backref.c 52.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/*
 * Copyright (C) 2011 STRATO.  All rights reserved.
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public
 * License v2 as published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * General Public License for more details.
 *
 * You should have received a copy of the GNU General Public
 * License along with this program; if not, write to the
 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
 * Boston, MA 021110-1307, USA.
 */

19
#include <linux/vmalloc.h>
20 21 22
#include "ctree.h"
#include "disk-io.h"
#include "backref.h"
23 24 25
#include "ulist.h"
#include "transaction.h"
#include "delayed-ref.h"
26
#include "locking.h"
27

28 29 30
/* Just an arbitrary number so we can be sure this happened */
#define BACKREF_FOUND_SHARED 6

31 32 33 34 35 36 37 38 39 40 41
struct extent_inode_elem {
	u64 inum;
	u64 offset;
	struct extent_inode_elem *next;
};

static int check_extent_in_eb(struct btrfs_key *key, struct extent_buffer *eb,
				struct btrfs_file_extent_item *fi,
				u64 extent_item_pos,
				struct extent_inode_elem **eie)
{
42
	u64 offset = 0;
43 44
	struct extent_inode_elem *e;

45 46 47 48 49
	if (!btrfs_file_extent_compression(eb, fi) &&
	    !btrfs_file_extent_encryption(eb, fi) &&
	    !btrfs_file_extent_other_encoding(eb, fi)) {
		u64 data_offset;
		u64 data_len;
50

51 52 53 54 55 56 57 58
		data_offset = btrfs_file_extent_offset(eb, fi);
		data_len = btrfs_file_extent_num_bytes(eb, fi);

		if (extent_item_pos < data_offset ||
		    extent_item_pos >= data_offset + data_len)
			return 1;
		offset = extent_item_pos - data_offset;
	}
59 60 61 62 63 64 65

	e = kmalloc(sizeof(*e), GFP_NOFS);
	if (!e)
		return -ENOMEM;

	e->next = *eie;
	e->inum = key->objectid;
66
	e->offset = key->offset + offset;
67 68 69 70 71
	*eie = e;

	return 0;
}

72 73 74 75 76 77 78 79 80 81
static void free_inode_elem_list(struct extent_inode_elem *eie)
{
	struct extent_inode_elem *eie_next;

	for (; eie; eie = eie_next) {
		eie_next = eie->next;
		kfree(eie);
	}
}

82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120
static int find_extent_in_eb(struct extent_buffer *eb, u64 wanted_disk_byte,
				u64 extent_item_pos,
				struct extent_inode_elem **eie)
{
	u64 disk_byte;
	struct btrfs_key key;
	struct btrfs_file_extent_item *fi;
	int slot;
	int nritems;
	int extent_type;
	int ret;

	/*
	 * from the shared data ref, we only have the leaf but we need
	 * the key. thus, we must look into all items and see that we
	 * find one (some) with a reference to our extent item.
	 */
	nritems = btrfs_header_nritems(eb);
	for (slot = 0; slot < nritems; ++slot) {
		btrfs_item_key_to_cpu(eb, &key, slot);
		if (key.type != BTRFS_EXTENT_DATA_KEY)
			continue;
		fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
		extent_type = btrfs_file_extent_type(eb, fi);
		if (extent_type == BTRFS_FILE_EXTENT_INLINE)
			continue;
		/* don't skip BTRFS_FILE_EXTENT_PREALLOC, we can handle that */
		disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
		if (disk_byte != wanted_disk_byte)
			continue;

		ret = check_extent_in_eb(&key, eb, fi, extent_item_pos, eie);
		if (ret < 0)
			return ret;
	}

	return 0;
}

121 122 123 124 125 126
/*
 * this structure records all encountered refs on the way up to the root
 */
struct __prelim_ref {
	struct list_head list;
	u64 root_id;
127
	struct btrfs_key key_for_search;
128 129
	int level;
	int count;
130
	struct extent_inode_elem *inode_list;
131 132 133 134
	u64 parent;
	u64 wanted_disk_byte;
};

135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154
static struct kmem_cache *btrfs_prelim_ref_cache;

int __init btrfs_prelim_ref_init(void)
{
	btrfs_prelim_ref_cache = kmem_cache_create("btrfs_prelim_ref",
					sizeof(struct __prelim_ref),
					0,
					SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
					NULL);
	if (!btrfs_prelim_ref_cache)
		return -ENOMEM;
	return 0;
}

void btrfs_prelim_ref_exit(void)
{
	if (btrfs_prelim_ref_cache)
		kmem_cache_destroy(btrfs_prelim_ref_cache);
}

155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193
/*
 * the rules for all callers of this function are:
 * - obtaining the parent is the goal
 * - if you add a key, you must know that it is a correct key
 * - if you cannot add the parent or a correct key, then we will look into the
 *   block later to set a correct key
 *
 * delayed refs
 * ============
 *        backref type | shared | indirect | shared | indirect
 * information         |   tree |     tree |   data |     data
 * --------------------+--------+----------+--------+----------
 *      parent logical |    y   |     -    |    -   |     -
 *      key to resolve |    -   |     y    |    y   |     y
 *  tree block logical |    -   |     -    |    -   |     -
 *  root for resolving |    y   |     y    |    y   |     y
 *
 * - column 1:       we've the parent -> done
 * - column 2, 3, 4: we use the key to find the parent
 *
 * on disk refs (inline or keyed)
 * ==============================
 *        backref type | shared | indirect | shared | indirect
 * information         |   tree |     tree |   data |     data
 * --------------------+--------+----------+--------+----------
 *      parent logical |    y   |     -    |    y   |     -
 *      key to resolve |    -   |     -    |    -   |     y
 *  tree block logical |    y   |     y    |    y   |     y
 *  root for resolving |    -   |     y    |    y   |     y
 *
 * - column 1, 3: we've the parent -> done
 * - column 2:    we take the first key from the block to find the parent
 *                (see __add_missing_keys)
 * - column 4:    we use the key to find the parent
 *
 * additional information that's available but not required to find the parent
 * block might help in merging entries to gain some speed.
 */

194
static int __add_prelim_ref(struct list_head *head, u64 root_id,
195
			    struct btrfs_key *key, int level,
196 197
			    u64 parent, u64 wanted_disk_byte, int count,
			    gfp_t gfp_mask)
198 199 200
{
	struct __prelim_ref *ref;

201 202 203
	if (root_id == BTRFS_DATA_RELOC_TREE_OBJECTID)
		return 0;

204
	ref = kmem_cache_alloc(btrfs_prelim_ref_cache, gfp_mask);
205 206 207 208
	if (!ref)
		return -ENOMEM;

	ref->root_id = root_id;
209
	if (key) {
210
		ref->key_for_search = *key;
211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233
		/*
		 * We can often find data backrefs with an offset that is too
		 * large (>= LLONG_MAX, maximum allowed file offset) due to
		 * underflows when subtracting a file's offset with the data
		 * offset of its corresponding extent data item. This can
		 * happen for example in the clone ioctl.
		 * So if we detect such case we set the search key's offset to
		 * zero to make sure we will find the matching file extent item
		 * at add_all_parents(), otherwise we will miss it because the
		 * offset taken form the backref is much larger then the offset
		 * of the file extent item. This can make us scan a very large
		 * number of file extent items, but at least it will not make
		 * us miss any.
		 * This is an ugly workaround for a behaviour that should have
		 * never existed, but it does and a fix for the clone ioctl
		 * would touch a lot of places, cause backwards incompatibility
		 * and would not fix the problem for extents cloned with older
		 * kernels.
		 */
		if (ref->key_for_search.type == BTRFS_EXTENT_DATA_KEY &&
		    ref->key_for_search.offset >= LLONG_MAX)
			ref->key_for_search.offset = 0;
	} else {
234
		memset(&ref->key_for_search, 0, sizeof(ref->key_for_search));
235
	}
236

237
	ref->inode_list = NULL;
238 239 240 241 242 243 244 245 246 247
	ref->level = level;
	ref->count = count;
	ref->parent = parent;
	ref->wanted_disk_byte = wanted_disk_byte;
	list_add_tail(&ref->list, head);

	return 0;
}

static int add_all_parents(struct btrfs_root *root, struct btrfs_path *path,
248
			   struct ulist *parents, struct __prelim_ref *ref,
249 250
			   int level, u64 time_seq, const u64 *extent_item_pos,
			   u64 total_refs)
251
{
252 253 254 255
	int ret = 0;
	int slot;
	struct extent_buffer *eb;
	struct btrfs_key key;
256
	struct btrfs_key *key_for_search = &ref->key_for_search;
257
	struct btrfs_file_extent_item *fi;
258
	struct extent_inode_elem *eie = NULL, *old = NULL;
259
	u64 disk_byte;
260 261
	u64 wanted_disk_byte = ref->wanted_disk_byte;
	u64 count = 0;
262

263 264 265
	if (level != 0) {
		eb = path->nodes[level];
		ret = ulist_add(parents, eb->start, 0, GFP_NOFS);
266 267
		if (ret < 0)
			return ret;
268
		return 0;
269
	}
270 271

	/*
272 273 274
	 * We normally enter this function with the path already pointing to
	 * the first item to check. But sometimes, we may enter it with
	 * slot==nritems. In that case, go to the next leaf before we continue.
275
	 */
276 277 278 279 280 281
	if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
		if (time_seq == (u64)-1)
			ret = btrfs_next_leaf(root, path);
		else
			ret = btrfs_next_old_leaf(root, path, time_seq);
	}
282

283
	while (!ret && count < total_refs) {
284
		eb = path->nodes[0];
285 286 287 288 289 290 291 292 293 294 295 296 297
		slot = path->slots[0];

		btrfs_item_key_to_cpu(eb, &key, slot);

		if (key.objectid != key_for_search->objectid ||
		    key.type != BTRFS_EXTENT_DATA_KEY)
			break;

		fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
		disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);

		if (disk_byte == wanted_disk_byte) {
			eie = NULL;
298
			old = NULL;
299
			count++;
300 301 302 303 304 305 306
			if (extent_item_pos) {
				ret = check_extent_in_eb(&key, eb, fi,
						*extent_item_pos,
						&eie);
				if (ret < 0)
					break;
			}
307 308
			if (ret > 0)
				goto next;
309 310
			ret = ulist_add_merge_ptr(parents, eb->start,
						  eie, (void **)&old, GFP_NOFS);
311 312 313 314 315 316
			if (ret < 0)
				break;
			if (!ret && extent_item_pos) {
				while (old->next)
					old = old->next;
				old->next = eie;
317
			}
318
			eie = NULL;
319
		}
320
next:
321 322 323 324
		if (time_seq == (u64)-1)
			ret = btrfs_next_item(root, path);
		else
			ret = btrfs_next_old_item(root, path, time_seq);
325 326
	}

327 328
	if (ret > 0)
		ret = 0;
329 330
	else if (ret < 0)
		free_inode_elem_list(eie);
331
	return ret;
332 333 334 335 336 337 338
}

/*
 * resolve an indirect backref in the form (root_id, key, level)
 * to a logical address
 */
static int __resolve_indirect_ref(struct btrfs_fs_info *fs_info,
339 340 341
				  struct btrfs_path *path, u64 time_seq,
				  struct __prelim_ref *ref,
				  struct ulist *parents,
342
				  const u64 *extent_item_pos, u64 total_refs)
343 344 345 346 347 348 349
{
	struct btrfs_root *root;
	struct btrfs_key root_key;
	struct extent_buffer *eb;
	int ret = 0;
	int root_level;
	int level = ref->level;
350
	int index;
351 352 353 354

	root_key.objectid = ref->root_id;
	root_key.type = BTRFS_ROOT_ITEM_KEY;
	root_key.offset = (u64)-1;
355 356 357

	index = srcu_read_lock(&fs_info->subvol_srcu);

358 359
	root = btrfs_read_fs_root_no_name(fs_info, &root_key);
	if (IS_ERR(root)) {
360
		srcu_read_unlock(&fs_info->subvol_srcu, index);
361 362 363 364
		ret = PTR_ERR(root);
		goto out;
	}

365 366
	if (path->search_commit_root)
		root_level = btrfs_header_level(root->commit_root);
367 368
	else if (time_seq == (u64)-1)
		root_level = btrfs_header_level(root->node);
369 370
	else
		root_level = btrfs_old_root_level(root, time_seq);
371

372 373
	if (root_level + 1 == level) {
		srcu_read_unlock(&fs_info->subvol_srcu, index);
374
		goto out;
375
	}
376 377

	path->lowest_level = level;
378 379 380 381 382 383
	if (time_seq == (u64)-1)
		ret = btrfs_search_slot(NULL, root, &ref->key_for_search, path,
					0, 0);
	else
		ret = btrfs_search_old_slot(root, &ref->key_for_search, path,
					    time_seq);
384 385 386 387

	/* root node has been locked, we can release @subvol_srcu safely here */
	srcu_read_unlock(&fs_info->subvol_srcu, index);

388 389
	pr_debug("search slot in root %llu (level %d, ref count %d) returned "
		 "%d for key (%llu %u %llu)\n",
390 391 392
		 ref->root_id, level, ref->count, ret,
		 ref->key_for_search.objectid, ref->key_for_search.type,
		 ref->key_for_search.offset);
393 394 395 396
	if (ret < 0)
		goto out;

	eb = path->nodes[level];
397
	while (!eb) {
398
		if (WARN_ON(!level)) {
399 400 401 402 403
			ret = 1;
			goto out;
		}
		level--;
		eb = path->nodes[level];
404 405
	}

406
	ret = add_all_parents(root, path, parents, ref, level, time_seq,
407
			      extent_item_pos, total_refs);
408
out:
409 410
	path->lowest_level = 0;
	btrfs_release_path(path);
411 412 413 414 415 416 417
	return ret;
}

/*
 * resolve all indirect backrefs from the list
 */
static int __resolve_indirect_refs(struct btrfs_fs_info *fs_info,
418
				   struct btrfs_path *path, u64 time_seq,
419
				   struct list_head *head,
420 421
				   const u64 *extent_item_pos, u64 total_refs,
				   u64 root_objectid)
422 423 424 425 426 427 428 429
{
	int err;
	int ret = 0;
	struct __prelim_ref *ref;
	struct __prelim_ref *ref_safe;
	struct __prelim_ref *new_ref;
	struct ulist *parents;
	struct ulist_node *node;
J
Jan Schmidt 已提交
430
	struct ulist_iterator uiter;
431 432 433 434 435 436 437 438 439 440 441 442 443 444 445

	parents = ulist_alloc(GFP_NOFS);
	if (!parents)
		return -ENOMEM;

	/*
	 * _safe allows us to insert directly after the current item without
	 * iterating over the newly inserted items.
	 * we're also allowed to re-assign ref during iteration.
	 */
	list_for_each_entry_safe(ref, ref_safe, head, list) {
		if (ref->parent)	/* already direct */
			continue;
		if (ref->count == 0)
			continue;
446 447 448 449
		if (root_objectid && ref->root_id != root_objectid) {
			ret = BACKREF_FOUND_SHARED;
			goto out;
		}
450
		err = __resolve_indirect_ref(fs_info, path, time_seq, ref,
451 452
					     parents, extent_item_pos,
					     total_refs);
453 454 455 456 457
		/*
		 * we can only tolerate ENOENT,otherwise,we should catch error
		 * and return directly.
		 */
		if (err == -ENOENT) {
458
			continue;
459 460 461 462
		} else if (err) {
			ret = err;
			goto out;
		}
463 464

		/* we put the first parent into the ref at hand */
J
Jan Schmidt 已提交
465 466
		ULIST_ITER_INIT(&uiter);
		node = ulist_next(parents, &uiter);
467
		ref->parent = node ? node->val : 0;
468
		ref->inode_list = node ?
469
			(struct extent_inode_elem *)(uintptr_t)node->aux : NULL;
470 471

		/* additional parents require new refs being added here */
J
Jan Schmidt 已提交
472
		while ((node = ulist_next(parents, &uiter))) {
473 474
			new_ref = kmem_cache_alloc(btrfs_prelim_ref_cache,
						   GFP_NOFS);
475 476
			if (!new_ref) {
				ret = -ENOMEM;
477
				goto out;
478 479 480
			}
			memcpy(new_ref, ref, sizeof(*ref));
			new_ref->parent = node->val;
481 482
			new_ref->inode_list = (struct extent_inode_elem *)
							(uintptr_t)node->aux;
483 484 485 486
			list_add(&new_ref->list, &ref->list);
		}
		ulist_reinit(parents);
	}
487
out:
488 489 490 491
	ulist_free(parents);
	return ret;
}

492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529
static inline int ref_for_same_block(struct __prelim_ref *ref1,
				     struct __prelim_ref *ref2)
{
	if (ref1->level != ref2->level)
		return 0;
	if (ref1->root_id != ref2->root_id)
		return 0;
	if (ref1->key_for_search.type != ref2->key_for_search.type)
		return 0;
	if (ref1->key_for_search.objectid != ref2->key_for_search.objectid)
		return 0;
	if (ref1->key_for_search.offset != ref2->key_for_search.offset)
		return 0;
	if (ref1->parent != ref2->parent)
		return 0;

	return 1;
}

/*
 * read tree blocks and add keys where required.
 */
static int __add_missing_keys(struct btrfs_fs_info *fs_info,
			      struct list_head *head)
{
	struct list_head *pos;
	struct extent_buffer *eb;

	list_for_each(pos, head) {
		struct __prelim_ref *ref;
		ref = list_entry(pos, struct __prelim_ref, list);

		if (ref->parent)
			continue;
		if (ref->key_for_search.type)
			continue;
		BUG_ON(!ref->wanted_disk_byte);
		eb = read_tree_block(fs_info->tree_root, ref->wanted_disk_byte,
530
				     0);
531 532 533
		if (IS_ERR(eb)) {
			return PTR_ERR(eb);
		} else if (!extent_buffer_uptodate(eb)) {
534 535 536
			free_extent_buffer(eb);
			return -EIO;
		}
537 538 539 540 541 542 543 544 545 546 547
		btrfs_tree_read_lock(eb);
		if (btrfs_header_level(eb) == 0)
			btrfs_item_key_to_cpu(eb, &ref->key_for_search, 0);
		else
			btrfs_node_key_to_cpu(eb, &ref->key_for_search, 0);
		btrfs_tree_read_unlock(eb);
		free_extent_buffer(eb);
	}
	return 0;
}

548
/*
549
 * merge backrefs and adjust counts accordingly
550 551
 *
 * mode = 1: merge identical keys, if key is set
552 553 554 555
 *    FIXME: if we add more keys in __add_prelim_ref, we can merge more here.
 *           additionally, we could even add a key range for the blocks we
 *           looked into to merge even more (-> replace unresolved refs by those
 *           having a parent).
556 557
 * mode = 2: merge identical parents
 */
558
static void __merge_refs(struct list_head *head, int mode)
559 560 561 562 563 564 565 566 567 568 569 570 571
{
	struct list_head *pos1;

	list_for_each(pos1, head) {
		struct list_head *n2;
		struct list_head *pos2;
		struct __prelim_ref *ref1;

		ref1 = list_entry(pos1, struct __prelim_ref, list);

		for (pos2 = pos1->next, n2 = pos2->next; pos2 != head;
		     pos2 = n2, n2 = pos2->next) {
			struct __prelim_ref *ref2;
572
			struct __prelim_ref *xchg;
573
			struct extent_inode_elem *eie;
574 575 576

			ref2 = list_entry(pos2, struct __prelim_ref, list);

577 578
			if (!ref_for_same_block(ref1, ref2))
				continue;
579
			if (mode == 1) {
580 581 582 583 584
				if (!ref1->parent && ref2->parent) {
					xchg = ref1;
					ref1 = ref2;
					ref2 = xchg;
				}
585 586 587 588
			} else {
				if (ref1->parent != ref2->parent)
					continue;
			}
589 590 591 592 593 594 595 596 597 598

			eie = ref1->inode_list;
			while (eie && eie->next)
				eie = eie->next;
			if (eie)
				eie->next = ref2->inode_list;
			else
				ref1->inode_list = ref2->inode_list;
			ref1->count += ref2->count;

599
			list_del(&ref2->list);
600
			kmem_cache_free(btrfs_prelim_ref_cache, ref2);
601 602 603 604 605 606 607 608 609 610
		}

	}
}

/*
 * add all currently queued delayed refs from this head whose seq nr is
 * smaller or equal that seq to the list
 */
static int __add_delayed_refs(struct btrfs_delayed_ref_head *head, u64 seq,
611 612
			      struct list_head *prefs, u64 *total_refs,
			      u64 inum)
613
{
614
	struct btrfs_delayed_ref_node *node;
615
	struct btrfs_delayed_extent_op *extent_op = head->extent_op;
616 617
	struct btrfs_key key;
	struct btrfs_key op_key = {0};
618
	int sgn;
619
	int ret = 0;
620 621

	if (extent_op && extent_op->update_key)
622
		btrfs_disk_key_to_cpu(&op_key, &extent_op->key);
623

624
	spin_lock(&head->lock);
625
	list_for_each_entry(node, &head->ref_list, list) {
626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642
		if (node->seq > seq)
			continue;

		switch (node->action) {
		case BTRFS_ADD_DELAYED_EXTENT:
		case BTRFS_UPDATE_DELAYED_HEAD:
			WARN_ON(1);
			continue;
		case BTRFS_ADD_DELAYED_REF:
			sgn = 1;
			break;
		case BTRFS_DROP_DELAYED_REF:
			sgn = -1;
			break;
		default:
			BUG_ON(1);
		}
643
		*total_refs += (node->ref_mod * sgn);
644 645 646 647 648
		switch (node->type) {
		case BTRFS_TREE_BLOCK_REF_KEY: {
			struct btrfs_delayed_tree_ref *ref;

			ref = btrfs_delayed_node_to_tree_ref(node);
649
			ret = __add_prelim_ref(prefs, ref->root, &op_key,
650
					       ref->level + 1, 0, node->bytenr,
651
					       node->ref_mod * sgn, GFP_ATOMIC);
652 653 654 655 656 657
			break;
		}
		case BTRFS_SHARED_BLOCK_REF_KEY: {
			struct btrfs_delayed_tree_ref *ref;

			ref = btrfs_delayed_node_to_tree_ref(node);
L
Liu Bo 已提交
658
			ret = __add_prelim_ref(prefs, 0, NULL,
659 660
					       ref->level + 1, ref->parent,
					       node->bytenr,
661
					       node->ref_mod * sgn, GFP_ATOMIC);
662 663 664 665 666 667 668 669 670
			break;
		}
		case BTRFS_EXTENT_DATA_REF_KEY: {
			struct btrfs_delayed_data_ref *ref;
			ref = btrfs_delayed_node_to_data_ref(node);

			key.objectid = ref->objectid;
			key.type = BTRFS_EXTENT_DATA_KEY;
			key.offset = ref->offset;
671 672 673 674 675 676 677 678 679 680

			/*
			 * Found a inum that doesn't match our known inum, we
			 * know it's shared.
			 */
			if (inum && ref->objectid != inum) {
				ret = BACKREF_FOUND_SHARED;
				break;
			}

681 682
			ret = __add_prelim_ref(prefs, ref->root, &key, 0, 0,
					       node->bytenr,
683
					       node->ref_mod * sgn, GFP_ATOMIC);
684 685 686 687 688 689
			break;
		}
		case BTRFS_SHARED_DATA_REF_KEY: {
			struct btrfs_delayed_data_ref *ref;

			ref = btrfs_delayed_node_to_data_ref(node);
L
Liu Bo 已提交
690
			ret = __add_prelim_ref(prefs, 0, NULL, 0,
691
					       ref->parent, node->bytenr,
692
					       node->ref_mod * sgn, GFP_ATOMIC);
693 694 695 696 697
			break;
		}
		default:
			WARN_ON(1);
		}
698
		if (ret)
699
			break;
700
	}
701 702
	spin_unlock(&head->lock);
	return ret;
703 704 705 706 707 708 709
}

/*
 * add all inline backrefs for bytenr to the list
 */
static int __add_inline_refs(struct btrfs_fs_info *fs_info,
			     struct btrfs_path *path, u64 bytenr,
710
			     int *info_level, struct list_head *prefs,
711
			     u64 *total_refs, u64 inum)
712
{
713
	int ret = 0;
714 715 716
	int slot;
	struct extent_buffer *leaf;
	struct btrfs_key key;
717
	struct btrfs_key found_key;
718 719 720 721 722 723 724 725 726 727
	unsigned long ptr;
	unsigned long end;
	struct btrfs_extent_item *ei;
	u64 flags;
	u64 item_size;

	/*
	 * enumerate all inline refs
	 */
	leaf = path->nodes[0];
728
	slot = path->slots[0];
729 730 731 732 733 734

	item_size = btrfs_item_size_nr(leaf, slot);
	BUG_ON(item_size < sizeof(*ei));

	ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item);
	flags = btrfs_extent_flags(leaf, ei);
735
	*total_refs += btrfs_extent_refs(leaf, ei);
736
	btrfs_item_key_to_cpu(leaf, &found_key, slot);
737 738 739 740

	ptr = (unsigned long)(ei + 1);
	end = (unsigned long)ei + item_size;

741 742
	if (found_key.type == BTRFS_EXTENT_ITEM_KEY &&
	    flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
743 744 745 746 747 748
		struct btrfs_tree_block_info *info;

		info = (struct btrfs_tree_block_info *)ptr;
		*info_level = btrfs_tree_block_level(leaf, info);
		ptr += sizeof(struct btrfs_tree_block_info);
		BUG_ON(ptr > end);
749 750
	} else if (found_key.type == BTRFS_METADATA_ITEM_KEY) {
		*info_level = found_key.offset;
751 752 753 754 755 756 757 758 759 760 761 762 763 764 765
	} else {
		BUG_ON(!(flags & BTRFS_EXTENT_FLAG_DATA));
	}

	while (ptr < end) {
		struct btrfs_extent_inline_ref *iref;
		u64 offset;
		int type;

		iref = (struct btrfs_extent_inline_ref *)ptr;
		type = btrfs_extent_inline_ref_type(leaf, iref);
		offset = btrfs_extent_inline_ref_offset(leaf, iref);

		switch (type) {
		case BTRFS_SHARED_BLOCK_REF_KEY:
766
			ret = __add_prelim_ref(prefs, 0, NULL,
767
						*info_level + 1, offset,
768
						bytenr, 1, GFP_NOFS);
769 770 771 772 773 774 775 776
			break;
		case BTRFS_SHARED_DATA_REF_KEY: {
			struct btrfs_shared_data_ref *sdref;
			int count;

			sdref = (struct btrfs_shared_data_ref *)(iref + 1);
			count = btrfs_shared_data_ref_count(leaf, sdref);
			ret = __add_prelim_ref(prefs, 0, NULL, 0, offset,
777
					       bytenr, count, GFP_NOFS);
778 779 780
			break;
		}
		case BTRFS_TREE_BLOCK_REF_KEY:
781 782
			ret = __add_prelim_ref(prefs, offset, NULL,
					       *info_level + 1, 0,
783
					       bytenr, 1, GFP_NOFS);
784 785 786 787 788 789 790 791 792 793 794 795
			break;
		case BTRFS_EXTENT_DATA_REF_KEY: {
			struct btrfs_extent_data_ref *dref;
			int count;
			u64 root;

			dref = (struct btrfs_extent_data_ref *)(&iref->offset);
			count = btrfs_extent_data_ref_count(leaf, dref);
			key.objectid = btrfs_extent_data_ref_objectid(leaf,
								      dref);
			key.type = BTRFS_EXTENT_DATA_KEY;
			key.offset = btrfs_extent_data_ref_offset(leaf, dref);
796 797 798 799 800 801

			if (inum && key.objectid != inum) {
				ret = BACKREF_FOUND_SHARED;
				break;
			}

802
			root = btrfs_extent_data_ref_root(leaf, dref);
803
			ret = __add_prelim_ref(prefs, root, &key, 0, 0,
804
					       bytenr, count, GFP_NOFS);
805 806 807 808 809
			break;
		}
		default:
			WARN_ON(1);
		}
810 811
		if (ret)
			return ret;
812 813 814 815 816 817 818 819 820 821 822
		ptr += btrfs_extent_inline_ref_size(type);
	}

	return 0;
}

/*
 * add all non-inline backrefs for bytenr to the list
 */
static int __add_keyed_refs(struct btrfs_fs_info *fs_info,
			    struct btrfs_path *path, u64 bytenr,
823
			    int info_level, struct list_head *prefs, u64 inum)
824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852
{
	struct btrfs_root *extent_root = fs_info->extent_root;
	int ret;
	int slot;
	struct extent_buffer *leaf;
	struct btrfs_key key;

	while (1) {
		ret = btrfs_next_item(extent_root, path);
		if (ret < 0)
			break;
		if (ret) {
			ret = 0;
			break;
		}

		slot = path->slots[0];
		leaf = path->nodes[0];
		btrfs_item_key_to_cpu(leaf, &key, slot);

		if (key.objectid != bytenr)
			break;
		if (key.type < BTRFS_TREE_BLOCK_REF_KEY)
			continue;
		if (key.type > BTRFS_SHARED_DATA_REF_KEY)
			break;

		switch (key.type) {
		case BTRFS_SHARED_BLOCK_REF_KEY:
853
			ret = __add_prelim_ref(prefs, 0, NULL,
854
						info_level + 1, key.offset,
855
						bytenr, 1, GFP_NOFS);
856 857 858 859 860 861 862 863 864
			break;
		case BTRFS_SHARED_DATA_REF_KEY: {
			struct btrfs_shared_data_ref *sdref;
			int count;

			sdref = btrfs_item_ptr(leaf, slot,
					      struct btrfs_shared_data_ref);
			count = btrfs_shared_data_ref_count(leaf, sdref);
			ret = __add_prelim_ref(prefs, 0, NULL, 0, key.offset,
865
						bytenr, count, GFP_NOFS);
866 867 868
			break;
		}
		case BTRFS_TREE_BLOCK_REF_KEY:
869 870
			ret = __add_prelim_ref(prefs, key.offset, NULL,
					       info_level + 1, 0,
871
					       bytenr, 1, GFP_NOFS);
872 873 874 875 876 877 878 879 880 881 882 883 884
			break;
		case BTRFS_EXTENT_DATA_REF_KEY: {
			struct btrfs_extent_data_ref *dref;
			int count;
			u64 root;

			dref = btrfs_item_ptr(leaf, slot,
					      struct btrfs_extent_data_ref);
			count = btrfs_extent_data_ref_count(leaf, dref);
			key.objectid = btrfs_extent_data_ref_objectid(leaf,
								      dref);
			key.type = BTRFS_EXTENT_DATA_KEY;
			key.offset = btrfs_extent_data_ref_offset(leaf, dref);
885 886 887 888 889 890

			if (inum && key.objectid != inum) {
				ret = BACKREF_FOUND_SHARED;
				break;
			}

891 892
			root = btrfs_extent_data_ref_root(leaf, dref);
			ret = __add_prelim_ref(prefs, root, &key, 0, 0,
893
					       bytenr, count, GFP_NOFS);
894 895 896 897 898
			break;
		}
		default:
			WARN_ON(1);
		}
899 900 901
		if (ret)
			return ret;

902 903 904 905 906 907 908 909 910 911 912
	}

	return ret;
}

/*
 * this adds all existing backrefs (inline backrefs, backrefs and delayed
 * refs) for the given bytenr to the refs list, merges duplicates and resolves
 * indirect refs to their parent bytenr.
 * When roots are found, they're added to the roots list
 *
913 914
 * NOTE: This can return values > 0
 *
915 916 917 918 919
 * If time_seq is set to (u64)-1, it will not search delayed_refs, and behave
 * much like trans == NULL case, the difference only lies in it will not
 * commit root.
 * The special case is for qgroup to search roots in commit_transaction().
 *
920 921 922 923
 * FIXME some caching might speed things up
 */
static int find_parent_nodes(struct btrfs_trans_handle *trans,
			     struct btrfs_fs_info *fs_info, u64 bytenr,
924
			     u64 time_seq, struct ulist *refs,
925 926
			     struct ulist *roots, const u64 *extent_item_pos,
			     u64 root_objectid, u64 inum)
927 928 929 930
{
	struct btrfs_key key;
	struct btrfs_path *path;
	struct btrfs_delayed_ref_root *delayed_refs = NULL;
931
	struct btrfs_delayed_ref_head *head;
932 933 934 935 936
	int info_level = 0;
	int ret;
	struct list_head prefs_delayed;
	struct list_head prefs;
	struct __prelim_ref *ref;
937
	struct extent_inode_elem *eie = NULL;
938
	u64 total_refs = 0;
939 940 941 942 943 944

	INIT_LIST_HEAD(&prefs);
	INIT_LIST_HEAD(&prefs_delayed);

	key.objectid = bytenr;
	key.offset = (u64)-1;
945 946 947 948
	if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
		key.type = BTRFS_METADATA_ITEM_KEY;
	else
		key.type = BTRFS_EXTENT_ITEM_KEY;
949 950 951 952

	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;
953
	if (!trans) {
954
		path->search_commit_root = 1;
955 956
		path->skip_locking = 1;
	}
957

958 959 960
	if (time_seq == (u64)-1)
		path->skip_locking = 1;

961 962 963 964 965 966
	/*
	 * grab both a lock on the path and a lock on the delayed ref head.
	 * We need both to get a consistent picture of how the refs look
	 * at a specified point in time
	 */
again:
967 968
	head = NULL;

969 970 971 972 973
	ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 0);
	if (ret < 0)
		goto out;
	BUG_ON(ret == 0);

974
#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
975 976
	if (trans && likely(trans->type != __TRANS_DUMMY) &&
	    time_seq != (u64)-1) {
977
#else
978
	if (trans && time_seq != (u64)-1) {
979
#endif
980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002
		/*
		 * look if there are updates for this ref queued and lock the
		 * head
		 */
		delayed_refs = &trans->transaction->delayed_refs;
		spin_lock(&delayed_refs->lock);
		head = btrfs_find_delayed_ref_head(trans, bytenr);
		if (head) {
			if (!mutex_trylock(&head->mutex)) {
				atomic_inc(&head->node.refs);
				spin_unlock(&delayed_refs->lock);

				btrfs_release_path(path);

				/*
				 * Mutex was contended, block until it's
				 * released and try again
				 */
				mutex_lock(&head->mutex);
				mutex_unlock(&head->mutex);
				btrfs_put_delayed_ref(&head->node);
				goto again;
			}
1003
			spin_unlock(&delayed_refs->lock);
1004
			ret = __add_delayed_refs(head, time_seq,
1005 1006
						 &prefs_delayed, &total_refs,
						 inum);
1007
			mutex_unlock(&head->mutex);
1008
			if (ret)
1009
				goto out;
1010 1011
		} else {
			spin_unlock(&delayed_refs->lock);
1012
		}
1013 1014 1015 1016 1017 1018
	}

	if (path->slots[0]) {
		struct extent_buffer *leaf;
		int slot;

1019
		path->slots[0]--;
1020
		leaf = path->nodes[0];
1021
		slot = path->slots[0];
1022 1023
		btrfs_item_key_to_cpu(leaf, &key, slot);
		if (key.objectid == bytenr &&
1024 1025
		    (key.type == BTRFS_EXTENT_ITEM_KEY ||
		     key.type == BTRFS_METADATA_ITEM_KEY)) {
1026
			ret = __add_inline_refs(fs_info, path, bytenr,
1027
						&info_level, &prefs,
1028
						&total_refs, inum);
1029 1030
			if (ret)
				goto out;
1031
			ret = __add_keyed_refs(fs_info, path, bytenr,
1032
					       info_level, &prefs, inum);
1033 1034 1035 1036 1037 1038 1039 1040
			if (ret)
				goto out;
		}
	}
	btrfs_release_path(path);

	list_splice_init(&prefs_delayed, &prefs);

1041 1042 1043 1044
	ret = __add_missing_keys(fs_info, &prefs);
	if (ret)
		goto out;

1045
	__merge_refs(&prefs, 1);
1046

1047
	ret = __resolve_indirect_refs(fs_info, path, time_seq, &prefs,
1048 1049
				      extent_item_pos, total_refs,
				      root_objectid);
1050 1051 1052
	if (ret)
		goto out;

1053
	__merge_refs(&prefs, 2);
1054 1055 1056

	while (!list_empty(&prefs)) {
		ref = list_first_entry(&prefs, struct __prelim_ref, list);
J
Julia Lawall 已提交
1057
		WARN_ON(ref->count < 0);
1058
		if (roots && ref->count && ref->root_id && ref->parent == 0) {
1059 1060 1061 1062 1063
			if (root_objectid && ref->root_id != root_objectid) {
				ret = BACKREF_FOUND_SHARED;
				goto out;
			}

1064 1065
			/* no parent == root of tree */
			ret = ulist_add(roots, ref->root_id, 0, GFP_NOFS);
1066 1067
			if (ret < 0)
				goto out;
1068 1069
		}
		if (ref->count && ref->parent) {
1070 1071
			if (extent_item_pos && !ref->inode_list &&
			    ref->level == 0) {
1072
				struct extent_buffer *eb;
1073

1074
				eb = read_tree_block(fs_info->extent_root,
1075
							   ref->parent, 0);
1076 1077 1078 1079
				if (IS_ERR(eb)) {
					ret = PTR_ERR(eb);
					goto out;
				} else if (!extent_buffer_uptodate(eb)) {
1080
					free_extent_buffer(eb);
1081 1082
					ret = -EIO;
					goto out;
1083
				}
1084 1085
				btrfs_tree_read_lock(eb);
				btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
1086 1087
				ret = find_extent_in_eb(eb, bytenr,
							*extent_item_pos, &eie);
1088
				btrfs_tree_read_unlock_blocking(eb);
1089
				free_extent_buffer(eb);
1090 1091 1092
				if (ret < 0)
					goto out;
				ref->inode_list = eie;
1093
			}
1094 1095 1096
			ret = ulist_add_merge_ptr(refs, ref->parent,
						  ref->inode_list,
						  (void **)&eie, GFP_NOFS);
1097 1098
			if (ret < 0)
				goto out;
1099 1100 1101 1102 1103 1104 1105 1106 1107 1108
			if (!ret && extent_item_pos) {
				/*
				 * we've recorded that parent, so we must extend
				 * its inode list here
				 */
				BUG_ON(!eie);
				while (eie->next)
					eie = eie->next;
				eie->next = ref->inode_list;
			}
1109
			eie = NULL;
1110
		}
1111
		list_del(&ref->list);
1112
		kmem_cache_free(btrfs_prelim_ref_cache, ref);
1113 1114 1115 1116 1117 1118 1119
	}

out:
	btrfs_free_path(path);
	while (!list_empty(&prefs)) {
		ref = list_first_entry(&prefs, struct __prelim_ref, list);
		list_del(&ref->list);
1120
		kmem_cache_free(btrfs_prelim_ref_cache, ref);
1121 1122 1123 1124 1125
	}
	while (!list_empty(&prefs_delayed)) {
		ref = list_first_entry(&prefs_delayed, struct __prelim_ref,
				       list);
		list_del(&ref->list);
1126
		kmem_cache_free(btrfs_prelim_ref_cache, ref);
1127
	}
1128 1129
	if (ret < 0)
		free_inode_elem_list(eie);
1130 1131 1132
	return ret;
}

1133 1134 1135 1136 1137 1138 1139 1140 1141 1142
static void free_leaf_list(struct ulist *blocks)
{
	struct ulist_node *node = NULL;
	struct extent_inode_elem *eie;
	struct ulist_iterator uiter;

	ULIST_ITER_INIT(&uiter);
	while ((node = ulist_next(blocks, &uiter))) {
		if (!node->aux)
			continue;
1143
		eie = (struct extent_inode_elem *)(uintptr_t)node->aux;
1144
		free_inode_elem_list(eie);
1145 1146 1147 1148 1149 1150
		node->aux = 0;
	}

	ulist_free(blocks);
}

1151 1152 1153 1154 1155 1156 1157 1158 1159 1160
/*
 * Finds all leafs with a reference to the specified combination of bytenr and
 * offset. key_list_head will point to a list of corresponding keys (caller must
 * free each list element). The leafs will be stored in the leafs ulist, which
 * must be freed with ulist_free.
 *
 * returns 0 on success, <0 on error
 */
static int btrfs_find_all_leafs(struct btrfs_trans_handle *trans,
				struct btrfs_fs_info *fs_info, u64 bytenr,
1161
				u64 time_seq, struct ulist **leafs,
1162
				const u64 *extent_item_pos)
1163 1164 1165 1166
{
	int ret;

	*leafs = ulist_alloc(GFP_NOFS);
1167
	if (!*leafs)
1168 1169
		return -ENOMEM;

1170
	ret = find_parent_nodes(trans, fs_info, bytenr,
1171
				time_seq, *leafs, NULL, extent_item_pos, 0, 0);
1172
	if (ret < 0 && ret != -ENOENT) {
1173
		free_leaf_list(*leafs);
1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192
		return ret;
	}

	return 0;
}

/*
 * walk all backrefs for a given extent to find all roots that reference this
 * extent. Walking a backref means finding all extents that reference this
 * extent and in turn walk the backrefs of those, too. Naturally this is a
 * recursive process, but here it is implemented in an iterative fashion: We
 * find all referencing extents for the extent in question and put them on a
 * list. In turn, we find all referencing extents for those, further appending
 * to the list. The way we iterate the list allows adding more elements after
 * the current while iterating. The process stops when we reach the end of the
 * list. Found roots are added to the roots list.
 *
 * returns 0 on success, < 0 on error.
 */
1193 1194 1195
static int __btrfs_find_all_roots(struct btrfs_trans_handle *trans,
				  struct btrfs_fs_info *fs_info, u64 bytenr,
				  u64 time_seq, struct ulist **roots)
1196 1197 1198
{
	struct ulist *tmp;
	struct ulist_node *node = NULL;
J
Jan Schmidt 已提交
1199
	struct ulist_iterator uiter;
1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210
	int ret;

	tmp = ulist_alloc(GFP_NOFS);
	if (!tmp)
		return -ENOMEM;
	*roots = ulist_alloc(GFP_NOFS);
	if (!*roots) {
		ulist_free(tmp);
		return -ENOMEM;
	}

J
Jan Schmidt 已提交
1211
	ULIST_ITER_INIT(&uiter);
1212
	while (1) {
1213
		ret = find_parent_nodes(trans, fs_info, bytenr,
1214
					time_seq, tmp, *roots, NULL, 0, 0);
1215 1216 1217 1218 1219
		if (ret < 0 && ret != -ENOENT) {
			ulist_free(tmp);
			ulist_free(*roots);
			return ret;
		}
J
Jan Schmidt 已提交
1220
		node = ulist_next(tmp, &uiter);
1221 1222 1223
		if (!node)
			break;
		bytenr = node->val;
1224
		cond_resched();
1225 1226 1227 1228 1229 1230
	}

	ulist_free(tmp);
	return 0;
}

1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244
int btrfs_find_all_roots(struct btrfs_trans_handle *trans,
			 struct btrfs_fs_info *fs_info, u64 bytenr,
			 u64 time_seq, struct ulist **roots)
{
	int ret;

	if (!trans)
		down_read(&fs_info->commit_root_sem);
	ret = __btrfs_find_all_roots(trans, fs_info, bytenr, time_seq, roots);
	if (!trans)
		up_read(&fs_info->commit_root_sem);
	return ret;
}

1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257
/**
 * btrfs_check_shared - tell us whether an extent is shared
 *
 * @trans: optional trans handle
 *
 * btrfs_check_shared uses the backref walking code but will short
 * circuit as soon as it finds a root or inode that doesn't match the
 * one passed in. This provides a significant performance benefit for
 * callers (such as fiemap) which want to know whether the extent is
 * shared but do not need a ref count.
 *
 * Return: 0 if extent is not shared, 1 if it is shared, < 0 on error.
 */
1258 1259 1260 1261 1262 1263 1264 1265
int btrfs_check_shared(struct btrfs_trans_handle *trans,
		       struct btrfs_fs_info *fs_info, u64 root_objectid,
		       u64 inum, u64 bytenr)
{
	struct ulist *tmp = NULL;
	struct ulist *roots = NULL;
	struct ulist_iterator uiter;
	struct ulist_node *node;
1266
	struct seq_list elem = SEQ_LIST_INIT(elem);
1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285
	int ret = 0;

	tmp = ulist_alloc(GFP_NOFS);
	roots = ulist_alloc(GFP_NOFS);
	if (!tmp || !roots) {
		ulist_free(tmp);
		ulist_free(roots);
		return -ENOMEM;
	}

	if (trans)
		btrfs_get_tree_mod_seq(fs_info, &elem);
	else
		down_read(&fs_info->commit_root_sem);
	ULIST_ITER_INIT(&uiter);
	while (1) {
		ret = find_parent_nodes(trans, fs_info, bytenr, elem.seq, tmp,
					roots, NULL, root_objectid, inum);
		if (ret == BACKREF_FOUND_SHARED) {
1286
			/* this is the only condition under which we return 1 */
1287 1288 1289 1290 1291
			ret = 1;
			break;
		}
		if (ret < 0 && ret != -ENOENT)
			break;
1292
		ret = 0;
1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307
		node = ulist_next(tmp, &uiter);
		if (!node)
			break;
		bytenr = node->val;
		cond_resched();
	}
	if (trans)
		btrfs_put_tree_mod_seq(fs_info, &elem);
	else
		up_read(&fs_info->commit_root_sem);
	ulist_free(tmp);
	ulist_free(roots);
	return ret;
}

M
Mark Fasheh 已提交
1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320
int btrfs_find_one_extref(struct btrfs_root *root, u64 inode_objectid,
			  u64 start_off, struct btrfs_path *path,
			  struct btrfs_inode_extref **ret_extref,
			  u64 *found_off)
{
	int ret, slot;
	struct btrfs_key key;
	struct btrfs_key found_key;
	struct btrfs_inode_extref *extref;
	struct extent_buffer *leaf;
	unsigned long ptr;

	key.objectid = inode_objectid;
1321
	key.type = BTRFS_INODE_EXTREF_KEY;
M
Mark Fasheh 已提交
1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360
	key.offset = start_off;

	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
	if (ret < 0)
		return ret;

	while (1) {
		leaf = path->nodes[0];
		slot = path->slots[0];
		if (slot >= btrfs_header_nritems(leaf)) {
			/*
			 * If the item at offset is not found,
			 * btrfs_search_slot will point us to the slot
			 * where it should be inserted. In our case
			 * that will be the slot directly before the
			 * next INODE_REF_KEY_V2 item. In the case
			 * that we're pointing to the last slot in a
			 * leaf, we must move one leaf over.
			 */
			ret = btrfs_next_leaf(root, path);
			if (ret) {
				if (ret >= 1)
					ret = -ENOENT;
				break;
			}
			continue;
		}

		btrfs_item_key_to_cpu(leaf, &found_key, slot);

		/*
		 * Check that we're still looking at an extended ref key for
		 * this particular objectid. If we have different
		 * objectid or type then there are no more to be found
		 * in the tree and we can exit.
		 */
		ret = -ENOENT;
		if (found_key.objectid != inode_objectid)
			break;
1361
		if (found_key.type != BTRFS_INODE_EXTREF_KEY)
M
Mark Fasheh 已提交
1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375
			break;

		ret = 0;
		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
		extref = (struct btrfs_inode_extref *)ptr;
		*ret_extref = extref;
		if (found_off)
			*found_off = found_key.offset;
		break;
	}

	return ret;
}

1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389
/*
 * this iterates to turn a name (from iref/extref) into a full filesystem path.
 * Elements of the path are separated by '/' and the path is guaranteed to be
 * 0-terminated. the path is only given within the current file system.
 * Therefore, it never starts with a '/'. the caller is responsible to provide
 * "size" bytes in "dest". the dest buffer will be filled backwards. finally,
 * the start point of the resulting string is returned. this pointer is within
 * dest, normally.
 * in case the path buffer would overflow, the pointer is decremented further
 * as if output was written to the buffer, though no more output is actually
 * generated. that way, the caller can determine how much space would be
 * required for the path to fit into the buffer. in that case, the returned
 * value will be smaller than dest. callers must check this!
 */
1390 1391 1392 1393
char *btrfs_ref_to_path(struct btrfs_root *fs_root, struct btrfs_path *path,
			u32 name_len, unsigned long name_off,
			struct extent_buffer *eb_in, u64 parent,
			char *dest, u32 size)
1394 1395 1396 1397
{
	int slot;
	u64 next_inum;
	int ret;
1398
	s64 bytes_left = ((s64)size) - 1;
1399 1400
	struct extent_buffer *eb = eb_in;
	struct btrfs_key found_key;
1401
	int leave_spinning = path->leave_spinning;
M
Mark Fasheh 已提交
1402
	struct btrfs_inode_ref *iref;
1403 1404 1405 1406

	if (bytes_left >= 0)
		dest[bytes_left] = '\0';

1407
	path->leave_spinning = 1;
1408
	while (1) {
M
Mark Fasheh 已提交
1409
		bytes_left -= name_len;
1410 1411
		if (bytes_left >= 0)
			read_extent_buffer(eb, dest + bytes_left,
M
Mark Fasheh 已提交
1412
					   name_off, name_len);
1413 1414
		if (eb != eb_in) {
			btrfs_tree_read_unlock_blocking(eb);
1415
			free_extent_buffer(eb);
1416
		}
1417 1418
		ret = btrfs_find_item(fs_root, path, parent, 0,
				BTRFS_INODE_REF_KEY, &found_key);
1419 1420
		if (ret > 0)
			ret = -ENOENT;
1421 1422
		if (ret)
			break;
M
Mark Fasheh 已提交
1423

1424 1425 1426 1427 1428 1429 1430 1431 1432
		next_inum = found_key.offset;

		/* regular exit ahead */
		if (parent == next_inum)
			break;

		slot = path->slots[0];
		eb = path->nodes[0];
		/* make sure we can use eb after releasing the path */
1433
		if (eb != eb_in) {
1434
			atomic_inc(&eb->refs);
1435 1436 1437
			btrfs_tree_read_lock(eb);
			btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
		}
1438 1439
		btrfs_release_path(path);
		iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);
M
Mark Fasheh 已提交
1440 1441 1442 1443

		name_len = btrfs_inode_ref_name_len(eb, iref);
		name_off = (unsigned long)(iref + 1);

1444 1445 1446 1447 1448 1449 1450
		parent = next_inum;
		--bytes_left;
		if (bytes_left >= 0)
			dest[bytes_left] = '/';
	}

	btrfs_release_path(path);
1451
	path->leave_spinning = leave_spinning;
1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464

	if (ret)
		return ERR_PTR(ret);

	return dest + bytes_left;
}

/*
 * this makes the path point to (logical EXTENT_ITEM *)
 * returns BTRFS_EXTENT_FLAG_DATA for data, BTRFS_EXTENT_FLAG_TREE_BLOCK for
 * tree blocks and <0 on error.
 */
int extent_from_logical(struct btrfs_fs_info *fs_info, u64 logical,
1465 1466
			struct btrfs_path *path, struct btrfs_key *found_key,
			u64 *flags_ret)
1467 1468 1469
{
	int ret;
	u64 flags;
1470
	u64 size = 0;
1471 1472 1473 1474 1475
	u32 item_size;
	struct extent_buffer *eb;
	struct btrfs_extent_item *ei;
	struct btrfs_key key;

1476 1477 1478 1479
	if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
		key.type = BTRFS_METADATA_ITEM_KEY;
	else
		key.type = BTRFS_EXTENT_ITEM_KEY;
1480 1481 1482 1483 1484 1485 1486
	key.objectid = logical;
	key.offset = (u64)-1;

	ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0);
	if (ret < 0)
		return ret;

1487 1488 1489 1490 1491
	ret = btrfs_previous_extent_item(fs_info->extent_root, path, 0);
	if (ret) {
		if (ret > 0)
			ret = -ENOENT;
		return ret;
1492
	}
1493
	btrfs_item_key_to_cpu(path->nodes[0], found_key, path->slots[0]);
1494
	if (found_key->type == BTRFS_METADATA_ITEM_KEY)
1495
		size = fs_info->extent_root->nodesize;
1496 1497 1498
	else if (found_key->type == BTRFS_EXTENT_ITEM_KEY)
		size = found_key->offset;

1499
	if (found_key->objectid > logical ||
1500
	    found_key->objectid + size <= logical) {
1501
		pr_debug("logical %llu is not within any extent\n", logical);
1502
		return -ENOENT;
J
Jan Schmidt 已提交
1503
	}
1504 1505 1506 1507 1508 1509 1510 1511

	eb = path->nodes[0];
	item_size = btrfs_item_size_nr(eb, path->slots[0]);
	BUG_ON(item_size < sizeof(*ei));

	ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
	flags = btrfs_extent_flags(eb, ei);

J
Jan Schmidt 已提交
1512 1513
	pr_debug("logical %llu is at position %llu within the extent (%llu "
		 "EXTENT_ITEM %llu) flags %#llx size %u\n",
1514 1515
		 logical, logical - found_key->objectid, found_key->objectid,
		 found_key->offset, flags, item_size);
1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526

	WARN_ON(!flags_ret);
	if (flags_ret) {
		if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
			*flags_ret = BTRFS_EXTENT_FLAG_TREE_BLOCK;
		else if (flags & BTRFS_EXTENT_FLAG_DATA)
			*flags_ret = BTRFS_EXTENT_FLAG_DATA;
		else
			BUG_ON(1);
		return 0;
	}
1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539

	return -EIO;
}

/*
 * helper function to iterate extent inline refs. ptr must point to a 0 value
 * for the first call and may be modified. it is used to track state.
 * if more refs exist, 0 is returned and the next call to
 * __get_extent_inline_ref must pass the modified ptr parameter to get the
 * next ref. after the last ref was processed, 1 is returned.
 * returns <0 on error
 */
static int __get_extent_inline_ref(unsigned long *ptr, struct extent_buffer *eb,
1540 1541 1542 1543
				   struct btrfs_key *key,
				   struct btrfs_extent_item *ei, u32 item_size,
				   struct btrfs_extent_inline_ref **out_eiref,
				   int *out_type)
1544 1545 1546 1547 1548 1549 1550 1551 1552
{
	unsigned long end;
	u64 flags;
	struct btrfs_tree_block_info *info;

	if (!*ptr) {
		/* first call */
		flags = btrfs_extent_flags(eb, ei);
		if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
1553 1554 1555 1556 1557 1558 1559 1560 1561 1562
			if (key->type == BTRFS_METADATA_ITEM_KEY) {
				/* a skinny metadata extent */
				*out_eiref =
				     (struct btrfs_extent_inline_ref *)(ei + 1);
			} else {
				WARN_ON(key->type != BTRFS_EXTENT_ITEM_KEY);
				info = (struct btrfs_tree_block_info *)(ei + 1);
				*out_eiref =
				   (struct btrfs_extent_inline_ref *)(info + 1);
			}
1563 1564 1565 1566
		} else {
			*out_eiref = (struct btrfs_extent_inline_ref *)(ei + 1);
		}
		*ptr = (unsigned long)*out_eiref;
1567
		if ((unsigned long)(*ptr) >= (unsigned long)ei + item_size)
1568 1569 1570 1571
			return -ENOENT;
	}

	end = (unsigned long)ei + item_size;
1572
	*out_eiref = (struct btrfs_extent_inline_ref *)(*ptr);
1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590
	*out_type = btrfs_extent_inline_ref_type(eb, *out_eiref);

	*ptr += btrfs_extent_inline_ref_size(*out_type);
	WARN_ON(*ptr > end);
	if (*ptr == end)
		return 1; /* last */

	return 0;
}

/*
 * reads the tree block backref for an extent. tree level and root are returned
 * through out_level and out_root. ptr must point to a 0 value for the first
 * call and may be modified (see __get_extent_inline_ref comment).
 * returns 0 if data was provided, 1 if there was no more data to provide or
 * <0 on error.
 */
int tree_backref_for_extent(unsigned long *ptr, struct extent_buffer *eb,
1591 1592
			    struct btrfs_key *key, struct btrfs_extent_item *ei,
			    u32 item_size, u64 *out_root, u8 *out_level)
1593 1594 1595 1596 1597 1598 1599 1600 1601
{
	int ret;
	int type;
	struct btrfs_extent_inline_ref *eiref;

	if (*ptr == (unsigned long)-1)
		return 1;

	while (1) {
1602 1603
		ret = __get_extent_inline_ref(ptr, eb, key, ei, item_size,
					      &eiref, &type);
1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616
		if (ret < 0)
			return ret;

		if (type == BTRFS_TREE_BLOCK_REF_KEY ||
		    type == BTRFS_SHARED_BLOCK_REF_KEY)
			break;

		if (ret == 1)
			return 1;
	}

	/* we can treat both ref types equally here */
	*out_root = btrfs_extent_inline_ref_offset(eb, eiref);
1617 1618 1619 1620 1621 1622 1623 1624 1625 1626

	if (key->type == BTRFS_EXTENT_ITEM_KEY) {
		struct btrfs_tree_block_info *info;

		info = (struct btrfs_tree_block_info *)(ei + 1);
		*out_level = btrfs_tree_block_level(eb, info);
	} else {
		ASSERT(key->type == BTRFS_METADATA_ITEM_KEY);
		*out_level = (u8)key->offset;
	}
1627 1628 1629 1630 1631 1632 1633

	if (ret == 1)
		*ptr = (unsigned long)-1;

	return 0;
}

1634 1635
static int iterate_leaf_refs(struct extent_inode_elem *inode_list,
				u64 root, u64 extent_item_objectid,
J
Jan Schmidt 已提交
1636
				iterate_extent_inodes_t *iterate, void *ctx)
1637
{
1638
	struct extent_inode_elem *eie;
J
Jan Schmidt 已提交
1639 1640
	int ret = 0;

1641
	for (eie = inode_list; eie; eie = eie->next) {
J
Jan Schmidt 已提交
1642
		pr_debug("ref for %llu resolved, key (%llu EXTEND_DATA %llu), "
1643 1644 1645
			 "root %llu\n", extent_item_objectid,
			 eie->inum, eie->offset, root);
		ret = iterate(eie->inum, eie->offset, root, ctx);
J
Jan Schmidt 已提交
1646
		if (ret) {
1647 1648
			pr_debug("stopping iteration for %llu due to ret=%d\n",
				 extent_item_objectid, ret);
J
Jan Schmidt 已提交
1649 1650
			break;
		}
1651 1652 1653 1654 1655 1656 1657
	}

	return ret;
}

/*
 * calls iterate() for every inode that references the extent identified by
J
Jan Schmidt 已提交
1658
 * the given parameters.
1659 1660 1661
 * when the iterator function returns a non-zero value, iteration stops.
 */
int iterate_extent_inodes(struct btrfs_fs_info *fs_info,
J
Jan Schmidt 已提交
1662
				u64 extent_item_objectid, u64 extent_item_pos,
1663
				int search_commit_root,
1664 1665 1666
				iterate_extent_inodes_t *iterate, void *ctx)
{
	int ret;
1667
	struct btrfs_trans_handle *trans = NULL;
1668 1669
	struct ulist *refs = NULL;
	struct ulist *roots = NULL;
J
Jan Schmidt 已提交
1670 1671
	struct ulist_node *ref_node = NULL;
	struct ulist_node *root_node = NULL;
1672
	struct seq_list tree_mod_seq_elem = SEQ_LIST_INIT(tree_mod_seq_elem);
J
Jan Schmidt 已提交
1673 1674
	struct ulist_iterator ref_uiter;
	struct ulist_iterator root_uiter;
1675

J
Jan Schmidt 已提交
1676 1677
	pr_debug("resolving all inodes for extent %llu\n",
			extent_item_objectid);
1678

1679
	if (!search_commit_root) {
1680 1681 1682
		trans = btrfs_join_transaction(fs_info->extent_root);
		if (IS_ERR(trans))
			return PTR_ERR(trans);
1683
		btrfs_get_tree_mod_seq(fs_info, &tree_mod_seq_elem);
1684 1685
	} else {
		down_read(&fs_info->commit_root_sem);
1686
	}
1687

J
Jan Schmidt 已提交
1688
	ret = btrfs_find_all_leafs(trans, fs_info, extent_item_objectid,
1689
				   tree_mod_seq_elem.seq, &refs,
1690
				   &extent_item_pos);
J
Jan Schmidt 已提交
1691 1692
	if (ret)
		goto out;
1693

J
Jan Schmidt 已提交
1694 1695
	ULIST_ITER_INIT(&ref_uiter);
	while (!ret && (ref_node = ulist_next(refs, &ref_uiter))) {
1696 1697
		ret = __btrfs_find_all_roots(trans, fs_info, ref_node->val,
					     tree_mod_seq_elem.seq, &roots);
J
Jan Schmidt 已提交
1698 1699
		if (ret)
			break;
J
Jan Schmidt 已提交
1700 1701
		ULIST_ITER_INIT(&root_uiter);
		while (!ret && (root_node = ulist_next(roots, &root_uiter))) {
1702
			pr_debug("root %llu references leaf %llu, data list "
1703
				 "%#llx\n", root_node->val, ref_node->val,
1704
				 ref_node->aux);
1705 1706 1707 1708 1709
			ret = iterate_leaf_refs((struct extent_inode_elem *)
						(uintptr_t)ref_node->aux,
						root_node->val,
						extent_item_objectid,
						iterate, ctx);
J
Jan Schmidt 已提交
1710
		}
1711
		ulist_free(roots);
1712 1713
	}

1714
	free_leaf_list(refs);
J
Jan Schmidt 已提交
1715
out:
1716
	if (!search_commit_root) {
1717
		btrfs_put_tree_mod_seq(fs_info, &tree_mod_seq_elem);
1718
		btrfs_end_transaction(trans, fs_info->extent_root);
1719 1720
	} else {
		up_read(&fs_info->commit_root_sem);
1721 1722
	}

1723 1724 1725 1726 1727 1728 1729 1730
	return ret;
}

int iterate_inodes_from_logical(u64 logical, struct btrfs_fs_info *fs_info,
				struct btrfs_path *path,
				iterate_extent_inodes_t *iterate, void *ctx)
{
	int ret;
J
Jan Schmidt 已提交
1731
	u64 extent_item_pos;
1732
	u64 flags = 0;
1733
	struct btrfs_key found_key;
1734
	int search_commit_root = path->search_commit_root;
1735

1736
	ret = extent_from_logical(fs_info, logical, path, &found_key, &flags);
J
Jan Schmidt 已提交
1737
	btrfs_release_path(path);
1738 1739
	if (ret < 0)
		return ret;
1740
	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1741
		return -EINVAL;
1742

J
Jan Schmidt 已提交
1743
	extent_item_pos = logical - found_key.objectid;
1744 1745 1746
	ret = iterate_extent_inodes(fs_info, found_key.objectid,
					extent_item_pos, search_commit_root,
					iterate, ctx);
1747 1748 1749 1750

	return ret;
}

M
Mark Fasheh 已提交
1751 1752 1753 1754 1755 1756
typedef int (iterate_irefs_t)(u64 parent, u32 name_len, unsigned long name_off,
			      struct extent_buffer *eb, void *ctx);

static int iterate_inode_refs(u64 inum, struct btrfs_root *fs_root,
			      struct btrfs_path *path,
			      iterate_irefs_t *iterate, void *ctx)
1757
{
1758
	int ret = 0;
1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769
	int slot;
	u32 cur;
	u32 len;
	u32 name_len;
	u64 parent = 0;
	int found = 0;
	struct extent_buffer *eb;
	struct btrfs_item *item;
	struct btrfs_inode_ref *iref;
	struct btrfs_key found_key;

1770
	while (!ret) {
1771 1772 1773 1774
		ret = btrfs_find_item(fs_root, path, inum,
				parent ? parent + 1 : 0, BTRFS_INODE_REF_KEY,
				&found_key);

1775 1776 1777 1778 1779 1780 1781 1782 1783 1784
		if (ret < 0)
			break;
		if (ret) {
			ret = found ? 0 : -ENOENT;
			break;
		}
		++found;

		parent = found_key.offset;
		slot = path->slots[0];
1785 1786 1787 1788 1789 1790
		eb = btrfs_clone_extent_buffer(path->nodes[0]);
		if (!eb) {
			ret = -ENOMEM;
			break;
		}
		extent_buffer_get(eb);
1791 1792
		btrfs_tree_read_lock(eb);
		btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
1793 1794
		btrfs_release_path(path);

1795
		item = btrfs_item_nr(slot);
1796 1797 1798 1799 1800
		iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);

		for (cur = 0; cur < btrfs_item_size(eb, item); cur += len) {
			name_len = btrfs_inode_ref_name_len(eb, iref);
			/* path must be released before calling iterate()! */
J
Jan Schmidt 已提交
1801
			pr_debug("following ref at offset %u for inode %llu in "
1802 1803
				 "tree %llu\n", cur, found_key.objectid,
				 fs_root->objectid);
M
Mark Fasheh 已提交
1804 1805
			ret = iterate(parent, name_len,
				      (unsigned long)(iref + 1), eb, ctx);
1806
			if (ret)
1807 1808 1809 1810
				break;
			len = sizeof(*iref) + name_len;
			iref = (struct btrfs_inode_ref *)((char *)iref + len);
		}
1811
		btrfs_tree_read_unlock_blocking(eb);
1812 1813 1814 1815 1816 1817 1818 1819
		free_extent_buffer(eb);
	}

	btrfs_release_path(path);

	return ret;
}

M
Mark Fasheh 已提交
1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847
static int iterate_inode_extrefs(u64 inum, struct btrfs_root *fs_root,
				 struct btrfs_path *path,
				 iterate_irefs_t *iterate, void *ctx)
{
	int ret;
	int slot;
	u64 offset = 0;
	u64 parent;
	int found = 0;
	struct extent_buffer *eb;
	struct btrfs_inode_extref *extref;
	struct extent_buffer *leaf;
	u32 item_size;
	u32 cur_offset;
	unsigned long ptr;

	while (1) {
		ret = btrfs_find_one_extref(fs_root, inum, offset, path, &extref,
					    &offset);
		if (ret < 0)
			break;
		if (ret) {
			ret = found ? 0 : -ENOENT;
			break;
		}
		++found;

		slot = path->slots[0];
1848 1849 1850 1851 1852 1853
		eb = btrfs_clone_extent_buffer(path->nodes[0]);
		if (!eb) {
			ret = -ENOMEM;
			break;
		}
		extent_buffer_get(eb);
M
Mark Fasheh 已提交
1854 1855 1856 1857 1858 1859

		btrfs_tree_read_lock(eb);
		btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
		btrfs_release_path(path);

		leaf = path->nodes[0];
1860 1861
		item_size = btrfs_item_size_nr(leaf, slot);
		ptr = btrfs_item_ptr_offset(leaf, slot);
M
Mark Fasheh 已提交
1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908
		cur_offset = 0;

		while (cur_offset < item_size) {
			u32 name_len;

			extref = (struct btrfs_inode_extref *)(ptr + cur_offset);
			parent = btrfs_inode_extref_parent(eb, extref);
			name_len = btrfs_inode_extref_name_len(eb, extref);
			ret = iterate(parent, name_len,
				      (unsigned long)&extref->name, eb, ctx);
			if (ret)
				break;

			cur_offset += btrfs_inode_extref_name_len(leaf, extref);
			cur_offset += sizeof(*extref);
		}
		btrfs_tree_read_unlock_blocking(eb);
		free_extent_buffer(eb);

		offset++;
	}

	btrfs_release_path(path);

	return ret;
}

static int iterate_irefs(u64 inum, struct btrfs_root *fs_root,
			 struct btrfs_path *path, iterate_irefs_t *iterate,
			 void *ctx)
{
	int ret;
	int found_refs = 0;

	ret = iterate_inode_refs(inum, fs_root, path, iterate, ctx);
	if (!ret)
		++found_refs;
	else if (ret != -ENOENT)
		return ret;

	ret = iterate_inode_extrefs(inum, fs_root, path, iterate, ctx);
	if (ret == -ENOENT && found_refs)
		return 0;

	return ret;
}

1909 1910 1911 1912
/*
 * returns 0 if the path could be dumped (probably truncated)
 * returns <0 in case of an error
 */
M
Mark Fasheh 已提交
1913 1914
static int inode_to_path(u64 inum, u32 name_len, unsigned long name_off,
			 struct extent_buffer *eb, void *ctx)
1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925
{
	struct inode_fs_paths *ipath = ctx;
	char *fspath;
	char *fspath_min;
	int i = ipath->fspath->elem_cnt;
	const int s_ptr = sizeof(char *);
	u32 bytes_left;

	bytes_left = ipath->fspath->bytes_left > s_ptr ?
					ipath->fspath->bytes_left - s_ptr : 0;

1926
	fspath_min = (char *)ipath->fspath->val + (i + 1) * s_ptr;
1927 1928
	fspath = btrfs_ref_to_path(ipath->fs_root, ipath->btrfs_path, name_len,
				   name_off, eb, inum, fspath_min, bytes_left);
1929 1930 1931 1932
	if (IS_ERR(fspath))
		return PTR_ERR(fspath);

	if (fspath > fspath_min) {
1933
		ipath->fspath->val[i] = (u64)(unsigned long)fspath;
1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947
		++ipath->fspath->elem_cnt;
		ipath->fspath->bytes_left = fspath - fspath_min;
	} else {
		++ipath->fspath->elem_missed;
		ipath->fspath->bytes_missing += fspath_min - fspath;
		ipath->fspath->bytes_left = 0;
	}

	return 0;
}

/*
 * this dumps all file system paths to the inode into the ipath struct, provided
 * is has been created large enough. each path is zero-terminated and accessed
1948
 * from ipath->fspath->val[i].
1949
 * when it returns, there are ipath->fspath->elem_cnt number of paths available
1950
 * in ipath->fspath->val[]. when the allocated space wasn't sufficient, the
1951 1952 1953 1954 1955 1956 1957
 * number of missed paths in recored in ipath->fspath->elem_missed, otherwise,
 * it's zero. ipath->fspath->bytes_missing holds the number of bytes that would
 * have been needed to return all paths.
 */
int paths_from_inode(u64 inum, struct inode_fs_paths *ipath)
{
	return iterate_irefs(inum, ipath->fs_root, ipath->btrfs_path,
M
Mark Fasheh 已提交
1958
			     inode_to_path, ipath);
1959 1960 1961 1962 1963 1964 1965 1966
}

struct btrfs_data_container *init_data_container(u32 total_bytes)
{
	struct btrfs_data_container *data;
	size_t alloc_bytes;

	alloc_bytes = max_t(size_t, total_bytes, sizeof(*data));
1967
	data = vmalloc(alloc_bytes);
1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015
	if (!data)
		return ERR_PTR(-ENOMEM);

	if (total_bytes >= sizeof(*data)) {
		data->bytes_left = total_bytes - sizeof(*data);
		data->bytes_missing = 0;
	} else {
		data->bytes_missing = sizeof(*data) - total_bytes;
		data->bytes_left = 0;
	}

	data->elem_cnt = 0;
	data->elem_missed = 0;

	return data;
}

/*
 * allocates space to return multiple file system paths for an inode.
 * total_bytes to allocate are passed, note that space usable for actual path
 * information will be total_bytes - sizeof(struct inode_fs_paths).
 * the returned pointer must be freed with free_ipath() in the end.
 */
struct inode_fs_paths *init_ipath(s32 total_bytes, struct btrfs_root *fs_root,
					struct btrfs_path *path)
{
	struct inode_fs_paths *ifp;
	struct btrfs_data_container *fspath;

	fspath = init_data_container(total_bytes);
	if (IS_ERR(fspath))
		return (void *)fspath;

	ifp = kmalloc(sizeof(*ifp), GFP_NOFS);
	if (!ifp) {
		kfree(fspath);
		return ERR_PTR(-ENOMEM);
	}

	ifp->btrfs_path = path;
	ifp->fspath = fspath;
	ifp->fs_root = fs_root;

	return ifp;
}

void free_ipath(struct inode_fs_paths *ipath)
{
2016 2017
	if (!ipath)
		return;
2018
	vfree(ipath->fspath);
2019 2020
	kfree(ipath);
}