backref.c 47.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/*
 * Copyright (C) 2011 STRATO.  All rights reserved.
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public
 * License v2 as published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * General Public License for more details.
 *
 * You should have received a copy of the GNU General Public
 * License along with this program; if not, write to the
 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
 * Boston, MA 021110-1307, USA.
 */

19
#include <linux/vmalloc.h>
20 21 22
#include "ctree.h"
#include "disk-io.h"
#include "backref.h"
23 24 25
#include "ulist.h"
#include "transaction.h"
#include "delayed-ref.h"
26
#include "locking.h"
27

28 29 30 31 32 33 34 35 36 37 38
struct extent_inode_elem {
	u64 inum;
	u64 offset;
	struct extent_inode_elem *next;
};

static int check_extent_in_eb(struct btrfs_key *key, struct extent_buffer *eb,
				struct btrfs_file_extent_item *fi,
				u64 extent_item_pos,
				struct extent_inode_elem **eie)
{
39
	u64 offset = 0;
40 41
	struct extent_inode_elem *e;

42 43 44 45 46
	if (!btrfs_file_extent_compression(eb, fi) &&
	    !btrfs_file_extent_encryption(eb, fi) &&
	    !btrfs_file_extent_other_encoding(eb, fi)) {
		u64 data_offset;
		u64 data_len;
47

48 49 50 51 52 53 54 55
		data_offset = btrfs_file_extent_offset(eb, fi);
		data_len = btrfs_file_extent_num_bytes(eb, fi);

		if (extent_item_pos < data_offset ||
		    extent_item_pos >= data_offset + data_len)
			return 1;
		offset = extent_item_pos - data_offset;
	}
56 57 58 59 60 61 62

	e = kmalloc(sizeof(*e), GFP_NOFS);
	if (!e)
		return -ENOMEM;

	e->next = *eie;
	e->inum = key->objectid;
63
	e->offset = key->offset + offset;
64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107
	*eie = e;

	return 0;
}

static int find_extent_in_eb(struct extent_buffer *eb, u64 wanted_disk_byte,
				u64 extent_item_pos,
				struct extent_inode_elem **eie)
{
	u64 disk_byte;
	struct btrfs_key key;
	struct btrfs_file_extent_item *fi;
	int slot;
	int nritems;
	int extent_type;
	int ret;

	/*
	 * from the shared data ref, we only have the leaf but we need
	 * the key. thus, we must look into all items and see that we
	 * find one (some) with a reference to our extent item.
	 */
	nritems = btrfs_header_nritems(eb);
	for (slot = 0; slot < nritems; ++slot) {
		btrfs_item_key_to_cpu(eb, &key, slot);
		if (key.type != BTRFS_EXTENT_DATA_KEY)
			continue;
		fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
		extent_type = btrfs_file_extent_type(eb, fi);
		if (extent_type == BTRFS_FILE_EXTENT_INLINE)
			continue;
		/* don't skip BTRFS_FILE_EXTENT_PREALLOC, we can handle that */
		disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
		if (disk_byte != wanted_disk_byte)
			continue;

		ret = check_extent_in_eb(&key, eb, fi, extent_item_pos, eie);
		if (ret < 0)
			return ret;
	}

	return 0;
}

108 109 110 111 112 113
/*
 * this structure records all encountered refs on the way up to the root
 */
struct __prelim_ref {
	struct list_head list;
	u64 root_id;
114
	struct btrfs_key key_for_search;
115 116
	int level;
	int count;
117
	struct extent_inode_elem *inode_list;
118 119 120 121
	u64 parent;
	u64 wanted_disk_byte;
};

122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141
static struct kmem_cache *btrfs_prelim_ref_cache;

int __init btrfs_prelim_ref_init(void)
{
	btrfs_prelim_ref_cache = kmem_cache_create("btrfs_prelim_ref",
					sizeof(struct __prelim_ref),
					0,
					SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
					NULL);
	if (!btrfs_prelim_ref_cache)
		return -ENOMEM;
	return 0;
}

void btrfs_prelim_ref_exit(void)
{
	if (btrfs_prelim_ref_cache)
		kmem_cache_destroy(btrfs_prelim_ref_cache);
}

142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
/*
 * the rules for all callers of this function are:
 * - obtaining the parent is the goal
 * - if you add a key, you must know that it is a correct key
 * - if you cannot add the parent or a correct key, then we will look into the
 *   block later to set a correct key
 *
 * delayed refs
 * ============
 *        backref type | shared | indirect | shared | indirect
 * information         |   tree |     tree |   data |     data
 * --------------------+--------+----------+--------+----------
 *      parent logical |    y   |     -    |    -   |     -
 *      key to resolve |    -   |     y    |    y   |     y
 *  tree block logical |    -   |     -    |    -   |     -
 *  root for resolving |    y   |     y    |    y   |     y
 *
 * - column 1:       we've the parent -> done
 * - column 2, 3, 4: we use the key to find the parent
 *
 * on disk refs (inline or keyed)
 * ==============================
 *        backref type | shared | indirect | shared | indirect
 * information         |   tree |     tree |   data |     data
 * --------------------+--------+----------+--------+----------
 *      parent logical |    y   |     -    |    y   |     -
 *      key to resolve |    -   |     -    |    -   |     y
 *  tree block logical |    y   |     y    |    y   |     y
 *  root for resolving |    -   |     y    |    y   |     y
 *
 * - column 1, 3: we've the parent -> done
 * - column 2:    we take the first key from the block to find the parent
 *                (see __add_missing_keys)
 * - column 4:    we use the key to find the parent
 *
 * additional information that's available but not required to find the parent
 * block might help in merging entries to gain some speed.
 */

181
static int __add_prelim_ref(struct list_head *head, u64 root_id,
182
			    struct btrfs_key *key, int level,
183 184
			    u64 parent, u64 wanted_disk_byte, int count,
			    gfp_t gfp_mask)
185 186 187
{
	struct __prelim_ref *ref;

188 189 190
	if (root_id == BTRFS_DATA_RELOC_TREE_OBJECTID)
		return 0;

191
	ref = kmem_cache_alloc(btrfs_prelim_ref_cache, gfp_mask);
192 193 194 195 196
	if (!ref)
		return -ENOMEM;

	ref->root_id = root_id;
	if (key)
197
		ref->key_for_search = *key;
198
	else
199
		memset(&ref->key_for_search, 0, sizeof(ref->key_for_search));
200

201
	ref->inode_list = NULL;
202 203 204 205 206 207 208 209 210 211
	ref->level = level;
	ref->count = count;
	ref->parent = parent;
	ref->wanted_disk_byte = wanted_disk_byte;
	list_add_tail(&ref->list, head);

	return 0;
}

static int add_all_parents(struct btrfs_root *root, struct btrfs_path *path,
212
				struct ulist *parents, int level,
213
				struct btrfs_key *key_for_search, u64 time_seq,
J
Jan Schmidt 已提交
214
				u64 wanted_disk_byte,
215
				const u64 *extent_item_pos)
216
{
217 218 219 220
	int ret = 0;
	int slot;
	struct extent_buffer *eb;
	struct btrfs_key key;
221
	struct btrfs_file_extent_item *fi;
222
	struct extent_inode_elem *eie = NULL, *old = NULL;
223 224
	u64 disk_byte;

225 226 227
	if (level != 0) {
		eb = path->nodes[level];
		ret = ulist_add(parents, eb->start, 0, GFP_NOFS);
228 229
		if (ret < 0)
			return ret;
230
		return 0;
231
	}
232 233

	/*
234 235 236
	 * We normally enter this function with the path already pointing to
	 * the first item to check. But sometimes, we may enter it with
	 * slot==nritems. In that case, go to the next leaf before we continue.
237
	 */
238
	if (path->slots[0] >= btrfs_header_nritems(path->nodes[0]))
J
Jan Schmidt 已提交
239
		ret = btrfs_next_old_leaf(root, path, time_seq);
240

241
	while (!ret) {
242
		eb = path->nodes[0];
243 244 245 246 247 248 249 250 251 252 253 254 255
		slot = path->slots[0];

		btrfs_item_key_to_cpu(eb, &key, slot);

		if (key.objectid != key_for_search->objectid ||
		    key.type != BTRFS_EXTENT_DATA_KEY)
			break;

		fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
		disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);

		if (disk_byte == wanted_disk_byte) {
			eie = NULL;
256
			old = NULL;
257 258 259 260 261 262 263
			if (extent_item_pos) {
				ret = check_extent_in_eb(&key, eb, fi,
						*extent_item_pos,
						&eie);
				if (ret < 0)
					break;
			}
264 265 266 267 268 269 270 271 272 273 274
			if (ret > 0)
				goto next;
			ret = ulist_add_merge(parents, eb->start,
					      (uintptr_t)eie,
					      (u64 *)&old, GFP_NOFS);
			if (ret < 0)
				break;
			if (!ret && extent_item_pos) {
				while (old->next)
					old = old->next;
				old->next = eie;
275
			}
276
		}
277
next:
278
		ret = btrfs_next_old_item(root, path, time_seq);
279 280
	}

281 282 283
	if (ret > 0)
		ret = 0;
	return ret;
284 285 286 287 288 289 290
}

/*
 * resolve an indirect backref in the form (root_id, key, level)
 * to a logical address
 */
static int __resolve_indirect_ref(struct btrfs_fs_info *fs_info,
291 292 293 294
				  struct btrfs_path *path, u64 time_seq,
				  struct __prelim_ref *ref,
				  struct ulist *parents,
				  const u64 *extent_item_pos)
295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311
{
	struct btrfs_root *root;
	struct btrfs_key root_key;
	struct extent_buffer *eb;
	int ret = 0;
	int root_level;
	int level = ref->level;

	root_key.objectid = ref->root_id;
	root_key.type = BTRFS_ROOT_ITEM_KEY;
	root_key.offset = (u64)-1;
	root = btrfs_read_fs_root_no_name(fs_info, &root_key);
	if (IS_ERR(root)) {
		ret = PTR_ERR(root);
		goto out;
	}

J
Jan Schmidt 已提交
312
	root_level = btrfs_old_root_level(root, time_seq);
313 314 315 316 317

	if (root_level + 1 == level)
		goto out;

	path->lowest_level = level;
318
	ret = btrfs_search_old_slot(root, &ref->key_for_search, path, time_seq);
319 320
	pr_debug("search slot in root %llu (level %d, ref count %d) returned "
		 "%d for key (%llu %u %llu)\n",
321 322 323
		 ref->root_id, level, ref->count, ret,
		 ref->key_for_search.objectid, ref->key_for_search.type,
		 ref->key_for_search.offset);
324 325 326 327
	if (ret < 0)
		goto out;

	eb = path->nodes[level];
328 329 330 331 332 333 334 335
	while (!eb) {
		if (!level) {
			WARN_ON(1);
			ret = 1;
			goto out;
		}
		level--;
		eb = path->nodes[level];
336 337
	}

338 339 340
	ret = add_all_parents(root, path, parents, level, &ref->key_for_search,
				time_seq, ref->wanted_disk_byte,
				extent_item_pos);
341
out:
342 343
	path->lowest_level = 0;
	btrfs_release_path(path);
344 345 346 347 348 349 350
	return ret;
}

/*
 * resolve all indirect backrefs from the list
 */
static int __resolve_indirect_refs(struct btrfs_fs_info *fs_info,
351
				   struct btrfs_path *path, u64 time_seq,
352 353
				   struct list_head *head,
				   const u64 *extent_item_pos)
354 355 356 357 358 359 360 361
{
	int err;
	int ret = 0;
	struct __prelim_ref *ref;
	struct __prelim_ref *ref_safe;
	struct __prelim_ref *new_ref;
	struct ulist *parents;
	struct ulist_node *node;
J
Jan Schmidt 已提交
362
	struct ulist_iterator uiter;
363 364 365 366 367 368 369 370 371 372 373 374 375 376 377

	parents = ulist_alloc(GFP_NOFS);
	if (!parents)
		return -ENOMEM;

	/*
	 * _safe allows us to insert directly after the current item without
	 * iterating over the newly inserted items.
	 * we're also allowed to re-assign ref during iteration.
	 */
	list_for_each_entry_safe(ref, ref_safe, head, list) {
		if (ref->parent)	/* already direct */
			continue;
		if (ref->count == 0)
			continue;
378 379
		err = __resolve_indirect_ref(fs_info, path, time_seq, ref,
					     parents, extent_item_pos);
380 381
		if (err == -ENOMEM)
			goto out;
382
		if (err)
383 384 385
			continue;

		/* we put the first parent into the ref at hand */
J
Jan Schmidt 已提交
386 387
		ULIST_ITER_INIT(&uiter);
		node = ulist_next(parents, &uiter);
388
		ref->parent = node ? node->val : 0;
389
		ref->inode_list = node ?
390
			(struct extent_inode_elem *)(uintptr_t)node->aux : NULL;
391 392

		/* additional parents require new refs being added here */
J
Jan Schmidt 已提交
393
		while ((node = ulist_next(parents, &uiter))) {
394 395
			new_ref = kmem_cache_alloc(btrfs_prelim_ref_cache,
						   GFP_NOFS);
396 397
			if (!new_ref) {
				ret = -ENOMEM;
398
				goto out;
399 400 401
			}
			memcpy(new_ref, ref, sizeof(*ref));
			new_ref->parent = node->val;
402 403
			new_ref->inode_list = (struct extent_inode_elem *)
							(uintptr_t)node->aux;
404 405 406 407
			list_add(&new_ref->list, &ref->list);
		}
		ulist_reinit(parents);
	}
408
out:
409 410 411 412
	ulist_free(parents);
	return ret;
}

413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451
static inline int ref_for_same_block(struct __prelim_ref *ref1,
				     struct __prelim_ref *ref2)
{
	if (ref1->level != ref2->level)
		return 0;
	if (ref1->root_id != ref2->root_id)
		return 0;
	if (ref1->key_for_search.type != ref2->key_for_search.type)
		return 0;
	if (ref1->key_for_search.objectid != ref2->key_for_search.objectid)
		return 0;
	if (ref1->key_for_search.offset != ref2->key_for_search.offset)
		return 0;
	if (ref1->parent != ref2->parent)
		return 0;

	return 1;
}

/*
 * read tree blocks and add keys where required.
 */
static int __add_missing_keys(struct btrfs_fs_info *fs_info,
			      struct list_head *head)
{
	struct list_head *pos;
	struct extent_buffer *eb;

	list_for_each(pos, head) {
		struct __prelim_ref *ref;
		ref = list_entry(pos, struct __prelim_ref, list);

		if (ref->parent)
			continue;
		if (ref->key_for_search.type)
			continue;
		BUG_ON(!ref->wanted_disk_byte);
		eb = read_tree_block(fs_info->tree_root, ref->wanted_disk_byte,
				     fs_info->tree_root->leafsize, 0);
452 453 454 455
		if (!eb || !extent_buffer_uptodate(eb)) {
			free_extent_buffer(eb);
			return -EIO;
		}
456 457 458 459 460 461 462 463 464 465 466
		btrfs_tree_read_lock(eb);
		if (btrfs_header_level(eb) == 0)
			btrfs_item_key_to_cpu(eb, &ref->key_for_search, 0);
		else
			btrfs_node_key_to_cpu(eb, &ref->key_for_search, 0);
		btrfs_tree_read_unlock(eb);
		free_extent_buffer(eb);
	}
	return 0;
}

467 468 469 470
/*
 * merge two lists of backrefs and adjust counts accordingly
 *
 * mode = 1: merge identical keys, if key is set
471 472 473 474
 *    FIXME: if we add more keys in __add_prelim_ref, we can merge more here.
 *           additionally, we could even add a key range for the blocks we
 *           looked into to merge even more (-> replace unresolved refs by those
 *           having a parent).
475 476
 * mode = 2: merge identical parents
 */
477
static void __merge_refs(struct list_head *head, int mode)
478 479 480 481 482 483 484 485 486 487 488 489 490
{
	struct list_head *pos1;

	list_for_each(pos1, head) {
		struct list_head *n2;
		struct list_head *pos2;
		struct __prelim_ref *ref1;

		ref1 = list_entry(pos1, struct __prelim_ref, list);

		for (pos2 = pos1->next, n2 = pos2->next; pos2 != head;
		     pos2 = n2, n2 = pos2->next) {
			struct __prelim_ref *ref2;
491
			struct __prelim_ref *xchg;
492
			struct extent_inode_elem *eie;
493 494 495 496

			ref2 = list_entry(pos2, struct __prelim_ref, list);

			if (mode == 1) {
497
				if (!ref_for_same_block(ref1, ref2))
498
					continue;
499 500 501 502 503
				if (!ref1->parent && ref2->parent) {
					xchg = ref1;
					ref1 = ref2;
					ref2 = xchg;
				}
504 505 506 507
			} else {
				if (ref1->parent != ref2->parent)
					continue;
			}
508 509 510 511 512 513 514 515 516 517

			eie = ref1->inode_list;
			while (eie && eie->next)
				eie = eie->next;
			if (eie)
				eie->next = ref2->inode_list;
			else
				ref1->inode_list = ref2->inode_list;
			ref1->count += ref2->count;

518
			list_del(&ref2->list);
519
			kmem_cache_free(btrfs_prelim_ref_cache, ref2);
520 521 522 523 524 525 526 527 528 529 530 531 532 533
		}

	}
}

/*
 * add all currently queued delayed refs from this head whose seq nr is
 * smaller or equal that seq to the list
 */
static int __add_delayed_refs(struct btrfs_delayed_ref_head *head, u64 seq,
			      struct list_head *prefs)
{
	struct btrfs_delayed_extent_op *extent_op = head->extent_op;
	struct rb_node *n = &head->node.rb_node;
534 535
	struct btrfs_key key;
	struct btrfs_key op_key = {0};
536
	int sgn;
537
	int ret = 0;
538 539

	if (extent_op && extent_op->update_key)
540
		btrfs_disk_key_to_cpu(&op_key, &extent_op->key);
541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571

	while ((n = rb_prev(n))) {
		struct btrfs_delayed_ref_node *node;
		node = rb_entry(n, struct btrfs_delayed_ref_node,
				rb_node);
		if (node->bytenr != head->node.bytenr)
			break;
		WARN_ON(node->is_head);

		if (node->seq > seq)
			continue;

		switch (node->action) {
		case BTRFS_ADD_DELAYED_EXTENT:
		case BTRFS_UPDATE_DELAYED_HEAD:
			WARN_ON(1);
			continue;
		case BTRFS_ADD_DELAYED_REF:
			sgn = 1;
			break;
		case BTRFS_DROP_DELAYED_REF:
			sgn = -1;
			break;
		default:
			BUG_ON(1);
		}
		switch (node->type) {
		case BTRFS_TREE_BLOCK_REF_KEY: {
			struct btrfs_delayed_tree_ref *ref;

			ref = btrfs_delayed_node_to_tree_ref(node);
572
			ret = __add_prelim_ref(prefs, ref->root, &op_key,
573
					       ref->level + 1, 0, node->bytenr,
574
					       node->ref_mod * sgn, GFP_ATOMIC);
575 576 577 578 579 580
			break;
		}
		case BTRFS_SHARED_BLOCK_REF_KEY: {
			struct btrfs_delayed_tree_ref *ref;

			ref = btrfs_delayed_node_to_tree_ref(node);
581
			ret = __add_prelim_ref(prefs, ref->root, NULL,
582 583
					       ref->level + 1, ref->parent,
					       node->bytenr,
584
					       node->ref_mod * sgn, GFP_ATOMIC);
585 586 587 588 589 590 591 592 593 594 595
			break;
		}
		case BTRFS_EXTENT_DATA_REF_KEY: {
			struct btrfs_delayed_data_ref *ref;
			ref = btrfs_delayed_node_to_data_ref(node);

			key.objectid = ref->objectid;
			key.type = BTRFS_EXTENT_DATA_KEY;
			key.offset = ref->offset;
			ret = __add_prelim_ref(prefs, ref->root, &key, 0, 0,
					       node->bytenr,
596
					       node->ref_mod * sgn, GFP_ATOMIC);
597 598 599 600 601 602 603 604 605 606 607 608
			break;
		}
		case BTRFS_SHARED_DATA_REF_KEY: {
			struct btrfs_delayed_data_ref *ref;

			ref = btrfs_delayed_node_to_data_ref(node);

			key.objectid = ref->objectid;
			key.type = BTRFS_EXTENT_DATA_KEY;
			key.offset = ref->offset;
			ret = __add_prelim_ref(prefs, ref->root, &key, 0,
					       ref->parent, node->bytenr,
609
					       node->ref_mod * sgn, GFP_ATOMIC);
610 611 612 613 614
			break;
		}
		default:
			WARN_ON(1);
		}
615 616
		if (ret)
			return ret;
617 618 619 620 621 622 623 624 625 626
	}

	return 0;
}

/*
 * add all inline backrefs for bytenr to the list
 */
static int __add_inline_refs(struct btrfs_fs_info *fs_info,
			     struct btrfs_path *path, u64 bytenr,
627
			     int *info_level, struct list_head *prefs)
628
{
629
	int ret = 0;
630 631 632
	int slot;
	struct extent_buffer *leaf;
	struct btrfs_key key;
633
	struct btrfs_key found_key;
634 635 636 637 638 639 640 641 642 643
	unsigned long ptr;
	unsigned long end;
	struct btrfs_extent_item *ei;
	u64 flags;
	u64 item_size;

	/*
	 * enumerate all inline refs
	 */
	leaf = path->nodes[0];
644
	slot = path->slots[0];
645 646 647 648 649 650

	item_size = btrfs_item_size_nr(leaf, slot);
	BUG_ON(item_size < sizeof(*ei));

	ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item);
	flags = btrfs_extent_flags(leaf, ei);
651
	btrfs_item_key_to_cpu(leaf, &found_key, slot);
652 653 654 655

	ptr = (unsigned long)(ei + 1);
	end = (unsigned long)ei + item_size;

656 657
	if (found_key.type == BTRFS_EXTENT_ITEM_KEY &&
	    flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
658 659 660 661 662 663
		struct btrfs_tree_block_info *info;

		info = (struct btrfs_tree_block_info *)ptr;
		*info_level = btrfs_tree_block_level(leaf, info);
		ptr += sizeof(struct btrfs_tree_block_info);
		BUG_ON(ptr > end);
664 665
	} else if (found_key.type == BTRFS_METADATA_ITEM_KEY) {
		*info_level = found_key.offset;
666 667 668 669 670 671 672 673 674 675 676 677 678 679 680
	} else {
		BUG_ON(!(flags & BTRFS_EXTENT_FLAG_DATA));
	}

	while (ptr < end) {
		struct btrfs_extent_inline_ref *iref;
		u64 offset;
		int type;

		iref = (struct btrfs_extent_inline_ref *)ptr;
		type = btrfs_extent_inline_ref_type(leaf, iref);
		offset = btrfs_extent_inline_ref_offset(leaf, iref);

		switch (type) {
		case BTRFS_SHARED_BLOCK_REF_KEY:
681
			ret = __add_prelim_ref(prefs, 0, NULL,
682
						*info_level + 1, offset,
683
						bytenr, 1, GFP_NOFS);
684 685 686 687 688 689 690 691
			break;
		case BTRFS_SHARED_DATA_REF_KEY: {
			struct btrfs_shared_data_ref *sdref;
			int count;

			sdref = (struct btrfs_shared_data_ref *)(iref + 1);
			count = btrfs_shared_data_ref_count(leaf, sdref);
			ret = __add_prelim_ref(prefs, 0, NULL, 0, offset,
692
					       bytenr, count, GFP_NOFS);
693 694 695
			break;
		}
		case BTRFS_TREE_BLOCK_REF_KEY:
696 697
			ret = __add_prelim_ref(prefs, offset, NULL,
					       *info_level + 1, 0,
698
					       bytenr, 1, GFP_NOFS);
699 700 701 702 703 704 705 706 707 708 709 710 711
			break;
		case BTRFS_EXTENT_DATA_REF_KEY: {
			struct btrfs_extent_data_ref *dref;
			int count;
			u64 root;

			dref = (struct btrfs_extent_data_ref *)(&iref->offset);
			count = btrfs_extent_data_ref_count(leaf, dref);
			key.objectid = btrfs_extent_data_ref_objectid(leaf,
								      dref);
			key.type = BTRFS_EXTENT_DATA_KEY;
			key.offset = btrfs_extent_data_ref_offset(leaf, dref);
			root = btrfs_extent_data_ref_root(leaf, dref);
712
			ret = __add_prelim_ref(prefs, root, &key, 0, 0,
713
					       bytenr, count, GFP_NOFS);
714 715 716 717 718
			break;
		}
		default:
			WARN_ON(1);
		}
719 720
		if (ret)
			return ret;
721 722 723 724 725 726 727 728 729 730 731
		ptr += btrfs_extent_inline_ref_size(type);
	}

	return 0;
}

/*
 * add all non-inline backrefs for bytenr to the list
 */
static int __add_keyed_refs(struct btrfs_fs_info *fs_info,
			    struct btrfs_path *path, u64 bytenr,
732
			    int info_level, struct list_head *prefs)
733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761
{
	struct btrfs_root *extent_root = fs_info->extent_root;
	int ret;
	int slot;
	struct extent_buffer *leaf;
	struct btrfs_key key;

	while (1) {
		ret = btrfs_next_item(extent_root, path);
		if (ret < 0)
			break;
		if (ret) {
			ret = 0;
			break;
		}

		slot = path->slots[0];
		leaf = path->nodes[0];
		btrfs_item_key_to_cpu(leaf, &key, slot);

		if (key.objectid != bytenr)
			break;
		if (key.type < BTRFS_TREE_BLOCK_REF_KEY)
			continue;
		if (key.type > BTRFS_SHARED_DATA_REF_KEY)
			break;

		switch (key.type) {
		case BTRFS_SHARED_BLOCK_REF_KEY:
762
			ret = __add_prelim_ref(prefs, 0, NULL,
763
						info_level + 1, key.offset,
764
						bytenr, 1, GFP_NOFS);
765 766 767 768 769 770 771 772 773
			break;
		case BTRFS_SHARED_DATA_REF_KEY: {
			struct btrfs_shared_data_ref *sdref;
			int count;

			sdref = btrfs_item_ptr(leaf, slot,
					      struct btrfs_shared_data_ref);
			count = btrfs_shared_data_ref_count(leaf, sdref);
			ret = __add_prelim_ref(prefs, 0, NULL, 0, key.offset,
774
						bytenr, count, GFP_NOFS);
775 776 777
			break;
		}
		case BTRFS_TREE_BLOCK_REF_KEY:
778 779
			ret = __add_prelim_ref(prefs, key.offset, NULL,
					       info_level + 1, 0,
780
					       bytenr, 1, GFP_NOFS);
781 782 783 784 785 786 787 788 789 790 791 792 793 794 795
			break;
		case BTRFS_EXTENT_DATA_REF_KEY: {
			struct btrfs_extent_data_ref *dref;
			int count;
			u64 root;

			dref = btrfs_item_ptr(leaf, slot,
					      struct btrfs_extent_data_ref);
			count = btrfs_extent_data_ref_count(leaf, dref);
			key.objectid = btrfs_extent_data_ref_objectid(leaf,
								      dref);
			key.type = BTRFS_EXTENT_DATA_KEY;
			key.offset = btrfs_extent_data_ref_offset(leaf, dref);
			root = btrfs_extent_data_ref_root(leaf, dref);
			ret = __add_prelim_ref(prefs, root, &key, 0, 0,
796
					       bytenr, count, GFP_NOFS);
797 798 799 800 801
			break;
		}
		default:
			WARN_ON(1);
		}
802 803 804
		if (ret)
			return ret;

805 806 807 808 809 810 811 812 813 814 815 816 817 818 819
	}

	return ret;
}

/*
 * this adds all existing backrefs (inline backrefs, backrefs and delayed
 * refs) for the given bytenr to the refs list, merges duplicates and resolves
 * indirect refs to their parent bytenr.
 * When roots are found, they're added to the roots list
 *
 * FIXME some caching might speed things up
 */
static int find_parent_nodes(struct btrfs_trans_handle *trans,
			     struct btrfs_fs_info *fs_info, u64 bytenr,
820 821
			     u64 time_seq, struct ulist *refs,
			     struct ulist *roots, const u64 *extent_item_pos)
822 823 824 825
{
	struct btrfs_key key;
	struct btrfs_path *path;
	struct btrfs_delayed_ref_root *delayed_refs = NULL;
826
	struct btrfs_delayed_ref_head *head;
827 828 829 830 831 832 833 834 835 836 837
	int info_level = 0;
	int ret;
	struct list_head prefs_delayed;
	struct list_head prefs;
	struct __prelim_ref *ref;

	INIT_LIST_HEAD(&prefs);
	INIT_LIST_HEAD(&prefs_delayed);

	key.objectid = bytenr;
	key.offset = (u64)-1;
838 839 840 841
	if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
		key.type = BTRFS_METADATA_ITEM_KEY;
	else
		key.type = BTRFS_EXTENT_ITEM_KEY;
842 843 844 845

	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;
846 847
	if (!trans)
		path->search_commit_root = 1;
848 849 850 851 852 853 854

	/*
	 * grab both a lock on the path and a lock on the delayed ref head.
	 * We need both to get a consistent picture of how the refs look
	 * at a specified point in time
	 */
again:
855 856
	head = NULL;

857 858 859 860 861
	ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 0);
	if (ret < 0)
		goto out;
	BUG_ON(ret == 0);

862
	if (trans) {
863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885
		/*
		 * look if there are updates for this ref queued and lock the
		 * head
		 */
		delayed_refs = &trans->transaction->delayed_refs;
		spin_lock(&delayed_refs->lock);
		head = btrfs_find_delayed_ref_head(trans, bytenr);
		if (head) {
			if (!mutex_trylock(&head->mutex)) {
				atomic_inc(&head->node.refs);
				spin_unlock(&delayed_refs->lock);

				btrfs_release_path(path);

				/*
				 * Mutex was contended, block until it's
				 * released and try again
				 */
				mutex_lock(&head->mutex);
				mutex_unlock(&head->mutex);
				btrfs_put_delayed_ref(&head->node);
				goto again;
			}
886
			ret = __add_delayed_refs(head, time_seq,
887
						 &prefs_delayed);
888
			mutex_unlock(&head->mutex);
889 890 891 892
			if (ret) {
				spin_unlock(&delayed_refs->lock);
				goto out;
			}
893
		}
894
		spin_unlock(&delayed_refs->lock);
895 896 897 898 899 900
	}

	if (path->slots[0]) {
		struct extent_buffer *leaf;
		int slot;

901
		path->slots[0]--;
902
		leaf = path->nodes[0];
903
		slot = path->slots[0];
904 905
		btrfs_item_key_to_cpu(leaf, &key, slot);
		if (key.objectid == bytenr &&
906 907
		    (key.type == BTRFS_EXTENT_ITEM_KEY ||
		     key.type == BTRFS_METADATA_ITEM_KEY)) {
908
			ret = __add_inline_refs(fs_info, path, bytenr,
909
						&info_level, &prefs);
910 911
			if (ret)
				goto out;
912
			ret = __add_keyed_refs(fs_info, path, bytenr,
913 914 915 916 917 918 919 920 921
					       info_level, &prefs);
			if (ret)
				goto out;
		}
	}
	btrfs_release_path(path);

	list_splice_init(&prefs_delayed, &prefs);

922 923 924 925
	ret = __add_missing_keys(fs_info, &prefs);
	if (ret)
		goto out;

926
	__merge_refs(&prefs, 1);
927

928 929
	ret = __resolve_indirect_refs(fs_info, path, time_seq, &prefs,
				      extent_item_pos);
930 931 932
	if (ret)
		goto out;

933
	__merge_refs(&prefs, 2);
934 935 936

	while (!list_empty(&prefs)) {
		ref = list_first_entry(&prefs, struct __prelim_ref, list);
J
Julia Lawall 已提交
937
		WARN_ON(ref->count < 0);
938 939 940
		if (ref->count && ref->root_id && ref->parent == 0) {
			/* no parent == root of tree */
			ret = ulist_add(roots, ref->root_id, 0, GFP_NOFS);
941 942
			if (ret < 0)
				goto out;
943 944
		}
		if (ref->count && ref->parent) {
945
			struct extent_inode_elem *eie = NULL;
946
			if (extent_item_pos && !ref->inode_list) {
947 948 949 950 951 952
				u32 bsz;
				struct extent_buffer *eb;
				bsz = btrfs_level_size(fs_info->extent_root,
							info_level);
				eb = read_tree_block(fs_info->extent_root,
							   ref->parent, bsz, 0);
953 954
				if (!eb || !extent_buffer_uptodate(eb)) {
					free_extent_buffer(eb);
955 956
					ret = -EIO;
					goto out;
957
				}
958 959 960
				ret = find_extent_in_eb(eb, bytenr,
							*extent_item_pos, &eie);
				free_extent_buffer(eb);
961 962 963
				if (ret < 0)
					goto out;
				ref->inode_list = eie;
964
			}
965
			ret = ulist_add_merge(refs, ref->parent,
966
					      (uintptr_t)ref->inode_list,
967
					      (u64 *)&eie, GFP_NOFS);
968 969
			if (ret < 0)
				goto out;
970 971 972 973 974 975 976 977 978 979
			if (!ret && extent_item_pos) {
				/*
				 * we've recorded that parent, so we must extend
				 * its inode list here
				 */
				BUG_ON(!eie);
				while (eie->next)
					eie = eie->next;
				eie->next = ref->inode_list;
			}
980
		}
981
		list_del(&ref->list);
982
		kmem_cache_free(btrfs_prelim_ref_cache, ref);
983 984 985 986 987 988 989
	}

out:
	btrfs_free_path(path);
	while (!list_empty(&prefs)) {
		ref = list_first_entry(&prefs, struct __prelim_ref, list);
		list_del(&ref->list);
990
		kmem_cache_free(btrfs_prelim_ref_cache, ref);
991 992 993 994 995
	}
	while (!list_empty(&prefs_delayed)) {
		ref = list_first_entry(&prefs_delayed, struct __prelim_ref,
				       list);
		list_del(&ref->list);
996
		kmem_cache_free(btrfs_prelim_ref_cache, ref);
997 998 999 1000 1001
	}

	return ret;
}

1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012
static void free_leaf_list(struct ulist *blocks)
{
	struct ulist_node *node = NULL;
	struct extent_inode_elem *eie;
	struct extent_inode_elem *eie_next;
	struct ulist_iterator uiter;

	ULIST_ITER_INIT(&uiter);
	while ((node = ulist_next(blocks, &uiter))) {
		if (!node->aux)
			continue;
1013
		eie = (struct extent_inode_elem *)(uintptr_t)node->aux;
1014 1015 1016 1017 1018 1019 1020 1021 1022 1023
		for (; eie; eie = eie_next) {
			eie_next = eie->next;
			kfree(eie);
		}
		node->aux = 0;
	}

	ulist_free(blocks);
}

1024 1025 1026 1027 1028 1029 1030 1031 1032 1033
/*
 * Finds all leafs with a reference to the specified combination of bytenr and
 * offset. key_list_head will point to a list of corresponding keys (caller must
 * free each list element). The leafs will be stored in the leafs ulist, which
 * must be freed with ulist_free.
 *
 * returns 0 on success, <0 on error
 */
static int btrfs_find_all_leafs(struct btrfs_trans_handle *trans,
				struct btrfs_fs_info *fs_info, u64 bytenr,
1034
				u64 time_seq, struct ulist **leafs,
1035
				const u64 *extent_item_pos)
1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048
{
	struct ulist *tmp;
	int ret;

	tmp = ulist_alloc(GFP_NOFS);
	if (!tmp)
		return -ENOMEM;
	*leafs = ulist_alloc(GFP_NOFS);
	if (!*leafs) {
		ulist_free(tmp);
		return -ENOMEM;
	}

1049
	ret = find_parent_nodes(trans, fs_info, bytenr,
1050
				time_seq, *leafs, tmp, extent_item_pos);
1051 1052 1053
	ulist_free(tmp);

	if (ret < 0 && ret != -ENOENT) {
1054
		free_leaf_list(*leafs);
1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075
		return ret;
	}

	return 0;
}

/*
 * walk all backrefs for a given extent to find all roots that reference this
 * extent. Walking a backref means finding all extents that reference this
 * extent and in turn walk the backrefs of those, too. Naturally this is a
 * recursive process, but here it is implemented in an iterative fashion: We
 * find all referencing extents for the extent in question and put them on a
 * list. In turn, we find all referencing extents for those, further appending
 * to the list. The way we iterate the list allows adding more elements after
 * the current while iterating. The process stops when we reach the end of the
 * list. Found roots are added to the roots list.
 *
 * returns 0 on success, < 0 on error.
 */
int btrfs_find_all_roots(struct btrfs_trans_handle *trans,
				struct btrfs_fs_info *fs_info, u64 bytenr,
1076
				u64 time_seq, struct ulist **roots)
1077 1078 1079
{
	struct ulist *tmp;
	struct ulist_node *node = NULL;
J
Jan Schmidt 已提交
1080
	struct ulist_iterator uiter;
1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091
	int ret;

	tmp = ulist_alloc(GFP_NOFS);
	if (!tmp)
		return -ENOMEM;
	*roots = ulist_alloc(GFP_NOFS);
	if (!*roots) {
		ulist_free(tmp);
		return -ENOMEM;
	}

J
Jan Schmidt 已提交
1092
	ULIST_ITER_INIT(&uiter);
1093
	while (1) {
1094
		ret = find_parent_nodes(trans, fs_info, bytenr,
1095
					time_seq, tmp, *roots, NULL);
1096 1097 1098 1099 1100
		if (ret < 0 && ret != -ENOENT) {
			ulist_free(tmp);
			ulist_free(*roots);
			return ret;
		}
J
Jan Schmidt 已提交
1101
		node = ulist_next(tmp, &uiter);
1102 1103 1104 1105 1106 1107 1108 1109 1110 1111
		if (!node)
			break;
		bytenr = node->val;
	}

	ulist_free(tmp);
	return 0;
}


1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161
static int __inode_info(u64 inum, u64 ioff, u8 key_type,
			struct btrfs_root *fs_root, struct btrfs_path *path,
			struct btrfs_key *found_key)
{
	int ret;
	struct btrfs_key key;
	struct extent_buffer *eb;

	key.type = key_type;
	key.objectid = inum;
	key.offset = ioff;

	ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0);
	if (ret < 0)
		return ret;

	eb = path->nodes[0];
	if (ret && path->slots[0] >= btrfs_header_nritems(eb)) {
		ret = btrfs_next_leaf(fs_root, path);
		if (ret)
			return ret;
		eb = path->nodes[0];
	}

	btrfs_item_key_to_cpu(eb, found_key, path->slots[0]);
	if (found_key->type != key.type || found_key->objectid != key.objectid)
		return 1;

	return 0;
}

/*
 * this makes the path point to (inum INODE_ITEM ioff)
 */
int inode_item_info(u64 inum, u64 ioff, struct btrfs_root *fs_root,
			struct btrfs_path *path)
{
	struct btrfs_key key;
	return __inode_info(inum, ioff, BTRFS_INODE_ITEM_KEY, fs_root, path,
				&key);
}

static int inode_ref_info(u64 inum, u64 ioff, struct btrfs_root *fs_root,
				struct btrfs_path *path,
				struct btrfs_key *found_key)
{
	return __inode_info(inum, ioff, BTRFS_INODE_REF_KEY, fs_root, path,
				found_key);
}

M
Mark Fasheh 已提交
1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229
int btrfs_find_one_extref(struct btrfs_root *root, u64 inode_objectid,
			  u64 start_off, struct btrfs_path *path,
			  struct btrfs_inode_extref **ret_extref,
			  u64 *found_off)
{
	int ret, slot;
	struct btrfs_key key;
	struct btrfs_key found_key;
	struct btrfs_inode_extref *extref;
	struct extent_buffer *leaf;
	unsigned long ptr;

	key.objectid = inode_objectid;
	btrfs_set_key_type(&key, BTRFS_INODE_EXTREF_KEY);
	key.offset = start_off;

	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
	if (ret < 0)
		return ret;

	while (1) {
		leaf = path->nodes[0];
		slot = path->slots[0];
		if (slot >= btrfs_header_nritems(leaf)) {
			/*
			 * If the item at offset is not found,
			 * btrfs_search_slot will point us to the slot
			 * where it should be inserted. In our case
			 * that will be the slot directly before the
			 * next INODE_REF_KEY_V2 item. In the case
			 * that we're pointing to the last slot in a
			 * leaf, we must move one leaf over.
			 */
			ret = btrfs_next_leaf(root, path);
			if (ret) {
				if (ret >= 1)
					ret = -ENOENT;
				break;
			}
			continue;
		}

		btrfs_item_key_to_cpu(leaf, &found_key, slot);

		/*
		 * Check that we're still looking at an extended ref key for
		 * this particular objectid. If we have different
		 * objectid or type then there are no more to be found
		 * in the tree and we can exit.
		 */
		ret = -ENOENT;
		if (found_key.objectid != inode_objectid)
			break;
		if (btrfs_key_type(&found_key) != BTRFS_INODE_EXTREF_KEY)
			break;

		ret = 0;
		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
		extref = (struct btrfs_inode_extref *)ptr;
		*ret_extref = extref;
		if (found_off)
			*found_off = found_key.offset;
		break;
	}

	return ret;
}

1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243
/*
 * this iterates to turn a name (from iref/extref) into a full filesystem path.
 * Elements of the path are separated by '/' and the path is guaranteed to be
 * 0-terminated. the path is only given within the current file system.
 * Therefore, it never starts with a '/'. the caller is responsible to provide
 * "size" bytes in "dest". the dest buffer will be filled backwards. finally,
 * the start point of the resulting string is returned. this pointer is within
 * dest, normally.
 * in case the path buffer would overflow, the pointer is decremented further
 * as if output was written to the buffer, though no more output is actually
 * generated. that way, the caller can determine how much space would be
 * required for the path to fit into the buffer. in that case, the returned
 * value will be smaller than dest. callers must check this!
 */
1244 1245 1246 1247
char *btrfs_ref_to_path(struct btrfs_root *fs_root, struct btrfs_path *path,
			u32 name_len, unsigned long name_off,
			struct extent_buffer *eb_in, u64 parent,
			char *dest, u32 size)
1248 1249 1250 1251
{
	int slot;
	u64 next_inum;
	int ret;
1252
	s64 bytes_left = ((s64)size) - 1;
1253 1254
	struct extent_buffer *eb = eb_in;
	struct btrfs_key found_key;
1255
	int leave_spinning = path->leave_spinning;
M
Mark Fasheh 已提交
1256
	struct btrfs_inode_ref *iref;
1257 1258 1259 1260

	if (bytes_left >= 0)
		dest[bytes_left] = '\0';

1261
	path->leave_spinning = 1;
1262
	while (1) {
M
Mark Fasheh 已提交
1263
		bytes_left -= name_len;
1264 1265
		if (bytes_left >= 0)
			read_extent_buffer(eb, dest + bytes_left,
M
Mark Fasheh 已提交
1266
					   name_off, name_len);
1267 1268
		if (eb != eb_in) {
			btrfs_tree_read_unlock_blocking(eb);
1269
			free_extent_buffer(eb);
1270
		}
1271
		ret = inode_ref_info(parent, 0, fs_root, path, &found_key);
1272 1273
		if (ret > 0)
			ret = -ENOENT;
1274 1275
		if (ret)
			break;
M
Mark Fasheh 已提交
1276

1277 1278 1279 1280 1281 1282 1283 1284 1285
		next_inum = found_key.offset;

		/* regular exit ahead */
		if (parent == next_inum)
			break;

		slot = path->slots[0];
		eb = path->nodes[0];
		/* make sure we can use eb after releasing the path */
1286
		if (eb != eb_in) {
1287
			atomic_inc(&eb->refs);
1288 1289 1290
			btrfs_tree_read_lock(eb);
			btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
		}
1291 1292
		btrfs_release_path(path);
		iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);
M
Mark Fasheh 已提交
1293 1294 1295 1296

		name_len = btrfs_inode_ref_name_len(eb, iref);
		name_off = (unsigned long)(iref + 1);

1297 1298 1299 1300 1301 1302 1303
		parent = next_inum;
		--bytes_left;
		if (bytes_left >= 0)
			dest[bytes_left] = '/';
	}

	btrfs_release_path(path);
1304
	path->leave_spinning = leave_spinning;
1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317

	if (ret)
		return ERR_PTR(ret);

	return dest + bytes_left;
}

/*
 * this makes the path point to (logical EXTENT_ITEM *)
 * returns BTRFS_EXTENT_FLAG_DATA for data, BTRFS_EXTENT_FLAG_TREE_BLOCK for
 * tree blocks and <0 on error.
 */
int extent_from_logical(struct btrfs_fs_info *fs_info, u64 logical,
1318 1319
			struct btrfs_path *path, struct btrfs_key *found_key,
			u64 *flags_ret)
1320 1321 1322
{
	int ret;
	u64 flags;
1323
	u64 size = 0;
1324 1325 1326 1327 1328
	u32 item_size;
	struct extent_buffer *eb;
	struct btrfs_extent_item *ei;
	struct btrfs_key key;

1329 1330 1331 1332
	if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
		key.type = BTRFS_METADATA_ITEM_KEY;
	else
		key.type = BTRFS_EXTENT_ITEM_KEY;
1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344
	key.objectid = logical;
	key.offset = (u64)-1;

	ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0);
	if (ret < 0)
		return ret;
	ret = btrfs_previous_item(fs_info->extent_root, path,
					0, BTRFS_EXTENT_ITEM_KEY);
	if (ret < 0)
		return ret;

	btrfs_item_key_to_cpu(path->nodes[0], found_key, path->slots[0]);
1345 1346 1347 1348 1349 1350 1351
	if (found_key->type == BTRFS_METADATA_ITEM_KEY)
		size = fs_info->extent_root->leafsize;
	else if (found_key->type == BTRFS_EXTENT_ITEM_KEY)
		size = found_key->offset;

	if ((found_key->type != BTRFS_EXTENT_ITEM_KEY &&
	     found_key->type != BTRFS_METADATA_ITEM_KEY) ||
1352
	    found_key->objectid > logical ||
1353
	    found_key->objectid + size <= logical) {
1354
		pr_debug("logical %llu is not within any extent\n", logical);
1355
		return -ENOENT;
J
Jan Schmidt 已提交
1356
	}
1357 1358 1359 1360 1361 1362 1363 1364

	eb = path->nodes[0];
	item_size = btrfs_item_size_nr(eb, path->slots[0]);
	BUG_ON(item_size < sizeof(*ei));

	ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
	flags = btrfs_extent_flags(eb, ei);

J
Jan Schmidt 已提交
1365 1366
	pr_debug("logical %llu is at position %llu within the extent (%llu "
		 "EXTENT_ITEM %llu) flags %#llx size %u\n",
1367 1368
		 logical, logical - found_key->objectid, found_key->objectid,
		 found_key->offset, flags, item_size);
1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379

	WARN_ON(!flags_ret);
	if (flags_ret) {
		if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
			*flags_ret = BTRFS_EXTENT_FLAG_TREE_BLOCK;
		else if (flags & BTRFS_EXTENT_FLAG_DATA)
			*flags_ret = BTRFS_EXTENT_FLAG_DATA;
		else
			BUG_ON(1);
		return 0;
	}
1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471

	return -EIO;
}

/*
 * helper function to iterate extent inline refs. ptr must point to a 0 value
 * for the first call and may be modified. it is used to track state.
 * if more refs exist, 0 is returned and the next call to
 * __get_extent_inline_ref must pass the modified ptr parameter to get the
 * next ref. after the last ref was processed, 1 is returned.
 * returns <0 on error
 */
static int __get_extent_inline_ref(unsigned long *ptr, struct extent_buffer *eb,
				struct btrfs_extent_item *ei, u32 item_size,
				struct btrfs_extent_inline_ref **out_eiref,
				int *out_type)
{
	unsigned long end;
	u64 flags;
	struct btrfs_tree_block_info *info;

	if (!*ptr) {
		/* first call */
		flags = btrfs_extent_flags(eb, ei);
		if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
			info = (struct btrfs_tree_block_info *)(ei + 1);
			*out_eiref =
				(struct btrfs_extent_inline_ref *)(info + 1);
		} else {
			*out_eiref = (struct btrfs_extent_inline_ref *)(ei + 1);
		}
		*ptr = (unsigned long)*out_eiref;
		if ((void *)*ptr >= (void *)ei + item_size)
			return -ENOENT;
	}

	end = (unsigned long)ei + item_size;
	*out_eiref = (struct btrfs_extent_inline_ref *)*ptr;
	*out_type = btrfs_extent_inline_ref_type(eb, *out_eiref);

	*ptr += btrfs_extent_inline_ref_size(*out_type);
	WARN_ON(*ptr > end);
	if (*ptr == end)
		return 1; /* last */

	return 0;
}

/*
 * reads the tree block backref for an extent. tree level and root are returned
 * through out_level and out_root. ptr must point to a 0 value for the first
 * call and may be modified (see __get_extent_inline_ref comment).
 * returns 0 if data was provided, 1 if there was no more data to provide or
 * <0 on error.
 */
int tree_backref_for_extent(unsigned long *ptr, struct extent_buffer *eb,
				struct btrfs_extent_item *ei, u32 item_size,
				u64 *out_root, u8 *out_level)
{
	int ret;
	int type;
	struct btrfs_tree_block_info *info;
	struct btrfs_extent_inline_ref *eiref;

	if (*ptr == (unsigned long)-1)
		return 1;

	while (1) {
		ret = __get_extent_inline_ref(ptr, eb, ei, item_size,
						&eiref, &type);
		if (ret < 0)
			return ret;

		if (type == BTRFS_TREE_BLOCK_REF_KEY ||
		    type == BTRFS_SHARED_BLOCK_REF_KEY)
			break;

		if (ret == 1)
			return 1;
	}

	/* we can treat both ref types equally here */
	info = (struct btrfs_tree_block_info *)(ei + 1);
	*out_root = btrfs_extent_inline_ref_offset(eb, eiref);
	*out_level = btrfs_tree_block_level(eb, info);

	if (ret == 1)
		*ptr = (unsigned long)-1;

	return 0;
}

1472 1473
static int iterate_leaf_refs(struct extent_inode_elem *inode_list,
				u64 root, u64 extent_item_objectid,
J
Jan Schmidt 已提交
1474
				iterate_extent_inodes_t *iterate, void *ctx)
1475
{
1476
	struct extent_inode_elem *eie;
J
Jan Schmidt 已提交
1477 1478
	int ret = 0;

1479
	for (eie = inode_list; eie; eie = eie->next) {
J
Jan Schmidt 已提交
1480
		pr_debug("ref for %llu resolved, key (%llu EXTEND_DATA %llu), "
1481 1482 1483
			 "root %llu\n", extent_item_objectid,
			 eie->inum, eie->offset, root);
		ret = iterate(eie->inum, eie->offset, root, ctx);
J
Jan Schmidt 已提交
1484
		if (ret) {
1485 1486
			pr_debug("stopping iteration for %llu due to ret=%d\n",
				 extent_item_objectid, ret);
J
Jan Schmidt 已提交
1487 1488
			break;
		}
1489 1490 1491 1492 1493 1494 1495
	}

	return ret;
}

/*
 * calls iterate() for every inode that references the extent identified by
J
Jan Schmidt 已提交
1496
 * the given parameters.
1497 1498 1499
 * when the iterator function returns a non-zero value, iteration stops.
 */
int iterate_extent_inodes(struct btrfs_fs_info *fs_info,
J
Jan Schmidt 已提交
1500
				u64 extent_item_objectid, u64 extent_item_pos,
1501
				int search_commit_root,
1502 1503 1504
				iterate_extent_inodes_t *iterate, void *ctx)
{
	int ret;
1505
	struct btrfs_trans_handle *trans = NULL;
1506 1507
	struct ulist *refs = NULL;
	struct ulist *roots = NULL;
J
Jan Schmidt 已提交
1508 1509
	struct ulist_node *ref_node = NULL;
	struct ulist_node *root_node = NULL;
1510
	struct seq_list tree_mod_seq_elem = {};
J
Jan Schmidt 已提交
1511 1512
	struct ulist_iterator ref_uiter;
	struct ulist_iterator root_uiter;
1513

J
Jan Schmidt 已提交
1514 1515
	pr_debug("resolving all inodes for extent %llu\n",
			extent_item_objectid);
1516

1517
	if (!search_commit_root) {
1518 1519 1520
		trans = btrfs_join_transaction(fs_info->extent_root);
		if (IS_ERR(trans))
			return PTR_ERR(trans);
1521
		btrfs_get_tree_mod_seq(fs_info, &tree_mod_seq_elem);
1522
	}
1523

J
Jan Schmidt 已提交
1524
	ret = btrfs_find_all_leafs(trans, fs_info, extent_item_objectid,
1525
				   tree_mod_seq_elem.seq, &refs,
1526
				   &extent_item_pos);
J
Jan Schmidt 已提交
1527 1528
	if (ret)
		goto out;
1529

J
Jan Schmidt 已提交
1530 1531
	ULIST_ITER_INIT(&ref_uiter);
	while (!ret && (ref_node = ulist_next(refs, &ref_uiter))) {
1532
		ret = btrfs_find_all_roots(trans, fs_info, ref_node->val,
1533
					   tree_mod_seq_elem.seq, &roots);
J
Jan Schmidt 已提交
1534 1535
		if (ret)
			break;
J
Jan Schmidt 已提交
1536 1537
		ULIST_ITER_INIT(&root_uiter);
		while (!ret && (root_node = ulist_next(roots, &root_uiter))) {
1538
			pr_debug("root %llu references leaf %llu, data list "
1539
				 "%#llx\n", root_node->val, ref_node->val,
1540
				 ref_node->aux);
1541 1542 1543 1544 1545
			ret = iterate_leaf_refs((struct extent_inode_elem *)
						(uintptr_t)ref_node->aux,
						root_node->val,
						extent_item_objectid,
						iterate, ctx);
J
Jan Schmidt 已提交
1546
		}
1547
		ulist_free(roots);
1548 1549
	}

1550
	free_leaf_list(refs);
J
Jan Schmidt 已提交
1551
out:
1552
	if (!search_commit_root) {
1553
		btrfs_put_tree_mod_seq(fs_info, &tree_mod_seq_elem);
1554 1555 1556
		btrfs_end_transaction(trans, fs_info->extent_root);
	}

1557 1558 1559 1560 1561 1562 1563 1564
	return ret;
}

int iterate_inodes_from_logical(u64 logical, struct btrfs_fs_info *fs_info,
				struct btrfs_path *path,
				iterate_extent_inodes_t *iterate, void *ctx)
{
	int ret;
J
Jan Schmidt 已提交
1565
	u64 extent_item_pos;
1566
	u64 flags = 0;
1567
	struct btrfs_key found_key;
1568
	int search_commit_root = path->search_commit_root;
1569

1570
	ret = extent_from_logical(fs_info, logical, path, &found_key, &flags);
J
Jan Schmidt 已提交
1571
	btrfs_release_path(path);
1572 1573
	if (ret < 0)
		return ret;
1574
	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1575
		return -EINVAL;
1576

J
Jan Schmidt 已提交
1577
	extent_item_pos = logical - found_key.objectid;
1578 1579 1580
	ret = iterate_extent_inodes(fs_info, found_key.objectid,
					extent_item_pos, search_commit_root,
					iterate, ctx);
1581 1582 1583 1584

	return ret;
}

M
Mark Fasheh 已提交
1585 1586 1587 1588 1589 1590
typedef int (iterate_irefs_t)(u64 parent, u32 name_len, unsigned long name_off,
			      struct extent_buffer *eb, void *ctx);

static int iterate_inode_refs(u64 inum, struct btrfs_root *fs_root,
			      struct btrfs_path *path,
			      iterate_irefs_t *iterate, void *ctx)
1591
{
1592
	int ret = 0;
1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603
	int slot;
	u32 cur;
	u32 len;
	u32 name_len;
	u64 parent = 0;
	int found = 0;
	struct extent_buffer *eb;
	struct btrfs_item *item;
	struct btrfs_inode_ref *iref;
	struct btrfs_key found_key;

1604
	while (!ret) {
1605
		path->leave_spinning = 1;
1606
		ret = inode_ref_info(inum, parent ? parent+1 : 0, fs_root, path,
M
Mark Fasheh 已提交
1607
				     &found_key);
1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620
		if (ret < 0)
			break;
		if (ret) {
			ret = found ? 0 : -ENOENT;
			break;
		}
		++found;

		parent = found_key.offset;
		slot = path->slots[0];
		eb = path->nodes[0];
		/* make sure we can use eb after releasing the path */
		atomic_inc(&eb->refs);
1621 1622
		btrfs_tree_read_lock(eb);
		btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
1623 1624
		btrfs_release_path(path);

1625
		item = btrfs_item_nr(slot);
1626 1627 1628 1629 1630
		iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);

		for (cur = 0; cur < btrfs_item_size(eb, item); cur += len) {
			name_len = btrfs_inode_ref_name_len(eb, iref);
			/* path must be released before calling iterate()! */
J
Jan Schmidt 已提交
1631
			pr_debug("following ref at offset %u for inode %llu in "
1632 1633
				 "tree %llu\n", cur, found_key.objectid,
				 fs_root->objectid);
M
Mark Fasheh 已提交
1634 1635
			ret = iterate(parent, name_len,
				      (unsigned long)(iref + 1), eb, ctx);
1636
			if (ret)
1637 1638 1639 1640
				break;
			len = sizeof(*iref) + name_len;
			iref = (struct btrfs_inode_ref *)((char *)iref + len);
		}
1641
		btrfs_tree_read_unlock_blocking(eb);
1642 1643 1644 1645 1646 1647 1648 1649
		free_extent_buffer(eb);
	}

	btrfs_release_path(path);

	return ret;
}

M
Mark Fasheh 已提交
1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735
static int iterate_inode_extrefs(u64 inum, struct btrfs_root *fs_root,
				 struct btrfs_path *path,
				 iterate_irefs_t *iterate, void *ctx)
{
	int ret;
	int slot;
	u64 offset = 0;
	u64 parent;
	int found = 0;
	struct extent_buffer *eb;
	struct btrfs_inode_extref *extref;
	struct extent_buffer *leaf;
	u32 item_size;
	u32 cur_offset;
	unsigned long ptr;

	while (1) {
		ret = btrfs_find_one_extref(fs_root, inum, offset, path, &extref,
					    &offset);
		if (ret < 0)
			break;
		if (ret) {
			ret = found ? 0 : -ENOENT;
			break;
		}
		++found;

		slot = path->slots[0];
		eb = path->nodes[0];
		/* make sure we can use eb after releasing the path */
		atomic_inc(&eb->refs);

		btrfs_tree_read_lock(eb);
		btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
		btrfs_release_path(path);

		leaf = path->nodes[0];
		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
		cur_offset = 0;

		while (cur_offset < item_size) {
			u32 name_len;

			extref = (struct btrfs_inode_extref *)(ptr + cur_offset);
			parent = btrfs_inode_extref_parent(eb, extref);
			name_len = btrfs_inode_extref_name_len(eb, extref);
			ret = iterate(parent, name_len,
				      (unsigned long)&extref->name, eb, ctx);
			if (ret)
				break;

			cur_offset += btrfs_inode_extref_name_len(leaf, extref);
			cur_offset += sizeof(*extref);
		}
		btrfs_tree_read_unlock_blocking(eb);
		free_extent_buffer(eb);

		offset++;
	}

	btrfs_release_path(path);

	return ret;
}

static int iterate_irefs(u64 inum, struct btrfs_root *fs_root,
			 struct btrfs_path *path, iterate_irefs_t *iterate,
			 void *ctx)
{
	int ret;
	int found_refs = 0;

	ret = iterate_inode_refs(inum, fs_root, path, iterate, ctx);
	if (!ret)
		++found_refs;
	else if (ret != -ENOENT)
		return ret;

	ret = iterate_inode_extrefs(inum, fs_root, path, iterate, ctx);
	if (ret == -ENOENT && found_refs)
		return 0;

	return ret;
}

1736 1737 1738 1739
/*
 * returns 0 if the path could be dumped (probably truncated)
 * returns <0 in case of an error
 */
M
Mark Fasheh 已提交
1740 1741
static int inode_to_path(u64 inum, u32 name_len, unsigned long name_off,
			 struct extent_buffer *eb, void *ctx)
1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752
{
	struct inode_fs_paths *ipath = ctx;
	char *fspath;
	char *fspath_min;
	int i = ipath->fspath->elem_cnt;
	const int s_ptr = sizeof(char *);
	u32 bytes_left;

	bytes_left = ipath->fspath->bytes_left > s_ptr ?
					ipath->fspath->bytes_left - s_ptr : 0;

1753
	fspath_min = (char *)ipath->fspath->val + (i + 1) * s_ptr;
1754 1755
	fspath = btrfs_ref_to_path(ipath->fs_root, ipath->btrfs_path, name_len,
				   name_off, eb, inum, fspath_min, bytes_left);
1756 1757 1758 1759
	if (IS_ERR(fspath))
		return PTR_ERR(fspath);

	if (fspath > fspath_min) {
1760
		ipath->fspath->val[i] = (u64)(unsigned long)fspath;
1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774
		++ipath->fspath->elem_cnt;
		ipath->fspath->bytes_left = fspath - fspath_min;
	} else {
		++ipath->fspath->elem_missed;
		ipath->fspath->bytes_missing += fspath_min - fspath;
		ipath->fspath->bytes_left = 0;
	}

	return 0;
}

/*
 * this dumps all file system paths to the inode into the ipath struct, provided
 * is has been created large enough. each path is zero-terminated and accessed
1775
 * from ipath->fspath->val[i].
1776
 * when it returns, there are ipath->fspath->elem_cnt number of paths available
1777
 * in ipath->fspath->val[]. when the allocated space wasn't sufficient, the
1778 1779 1780 1781 1782 1783 1784
 * number of missed paths in recored in ipath->fspath->elem_missed, otherwise,
 * it's zero. ipath->fspath->bytes_missing holds the number of bytes that would
 * have been needed to return all paths.
 */
int paths_from_inode(u64 inum, struct inode_fs_paths *ipath)
{
	return iterate_irefs(inum, ipath->fs_root, ipath->btrfs_path,
M
Mark Fasheh 已提交
1785
			     inode_to_path, ipath);
1786 1787 1788 1789 1790 1791 1792 1793
}

struct btrfs_data_container *init_data_container(u32 total_bytes)
{
	struct btrfs_data_container *data;
	size_t alloc_bytes;

	alloc_bytes = max_t(size_t, total_bytes, sizeof(*data));
1794
	data = vmalloc(alloc_bytes);
1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842
	if (!data)
		return ERR_PTR(-ENOMEM);

	if (total_bytes >= sizeof(*data)) {
		data->bytes_left = total_bytes - sizeof(*data);
		data->bytes_missing = 0;
	} else {
		data->bytes_missing = sizeof(*data) - total_bytes;
		data->bytes_left = 0;
	}

	data->elem_cnt = 0;
	data->elem_missed = 0;

	return data;
}

/*
 * allocates space to return multiple file system paths for an inode.
 * total_bytes to allocate are passed, note that space usable for actual path
 * information will be total_bytes - sizeof(struct inode_fs_paths).
 * the returned pointer must be freed with free_ipath() in the end.
 */
struct inode_fs_paths *init_ipath(s32 total_bytes, struct btrfs_root *fs_root,
					struct btrfs_path *path)
{
	struct inode_fs_paths *ifp;
	struct btrfs_data_container *fspath;

	fspath = init_data_container(total_bytes);
	if (IS_ERR(fspath))
		return (void *)fspath;

	ifp = kmalloc(sizeof(*ifp), GFP_NOFS);
	if (!ifp) {
		kfree(fspath);
		return ERR_PTR(-ENOMEM);
	}

	ifp->btrfs_path = path;
	ifp->fspath = fspath;
	ifp->fs_root = fs_root;

	return ifp;
}

void free_ipath(struct inode_fs_paths *ipath)
{
1843 1844
	if (!ipath)
		return;
1845
	vfree(ipath->fspath);
1846 1847
	kfree(ipath);
}