backref.c 52.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/*
 * Copyright (C) 2011 STRATO.  All rights reserved.
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public
 * License v2 as published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * General Public License for more details.
 *
 * You should have received a copy of the GNU General Public
 * License along with this program; if not, write to the
 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
 * Boston, MA 021110-1307, USA.
 */

19
#include <linux/mm.h>
20
#include <linux/rbtree.h>
21 22 23
#include "ctree.h"
#include "disk-io.h"
#include "backref.h"
24 25 26
#include "ulist.h"
#include "transaction.h"
#include "delayed-ref.h"
27
#include "locking.h"
28

29 30 31 32 33
enum merge_mode {
	MERGE_IDENTICAL_KEYS = 1,
	MERGE_IDENTICAL_PARENTS,
};

34 35 36
/* Just an arbitrary number so we can be sure this happened */
#define BACKREF_FOUND_SHARED 6

37 38 39 40 41 42
struct extent_inode_elem {
	u64 inum;
	u64 offset;
	struct extent_inode_elem *next;
};

43 44 45 46 47
static int check_extent_in_eb(const struct btrfs_key *key,
			      const struct extent_buffer *eb,
			      const struct btrfs_file_extent_item *fi,
			      u64 extent_item_pos,
			      struct extent_inode_elem **eie)
48
{
49
	u64 offset = 0;
50 51
	struct extent_inode_elem *e;

52 53 54 55 56
	if (!btrfs_file_extent_compression(eb, fi) &&
	    !btrfs_file_extent_encryption(eb, fi) &&
	    !btrfs_file_extent_other_encoding(eb, fi)) {
		u64 data_offset;
		u64 data_len;
57

58 59 60 61 62 63 64 65
		data_offset = btrfs_file_extent_offset(eb, fi);
		data_len = btrfs_file_extent_num_bytes(eb, fi);

		if (extent_item_pos < data_offset ||
		    extent_item_pos >= data_offset + data_len)
			return 1;
		offset = extent_item_pos - data_offset;
	}
66 67 68 69 70 71 72

	e = kmalloc(sizeof(*e), GFP_NOFS);
	if (!e)
		return -ENOMEM;

	e->next = *eie;
	e->inum = key->objectid;
73
	e->offset = key->offset + offset;
74 75 76 77 78
	*eie = e;

	return 0;
}

79 80 81 82 83 84 85 86 87 88
static void free_inode_elem_list(struct extent_inode_elem *eie)
{
	struct extent_inode_elem *eie_next;

	for (; eie; eie = eie_next) {
		eie_next = eie->next;
		kfree(eie);
	}
}

89 90 91
static int find_extent_in_eb(const struct extent_buffer *eb,
			     u64 wanted_disk_byte, u64 extent_item_pos,
			     struct extent_inode_elem **eie)
92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127
{
	u64 disk_byte;
	struct btrfs_key key;
	struct btrfs_file_extent_item *fi;
	int slot;
	int nritems;
	int extent_type;
	int ret;

	/*
	 * from the shared data ref, we only have the leaf but we need
	 * the key. thus, we must look into all items and see that we
	 * find one (some) with a reference to our extent item.
	 */
	nritems = btrfs_header_nritems(eb);
	for (slot = 0; slot < nritems; ++slot) {
		btrfs_item_key_to_cpu(eb, &key, slot);
		if (key.type != BTRFS_EXTENT_DATA_KEY)
			continue;
		fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
		extent_type = btrfs_file_extent_type(eb, fi);
		if (extent_type == BTRFS_FILE_EXTENT_INLINE)
			continue;
		/* don't skip BTRFS_FILE_EXTENT_PREALLOC, we can handle that */
		disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
		if (disk_byte != wanted_disk_byte)
			continue;

		ret = check_extent_in_eb(&key, eb, fi, extent_item_pos, eie);
		if (ret < 0)
			return ret;
	}

	return 0;
}

128 129 130
/*
 * this structure records all encountered refs on the way up to the root
 */
131
struct prelim_ref {
132 133
	struct list_head list;
	u64 root_id;
134
	struct btrfs_key key_for_search;
135 136
	int level;
	int count;
137
	struct extent_inode_elem *inode_list;
138 139 140 141
	u64 parent;
	u64 wanted_disk_byte;
};

142 143 144 145 146
static struct kmem_cache *btrfs_prelim_ref_cache;

int __init btrfs_prelim_ref_init(void)
{
	btrfs_prelim_ref_cache = kmem_cache_create("btrfs_prelim_ref",
147
					sizeof(struct prelim_ref),
148
					0,
149
					SLAB_MEM_SPREAD,
150 151 152 153 154 155 156 157
					NULL);
	if (!btrfs_prelim_ref_cache)
		return -ENOMEM;
	return 0;
}

void btrfs_prelim_ref_exit(void)
{
158
	kmem_cache_destroy(btrfs_prelim_ref_cache);
159 160
}

161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192
/*
 * the rules for all callers of this function are:
 * - obtaining the parent is the goal
 * - if you add a key, you must know that it is a correct key
 * - if you cannot add the parent or a correct key, then we will look into the
 *   block later to set a correct key
 *
 * delayed refs
 * ============
 *        backref type | shared | indirect | shared | indirect
 * information         |   tree |     tree |   data |     data
 * --------------------+--------+----------+--------+----------
 *      parent logical |    y   |     -    |    -   |     -
 *      key to resolve |    -   |     y    |    y   |     y
 *  tree block logical |    -   |     -    |    -   |     -
 *  root for resolving |    y   |     y    |    y   |     y
 *
 * - column 1:       we've the parent -> done
 * - column 2, 3, 4: we use the key to find the parent
 *
 * on disk refs (inline or keyed)
 * ==============================
 *        backref type | shared | indirect | shared | indirect
 * information         |   tree |     tree |   data |     data
 * --------------------+--------+----------+--------+----------
 *      parent logical |    y   |     -    |    y   |     -
 *      key to resolve |    -   |     -    |    -   |     y
 *  tree block logical |    y   |     y    |    y   |     y
 *  root for resolving |    -   |     y    |    y   |     y
 *
 * - column 1, 3: we've the parent -> done
 * - column 2:    we take the first key from the block to find the parent
193
 *                (see add_missing_keys)
194 195 196 197 198
 * - column 4:    we use the key to find the parent
 *
 * additional information that's available but not required to find the parent
 * block might help in merging entries to gain some speed.
 */
199 200 201
static int add_prelim_ref(struct list_head *head, u64 root_id,
			  const struct btrfs_key *key, int level, u64 parent,
			  u64 wanted_disk_byte, int count, gfp_t gfp_mask)
202
{
203
	struct prelim_ref *ref;
204

205 206 207
	if (root_id == BTRFS_DATA_RELOC_TREE_OBJECTID)
		return 0;

208
	ref = kmem_cache_alloc(btrfs_prelim_ref_cache, gfp_mask);
209 210 211 212
	if (!ref)
		return -ENOMEM;

	ref->root_id = root_id;
213
	if (key) {
214
		ref->key_for_search = *key;
215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237
		/*
		 * We can often find data backrefs with an offset that is too
		 * large (>= LLONG_MAX, maximum allowed file offset) due to
		 * underflows when subtracting a file's offset with the data
		 * offset of its corresponding extent data item. This can
		 * happen for example in the clone ioctl.
		 * So if we detect such case we set the search key's offset to
		 * zero to make sure we will find the matching file extent item
		 * at add_all_parents(), otherwise we will miss it because the
		 * offset taken form the backref is much larger then the offset
		 * of the file extent item. This can make us scan a very large
		 * number of file extent items, but at least it will not make
		 * us miss any.
		 * This is an ugly workaround for a behaviour that should have
		 * never existed, but it does and a fix for the clone ioctl
		 * would touch a lot of places, cause backwards incompatibility
		 * and would not fix the problem for extents cloned with older
		 * kernels.
		 */
		if (ref->key_for_search.type == BTRFS_EXTENT_DATA_KEY &&
		    ref->key_for_search.offset >= LLONG_MAX)
			ref->key_for_search.offset = 0;
	} else {
238
		memset(&ref->key_for_search, 0, sizeof(ref->key_for_search));
239
	}
240

241
	ref->inode_list = NULL;
242 243 244 245 246 247 248 249 250 251
	ref->level = level;
	ref->count = count;
	ref->parent = parent;
	ref->wanted_disk_byte = wanted_disk_byte;
	list_add_tail(&ref->list, head);

	return 0;
}

static int add_all_parents(struct btrfs_root *root, struct btrfs_path *path,
252
			   struct ulist *parents, struct prelim_ref *ref,
253 254
			   int level, u64 time_seq, const u64 *extent_item_pos,
			   u64 total_refs)
255
{
256 257 258 259
	int ret = 0;
	int slot;
	struct extent_buffer *eb;
	struct btrfs_key key;
260
	struct btrfs_key *key_for_search = &ref->key_for_search;
261
	struct btrfs_file_extent_item *fi;
262
	struct extent_inode_elem *eie = NULL, *old = NULL;
263
	u64 disk_byte;
264 265
	u64 wanted_disk_byte = ref->wanted_disk_byte;
	u64 count = 0;
266

267 268 269
	if (level != 0) {
		eb = path->nodes[level];
		ret = ulist_add(parents, eb->start, 0, GFP_NOFS);
270 271
		if (ret < 0)
			return ret;
272
		return 0;
273
	}
274 275

	/*
276 277 278
	 * We normally enter this function with the path already pointing to
	 * the first item to check. But sometimes, we may enter it with
	 * slot==nritems. In that case, go to the next leaf before we continue.
279
	 */
280
	if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
281
		if (time_seq == SEQ_LAST)
282 283 284 285
			ret = btrfs_next_leaf(root, path);
		else
			ret = btrfs_next_old_leaf(root, path, time_seq);
	}
286

287
	while (!ret && count < total_refs) {
288
		eb = path->nodes[0];
289 290 291 292 293 294 295 296 297 298 299 300 301
		slot = path->slots[0];

		btrfs_item_key_to_cpu(eb, &key, slot);

		if (key.objectid != key_for_search->objectid ||
		    key.type != BTRFS_EXTENT_DATA_KEY)
			break;

		fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
		disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);

		if (disk_byte == wanted_disk_byte) {
			eie = NULL;
302
			old = NULL;
303
			count++;
304 305 306 307 308 309 310
			if (extent_item_pos) {
				ret = check_extent_in_eb(&key, eb, fi,
						*extent_item_pos,
						&eie);
				if (ret < 0)
					break;
			}
311 312
			if (ret > 0)
				goto next;
313 314
			ret = ulist_add_merge_ptr(parents, eb->start,
						  eie, (void **)&old, GFP_NOFS);
315 316 317 318 319 320
			if (ret < 0)
				break;
			if (!ret && extent_item_pos) {
				while (old->next)
					old = old->next;
				old->next = eie;
321
			}
322
			eie = NULL;
323
		}
324
next:
325
		if (time_seq == SEQ_LAST)
326 327 328
			ret = btrfs_next_item(root, path);
		else
			ret = btrfs_next_old_item(root, path, time_seq);
329 330
	}

331 332
	if (ret > 0)
		ret = 0;
333 334
	else if (ret < 0)
		free_inode_elem_list(eie);
335
	return ret;
336 337 338 339 340 341
}

/*
 * resolve an indirect backref in the form (root_id, key, level)
 * to a logical address
 */
342 343 344 345
static int resolve_indirect_ref(struct btrfs_fs_info *fs_info,
				struct btrfs_path *path, u64 time_seq,
				struct prelim_ref *ref, struct ulist *parents,
				const u64 *extent_item_pos, u64 total_refs)
346 347 348 349 350 351 352
{
	struct btrfs_root *root;
	struct btrfs_key root_key;
	struct extent_buffer *eb;
	int ret = 0;
	int root_level;
	int level = ref->level;
353
	int index;
354 355 356 357

	root_key.objectid = ref->root_id;
	root_key.type = BTRFS_ROOT_ITEM_KEY;
	root_key.offset = (u64)-1;
358 359 360

	index = srcu_read_lock(&fs_info->subvol_srcu);

361
	root = btrfs_get_fs_root(fs_info, &root_key, false);
362
	if (IS_ERR(root)) {
363
		srcu_read_unlock(&fs_info->subvol_srcu, index);
364 365 366 367
		ret = PTR_ERR(root);
		goto out;
	}

368
	if (btrfs_is_testing(fs_info)) {
J
Josef Bacik 已提交
369 370 371 372 373
		srcu_read_unlock(&fs_info->subvol_srcu, index);
		ret = -ENOENT;
		goto out;
	}

374 375
	if (path->search_commit_root)
		root_level = btrfs_header_level(root->commit_root);
376
	else if (time_seq == SEQ_LAST)
377
		root_level = btrfs_header_level(root->node);
378 379
	else
		root_level = btrfs_old_root_level(root, time_seq);
380

381 382
	if (root_level + 1 == level) {
		srcu_read_unlock(&fs_info->subvol_srcu, index);
383
		goto out;
384
	}
385 386

	path->lowest_level = level;
387
	if (time_seq == SEQ_LAST)
388 389 390 391 392
		ret = btrfs_search_slot(NULL, root, &ref->key_for_search, path,
					0, 0);
	else
		ret = btrfs_search_old_slot(root, &ref->key_for_search, path,
					    time_seq);
393 394 395 396

	/* root node has been locked, we can release @subvol_srcu safely here */
	srcu_read_unlock(&fs_info->subvol_srcu, index);

397 398
	btrfs_debug(fs_info,
		"search slot in root %llu (level %d, ref count %d) returned %d for key (%llu %u %llu)",
399 400 401
		 ref->root_id, level, ref->count, ret,
		 ref->key_for_search.objectid, ref->key_for_search.type,
		 ref->key_for_search.offset);
402 403 404 405
	if (ret < 0)
		goto out;

	eb = path->nodes[level];
406
	while (!eb) {
407
		if (WARN_ON(!level)) {
408 409 410 411 412
			ret = 1;
			goto out;
		}
		level--;
		eb = path->nodes[level];
413 414
	}

415
	ret = add_all_parents(root, path, parents, ref, level, time_seq,
416
			      extent_item_pos, total_refs);
417
out:
418 419
	path->lowest_level = 0;
	btrfs_release_path(path);
420 421 422
	return ret;
}

423 424 425 426 427 428 429 430
static struct extent_inode_elem *
unode_aux_to_inode_list(struct ulist_node *node)
{
	if (!node)
		return NULL;
	return (struct extent_inode_elem *)(uintptr_t)node->aux;
}

431 432 433
/*
 * resolve all indirect backrefs from the list
 */
434 435 436 437 438
static int resolve_indirect_refs(struct btrfs_fs_info *fs_info,
				 struct btrfs_path *path, u64 time_seq,
				 struct list_head *head,
				 const u64 *extent_item_pos, u64 total_refs,
				 u64 root_objectid)
439 440 441
{
	int err;
	int ret = 0;
442 443 444
	struct prelim_ref *ref;
	struct prelim_ref *ref_safe;
	struct prelim_ref *new_ref;
445 446
	struct ulist *parents;
	struct ulist_node *node;
J
Jan Schmidt 已提交
447
	struct ulist_iterator uiter;
448 449 450 451 452 453 454 455 456 457 458 459 460 461 462

	parents = ulist_alloc(GFP_NOFS);
	if (!parents)
		return -ENOMEM;

	/*
	 * _safe allows us to insert directly after the current item without
	 * iterating over the newly inserted items.
	 * we're also allowed to re-assign ref during iteration.
	 */
	list_for_each_entry_safe(ref, ref_safe, head, list) {
		if (ref->parent)	/* already direct */
			continue;
		if (ref->count == 0)
			continue;
463 464 465 466
		if (root_objectid && ref->root_id != root_objectid) {
			ret = BACKREF_FOUND_SHARED;
			goto out;
		}
467 468 469
		err = resolve_indirect_ref(fs_info, path, time_seq, ref,
					   parents, extent_item_pos,
					   total_refs);
470 471 472 473 474
		/*
		 * we can only tolerate ENOENT,otherwise,we should catch error
		 * and return directly.
		 */
		if (err == -ENOENT) {
475
			continue;
476 477 478 479
		} else if (err) {
			ret = err;
			goto out;
		}
480 481

		/* we put the first parent into the ref at hand */
J
Jan Schmidt 已提交
482 483
		ULIST_ITER_INIT(&uiter);
		node = ulist_next(parents, &uiter);
484
		ref->parent = node ? node->val : 0;
485
		ref->inode_list = unode_aux_to_inode_list(node);
486 487

		/* additional parents require new refs being added here */
J
Jan Schmidt 已提交
488
		while ((node = ulist_next(parents, &uiter))) {
489 490
			new_ref = kmem_cache_alloc(btrfs_prelim_ref_cache,
						   GFP_NOFS);
491 492
			if (!new_ref) {
				ret = -ENOMEM;
493
				goto out;
494 495 496
			}
			memcpy(new_ref, ref, sizeof(*ref));
			new_ref->parent = node->val;
497
			new_ref->inode_list = unode_aux_to_inode_list(node);
498 499 500 501
			list_add(&new_ref->list, &ref->list);
		}
		ulist_reinit(parents);
	}
502
out:
503 504 505 506
	ulist_free(parents);
	return ret;
}

507 508
static inline int ref_for_same_block(struct prelim_ref *ref1,
				     struct prelim_ref *ref2)
509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528
{
	if (ref1->level != ref2->level)
		return 0;
	if (ref1->root_id != ref2->root_id)
		return 0;
	if (ref1->key_for_search.type != ref2->key_for_search.type)
		return 0;
	if (ref1->key_for_search.objectid != ref2->key_for_search.objectid)
		return 0;
	if (ref1->key_for_search.offset != ref2->key_for_search.offset)
		return 0;
	if (ref1->parent != ref2->parent)
		return 0;

	return 1;
}

/*
 * read tree blocks and add keys where required.
 */
529 530
static int add_missing_keys(struct btrfs_fs_info *fs_info,
			    struct list_head *head)
531
{
532
	struct prelim_ref *ref;
533 534
	struct extent_buffer *eb;

535
	list_for_each_entry(ref, head, list) {
536 537 538 539 540
		if (ref->parent)
			continue;
		if (ref->key_for_search.type)
			continue;
		BUG_ON(!ref->wanted_disk_byte);
541
		eb = read_tree_block(fs_info, ref->wanted_disk_byte, 0);
542 543 544
		if (IS_ERR(eb)) {
			return PTR_ERR(eb);
		} else if (!extent_buffer_uptodate(eb)) {
545 546 547
			free_extent_buffer(eb);
			return -EIO;
		}
548 549 550 551 552 553 554 555 556 557 558
		btrfs_tree_read_lock(eb);
		if (btrfs_header_level(eb) == 0)
			btrfs_item_key_to_cpu(eb, &ref->key_for_search, 0);
		else
			btrfs_node_key_to_cpu(eb, &ref->key_for_search, 0);
		btrfs_tree_read_unlock(eb);
		free_extent_buffer(eb);
	}
	return 0;
}

559
/*
560
 * merge backrefs and adjust counts accordingly
561
 *
562
 *    FIXME: For MERGE_IDENTICAL_KEYS, if we add more keys in add_prelim_ref
563 564 565
 *           then we can merge more here. Additionally, we could even add a key
 *           range for the blocks we looked into to merge even more (-> replace
 *           unresolved refs by those having a parent).
566
 */
567
static void merge_refs(struct list_head *head, enum merge_mode mode)
568
{
569
	struct prelim_ref *pos1;
570

571
	list_for_each_entry(pos1, head, list) {
572
		struct prelim_ref *pos2 = pos1, *tmp;
573

574
		list_for_each_entry_safe_continue(pos2, tmp, head, list) {
575
			struct prelim_ref *ref1 = pos1, *ref2 = pos2;
576
			struct extent_inode_elem *eie;
577

578 579
			if (!ref_for_same_block(ref1, ref2))
				continue;
580
			if (mode == MERGE_IDENTICAL_KEYS) {
581 582
				if (!ref1->parent && ref2->parent)
					swap(ref1, ref2);
583 584 585 586
			} else {
				if (ref1->parent != ref2->parent)
					continue;
			}
587 588 589 590 591 592 593 594 595 596

			eie = ref1->inode_list;
			while (eie && eie->next)
				eie = eie->next;
			if (eie)
				eie->next = ref2->inode_list;
			else
				ref1->inode_list = ref2->inode_list;
			ref1->count += ref2->count;

597
			list_del(&ref2->list);
598
			kmem_cache_free(btrfs_prelim_ref_cache, ref2);
599
			cond_resched();
600 601 602 603 604 605 606 607 608
		}

	}
}

/*
 * add all currently queued delayed refs from this head whose seq nr is
 * smaller or equal that seq to the list
 */
609 610 611
static int add_delayed_refs(struct btrfs_delayed_ref_head *head, u64 seq,
			    struct list_head *prefs, u64 *total_refs,
			    u64 inum)
612
{
613
	struct btrfs_delayed_ref_node *node;
614
	struct btrfs_delayed_extent_op *extent_op = head->extent_op;
615 616
	struct btrfs_key key;
	struct btrfs_key op_key = {0};
617
	int sgn;
618
	int ret = 0;
619 620

	if (extent_op && extent_op->update_key)
621
		btrfs_disk_key_to_cpu(&op_key, &extent_op->key);
622

623
	spin_lock(&head->lock);
624
	list_for_each_entry(node, &head->ref_list, list) {
625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641
		if (node->seq > seq)
			continue;

		switch (node->action) {
		case BTRFS_ADD_DELAYED_EXTENT:
		case BTRFS_UPDATE_DELAYED_HEAD:
			WARN_ON(1);
			continue;
		case BTRFS_ADD_DELAYED_REF:
			sgn = 1;
			break;
		case BTRFS_DROP_DELAYED_REF:
			sgn = -1;
			break;
		default:
			BUG_ON(1);
		}
642
		*total_refs += (node->ref_mod * sgn);
643 644 645 646 647
		switch (node->type) {
		case BTRFS_TREE_BLOCK_REF_KEY: {
			struct btrfs_delayed_tree_ref *ref;

			ref = btrfs_delayed_node_to_tree_ref(node);
648 649 650
			ret = add_prelim_ref(prefs, ref->root, &op_key,
					     ref->level + 1, 0, node->bytenr,
					     node->ref_mod * sgn, GFP_ATOMIC);
651 652 653 654 655 656
			break;
		}
		case BTRFS_SHARED_BLOCK_REF_KEY: {
			struct btrfs_delayed_tree_ref *ref;

			ref = btrfs_delayed_node_to_tree_ref(node);
657 658 659
			ret = add_prelim_ref(prefs, 0, NULL, ref->level + 1,
					     ref->parent, node->bytenr,
					     node->ref_mod * sgn, GFP_ATOMIC);
660 661 662 663 664 665 666 667 668
			break;
		}
		case BTRFS_EXTENT_DATA_REF_KEY: {
			struct btrfs_delayed_data_ref *ref;
			ref = btrfs_delayed_node_to_data_ref(node);

			key.objectid = ref->objectid;
			key.type = BTRFS_EXTENT_DATA_KEY;
			key.offset = ref->offset;
669 670 671 672 673 674 675 676 677 678

			/*
			 * Found a inum that doesn't match our known inum, we
			 * know it's shared.
			 */
			if (inum && ref->objectid != inum) {
				ret = BACKREF_FOUND_SHARED;
				break;
			}

679 680 681
			ret = add_prelim_ref(prefs, ref->root, &key, 0, 0,
					     node->bytenr, node->ref_mod * sgn,
					     GFP_ATOMIC);
682 683 684 685 686 687
			break;
		}
		case BTRFS_SHARED_DATA_REF_KEY: {
			struct btrfs_delayed_data_ref *ref;

			ref = btrfs_delayed_node_to_data_ref(node);
688 689 690
			ret = add_prelim_ref(prefs, 0, NULL, 0, ref->parent,
					     node->bytenr, node->ref_mod * sgn,
					     GFP_ATOMIC);
691 692 693 694 695
			break;
		}
		default:
			WARN_ON(1);
		}
696
		if (ret)
697
			break;
698
	}
699 700
	spin_unlock(&head->lock);
	return ret;
701 702 703 704 705
}

/*
 * add all inline backrefs for bytenr to the list
 */
706 707 708
static int add_inline_refs(struct btrfs_path *path, u64 bytenr,
			   int *info_level, struct list_head *prefs,
			   u64 *total_refs, u64 inum)
709
{
710
	int ret = 0;
711 712 713
	int slot;
	struct extent_buffer *leaf;
	struct btrfs_key key;
714
	struct btrfs_key found_key;
715 716 717 718 719 720 721 722 723 724
	unsigned long ptr;
	unsigned long end;
	struct btrfs_extent_item *ei;
	u64 flags;
	u64 item_size;

	/*
	 * enumerate all inline refs
	 */
	leaf = path->nodes[0];
725
	slot = path->slots[0];
726 727 728 729 730 731

	item_size = btrfs_item_size_nr(leaf, slot);
	BUG_ON(item_size < sizeof(*ei));

	ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item);
	flags = btrfs_extent_flags(leaf, ei);
732
	*total_refs += btrfs_extent_refs(leaf, ei);
733
	btrfs_item_key_to_cpu(leaf, &found_key, slot);
734 735 736 737

	ptr = (unsigned long)(ei + 1);
	end = (unsigned long)ei + item_size;

738 739
	if (found_key.type == BTRFS_EXTENT_ITEM_KEY &&
	    flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
740 741 742 743 744 745
		struct btrfs_tree_block_info *info;

		info = (struct btrfs_tree_block_info *)ptr;
		*info_level = btrfs_tree_block_level(leaf, info);
		ptr += sizeof(struct btrfs_tree_block_info);
		BUG_ON(ptr > end);
746 747
	} else if (found_key.type == BTRFS_METADATA_ITEM_KEY) {
		*info_level = found_key.offset;
748 749 750 751 752 753 754 755 756 757 758 759 760 761 762
	} else {
		BUG_ON(!(flags & BTRFS_EXTENT_FLAG_DATA));
	}

	while (ptr < end) {
		struct btrfs_extent_inline_ref *iref;
		u64 offset;
		int type;

		iref = (struct btrfs_extent_inline_ref *)ptr;
		type = btrfs_extent_inline_ref_type(leaf, iref);
		offset = btrfs_extent_inline_ref_offset(leaf, iref);

		switch (type) {
		case BTRFS_SHARED_BLOCK_REF_KEY:
763 764
			ret = add_prelim_ref(prefs, 0, NULL, *info_level + 1,
					     offset, bytenr, 1, GFP_NOFS);
765 766 767 768 769 770 771
			break;
		case BTRFS_SHARED_DATA_REF_KEY: {
			struct btrfs_shared_data_ref *sdref;
			int count;

			sdref = (struct btrfs_shared_data_ref *)(iref + 1);
			count = btrfs_shared_data_ref_count(leaf, sdref);
772 773
			ret = add_prelim_ref(prefs, 0, NULL, 0, offset,
					     bytenr, count, GFP_NOFS);
774 775 776
			break;
		}
		case BTRFS_TREE_BLOCK_REF_KEY:
777 778 779
			ret = add_prelim_ref(prefs, offset, NULL,
					     *info_level + 1, 0,
					     bytenr, 1, GFP_NOFS);
780 781 782 783 784 785 786 787 788 789 790 791
			break;
		case BTRFS_EXTENT_DATA_REF_KEY: {
			struct btrfs_extent_data_ref *dref;
			int count;
			u64 root;

			dref = (struct btrfs_extent_data_ref *)(&iref->offset);
			count = btrfs_extent_data_ref_count(leaf, dref);
			key.objectid = btrfs_extent_data_ref_objectid(leaf,
								      dref);
			key.type = BTRFS_EXTENT_DATA_KEY;
			key.offset = btrfs_extent_data_ref_offset(leaf, dref);
792 793 794 795 796 797

			if (inum && key.objectid != inum) {
				ret = BACKREF_FOUND_SHARED;
				break;
			}

798
			root = btrfs_extent_data_ref_root(leaf, dref);
799 800
			ret = add_prelim_ref(prefs, root, &key, 0, 0,
					     bytenr, count, GFP_NOFS);
801 802 803 804 805
			break;
		}
		default:
			WARN_ON(1);
		}
806 807
		if (ret)
			return ret;
808 809 810 811 812 813 814 815 816
		ptr += btrfs_extent_inline_ref_size(type);
	}

	return 0;
}

/*
 * add all non-inline backrefs for bytenr to the list
 */
817 818
static int add_keyed_refs(struct btrfs_fs_info *fs_info,
			  struct btrfs_path *path, u64 bytenr,
819
			  int info_level, struct list_head *prefs, u64 inum)
820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848
{
	struct btrfs_root *extent_root = fs_info->extent_root;
	int ret;
	int slot;
	struct extent_buffer *leaf;
	struct btrfs_key key;

	while (1) {
		ret = btrfs_next_item(extent_root, path);
		if (ret < 0)
			break;
		if (ret) {
			ret = 0;
			break;
		}

		slot = path->slots[0];
		leaf = path->nodes[0];
		btrfs_item_key_to_cpu(leaf, &key, slot);

		if (key.objectid != bytenr)
			break;
		if (key.type < BTRFS_TREE_BLOCK_REF_KEY)
			continue;
		if (key.type > BTRFS_SHARED_DATA_REF_KEY)
			break;

		switch (key.type) {
		case BTRFS_SHARED_BLOCK_REF_KEY:
849 850
			ret = add_prelim_ref(prefs, 0, NULL, info_level + 1,
					     key.offset, bytenr, 1, GFP_NOFS);
851 852 853 854 855 856 857 858
			break;
		case BTRFS_SHARED_DATA_REF_KEY: {
			struct btrfs_shared_data_ref *sdref;
			int count;

			sdref = btrfs_item_ptr(leaf, slot,
					      struct btrfs_shared_data_ref);
			count = btrfs_shared_data_ref_count(leaf, sdref);
859 860
			ret = add_prelim_ref(prefs, 0, NULL, 0, key.offset,
					     bytenr, count, GFP_NOFS);
861 862 863
			break;
		}
		case BTRFS_TREE_BLOCK_REF_KEY:
864 865 866
			ret = add_prelim_ref(prefs, key.offset, NULL,
					     info_level + 1, 0,
					     bytenr, 1, GFP_NOFS);
867 868 869 870 871 872 873 874 875 876 877 878 879
			break;
		case BTRFS_EXTENT_DATA_REF_KEY: {
			struct btrfs_extent_data_ref *dref;
			int count;
			u64 root;

			dref = btrfs_item_ptr(leaf, slot,
					      struct btrfs_extent_data_ref);
			count = btrfs_extent_data_ref_count(leaf, dref);
			key.objectid = btrfs_extent_data_ref_objectid(leaf,
								      dref);
			key.type = BTRFS_EXTENT_DATA_KEY;
			key.offset = btrfs_extent_data_ref_offset(leaf, dref);
880 881 882 883 884 885

			if (inum && key.objectid != inum) {
				ret = BACKREF_FOUND_SHARED;
				break;
			}

886
			root = btrfs_extent_data_ref_root(leaf, dref);
887 888
			ret = add_prelim_ref(prefs, root, &key, 0, 0,
					     bytenr, count, GFP_NOFS);
889 890 891 892 893
			break;
		}
		default:
			WARN_ON(1);
		}
894 895 896
		if (ret)
			return ret;

897 898 899 900 901 902 903 904 905 906 907
	}

	return ret;
}

/*
 * this adds all existing backrefs (inline backrefs, backrefs and delayed
 * refs) for the given bytenr to the refs list, merges duplicates and resolves
 * indirect refs to their parent bytenr.
 * When roots are found, they're added to the roots list
 *
908 909
 * NOTE: This can return values > 0
 *
910
 * If time_seq is set to SEQ_LAST, it will not search delayed_refs, and behave
911 912 913 914
 * much like trans == NULL case, the difference only lies in it will not
 * commit root.
 * The special case is for qgroup to search roots in commit_transaction().
 *
915 916 917 918
 * FIXME some caching might speed things up
 */
static int find_parent_nodes(struct btrfs_trans_handle *trans,
			     struct btrfs_fs_info *fs_info, u64 bytenr,
919
			     u64 time_seq, struct ulist *refs,
920
			     struct ulist *roots, const u64 *extent_item_pos,
921
			     u64 root_objectid, u64 inum)
922 923 924 925
{
	struct btrfs_key key;
	struct btrfs_path *path;
	struct btrfs_delayed_ref_root *delayed_refs = NULL;
926
	struct btrfs_delayed_ref_head *head;
927 928 929 930
	int info_level = 0;
	int ret;
	struct list_head prefs_delayed;
	struct list_head prefs;
931
	struct prelim_ref *ref;
932
	struct extent_inode_elem *eie = NULL;
933
	u64 total_refs = 0;
934 935 936 937 938 939

	INIT_LIST_HEAD(&prefs);
	INIT_LIST_HEAD(&prefs_delayed);

	key.objectid = bytenr;
	key.offset = (u64)-1;
940 941 942 943
	if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
		key.type = BTRFS_METADATA_ITEM_KEY;
	else
		key.type = BTRFS_EXTENT_ITEM_KEY;
944 945 946 947

	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;
948
	if (!trans) {
949
		path->search_commit_root = 1;
950 951
		path->skip_locking = 1;
	}
952

953
	if (time_seq == SEQ_LAST)
954 955
		path->skip_locking = 1;

956 957 958 959 960 961
	/*
	 * grab both a lock on the path and a lock on the delayed ref head.
	 * We need both to get a consistent picture of how the refs look
	 * at a specified point in time
	 */
again:
962 963
	head = NULL;

964 965 966 967 968
	ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 0);
	if (ret < 0)
		goto out;
	BUG_ON(ret == 0);

969
#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
970
	if (trans && likely(trans->type != __TRANS_DUMMY) &&
971
	    time_seq != SEQ_LAST) {
972
#else
973
	if (trans && time_seq != SEQ_LAST) {
974
#endif
975 976 977 978 979 980
		/*
		 * look if there are updates for this ref queued and lock the
		 * head
		 */
		delayed_refs = &trans->transaction->delayed_refs;
		spin_lock(&delayed_refs->lock);
981
		head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
982 983
		if (head) {
			if (!mutex_trylock(&head->mutex)) {
984
				refcount_inc(&head->node.refs);
985 986 987 988 989 990 991 992 993 994 995 996 997
				spin_unlock(&delayed_refs->lock);

				btrfs_release_path(path);

				/*
				 * Mutex was contended, block until it's
				 * released and try again
				 */
				mutex_lock(&head->mutex);
				mutex_unlock(&head->mutex);
				btrfs_put_delayed_ref(&head->node);
				goto again;
			}
998
			spin_unlock(&delayed_refs->lock);
999 1000 1001
			ret = add_delayed_refs(head, time_seq,
					       &prefs_delayed, &total_refs,
					       inum);
1002
			mutex_unlock(&head->mutex);
1003
			if (ret)
1004
				goto out;
1005 1006
		} else {
			spin_unlock(&delayed_refs->lock);
1007
		}
1008 1009 1010 1011 1012 1013
	}

	if (path->slots[0]) {
		struct extent_buffer *leaf;
		int slot;

1014
		path->slots[0]--;
1015
		leaf = path->nodes[0];
1016
		slot = path->slots[0];
1017 1018
		btrfs_item_key_to_cpu(leaf, &key, slot);
		if (key.objectid == bytenr &&
1019 1020
		    (key.type == BTRFS_EXTENT_ITEM_KEY ||
		     key.type == BTRFS_METADATA_ITEM_KEY)) {
1021
			ret = add_inline_refs(path, bytenr, &info_level,
1022
					      &prefs, &total_refs, inum);
1023 1024
			if (ret)
				goto out;
1025
			ret = add_keyed_refs(fs_info, path, bytenr, info_level,
1026
					     &prefs, inum);
1027 1028 1029 1030 1031 1032 1033 1034
			if (ret)
				goto out;
		}
	}
	btrfs_release_path(path);

	list_splice_init(&prefs_delayed, &prefs);

1035
	ret = add_missing_keys(fs_info, &prefs);
1036 1037 1038
	if (ret)
		goto out;

1039
	merge_refs(&prefs, MERGE_IDENTICAL_KEYS);
1040

1041 1042 1043
	ret = resolve_indirect_refs(fs_info, path, time_seq, &prefs,
				    extent_item_pos, total_refs,
				    root_objectid);
1044 1045 1046
	if (ret)
		goto out;

1047
	merge_refs(&prefs, MERGE_IDENTICAL_PARENTS);
1048 1049

	while (!list_empty(&prefs)) {
1050
		ref = list_first_entry(&prefs, struct prelim_ref, list);
J
Julia Lawall 已提交
1051
		WARN_ON(ref->count < 0);
1052
		if (roots && ref->count && ref->root_id && ref->parent == 0) {
1053 1054 1055 1056 1057
			if (root_objectid && ref->root_id != root_objectid) {
				ret = BACKREF_FOUND_SHARED;
				goto out;
			}

1058 1059
			/* no parent == root of tree */
			ret = ulist_add(roots, ref->root_id, 0, GFP_NOFS);
1060 1061
			if (ret < 0)
				goto out;
1062 1063
		}
		if (ref->count && ref->parent) {
1064 1065
			if (extent_item_pos && !ref->inode_list &&
			    ref->level == 0) {
1066
				struct extent_buffer *eb;
1067

1068
				eb = read_tree_block(fs_info, ref->parent, 0);
1069 1070 1071 1072
				if (IS_ERR(eb)) {
					ret = PTR_ERR(eb);
					goto out;
				} else if (!extent_buffer_uptodate(eb)) {
1073
					free_extent_buffer(eb);
1074 1075
					ret = -EIO;
					goto out;
1076
				}
1077 1078
				btrfs_tree_read_lock(eb);
				btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
1079 1080
				ret = find_extent_in_eb(eb, bytenr,
							*extent_item_pos, &eie);
1081
				btrfs_tree_read_unlock_blocking(eb);
1082
				free_extent_buffer(eb);
1083 1084 1085
				if (ret < 0)
					goto out;
				ref->inode_list = eie;
1086
			}
1087 1088 1089
			ret = ulist_add_merge_ptr(refs, ref->parent,
						  ref->inode_list,
						  (void **)&eie, GFP_NOFS);
1090 1091
			if (ret < 0)
				goto out;
1092 1093 1094 1095 1096 1097 1098 1099 1100 1101
			if (!ret && extent_item_pos) {
				/*
				 * we've recorded that parent, so we must extend
				 * its inode list here
				 */
				BUG_ON(!eie);
				while (eie->next)
					eie = eie->next;
				eie->next = ref->inode_list;
			}
1102
			eie = NULL;
1103
		}
1104
		list_del(&ref->list);
1105
		kmem_cache_free(btrfs_prelim_ref_cache, ref);
1106 1107 1108 1109 1110
	}

out:
	btrfs_free_path(path);
	while (!list_empty(&prefs)) {
1111
		ref = list_first_entry(&prefs, struct prelim_ref, list);
1112
		list_del(&ref->list);
1113
		kmem_cache_free(btrfs_prelim_ref_cache, ref);
1114 1115
	}
	while (!list_empty(&prefs_delayed)) {
1116
		ref = list_first_entry(&prefs_delayed, struct prelim_ref,
1117 1118
				       list);
		list_del(&ref->list);
1119
		kmem_cache_free(btrfs_prelim_ref_cache, ref);
1120
	}
1121 1122
	if (ret < 0)
		free_inode_elem_list(eie);
1123 1124 1125
	return ret;
}

1126 1127 1128 1129 1130 1131 1132 1133 1134 1135
static void free_leaf_list(struct ulist *blocks)
{
	struct ulist_node *node = NULL;
	struct extent_inode_elem *eie;
	struct ulist_iterator uiter;

	ULIST_ITER_INIT(&uiter);
	while ((node = ulist_next(blocks, &uiter))) {
		if (!node->aux)
			continue;
1136
		eie = unode_aux_to_inode_list(node);
1137
		free_inode_elem_list(eie);
1138 1139 1140 1141 1142 1143
		node->aux = 0;
	}

	ulist_free(blocks);
}

1144 1145 1146 1147 1148 1149 1150 1151 1152 1153
/*
 * Finds all leafs with a reference to the specified combination of bytenr and
 * offset. key_list_head will point to a list of corresponding keys (caller must
 * free each list element). The leafs will be stored in the leafs ulist, which
 * must be freed with ulist_free.
 *
 * returns 0 on success, <0 on error
 */
static int btrfs_find_all_leafs(struct btrfs_trans_handle *trans,
				struct btrfs_fs_info *fs_info, u64 bytenr,
1154
				u64 time_seq, struct ulist **leafs,
1155
				const u64 *extent_item_pos)
1156 1157 1158 1159
{
	int ret;

	*leafs = ulist_alloc(GFP_NOFS);
1160
	if (!*leafs)
1161 1162
		return -ENOMEM;

1163
	ret = find_parent_nodes(trans, fs_info, bytenr, time_seq,
1164
				*leafs, NULL, extent_item_pos, 0, 0);
1165
	if (ret < 0 && ret != -ENOENT) {
1166
		free_leaf_list(*leafs);
1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185
		return ret;
	}

	return 0;
}

/*
 * walk all backrefs for a given extent to find all roots that reference this
 * extent. Walking a backref means finding all extents that reference this
 * extent and in turn walk the backrefs of those, too. Naturally this is a
 * recursive process, but here it is implemented in an iterative fashion: We
 * find all referencing extents for the extent in question and put them on a
 * list. In turn, we find all referencing extents for those, further appending
 * to the list. The way we iterate the list allows adding more elements after
 * the current while iterating. The process stops when we reach the end of the
 * list. Found roots are added to the roots list.
 *
 * returns 0 on success, < 0 on error.
 */
1186 1187 1188
static int btrfs_find_all_roots_safe(struct btrfs_trans_handle *trans,
				     struct btrfs_fs_info *fs_info, u64 bytenr,
				     u64 time_seq, struct ulist **roots)
1189 1190 1191
{
	struct ulist *tmp;
	struct ulist_node *node = NULL;
J
Jan Schmidt 已提交
1192
	struct ulist_iterator uiter;
1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203
	int ret;

	tmp = ulist_alloc(GFP_NOFS);
	if (!tmp)
		return -ENOMEM;
	*roots = ulist_alloc(GFP_NOFS);
	if (!*roots) {
		ulist_free(tmp);
		return -ENOMEM;
	}

J
Jan Schmidt 已提交
1204
	ULIST_ITER_INIT(&uiter);
1205
	while (1) {
1206
		ret = find_parent_nodes(trans, fs_info, bytenr, time_seq,
1207
					tmp, *roots, NULL, 0, 0);
1208 1209 1210 1211 1212
		if (ret < 0 && ret != -ENOENT) {
			ulist_free(tmp);
			ulist_free(*roots);
			return ret;
		}
J
Jan Schmidt 已提交
1213
		node = ulist_next(tmp, &uiter);
1214 1215 1216
		if (!node)
			break;
		bytenr = node->val;
1217
		cond_resched();
1218 1219 1220 1221 1222 1223
	}

	ulist_free(tmp);
	return 0;
}

1224 1225 1226 1227 1228 1229 1230 1231
int btrfs_find_all_roots(struct btrfs_trans_handle *trans,
			 struct btrfs_fs_info *fs_info, u64 bytenr,
			 u64 time_seq, struct ulist **roots)
{
	int ret;

	if (!trans)
		down_read(&fs_info->commit_root_sem);
1232 1233
	ret = btrfs_find_all_roots_safe(trans, fs_info, bytenr,
					time_seq, roots);
1234 1235 1236 1237 1238
	if (!trans)
		up_read(&fs_info->commit_root_sem);
	return ret;
}

1239 1240 1241 1242 1243 1244 1245 1246 1247
/**
 * btrfs_check_shared - tell us whether an extent is shared
 *
 * btrfs_check_shared uses the backref walking code but will short
 * circuit as soon as it finds a root or inode that doesn't match the
 * one passed in. This provides a significant performance benefit for
 * callers (such as fiemap) which want to know whether the extent is
 * shared but do not need a ref count.
 *
1248 1249 1250
 * This attempts to allocate a transaction in order to account for
 * delayed refs, but continues on even when the alloc fails.
 *
1251 1252
 * Return: 0 if extent is not shared, 1 if it is shared, < 0 on error.
 */
1253
int btrfs_check_shared(struct btrfs_root *root, u64 inum, u64 bytenr)
1254
{
1255 1256
	struct btrfs_fs_info *fs_info = root->fs_info;
	struct btrfs_trans_handle *trans;
1257 1258 1259 1260
	struct ulist *tmp = NULL;
	struct ulist *roots = NULL;
	struct ulist_iterator uiter;
	struct ulist_node *node;
1261
	struct seq_list elem = SEQ_LIST_INIT(elem);
1262 1263 1264 1265 1266 1267 1268 1269 1270 1271
	int ret = 0;

	tmp = ulist_alloc(GFP_NOFS);
	roots = ulist_alloc(GFP_NOFS);
	if (!tmp || !roots) {
		ulist_free(tmp);
		ulist_free(roots);
		return -ENOMEM;
	}

1272 1273 1274
	trans = btrfs_join_transaction(root);
	if (IS_ERR(trans)) {
		trans = NULL;
1275
		down_read(&fs_info->commit_root_sem);
1276 1277 1278 1279
	} else {
		btrfs_get_tree_mod_seq(fs_info, &elem);
	}

1280 1281 1282
	ULIST_ITER_INIT(&uiter);
	while (1) {
		ret = find_parent_nodes(trans, fs_info, bytenr, elem.seq, tmp,
1283
					roots, NULL, root->objectid, inum);
1284
		if (ret == BACKREF_FOUND_SHARED) {
1285
			/* this is the only condition under which we return 1 */
1286 1287 1288 1289 1290
			ret = 1;
			break;
		}
		if (ret < 0 && ret != -ENOENT)
			break;
1291
		ret = 0;
1292 1293 1294 1295 1296 1297
		node = ulist_next(tmp, &uiter);
		if (!node)
			break;
		bytenr = node->val;
		cond_resched();
	}
1298 1299

	if (trans) {
1300
		btrfs_put_tree_mod_seq(fs_info, &elem);
1301 1302
		btrfs_end_transaction(trans);
	} else {
1303
		up_read(&fs_info->commit_root_sem);
1304
	}
1305 1306 1307 1308 1309
	ulist_free(tmp);
	ulist_free(roots);
	return ret;
}

M
Mark Fasheh 已提交
1310 1311 1312 1313 1314 1315 1316 1317 1318
int btrfs_find_one_extref(struct btrfs_root *root, u64 inode_objectid,
			  u64 start_off, struct btrfs_path *path,
			  struct btrfs_inode_extref **ret_extref,
			  u64 *found_off)
{
	int ret, slot;
	struct btrfs_key key;
	struct btrfs_key found_key;
	struct btrfs_inode_extref *extref;
1319
	const struct extent_buffer *leaf;
M
Mark Fasheh 已提交
1320 1321 1322
	unsigned long ptr;

	key.objectid = inode_objectid;
1323
	key.type = BTRFS_INODE_EXTREF_KEY;
M
Mark Fasheh 已提交
1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362
	key.offset = start_off;

	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
	if (ret < 0)
		return ret;

	while (1) {
		leaf = path->nodes[0];
		slot = path->slots[0];
		if (slot >= btrfs_header_nritems(leaf)) {
			/*
			 * If the item at offset is not found,
			 * btrfs_search_slot will point us to the slot
			 * where it should be inserted. In our case
			 * that will be the slot directly before the
			 * next INODE_REF_KEY_V2 item. In the case
			 * that we're pointing to the last slot in a
			 * leaf, we must move one leaf over.
			 */
			ret = btrfs_next_leaf(root, path);
			if (ret) {
				if (ret >= 1)
					ret = -ENOENT;
				break;
			}
			continue;
		}

		btrfs_item_key_to_cpu(leaf, &found_key, slot);

		/*
		 * Check that we're still looking at an extended ref key for
		 * this particular objectid. If we have different
		 * objectid or type then there are no more to be found
		 * in the tree and we can exit.
		 */
		ret = -ENOENT;
		if (found_key.objectid != inode_objectid)
			break;
1363
		if (found_key.type != BTRFS_INODE_EXTREF_KEY)
M
Mark Fasheh 已提交
1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377
			break;

		ret = 0;
		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
		extref = (struct btrfs_inode_extref *)ptr;
		*ret_extref = extref;
		if (found_off)
			*found_off = found_key.offset;
		break;
	}

	return ret;
}

1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391
/*
 * this iterates to turn a name (from iref/extref) into a full filesystem path.
 * Elements of the path are separated by '/' and the path is guaranteed to be
 * 0-terminated. the path is only given within the current file system.
 * Therefore, it never starts with a '/'. the caller is responsible to provide
 * "size" bytes in "dest". the dest buffer will be filled backwards. finally,
 * the start point of the resulting string is returned. this pointer is within
 * dest, normally.
 * in case the path buffer would overflow, the pointer is decremented further
 * as if output was written to the buffer, though no more output is actually
 * generated. that way, the caller can determine how much space would be
 * required for the path to fit into the buffer. in that case, the returned
 * value will be smaller than dest. callers must check this!
 */
1392 1393 1394 1395
char *btrfs_ref_to_path(struct btrfs_root *fs_root, struct btrfs_path *path,
			u32 name_len, unsigned long name_off,
			struct extent_buffer *eb_in, u64 parent,
			char *dest, u32 size)
1396 1397 1398 1399
{
	int slot;
	u64 next_inum;
	int ret;
1400
	s64 bytes_left = ((s64)size) - 1;
1401 1402
	struct extent_buffer *eb = eb_in;
	struct btrfs_key found_key;
1403
	int leave_spinning = path->leave_spinning;
M
Mark Fasheh 已提交
1404
	struct btrfs_inode_ref *iref;
1405 1406 1407 1408

	if (bytes_left >= 0)
		dest[bytes_left] = '\0';

1409
	path->leave_spinning = 1;
1410
	while (1) {
M
Mark Fasheh 已提交
1411
		bytes_left -= name_len;
1412 1413
		if (bytes_left >= 0)
			read_extent_buffer(eb, dest + bytes_left,
M
Mark Fasheh 已提交
1414
					   name_off, name_len);
1415
		if (eb != eb_in) {
1416 1417
			if (!path->skip_locking)
				btrfs_tree_read_unlock_blocking(eb);
1418
			free_extent_buffer(eb);
1419
		}
1420 1421
		ret = btrfs_find_item(fs_root, path, parent, 0,
				BTRFS_INODE_REF_KEY, &found_key);
1422 1423
		if (ret > 0)
			ret = -ENOENT;
1424 1425
		if (ret)
			break;
M
Mark Fasheh 已提交
1426

1427 1428 1429 1430 1431 1432 1433 1434 1435
		next_inum = found_key.offset;

		/* regular exit ahead */
		if (parent == next_inum)
			break;

		slot = path->slots[0];
		eb = path->nodes[0];
		/* make sure we can use eb after releasing the path */
1436
		if (eb != eb_in) {
1437 1438 1439 1440
			if (!path->skip_locking)
				btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
			path->nodes[0] = NULL;
			path->locks[0] = 0;
1441
		}
1442 1443
		btrfs_release_path(path);
		iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);
M
Mark Fasheh 已提交
1444 1445 1446 1447

		name_len = btrfs_inode_ref_name_len(eb, iref);
		name_off = (unsigned long)(iref + 1);

1448 1449 1450 1451 1452 1453 1454
		parent = next_inum;
		--bytes_left;
		if (bytes_left >= 0)
			dest[bytes_left] = '/';
	}

	btrfs_release_path(path);
1455
	path->leave_spinning = leave_spinning;
1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468

	if (ret)
		return ERR_PTR(ret);

	return dest + bytes_left;
}

/*
 * this makes the path point to (logical EXTENT_ITEM *)
 * returns BTRFS_EXTENT_FLAG_DATA for data, BTRFS_EXTENT_FLAG_TREE_BLOCK for
 * tree blocks and <0 on error.
 */
int extent_from_logical(struct btrfs_fs_info *fs_info, u64 logical,
1469 1470
			struct btrfs_path *path, struct btrfs_key *found_key,
			u64 *flags_ret)
1471 1472 1473
{
	int ret;
	u64 flags;
1474
	u64 size = 0;
1475
	u32 item_size;
1476
	const struct extent_buffer *eb;
1477 1478 1479
	struct btrfs_extent_item *ei;
	struct btrfs_key key;

1480 1481 1482 1483
	if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
		key.type = BTRFS_METADATA_ITEM_KEY;
	else
		key.type = BTRFS_EXTENT_ITEM_KEY;
1484 1485 1486 1487 1488 1489 1490
	key.objectid = logical;
	key.offset = (u64)-1;

	ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0);
	if (ret < 0)
		return ret;

1491 1492 1493 1494 1495
	ret = btrfs_previous_extent_item(fs_info->extent_root, path, 0);
	if (ret) {
		if (ret > 0)
			ret = -ENOENT;
		return ret;
1496
	}
1497
	btrfs_item_key_to_cpu(path->nodes[0], found_key, path->slots[0]);
1498
	if (found_key->type == BTRFS_METADATA_ITEM_KEY)
1499
		size = fs_info->nodesize;
1500 1501 1502
	else if (found_key->type == BTRFS_EXTENT_ITEM_KEY)
		size = found_key->offset;

1503
	if (found_key->objectid > logical ||
1504
	    found_key->objectid + size <= logical) {
1505 1506
		btrfs_debug(fs_info,
			"logical %llu is not within any extent", logical);
1507
		return -ENOENT;
J
Jan Schmidt 已提交
1508
	}
1509 1510 1511 1512 1513 1514 1515 1516

	eb = path->nodes[0];
	item_size = btrfs_item_size_nr(eb, path->slots[0]);
	BUG_ON(item_size < sizeof(*ei));

	ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
	flags = btrfs_extent_flags(eb, ei);

1517 1518
	btrfs_debug(fs_info,
		"logical %llu is at position %llu within the extent (%llu EXTENT_ITEM %llu) flags %#llx size %u",
1519 1520
		 logical, logical - found_key->objectid, found_key->objectid,
		 found_key->offset, flags, item_size);
1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531

	WARN_ON(!flags_ret);
	if (flags_ret) {
		if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
			*flags_ret = BTRFS_EXTENT_FLAG_TREE_BLOCK;
		else if (flags & BTRFS_EXTENT_FLAG_DATA)
			*flags_ret = BTRFS_EXTENT_FLAG_DATA;
		else
			BUG_ON(1);
		return 0;
	}
1532 1533 1534 1535 1536 1537 1538 1539

	return -EIO;
}

/*
 * helper function to iterate extent inline refs. ptr must point to a 0 value
 * for the first call and may be modified. it is used to track state.
 * if more refs exist, 0 is returned and the next call to
1540
 * get_extent_inline_ref must pass the modified ptr parameter to get the
1541 1542 1543
 * next ref. after the last ref was processed, 1 is returned.
 * returns <0 on error
 */
1544 1545 1546 1547 1548 1549 1550
static int get_extent_inline_ref(unsigned long *ptr,
				 const struct extent_buffer *eb,
				 const struct btrfs_key *key,
				 const struct btrfs_extent_item *ei,
				 u32 item_size,
				 struct btrfs_extent_inline_ref **out_eiref,
				 int *out_type)
1551 1552 1553 1554 1555 1556 1557 1558 1559
{
	unsigned long end;
	u64 flags;
	struct btrfs_tree_block_info *info;

	if (!*ptr) {
		/* first call */
		flags = btrfs_extent_flags(eb, ei);
		if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
1560 1561 1562 1563 1564 1565 1566 1567 1568 1569
			if (key->type == BTRFS_METADATA_ITEM_KEY) {
				/* a skinny metadata extent */
				*out_eiref =
				     (struct btrfs_extent_inline_ref *)(ei + 1);
			} else {
				WARN_ON(key->type != BTRFS_EXTENT_ITEM_KEY);
				info = (struct btrfs_tree_block_info *)(ei + 1);
				*out_eiref =
				   (struct btrfs_extent_inline_ref *)(info + 1);
			}
1570 1571 1572 1573
		} else {
			*out_eiref = (struct btrfs_extent_inline_ref *)(ei + 1);
		}
		*ptr = (unsigned long)*out_eiref;
1574
		if ((unsigned long)(*ptr) >= (unsigned long)ei + item_size)
1575 1576 1577 1578
			return -ENOENT;
	}

	end = (unsigned long)ei + item_size;
1579
	*out_eiref = (struct btrfs_extent_inline_ref *)(*ptr);
1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592
	*out_type = btrfs_extent_inline_ref_type(eb, *out_eiref);

	*ptr += btrfs_extent_inline_ref_size(*out_type);
	WARN_ON(*ptr > end);
	if (*ptr == end)
		return 1; /* last */

	return 0;
}

/*
 * reads the tree block backref for an extent. tree level and root are returned
 * through out_level and out_root. ptr must point to a 0 value for the first
1593
 * call and may be modified (see get_extent_inline_ref comment).
1594 1595 1596 1597
 * returns 0 if data was provided, 1 if there was no more data to provide or
 * <0 on error.
 */
int tree_backref_for_extent(unsigned long *ptr, struct extent_buffer *eb,
1598 1599
			    struct btrfs_key *key, struct btrfs_extent_item *ei,
			    u32 item_size, u64 *out_root, u8 *out_level)
1600 1601 1602 1603 1604 1605 1606 1607 1608
{
	int ret;
	int type;
	struct btrfs_extent_inline_ref *eiref;

	if (*ptr == (unsigned long)-1)
		return 1;

	while (1) {
1609
		ret = get_extent_inline_ref(ptr, eb, key, ei, item_size,
1610
					      &eiref, &type);
1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623
		if (ret < 0)
			return ret;

		if (type == BTRFS_TREE_BLOCK_REF_KEY ||
		    type == BTRFS_SHARED_BLOCK_REF_KEY)
			break;

		if (ret == 1)
			return 1;
	}

	/* we can treat both ref types equally here */
	*out_root = btrfs_extent_inline_ref_offset(eb, eiref);
1624 1625 1626 1627 1628 1629 1630 1631 1632 1633

	if (key->type == BTRFS_EXTENT_ITEM_KEY) {
		struct btrfs_tree_block_info *info;

		info = (struct btrfs_tree_block_info *)(ei + 1);
		*out_level = btrfs_tree_block_level(eb, info);
	} else {
		ASSERT(key->type == BTRFS_METADATA_ITEM_KEY);
		*out_level = (u8)key->offset;
	}
1634 1635 1636 1637 1638 1639 1640

	if (ret == 1)
		*ptr = (unsigned long)-1;

	return 0;
}

1641 1642 1643 1644
static int iterate_leaf_refs(struct btrfs_fs_info *fs_info,
			     struct extent_inode_elem *inode_list,
			     u64 root, u64 extent_item_objectid,
			     iterate_extent_inodes_t *iterate, void *ctx)
1645
{
1646
	struct extent_inode_elem *eie;
J
Jan Schmidt 已提交
1647 1648
	int ret = 0;

1649
	for (eie = inode_list; eie; eie = eie->next) {
1650 1651 1652 1653
		btrfs_debug(fs_info,
			    "ref for %llu resolved, key (%llu EXTEND_DATA %llu), root %llu",
			    extent_item_objectid, eie->inum,
			    eie->offset, root);
1654
		ret = iterate(eie->inum, eie->offset, root, ctx);
J
Jan Schmidt 已提交
1655
		if (ret) {
1656 1657 1658
			btrfs_debug(fs_info,
				    "stopping iteration for %llu due to ret=%d",
				    extent_item_objectid, ret);
J
Jan Schmidt 已提交
1659 1660
			break;
		}
1661 1662 1663 1664 1665 1666 1667
	}

	return ret;
}

/*
 * calls iterate() for every inode that references the extent identified by
J
Jan Schmidt 已提交
1668
 * the given parameters.
1669 1670 1671
 * when the iterator function returns a non-zero value, iteration stops.
 */
int iterate_extent_inodes(struct btrfs_fs_info *fs_info,
J
Jan Schmidt 已提交
1672
				u64 extent_item_objectid, u64 extent_item_pos,
1673
				int search_commit_root,
1674 1675 1676
				iterate_extent_inodes_t *iterate, void *ctx)
{
	int ret;
1677
	struct btrfs_trans_handle *trans = NULL;
1678 1679
	struct ulist *refs = NULL;
	struct ulist *roots = NULL;
J
Jan Schmidt 已提交
1680 1681
	struct ulist_node *ref_node = NULL;
	struct ulist_node *root_node = NULL;
1682
	struct seq_list tree_mod_seq_elem = SEQ_LIST_INIT(tree_mod_seq_elem);
J
Jan Schmidt 已提交
1683 1684
	struct ulist_iterator ref_uiter;
	struct ulist_iterator root_uiter;
1685

1686
	btrfs_debug(fs_info, "resolving all inodes for extent %llu",
J
Jan Schmidt 已提交
1687
			extent_item_objectid);
1688

1689
	if (!search_commit_root) {
1690 1691 1692
		trans = btrfs_join_transaction(fs_info->extent_root);
		if (IS_ERR(trans))
			return PTR_ERR(trans);
1693
		btrfs_get_tree_mod_seq(fs_info, &tree_mod_seq_elem);
1694 1695
	} else {
		down_read(&fs_info->commit_root_sem);
1696
	}
1697

J
Jan Schmidt 已提交
1698
	ret = btrfs_find_all_leafs(trans, fs_info, extent_item_objectid,
1699
				   tree_mod_seq_elem.seq, &refs,
1700
				   &extent_item_pos);
J
Jan Schmidt 已提交
1701 1702
	if (ret)
		goto out;
1703

J
Jan Schmidt 已提交
1704 1705
	ULIST_ITER_INIT(&ref_uiter);
	while (!ret && (ref_node = ulist_next(refs, &ref_uiter))) {
1706 1707
		ret = btrfs_find_all_roots_safe(trans, fs_info, ref_node->val,
						tree_mod_seq_elem.seq, &roots);
J
Jan Schmidt 已提交
1708 1709
		if (ret)
			break;
J
Jan Schmidt 已提交
1710 1711
		ULIST_ITER_INIT(&root_uiter);
		while (!ret && (root_node = ulist_next(roots, &root_uiter))) {
1712 1713 1714 1715 1716 1717
			btrfs_debug(fs_info,
				    "root %llu references leaf %llu, data list %#llx",
				    root_node->val, ref_node->val,
				    ref_node->aux);
			ret = iterate_leaf_refs(fs_info,
						(struct extent_inode_elem *)
1718 1719 1720 1721
						(uintptr_t)ref_node->aux,
						root_node->val,
						extent_item_objectid,
						iterate, ctx);
J
Jan Schmidt 已提交
1722
		}
1723
		ulist_free(roots);
1724 1725
	}

1726
	free_leaf_list(refs);
J
Jan Schmidt 已提交
1727
out:
1728
	if (!search_commit_root) {
1729
		btrfs_put_tree_mod_seq(fs_info, &tree_mod_seq_elem);
1730
		btrfs_end_transaction(trans);
1731 1732
	} else {
		up_read(&fs_info->commit_root_sem);
1733 1734
	}

1735 1736 1737 1738 1739 1740 1741 1742
	return ret;
}

int iterate_inodes_from_logical(u64 logical, struct btrfs_fs_info *fs_info,
				struct btrfs_path *path,
				iterate_extent_inodes_t *iterate, void *ctx)
{
	int ret;
J
Jan Schmidt 已提交
1743
	u64 extent_item_pos;
1744
	u64 flags = 0;
1745
	struct btrfs_key found_key;
1746
	int search_commit_root = path->search_commit_root;
1747

1748
	ret = extent_from_logical(fs_info, logical, path, &found_key, &flags);
J
Jan Schmidt 已提交
1749
	btrfs_release_path(path);
1750 1751
	if (ret < 0)
		return ret;
1752
	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1753
		return -EINVAL;
1754

J
Jan Schmidt 已提交
1755
	extent_item_pos = logical - found_key.objectid;
1756 1757 1758
	ret = iterate_extent_inodes(fs_info, found_key.objectid,
					extent_item_pos, search_commit_root,
					iterate, ctx);
1759 1760 1761 1762

	return ret;
}

M
Mark Fasheh 已提交
1763 1764 1765 1766 1767 1768
typedef int (iterate_irefs_t)(u64 parent, u32 name_len, unsigned long name_off,
			      struct extent_buffer *eb, void *ctx);

static int iterate_inode_refs(u64 inum, struct btrfs_root *fs_root,
			      struct btrfs_path *path,
			      iterate_irefs_t *iterate, void *ctx)
1769
{
1770
	int ret = 0;
1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781
	int slot;
	u32 cur;
	u32 len;
	u32 name_len;
	u64 parent = 0;
	int found = 0;
	struct extent_buffer *eb;
	struct btrfs_item *item;
	struct btrfs_inode_ref *iref;
	struct btrfs_key found_key;

1782
	while (!ret) {
1783 1784 1785 1786
		ret = btrfs_find_item(fs_root, path, inum,
				parent ? parent + 1 : 0, BTRFS_INODE_REF_KEY,
				&found_key);

1787 1788 1789 1790 1791 1792 1793 1794 1795 1796
		if (ret < 0)
			break;
		if (ret) {
			ret = found ? 0 : -ENOENT;
			break;
		}
		++found;

		parent = found_key.offset;
		slot = path->slots[0];
1797 1798 1799 1800 1801 1802
		eb = btrfs_clone_extent_buffer(path->nodes[0]);
		if (!eb) {
			ret = -ENOMEM;
			break;
		}
		extent_buffer_get(eb);
1803 1804
		btrfs_tree_read_lock(eb);
		btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
1805 1806
		btrfs_release_path(path);

1807
		item = btrfs_item_nr(slot);
1808 1809 1810 1811 1812
		iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);

		for (cur = 0; cur < btrfs_item_size(eb, item); cur += len) {
			name_len = btrfs_inode_ref_name_len(eb, iref);
			/* path must be released before calling iterate()! */
1813 1814 1815
			btrfs_debug(fs_root->fs_info,
				"following ref at offset %u for inode %llu in tree %llu",
				cur, found_key.objectid, fs_root->objectid);
M
Mark Fasheh 已提交
1816 1817
			ret = iterate(parent, name_len,
				      (unsigned long)(iref + 1), eb, ctx);
1818
			if (ret)
1819 1820 1821 1822
				break;
			len = sizeof(*iref) + name_len;
			iref = (struct btrfs_inode_ref *)((char *)iref + len);
		}
1823
		btrfs_tree_read_unlock_blocking(eb);
1824 1825 1826 1827 1828 1829 1830 1831
		free_extent_buffer(eb);
	}

	btrfs_release_path(path);

	return ret;
}

M
Mark Fasheh 已提交
1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858
static int iterate_inode_extrefs(u64 inum, struct btrfs_root *fs_root,
				 struct btrfs_path *path,
				 iterate_irefs_t *iterate, void *ctx)
{
	int ret;
	int slot;
	u64 offset = 0;
	u64 parent;
	int found = 0;
	struct extent_buffer *eb;
	struct btrfs_inode_extref *extref;
	u32 item_size;
	u32 cur_offset;
	unsigned long ptr;

	while (1) {
		ret = btrfs_find_one_extref(fs_root, inum, offset, path, &extref,
					    &offset);
		if (ret < 0)
			break;
		if (ret) {
			ret = found ? 0 : -ENOENT;
			break;
		}
		++found;

		slot = path->slots[0];
1859 1860 1861 1862 1863 1864
		eb = btrfs_clone_extent_buffer(path->nodes[0]);
		if (!eb) {
			ret = -ENOMEM;
			break;
		}
		extent_buffer_get(eb);
M
Mark Fasheh 已提交
1865 1866 1867 1868 1869

		btrfs_tree_read_lock(eb);
		btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
		btrfs_release_path(path);

1870 1871
		item_size = btrfs_item_size_nr(eb, slot);
		ptr = btrfs_item_ptr_offset(eb, slot);
M
Mark Fasheh 已提交
1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884
		cur_offset = 0;

		while (cur_offset < item_size) {
			u32 name_len;

			extref = (struct btrfs_inode_extref *)(ptr + cur_offset);
			parent = btrfs_inode_extref_parent(eb, extref);
			name_len = btrfs_inode_extref_name_len(eb, extref);
			ret = iterate(parent, name_len,
				      (unsigned long)&extref->name, eb, ctx);
			if (ret)
				break;

1885
			cur_offset += btrfs_inode_extref_name_len(eb, extref);
M
Mark Fasheh 已提交
1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918
			cur_offset += sizeof(*extref);
		}
		btrfs_tree_read_unlock_blocking(eb);
		free_extent_buffer(eb);

		offset++;
	}

	btrfs_release_path(path);

	return ret;
}

static int iterate_irefs(u64 inum, struct btrfs_root *fs_root,
			 struct btrfs_path *path, iterate_irefs_t *iterate,
			 void *ctx)
{
	int ret;
	int found_refs = 0;

	ret = iterate_inode_refs(inum, fs_root, path, iterate, ctx);
	if (!ret)
		++found_refs;
	else if (ret != -ENOENT)
		return ret;

	ret = iterate_inode_extrefs(inum, fs_root, path, iterate, ctx);
	if (ret == -ENOENT && found_refs)
		return 0;

	return ret;
}

1919 1920 1921 1922
/*
 * returns 0 if the path could be dumped (probably truncated)
 * returns <0 in case of an error
 */
M
Mark Fasheh 已提交
1923 1924
static int inode_to_path(u64 inum, u32 name_len, unsigned long name_off,
			 struct extent_buffer *eb, void *ctx)
1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935
{
	struct inode_fs_paths *ipath = ctx;
	char *fspath;
	char *fspath_min;
	int i = ipath->fspath->elem_cnt;
	const int s_ptr = sizeof(char *);
	u32 bytes_left;

	bytes_left = ipath->fspath->bytes_left > s_ptr ?
					ipath->fspath->bytes_left - s_ptr : 0;

1936
	fspath_min = (char *)ipath->fspath->val + (i + 1) * s_ptr;
1937 1938
	fspath = btrfs_ref_to_path(ipath->fs_root, ipath->btrfs_path, name_len,
				   name_off, eb, inum, fspath_min, bytes_left);
1939 1940 1941 1942
	if (IS_ERR(fspath))
		return PTR_ERR(fspath);

	if (fspath > fspath_min) {
1943
		ipath->fspath->val[i] = (u64)(unsigned long)fspath;
1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957
		++ipath->fspath->elem_cnt;
		ipath->fspath->bytes_left = fspath - fspath_min;
	} else {
		++ipath->fspath->elem_missed;
		ipath->fspath->bytes_missing += fspath_min - fspath;
		ipath->fspath->bytes_left = 0;
	}

	return 0;
}

/*
 * this dumps all file system paths to the inode into the ipath struct, provided
 * is has been created large enough. each path is zero-terminated and accessed
1958
 * from ipath->fspath->val[i].
1959
 * when it returns, there are ipath->fspath->elem_cnt number of paths available
1960
 * in ipath->fspath->val[]. when the allocated space wasn't sufficient, the
1961
 * number of missed paths is recorded in ipath->fspath->elem_missed, otherwise,
1962 1963 1964 1965 1966 1967
 * it's zero. ipath->fspath->bytes_missing holds the number of bytes that would
 * have been needed to return all paths.
 */
int paths_from_inode(u64 inum, struct inode_fs_paths *ipath)
{
	return iterate_irefs(inum, ipath->fs_root, ipath->btrfs_path,
M
Mark Fasheh 已提交
1968
			     inode_to_path, ipath);
1969 1970 1971 1972 1973 1974 1975 1976
}

struct btrfs_data_container *init_data_container(u32 total_bytes)
{
	struct btrfs_data_container *data;
	size_t alloc_bytes;

	alloc_bytes = max_t(size_t, total_bytes, sizeof(*data));
1977
	data = kvmalloc(alloc_bytes, GFP_KERNEL);
1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010
	if (!data)
		return ERR_PTR(-ENOMEM);

	if (total_bytes >= sizeof(*data)) {
		data->bytes_left = total_bytes - sizeof(*data);
		data->bytes_missing = 0;
	} else {
		data->bytes_missing = sizeof(*data) - total_bytes;
		data->bytes_left = 0;
	}

	data->elem_cnt = 0;
	data->elem_missed = 0;

	return data;
}

/*
 * allocates space to return multiple file system paths for an inode.
 * total_bytes to allocate are passed, note that space usable for actual path
 * information will be total_bytes - sizeof(struct inode_fs_paths).
 * the returned pointer must be freed with free_ipath() in the end.
 */
struct inode_fs_paths *init_ipath(s32 total_bytes, struct btrfs_root *fs_root,
					struct btrfs_path *path)
{
	struct inode_fs_paths *ifp;
	struct btrfs_data_container *fspath;

	fspath = init_data_container(total_bytes);
	if (IS_ERR(fspath))
		return (void *)fspath;

2011
	ifp = kmalloc(sizeof(*ifp), GFP_KERNEL);
2012
	if (!ifp) {
2013
		kvfree(fspath);
2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025
		return ERR_PTR(-ENOMEM);
	}

	ifp->btrfs_path = path;
	ifp->fspath = fspath;
	ifp->fs_root = fs_root;

	return ifp;
}

void free_ipath(struct inode_fs_paths *ipath)
{
2026 2027
	if (!ipath)
		return;
2028
	kvfree(ipath->fspath);
2029 2030
	kfree(ipath);
}