_slot will point us to the slot
			 * where it should be inserted. In our case
			 * that will be the slot directly before the
			 * next INODE_REF_KEY_V2 item. In the case
			 * that we're pointing to the last slot in a
			 * leaf, we must move one leaf over.
			 */
			ret = btrfs_next_leaf(root, path);
			if (ret) {
				if (ret >= 1)
					ret = -ENOENT;
				break;
			}
			continue;
		}

		btrfs_item_key_to_cpu(leaf, &found_key, slot);

		/*
		 * Check that we're still looking at an extended ref key for
		 * this particular objectid. If we have different
		 * objectid or type then there are no more to be found
		 * in the tree and we can exit.
		 */
		ret = -ENOENT;
		if (found_key.objectid != inode_objectid)
			break;
1236
		if (found_key.type != BTRFS_INODE_EXTREF_KEY)
M
Mark Fasheh 已提交
1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250
			break;

		ret = 0;
		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
		extref = (struct btrfs_inode_extref *)ptr;
		*ret_extref = extref;
		if (found_off)
			*found_off = found_key.offset;
		break;
	}

	return ret;
}

1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264
/*
 * this iterates to turn a name (from iref/extref) into a full filesystem path.
 * Elements of the path are separated by '/' and the path is guaranteed to be
 * 0-terminated. the path is only given within the current file system.
 * Therefore, it never starts with a '/'. the caller is responsible to provide
 * "size" bytes in "dest". the dest buffer will be filled backwards. finally,
 * the start point of the resulting string is returned. this pointer is within
 * dest, normally.
 * in case the path buffer would overflow, the pointer is decremented further
 * as if output was written to the buffer, though no more output is actually
 * generated. that way, the caller can determine how much space would be
 * required for the path to fit into the buffer. in that case, the returned
 * value will be smaller than dest. callers must check this!
 */
1265 1266 1267 1268
char *btrfs_ref_to_path(struct btrfs_root *fs_root, struct btrfs_path *path,
			u32 name_len, unsigned long name_off,
			struct extent_buffer *eb_in, u64 parent,
			char *dest, u32 size)
1269 1270 1271 1272
{
	int slot;
	u64 next_inum;
	int ret;
1273
	s64 bytes_left = ((s64)size) - 1;
1274 1275
	struct extent_buffer *eb = eb_in;
	struct btrfs_key found_key;
1276
	int leave_spinning = path->leave_spinning;
M
Mark Fasheh 已提交
1277
	struct btrfs_inode_ref *iref;
1278 1279 1280 1281

	if (bytes_left >= 0)
		dest[bytes_left] = '\0';

1282
	path->leave_spinning = 1;
1283
	while (1) {
M
Mark Fasheh 已提交
1284
		bytes_left -= name_len;
1285 1286
		if (bytes_left >= 0)
			read_extent_buffer(eb, dest + bytes_left,
M
Mark Fasheh 已提交
1287
					   name_off, name_len);
1288 1289
		if (eb != eb_in) {
			btrfs_tree_read_unlock_blocking(eb);
1290
			free_extent_buffer(eb);
1291
		}
1292
		ret = inode_ref_info(parent, 0, fs_root, path, &found_key);
1293 1294
		if (ret > 0)
			ret = -ENOENT;
1295 1296
		if (ret)
			break;
M
Mark Fasheh 已提交
1297

1298 1299 1300 1301 1302 1303 1304 1305 1306
		next_inum = found_key.offset;

		/* regular exit ahead */
		if (parent == next_inum)
			break;

		slot = path->slots[0];
		eb = path->nodes[0];
		/* make sure we can use eb after releasing the path */
1307
		if (eb != eb_in) {
1308
			atomic_inc(&eb->refs);
1309 1310 1311
			btrfs_tree_read_lock(eb);
			btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
		}
1312 1313
		btrfs_release_path(path);
		iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);
M
Mark Fasheh 已提交
1314 1315 1316 1317

		name_len = btrfs_inode_ref_name_len(eb, iref);
		name_off = (unsigned long)(iref + 1);

1318 1319 1320 1321 1322 1323 1324
		parent = next_inum;
		--bytes_left;
		if (bytes_left >= 0)
			dest[bytes_left] = '/';
	}

	btrfs_release_path(path);
1325
	path->leave_spinning = leave_spinning;
1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338

	if (ret)
		return ERR_PTR(ret);

	return dest + bytes_left;
}

/*
 * this makes the path point to (logical EXTENT_ITEM *)
 * returns BTRFS_EXTENT_FLAG_DATA for data, BTRFS_EXTENT_FLAG_TREE_BLOCK for
 * tree blocks and <0 on error.
 */
int extent_from_logical(struct btrfs_fs_info *fs_info, u64 logical,
1339 1340
			struct btrfs_path *path, struct btrfs_key *found_key,
			u64 *flags_ret)
1341 1342 1343
{
	int ret;
	u64 flags;
1344
	u64 size = 0;
1345 1346 1347 1348 1349
	u32 item_size;
	struct extent_buffer *eb;
	struct btrfs_extent_item *ei;
	struct btrfs_key key;

1350 1351 1352 1353
	if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
		key.type = BTRFS_METADATA_ITEM_KEY;
	else
		key.type = BTRFS_EXTENT_ITEM_KEY;
1354 1355 1356 1357 1358 1359 1360
	key.objectid = logical;
	key.offset = (u64)-1;

	ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0);
	if (ret < 0)
		return ret;

1361 1362 1363 1364 1365
	ret = btrfs_previous_extent_item(fs_info->extent_root, path, 0);
	if (ret) {
		if (ret > 0)
			ret = -ENOENT;
		return ret;
1366
	}
1367
	btrfs_item_key_to_cpu(path->nodes[0], found_key, path->slots[0]);
1368
	if (found_key->type == BTRFS_METADATA_ITEM_KEY)
1369
		size = fs_info->extent_root->nodesize;
1370 1371 1372
	else if (found_key->type == BTRFS_EXTENT_ITEM_KEY)
		size = found_key->offset;

1373
	if (found_key->objectid > logical ||
1374
	    found_key->objectid + size <= logical) {
1375
		pr_debug("logical %llu is not within any extent\n", logical);
1376
		return -ENOENT;
J
Jan Schmidt 已提交
1377
	}
1378 1379 1380 1381 1382 1383 1384 1385

	eb = path->nodes[0];
	item_size = btrfs_item_size_nr(eb, path->slots[0]);
	BUG_ON(item_size < sizeof(*ei));

	ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
	flags = btrfs_extent_flags(eb, ei);

J
Jan Schmidt 已提交
1386 1387
	pr_debug("logical %llu is at position %llu within the extent (%llu "
		 "EXTENT_ITEM %llu) flags %#llx size %u\n",
1388 1389
		 logical, logical - found_key->objectid, found_key->objectid,
		 found_key->offset, flags, item_size);
1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400

	WARN_ON(!flags_ret);
	if (flags_ret) {
		if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
			*flags_ret = BTRFS_EXTENT_FLAG_TREE_BLOCK;
		else if (flags & BTRFS_EXTENT_FLAG_DATA)
			*flags_ret = BTRFS_EXTENT_FLAG_DATA;
		else
			BUG_ON(1);
		return 0;
	}
1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413

	return -EIO;
}

/*
 * helper function to iterate extent inline refs. ptr must point to a 0 value
 * for the first call and may be modified. it is used to track state.
 * if more refs exist, 0 is returned and the next call to
 * __get_extent_inline_ref must pass the modified ptr parameter to get the
 * next ref. after the last ref was processed, 1 is returned.
 * returns <0 on error
 */
static int __get_extent_inline_ref(unsigned long *ptr, struct extent_buffer *eb,
1414 1415 1416 1417
				   struct btrfs_key *key,
				   struct btrfs_extent_item *ei, u32 item_size,
				   struct btrfs_extent_inline_ref **out_eiref,
				   int *out_type)
1418 1419 1420 1421 1422 1423 1424 1425 1426
{
	unsigned long end;
	u64 flags;
	struct btrfs_tree_block_info *info;

	if (!*ptr) {
		/* first call */
		flags = btrfs_extent_flags(eb, ei);
		if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
1427 1428 1429 1430 1431 1432 1433 1434 1435 1436
			if (key->type == BTRFS_METADATA_ITEM_KEY) {
				/* a skinny metadata extent */
				*out_eiref =
				     (struct btrfs_extent_inline_ref *)(ei + 1);
			} else {
				WARN_ON(key->type != BTRFS_EXTENT_ITEM_KEY);
				info = (struct btrfs_tree_block_info *)(ei + 1);
				*out_eiref =
				   (struct btrfs_extent_inline_ref *)(info + 1);
			}
1437 1438 1439 1440
		} else {
			*out_eiref = (struct btrfs_extent_inline_ref *)(ei + 1);
		}
		*ptr = (unsigned long)*out_eiref;
1441
		if ((unsigned long)(*ptr) >= (unsigned long)ei + item_size)
1442 1443 1444 1445
			return -ENOENT;
	}

	end = (unsigned long)ei + item_size;
1446
	*out_eiref = (struct btrfs_extent_inline_ref *)(*ptr);
1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464
	*out_type = btrfs_extent_inline_ref_type(eb, *out_eiref);

	*ptr += btrfs_extent_inline_ref_size(*out_type);
	WARN_ON(*ptr > end);
	if (*ptr == end)
		return 1; /* last */

	return 0;
}

/*
 * reads the tree block backref for an extent. tree level and root are returned
 * through out_level and out_root. ptr must point to a 0 value for the first
 * call and may be modified (see __get_extent_inline_ref comment).
 * returns 0 if data was provided, 1 if there was no more data to provide or
 * <0 on error.
 */
int tree_backref_for_extent(unsigned long *ptr, struct extent_buffer *eb,
1465 1466
			    struct btrfs_key *key, struct btrfs_extent_item *ei,
			    u32 item_size, u64 *out_root, u8 *out_level)
1467 1468 1469 1470 1471 1472 1473 1474 1475 1476
{
	int ret;
	int type;
	struct btrfs_tree_block_info *info;
	struct btrfs_extent_inline_ref *eiref;

	if (*ptr == (unsigned long)-1)
		return 1;

	while (1) {
1477 1478
		ret = __get_extent_inline_ref(ptr, eb, key, ei, item_size,
					      &eiref, &type);
1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500
		if (ret < 0)
			return ret;

		if (type == BTRFS_TREE_BLOCK_REF_KEY ||
		    type == BTRFS_SHARED_BLOCK_REF_KEY)
			break;

		if (ret == 1)
			return 1;
	}

	/* we can treat both ref types equally here */
	info = (struct btrfs_tree_block_info *)(ei + 1);
	*out_root = btrfs_extent_inline_ref_offset(eb, eiref);
	*out_level = btrfs_tree_block_level(eb, info);

	if (ret == 1)
		*ptr = (unsigned long)-1;

	return 0;
}

1501 1502
static int iterate_leaf_refs(struct extent_inode_elem *inode_list,
				u64 root, u64 extent_item_objectid,
J
Jan Schmidt 已提交
1503
				iterate_extent_inodes_t *iterate, void *ctx)
1504
{
1505
	struct extent_inode_elem *eie;
J
Jan Schmidt 已提交
1506 1507
	int ret = 0;

1508
	for (eie = inode_list; eie; eie = eie->next) {
J
Jan Schmidt 已提交
1509
		pr_debug("ref for %llu resolved, key (%llu EXTEND_DATA %llu), "
1510 1511 1512
			 "root %llu\n", extent_item_objectid,
			 eie->inum, eie->offset, root);
		ret = iterate(eie->inum, eie->offset, root, ctx);
J
Jan Schmidt 已提交
1513
		if (ret) {
1514 1515
			pr_debug("stopping iteration for %llu due to ret=%d\n",
				 extent_item_objectid, ret);
J
Jan Schmidt 已提交
1516 1517
			break;
		}
1518 1519 1520 1521 1522 1523 1524
	}

	return ret;
}

/*
 * calls iterate() for every inode that references the extent identified by
J
Jan Schmidt 已提交
1525
 * the given parameters.
1526 1527 1528
 * when the iterator function returns a non-zero value, iteration stops.
 */
int iterate_extent_inodes(struct btrfs_fs_info *fs_info,
J
Jan Schmidt 已提交
1529
				u64 extent_item_objectid, u64 extent_item_pos,
1530
				int search_commit_root,
1531 1532 1533
				iterate_extent_inodes_t *iterate, void *ctx)
{
	int ret;
1534
	struct btrfs_trans_handle *trans = NULL;
1535 1536
	struct ulist *refs = NULL;
	struct ulist *roots = NULL;
J
Jan Schmidt 已提交
1537 1538
	struct ulist_node *ref_node = NULL;
	struct ulist_node *root_node = NULL;
1539
	struct seq_list tree_mod_seq_elem = {};
J
Jan Schmidt 已提交
1540 1541
	struct ulist_iterator ref_uiter;
	struct ulist_iterator root_uiter;
1542

J
Jan Schmidt 已提交
1543 1544
	pr_debug("resolving all inodes for extent %llu\n",
			extent_item_objectid);
1545

1546
	if (!search_commit_root) {
1547 1548 1549
		trans = btrfs_join_transaction(fs_info->extent_root);
		if (IS_ERR(trans))
			return PTR_ERR(trans);
1550
		btrfs_get_tree_mod_seq(fs_info, &tree_mod_seq_elem);
1551 1552
	} else {
		down_read(&fs_info->commit_root_sem);
1553
	}
1554

J
Jan Schmidt 已提交
1555
	ret = btrfs_find_all_leafs(trans, fs_info, extent_item_objectid,
1556
				   tree_mod_seq_elem.seq, &refs,
1557
				   &extent_item_pos);
J
Jan Schmidt 已提交
1558 1559
	if (ret)
		goto out;
1560

J
Jan Schmidt 已提交
1561 1562
	ULIST_ITER_INIT(&ref_uiter);
	while (!ret && (ref_node = ulist_next(refs, &ref_uiter))) {
1563 1564
		ret = __btrfs_find_all_roots(trans, fs_info, ref_node->val,
					     tree_mod_seq_elem.seq, &roots);
J
Jan Schmidt 已提交
1565 1566
		if (ret)
			break;
J
Jan Schmidt 已提交
1567 1568
		ULIST_ITER_INIT(&root_uiter);
		while (!ret && (root_node = ulist_next(roots, &root_uiter))) {
1569
			pr_debug("root %llu references leaf %llu, data list "
1570
				 "%#llx\n", root_node->val, ref_node->val,
1571
				 ref_node->aux);
1572 1573 1574 1575 1576
			ret = iterate_leaf_refs((struct extent_inode_elem *)
						(uintptr_t)ref_node->aux,
						root_node->val,
						extent_item_objectid,
						iterate, ctx);
J
Jan Schmidt 已提交
1577
		}
1578
		ulist_free(roots);
1579 1580
	}

1581
	free_leaf_list(refs);
J
Jan Schmidt 已提交
1582
out:
1583
	if (!search_commit_root) {
1584
		btrfs_put_tree_mod_seq(fs_info, &tree_mod_seq_elem);
1585
		btrfs_end_transaction(trans, fs_info->extent_root);
1586 1587
	} else {
		up_read(&fs_info->commit_root_sem);
1588 1589
	}

1590 1591 1592 1593 1594 1595 1596 1597
	return ret;
}

int iterate_inodes_from_logical(u64 logical, struct btrfs_fs_info *fs_info,
				struct btrfs_path *path,
				iterate_extent_inodes_t *iterate, void *ctx)
{
	int ret;
J
Jan Schmidt 已提交
1598
	u64 extent_item_pos;
1599
	u64 flags = 0;
1600
	struct btrfs_key found_key;
1601
	int search_commit_root = path->search_commit_root;
1602

1603
	ret = extent_from_logical(fs_info, logical, path, &found_key, &flags);
J
Jan Schmidt 已提交
1604
	btrfs_release_path(path);
1605 1606
	if (ret < 0)
		return ret;
1607
	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1608
		return -EINVAL;
1609

J
Jan Schmidt 已提交
1610
	extent_item_pos = logical - found_key.objectid;
1611 1612 1613
	ret = iterate_extent_inodes(fs_info, found_key.objectid,
					extent_item_pos, search_commit_root,
					iterate, ctx);
1614 1615 1616 1617

	return ret;
}

M
Mark Fasheh 已提交
1618 1619 1620 1621 1622 1623
typedef int (iterate_irefs_t)(u64 parent, u32 name_len, unsigned long name_off,
			      struct extent_buffer *eb, void *ctx);

static int iterate_inode_refs(u64 inum, struct btrfs_root *fs_root,
			      struct btrfs_path *path,
			      iterate_irefs_t *iterate, void *ctx)
1624
{
1625
	int ret = 0;
1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636
	int slot;
	u32 cur;
	u32 len;
	u32 name_len;
	u64 parent = 0;
	int found = 0;
	struct extent_buffer *eb;
	struct btrfs_item *item;
	struct btrfs_inode_ref *iref;
	struct btrfs_key found_key;

1637
	while (!ret) {
1638
		ret = inode_ref_info(inum, parent ? parent+1 : 0, fs_root, path,
M
Mark Fasheh 已提交
1639
				     &found_key);
1640 1641 1642 1643 1644 1645 1646 1647 1648 1649
		if (ret < 0)
			break;
		if (ret) {
			ret = found ? 0 : -ENOENT;
			break;
		}
		++found;

		parent = found_key.offset;
		slot = path->slots[0];
1650 1651 1652 1653 1654 1655
		eb = btrfs_clone_extent_buffer(path->nodes[0]);
		if (!eb) {
			ret = -ENOMEM;
			break;
		}
		extent_buffer_get(eb);
1656 1657
		btrfs_tree_read_lock(eb);
		btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
1658 1659
		btrfs_release_path(path);

1660
		item = btrfs_item_nr(slot);
1661 1662 1663 1664 1665
		iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);

		for (cur = 0; cur < btrfs_item_size(eb, item); cur += len) {
			name_len = btrfs_inode_ref_name_len(eb, iref);
			/* path must be released before calling iterate()! */
J
Jan Schmidt 已提交
1666
			pr_debug("following ref at offset %u for inode %llu in "
1667 1668
				 "tree %llu\n", cur, found_key.objectid,
				 fs_root->objectid);
M
Mark Fasheh 已提交
1669 1670
			ret = iterate(parent, name_len,
				      (unsigned long)(iref + 1), eb, ctx);
1671
			if (ret)
1672 1673 1674 1675
				break;
			len = sizeof(*iref) + name_len;
			iref = (struct btrfs_inode_ref *)((char *)iref + len);
		}
1676
		btrfs_tree_read_unlock_blocking(eb);
1677 1678 1679 1680 1681 1682 1683 1684
		free_extent_buffer(eb);
	}

	btrfs_release_path(path);

	return ret;
}

M
Mark Fasheh 已提交
1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712
static int iterate_inode_extrefs(u64 inum, struct btrfs_root *fs_root,
				 struct btrfs_path *path,
				 iterate_irefs_t *iterate, void *ctx)
{
	int ret;
	int slot;
	u64 offset = 0;
	u64 parent;
	int found = 0;
	struct extent_buffer *eb;
	struct btrfs_inode_extref *extref;
	struct extent_buffer *leaf;
	u32 item_size;
	u32 cur_offset;
	unsigned long ptr;

	while (1) {
		ret = btrfs_find_one_extref(fs_root, inum, offset, path, &extref,
					    &offset);
		if (ret < 0)
			break;
		if (ret) {
			ret = found ? 0 : -ENOENT;
			break;
		}
		++found;

		slot = path->slots[0];
1713 1714 1715 1716 1717 1718
		eb = btrfs_clone_extent_buffer(path->nodes[0]);
		if (!eb) {
			ret = -ENOMEM;
			break;
		}
		extent_buffer_get(eb);
M
Mark Fasheh 已提交
1719 1720 1721 1722 1723 1724

		btrfs_tree_read_lock(eb);
		btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
		btrfs_release_path(path);

		leaf = path->nodes[0];
1725 1726
		item_size = btrfs_item_size_nr(leaf, slot);
		ptr = btrfs_item_ptr_offset(leaf, slot);
M
Mark Fasheh 已提交
1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773
		cur_offset = 0;

		while (cur_offset < item_size) {
			u32 name_len;

			extref = (struct btrfs_inode_extref *)(ptr + cur_offset);
			parent = btrfs_inode_extref_parent(eb, extref);
			name_len = btrfs_inode_extref_name_len(eb, extref);
			ret = iterate(parent, name_len,
				      (unsigned long)&extref->name, eb, ctx);
			if (ret)
				break;

			cur_offset += btrfs_inode_extref_name_len(leaf, extref);
			cur_offset += sizeof(*extref);
		}
		btrfs_tree_read_unlock_blocking(eb);
		free_extent_buffer(eb);

		offset++;
	}

	btrfs_release_path(path);

	return ret;
}

static int iterate_irefs(u64 inum, struct btrfs_root *fs_root,
			 struct btrfs_path *path, iterate_irefs_t *iterate,
			 void *ctx)
{
	int ret;
	int found_refs = 0;

	ret = iterate_inode_refs(inum, fs_root, path, iterate, ctx);
	if (!ret)
		++found_refs;
	else if (ret != -ENOENT)
		return ret;

	ret = iterate_inode_extrefs(inum, fs_root, path, iterate, ctx);
	if (ret == -ENOENT && found_refs)
		return 0;

	return ret;
}

1774 1775 1776 1777
/*
 * returns 0 if the path could be dumped (probably truncated)
 * returns <0 in case of an error
 */
M
Mark Fasheh 已提交
1778 1779
static int inode_to_path(u64 inum, u32 name_len, unsigned long name_off,
			 struct extent_buffer *eb, void *ctx)
1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790
{
	struct inode_fs_paths *ipath = ctx;
	char *fspath;
	char *fspath_min;
	int i = ipath->fspath->elem_cnt;
	const int s_ptr = sizeof(char *);
	u32 bytes_left;

	bytes_left = ipath->fspath->bytes_left > s_ptr ?
					ipath->fspath->bytes_left - s_ptr : 0;

1791
	fspath_min = (char *)ipath->fspath->val + (i + 1) * s_ptr;
1792 1793
	fspath = btrfs_ref_to_path(ipath->fs_root, ipath->btrfs_path, name_len,
				   name_off, eb, inum, fspath_min, bytes_left);
1794 1795 1796 1797
	if (IS_ERR(fspath))
		return PTR_ERR(fspath);

	if (fspath > fspath_min) {
1798
		ipath->fspath->val[i] = (u64)(unsigned long)fspath;
1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812
		++ipath->fspath->elem_cnt;
		ipath->fspath->bytes_left = fspath - fspath_min;
	} else {
		++ipath->fspath->elem_missed;
		ipath->fspath->bytes_missing += fspath_min - fspath;
		ipath->fspath->bytes_left = 0;
	}

	return 0;
}

/*
 * this dumps all file system paths to the inode into the ipath struct, provided
 * is has been created large enough. each path is zero-terminated and accessed
1813
 * from ipath->fspath->val[i].
1814
 * when it returns, there are ipath->fspath->elem_cnt number of paths available
1815
 * in ipath->fspath->val[]. when the allocated space wasn't sufficient, the
1816 1817 1818 1819 1820 1821 1822
 * number of missed paths in recored in ipath->fspath->elem_missed, otherwise,
 * it's zero. ipath->fspath->bytes_missing holds the number of bytes that would
 * have been needed to return all paths.
 */
int paths_from_inode(u64 inum, struct inode_fs_paths *ipath)
{
	return iterate_irefs(inum, ipath->fs_root, ipath->btrfs_path,
M
Mark Fasheh 已提交
1823
			     inode_to_path, ipath);
1824 1825 1826 1827 1828 1829 1830 1831
}

struct btrfs_data_container *init_data_container(u32 total_bytes)
{
	struct btrfs_data_container *data;
	size_t alloc_bytes;

	alloc_bytes = max_t(size_t, total_bytes, sizeof(*data));
1832
	data = vmalloc(alloc_bytes);
1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880
	if (!data)
		return ERR_PTR(-ENOMEM);

	if (total_bytes >= sizeof(*data)) {
		data->bytes_left = total_bytes - sizeof(*data);
		data->bytes_missing = 0;
	} else {
		data->bytes_missing = sizeof(*data) - total_bytes;
		data->bytes_left = 0;
	}

	data->elem_cnt = 0;
	data->elem_missed = 0;

	return data;
}

/*
 * allocates space to return multiple file system paths for an inode.
 * total_bytes to allocate are passed, note that space usable for actual path
 * information will be total_bytes - sizeof(struct inode_fs_paths).
 * the returned pointer must be freed with free_ipath() in the end.
 */
struct inode_fs_paths *init_ipath(s32 total_bytes, struct btrfs_root *fs_root,
					struct btrfs_path *path)
{
	struct inode_fs_paths *ifp;
	struct btrfs_data_container *fspath;

	fspath = init_data_container(total_bytes);
	if (IS_ERR(fspath))
		return (void *)fspath;

	ifp = kmalloc(sizeof(*ifp), GFP_NOFS);
	if (!ifp) {
		kfree(fspath);
		return ERR_PTR(-ENOMEM);
	}

	ifp->btrfs_path = path;
	ifp->fspath = fspath;
	ifp->fs_root = fs_root;

	return ifp;
}

void free_ipath(struct inode_fs_paths *ipath)
{
1881 1882
	if (!ipath)
		return;
1883
	vfree(ipath->fspath);
1884 1885
	kfree(ipath);
}