backref.c 59.2 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
2 3 4 5
/*
 * Copyright (C) 2011 STRATO.  All rights reserved.
 */

6
#include <linux/mm.h>
7
#include <linux/rbtree.h>
8
#include <trace/events/btrfs.h>
9 10 11
#include "ctree.h"
#include "disk-io.h"
#include "backref.h"
12 13 14
#include "ulist.h"
#include "transaction.h"
#include "delayed-ref.h"
15
#include "locking.h"
16

17 18 19
/* Just an arbitrary number so we can be sure this happened */
#define BACKREF_FOUND_SHARED 6

20 21 22 23 24 25
struct extent_inode_elem {
	u64 inum;
	u64 offset;
	struct extent_inode_elem *next;
};

26 27 28 29
static int check_extent_in_eb(const struct btrfs_key *key,
			      const struct extent_buffer *eb,
			      const struct btrfs_file_extent_item *fi,
			      u64 extent_item_pos,
30 31
			      struct extent_inode_elem **eie,
			      bool ignore_offset)
32
{
33
	u64 offset = 0;
34 35
	struct extent_inode_elem *e;

36 37
	if (!ignore_offset &&
	    !btrfs_file_extent_compression(eb, fi) &&
38 39 40 41
	    !btrfs_file_extent_encryption(eb, fi) &&
	    !btrfs_file_extent_other_encoding(eb, fi)) {
		u64 data_offset;
		u64 data_len;
42

43 44 45 46 47 48 49 50
		data_offset = btrfs_file_extent_offset(eb, fi);
		data_len = btrfs_file_extent_num_bytes(eb, fi);

		if (extent_item_pos < data_offset ||
		    extent_item_pos >= data_offset + data_len)
			return 1;
		offset = extent_item_pos - data_offset;
	}
51 52 53 54 55 56 57

	e = kmalloc(sizeof(*e), GFP_NOFS);
	if (!e)
		return -ENOMEM;

	e->next = *eie;
	e->inum = key->objectid;
58
	e->offset = key->offset + offset;
59 60 61 62 63
	*eie = e;

	return 0;
}

64 65 66 67 68 69 70 71 72 73
static void free_inode_elem_list(struct extent_inode_elem *eie)
{
	struct extent_inode_elem *eie_next;

	for (; eie; eie = eie_next) {
		eie_next = eie->next;
		kfree(eie);
	}
}

74 75
static int find_extent_in_eb(const struct extent_buffer *eb,
			     u64 wanted_disk_byte, u64 extent_item_pos,
76 77
			     struct extent_inode_elem **eie,
			     bool ignore_offset)
78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105
{
	u64 disk_byte;
	struct btrfs_key key;
	struct btrfs_file_extent_item *fi;
	int slot;
	int nritems;
	int extent_type;
	int ret;

	/*
	 * from the shared data ref, we only have the leaf but we need
	 * the key. thus, we must look into all items and see that we
	 * find one (some) with a reference to our extent item.
	 */
	nritems = btrfs_header_nritems(eb);
	for (slot = 0; slot < nritems; ++slot) {
		btrfs_item_key_to_cpu(eb, &key, slot);
		if (key.type != BTRFS_EXTENT_DATA_KEY)
			continue;
		fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
		extent_type = btrfs_file_extent_type(eb, fi);
		if (extent_type == BTRFS_FILE_EXTENT_INLINE)
			continue;
		/* don't skip BTRFS_FILE_EXTENT_PREALLOC, we can handle that */
		disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
		if (disk_byte != wanted_disk_byte)
			continue;

106
		ret = check_extent_in_eb(&key, eb, fi, extent_item_pos, eie, ignore_offset);
107 108 109 110 111 112 113
		if (ret < 0)
			return ret;
	}

	return 0;
}

114 115
struct preftree {
	struct rb_root root;
116
	unsigned int count;
117 118
};

119
#define PREFTREE_INIT	{ .root = RB_ROOT, .count = 0 }
120 121 122 123 124 125 126

struct preftrees {
	struct preftree direct;    /* BTRFS_SHARED_[DATA|BLOCK]_REF_KEY */
	struct preftree indirect;  /* BTRFS_[TREE_BLOCK|EXTENT_DATA]_REF_KEY */
	struct preftree indirect_missing_keys;
};

127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145
/*
 * Checks for a shared extent during backref search.
 *
 * The share_count tracks prelim_refs (direct and indirect) having a
 * ref->count >0:
 *  - incremented when a ref->count transitions to >0
 *  - decremented when a ref->count transitions to <1
 */
struct share_check {
	u64 root_objectid;
	u64 inum;
	int share_count;
};

static inline int extent_is_shared(struct share_check *sc)
{
	return (sc && sc->share_count > 1) ? BACKREF_FOUND_SHARED : 0;
}

146 147 148 149 150
static struct kmem_cache *btrfs_prelim_ref_cache;

int __init btrfs_prelim_ref_init(void)
{
	btrfs_prelim_ref_cache = kmem_cache_create("btrfs_prelim_ref",
151
					sizeof(struct prelim_ref),
152
					0,
153
					SLAB_MEM_SPREAD,
154 155 156 157 158 159
					NULL);
	if (!btrfs_prelim_ref_cache)
		return -ENOMEM;
	return 0;
}

160
void __cold btrfs_prelim_ref_exit(void)
161
{
162
	kmem_cache_destroy(btrfs_prelim_ref_cache);
163 164
}

165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205
static void free_pref(struct prelim_ref *ref)
{
	kmem_cache_free(btrfs_prelim_ref_cache, ref);
}

/*
 * Return 0 when both refs are for the same block (and can be merged).
 * A -1 return indicates ref1 is a 'lower' block than ref2, while 1
 * indicates a 'higher' block.
 */
static int prelim_ref_compare(struct prelim_ref *ref1,
			      struct prelim_ref *ref2)
{
	if (ref1->level < ref2->level)
		return -1;
	if (ref1->level > ref2->level)
		return 1;
	if (ref1->root_id < ref2->root_id)
		return -1;
	if (ref1->root_id > ref2->root_id)
		return 1;
	if (ref1->key_for_search.type < ref2->key_for_search.type)
		return -1;
	if (ref1->key_for_search.type > ref2->key_for_search.type)
		return 1;
	if (ref1->key_for_search.objectid < ref2->key_for_search.objectid)
		return -1;
	if (ref1->key_for_search.objectid > ref2->key_for_search.objectid)
		return 1;
	if (ref1->key_for_search.offset < ref2->key_for_search.offset)
		return -1;
	if (ref1->key_for_search.offset > ref2->key_for_search.offset)
		return 1;
	if (ref1->parent < ref2->parent)
		return -1;
	if (ref1->parent > ref2->parent)
		return 1;

	return 0;
}

206 207
static void update_share_count(struct share_check *sc, int oldcount,
			       int newcount)
208 209 210 211 212 213 214 215 216 217
{
	if ((!sc) || (oldcount == 0 && newcount < 1))
		return;

	if (oldcount > 0 && newcount < 1)
		sc->share_count--;
	else if (oldcount < 1 && newcount > 0)
		sc->share_count++;
}

218 219 220
/*
 * Add @newref to the @root rbtree, merging identical refs.
 *
221
 * Callers should assume that newref has been freed after calling.
222
 */
223 224
static void prelim_ref_insert(const struct btrfs_fs_info *fs_info,
			      struct preftree *preftree,
225 226
			      struct prelim_ref *newref,
			      struct share_check *sc)
227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255
{
	struct rb_root *root;
	struct rb_node **p;
	struct rb_node *parent = NULL;
	struct prelim_ref *ref;
	int result;

	root = &preftree->root;
	p = &root->rb_node;

	while (*p) {
		parent = *p;
		ref = rb_entry(parent, struct prelim_ref, rbnode);
		result = prelim_ref_compare(ref, newref);
		if (result < 0) {
			p = &(*p)->rb_left;
		} else if (result > 0) {
			p = &(*p)->rb_right;
		} else {
			/* Identical refs, merge them and free @newref */
			struct extent_inode_elem *eie = ref->inode_list;

			while (eie && eie->next)
				eie = eie->next;

			if (!eie)
				ref->inode_list = newref->inode_list;
			else
				eie->next = newref->inode_list;
256 257
			trace_btrfs_prelim_ref_merge(fs_info, ref, newref,
						     preftree->count);
258 259 260 261 262 263 264
			/*
			 * A delayed ref can have newref->count < 0.
			 * The ref->count is updated to follow any
			 * BTRFS_[ADD|DROP]_DELAYED_REF actions.
			 */
			update_share_count(sc, ref->count,
					   ref->count + newref->count);
265 266 267 268 269 270
			ref->count += newref->count;
			free_pref(newref);
			return;
		}
	}

271
	update_share_count(sc, 0, newref->count);
272
	preftree->count++;
273
	trace_btrfs_prelim_ref_insert(fs_info, newref, NULL, preftree->count);
274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290
	rb_link_node(&newref->rbnode, parent, p);
	rb_insert_color(&newref->rbnode, root);
}

/*
 * Release the entire tree.  We don't care about internal consistency so
 * just free everything and then reset the tree root.
 */
static void prelim_release(struct preftree *preftree)
{
	struct prelim_ref *ref, *next_ref;

	rbtree_postorder_for_each_entry_safe(ref, next_ref, &preftree->root,
					     rbnode)
		free_pref(ref);

	preftree->root = RB_ROOT;
291
	preftree->count = 0;
292 293
}

294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325
/*
 * the rules for all callers of this function are:
 * - obtaining the parent is the goal
 * - if you add a key, you must know that it is a correct key
 * - if you cannot add the parent or a correct key, then we will look into the
 *   block later to set a correct key
 *
 * delayed refs
 * ============
 *        backref type | shared | indirect | shared | indirect
 * information         |   tree |     tree |   data |     data
 * --------------------+--------+----------+--------+----------
 *      parent logical |    y   |     -    |    -   |     -
 *      key to resolve |    -   |     y    |    y   |     y
 *  tree block logical |    -   |     -    |    -   |     -
 *  root for resolving |    y   |     y    |    y   |     y
 *
 * - column 1:       we've the parent -> done
 * - column 2, 3, 4: we use the key to find the parent
 *
 * on disk refs (inline or keyed)
 * ==============================
 *        backref type | shared | indirect | shared | indirect
 * information         |   tree |     tree |   data |     data
 * --------------------+--------+----------+--------+----------
 *      parent logical |    y   |     -    |    y   |     -
 *      key to resolve |    -   |     -    |    -   |     y
 *  tree block logical |    y   |     y    |    y   |     y
 *  root for resolving |    -   |     y    |    y   |     y
 *
 * - column 1, 3: we've the parent -> done
 * - column 2:    we take the first key from the block to find the parent
326
 *                (see add_missing_keys)
327 328 329 330 331
 * - column 4:    we use the key to find the parent
 *
 * additional information that's available but not required to find the parent
 * block might help in merging entries to gain some speed.
 */
332 333
static int add_prelim_ref(const struct btrfs_fs_info *fs_info,
			  struct preftree *preftree, u64 root_id,
334
			  const struct btrfs_key *key, int level, u64 parent,
335 336
			  u64 wanted_disk_byte, int count,
			  struct share_check *sc, gfp_t gfp_mask)
337
{
338
	struct prelim_ref *ref;
339

340 341 342
	if (root_id == BTRFS_DATA_RELOC_TREE_OBJECTID)
		return 0;

343
	ref = kmem_cache_alloc(btrfs_prelim_ref_cache, gfp_mask);
344 345 346 347
	if (!ref)
		return -ENOMEM;

	ref->root_id = root_id;
348
	if (key) {
349
		ref->key_for_search = *key;
350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372
		/*
		 * We can often find data backrefs with an offset that is too
		 * large (>= LLONG_MAX, maximum allowed file offset) due to
		 * underflows when subtracting a file's offset with the data
		 * offset of its corresponding extent data item. This can
		 * happen for example in the clone ioctl.
		 * So if we detect such case we set the search key's offset to
		 * zero to make sure we will find the matching file extent item
		 * at add_all_parents(), otherwise we will miss it because the
		 * offset taken form the backref is much larger then the offset
		 * of the file extent item. This can make us scan a very large
		 * number of file extent items, but at least it will not make
		 * us miss any.
		 * This is an ugly workaround for a behaviour that should have
		 * never existed, but it does and a fix for the clone ioctl
		 * would touch a lot of places, cause backwards incompatibility
		 * and would not fix the problem for extents cloned with older
		 * kernels.
		 */
		if (ref->key_for_search.type == BTRFS_EXTENT_DATA_KEY &&
		    ref->key_for_search.offset >= LLONG_MAX)
			ref->key_for_search.offset = 0;
	} else {
373
		memset(&ref->key_for_search, 0, sizeof(ref->key_for_search));
374
	}
375

376
	ref->inode_list = NULL;
377 378 379 380
	ref->level = level;
	ref->count = count;
	ref->parent = parent;
	ref->wanted_disk_byte = wanted_disk_byte;
381 382
	prelim_ref_insert(fs_info, preftree, ref, sc);
	return extent_is_shared(sc);
383 384
}

385
/* direct refs use root == 0, key == NULL */
386 387
static int add_direct_ref(const struct btrfs_fs_info *fs_info,
			  struct preftrees *preftrees, int level, u64 parent,
388 389
			  u64 wanted_disk_byte, int count,
			  struct share_check *sc, gfp_t gfp_mask)
390
{
391
	return add_prelim_ref(fs_info, &preftrees->direct, 0, NULL, level,
392
			      parent, wanted_disk_byte, count, sc, gfp_mask);
393 394 395
}

/* indirect refs use parent == 0 */
396 397
static int add_indirect_ref(const struct btrfs_fs_info *fs_info,
			    struct preftrees *preftrees, u64 root_id,
398
			    const struct btrfs_key *key, int level,
399 400
			    u64 wanted_disk_byte, int count,
			    struct share_check *sc, gfp_t gfp_mask)
401 402 403 404 405
{
	struct preftree *tree = &preftrees->indirect;

	if (!key)
		tree = &preftrees->indirect_missing_keys;
406
	return add_prelim_ref(fs_info, tree, root_id, key, level, 0,
407
			      wanted_disk_byte, count, sc, gfp_mask);
408 409
}

410
static int add_all_parents(struct btrfs_root *root, struct btrfs_path *path,
411
			   struct ulist *parents, struct prelim_ref *ref,
412
			   int level, u64 time_seq, const u64 *extent_item_pos,
413
			   u64 total_refs, bool ignore_offset)
414
{
415 416 417 418
	int ret = 0;
	int slot;
	struct extent_buffer *eb;
	struct btrfs_key key;
419
	struct btrfs_key *key_for_search = &ref->key_for_search;
420
	struct btrfs_file_extent_item *fi;
421
	struct extent_inode_elem *eie = NULL, *old = NULL;
422
	u64 disk_byte;
423 424
	u64 wanted_disk_byte = ref->wanted_disk_byte;
	u64 count = 0;
425

426 427 428
	if (level != 0) {
		eb = path->nodes[level];
		ret = ulist_add(parents, eb->start, 0, GFP_NOFS);
429 430
		if (ret < 0)
			return ret;
431
		return 0;
432
	}
433 434

	/*
435 436 437
	 * We normally enter this function with the path already pointing to
	 * the first item to check. But sometimes, we may enter it with
	 * slot==nritems. In that case, go to the next leaf before we continue.
438
	 */
439
	if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
440
		if (time_seq == SEQ_LAST)
441 442 443 444
			ret = btrfs_next_leaf(root, path);
		else
			ret = btrfs_next_old_leaf(root, path, time_seq);
	}
445

446
	while (!ret && count < total_refs) {
447
		eb = path->nodes[0];
448 449 450 451 452 453 454 455 456 457 458 459 460
		slot = path->slots[0];

		btrfs_item_key_to_cpu(eb, &key, slot);

		if (key.objectid != key_for_search->objectid ||
		    key.type != BTRFS_EXTENT_DATA_KEY)
			break;

		fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
		disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);

		if (disk_byte == wanted_disk_byte) {
			eie = NULL;
461
			old = NULL;
462
			count++;
463 464 465
			if (extent_item_pos) {
				ret = check_extent_in_eb(&key, eb, fi,
						*extent_item_pos,
466
						&eie, ignore_offset);
467 468 469
				if (ret < 0)
					break;
			}
470 471
			if (ret > 0)
				goto next;
472 473
			ret = ulist_add_merge_ptr(parents, eb->start,
						  eie, (void **)&old, GFP_NOFS);
474 475 476 477 478 479
			if (ret < 0)
				break;
			if (!ret && extent_item_pos) {
				while (old->next)
					old = old->next;
				old->next = eie;
480
			}
481
			eie = NULL;
482
		}
483
next:
484
		if (time_seq == SEQ_LAST)
485 486 487
			ret = btrfs_next_item(root, path);
		else
			ret = btrfs_next_old_item(root, path, time_seq);
488 489
	}

490 491
	if (ret > 0)
		ret = 0;
492 493
	else if (ret < 0)
		free_inode_elem_list(eie);
494
	return ret;
495 496 497 498 499 500
}

/*
 * resolve an indirect backref in the form (root_id, key, level)
 * to a logical address
 */
501 502 503
static int resolve_indirect_ref(struct btrfs_fs_info *fs_info,
				struct btrfs_path *path, u64 time_seq,
				struct prelim_ref *ref, struct ulist *parents,
504 505
				const u64 *extent_item_pos, u64 total_refs,
				bool ignore_offset)
506 507 508 509 510 511 512
{
	struct btrfs_root *root;
	struct btrfs_key root_key;
	struct extent_buffer *eb;
	int ret = 0;
	int root_level;
	int level = ref->level;
513
	int index;
514 515 516 517

	root_key.objectid = ref->root_id;
	root_key.type = BTRFS_ROOT_ITEM_KEY;
	root_key.offset = (u64)-1;
518 519 520

	index = srcu_read_lock(&fs_info->subvol_srcu);

521
	root = btrfs_get_fs_root(fs_info, &root_key, false);
522
	if (IS_ERR(root)) {
523
		srcu_read_unlock(&fs_info->subvol_srcu, index);
524 525 526 527
		ret = PTR_ERR(root);
		goto out;
	}

528
	if (btrfs_is_testing(fs_info)) {
J
Josef Bacik 已提交
529 530 531 532 533
		srcu_read_unlock(&fs_info->subvol_srcu, index);
		ret = -ENOENT;
		goto out;
	}

534 535
	if (path->search_commit_root)
		root_level = btrfs_header_level(root->commit_root);
536
	else if (time_seq == SEQ_LAST)
537
		root_level = btrfs_header_level(root->node);
538 539
	else
		root_level = btrfs_old_root_level(root, time_seq);
540

541 542
	if (root_level + 1 == level) {
		srcu_read_unlock(&fs_info->subvol_srcu, index);
543
		goto out;
544
	}
545 546

	path->lowest_level = level;
547
	if (time_seq == SEQ_LAST)
548 549 550 551 552
		ret = btrfs_search_slot(NULL, root, &ref->key_for_search, path,
					0, 0);
	else
		ret = btrfs_search_old_slot(root, &ref->key_for_search, path,
					    time_seq);
553 554 555 556

	/* root node has been locked, we can release @subvol_srcu safely here */
	srcu_read_unlock(&fs_info->subvol_srcu, index);

557 558
	btrfs_debug(fs_info,
		"search slot in root %llu (level %d, ref count %d) returned %d for key (%llu %u %llu)",
559 560 561
		 ref->root_id, level, ref->count, ret,
		 ref->key_for_search.objectid, ref->key_for_search.type,
		 ref->key_for_search.offset);
562 563 564 565
	if (ret < 0)
		goto out;

	eb = path->nodes[level];
566
	while (!eb) {
567
		if (WARN_ON(!level)) {
568 569 570 571 572
			ret = 1;
			goto out;
		}
		level--;
		eb = path->nodes[level];
573 574
	}

575
	ret = add_all_parents(root, path, parents, ref, level, time_seq,
576
			      extent_item_pos, total_refs, ignore_offset);
577
out:
578 579
	path->lowest_level = 0;
	btrfs_release_path(path);
580 581 582
	return ret;
}

583 584 585 586 587 588 589 590
static struct extent_inode_elem *
unode_aux_to_inode_list(struct ulist_node *node)
{
	if (!node)
		return NULL;
	return (struct extent_inode_elem *)(uintptr_t)node->aux;
}

591
/*
592 593 594 595 596 597 598 599 600 601 602 603 604 605
 * We maintain three seperate rbtrees: one for direct refs, one for
 * indirect refs which have a key, and one for indirect refs which do not
 * have a key. Each tree does merge on insertion.
 *
 * Once all of the references are located, we iterate over the tree of
 * indirect refs with missing keys. An appropriate key is located and
 * the ref is moved onto the tree for indirect refs. After all missing
 * keys are thus located, we iterate over the indirect ref tree, resolve
 * each reference, and then insert the resolved reference onto the
 * direct tree (merging there too).
 *
 * New backrefs (i.e., for parent nodes) are added to the appropriate
 * rbtree as they are encountered. The new backrefs are subsequently
 * resolved as above.
606
 */
607 608
static int resolve_indirect_refs(struct btrfs_fs_info *fs_info,
				 struct btrfs_path *path, u64 time_seq,
609
				 struct preftrees *preftrees,
610
				 const u64 *extent_item_pos, u64 total_refs,
611
				 struct share_check *sc, bool ignore_offset)
612 613 614 615 616
{
	int err;
	int ret = 0;
	struct ulist *parents;
	struct ulist_node *node;
J
Jan Schmidt 已提交
617
	struct ulist_iterator uiter;
618
	struct rb_node *rnode;
619 620 621 622 623 624

	parents = ulist_alloc(GFP_NOFS);
	if (!parents)
		return -ENOMEM;

	/*
625 626 627 628
	 * We could trade memory usage for performance here by iterating
	 * the tree, allocating new refs for each insertion, and then
	 * freeing the entire indirect tree when we're done.  In some test
	 * cases, the tree can grow quite large (~200k objects).
629
	 */
630 631 632 633 634 635 636 637 638 639 640
	while ((rnode = rb_first(&preftrees->indirect.root))) {
		struct prelim_ref *ref;

		ref = rb_entry(rnode, struct prelim_ref, rbnode);
		if (WARN(ref->parent,
			 "BUG: direct ref found in indirect tree")) {
			ret = -EINVAL;
			goto out;
		}

		rb_erase(&ref->rbnode, &preftrees->indirect.root);
641
		preftrees->indirect.count--;
642 643 644

		if (ref->count == 0) {
			free_pref(ref);
645
			continue;
646 647
		}

648 649
		if (sc && sc->root_objectid &&
		    ref->root_id != sc->root_objectid) {
650
			free_pref(ref);
651 652 653
			ret = BACKREF_FOUND_SHARED;
			goto out;
		}
654 655
		err = resolve_indirect_ref(fs_info, path, time_seq, ref,
					   parents, extent_item_pos,
656
					   total_refs, ignore_offset);
657 658 659 660 661
		/*
		 * we can only tolerate ENOENT,otherwise,we should catch error
		 * and return directly.
		 */
		if (err == -ENOENT) {
662 663
			prelim_ref_insert(fs_info, &preftrees->direct, ref,
					  NULL);
664
			continue;
665
		} else if (err) {
666
			free_pref(ref);
667 668 669
			ret = err;
			goto out;
		}
670 671

		/* we put the first parent into the ref at hand */
J
Jan Schmidt 已提交
672 673
		ULIST_ITER_INIT(&uiter);
		node = ulist_next(parents, &uiter);
674
		ref->parent = node ? node->val : 0;
675
		ref->inode_list = unode_aux_to_inode_list(node);
676

677
		/* Add a prelim_ref(s) for any other parent(s). */
J
Jan Schmidt 已提交
678
		while ((node = ulist_next(parents, &uiter))) {
679 680
			struct prelim_ref *new_ref;

681 682
			new_ref = kmem_cache_alloc(btrfs_prelim_ref_cache,
						   GFP_NOFS);
683
			if (!new_ref) {
684
				free_pref(ref);
685
				ret = -ENOMEM;
686
				goto out;
687 688 689
			}
			memcpy(new_ref, ref, sizeof(*ref));
			new_ref->parent = node->val;
690
			new_ref->inode_list = unode_aux_to_inode_list(node);
691 692
			prelim_ref_insert(fs_info, &preftrees->direct,
					  new_ref, NULL);
693
		}
694

695 696 697 698 699
		/*
		 * Now it's a direct ref, put it in the the direct tree. We must
		 * do this last because the ref could be merged/freed here.
		 */
		prelim_ref_insert(fs_info, &preftrees->direct, ref, NULL);
700

701
		ulist_reinit(parents);
702
		cond_resched();
703
	}
704
out:
705 706 707 708
	ulist_free(parents);
	return ret;
}

709 710 711
/*
 * read tree blocks and add keys where required.
 */
712
static int add_missing_keys(struct btrfs_fs_info *fs_info,
713
			    struct preftrees *preftrees)
714
{
715
	struct prelim_ref *ref;
716
	struct extent_buffer *eb;
717 718
	struct preftree *tree = &preftrees->indirect_missing_keys;
	struct rb_node *node;
719

720 721 722 723 724 725
	while ((node = rb_first(&tree->root))) {
		ref = rb_entry(node, struct prelim_ref, rbnode);
		rb_erase(node, &tree->root);

		BUG_ON(ref->parent);	/* should not be a direct ref */
		BUG_ON(ref->key_for_search.type);
726
		BUG_ON(!ref->wanted_disk_byte);
727

728 729
		eb = read_tree_block(fs_info, ref->wanted_disk_byte, 0,
				     ref->level - 1, NULL);
730
		if (IS_ERR(eb)) {
731
			free_pref(ref);
732 733
			return PTR_ERR(eb);
		} else if (!extent_buffer_uptodate(eb)) {
734
			free_pref(ref);
735 736 737
			free_extent_buffer(eb);
			return -EIO;
		}
738 739 740 741 742 743 744
		btrfs_tree_read_lock(eb);
		if (btrfs_header_level(eb) == 0)
			btrfs_item_key_to_cpu(eb, &ref->key_for_search, 0);
		else
			btrfs_node_key_to_cpu(eb, &ref->key_for_search, 0);
		btrfs_tree_read_unlock(eb);
		free_extent_buffer(eb);
745
		prelim_ref_insert(fs_info, &preftrees->indirect, ref, NULL);
746
		cond_resched();
747 748 749 750
	}
	return 0;
}

751 752 753 754
/*
 * add all currently queued delayed refs from this head whose seq nr is
 * smaller or equal that seq to the list
 */
755 756
static int add_delayed_refs(const struct btrfs_fs_info *fs_info,
			    struct btrfs_delayed_ref_head *head, u64 seq,
757
			    struct preftrees *preftrees, u64 *total_refs,
758
			    struct share_check *sc)
759
{
760
	struct btrfs_delayed_ref_node *node;
761
	struct btrfs_delayed_extent_op *extent_op = head->extent_op;
762
	struct btrfs_key key;
763
	struct btrfs_key tmp_op_key;
764
	struct rb_node *n;
765
	int count;
766
	int ret = 0;
767

768
	if (extent_op && extent_op->update_key)
769
		btrfs_disk_key_to_cpu(&tmp_op_key, &extent_op->key);
770

771
	spin_lock(&head->lock);
772 773 774
	for (n = rb_first(&head->ref_tree); n; n = rb_next(n)) {
		node = rb_entry(n, struct btrfs_delayed_ref_node,
				ref_node);
775 776 777 778 779 780 781 782 783
		if (node->seq > seq)
			continue;

		switch (node->action) {
		case BTRFS_ADD_DELAYED_EXTENT:
		case BTRFS_UPDATE_DELAYED_HEAD:
			WARN_ON(1);
			continue;
		case BTRFS_ADD_DELAYED_REF:
784
			count = node->ref_mod;
785 786
			break;
		case BTRFS_DROP_DELAYED_REF:
787
			count = node->ref_mod * -1;
788 789 790 791
			break;
		default:
			BUG_ON(1);
		}
792
		*total_refs += count;
793 794
		switch (node->type) {
		case BTRFS_TREE_BLOCK_REF_KEY: {
795
			/* NORMAL INDIRECT METADATA backref */
796 797 798
			struct btrfs_delayed_tree_ref *ref;

			ref = btrfs_delayed_node_to_tree_ref(node);
799 800
			ret = add_indirect_ref(fs_info, preftrees, ref->root,
					       &tmp_op_key, ref->level + 1,
801 802
					       node->bytenr, count, sc,
					       GFP_ATOMIC);
803 804 805
			break;
		}
		case BTRFS_SHARED_BLOCK_REF_KEY: {
806
			/* SHARED DIRECT METADATA backref */
807 808 809
			struct btrfs_delayed_tree_ref *ref;

			ref = btrfs_delayed_node_to_tree_ref(node);
810

811 812
			ret = add_direct_ref(fs_info, preftrees, ref->level + 1,
					     ref->parent, node->bytenr, count,
813
					     sc, GFP_ATOMIC);
814 815 816
			break;
		}
		case BTRFS_EXTENT_DATA_REF_KEY: {
817
			/* NORMAL INDIRECT DATA backref */
818 819 820 821 822 823
			struct btrfs_delayed_data_ref *ref;
			ref = btrfs_delayed_node_to_data_ref(node);

			key.objectid = ref->objectid;
			key.type = BTRFS_EXTENT_DATA_KEY;
			key.offset = ref->offset;
824 825 826 827 828

			/*
			 * Found a inum that doesn't match our known inum, we
			 * know it's shared.
			 */
829
			if (sc && sc->inum && ref->objectid != sc->inum) {
830
				ret = BACKREF_FOUND_SHARED;
831
				goto out;
832 833
			}

834
			ret = add_indirect_ref(fs_info, preftrees, ref->root,
835 836
					       &key, 0, node->bytenr, count, sc,
					       GFP_ATOMIC);
837 838 839
			break;
		}
		case BTRFS_SHARED_DATA_REF_KEY: {
840
			/* SHARED DIRECT FULL backref */
841 842 843
			struct btrfs_delayed_data_ref *ref;

			ref = btrfs_delayed_node_to_data_ref(node);
844

845 846 847
			ret = add_direct_ref(fs_info, preftrees, 0, ref->parent,
					     node->bytenr, count, sc,
					     GFP_ATOMIC);
848 849 850 851 852
			break;
		}
		default:
			WARN_ON(1);
		}
853 854 855 856 857
		/*
		 * We must ignore BACKREF_FOUND_SHARED until all delayed
		 * refs have been checked.
		 */
		if (ret && (ret != BACKREF_FOUND_SHARED))
858
			break;
859
	}
860 861 862
	if (!ret)
		ret = extent_is_shared(sc);
out:
863 864
	spin_unlock(&head->lock);
	return ret;
865 866 867 868
}

/*
 * add all inline backrefs for bytenr to the list
869 870
 *
 * Returns 0 on success, <0 on error, or BACKREF_FOUND_SHARED.
871
 */
872 873
static int add_inline_refs(const struct btrfs_fs_info *fs_info,
			   struct btrfs_path *path, u64 bytenr,
874
			   int *info_level, struct preftrees *preftrees,
875
			   u64 *total_refs, struct share_check *sc)
876
{
877
	int ret = 0;
878 879 880
	int slot;
	struct extent_buffer *leaf;
	struct btrfs_key key;
881
	struct btrfs_key found_key;
882 883 884 885 886 887 888 889 890 891
	unsigned long ptr;
	unsigned long end;
	struct btrfs_extent_item *ei;
	u64 flags;
	u64 item_size;

	/*
	 * enumerate all inline refs
	 */
	leaf = path->nodes[0];
892
	slot = path->slots[0];
893 894 895 896 897 898

	item_size = btrfs_item_size_nr(leaf, slot);
	BUG_ON(item_size < sizeof(*ei));

	ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item);
	flags = btrfs_extent_flags(leaf, ei);
899
	*total_refs += btrfs_extent_refs(leaf, ei);
900
	btrfs_item_key_to_cpu(leaf, &found_key, slot);
901 902 903 904

	ptr = (unsigned long)(ei + 1);
	end = (unsigned long)ei + item_size;

905 906
	if (found_key.type == BTRFS_EXTENT_ITEM_KEY &&
	    flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
907 908 909 910 911 912
		struct btrfs_tree_block_info *info;

		info = (struct btrfs_tree_block_info *)ptr;
		*info_level = btrfs_tree_block_level(leaf, info);
		ptr += sizeof(struct btrfs_tree_block_info);
		BUG_ON(ptr > end);
913 914
	} else if (found_key.type == BTRFS_METADATA_ITEM_KEY) {
		*info_level = found_key.offset;
915 916 917 918 919 920 921 922 923 924
	} else {
		BUG_ON(!(flags & BTRFS_EXTENT_FLAG_DATA));
	}

	while (ptr < end) {
		struct btrfs_extent_inline_ref *iref;
		u64 offset;
		int type;

		iref = (struct btrfs_extent_inline_ref *)ptr;
925 926 927 928 929
		type = btrfs_get_extent_inline_ref_type(leaf, iref,
							BTRFS_REF_TYPE_ANY);
		if (type == BTRFS_REF_TYPE_INVALID)
			return -EINVAL;

930 931 932 933
		offset = btrfs_extent_inline_ref_offset(leaf, iref);

		switch (type) {
		case BTRFS_SHARED_BLOCK_REF_KEY:
934 935
			ret = add_direct_ref(fs_info, preftrees,
					     *info_level + 1, offset,
936
					     bytenr, 1, NULL, GFP_NOFS);
937 938 939 940 941 942 943
			break;
		case BTRFS_SHARED_DATA_REF_KEY: {
			struct btrfs_shared_data_ref *sdref;
			int count;

			sdref = (struct btrfs_shared_data_ref *)(iref + 1);
			count = btrfs_shared_data_ref_count(leaf, sdref);
944

945
			ret = add_direct_ref(fs_info, preftrees, 0, offset,
946
					     bytenr, count, sc, GFP_NOFS);
947 948 949
			break;
		}
		case BTRFS_TREE_BLOCK_REF_KEY:
950 951
			ret = add_indirect_ref(fs_info, preftrees, offset,
					       NULL, *info_level + 1,
952
					       bytenr, 1, NULL, GFP_NOFS);
953 954 955 956 957 958 959 960 961 962 963 964
			break;
		case BTRFS_EXTENT_DATA_REF_KEY: {
			struct btrfs_extent_data_ref *dref;
			int count;
			u64 root;

			dref = (struct btrfs_extent_data_ref *)(&iref->offset);
			count = btrfs_extent_data_ref_count(leaf, dref);
			key.objectid = btrfs_extent_data_ref_objectid(leaf,
								      dref);
			key.type = BTRFS_EXTENT_DATA_KEY;
			key.offset = btrfs_extent_data_ref_offset(leaf, dref);
965

966
			if (sc && sc->inum && key.objectid != sc->inum) {
967 968 969 970
				ret = BACKREF_FOUND_SHARED;
				break;
			}

971
			root = btrfs_extent_data_ref_root(leaf, dref);
972

973 974
			ret = add_indirect_ref(fs_info, preftrees, root,
					       &key, 0, bytenr, count,
975
					       sc, GFP_NOFS);
976 977 978 979 980
			break;
		}
		default:
			WARN_ON(1);
		}
981 982
		if (ret)
			return ret;
983 984 985 986 987 988 989 990
		ptr += btrfs_extent_inline_ref_size(type);
	}

	return 0;
}

/*
 * add all non-inline backrefs for bytenr to the list
991 992
 *
 * Returns 0 on success, <0 on error, or BACKREF_FOUND_SHARED.
993
 */
994 995
static int add_keyed_refs(struct btrfs_fs_info *fs_info,
			  struct btrfs_path *path, u64 bytenr,
996
			  int info_level, struct preftrees *preftrees,
997
			  struct share_check *sc)
998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026
{
	struct btrfs_root *extent_root = fs_info->extent_root;
	int ret;
	int slot;
	struct extent_buffer *leaf;
	struct btrfs_key key;

	while (1) {
		ret = btrfs_next_item(extent_root, path);
		if (ret < 0)
			break;
		if (ret) {
			ret = 0;
			break;
		}

		slot = path->slots[0];
		leaf = path->nodes[0];
		btrfs_item_key_to_cpu(leaf, &key, slot);

		if (key.objectid != bytenr)
			break;
		if (key.type < BTRFS_TREE_BLOCK_REF_KEY)
			continue;
		if (key.type > BTRFS_SHARED_DATA_REF_KEY)
			break;

		switch (key.type) {
		case BTRFS_SHARED_BLOCK_REF_KEY:
1027
			/* SHARED DIRECT METADATA backref */
1028 1029
			ret = add_direct_ref(fs_info, preftrees,
					     info_level + 1, key.offset,
1030
					     bytenr, 1, NULL, GFP_NOFS);
1031 1032
			break;
		case BTRFS_SHARED_DATA_REF_KEY: {
1033
			/* SHARED DIRECT FULL backref */
1034 1035 1036 1037 1038 1039
			struct btrfs_shared_data_ref *sdref;
			int count;

			sdref = btrfs_item_ptr(leaf, slot,
					      struct btrfs_shared_data_ref);
			count = btrfs_shared_data_ref_count(leaf, sdref);
1040 1041
			ret = add_direct_ref(fs_info, preftrees, 0,
					     key.offset, bytenr, count,
1042
					     sc, GFP_NOFS);
1043 1044 1045
			break;
		}
		case BTRFS_TREE_BLOCK_REF_KEY:
1046
			/* NORMAL INDIRECT METADATA backref */
1047 1048
			ret = add_indirect_ref(fs_info, preftrees, key.offset,
					       NULL, info_level + 1, bytenr,
1049
					       1, NULL, GFP_NOFS);
1050 1051
			break;
		case BTRFS_EXTENT_DATA_REF_KEY: {
1052
			/* NORMAL INDIRECT DATA backref */
1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063
			struct btrfs_extent_data_ref *dref;
			int count;
			u64 root;

			dref = btrfs_item_ptr(leaf, slot,
					      struct btrfs_extent_data_ref);
			count = btrfs_extent_data_ref_count(leaf, dref);
			key.objectid = btrfs_extent_data_ref_objectid(leaf,
								      dref);
			key.type = BTRFS_EXTENT_DATA_KEY;
			key.offset = btrfs_extent_data_ref_offset(leaf, dref);
1064

1065
			if (sc && sc->inum && key.objectid != sc->inum) {
1066 1067 1068 1069
				ret = BACKREF_FOUND_SHARED;
				break;
			}

1070
			root = btrfs_extent_data_ref_root(leaf, dref);
1071 1072
			ret = add_indirect_ref(fs_info, preftrees, root,
					       &key, 0, bytenr, count,
1073
					       sc, GFP_NOFS);
1074 1075 1076 1077 1078
			break;
		}
		default:
			WARN_ON(1);
		}
1079 1080 1081
		if (ret)
			return ret;

1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092
	}

	return ret;
}

/*
 * this adds all existing backrefs (inline backrefs, backrefs and delayed
 * refs) for the given bytenr to the refs list, merges duplicates and resolves
 * indirect refs to their parent bytenr.
 * When roots are found, they're added to the roots list
 *
1093
 * If time_seq is set to SEQ_LAST, it will not search delayed_refs, and behave
1094 1095 1096 1097
 * much like trans == NULL case, the difference only lies in it will not
 * commit root.
 * The special case is for qgroup to search roots in commit_transaction().
 *
1098 1099 1100 1101 1102
 * @sc - if !NULL, then immediately return BACKREF_FOUND_SHARED when a
 * shared extent is detected.
 *
 * Otherwise this returns 0 for success and <0 for an error.
 *
1103 1104 1105 1106
 * If ignore_offset is set to false, only extent refs whose offsets match
 * extent_item_pos are returned.  If true, every extent ref is returned
 * and extent_item_pos is ignored.
 *
1107 1108 1109 1110
 * FIXME some caching might speed things up
 */
static int find_parent_nodes(struct btrfs_trans_handle *trans,
			     struct btrfs_fs_info *fs_info, u64 bytenr,
1111
			     u64 time_seq, struct ulist *refs,
1112
			     struct ulist *roots, const u64 *extent_item_pos,
1113
			     struct share_check *sc, bool ignore_offset)
1114 1115 1116 1117
{
	struct btrfs_key key;
	struct btrfs_path *path;
	struct btrfs_delayed_ref_root *delayed_refs = NULL;
1118
	struct btrfs_delayed_ref_head *head;
1119 1120
	int info_level = 0;
	int ret;
1121
	struct prelim_ref *ref;
1122
	struct rb_node *node;
1123
	struct extent_inode_elem *eie = NULL;
1124
	/* total of both direct AND indirect refs! */
1125
	u64 total_refs = 0;
1126 1127 1128 1129 1130
	struct preftrees preftrees = {
		.direct = PREFTREE_INIT,
		.indirect = PREFTREE_INIT,
		.indirect_missing_keys = PREFTREE_INIT
	};
1131 1132 1133

	key.objectid = bytenr;
	key.offset = (u64)-1;
1134 1135 1136 1137
	if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
		key.type = BTRFS_METADATA_ITEM_KEY;
	else
		key.type = BTRFS_EXTENT_ITEM_KEY;
1138 1139 1140 1141

	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;
1142
	if (!trans) {
1143
		path->search_commit_root = 1;
1144 1145
		path->skip_locking = 1;
	}
1146

1147
	if (time_seq == SEQ_LAST)
1148 1149
		path->skip_locking = 1;

1150 1151 1152 1153 1154 1155
	/*
	 * grab both a lock on the path and a lock on the delayed ref head.
	 * We need both to get a consistent picture of how the refs look
	 * at a specified point in time
	 */
again:
1156 1157
	head = NULL;

1158 1159 1160 1161 1162
	ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 0);
	if (ret < 0)
		goto out;
	BUG_ON(ret == 0);

1163
#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1164
	if (trans && likely(trans->type != __TRANS_DUMMY) &&
1165
	    time_seq != SEQ_LAST) {
1166
#else
1167
	if (trans && time_seq != SEQ_LAST) {
1168
#endif
1169 1170 1171 1172 1173 1174
		/*
		 * look if there are updates for this ref queued and lock the
		 * head
		 */
		delayed_refs = &trans->transaction->delayed_refs;
		spin_lock(&delayed_refs->lock);
1175
		head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
1176 1177
		if (head) {
			if (!mutex_trylock(&head->mutex)) {
1178
				refcount_inc(&head->refs);
1179 1180 1181 1182 1183 1184 1185 1186 1187 1188
				spin_unlock(&delayed_refs->lock);

				btrfs_release_path(path);

				/*
				 * Mutex was contended, block until it's
				 * released and try again
				 */
				mutex_lock(&head->mutex);
				mutex_unlock(&head->mutex);
1189
				btrfs_put_delayed_ref_head(head);
1190 1191
				goto again;
			}
1192
			spin_unlock(&delayed_refs->lock);
1193
			ret = add_delayed_refs(fs_info, head, time_seq,
1194
					       &preftrees, &total_refs, sc);
1195
			mutex_unlock(&head->mutex);
1196
			if (ret)
1197
				goto out;
1198 1199
		} else {
			spin_unlock(&delayed_refs->lock);
1200
		}
1201 1202 1203 1204 1205 1206
	}

	if (path->slots[0]) {
		struct extent_buffer *leaf;
		int slot;

1207
		path->slots[0]--;
1208
		leaf = path->nodes[0];
1209
		slot = path->slots[0];
1210 1211
		btrfs_item_key_to_cpu(leaf, &key, slot);
		if (key.objectid == bytenr &&
1212 1213
		    (key.type == BTRFS_EXTENT_ITEM_KEY ||
		     key.type == BTRFS_METADATA_ITEM_KEY)) {
1214 1215
			ret = add_inline_refs(fs_info, path, bytenr,
					      &info_level, &preftrees,
1216
					      &total_refs, sc);
1217 1218
			if (ret)
				goto out;
1219
			ret = add_keyed_refs(fs_info, path, bytenr, info_level,
1220
					     &preftrees, sc);
1221 1222 1223 1224 1225
			if (ret)
				goto out;
		}
	}

1226
	btrfs_release_path(path);
1227

1228
	ret = add_missing_keys(fs_info, &preftrees);
1229 1230 1231
	if (ret)
		goto out;

1232
	WARN_ON(!RB_EMPTY_ROOT(&preftrees.indirect_missing_keys.root));
1233

1234
	ret = resolve_indirect_refs(fs_info, path, time_seq, &preftrees,
1235
				    extent_item_pos, total_refs, sc, ignore_offset);
1236 1237 1238
	if (ret)
		goto out;

1239
	WARN_ON(!RB_EMPTY_ROOT(&preftrees.indirect.root));
1240

1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251
	/*
	 * This walks the tree of merged and resolved refs. Tree blocks are
	 * read in as needed. Unique entries are added to the ulist, and
	 * the list of found roots is updated.
	 *
	 * We release the entire tree in one go before returning.
	 */
	node = rb_first(&preftrees.direct.root);
	while (node) {
		ref = rb_entry(node, struct prelim_ref, rbnode);
		node = rb_next(&ref->rbnode);
1252 1253 1254 1255 1256 1257 1258 1259 1260 1261
		/*
		 * ref->count < 0 can happen here if there are delayed
		 * refs with a node->action of BTRFS_DROP_DELAYED_REF.
		 * prelim_ref_insert() relies on this when merging
		 * identical refs to keep the overall count correct.
		 * prelim_ref_insert() will merge only those refs
		 * which compare identically.  Any refs having
		 * e.g. different offsets would not be merged,
		 * and would retain their original ref->count < 0.
		 */
1262
		if (roots && ref->count && ref->root_id && ref->parent == 0) {
1263 1264
			if (sc && sc->root_objectid &&
			    ref->root_id != sc->root_objectid) {
1265 1266 1267 1268
				ret = BACKREF_FOUND_SHARED;
				goto out;
			}

1269 1270
			/* no parent == root of tree */
			ret = ulist_add(roots, ref->root_id, 0, GFP_NOFS);
1271 1272
			if (ret < 0)
				goto out;
1273 1274
		}
		if (ref->count && ref->parent) {
1275 1276
			if (extent_item_pos && !ref->inode_list &&
			    ref->level == 0) {
1277
				struct extent_buffer *eb;
1278

1279 1280
				eb = read_tree_block(fs_info, ref->parent, 0,
						     ref->level, NULL);
1281 1282 1283 1284
				if (IS_ERR(eb)) {
					ret = PTR_ERR(eb);
					goto out;
				} else if (!extent_buffer_uptodate(eb)) {
1285
					free_extent_buffer(eb);
1286 1287
					ret = -EIO;
					goto out;
1288
				}
1289 1290
				btrfs_tree_read_lock(eb);
				btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
1291
				ret = find_extent_in_eb(eb, bytenr,
1292
							*extent_item_pos, &eie, ignore_offset);
1293
				btrfs_tree_read_unlock_blocking(eb);
1294
				free_extent_buffer(eb);
1295 1296 1297
				if (ret < 0)
					goto out;
				ref->inode_list = eie;
1298
			}
1299 1300 1301
			ret = ulist_add_merge_ptr(refs, ref->parent,
						  ref->inode_list,
						  (void **)&eie, GFP_NOFS);
1302 1303
			if (ret < 0)
				goto out;
1304 1305 1306 1307 1308 1309 1310 1311 1312 1313
			if (!ret && extent_item_pos) {
				/*
				 * we've recorded that parent, so we must extend
				 * its inode list here
				 */
				BUG_ON(!eie);
				while (eie->next)
					eie = eie->next;
				eie->next = ref->inode_list;
			}
1314
			eie = NULL;
1315
		}
1316
		cond_resched();
1317 1318 1319 1320
	}

out:
	btrfs_free_path(path);
1321 1322 1323 1324 1325

	prelim_release(&preftrees.direct);
	prelim_release(&preftrees.indirect);
	prelim_release(&preftrees.indirect_missing_keys);

1326 1327
	if (ret < 0)
		free_inode_elem_list(eie);
1328 1329 1330
	return ret;
}

1331 1332 1333 1334 1335 1336 1337 1338 1339 1340
static void free_leaf_list(struct ulist *blocks)
{
	struct ulist_node *node = NULL;
	struct extent_inode_elem *eie;
	struct ulist_iterator uiter;

	ULIST_ITER_INIT(&uiter);
	while ((node = ulist_next(blocks, &uiter))) {
		if (!node->aux)
			continue;
1341
		eie = unode_aux_to_inode_list(node);
1342
		free_inode_elem_list(eie);
1343 1344 1345 1346 1347 1348
		node->aux = 0;
	}

	ulist_free(blocks);
}

1349 1350 1351 1352 1353 1354 1355 1356 1357 1358
/*
 * Finds all leafs with a reference to the specified combination of bytenr and
 * offset. key_list_head will point to a list of corresponding keys (caller must
 * free each list element). The leafs will be stored in the leafs ulist, which
 * must be freed with ulist_free.
 *
 * returns 0 on success, <0 on error
 */
static int btrfs_find_all_leafs(struct btrfs_trans_handle *trans,
				struct btrfs_fs_info *fs_info, u64 bytenr,
1359
				u64 time_seq, struct ulist **leafs,
1360
				const u64 *extent_item_pos, bool ignore_offset)
1361 1362 1363 1364
{
	int ret;

	*leafs = ulist_alloc(GFP_NOFS);
1365
	if (!*leafs)
1366 1367
		return -ENOMEM;

1368
	ret = find_parent_nodes(trans, fs_info, bytenr, time_seq,
1369
				*leafs, NULL, extent_item_pos, NULL, ignore_offset);
1370
	if (ret < 0 && ret != -ENOENT) {
1371
		free_leaf_list(*leafs);
1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390
		return ret;
	}

	return 0;
}

/*
 * walk all backrefs for a given extent to find all roots that reference this
 * extent. Walking a backref means finding all extents that reference this
 * extent and in turn walk the backrefs of those, too. Naturally this is a
 * recursive process, but here it is implemented in an iterative fashion: We
 * find all referencing extents for the extent in question and put them on a
 * list. In turn, we find all referencing extents for those, further appending
 * to the list. The way we iterate the list allows adding more elements after
 * the current while iterating. The process stops when we reach the end of the
 * list. Found roots are added to the roots list.
 *
 * returns 0 on success, < 0 on error.
 */
1391 1392
static int btrfs_find_all_roots_safe(struct btrfs_trans_handle *trans,
				     struct btrfs_fs_info *fs_info, u64 bytenr,
1393 1394
				     u64 time_seq, struct ulist **roots,
				     bool ignore_offset)
1395 1396 1397
{
	struct ulist *tmp;
	struct ulist_node *node = NULL;
J
Jan Schmidt 已提交
1398
	struct ulist_iterator uiter;
1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409
	int ret;

	tmp = ulist_alloc(GFP_NOFS);
	if (!tmp)
		return -ENOMEM;
	*roots = ulist_alloc(GFP_NOFS);
	if (!*roots) {
		ulist_free(tmp);
		return -ENOMEM;
	}

J
Jan Schmidt 已提交
1410
	ULIST_ITER_INIT(&uiter);
1411
	while (1) {
1412
		ret = find_parent_nodes(trans, fs_info, bytenr, time_seq,
1413
					tmp, *roots, NULL, NULL, ignore_offset);
1414 1415 1416 1417 1418
		if (ret < 0 && ret != -ENOENT) {
			ulist_free(tmp);
			ulist_free(*roots);
			return ret;
		}
J
Jan Schmidt 已提交
1419
		node = ulist_next(tmp, &uiter);
1420 1421 1422
		if (!node)
			break;
		bytenr = node->val;
1423
		cond_resched();
1424 1425 1426 1427 1428 1429
	}

	ulist_free(tmp);
	return 0;
}

1430 1431
int btrfs_find_all_roots(struct btrfs_trans_handle *trans,
			 struct btrfs_fs_info *fs_info, u64 bytenr,
1432 1433
			 u64 time_seq, struct ulist **roots,
			 bool ignore_offset)
1434 1435 1436 1437 1438
{
	int ret;

	if (!trans)
		down_read(&fs_info->commit_root_sem);
1439
	ret = btrfs_find_all_roots_safe(trans, fs_info, bytenr,
1440
					time_seq, roots, ignore_offset);
1441 1442 1443 1444 1445
	if (!trans)
		up_read(&fs_info->commit_root_sem);
	return ret;
}

1446 1447 1448 1449 1450 1451 1452 1453 1454
/**
 * btrfs_check_shared - tell us whether an extent is shared
 *
 * btrfs_check_shared uses the backref walking code but will short
 * circuit as soon as it finds a root or inode that doesn't match the
 * one passed in. This provides a significant performance benefit for
 * callers (such as fiemap) which want to know whether the extent is
 * shared but do not need a ref count.
 *
1455 1456 1457
 * This attempts to allocate a transaction in order to account for
 * delayed refs, but continues on even when the alloc fails.
 *
1458 1459
 * Return: 0 if extent is not shared, 1 if it is shared, < 0 on error.
 */
1460
int btrfs_check_shared(struct btrfs_root *root, u64 inum, u64 bytenr)
1461
{
1462 1463
	struct btrfs_fs_info *fs_info = root->fs_info;
	struct btrfs_trans_handle *trans;
1464 1465 1466 1467
	struct ulist *tmp = NULL;
	struct ulist *roots = NULL;
	struct ulist_iterator uiter;
	struct ulist_node *node;
1468
	struct seq_list elem = SEQ_LIST_INIT(elem);
1469
	int ret = 0;
1470 1471 1472 1473 1474
	struct share_check shared = {
		.root_objectid = root->objectid,
		.inum = inum,
		.share_count = 0,
	};
1475 1476 1477 1478 1479 1480 1481 1482 1483

	tmp = ulist_alloc(GFP_NOFS);
	roots = ulist_alloc(GFP_NOFS);
	if (!tmp || !roots) {
		ulist_free(tmp);
		ulist_free(roots);
		return -ENOMEM;
	}

1484 1485 1486
	trans = btrfs_join_transaction(root);
	if (IS_ERR(trans)) {
		trans = NULL;
1487
		down_read(&fs_info->commit_root_sem);
1488 1489 1490 1491
	} else {
		btrfs_get_tree_mod_seq(fs_info, &elem);
	}

1492 1493 1494
	ULIST_ITER_INIT(&uiter);
	while (1) {
		ret = find_parent_nodes(trans, fs_info, bytenr, elem.seq, tmp,
1495
					roots, NULL, &shared, false);
1496
		if (ret == BACKREF_FOUND_SHARED) {
1497
			/* this is the only condition under which we return 1 */
1498 1499 1500 1501 1502
			ret = 1;
			break;
		}
		if (ret < 0 && ret != -ENOENT)
			break;
1503
		ret = 0;
1504 1505 1506 1507
		node = ulist_next(tmp, &uiter);
		if (!node)
			break;
		bytenr = node->val;
1508
		shared.share_count = 0;
1509 1510
		cond_resched();
	}
1511 1512

	if (trans) {
1513
		btrfs_put_tree_mod_seq(fs_info, &elem);
1514 1515
		btrfs_end_transaction(trans);
	} else {
1516
		up_read(&fs_info->commit_root_sem);
1517
	}
1518 1519 1520 1521 1522
	ulist_free(tmp);
	ulist_free(roots);
	return ret;
}

M
Mark Fasheh 已提交
1523 1524 1525 1526 1527 1528 1529 1530 1531
int btrfs_find_one_extref(struct btrfs_root *root, u64 inode_objectid,
			  u64 start_off, struct btrfs_path *path,
			  struct btrfs_inode_extref **ret_extref,
			  u64 *found_off)
{
	int ret, slot;
	struct btrfs_key key;
	struct btrfs_key found_key;
	struct btrfs_inode_extref *extref;
1532
	const struct extent_buffer *leaf;
M
Mark Fasheh 已提交
1533 1534 1535
	unsigned long ptr;

	key.objectid = inode_objectid;
1536
	key.type = BTRFS_INODE_EXTREF_KEY;
M
Mark Fasheh 已提交
1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575
	key.offset = start_off;

	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
	if (ret < 0)
		return ret;

	while (1) {
		leaf = path->nodes[0];
		slot = path->slots[0];
		if (slot >= btrfs_header_nritems(leaf)) {
			/*
			 * If the item at offset is not found,
			 * btrfs_search_slot will point us to the slot
			 * where it should be inserted. In our case
			 * that will be the slot directly before the
			 * next INODE_REF_KEY_V2 item. In the case
			 * that we're pointing to the last slot in a
			 * leaf, we must move one leaf over.
			 */
			ret = btrfs_next_leaf(root, path);
			if (ret) {
				if (ret >= 1)
					ret = -ENOENT;
				break;
			}
			continue;
		}

		btrfs_item_key_to_cpu(leaf, &found_key, slot);

		/*
		 * Check that we're still looking at an extended ref key for
		 * this particular objectid. If we have different
		 * objectid or type then there are no more to be found
		 * in the tree and we can exit.
		 */
		ret = -ENOENT;
		if (found_key.objectid != inode_objectid)
			break;
1576
		if (found_key.type != BTRFS_INODE_EXTREF_KEY)
M
Mark Fasheh 已提交
1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590
			break;

		ret = 0;
		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
		extref = (struct btrfs_inode_extref *)ptr;
		*ret_extref = extref;
		if (found_off)
			*found_off = found_key.offset;
		break;
	}

	return ret;
}

1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604
/*
 * this iterates to turn a name (from iref/extref) into a full filesystem path.
 * Elements of the path are separated by '/' and the path is guaranteed to be
 * 0-terminated. the path is only given within the current file system.
 * Therefore, it never starts with a '/'. the caller is responsible to provide
 * "size" bytes in "dest". the dest buffer will be filled backwards. finally,
 * the start point of the resulting string is returned. this pointer is within
 * dest, normally.
 * in case the path buffer would overflow, the pointer is decremented further
 * as if output was written to the buffer, though no more output is actually
 * generated. that way, the caller can determine how much space would be
 * required for the path to fit into the buffer. in that case, the returned
 * value will be smaller than dest. callers must check this!
 */
1605 1606 1607 1608
char *btrfs_ref_to_path(struct btrfs_root *fs_root, struct btrfs_path *path,
			u32 name_len, unsigned long name_off,
			struct extent_buffer *eb_in, u64 parent,
			char *dest, u32 size)
1609 1610 1611 1612
{
	int slot;
	u64 next_inum;
	int ret;
1613
	s64 bytes_left = ((s64)size) - 1;
1614 1615
	struct extent_buffer *eb = eb_in;
	struct btrfs_key found_key;
1616
	int leave_spinning = path->leave_spinning;
M
Mark Fasheh 已提交
1617
	struct btrfs_inode_ref *iref;
1618 1619 1620 1621

	if (bytes_left >= 0)
		dest[bytes_left] = '\0';

1622
	path->leave_spinning = 1;
1623
	while (1) {
M
Mark Fasheh 已提交
1624
		bytes_left -= name_len;
1625 1626
		if (bytes_left >= 0)
			read_extent_buffer(eb, dest + bytes_left,
M
Mark Fasheh 已提交
1627
					   name_off, name_len);
1628
		if (eb != eb_in) {
1629 1630
			if (!path->skip_locking)
				btrfs_tree_read_unlock_blocking(eb);
1631
			free_extent_buffer(eb);
1632
		}
1633 1634
		ret = btrfs_find_item(fs_root, path, parent, 0,
				BTRFS_INODE_REF_KEY, &found_key);
1635 1636
		if (ret > 0)
			ret = -ENOENT;
1637 1638
		if (ret)
			break;
M
Mark Fasheh 已提交
1639

1640 1641 1642 1643 1644 1645 1646 1647 1648
		next_inum = found_key.offset;

		/* regular exit ahead */
		if (parent == next_inum)
			break;

		slot = path->slots[0];
		eb = path->nodes[0];
		/* make sure we can use eb after releasing the path */
1649
		if (eb != eb_in) {
1650 1651 1652 1653
			if (!path->skip_locking)
				btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
			path->nodes[0] = NULL;
			path->locks[0] = 0;
1654
		}
1655 1656
		btrfs_release_path(path);
		iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);
M
Mark Fasheh 已提交
1657 1658 1659 1660

		name_len = btrfs_inode_ref_name_len(eb, iref);
		name_off = (unsigned long)(iref + 1);

1661 1662 1663 1664 1665 1666 1667
		parent = next_inum;
		--bytes_left;
		if (bytes_left >= 0)
			dest[bytes_left] = '/';
	}

	btrfs_release_path(path);
1668
	path->leave_spinning = leave_spinning;
1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681

	if (ret)
		return ERR_PTR(ret);

	return dest + bytes_left;
}

/*
 * this makes the path point to (logical EXTENT_ITEM *)
 * returns BTRFS_EXTENT_FLAG_DATA for data, BTRFS_EXTENT_FLAG_TREE_BLOCK for
 * tree blocks and <0 on error.
 */
int extent_from_logical(struct btrfs_fs_info *fs_info, u64 logical,
1682 1683
			struct btrfs_path *path, struct btrfs_key *found_key,
			u64 *flags_ret)
1684 1685 1686
{
	int ret;
	u64 flags;
1687
	u64 size = 0;
1688
	u32 item_size;
1689
	const struct extent_buffer *eb;
1690 1691 1692
	struct btrfs_extent_item *ei;
	struct btrfs_key key;

1693 1694 1695 1696
	if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
		key.type = BTRFS_METADATA_ITEM_KEY;
	else
		key.type = BTRFS_EXTENT_ITEM_KEY;
1697 1698 1699 1700 1701 1702 1703
	key.objectid = logical;
	key.offset = (u64)-1;

	ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0);
	if (ret < 0)
		return ret;

1704 1705 1706 1707 1708
	ret = btrfs_previous_extent_item(fs_info->extent_root, path, 0);
	if (ret) {
		if (ret > 0)
			ret = -ENOENT;
		return ret;
1709
	}
1710
	btrfs_item_key_to_cpu(path->nodes[0], found_key, path->slots[0]);
1711
	if (found_key->type == BTRFS_METADATA_ITEM_KEY)
1712
		size = fs_info->nodesize;
1713 1714 1715
	else if (found_key->type == BTRFS_EXTENT_ITEM_KEY)
		size = found_key->offset;

1716
	if (found_key->objectid > logical ||
1717
	    found_key->objectid + size <= logical) {
1718 1719
		btrfs_debug(fs_info,
			"logical %llu is not within any extent", logical);
1720
		return -ENOENT;
J
Jan Schmidt 已提交
1721
	}
1722 1723 1724 1725 1726 1727 1728 1729

	eb = path->nodes[0];
	item_size = btrfs_item_size_nr(eb, path->slots[0]);
	BUG_ON(item_size < sizeof(*ei));

	ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
	flags = btrfs_extent_flags(eb, ei);

1730 1731
	btrfs_debug(fs_info,
		"logical %llu is at position %llu within the extent (%llu EXTENT_ITEM %llu) flags %#llx size %u",
1732 1733
		 logical, logical - found_key->objectid, found_key->objectid,
		 found_key->offset, flags, item_size);
1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744

	WARN_ON(!flags_ret);
	if (flags_ret) {
		if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
			*flags_ret = BTRFS_EXTENT_FLAG_TREE_BLOCK;
		else if (flags & BTRFS_EXTENT_FLAG_DATA)
			*flags_ret = BTRFS_EXTENT_FLAG_DATA;
		else
			BUG_ON(1);
		return 0;
	}
1745 1746 1747 1748 1749 1750 1751 1752

	return -EIO;
}

/*
 * helper function to iterate extent inline refs. ptr must point to a 0 value
 * for the first call and may be modified. it is used to track state.
 * if more refs exist, 0 is returned and the next call to
1753
 * get_extent_inline_ref must pass the modified ptr parameter to get the
1754 1755 1756
 * next ref. after the last ref was processed, 1 is returned.
 * returns <0 on error
 */
1757 1758 1759 1760 1761 1762 1763
static int get_extent_inline_ref(unsigned long *ptr,
				 const struct extent_buffer *eb,
				 const struct btrfs_key *key,
				 const struct btrfs_extent_item *ei,
				 u32 item_size,
				 struct btrfs_extent_inline_ref **out_eiref,
				 int *out_type)
1764 1765 1766 1767 1768 1769 1770 1771 1772
{
	unsigned long end;
	u64 flags;
	struct btrfs_tree_block_info *info;

	if (!*ptr) {
		/* first call */
		flags = btrfs_extent_flags(eb, ei);
		if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
1773 1774 1775 1776 1777 1778 1779 1780 1781 1782
			if (key->type == BTRFS_METADATA_ITEM_KEY) {
				/* a skinny metadata extent */
				*out_eiref =
				     (struct btrfs_extent_inline_ref *)(ei + 1);
			} else {
				WARN_ON(key->type != BTRFS_EXTENT_ITEM_KEY);
				info = (struct btrfs_tree_block_info *)(ei + 1);
				*out_eiref =
				   (struct btrfs_extent_inline_ref *)(info + 1);
			}
1783 1784 1785 1786
		} else {
			*out_eiref = (struct btrfs_extent_inline_ref *)(ei + 1);
		}
		*ptr = (unsigned long)*out_eiref;
1787
		if ((unsigned long)(*ptr) >= (unsigned long)ei + item_size)
1788 1789 1790 1791
			return -ENOENT;
	}

	end = (unsigned long)ei + item_size;
1792
	*out_eiref = (struct btrfs_extent_inline_ref *)(*ptr);
1793 1794 1795 1796
	*out_type = btrfs_get_extent_inline_ref_type(eb, *out_eiref,
						     BTRFS_REF_TYPE_ANY);
	if (*out_type == BTRFS_REF_TYPE_INVALID)
		return -EINVAL;
1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808

	*ptr += btrfs_extent_inline_ref_size(*out_type);
	WARN_ON(*ptr > end);
	if (*ptr == end)
		return 1; /* last */

	return 0;
}

/*
 * reads the tree block backref for an extent. tree level and root are returned
 * through out_level and out_root. ptr must point to a 0 value for the first
1809
 * call and may be modified (see get_extent_inline_ref comment).
1810 1811 1812 1813
 * returns 0 if data was provided, 1 if there was no more data to provide or
 * <0 on error.
 */
int tree_backref_for_extent(unsigned long *ptr, struct extent_buffer *eb,
1814 1815
			    struct btrfs_key *key, struct btrfs_extent_item *ei,
			    u32 item_size, u64 *out_root, u8 *out_level)
1816 1817 1818 1819 1820 1821 1822 1823 1824
{
	int ret;
	int type;
	struct btrfs_extent_inline_ref *eiref;

	if (*ptr == (unsigned long)-1)
		return 1;

	while (1) {
1825
		ret = get_extent_inline_ref(ptr, eb, key, ei, item_size,
1826
					      &eiref, &type);
1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839
		if (ret < 0)
			return ret;

		if (type == BTRFS_TREE_BLOCK_REF_KEY ||
		    type == BTRFS_SHARED_BLOCK_REF_KEY)
			break;

		if (ret == 1)
			return 1;
	}

	/* we can treat both ref types equally here */
	*out_root = btrfs_extent_inline_ref_offset(eb, eiref);
1840 1841 1842 1843 1844 1845 1846 1847 1848 1849

	if (key->type == BTRFS_EXTENT_ITEM_KEY) {
		struct btrfs_tree_block_info *info;

		info = (struct btrfs_tree_block_info *)(ei + 1);
		*out_level = btrfs_tree_block_level(eb, info);
	} else {
		ASSERT(key->type == BTRFS_METADATA_ITEM_KEY);
		*out_level = (u8)key->offset;
	}
1850 1851 1852 1853 1854 1855 1856

	if (ret == 1)
		*ptr = (unsigned long)-1;

	return 0;
}

1857 1858 1859 1860
static int iterate_leaf_refs(struct btrfs_fs_info *fs_info,
			     struct extent_inode_elem *inode_list,
			     u64 root, u64 extent_item_objectid,
			     iterate_extent_inodes_t *iterate, void *ctx)
1861
{
1862
	struct extent_inode_elem *eie;
J
Jan Schmidt 已提交
1863 1864
	int ret = 0;

1865
	for (eie = inode_list; eie; eie = eie->next) {
1866 1867 1868 1869
		btrfs_debug(fs_info,
			    "ref for %llu resolved, key (%llu EXTEND_DATA %llu), root %llu",
			    extent_item_objectid, eie->inum,
			    eie->offset, root);
1870
		ret = iterate(eie->inum, eie->offset, root, ctx);
J
Jan Schmidt 已提交
1871
		if (ret) {
1872 1873 1874
			btrfs_debug(fs_info,
				    "stopping iteration for %llu due to ret=%d",
				    extent_item_objectid, ret);
J
Jan Schmidt 已提交
1875 1876
			break;
		}
1877 1878 1879 1880 1881 1882 1883
	}

	return ret;
}

/*
 * calls iterate() for every inode that references the extent identified by
J
Jan Schmidt 已提交
1884
 * the given parameters.
1885 1886 1887
 * when the iterator function returns a non-zero value, iteration stops.
 */
int iterate_extent_inodes(struct btrfs_fs_info *fs_info,
J
Jan Schmidt 已提交
1888
				u64 extent_item_objectid, u64 extent_item_pos,
1889
				int search_commit_root,
1890 1891
				iterate_extent_inodes_t *iterate, void *ctx,
				bool ignore_offset)
1892 1893
{
	int ret;
1894
	struct btrfs_trans_handle *trans = NULL;
1895 1896
	struct ulist *refs = NULL;
	struct ulist *roots = NULL;
J
Jan Schmidt 已提交
1897 1898
	struct ulist_node *ref_node = NULL;
	struct ulist_node *root_node = NULL;
1899
	struct seq_list tree_mod_seq_elem = SEQ_LIST_INIT(tree_mod_seq_elem);
J
Jan Schmidt 已提交
1900 1901
	struct ulist_iterator ref_uiter;
	struct ulist_iterator root_uiter;
1902

1903
	btrfs_debug(fs_info, "resolving all inodes for extent %llu",
J
Jan Schmidt 已提交
1904
			extent_item_objectid);
1905

1906
	if (!search_commit_root) {
1907 1908 1909
		trans = btrfs_join_transaction(fs_info->extent_root);
		if (IS_ERR(trans))
			return PTR_ERR(trans);
1910
		btrfs_get_tree_mod_seq(fs_info, &tree_mod_seq_elem);
1911 1912
	} else {
		down_read(&fs_info->commit_root_sem);
1913
	}
1914

J
Jan Schmidt 已提交
1915
	ret = btrfs_find_all_leafs(trans, fs_info, extent_item_objectid,
1916
				   tree_mod_seq_elem.seq, &refs,
1917
				   &extent_item_pos, ignore_offset);
J
Jan Schmidt 已提交
1918 1919
	if (ret)
		goto out;
1920

J
Jan Schmidt 已提交
1921 1922
	ULIST_ITER_INIT(&ref_uiter);
	while (!ret && (ref_node = ulist_next(refs, &ref_uiter))) {
1923
		ret = btrfs_find_all_roots_safe(trans, fs_info, ref_node->val,
1924 1925
						tree_mod_seq_elem.seq, &roots,
						ignore_offset);
J
Jan Schmidt 已提交
1926 1927
		if (ret)
			break;
J
Jan Schmidt 已提交
1928 1929
		ULIST_ITER_INIT(&root_uiter);
		while (!ret && (root_node = ulist_next(roots, &root_uiter))) {
1930 1931 1932 1933 1934 1935
			btrfs_debug(fs_info,
				    "root %llu references leaf %llu, data list %#llx",
				    root_node->val, ref_node->val,
				    ref_node->aux);
			ret = iterate_leaf_refs(fs_info,
						(struct extent_inode_elem *)
1936 1937 1938 1939
						(uintptr_t)ref_node->aux,
						root_node->val,
						extent_item_objectid,
						iterate, ctx);
J
Jan Schmidt 已提交
1940
		}
1941
		ulist_free(roots);
1942 1943
	}

1944
	free_leaf_list(refs);
J
Jan Schmidt 已提交
1945
out:
1946
	if (!search_commit_root) {
1947
		btrfs_put_tree_mod_seq(fs_info, &tree_mod_seq_elem);
1948
		btrfs_end_transaction(trans);
1949 1950
	} else {
		up_read(&fs_info->commit_root_sem);
1951 1952
	}

1953 1954 1955 1956 1957
	return ret;
}

int iterate_inodes_from_logical(u64 logical, struct btrfs_fs_info *fs_info,
				struct btrfs_path *path,
1958 1959
				iterate_extent_inodes_t *iterate, void *ctx,
				bool ignore_offset)
1960 1961
{
	int ret;
J
Jan Schmidt 已提交
1962
	u64 extent_item_pos;
1963
	u64 flags = 0;
1964
	struct btrfs_key found_key;
1965
	int search_commit_root = path->search_commit_root;
1966

1967
	ret = extent_from_logical(fs_info, logical, path, &found_key, &flags);
J
Jan Schmidt 已提交
1968
	btrfs_release_path(path);
1969 1970
	if (ret < 0)
		return ret;
1971
	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1972
		return -EINVAL;
1973

J
Jan Schmidt 已提交
1974
	extent_item_pos = logical - found_key.objectid;
1975 1976
	ret = iterate_extent_inodes(fs_info, found_key.objectid,
					extent_item_pos, search_commit_root,
1977
					iterate, ctx, ignore_offset);
1978 1979 1980 1981

	return ret;
}

M
Mark Fasheh 已提交
1982 1983 1984 1985 1986 1987
typedef int (iterate_irefs_t)(u64 parent, u32 name_len, unsigned long name_off,
			      struct extent_buffer *eb, void *ctx);

static int iterate_inode_refs(u64 inum, struct btrfs_root *fs_root,
			      struct btrfs_path *path,
			      iterate_irefs_t *iterate, void *ctx)
1988
{
1989
	int ret = 0;
1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000
	int slot;
	u32 cur;
	u32 len;
	u32 name_len;
	u64 parent = 0;
	int found = 0;
	struct extent_buffer *eb;
	struct btrfs_item *item;
	struct btrfs_inode_ref *iref;
	struct btrfs_key found_key;

2001
	while (!ret) {
2002 2003 2004 2005
		ret = btrfs_find_item(fs_root, path, inum,
				parent ? parent + 1 : 0, BTRFS_INODE_REF_KEY,
				&found_key);

2006 2007 2008 2009 2010 2011 2012 2013 2014 2015
		if (ret < 0)
			break;
		if (ret) {
			ret = found ? 0 : -ENOENT;
			break;
		}
		++found;

		parent = found_key.offset;
		slot = path->slots[0];
2016 2017 2018 2019 2020 2021
		eb = btrfs_clone_extent_buffer(path->nodes[0]);
		if (!eb) {
			ret = -ENOMEM;
			break;
		}
		extent_buffer_get(eb);
2022 2023
		btrfs_tree_read_lock(eb);
		btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
2024 2025
		btrfs_release_path(path);

2026
		item = btrfs_item_nr(slot);
2027 2028 2029 2030 2031
		iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);

		for (cur = 0; cur < btrfs_item_size(eb, item); cur += len) {
			name_len = btrfs_inode_ref_name_len(eb, iref);
			/* path must be released before calling iterate()! */
2032 2033 2034
			btrfs_debug(fs_root->fs_info,
				"following ref at offset %u for inode %llu in tree %llu",
				cur, found_key.objectid, fs_root->objectid);
M
Mark Fasheh 已提交
2035 2036
			ret = iterate(parent, name_len,
				      (unsigned long)(iref + 1), eb, ctx);
2037
			if (ret)
2038 2039 2040 2041
				break;
			len = sizeof(*iref) + name_len;
			iref = (struct btrfs_inode_ref *)((char *)iref + len);
		}
2042
		btrfs_tree_read_unlock_blocking(eb);
2043 2044 2045 2046 2047 2048 2049 2050
		free_extent_buffer(eb);
	}

	btrfs_release_path(path);

	return ret;
}

M
Mark Fasheh 已提交
2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077
static int iterate_inode_extrefs(u64 inum, struct btrfs_root *fs_root,
				 struct btrfs_path *path,
				 iterate_irefs_t *iterate, void *ctx)
{
	int ret;
	int slot;
	u64 offset = 0;
	u64 parent;
	int found = 0;
	struct extent_buffer *eb;
	struct btrfs_inode_extref *extref;
	u32 item_size;
	u32 cur_offset;
	unsigned long ptr;

	while (1) {
		ret = btrfs_find_one_extref(fs_root, inum, offset, path, &extref,
					    &offset);
		if (ret < 0)
			break;
		if (ret) {
			ret = found ? 0 : -ENOENT;
			break;
		}
		++found;

		slot = path->slots[0];
2078 2079 2080 2081 2082 2083
		eb = btrfs_clone_extent_buffer(path->nodes[0]);
		if (!eb) {
			ret = -ENOMEM;
			break;
		}
		extent_buffer_get(eb);
M
Mark Fasheh 已提交
2084 2085 2086 2087 2088

		btrfs_tree_read_lock(eb);
		btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
		btrfs_release_path(path);

2089 2090
		item_size = btrfs_item_size_nr(eb, slot);
		ptr = btrfs_item_ptr_offset(eb, slot);
M
Mark Fasheh 已提交
2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103
		cur_offset = 0;

		while (cur_offset < item_size) {
			u32 name_len;

			extref = (struct btrfs_inode_extref *)(ptr + cur_offset);
			parent = btrfs_inode_extref_parent(eb, extref);
			name_len = btrfs_inode_extref_name_len(eb, extref);
			ret = iterate(parent, name_len,
				      (unsigned long)&extref->name, eb, ctx);
			if (ret)
				break;

2104
			cur_offset += btrfs_inode_extref_name_len(eb, extref);
M
Mark Fasheh 已提交
2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137
			cur_offset += sizeof(*extref);
		}
		btrfs_tree_read_unlock_blocking(eb);
		free_extent_buffer(eb);

		offset++;
	}

	btrfs_release_path(path);

	return ret;
}

static int iterate_irefs(u64 inum, struct btrfs_root *fs_root,
			 struct btrfs_path *path, iterate_irefs_t *iterate,
			 void *ctx)
{
	int ret;
	int found_refs = 0;

	ret = iterate_inode_refs(inum, fs_root, path, iterate, ctx);
	if (!ret)
		++found_refs;
	else if (ret != -ENOENT)
		return ret;

	ret = iterate_inode_extrefs(inum, fs_root, path, iterate, ctx);
	if (ret == -ENOENT && found_refs)
		return 0;

	return ret;
}

2138 2139 2140 2141
/*
 * returns 0 if the path could be dumped (probably truncated)
 * returns <0 in case of an error
 */
M
Mark Fasheh 已提交
2142 2143
static int inode_to_path(u64 inum, u32 name_len, unsigned long name_off,
			 struct extent_buffer *eb, void *ctx)
2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154
{
	struct inode_fs_paths *ipath = ctx;
	char *fspath;
	char *fspath_min;
	int i = ipath->fspath->elem_cnt;
	const int s_ptr = sizeof(char *);
	u32 bytes_left;

	bytes_left = ipath->fspath->bytes_left > s_ptr ?
					ipath->fspath->bytes_left - s_ptr : 0;

2155
	fspath_min = (char *)ipath->fspath->val + (i + 1) * s_ptr;
2156 2157
	fspath = btrfs_ref_to_path(ipath->fs_root, ipath->btrfs_path, name_len,
				   name_off, eb, inum, fspath_min, bytes_left);
2158 2159 2160 2161
	if (IS_ERR(fspath))
		return PTR_ERR(fspath);

	if (fspath > fspath_min) {
2162
		ipath->fspath->val[i] = (u64)(unsigned long)fspath;
2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176
		++ipath->fspath->elem_cnt;
		ipath->fspath->bytes_left = fspath - fspath_min;
	} else {
		++ipath->fspath->elem_missed;
		ipath->fspath->bytes_missing += fspath_min - fspath;
		ipath->fspath->bytes_left = 0;
	}

	return 0;
}

/*
 * this dumps all file system paths to the inode into the ipath struct, provided
 * is has been created large enough. each path is zero-terminated and accessed
2177
 * from ipath->fspath->val[i].
2178
 * when it returns, there are ipath->fspath->elem_cnt number of paths available
2179
 * in ipath->fspath->val[]. when the allocated space wasn't sufficient, the
2180
 * number of missed paths is recorded in ipath->fspath->elem_missed, otherwise,
2181 2182 2183 2184 2185 2186
 * it's zero. ipath->fspath->bytes_missing holds the number of bytes that would
 * have been needed to return all paths.
 */
int paths_from_inode(u64 inum, struct inode_fs_paths *ipath)
{
	return iterate_irefs(inum, ipath->fs_root, ipath->btrfs_path,
M
Mark Fasheh 已提交
2187
			     inode_to_path, ipath);
2188 2189 2190 2191 2192 2193 2194 2195
}

struct btrfs_data_container *init_data_container(u32 total_bytes)
{
	struct btrfs_data_container *data;
	size_t alloc_bytes;

	alloc_bytes = max_t(size_t, total_bytes, sizeof(*data));
2196
	data = kvmalloc(alloc_bytes, GFP_KERNEL);
2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229
	if (!data)
		return ERR_PTR(-ENOMEM);

	if (total_bytes >= sizeof(*data)) {
		data->bytes_left = total_bytes - sizeof(*data);
		data->bytes_missing = 0;
	} else {
		data->bytes_missing = sizeof(*data) - total_bytes;
		data->bytes_left = 0;
	}

	data->elem_cnt = 0;
	data->elem_missed = 0;

	return data;
}

/*
 * allocates space to return multiple file system paths for an inode.
 * total_bytes to allocate are passed, note that space usable for actual path
 * information will be total_bytes - sizeof(struct inode_fs_paths).
 * the returned pointer must be freed with free_ipath() in the end.
 */
struct inode_fs_paths *init_ipath(s32 total_bytes, struct btrfs_root *fs_root,
					struct btrfs_path *path)
{
	struct inode_fs_paths *ifp;
	struct btrfs_data_container *fspath;

	fspath = init_data_container(total_bytes);
	if (IS_ERR(fspath))
		return (void *)fspath;

2230
	ifp = kmalloc(sizeof(*ifp), GFP_KERNEL);
2231
	if (!ifp) {
2232
		kvfree(fspath);
2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244
		return ERR_PTR(-ENOMEM);
	}

	ifp->btrfs_path = path;
	ifp->fspath = fspath;
	ifp->fs_root = fs_root;

	return ifp;
}

void free_ipath(struct inode_fs_paths *ipath)
{
2245 2246
	if (!ipath)
		return;
2247
	kvfree(ipath->fspath);
2248 2249
	kfree(ipath);
}