backref.c 56.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/*
 * Copyright (C) 2011 STRATO.  All rights reserved.
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public
 * License v2 as published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * General Public License for more details.
 *
 * You should have received a copy of the GNU General Public
 * License along with this program; if not, write to the
 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
 * Boston, MA 021110-1307, USA.
 */

19
#include <linux/mm.h>
20
#include <linux/rbtree.h>
21 22 23
#include "ctree.h"
#include "disk-io.h"
#include "backref.h"
24 25 26
#include "ulist.h"
#include "transaction.h"
#include "delayed-ref.h"
27
#include "locking.h"
28

29 30 31
/* Just an arbitrary number so we can be sure this happened */
#define BACKREF_FOUND_SHARED 6

32 33 34 35 36 37
struct extent_inode_elem {
	u64 inum;
	u64 offset;
	struct extent_inode_elem *next;
};

38 39 40 41 42
static int check_extent_in_eb(const struct btrfs_key *key,
			      const struct extent_buffer *eb,
			      const struct btrfs_file_extent_item *fi,
			      u64 extent_item_pos,
			      struct extent_inode_elem **eie)
43
{
44
	u64 offset = 0;
45 46
	struct extent_inode_elem *e;

47 48 49 50 51
	if (!btrfs_file_extent_compression(eb, fi) &&
	    !btrfs_file_extent_encryption(eb, fi) &&
	    !btrfs_file_extent_other_encoding(eb, fi)) {
		u64 data_offset;
		u64 data_len;
52

53 54 55 56 57 58 59 60
		data_offset = btrfs_file_extent_offset(eb, fi);
		data_len = btrfs_file_extent_num_bytes(eb, fi);

		if (extent_item_pos < data_offset ||
		    extent_item_pos >= data_offset + data_len)
			return 1;
		offset = extent_item_pos - data_offset;
	}
61 62 63 64 65 66 67

	e = kmalloc(sizeof(*e), GFP_NOFS);
	if (!e)
		return -ENOMEM;

	e->next = *eie;
	e->inum = key->objectid;
68
	e->offset = key->offset + offset;
69 70 71 72 73
	*eie = e;

	return 0;
}

74 75 76 77 78 79 80 81 82 83
static void free_inode_elem_list(struct extent_inode_elem *eie)
{
	struct extent_inode_elem *eie_next;

	for (; eie; eie = eie_next) {
		eie_next = eie->next;
		kfree(eie);
	}
}

84 85 86
static int find_extent_in_eb(const struct extent_buffer *eb,
			     u64 wanted_disk_byte, u64 extent_item_pos,
			     struct extent_inode_elem **eie)
87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122
{
	u64 disk_byte;
	struct btrfs_key key;
	struct btrfs_file_extent_item *fi;
	int slot;
	int nritems;
	int extent_type;
	int ret;

	/*
	 * from the shared data ref, we only have the leaf but we need
	 * the key. thus, we must look into all items and see that we
	 * find one (some) with a reference to our extent item.
	 */
	nritems = btrfs_header_nritems(eb);
	for (slot = 0; slot < nritems; ++slot) {
		btrfs_item_key_to_cpu(eb, &key, slot);
		if (key.type != BTRFS_EXTENT_DATA_KEY)
			continue;
		fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
		extent_type = btrfs_file_extent_type(eb, fi);
		if (extent_type == BTRFS_FILE_EXTENT_INLINE)
			continue;
		/* don't skip BTRFS_FILE_EXTENT_PREALLOC, we can handle that */
		disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
		if (disk_byte != wanted_disk_byte)
			continue;

		ret = check_extent_in_eb(&key, eb, fi, extent_item_pos, eie);
		if (ret < 0)
			return ret;
	}

	return 0;
}

123 124 125
/*
 * this structure records all encountered refs on the way up to the root
 */
126
struct prelim_ref {
127
	struct rb_node rbnode;
128
	u64 root_id;
129
	struct btrfs_key key_for_search;
130 131
	int level;
	int count;
132
	struct extent_inode_elem *inode_list;
133 134 135 136
	u64 parent;
	u64 wanted_disk_byte;
};

137 138
struct preftree {
	struct rb_root root;
139
	unsigned int count;
140 141
};

142
#define PREFTREE_INIT	{ .root = RB_ROOT, .count = 0 }
143 144 145 146 147 148 149

struct preftrees {
	struct preftree direct;    /* BTRFS_SHARED_[DATA|BLOCK]_REF_KEY */
	struct preftree indirect;  /* BTRFS_[TREE_BLOCK|EXTENT_DATA]_REF_KEY */
	struct preftree indirect_missing_keys;
};

150 151 152 153 154
static struct kmem_cache *btrfs_prelim_ref_cache;

int __init btrfs_prelim_ref_init(void)
{
	btrfs_prelim_ref_cache = kmem_cache_create("btrfs_prelim_ref",
155
					sizeof(struct prelim_ref),
156
					0,
157
					SLAB_MEM_SPREAD,
158 159 160 161 162 163 164 165
					NULL);
	if (!btrfs_prelim_ref_cache)
		return -ENOMEM;
	return 0;
}

void btrfs_prelim_ref_exit(void)
{
166
	kmem_cache_destroy(btrfs_prelim_ref_cache);
167 168
}

169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251
static void free_pref(struct prelim_ref *ref)
{
	kmem_cache_free(btrfs_prelim_ref_cache, ref);
}

/*
 * Return 0 when both refs are for the same block (and can be merged).
 * A -1 return indicates ref1 is a 'lower' block than ref2, while 1
 * indicates a 'higher' block.
 */
static int prelim_ref_compare(struct prelim_ref *ref1,
			      struct prelim_ref *ref2)
{
	if (ref1->level < ref2->level)
		return -1;
	if (ref1->level > ref2->level)
		return 1;
	if (ref1->root_id < ref2->root_id)
		return -1;
	if (ref1->root_id > ref2->root_id)
		return 1;
	if (ref1->key_for_search.type < ref2->key_for_search.type)
		return -1;
	if (ref1->key_for_search.type > ref2->key_for_search.type)
		return 1;
	if (ref1->key_for_search.objectid < ref2->key_for_search.objectid)
		return -1;
	if (ref1->key_for_search.objectid > ref2->key_for_search.objectid)
		return 1;
	if (ref1->key_for_search.offset < ref2->key_for_search.offset)
		return -1;
	if (ref1->key_for_search.offset > ref2->key_for_search.offset)
		return 1;
	if (ref1->parent < ref2->parent)
		return -1;
	if (ref1->parent > ref2->parent)
		return 1;

	return 0;
}

/*
 * Add @newref to the @root rbtree, merging identical refs.
 *
 * Callers should assumed that newref has been freed after calling.
 */
static void prelim_ref_insert(struct preftree *preftree,
			      struct prelim_ref *newref)
{
	struct rb_root *root;
	struct rb_node **p;
	struct rb_node *parent = NULL;
	struct prelim_ref *ref;
	int result;

	root = &preftree->root;
	p = &root->rb_node;

	while (*p) {
		parent = *p;
		ref = rb_entry(parent, struct prelim_ref, rbnode);
		result = prelim_ref_compare(ref, newref);
		if (result < 0) {
			p = &(*p)->rb_left;
		} else if (result > 0) {
			p = &(*p)->rb_right;
		} else {
			/* Identical refs, merge them and free @newref */
			struct extent_inode_elem *eie = ref->inode_list;

			while (eie && eie->next)
				eie = eie->next;

			if (!eie)
				ref->inode_list = newref->inode_list;
			else
				eie->next = newref->inode_list;
			ref->count += newref->count;
			free_pref(newref);
			return;
		}
	}

252
	preftree->count++;
253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269
	rb_link_node(&newref->rbnode, parent, p);
	rb_insert_color(&newref->rbnode, root);
}

/*
 * Release the entire tree.  We don't care about internal consistency so
 * just free everything and then reset the tree root.
 */
static void prelim_release(struct preftree *preftree)
{
	struct prelim_ref *ref, *next_ref;

	rbtree_postorder_for_each_entry_safe(ref, next_ref, &preftree->root,
					     rbnode)
		free_pref(ref);

	preftree->root = RB_ROOT;
270
	preftree->count = 0;
271 272
}

273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304
/*
 * the rules for all callers of this function are:
 * - obtaining the parent is the goal
 * - if you add a key, you must know that it is a correct key
 * - if you cannot add the parent or a correct key, then we will look into the
 *   block later to set a correct key
 *
 * delayed refs
 * ============
 *        backref type | shared | indirect | shared | indirect
 * information         |   tree |     tree |   data |     data
 * --------------------+--------+----------+--------+----------
 *      parent logical |    y   |     -    |    -   |     -
 *      key to resolve |    -   |     y    |    y   |     y
 *  tree block logical |    -   |     -    |    -   |     -
 *  root for resolving |    y   |     y    |    y   |     y
 *
 * - column 1:       we've the parent -> done
 * - column 2, 3, 4: we use the key to find the parent
 *
 * on disk refs (inline or keyed)
 * ==============================
 *        backref type | shared | indirect | shared | indirect
 * information         |   tree |     tree |   data |     data
 * --------------------+--------+----------+--------+----------
 *      parent logical |    y   |     -    |    y   |     -
 *      key to resolve |    -   |     -    |    -   |     y
 *  tree block logical |    y   |     y    |    y   |     y
 *  root for resolving |    -   |     y    |    y   |     y
 *
 * - column 1, 3: we've the parent -> done
 * - column 2:    we take the first key from the block to find the parent
305
 *                (see add_missing_keys)
306 307 308 309 310
 * - column 4:    we use the key to find the parent
 *
 * additional information that's available but not required to find the parent
 * block might help in merging entries to gain some speed.
 */
311
static int add_prelim_ref(struct preftree *preftree, u64 root_id,
312 313
			  const struct btrfs_key *key, int level, u64 parent,
			  u64 wanted_disk_byte, int count, gfp_t gfp_mask)
314
{
315
	struct prelim_ref *ref;
316

317 318 319
	if (root_id == BTRFS_DATA_RELOC_TREE_OBJECTID)
		return 0;

320
	ref = kmem_cache_alloc(btrfs_prelim_ref_cache, gfp_mask);
321 322 323 324
	if (!ref)
		return -ENOMEM;

	ref->root_id = root_id;
325
	if (key) {
326
		ref->key_for_search = *key;
327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349
		/*
		 * We can often find data backrefs with an offset that is too
		 * large (>= LLONG_MAX, maximum allowed file offset) due to
		 * underflows when subtracting a file's offset with the data
		 * offset of its corresponding extent data item. This can
		 * happen for example in the clone ioctl.
		 * So if we detect such case we set the search key's offset to
		 * zero to make sure we will find the matching file extent item
		 * at add_all_parents(), otherwise we will miss it because the
		 * offset taken form the backref is much larger then the offset
		 * of the file extent item. This can make us scan a very large
		 * number of file extent items, but at least it will not make
		 * us miss any.
		 * This is an ugly workaround for a behaviour that should have
		 * never existed, but it does and a fix for the clone ioctl
		 * would touch a lot of places, cause backwards incompatibility
		 * and would not fix the problem for extents cloned with older
		 * kernels.
		 */
		if (ref->key_for_search.type == BTRFS_EXTENT_DATA_KEY &&
		    ref->key_for_search.offset >= LLONG_MAX)
			ref->key_for_search.offset = 0;
	} else {
350
		memset(&ref->key_for_search, 0, sizeof(ref->key_for_search));
351
	}
352

353
	ref->inode_list = NULL;
354 355 356 357
	ref->level = level;
	ref->count = count;
	ref->parent = parent;
	ref->wanted_disk_byte = wanted_disk_byte;
358
	prelim_ref_insert(preftree, ref);
359 360 361 362

	return 0;
}

363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383
/* direct refs use root == 0, key == NULL */
static int add_direct_ref(struct preftrees *preftrees, int level, u64 parent,
			  u64 wanted_disk_byte, int count, gfp_t gfp_mask)
{
	return add_prelim_ref(&preftrees->direct, 0, NULL, level, parent,
			      wanted_disk_byte, count, gfp_mask);
}

/* indirect refs use parent == 0 */
static int add_indirect_ref(struct preftrees *preftrees, u64 root_id,
			    const struct btrfs_key *key, int level,
			    u64 wanted_disk_byte, int count, gfp_t gfp_mask)
{
	struct preftree *tree = &preftrees->indirect;

	if (!key)
		tree = &preftrees->indirect_missing_keys;
	return add_prelim_ref(tree, root_id, key, level, 0,
			      wanted_disk_byte, count, gfp_mask);
}

384
static int add_all_parents(struct btrfs_root *root, struct btrfs_path *path,
385
			   struct ulist *parents, struct prelim_ref *ref,
386 387
			   int level, u64 time_seq, const u64 *extent_item_pos,
			   u64 total_refs)
388
{
389 390 391 392
	int ret = 0;
	int slot;
	struct extent_buffer *eb;
	struct btrfs_key key;
393
	struct btrfs_key *key_for_search = &ref->key_for_search;
394
	struct btrfs_file_extent_item *fi;
395
	struct extent_inode_elem *eie = NULL, *old = NULL;
396
	u64 disk_byte;
397 398
	u64 wanted_disk_byte = ref->wanted_disk_byte;
	u64 count = 0;
399

400 401 402
	if (level != 0) {
		eb = path->nodes[level];
		ret = ulist_add(parents, eb->start, 0, GFP_NOFS);
403 404
		if (ret < 0)
			return ret;
405
		return 0;
406
	}
407 408

	/*
409 410 411
	 * We normally enter this function with the path already pointing to
	 * the first item to check. But sometimes, we may enter it with
	 * slot==nritems. In that case, go to the next leaf before we continue.
412
	 */
413
	if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
414
		if (time_seq == SEQ_LAST)
415 416 417 418
			ret = btrfs_next_leaf(root, path);
		else
			ret = btrfs_next_old_leaf(root, path, time_seq);
	}
419

420
	while (!ret && count < total_refs) {
421
		eb = path->nodes[0];
422 423 424 425 426 427 428 429 430 431 432 433 434
		slot = path->slots[0];

		btrfs_item_key_to_cpu(eb, &key, slot);

		if (key.objectid != key_for_search->objectid ||
		    key.type != BTRFS_EXTENT_DATA_KEY)
			break;

		fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
		disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);

		if (disk_byte == wanted_disk_byte) {
			eie = NULL;
435
			old = NULL;
436
			count++;
437 438 439 440 441 442 443
			if (extent_item_pos) {
				ret = check_extent_in_eb(&key, eb, fi,
						*extent_item_pos,
						&eie);
				if (ret < 0)
					break;
			}
444 445
			if (ret > 0)
				goto next;
446 447
			ret = ulist_add_merge_ptr(parents, eb->start,
						  eie, (void **)&old, GFP_NOFS);
448 449 450 451 452 453
			if (ret < 0)
				break;
			if (!ret && extent_item_pos) {
				while (old->next)
					old = old->next;
				old->next = eie;
454
			}
455
			eie = NULL;
456
		}
457
next:
458
		if (time_seq == SEQ_LAST)
459 460 461
			ret = btrfs_next_item(root, path);
		else
			ret = btrfs_next_old_item(root, path, time_seq);
462 463
	}

464 465
	if (ret > 0)
		ret = 0;
466 467
	else if (ret < 0)
		free_inode_elem_list(eie);
468
	return ret;
469 470 471 472 473 474
}

/*
 * resolve an indirect backref in the form (root_id, key, level)
 * to a logical address
 */
475 476 477 478
static int resolve_indirect_ref(struct btrfs_fs_info *fs_info,
				struct btrfs_path *path, u64 time_seq,
				struct prelim_ref *ref, struct ulist *parents,
				const u64 *extent_item_pos, u64 total_refs)
479 480 481 482 483 484 485
{
	struct btrfs_root *root;
	struct btrfs_key root_key;
	struct extent_buffer *eb;
	int ret = 0;
	int root_level;
	int level = ref->level;
486
	int index;
487 488 489 490

	root_key.objectid = ref->root_id;
	root_key.type = BTRFS_ROOT_ITEM_KEY;
	root_key.offset = (u64)-1;
491 492 493

	index = srcu_read_lock(&fs_info->subvol_srcu);

494
	root = btrfs_get_fs_root(fs_info, &root_key, false);
495
	if (IS_ERR(root)) {
496
		srcu_read_unlock(&fs_info->subvol_srcu, index);
497 498 499 500
		ret = PTR_ERR(root);
		goto out;
	}

501
	if (btrfs_is_testing(fs_info)) {
J
Josef Bacik 已提交
502 503 504 505 506
		srcu_read_unlock(&fs_info->subvol_srcu, index);
		ret = -ENOENT;
		goto out;
	}

507 508
	if (path->search_commit_root)
		root_level = btrfs_header_level(root->commit_root);
509
	else if (time_seq == SEQ_LAST)
510
		root_level = btrfs_header_level(root->node);
511 512
	else
		root_level = btrfs_old_root_level(root, time_seq);
513

514 515
	if (root_level + 1 == level) {
		srcu_read_unlock(&fs_info->subvol_srcu, index);
516
		goto out;
517
	}
518 519

	path->lowest_level = level;
520
	if (time_seq == SEQ_LAST)
521 522 523 524 525
		ret = btrfs_search_slot(NULL, root, &ref->key_for_search, path,
					0, 0);
	else
		ret = btrfs_search_old_slot(root, &ref->key_for_search, path,
					    time_seq);
526 527 528 529

	/* root node has been locked, we can release @subvol_srcu safely here */
	srcu_read_unlock(&fs_info->subvol_srcu, index);

530 531
	btrfs_debug(fs_info,
		"search slot in root %llu (level %d, ref count %d) returned %d for key (%llu %u %llu)",
532 533 534
		 ref->root_id, level, ref->count, ret,
		 ref->key_for_search.objectid, ref->key_for_search.type,
		 ref->key_for_search.offset);
535 536 537 538
	if (ret < 0)
		goto out;

	eb = path->nodes[level];
539
	while (!eb) {
540
		if (WARN_ON(!level)) {
541 542 543 544 545
			ret = 1;
			goto out;
		}
		level--;
		eb = path->nodes[level];
546 547
	}

548
	ret = add_all_parents(root, path, parents, ref, level, time_seq,
549
			      extent_item_pos, total_refs);
550
out:
551 552
	path->lowest_level = 0;
	btrfs_release_path(path);
553 554 555
	return ret;
}

556 557 558 559 560 561 562 563
static struct extent_inode_elem *
unode_aux_to_inode_list(struct ulist_node *node)
{
	if (!node)
		return NULL;
	return (struct extent_inode_elem *)(uintptr_t)node->aux;
}

564
/*
565 566 567 568 569 570 571 572 573 574 575 576 577 578
 * We maintain three seperate rbtrees: one for direct refs, one for
 * indirect refs which have a key, and one for indirect refs which do not
 * have a key. Each tree does merge on insertion.
 *
 * Once all of the references are located, we iterate over the tree of
 * indirect refs with missing keys. An appropriate key is located and
 * the ref is moved onto the tree for indirect refs. After all missing
 * keys are thus located, we iterate over the indirect ref tree, resolve
 * each reference, and then insert the resolved reference onto the
 * direct tree (merging there too).
 *
 * New backrefs (i.e., for parent nodes) are added to the appropriate
 * rbtree as they are encountered. The new backrefs are subsequently
 * resolved as above.
579
 */
580 581
static int resolve_indirect_refs(struct btrfs_fs_info *fs_info,
				 struct btrfs_path *path, u64 time_seq,
582
				 struct preftrees *preftrees,
583 584
				 const u64 *extent_item_pos, u64 total_refs,
				 u64 root_objectid)
585 586 587 588 589
{
	int err;
	int ret = 0;
	struct ulist *parents;
	struct ulist_node *node;
J
Jan Schmidt 已提交
590
	struct ulist_iterator uiter;
591
	struct rb_node *rnode;
592 593 594 595 596 597

	parents = ulist_alloc(GFP_NOFS);
	if (!parents)
		return -ENOMEM;

	/*
598 599 600 601
	 * We could trade memory usage for performance here by iterating
	 * the tree, allocating new refs for each insertion, and then
	 * freeing the entire indirect tree when we're done.  In some test
	 * cases, the tree can grow quite large (~200k objects).
602
	 */
603 604 605 606 607 608 609 610 611 612 613
	while ((rnode = rb_first(&preftrees->indirect.root))) {
		struct prelim_ref *ref;

		ref = rb_entry(rnode, struct prelim_ref, rbnode);
		if (WARN(ref->parent,
			 "BUG: direct ref found in indirect tree")) {
			ret = -EINVAL;
			goto out;
		}

		rb_erase(&ref->rbnode, &preftrees->indirect.root);
614
		preftrees->indirect.count--;
615 616 617

		if (ref->count == 0) {
			free_pref(ref);
618
			continue;
619 620
		}

621
		if (root_objectid && ref->root_id != root_objectid) {
622
			free_pref(ref);
623 624 625
			ret = BACKREF_FOUND_SHARED;
			goto out;
		}
626 627 628
		err = resolve_indirect_ref(fs_info, path, time_seq, ref,
					   parents, extent_item_pos,
					   total_refs);
629 630 631 632 633
		/*
		 * we can only tolerate ENOENT,otherwise,we should catch error
		 * and return directly.
		 */
		if (err == -ENOENT) {
634
			prelim_ref_insert(&preftrees->direct, ref);
635
			continue;
636
		} else if (err) {
637
			free_pref(ref);
638 639 640
			ret = err;
			goto out;
		}
641 642

		/* we put the first parent into the ref at hand */
J
Jan Schmidt 已提交
643 644
		ULIST_ITER_INIT(&uiter);
		node = ulist_next(parents, &uiter);
645
		ref->parent = node ? node->val : 0;
646
		ref->inode_list = unode_aux_to_inode_list(node);
647

648
		/* Add a prelim_ref(s) for any other parent(s). */
J
Jan Schmidt 已提交
649
		while ((node = ulist_next(parents, &uiter))) {
650 651
			struct prelim_ref *new_ref;

652 653
			new_ref = kmem_cache_alloc(btrfs_prelim_ref_cache,
						   GFP_NOFS);
654
			if (!new_ref) {
655
				free_pref(ref);
656
				ret = -ENOMEM;
657
				goto out;
658 659 660
			}
			memcpy(new_ref, ref, sizeof(*ref));
			new_ref->parent = node->val;
661
			new_ref->inode_list = unode_aux_to_inode_list(node);
662
			prelim_ref_insert(&preftrees->direct, new_ref);
663
		}
664 665 666 667

		/* Now it's a direct ref, put it in the the direct tree */
		prelim_ref_insert(&preftrees->direct, ref);

668 669
		ulist_reinit(parents);
	}
670
out:
671 672 673 674
	ulist_free(parents);
	return ret;
}

675 676 677
/*
 * read tree blocks and add keys where required.
 */
678
static int add_missing_keys(struct btrfs_fs_info *fs_info,
679
			    struct preftrees *preftrees)
680
{
681
	struct prelim_ref *ref;
682
	struct extent_buffer *eb;
683 684
	struct preftree *tree = &preftrees->indirect_missing_keys;
	struct rb_node *node;
685

686 687 688 689 690 691
	while ((node = rb_first(&tree->root))) {
		ref = rb_entry(node, struct prelim_ref, rbnode);
		rb_erase(node, &tree->root);

		BUG_ON(ref->parent);	/* should not be a direct ref */
		BUG_ON(ref->key_for_search.type);
692
		BUG_ON(!ref->wanted_disk_byte);
693

694
		eb = read_tree_block(fs_info, ref->wanted_disk_byte, 0);
695
		if (IS_ERR(eb)) {
696
			free_pref(ref);
697 698
			return PTR_ERR(eb);
		} else if (!extent_buffer_uptodate(eb)) {
699
			free_pref(ref);
700 701 702
			free_extent_buffer(eb);
			return -EIO;
		}
703 704 705 706 707 708 709
		btrfs_tree_read_lock(eb);
		if (btrfs_header_level(eb) == 0)
			btrfs_item_key_to_cpu(eb, &ref->key_for_search, 0);
		else
			btrfs_node_key_to_cpu(eb, &ref->key_for_search, 0);
		btrfs_tree_read_unlock(eb);
		free_extent_buffer(eb);
710
		prelim_ref_insert(&preftrees->indirect, ref);
711 712 713 714
	}
	return 0;
}

715 716 717 718
/*
 * add all currently queued delayed refs from this head whose seq nr is
 * smaller or equal that seq to the list
 */
719
static int add_delayed_refs(struct btrfs_delayed_ref_head *head, u64 seq,
720
			    struct preftrees *preftrees, u64 *total_refs,
721
			    u64 inum)
722
{
723
	struct btrfs_delayed_ref_node *node;
724
	struct btrfs_delayed_extent_op *extent_op = head->extent_op;
725
	struct btrfs_key key;
726 727
	struct btrfs_key tmp_op_key;
	struct btrfs_key *op_key = NULL;
728
	int sgn;
729
	int ret = 0;
730

731 732 733 734
	if (extent_op && extent_op->update_key) {
		btrfs_disk_key_to_cpu(&tmp_op_key, &extent_op->key);
		op_key = &tmp_op_key;
	}
735

736
	spin_lock(&head->lock);
737
	list_for_each_entry(node, &head->ref_list, list) {
738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754
		if (node->seq > seq)
			continue;

		switch (node->action) {
		case BTRFS_ADD_DELAYED_EXTENT:
		case BTRFS_UPDATE_DELAYED_HEAD:
			WARN_ON(1);
			continue;
		case BTRFS_ADD_DELAYED_REF:
			sgn = 1;
			break;
		case BTRFS_DROP_DELAYED_REF:
			sgn = -1;
			break;
		default:
			BUG_ON(1);
		}
755
		*total_refs += (node->ref_mod * sgn);
756 757
		switch (node->type) {
		case BTRFS_TREE_BLOCK_REF_KEY: {
758
			/* NORMAL INDIRECT METADATA backref */
759 760 761
			struct btrfs_delayed_tree_ref *ref;

			ref = btrfs_delayed_node_to_tree_ref(node);
762 763 764 765
			ret = add_indirect_ref(preftrees, ref->root, &tmp_op_key,
					       ref->level + 1, node->bytenr,
					       node->ref_mod * sgn,
					       GFP_ATOMIC);
766 767 768
			break;
		}
		case BTRFS_SHARED_BLOCK_REF_KEY: {
769
			/* SHARED DIRECT METADATA backref */
770 771 772
			struct btrfs_delayed_tree_ref *ref;

			ref = btrfs_delayed_node_to_tree_ref(node);
773 774

			ret = add_direct_ref(preftrees, ref->level + 1,
775
					     ref->parent, node->bytenr,
776 777
					     node->ref_mod * sgn,
					     GFP_ATOMIC);
778 779 780
			break;
		}
		case BTRFS_EXTENT_DATA_REF_KEY: {
781
			/* NORMAL INDIRECT DATA backref */
782 783 784 785 786 787
			struct btrfs_delayed_data_ref *ref;
			ref = btrfs_delayed_node_to_data_ref(node);

			key.objectid = ref->objectid;
			key.type = BTRFS_EXTENT_DATA_KEY;
			key.offset = ref->offset;
788 789 790 791 792 793 794 795 796 797

			/*
			 * Found a inum that doesn't match our known inum, we
			 * know it's shared.
			 */
			if (inum && ref->objectid != inum) {
				ret = BACKREF_FOUND_SHARED;
				break;
			}

798 799 800 801
			ret = add_indirect_ref(preftrees, ref->root, &key, 0,
					       node->bytenr,
					       node->ref_mod * sgn,
					       GFP_ATOMIC);
802 803 804
			break;
		}
		case BTRFS_SHARED_DATA_REF_KEY: {
805
			/* SHARED DIRECT FULL backref */
806 807 808
			struct btrfs_delayed_data_ref *ref;

			ref = btrfs_delayed_node_to_data_ref(node);
809 810 811 812

			ret = add_direct_ref(preftrees, 0, ref->parent,
					     node->bytenr,
					     node->ref_mod * sgn,
813
					     GFP_ATOMIC);
814 815 816 817 818
			break;
		}
		default:
			WARN_ON(1);
		}
819
		if (ret)
820
			break;
821
	}
822 823
	spin_unlock(&head->lock);
	return ret;
824 825 826 827 828
}

/*
 * add all inline backrefs for bytenr to the list
 */
829
static int add_inline_refs(struct btrfs_path *path, u64 bytenr,
830
			   int *info_level, struct preftrees *preftrees,
831
			   u64 *total_refs, u64 inum)
832
{
833
	int ret = 0;
834 835 836
	int slot;
	struct extent_buffer *leaf;
	struct btrfs_key key;
837
	struct btrfs_key found_key;
838 839 840 841 842 843 844 845 846 847
	unsigned long ptr;
	unsigned long end;
	struct btrfs_extent_item *ei;
	u64 flags;
	u64 item_size;

	/*
	 * enumerate all inline refs
	 */
	leaf = path->nodes[0];
848
	slot = path->slots[0];
849 850 851 852 853 854

	item_size = btrfs_item_size_nr(leaf, slot);
	BUG_ON(item_size < sizeof(*ei));

	ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item);
	flags = btrfs_extent_flags(leaf, ei);
855
	*total_refs += btrfs_extent_refs(leaf, ei);
856
	btrfs_item_key_to_cpu(leaf, &found_key, slot);
857 858 859 860

	ptr = (unsigned long)(ei + 1);
	end = (unsigned long)ei + item_size;

861 862
	if (found_key.type == BTRFS_EXTENT_ITEM_KEY &&
	    flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
863 864 865 866 867 868
		struct btrfs_tree_block_info *info;

		info = (struct btrfs_tree_block_info *)ptr;
		*info_level = btrfs_tree_block_level(leaf, info);
		ptr += sizeof(struct btrfs_tree_block_info);
		BUG_ON(ptr > end);
869 870
	} else if (found_key.type == BTRFS_METADATA_ITEM_KEY) {
		*info_level = found_key.offset;
871 872 873 874 875 876 877 878 879 880 881 882 883 884 885
	} else {
		BUG_ON(!(flags & BTRFS_EXTENT_FLAG_DATA));
	}

	while (ptr < end) {
		struct btrfs_extent_inline_ref *iref;
		u64 offset;
		int type;

		iref = (struct btrfs_extent_inline_ref *)ptr;
		type = btrfs_extent_inline_ref_type(leaf, iref);
		offset = btrfs_extent_inline_ref_offset(leaf, iref);

		switch (type) {
		case BTRFS_SHARED_BLOCK_REF_KEY:
886 887
			ret = add_direct_ref(preftrees, *info_level + 1, offset,
					     bytenr, 1, GFP_NOFS);
888 889 890 891 892 893 894
			break;
		case BTRFS_SHARED_DATA_REF_KEY: {
			struct btrfs_shared_data_ref *sdref;
			int count;

			sdref = (struct btrfs_shared_data_ref *)(iref + 1);
			count = btrfs_shared_data_ref_count(leaf, sdref);
895 896

			ret = add_direct_ref(preftrees, 0, offset,
897
					     bytenr, count, GFP_NOFS);
898 899 900
			break;
		}
		case BTRFS_TREE_BLOCK_REF_KEY:
901 902 903
			ret = add_indirect_ref(preftrees, offset, NULL,
					       *info_level + 1, bytenr, 1,
					       GFP_NOFS);
904 905 906 907 908 909 910 911 912 913 914 915
			break;
		case BTRFS_EXTENT_DATA_REF_KEY: {
			struct btrfs_extent_data_ref *dref;
			int count;
			u64 root;

			dref = (struct btrfs_extent_data_ref *)(&iref->offset);
			count = btrfs_extent_data_ref_count(leaf, dref);
			key.objectid = btrfs_extent_data_ref_objectid(leaf,
								      dref);
			key.type = BTRFS_EXTENT_DATA_KEY;
			key.offset = btrfs_extent_data_ref_offset(leaf, dref);
916 917 918 919 920 921

			if (inum && key.objectid != inum) {
				ret = BACKREF_FOUND_SHARED;
				break;
			}

922
			root = btrfs_extent_data_ref_root(leaf, dref);
923 924 925

			ret = add_indirect_ref(preftrees, root, &key, 0, bytenr,
					       count, GFP_NOFS);
926 927 928 929 930
			break;
		}
		default:
			WARN_ON(1);
		}
931 932
		if (ret)
			return ret;
933 934 935 936 937 938 939 940 941
		ptr += btrfs_extent_inline_ref_size(type);
	}

	return 0;
}

/*
 * add all non-inline backrefs for bytenr to the list
 */
942 943
static int add_keyed_refs(struct btrfs_fs_info *fs_info,
			  struct btrfs_path *path, u64 bytenr,
944 945
			  int info_level, struct preftrees *preftrees,
			  u64 inum)
946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974
{
	struct btrfs_root *extent_root = fs_info->extent_root;
	int ret;
	int slot;
	struct extent_buffer *leaf;
	struct btrfs_key key;

	while (1) {
		ret = btrfs_next_item(extent_root, path);
		if (ret < 0)
			break;
		if (ret) {
			ret = 0;
			break;
		}

		slot = path->slots[0];
		leaf = path->nodes[0];
		btrfs_item_key_to_cpu(leaf, &key, slot);

		if (key.objectid != bytenr)
			break;
		if (key.type < BTRFS_TREE_BLOCK_REF_KEY)
			continue;
		if (key.type > BTRFS_SHARED_DATA_REF_KEY)
			break;

		switch (key.type) {
		case BTRFS_SHARED_BLOCK_REF_KEY:
975 976 977 978
			/* SHARED DIRECT METADATA backref */
			ret = add_direct_ref(preftrees, info_level + 1,
					     key.offset, bytenr, 1,
					     GFP_NOFS);
979 980
			break;
		case BTRFS_SHARED_DATA_REF_KEY: {
981
			/* SHARED DIRECT FULL backref */
982 983 984 985 986 987
			struct btrfs_shared_data_ref *sdref;
			int count;

			sdref = btrfs_item_ptr(leaf, slot,
					      struct btrfs_shared_data_ref);
			count = btrfs_shared_data_ref_count(leaf, sdref);
988 989
			ret = add_direct_ref(preftrees, 0, key.offset, bytenr,
					     count, GFP_NOFS);
990 991 992
			break;
		}
		case BTRFS_TREE_BLOCK_REF_KEY:
993 994 995 996
			/* NORMAL INDIRECT METADATA backref */
			ret = add_indirect_ref(preftrees, key.offset, NULL,
					       info_level + 1, bytenr, 1,
					       GFP_NOFS);
997 998
			break;
		case BTRFS_EXTENT_DATA_REF_KEY: {
999
			/* NORMAL INDIRECT DATA backref */
1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010
			struct btrfs_extent_data_ref *dref;
			int count;
			u64 root;

			dref = btrfs_item_ptr(leaf, slot,
					      struct btrfs_extent_data_ref);
			count = btrfs_extent_data_ref_count(leaf, dref);
			key.objectid = btrfs_extent_data_ref_objectid(leaf,
								      dref);
			key.type = BTRFS_EXTENT_DATA_KEY;
			key.offset = btrfs_extent_data_ref_offset(leaf, dref);
1011 1012 1013 1014 1015 1016

			if (inum && key.objectid != inum) {
				ret = BACKREF_FOUND_SHARED;
				break;
			}

1017
			root = btrfs_extent_data_ref_root(leaf, dref);
1018 1019
			ret = add_indirect_ref(preftrees, root, &key, 0, bytenr,
					       count, GFP_NOFS);
1020 1021 1022 1023 1024
			break;
		}
		default:
			WARN_ON(1);
		}
1025 1026 1027
		if (ret)
			return ret;

1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038
	}

	return ret;
}

/*
 * this adds all existing backrefs (inline backrefs, backrefs and delayed
 * refs) for the given bytenr to the refs list, merges duplicates and resolves
 * indirect refs to their parent bytenr.
 * When roots are found, they're added to the roots list
 *
1039 1040
 * NOTE: This can return values > 0
 *
1041
 * If time_seq is set to SEQ_LAST, it will not search delayed_refs, and behave
1042 1043 1044 1045
 * much like trans == NULL case, the difference only lies in it will not
 * commit root.
 * The special case is for qgroup to search roots in commit_transaction().
 *
1046 1047 1048 1049
 * FIXME some caching might speed things up
 */
static int find_parent_nodes(struct btrfs_trans_handle *trans,
			     struct btrfs_fs_info *fs_info, u64 bytenr,
1050
			     u64 time_seq, struct ulist *refs,
1051
			     struct ulist *roots, const u64 *extent_item_pos,
1052
			     u64 root_objectid, u64 inum)
1053 1054 1055 1056
{
	struct btrfs_key key;
	struct btrfs_path *path;
	struct btrfs_delayed_ref_root *delayed_refs = NULL;
1057
	struct btrfs_delayed_ref_head *head;
1058 1059
	int info_level = 0;
	int ret;
1060
	struct prelim_ref *ref;
1061
	struct rb_node *node;
1062
	struct extent_inode_elem *eie = NULL;
1063
	/* total of both direct AND indirect refs! */
1064
	u64 total_refs = 0;
1065 1066 1067 1068 1069
	struct preftrees preftrees = {
		.direct = PREFTREE_INIT,
		.indirect = PREFTREE_INIT,
		.indirect_missing_keys = PREFTREE_INIT
	};
1070 1071 1072

	key.objectid = bytenr;
	key.offset = (u64)-1;
1073 1074 1075 1076
	if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
		key.type = BTRFS_METADATA_ITEM_KEY;
	else
		key.type = BTRFS_EXTENT_ITEM_KEY;
1077 1078 1079 1080

	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;
1081
	if (!trans) {
1082
		path->search_commit_root = 1;
1083 1084
		path->skip_locking = 1;
	}
1085

1086
	if (time_seq == SEQ_LAST)
1087 1088
		path->skip_locking = 1;

1089 1090 1091 1092 1093 1094
	/*
	 * grab both a lock on the path and a lock on the delayed ref head.
	 * We need both to get a consistent picture of how the refs look
	 * at a specified point in time
	 */
again:
1095 1096
	head = NULL;

1097 1098 1099 1100 1101
	ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 0);
	if (ret < 0)
		goto out;
	BUG_ON(ret == 0);

1102
#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1103
	if (trans && likely(trans->type != __TRANS_DUMMY) &&
1104
	    time_seq != SEQ_LAST) {
1105
#else
1106
	if (trans && time_seq != SEQ_LAST) {
1107
#endif
1108 1109 1110 1111 1112 1113
		/*
		 * look if there are updates for this ref queued and lock the
		 * head
		 */
		delayed_refs = &trans->transaction->delayed_refs;
		spin_lock(&delayed_refs->lock);
1114
		head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
1115 1116
		if (head) {
			if (!mutex_trylock(&head->mutex)) {
1117
				refcount_inc(&head->node.refs);
1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130
				spin_unlock(&delayed_refs->lock);

				btrfs_release_path(path);

				/*
				 * Mutex was contended, block until it's
				 * released and try again
				 */
				mutex_lock(&head->mutex);
				mutex_unlock(&head->mutex);
				btrfs_put_delayed_ref(&head->node);
				goto again;
			}
1131
			spin_unlock(&delayed_refs->lock);
1132 1133
			ret = add_delayed_refs(head, time_seq, &preftrees,
					       &total_refs, inum);
1134
			mutex_unlock(&head->mutex);
1135
			if (ret)
1136
				goto out;
1137 1138
		} else {
			spin_unlock(&delayed_refs->lock);
1139
		}
1140 1141 1142 1143 1144 1145
	}

	if (path->slots[0]) {
		struct extent_buffer *leaf;
		int slot;

1146
		path->slots[0]--;
1147
		leaf = path->nodes[0];
1148
		slot = path->slots[0];
1149 1150
		btrfs_item_key_to_cpu(leaf, &key, slot);
		if (key.objectid == bytenr &&
1151 1152
		    (key.type == BTRFS_EXTENT_ITEM_KEY ||
		     key.type == BTRFS_METADATA_ITEM_KEY)) {
1153
			ret = add_inline_refs(path, bytenr, &info_level,
1154
					      &preftrees, &total_refs, inum);
1155 1156
			if (ret)
				goto out;
1157
			ret = add_keyed_refs(fs_info, path, bytenr, info_level,
1158
					     &preftrees, inum);
1159 1160 1161 1162 1163
			if (ret)
				goto out;
		}
	}

1164
	btrfs_release_path(path);
1165

1166
	ret = add_missing_keys(fs_info, &preftrees);
1167 1168 1169
	if (ret)
		goto out;

1170
	WARN_ON(!RB_EMPTY_ROOT(&preftrees.indirect_missing_keys.root));
1171

1172
	ret = resolve_indirect_refs(fs_info, path, time_seq, &preftrees,
1173 1174
				    extent_item_pos, total_refs,
				    root_objectid);
1175 1176 1177
	if (ret)
		goto out;

1178
	WARN_ON(!RB_EMPTY_ROOT(&preftrees.indirect.root));
1179

1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190
	/*
	 * This walks the tree of merged and resolved refs. Tree blocks are
	 * read in as needed. Unique entries are added to the ulist, and
	 * the list of found roots is updated.
	 *
	 * We release the entire tree in one go before returning.
	 */
	node = rb_first(&preftrees.direct.root);
	while (node) {
		ref = rb_entry(node, struct prelim_ref, rbnode);
		node = rb_next(&ref->rbnode);
J
Julia Lawall 已提交
1191
		WARN_ON(ref->count < 0);
1192
		if (roots && ref->count && ref->root_id && ref->parent == 0) {
1193 1194 1195 1196 1197
			if (root_objectid && ref->root_id != root_objectid) {
				ret = BACKREF_FOUND_SHARED;
				goto out;
			}

1198 1199
			/* no parent == root of tree */
			ret = ulist_add(roots, ref->root_id, 0, GFP_NOFS);
1200 1201
			if (ret < 0)
				goto out;
1202 1203
		}
		if (ref->count && ref->parent) {
1204 1205
			if (extent_item_pos && !ref->inode_list &&
			    ref->level == 0) {
1206
				struct extent_buffer *eb;
1207

1208
				eb = read_tree_block(fs_info, ref->parent, 0);
1209 1210 1211 1212
				if (IS_ERR(eb)) {
					ret = PTR_ERR(eb);
					goto out;
				} else if (!extent_buffer_uptodate(eb)) {
1213
					free_extent_buffer(eb);
1214 1215
					ret = -EIO;
					goto out;
1216
				}
1217 1218
				btrfs_tree_read_lock(eb);
				btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
1219 1220
				ret = find_extent_in_eb(eb, bytenr,
							*extent_item_pos, &eie);
1221
				btrfs_tree_read_unlock_blocking(eb);
1222
				free_extent_buffer(eb);
1223 1224 1225
				if (ret < 0)
					goto out;
				ref->inode_list = eie;
1226
			}
1227 1228 1229
			ret = ulist_add_merge_ptr(refs, ref->parent,
						  ref->inode_list,
						  (void **)&eie, GFP_NOFS);
1230 1231
			if (ret < 0)
				goto out;
1232 1233 1234 1235 1236 1237 1238 1239 1240 1241
			if (!ret && extent_item_pos) {
				/*
				 * we've recorded that parent, so we must extend
				 * its inode list here
				 */
				BUG_ON(!eie);
				while (eie->next)
					eie = eie->next;
				eie->next = ref->inode_list;
			}
1242
			eie = NULL;
1243 1244 1245 1246 1247
		}
	}

out:
	btrfs_free_path(path);
1248 1249 1250 1251 1252

	prelim_release(&preftrees.direct);
	prelim_release(&preftrees.indirect);
	prelim_release(&preftrees.indirect_missing_keys);

1253 1254
	if (ret < 0)
		free_inode_elem_list(eie);
1255 1256 1257
	return ret;
}

1258 1259 1260 1261 1262 1263 1264 1265 1266 1267
static void free_leaf_list(struct ulist *blocks)
{
	struct ulist_node *node = NULL;
	struct extent_inode_elem *eie;
	struct ulist_iterator uiter;

	ULIST_ITER_INIT(&uiter);
	while ((node = ulist_next(blocks, &uiter))) {
		if (!node->aux)
			continue;
1268
		eie = unode_aux_to_inode_list(node);
1269
		free_inode_elem_list(eie);
1270 1271 1272 1273 1274 1275
		node->aux = 0;
	}

	ulist_free(blocks);
}

1276 1277 1278 1279 1280 1281 1282 1283 1284 1285
/*
 * Finds all leafs with a reference to the specified combination of bytenr and
 * offset. key_list_head will point to a list of corresponding keys (caller must
 * free each list element). The leafs will be stored in the leafs ulist, which
 * must be freed with ulist_free.
 *
 * returns 0 on success, <0 on error
 */
static int btrfs_find_all_leafs(struct btrfs_trans_handle *trans,
				struct btrfs_fs_info *fs_info, u64 bytenr,
1286
				u64 time_seq, struct ulist **leafs,
1287
				const u64 *extent_item_pos)
1288 1289 1290 1291
{
	int ret;

	*leafs = ulist_alloc(GFP_NOFS);
1292
	if (!*leafs)
1293 1294
		return -ENOMEM;

1295
	ret = find_parent_nodes(trans, fs_info, bytenr, time_seq,
1296
				*leafs, NULL, extent_item_pos, 0, 0);
1297
	if (ret < 0 && ret != -ENOENT) {
1298
		free_leaf_list(*leafs);
1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317
		return ret;
	}

	return 0;
}

/*
 * walk all backrefs for a given extent to find all roots that reference this
 * extent. Walking a backref means finding all extents that reference this
 * extent and in turn walk the backrefs of those, too. Naturally this is a
 * recursive process, but here it is implemented in an iterative fashion: We
 * find all referencing extents for the extent in question and put them on a
 * list. In turn, we find all referencing extents for those, further appending
 * to the list. The way we iterate the list allows adding more elements after
 * the current while iterating. The process stops when we reach the end of the
 * list. Found roots are added to the roots list.
 *
 * returns 0 on success, < 0 on error.
 */
1318 1319 1320
static int btrfs_find_all_roots_safe(struct btrfs_trans_handle *trans,
				     struct btrfs_fs_info *fs_info, u64 bytenr,
				     u64 time_seq, struct ulist **roots)
1321 1322 1323
{
	struct ulist *tmp;
	struct ulist_node *node = NULL;
J
Jan Schmidt 已提交
1324
	struct ulist_iterator uiter;
1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335
	int ret;

	tmp = ulist_alloc(GFP_NOFS);
	if (!tmp)
		return -ENOMEM;
	*roots = ulist_alloc(GFP_NOFS);
	if (!*roots) {
		ulist_free(tmp);
		return -ENOMEM;
	}

J
Jan Schmidt 已提交
1336
	ULIST_ITER_INIT(&uiter);
1337
	while (1) {
1338
		ret = find_parent_nodes(trans, fs_info, bytenr, time_seq,
1339
					tmp, *roots, NULL, 0, 0);
1340 1341 1342 1343 1344
		if (ret < 0 && ret != -ENOENT) {
			ulist_free(tmp);
			ulist_free(*roots);
			return ret;
		}
J
Jan Schmidt 已提交
1345
		node = ulist_next(tmp, &uiter);
1346 1347 1348
		if (!node)
			break;
		bytenr = node->val;
1349
		cond_resched();
1350 1351 1352 1353 1354 1355
	}

	ulist_free(tmp);
	return 0;
}

1356 1357 1358 1359 1360 1361 1362 1363
int btrfs_find_all_roots(struct btrfs_trans_handle *trans,
			 struct btrfs_fs_info *fs_info, u64 bytenr,
			 u64 time_seq, struct ulist **roots)
{
	int ret;

	if (!trans)
		down_read(&fs_info->commit_root_sem);
1364 1365
	ret = btrfs_find_all_roots_safe(trans, fs_info, bytenr,
					time_seq, roots);
1366 1367 1368 1369 1370
	if (!trans)
		up_read(&fs_info->commit_root_sem);
	return ret;
}

1371 1372 1373 1374 1375 1376 1377 1378 1379
/**
 * btrfs_check_shared - tell us whether an extent is shared
 *
 * btrfs_check_shared uses the backref walking code but will short
 * circuit as soon as it finds a root or inode that doesn't match the
 * one passed in. This provides a significant performance benefit for
 * callers (such as fiemap) which want to know whether the extent is
 * shared but do not need a ref count.
 *
1380 1381 1382
 * This attempts to allocate a transaction in order to account for
 * delayed refs, but continues on even when the alloc fails.
 *
1383 1384
 * Return: 0 if extent is not shared, 1 if it is shared, < 0 on error.
 */
1385
int btrfs_check_shared(struct btrfs_root *root, u64 inum, u64 bytenr)
1386
{
1387 1388
	struct btrfs_fs_info *fs_info = root->fs_info;
	struct btrfs_trans_handle *trans;
1389 1390 1391 1392
	struct ulist *tmp = NULL;
	struct ulist *roots = NULL;
	struct ulist_iterator uiter;
	struct ulist_node *node;
1393
	struct seq_list elem = SEQ_LIST_INIT(elem);
1394 1395 1396 1397 1398 1399 1400 1401 1402 1403
	int ret = 0;

	tmp = ulist_alloc(GFP_NOFS);
	roots = ulist_alloc(GFP_NOFS);
	if (!tmp || !roots) {
		ulist_free(tmp);
		ulist_free(roots);
		return -ENOMEM;
	}

1404 1405 1406
	trans = btrfs_join_transaction(root);
	if (IS_ERR(trans)) {
		trans = NULL;
1407
		down_read(&fs_info->commit_root_sem);
1408 1409 1410 1411
	} else {
		btrfs_get_tree_mod_seq(fs_info, &elem);
	}

1412 1413 1414
	ULIST_ITER_INIT(&uiter);
	while (1) {
		ret = find_parent_nodes(trans, fs_info, bytenr, elem.seq, tmp,
1415
					roots, NULL, root->objectid, inum);
1416
		if (ret == BACKREF_FOUND_SHARED) {
1417
			/* this is the only condition under which we return 1 */
1418 1419 1420 1421 1422
			ret = 1;
			break;
		}
		if (ret < 0 && ret != -ENOENT)
			break;
1423
		ret = 0;
1424 1425 1426 1427 1428 1429
		node = ulist_next(tmp, &uiter);
		if (!node)
			break;
		bytenr = node->val;
		cond_resched();
	}
1430 1431

	if (trans) {
1432
		btrfs_put_tree_mod_seq(fs_info, &elem);
1433 1434
		btrfs_end_transaction(trans);
	} else {
1435
		up_read(&fs_info->commit_root_sem);
1436
	}
1437 1438 1439 1440 1441
	ulist_free(tmp);
	ulist_free(roots);
	return ret;
}

M
Mark Fasheh 已提交
1442 1443 1444 1445 1446 1447 1448 1449 1450
int btrfs_find_one_extref(struct btrfs_root *root, u64 inode_objectid,
			  u64 start_off, struct btrfs_path *path,
			  struct btrfs_inode_extref **ret_extref,
			  u64 *found_off)
{
	int ret, slot;
	struct btrfs_key key;
	struct btrfs_key found_key;
	struct btrfs_inode_extref *extref;
1451
	const struct extent_buffer *leaf;
M
Mark Fasheh 已提交
1452 1453 1454
	unsigned long ptr;

	key.objectid = inode_objectid;
1455
	key.type = BTRFS_INODE_EXTREF_KEY;
M
Mark Fasheh 已提交
1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494
	key.offset = start_off;

	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
	if (ret < 0)
		return ret;

	while (1) {
		leaf = path->nodes[0];
		slot = path->slots[0];
		if (slot >= btrfs_header_nritems(leaf)) {
			/*
			 * If the item at offset is not found,
			 * btrfs_search_slot will point us to the slot
			 * where it should be inserted. In our case
			 * that will be the slot directly before the
			 * next INODE_REF_KEY_V2 item. In the case
			 * that we're pointing to the last slot in a
			 * leaf, we must move one leaf over.
			 */
			ret = btrfs_next_leaf(root, path);
			if (ret) {
				if (ret >= 1)
					ret = -ENOENT;
				break;
			}
			continue;
		}

		btrfs_item_key_to_cpu(leaf, &found_key, slot);

		/*
		 * Check that we're still looking at an extended ref key for
		 * this particular objectid. If we have different
		 * objectid or type then there are no more to be found
		 * in the tree and we can exit.
		 */
		ret = -ENOENT;
		if (found_key.objectid != inode_objectid)
			break;
1495
		if (found_key.type != BTRFS_INODE_EXTREF_KEY)
M
Mark Fasheh 已提交
1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509
			break;

		ret = 0;
		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
		extref = (struct btrfs_inode_extref *)ptr;
		*ret_extref = extref;
		if (found_off)
			*found_off = found_key.offset;
		break;
	}

	return ret;
}

1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523
/*
 * this iterates to turn a name (from iref/extref) into a full filesystem path.
 * Elements of the path are separated by '/' and the path is guaranteed to be
 * 0-terminated. the path is only given within the current file system.
 * Therefore, it never starts with a '/'. the caller is responsible to provide
 * "size" bytes in "dest". the dest buffer will be filled backwards. finally,
 * the start point of the resulting string is returned. this pointer is within
 * dest, normally.
 * in case the path buffer would overflow, the pointer is decremented further
 * as if output was written to the buffer, though no more output is actually
 * generated. that way, the caller can determine how much space would be
 * required for the path to fit into the buffer. in that case, the returned
 * value will be smaller than dest. callers must check this!
 */
1524 1525 1526 1527
char *btrfs_ref_to_path(struct btrfs_root *fs_root, struct btrfs_path *path,
			u32 name_len, unsigned long name_off,
			struct extent_buffer *eb_in, u64 parent,
			char *dest, u32 size)
1528 1529 1530 1531
{
	int slot;
	u64 next_inum;
	int ret;
1532
	s64 bytes_left = ((s64)size) - 1;
1533 1534
	struct extent_buffer *eb = eb_in;
	struct btrfs_key found_key;
1535
	int leave_spinning = path->leave_spinning;
M
Mark Fasheh 已提交
1536
	struct btrfs_inode_ref *iref;
1537 1538 1539 1540

	if (bytes_left >= 0)
		dest[bytes_left] = '\0';

1541
	path->leave_spinning = 1;
1542
	while (1) {
M
Mark Fasheh 已提交
1543
		bytes_left -= name_len;
1544 1545
		if (bytes_left >= 0)
			read_extent_buffer(eb, dest + bytes_left,
M
Mark Fasheh 已提交
1546
					   name_off, name_len);
1547
		if (eb != eb_in) {
1548 1549
			if (!path->skip_locking)
				btrfs_tree_read_unlock_blocking(eb);
1550
			free_extent_buffer(eb);
1551
		}
1552 1553
		ret = btrfs_find_item(fs_root, path, parent, 0,
				BTRFS_INODE_REF_KEY, &found_key);
1554 1555
		if (ret > 0)
			ret = -ENOENT;
1556 1557
		if (ret)
			break;
M
Mark Fasheh 已提交
1558

1559 1560 1561 1562 1563 1564 1565 1566 1567
		next_inum = found_key.offset;

		/* regular exit ahead */
		if (parent == next_inum)
			break;

		slot = path->slots[0];
		eb = path->nodes[0];
		/* make sure we can use eb after releasing the path */
1568
		if (eb != eb_in) {
1569 1570 1571 1572
			if (!path->skip_locking)
				btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
			path->nodes[0] = NULL;
			path->locks[0] = 0;
1573
		}
1574 1575
		btrfs_release_path(path);
		iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);
M
Mark Fasheh 已提交
1576 1577 1578 1579

		name_len = btrfs_inode_ref_name_len(eb, iref);
		name_off = (unsigned long)(iref + 1);

1580 1581 1582 1583 1584 1585 1586
		parent = next_inum;
		--bytes_left;
		if (bytes_left >= 0)
			dest[bytes_left] = '/';
	}

	btrfs_release_path(path);
1587
	path->leave_spinning = leave_spinning;
1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600

	if (ret)
		return ERR_PTR(ret);

	return dest + bytes_left;
}

/*
 * this makes the path point to (logical EXTENT_ITEM *)
 * returns BTRFS_EXTENT_FLAG_DATA for data, BTRFS_EXTENT_FLAG_TREE_BLOCK for
 * tree blocks and <0 on error.
 */
int extent_from_logical(struct btrfs_fs_info *fs_info, u64 logical,
1601 1602
			struct btrfs_path *path, struct btrfs_key *found_key,
			u64 *flags_ret)
1603 1604 1605
{
	int ret;
	u64 flags;
1606
	u64 size = 0;
1607
	u32 item_size;
1608
	const struct extent_buffer *eb;
1609 1610 1611
	struct btrfs_extent_item *ei;
	struct btrfs_key key;

1612 1613 1614 1615
	if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
		key.type = BTRFS_METADATA_ITEM_KEY;
	else
		key.type = BTRFS_EXTENT_ITEM_KEY;
1616 1617 1618 1619 1620 1621 1622
	key.objectid = logical;
	key.offset = (u64)-1;

	ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0);
	if (ret < 0)
		return ret;

1623 1624 1625 1626 1627
	ret = btrfs_previous_extent_item(fs_info->extent_root, path, 0);
	if (ret) {
		if (ret > 0)
			ret = -ENOENT;
		return ret;
1628
	}
1629
	btrfs_item_key_to_cpu(path->nodes[0], found_key, path->slots[0]);
1630
	if (found_key->type == BTRFS_METADATA_ITEM_KEY)
1631
		size = fs_info->nodesize;
1632 1633 1634
	else if (found_key->type == BTRFS_EXTENT_ITEM_KEY)
		size = found_key->offset;

1635
	if (found_key->objectid > logical ||
1636
	    found_key->objectid + size <= logical) {
1637 1638
		btrfs_debug(fs_info,
			"logical %llu is not within any extent", logical);
1639
		return -ENOENT;
J
Jan Schmidt 已提交
1640
	}
1641 1642 1643 1644 1645 1646 1647 1648

	eb = path->nodes[0];
	item_size = btrfs_item_size_nr(eb, path->slots[0]);
	BUG_ON(item_size < sizeof(*ei));

	ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
	flags = btrfs_extent_flags(eb, ei);

1649 1650
	btrfs_debug(fs_info,
		"logical %llu is at position %llu within the extent (%llu EXTENT_ITEM %llu) flags %#llx size %u",
1651 1652
		 logical, logical - found_key->objectid, found_key->objectid,
		 found_key->offset, flags, item_size);
1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663

	WARN_ON(!flags_ret);
	if (flags_ret) {
		if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
			*flags_ret = BTRFS_EXTENT_FLAG_TREE_BLOCK;
		else if (flags & BTRFS_EXTENT_FLAG_DATA)
			*flags_ret = BTRFS_EXTENT_FLAG_DATA;
		else
			BUG_ON(1);
		return 0;
	}
1664 1665 1666 1667 1668 1669 1670 1671

	return -EIO;
}

/*
 * helper function to iterate extent inline refs. ptr must point to a 0 value
 * for the first call and may be modified. it is used to track state.
 * if more refs exist, 0 is returned and the next call to
1672
 * get_extent_inline_ref must pass the modified ptr parameter to get the
1673 1674 1675
 * next ref. after the last ref was processed, 1 is returned.
 * returns <0 on error
 */
1676 1677 1678 1679 1680 1681 1682
static int get_extent_inline_ref(unsigned long *ptr,
				 const struct extent_buffer *eb,
				 const struct btrfs_key *key,
				 const struct btrfs_extent_item *ei,
				 u32 item_size,
				 struct btrfs_extent_inline_ref **out_eiref,
				 int *out_type)
1683 1684 1685 1686 1687 1688 1689 1690 1691
{
	unsigned long end;
	u64 flags;
	struct btrfs_tree_block_info *info;

	if (!*ptr) {
		/* first call */
		flags = btrfs_extent_flags(eb, ei);
		if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
1692 1693 1694 1695 1696 1697 1698 1699 1700 1701
			if (key->type == BTRFS_METADATA_ITEM_KEY) {
				/* a skinny metadata extent */
				*out_eiref =
				     (struct btrfs_extent_inline_ref *)(ei + 1);
			} else {
				WARN_ON(key->type != BTRFS_EXTENT_ITEM_KEY);
				info = (struct btrfs_tree_block_info *)(ei + 1);
				*out_eiref =
				   (struct btrfs_extent_inline_ref *)(info + 1);
			}
1702 1703 1704 1705
		} else {
			*out_eiref = (struct btrfs_extent_inline_ref *)(ei + 1);
		}
		*ptr = (unsigned long)*out_eiref;
1706
		if ((unsigned long)(*ptr) >= (unsigned long)ei + item_size)
1707 1708 1709 1710
			return -ENOENT;
	}

	end = (unsigned long)ei + item_size;
1711
	*out_eiref = (struct btrfs_extent_inline_ref *)(*ptr);
1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724
	*out_type = btrfs_extent_inline_ref_type(eb, *out_eiref);

	*ptr += btrfs_extent_inline_ref_size(*out_type);
	WARN_ON(*ptr > end);
	if (*ptr == end)
		return 1; /* last */

	return 0;
}

/*
 * reads the tree block backref for an extent. tree level and root are returned
 * through out_level and out_root. ptr must point to a 0 value for the first
1725
 * call and may be modified (see get_extent_inline_ref comment).
1726 1727 1728 1729
 * returns 0 if data was provided, 1 if there was no more data to provide or
 * <0 on error.
 */
int tree_backref_for_extent(unsigned long *ptr, struct extent_buffer *eb,
1730 1731
			    struct btrfs_key *key, struct btrfs_extent_item *ei,
			    u32 item_size, u64 *out_root, u8 *out_level)
1732 1733 1734 1735 1736 1737 1738 1739 1740
{
	int ret;
	int type;
	struct btrfs_extent_inline_ref *eiref;

	if (*ptr == (unsigned long)-1)
		return 1;

	while (1) {
1741
		ret = get_extent_inline_ref(ptr, eb, key, ei, item_size,
1742
					      &eiref, &type);
1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755
		if (ret < 0)
			return ret;

		if (type == BTRFS_TREE_BLOCK_REF_KEY ||
		    type == BTRFS_SHARED_BLOCK_REF_KEY)
			break;

		if (ret == 1)
			return 1;
	}

	/* we can treat both ref types equally here */
	*out_root = btrfs_extent_inline_ref_offset(eb, eiref);
1756 1757 1758 1759 1760 1761 1762 1763 1764 1765

	if (key->type == BTRFS_EXTENT_ITEM_KEY) {
		struct btrfs_tree_block_info *info;

		info = (struct btrfs_tree_block_info *)(ei + 1);
		*out_level = btrfs_tree_block_level(eb, info);
	} else {
		ASSERT(key->type == BTRFS_METADATA_ITEM_KEY);
		*out_level = (u8)key->offset;
	}
1766 1767 1768 1769 1770 1771 1772

	if (ret == 1)
		*ptr = (unsigned long)-1;

	return 0;
}

1773 1774 1775 1776
static int iterate_leaf_refs(struct btrfs_fs_info *fs_info,
			     struct extent_inode_elem *inode_list,
			     u64 root, u64 extent_item_objectid,
			     iterate_extent_inodes_t *iterate, void *ctx)
1777
{
1778
	struct extent_inode_elem *eie;
J
Jan Schmidt 已提交
1779 1780
	int ret = 0;

1781
	for (eie = inode_list; eie; eie = eie->next) {
1782 1783 1784 1785
		btrfs_debug(fs_info,
			    "ref for %llu resolved, key (%llu EXTEND_DATA %llu), root %llu",
			    extent_item_objectid, eie->inum,
			    eie->offset, root);
1786
		ret = iterate(eie->inum, eie->offset, root, ctx);
J
Jan Schmidt 已提交
1787
		if (ret) {
1788 1789 1790
			btrfs_debug(fs_info,
				    "stopping iteration for %llu due to ret=%d",
				    extent_item_objectid, ret);
J
Jan Schmidt 已提交
1791 1792
			break;
		}
1793 1794 1795 1796 1797 1798 1799
	}

	return ret;
}

/*
 * calls iterate() for every inode that references the extent identified by
J
Jan Schmidt 已提交
1800
 * the given parameters.
1801 1802 1803
 * when the iterator function returns a non-zero value, iteration stops.
 */
int iterate_extent_inodes(struct btrfs_fs_info *fs_info,
J
Jan Schmidt 已提交
1804
				u64 extent_item_objectid, u64 extent_item_pos,
1805
				int search_commit_root,
1806 1807 1808
				iterate_extent_inodes_t *iterate, void *ctx)
{
	int ret;
1809
	struct btrfs_trans_handle *trans = NULL;
1810 1811
	struct ulist *refs = NULL;
	struct ulist *roots = NULL;
J
Jan Schmidt 已提交
1812 1813
	struct ulist_node *ref_node = NULL;
	struct ulist_node *root_node = NULL;
1814
	struct seq_list tree_mod_seq_elem = SEQ_LIST_INIT(tree_mod_seq_elem);
J
Jan Schmidt 已提交
1815 1816
	struct ulist_iterator ref_uiter;
	struct ulist_iterator root_uiter;
1817

1818
	btrfs_debug(fs_info, "resolving all inodes for extent %llu",
J
Jan Schmidt 已提交
1819
			extent_item_objectid);
1820

1821
	if (!search_commit_root) {
1822 1823 1824
		trans = btrfs_join_transaction(fs_info->extent_root);
		if (IS_ERR(trans))
			return PTR_ERR(trans);
1825
		btrfs_get_tree_mod_seq(fs_info, &tree_mod_seq_elem);
1826 1827
	} else {
		down_read(&fs_info->commit_root_sem);
1828
	}
1829

J
Jan Schmidt 已提交
1830
	ret = btrfs_find_all_leafs(trans, fs_info, extent_item_objectid,
1831
				   tree_mod_seq_elem.seq, &refs,
1832
				   &extent_item_pos);
J
Jan Schmidt 已提交
1833 1834
	if (ret)
		goto out;
1835

J
Jan Schmidt 已提交
1836 1837
	ULIST_ITER_INIT(&ref_uiter);
	while (!ret && (ref_node = ulist_next(refs, &ref_uiter))) {
1838 1839
		ret = btrfs_find_all_roots_safe(trans, fs_info, ref_node->val,
						tree_mod_seq_elem.seq, &roots);
J
Jan Schmidt 已提交
1840 1841
		if (ret)
			break;
J
Jan Schmidt 已提交
1842 1843
		ULIST_ITER_INIT(&root_uiter);
		while (!ret && (root_node = ulist_next(roots, &root_uiter))) {
1844 1845 1846 1847 1848 1849
			btrfs_debug(fs_info,
				    "root %llu references leaf %llu, data list %#llx",
				    root_node->val, ref_node->val,
				    ref_node->aux);
			ret = iterate_leaf_refs(fs_info,
						(struct extent_inode_elem *)
1850 1851 1852 1853
						(uintptr_t)ref_node->aux,
						root_node->val,
						extent_item_objectid,
						iterate, ctx);
J
Jan Schmidt 已提交
1854
		}
1855
		ulist_free(roots);
1856 1857
	}

1858
	free_leaf_list(refs);
J
Jan Schmidt 已提交
1859
out:
1860
	if (!search_commit_root) {
1861
		btrfs_put_tree_mod_seq(fs_info, &tree_mod_seq_elem);
1862
		btrfs_end_transaction(trans);
1863 1864
	} else {
		up_read(&fs_info->commit_root_sem);
1865 1866
	}

1867 1868 1869 1870 1871 1872 1873 1874
	return ret;
}

int iterate_inodes_from_logical(u64 logical, struct btrfs_fs_info *fs_info,
				struct btrfs_path *path,
				iterate_extent_inodes_t *iterate, void *ctx)
{
	int ret;
J
Jan Schmidt 已提交
1875
	u64 extent_item_pos;
1876
	u64 flags = 0;
1877
	struct btrfs_key found_key;
1878
	int search_commit_root = path->search_commit_root;
1879

1880
	ret = extent_from_logical(fs_info, logical, path, &found_key, &flags);
J
Jan Schmidt 已提交
1881
	btrfs_release_path(path);
1882 1883
	if (ret < 0)
		return ret;
1884
	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1885
		return -EINVAL;
1886

J
Jan Schmidt 已提交
1887
	extent_item_pos = logical - found_key.objectid;
1888 1889 1890
	ret = iterate_extent_inodes(fs_info, found_key.objectid,
					extent_item_pos, search_commit_root,
					iterate, ctx);
1891 1892 1893 1894

	return ret;
}

M
Mark Fasheh 已提交
1895 1896 1897 1898 1899 1900
typedef int (iterate_irefs_t)(u64 parent, u32 name_len, unsigned long name_off,
			      struct extent_buffer *eb, void *ctx);

static int iterate_inode_refs(u64 inum, struct btrfs_root *fs_root,
			      struct btrfs_path *path,
			      iterate_irefs_t *iterate, void *ctx)
1901
{
1902
	int ret = 0;
1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913
	int slot;
	u32 cur;
	u32 len;
	u32 name_len;
	u64 parent = 0;
	int found = 0;
	struct extent_buffer *eb;
	struct btrfs_item *item;
	struct btrfs_inode_ref *iref;
	struct btrfs_key found_key;

1914
	while (!ret) {
1915 1916 1917 1918
		ret = btrfs_find_item(fs_root, path, inum,
				parent ? parent + 1 : 0, BTRFS_INODE_REF_KEY,
				&found_key);

1919 1920 1921 1922 1923 1924 1925 1926 1927 1928
		if (ret < 0)
			break;
		if (ret) {
			ret = found ? 0 : -ENOENT;
			break;
		}
		++found;

		parent = found_key.offset;
		slot = path->slots[0];
1929 1930 1931 1932 1933 1934
		eb = btrfs_clone_extent_buffer(path->nodes[0]);
		if (!eb) {
			ret = -ENOMEM;
			break;
		}
		extent_buffer_get(eb);
1935 1936
		btrfs_tree_read_lock(eb);
		btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
1937 1938
		btrfs_release_path(path);

1939
		item = btrfs_item_nr(slot);
1940 1941 1942 1943 1944
		iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);

		for (cur = 0; cur < btrfs_item_size(eb, item); cur += len) {
			name_len = btrfs_inode_ref_name_len(eb, iref);
			/* path must be released before calling iterate()! */
1945 1946 1947
			btrfs_debug(fs_root->fs_info,
				"following ref at offset %u for inode %llu in tree %llu",
				cur, found_key.objectid, fs_root->objectid);
M
Mark Fasheh 已提交
1948 1949
			ret = iterate(parent, name_len,
				      (unsigned long)(iref + 1), eb, ctx);
1950
			if (ret)
1951 1952 1953 1954
				break;
			len = sizeof(*iref) + name_len;
			iref = (struct btrfs_inode_ref *)((char *)iref + len);
		}
1955
		btrfs_tree_read_unlock_blocking(eb);
1956 1957 1958 1959 1960 1961 1962 1963
		free_extent_buffer(eb);
	}

	btrfs_release_path(path);

	return ret;
}

M
Mark Fasheh 已提交
1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990
static int iterate_inode_extrefs(u64 inum, struct btrfs_root *fs_root,
				 struct btrfs_path *path,
				 iterate_irefs_t *iterate, void *ctx)
{
	int ret;
	int slot;
	u64 offset = 0;
	u64 parent;
	int found = 0;
	struct extent_buffer *eb;
	struct btrfs_inode_extref *extref;
	u32 item_size;
	u32 cur_offset;
	unsigned long ptr;

	while (1) {
		ret = btrfs_find_one_extref(fs_root, inum, offset, path, &extref,
					    &offset);
		if (ret < 0)
			break;
		if (ret) {
			ret = found ? 0 : -ENOENT;
			break;
		}
		++found;

		slot = path->slots[0];
1991 1992 1993 1994 1995 1996
		eb = btrfs_clone_extent_buffer(path->nodes[0]);
		if (!eb) {
			ret = -ENOMEM;
			break;
		}
		extent_buffer_get(eb);
M
Mark Fasheh 已提交
1997 1998 1999 2000 2001

		btrfs_tree_read_lock(eb);
		btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
		btrfs_release_path(path);

2002 2003
		item_size = btrfs_item_size_nr(eb, slot);
		ptr = btrfs_item_ptr_offset(eb, slot);
M
Mark Fasheh 已提交
2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016
		cur_offset = 0;

		while (cur_offset < item_size) {
			u32 name_len;

			extref = (struct btrfs_inode_extref *)(ptr + cur_offset);
			parent = btrfs_inode_extref_parent(eb, extref);
			name_len = btrfs_inode_extref_name_len(eb, extref);
			ret = iterate(parent, name_len,
				      (unsigned long)&extref->name, eb, ctx);
			if (ret)
				break;

2017
			cur_offset += btrfs_inode_extref_name_len(eb, extref);
M
Mark Fasheh 已提交
2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050
			cur_offset += sizeof(*extref);
		}
		btrfs_tree_read_unlock_blocking(eb);
		free_extent_buffer(eb);

		offset++;
	}

	btrfs_release_path(path);

	return ret;
}

static int iterate_irefs(u64 inum, struct btrfs_root *fs_root,
			 struct btrfs_path *path, iterate_irefs_t *iterate,
			 void *ctx)
{
	int ret;
	int found_refs = 0;

	ret = iterate_inode_refs(inum, fs_root, path, iterate, ctx);
	if (!ret)
		++found_refs;
	else if (ret != -ENOENT)
		return ret;

	ret = iterate_inode_extrefs(inum, fs_root, path, iterate, ctx);
	if (ret == -ENOENT && found_refs)
		return 0;

	return ret;
}

2051 2052 2053 2054
/*
 * returns 0 if the path could be dumped (probably truncated)
 * returns <0 in case of an error
 */
M
Mark Fasheh 已提交
2055 2056
static int inode_to_path(u64 inum, u32 name_len, unsigned long name_off,
			 struct extent_buffer *eb, void *ctx)
2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067
{
	struct inode_fs_paths *ipath = ctx;
	char *fspath;
	char *fspath_min;
	int i = ipath->fspath->elem_cnt;
	const int s_ptr = sizeof(char *);
	u32 bytes_left;

	bytes_left = ipath->fspath->bytes_left > s_ptr ?
					ipath->fspath->bytes_left - s_ptr : 0;

2068
	fspath_min = (char *)ipath->fspath->val + (i + 1) * s_ptr;
2069 2070
	fspath = btrfs_ref_to_path(ipath->fs_root, ipath->btrfs_path, name_len,
				   name_off, eb, inum, fspath_min, bytes_left);
2071 2072 2073 2074
	if (IS_ERR(fspath))
		return PTR_ERR(fspath);

	if (fspath > fspath_min) {
2075
		ipath->fspath->val[i] = (u64)(unsigned long)fspath;
2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089
		++ipath->fspath->elem_cnt;
		ipath->fspath->bytes_left = fspath - fspath_min;
	} else {
		++ipath->fspath->elem_missed;
		ipath->fspath->bytes_missing += fspath_min - fspath;
		ipath->fspath->bytes_left = 0;
	}

	return 0;
}

/*
 * this dumps all file system paths to the inode into the ipath struct, provided
 * is has been created large enough. each path is zero-terminated and accessed
2090
 * from ipath->fspath->val[i].
2091
 * when it returns, there are ipath->fspath->elem_cnt number of paths available
2092
 * in ipath->fspath->val[]. when the allocated space wasn't sufficient, the
2093
 * number of missed paths is recorded in ipath->fspath->elem_missed, otherwise,
2094 2095 2096 2097 2098 2099
 * it's zero. ipath->fspath->bytes_missing holds the number of bytes that would
 * have been needed to return all paths.
 */
int paths_from_inode(u64 inum, struct inode_fs_paths *ipath)
{
	return iterate_irefs(inum, ipath->fs_root, ipath->btrfs_path,
M
Mark Fasheh 已提交
2100
			     inode_to_path, ipath);
2101 2102 2103 2104 2105 2106 2107 2108
}

struct btrfs_data_container *init_data_container(u32 total_bytes)
{
	struct btrfs_data_container *data;
	size_t alloc_bytes;

	alloc_bytes = max_t(size_t, total_bytes, sizeof(*data));
2109
	data = kvmalloc(alloc_bytes, GFP_KERNEL);
2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142
	if (!data)
		return ERR_PTR(-ENOMEM);

	if (total_bytes >= sizeof(*data)) {
		data->bytes_left = total_bytes - sizeof(*data);
		data->bytes_missing = 0;
	} else {
		data->bytes_missing = sizeof(*data) - total_bytes;
		data->bytes_left = 0;
	}

	data->elem_cnt = 0;
	data->elem_missed = 0;

	return data;
}

/*
 * allocates space to return multiple file system paths for an inode.
 * total_bytes to allocate are passed, note that space usable for actual path
 * information will be total_bytes - sizeof(struct inode_fs_paths).
 * the returned pointer must be freed with free_ipath() in the end.
 */
struct inode_fs_paths *init_ipath(s32 total_bytes, struct btrfs_root *fs_root,
					struct btrfs_path *path)
{
	struct inode_fs_paths *ifp;
	struct btrfs_data_container *fspath;

	fspath = init_data_container(total_bytes);
	if (IS_ERR(fspath))
		return (void *)fspath;

2143
	ifp = kmalloc(sizeof(*ifp), GFP_KERNEL);
2144
	if (!ifp) {
2145
		kvfree(fspath);
2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157
		return ERR_PTR(-ENOMEM);
	}

	ifp->btrfs_path = path;
	ifp->fspath = fspath;
	ifp->fs_root = fs_root;

	return ifp;
}

void free_ipath(struct inode_fs_paths *ipath)
{
2158 2159
	if (!ipath)
		return;
2160
	kvfree(ipath->fspath);
2161 2162
	kfree(ipath);
}