intel_lrc.c 68.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
/*
 * Copyright © 2014 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Ben Widawsky <ben@bwidawsk.net>
 *    Michel Thierry <michel.thierry@intel.com>
 *    Thomas Daniel <thomas.daniel@intel.com>
 *    Oscar Mateo <oscar.mateo@intel.com>
 *
 */

31 32 33 34
/**
 * DOC: Logical Rings, Logical Ring Contexts and Execlists
 *
 * Motivation:
35 36 37 38
 * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
 * These expanded contexts enable a number of new abilities, especially
 * "Execlists" (also implemented in this file).
 *
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
 * One of the main differences with the legacy HW contexts is that logical
 * ring contexts incorporate many more things to the context's state, like
 * PDPs or ringbuffer control registers:
 *
 * The reason why PDPs are included in the context is straightforward: as
 * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
 * contained there mean you don't need to do a ppgtt->switch_mm yourself,
 * instead, the GPU will do it for you on the context switch.
 *
 * But, what about the ringbuffer control registers (head, tail, etc..)?
 * shouldn't we just need a set of those per engine command streamer? This is
 * where the name "Logical Rings" starts to make sense: by virtualizing the
 * rings, the engine cs shifts to a new "ring buffer" with every context
 * switch. When you want to submit a workload to the GPU you: A) choose your
 * context, B) find its appropriate virtualized ring, C) write commands to it
 * and then, finally, D) tell the GPU to switch to that context.
 *
 * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
 * to a contexts is via a context execution list, ergo "Execlists".
 *
 * LRC implementation:
 * Regarding the creation of contexts, we have:
 *
 * - One global default context.
 * - One local default context for each opened fd.
 * - One local extra context for each context create ioctl call.
 *
 * Now that ringbuffers belong per-context (and not per-engine, like before)
 * and that contexts are uniquely tied to a given engine (and not reusable,
 * like before) we need:
 *
 * - One ringbuffer per-engine inside each context.
 * - One backing object per-engine inside each context.
 *
 * The global default context starts its life with these new objects fully
 * allocated and populated. The local default context for each opened fd is
 * more complex, because we don't know at creation time which engine is going
 * to use them. To handle this, we have implemented a deferred creation of LR
 * contexts:
 *
 * The local context starts its life as a hollow or blank holder, that only
 * gets populated for a given engine once we receive an execbuffer. If later
 * on we receive another execbuffer ioctl for the same context but a different
 * engine, we allocate/populate a new ringbuffer and context backing object and
 * so on.
 *
 * Finally, regarding local contexts created using the ioctl call: as they are
 * only allowed with the render ring, we can allocate & populate them right
 * away (no need to defer anything, at least for now).
 *
 * Execlists implementation:
90 91
 * Execlists are the new method by which, on gen8+ hardware, workloads are
 * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
 * This method works as follows:
 *
 * When a request is committed, its commands (the BB start and any leading or
 * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
 * for the appropriate context. The tail pointer in the hardware context is not
 * updated at this time, but instead, kept by the driver in the ringbuffer
 * structure. A structure representing this request is added to a request queue
 * for the appropriate engine: this structure contains a copy of the context's
 * tail after the request was written to the ring buffer and a pointer to the
 * context itself.
 *
 * If the engine's request queue was empty before the request was added, the
 * queue is processed immediately. Otherwise the queue will be processed during
 * a context switch interrupt. In any case, elements on the queue will get sent
 * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
 * globally unique 20-bits submission ID.
 *
 * When execution of a request completes, the GPU updates the context status
 * buffer with a context complete event and generates a context switch interrupt.
 * During the interrupt handling, the driver examines the events in the buffer:
 * for each context complete event, if the announced ID matches that on the head
 * of the request queue, then that request is retired and removed from the queue.
 *
 * After processing, if any requests were retired and the queue is not empty
 * then a new execution list can be submitted. The two requests at the front of
 * the queue are next to be submitted but since a context may not occur twice in
 * an execution list, if subsequent requests have the same ID as the first then
 * the two requests must be combined. This is done simply by discarding requests
 * at the head of the queue until either only one requests is left (in which case
 * we use a NULL second context) or the first two requests have unique IDs.
 *
 * By always executing the first two requests in the queue the driver ensures
 * that the GPU is kept as busy as possible. In the case where a single context
 * completes but a second context is still executing, the request for this second
 * context will be at the head of the queue when we remove the first one. This
 * request will then be resubmitted along with a new request for a different context,
 * which will cause the hardware to continue executing the second request and queue
 * the new request (the GPU detects the condition of a context getting preempted
 * with the same context and optimizes the context switch flow by not doing
 * preemption, but just sampling the new tail pointer).
 *
133
 */
134
#include <linux/interrupt.h>
135 136 137 138

#include <drm/drmP.h>
#include <drm/i915_drm.h>
#include "i915_drv.h"
139
#include "intel_mocs.h"
140

141
#define GEN9_LR_CONTEXT_RENDER_SIZE (22 * PAGE_SIZE)
142 143 144
#define GEN8_LR_CONTEXT_RENDER_SIZE (20 * PAGE_SIZE)
#define GEN8_LR_CONTEXT_OTHER_SIZE (2 * PAGE_SIZE)

145 146 147 148 149 150 151 152 153 154 155 156 157
#define RING_EXECLIST_QFULL		(1 << 0x2)
#define RING_EXECLIST1_VALID		(1 << 0x3)
#define RING_EXECLIST0_VALID		(1 << 0x4)
#define RING_EXECLIST_ACTIVE_STATUS	(3 << 0xE)
#define RING_EXECLIST1_ACTIVE		(1 << 0x11)
#define RING_EXECLIST0_ACTIVE		(1 << 0x12)

#define GEN8_CTX_STATUS_IDLE_ACTIVE	(1 << 0)
#define GEN8_CTX_STATUS_PREEMPTED	(1 << 1)
#define GEN8_CTX_STATUS_ELEMENT_SWITCH	(1 << 2)
#define GEN8_CTX_STATUS_ACTIVE_IDLE	(1 << 3)
#define GEN8_CTX_STATUS_COMPLETE	(1 << 4)
#define GEN8_CTX_STATUS_LITE_RESTORE	(1 << 15)
158

159 160 161 162 163
#define GEN8_CTX_STATUS_COMPLETED_MASK \
	 (GEN8_CTX_STATUS_ACTIVE_IDLE | \
	  GEN8_CTX_STATUS_PREEMPTED | \
	  GEN8_CTX_STATUS_ELEMENT_SWITCH)

164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192
#define CTX_LRI_HEADER_0		0x01
#define CTX_CONTEXT_CONTROL		0x02
#define CTX_RING_HEAD			0x04
#define CTX_RING_TAIL			0x06
#define CTX_RING_BUFFER_START		0x08
#define CTX_RING_BUFFER_CONTROL		0x0a
#define CTX_BB_HEAD_U			0x0c
#define CTX_BB_HEAD_L			0x0e
#define CTX_BB_STATE			0x10
#define CTX_SECOND_BB_HEAD_U		0x12
#define CTX_SECOND_BB_HEAD_L		0x14
#define CTX_SECOND_BB_STATE		0x16
#define CTX_BB_PER_CTX_PTR		0x18
#define CTX_RCS_INDIRECT_CTX		0x1a
#define CTX_RCS_INDIRECT_CTX_OFFSET	0x1c
#define CTX_LRI_HEADER_1		0x21
#define CTX_CTX_TIMESTAMP		0x22
#define CTX_PDP3_UDW			0x24
#define CTX_PDP3_LDW			0x26
#define CTX_PDP2_UDW			0x28
#define CTX_PDP2_LDW			0x2a
#define CTX_PDP1_UDW			0x2c
#define CTX_PDP1_LDW			0x2e
#define CTX_PDP0_UDW			0x30
#define CTX_PDP0_LDW			0x32
#define CTX_LRI_HEADER_2		0x41
#define CTX_R_PWR_CLK_STATE		0x42
#define CTX_GPGPU_CSR_BASE_ADDRESS	0x44

193 194 195 196 197
#define GEN8_CTX_VALID (1<<0)
#define GEN8_CTX_FORCE_PD_RESTORE (1<<1)
#define GEN8_CTX_FORCE_RESTORE (1<<2)
#define GEN8_CTX_L3LLC_COHERENT (1<<5)
#define GEN8_CTX_PRIVILEGE (1<<8)
198

199
#define ASSIGN_CTX_REG(reg_state, pos, reg, val) do { \
200
	(reg_state)[(pos)+0] = i915_mmio_reg_offset(reg); \
201 202 203 204
	(reg_state)[(pos)+1] = (val); \
} while (0)

#define ASSIGN_CTX_PDP(ppgtt, reg_state, n) do {		\
205
	const u64 _addr = i915_page_dir_dma_addr((ppgtt), (n));	\
206 207
	reg_state[CTX_PDP ## n ## _UDW+1] = upper_32_bits(_addr); \
	reg_state[CTX_PDP ## n ## _LDW+1] = lower_32_bits(_addr); \
208
} while (0)
209

210
#define ASSIGN_CTX_PML4(ppgtt, reg_state) do { \
211 212
	reg_state[CTX_PDP0_UDW + 1] = upper_32_bits(px_dma(&ppgtt->pml4)); \
	reg_state[CTX_PDP0_LDW + 1] = lower_32_bits(px_dma(&ppgtt->pml4)); \
213
} while (0)
214

215 216 217 218 219 220 221
enum {
	FAULT_AND_HANG = 0,
	FAULT_AND_HALT, /* Debug only */
	FAULT_AND_STREAM,
	FAULT_AND_CONTINUE /* Unsupported */
};
#define GEN8_CTX_ID_SHIFT 32
222
#define GEN8_CTX_ID_WIDTH 21
223 224
#define GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT	0x17
#define GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT	0x26
225

226 227 228
/* Typical size of the average request (2 pipecontrols and a MI_BB) */
#define EXECLISTS_REQUEST_SIZE 64 /* bytes */

229 230
#define WA_TAIL_DWORDS 2

231
static int execlists_context_deferred_alloc(struct i915_gem_context *ctx,
232
					    struct intel_engine_cs *engine);
233 234 235 236
static void execlists_init_reg_state(u32 *reg_state,
				     struct i915_gem_context *ctx,
				     struct intel_engine_cs *engine,
				     struct intel_ring *ring);
237

238 239
/**
 * intel_sanitize_enable_execlists() - sanitize i915.enable_execlists
240
 * @dev_priv: i915 device private
241 242 243
 * @enable_execlists: value of i915.enable_execlists module parameter.
 *
 * Only certain platforms support Execlists (the prerequisites being
244
 * support for Logical Ring Contexts and Aliasing PPGTT or better).
245 246 247
 *
 * Return: 1 if Execlists is supported and has to be enabled.
 */
248
int intel_sanitize_enable_execlists(struct drm_i915_private *dev_priv, int enable_execlists)
249
{
250 251 252
	/* On platforms with execlist available, vGPU will only
	 * support execlist mode, no ring buffer mode.
	 */
253
	if (HAS_LOGICAL_RING_CONTEXTS(dev_priv) && intel_vgpu_active(dev_priv))
254 255
		return 1;

256
	if (INTEL_GEN(dev_priv) >= 9)
257 258
		return 1;

259 260 261
	if (enable_execlists == 0)
		return 0;

262 263 264
	if (HAS_LOGICAL_RING_CONTEXTS(dev_priv) &&
	    USES_PPGTT(dev_priv) &&
	    i915.use_mmio_flip >= 0)
265 266 267 268
		return 1;

	return 0;
}
269

270
static void
271
logical_ring_init_platform_invariants(struct intel_engine_cs *engine)
272
{
273
	struct drm_i915_private *dev_priv = engine->i915;
274

275
	engine->disable_lite_restore_wa =
276
		IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1) &&
277
		(engine->id == VCS || engine->id == VCS2);
278

279
	engine->ctx_desc_template = GEN8_CTX_VALID;
280
	if (IS_GEN8(dev_priv))
281 282
		engine->ctx_desc_template |= GEN8_CTX_L3LLC_COHERENT;
	engine->ctx_desc_template |= GEN8_CTX_PRIVILEGE;
283 284 285 286 287 288 289

	/* TODO: WaDisableLiteRestore when we start using semaphore
	 * signalling between Command Streamers */
	/* ring->ctx_desc_template |= GEN8_CTX_FORCE_RESTORE; */

	/* WaEnableForceRestoreInCtxtDescForVCS:skl */
	/* WaEnableForceRestoreInCtxtDescForVCS:bxt */
290 291
	if (engine->disable_lite_restore_wa)
		engine->ctx_desc_template |= GEN8_CTX_FORCE_RESTORE;
292 293
}

294
/**
295 296 297
 * intel_lr_context_descriptor_update() - calculate & cache the descriptor
 * 					  descriptor for a pinned context
 * @ctx: Context to work on
298
 * @engine: Engine the descriptor will be used with
299
 *
300 301 302 303 304
 * The context descriptor encodes various attributes of a context,
 * including its GTT address and some flags. Because it's fairly
 * expensive to calculate, we'll just do it once and cache the result,
 * which remains valid until the context is unpinned.
 *
305 306 307 308 309 310 311
 * This is what a descriptor looks like, from LSB to MSB::
 *
 *      bits  0-11:    flags, GEN8_CTX_* (cached in ctx_desc_template)
 *      bits 12-31:    LRCA, GTT address of (the HWSP of) this context
 *      bits 32-52:    ctx ID, a globally unique tag
 *      bits 53-54:    mbz, reserved for use by hardware
 *      bits 55-63:    group ID, currently unused and set to 0
312
 */
313
static void
314
intel_lr_context_descriptor_update(struct i915_gem_context *ctx,
315
				   struct intel_engine_cs *engine)
316
{
317
	struct intel_context *ce = &ctx->engine[engine->id];
318
	u64 desc;
319

320
	BUILD_BUG_ON(MAX_CONTEXT_HW_ID > (1<<GEN8_CTX_ID_WIDTH));
321

322 323
	desc = ctx->desc_template;				/* bits  3-4  */
	desc |= engine->ctx_desc_template;			/* bits  0-11 */
324
	desc |= i915_ggtt_offset(ce->state) + LRC_PPHWSP_PN * PAGE_SIZE;
325
								/* bits 12-31 */
326
	desc |= (u64)ctx->hw_id << GEN8_CTX_ID_SHIFT;		/* bits 32-52 */
327

328
	ce->lrc_desc = desc;
329 330
}

331
uint64_t intel_lr_context_descriptor(struct i915_gem_context *ctx,
332
				     struct intel_engine_cs *engine)
333
{
334
	return ctx->engine[engine->id].lrc_desc;
335
}
336

337 338 339
static inline void
execlists_context_status_change(struct drm_i915_gem_request *rq,
				unsigned long status)
340
{
341 342 343 344 345 346
	/*
	 * Only used when GVT-g is enabled now. When GVT-g is disabled,
	 * The compiler should eliminate this function as dead-code.
	 */
	if (!IS_ENABLED(CONFIG_DRM_I915_GVT))
		return;
347

348
	atomic_notifier_call_chain(&rq->ctx->status_notifier, status, rq);
349 350
}

351 352 353 354 355 356 357 358 359
static void
execlists_update_context_pdps(struct i915_hw_ppgtt *ppgtt, u32 *reg_state)
{
	ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
	ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
	ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
	ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
}

360
static u64 execlists_update_context(struct drm_i915_gem_request *rq)
361
{
362
	struct intel_context *ce = &rq->ctx->engine[rq->engine->id];
363 364
	struct i915_hw_ppgtt *ppgtt =
		rq->ctx->ppgtt ?: rq->i915->mm.aliasing_ppgtt;
365
	u32 *reg_state = ce->lrc_reg_state;
366

C
Chris Wilson 已提交
367
	reg_state[CTX_RING_TAIL+1] = rq->tail;
368

369 370 371 372 373 374 375
	/* True 32b PPGTT with dynamic page allocation: update PDP
	 * registers and point the unallocated PDPs to scratch page.
	 * PML4 is allocated during ppgtt init, so this is not needed
	 * in 48-bit mode.
	 */
	if (ppgtt && !USES_FULL_48BIT_PPGTT(ppgtt->base.dev))
		execlists_update_context_pdps(ppgtt, reg_state);
376 377

	return ce->lrc_desc;
378 379
}

380
static void execlists_submit_ports(struct intel_engine_cs *engine)
381
{
382 383
	struct drm_i915_private *dev_priv = engine->i915;
	struct execlist_port *port = engine->execlist_port;
384 385 386 387
	u32 __iomem *elsp =
		dev_priv->regs + i915_mmio_reg_offset(RING_ELSP(engine));
	u64 desc[2];

388 389 390 391 392 393 394 395 396 397 398 399
	if (!port[0].count)
		execlists_context_status_change(port[0].request,
						INTEL_CONTEXT_SCHEDULE_IN);
	desc[0] = execlists_update_context(port[0].request);
	engine->preempt_wa = port[0].count++; /* bdw only? fixed on skl? */

	if (port[1].request) {
		GEM_BUG_ON(port[1].count);
		execlists_context_status_change(port[1].request,
						INTEL_CONTEXT_SCHEDULE_IN);
		desc[1] = execlists_update_context(port[1].request);
		port[1].count = 1;
400 401 402
	} else {
		desc[1] = 0;
	}
403
	GEM_BUG_ON(desc[0] == desc[1]);
404 405 406 407 408 409 410 411 412 413

	/* You must always write both descriptors in the order below. */
	writel(upper_32_bits(desc[1]), elsp);
	writel(lower_32_bits(desc[1]), elsp);

	writel(upper_32_bits(desc[0]), elsp);
	/* The context is automatically loaded after the following */
	writel(lower_32_bits(desc[0]), elsp);
}

414
static bool ctx_single_port_submission(const struct i915_gem_context *ctx)
415
{
416
	return (IS_ENABLED(CONFIG_DRM_I915_GVT) &&
417
		i915_gem_context_force_single_submission(ctx));
418
}
419

420 421 422 423 424
static bool can_merge_ctx(const struct i915_gem_context *prev,
			  const struct i915_gem_context *next)
{
	if (prev != next)
		return false;
425

426 427
	if (ctx_single_port_submission(prev))
		return false;
428

429
	return true;
430 431
}

432
static void execlists_dequeue(struct intel_engine_cs *engine)
433
{
434
	struct drm_i915_gem_request *last;
435
	struct execlist_port *port = engine->execlist_port;
436
	unsigned long flags;
437
	struct rb_node *rb;
438 439 440 441 442 443
	bool submit = false;

	last = port->request;
	if (last)
		/* WaIdleLiteRestore:bdw,skl
		 * Apply the wa NOOPs to prevent ring:HEAD == req:TAIL
444
		 * as we resubmit the request. See gen8_emit_breadcrumb()
445 446 447 448
		 * for where we prepare the padding after the end of the
		 * request.
		 */
		last->tail = last->wa_tail;
449

450
	GEM_BUG_ON(port[1].request);
451

452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470
	/* Hardware submission is through 2 ports. Conceptually each port
	 * has a (RING_START, RING_HEAD, RING_TAIL) tuple. RING_START is
	 * static for a context, and unique to each, so we only execute
	 * requests belonging to a single context from each ring. RING_HEAD
	 * is maintained by the CS in the context image, it marks the place
	 * where it got up to last time, and through RING_TAIL we tell the CS
	 * where we want to execute up to this time.
	 *
	 * In this list the requests are in order of execution. Consecutive
	 * requests from the same context are adjacent in the ringbuffer. We
	 * can combine these requests into a single RING_TAIL update:
	 *
	 *              RING_HEAD...req1...req2
	 *                                    ^- RING_TAIL
	 * since to execute req2 the CS must first execute req1.
	 *
	 * Our goal then is to point each port to the end of a consecutive
	 * sequence of requests as being the most optimal (fewest wake ups
	 * and context switches) submission.
471
	 */
472

473
	spin_lock_irqsave(&engine->timeline->lock, flags);
474 475 476 477 478
	rb = engine->execlist_first;
	while (rb) {
		struct drm_i915_gem_request *cursor =
			rb_entry(rb, typeof(*cursor), priotree.node);

479 480 481
		/* Can we combine this request with the current port? It has to
		 * be the same context/ringbuffer and not have any exceptions
		 * (e.g. GVT saying never to combine contexts).
482
		 *
483 484 485 486
		 * If we can combine the requests, we can execute both by
		 * updating the RING_TAIL to point to the end of the second
		 * request, and so we never need to tell the hardware about
		 * the first.
487
		 */
488 489 490 491 492 493 494 495 496 497 498 499 500
		if (last && !can_merge_ctx(cursor->ctx, last->ctx)) {
			/* If we are on the second port and cannot combine
			 * this request with the last, then we are done.
			 */
			if (port != engine->execlist_port)
				break;

			/* If GVT overrides us we only ever submit port[0],
			 * leaving port[1] empty. Note that we also have
			 * to be careful that we don't queue the same
			 * context (even though a different request) to
			 * the second port.
			 */
501 502
			if (ctx_single_port_submission(last->ctx) ||
			    ctx_single_port_submission(cursor->ctx))
503 504 505 506 507 508 509
				break;

			GEM_BUG_ON(last->ctx == cursor->ctx);

			i915_gem_request_assign(&port->request, last);
			port++;
		}
510

511 512 513 514 515
		rb = rb_next(rb);
		rb_erase(&cursor->priotree.node, &engine->execlist_queue);
		RB_CLEAR_NODE(&cursor->priotree.node);
		cursor->priotree.priority = INT_MAX;

516
		__i915_gem_request_submit(cursor);
517 518 519 520 521
		last = cursor;
		submit = true;
	}
	if (submit) {
		i915_gem_request_assign(&port->request, last);
522
		engine->execlist_first = rb;
523
	}
524
	spin_unlock_irqrestore(&engine->timeline->lock, flags);
525

526 527
	if (submit)
		execlists_submit_ports(engine);
528 529
}

530
static bool execlists_elsp_idle(struct intel_engine_cs *engine)
531
{
532
	return !engine->execlist_port[0].request;
533 534
}

535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556
/**
 * intel_execlists_idle() - Determine if all engine submission ports are idle
 * @dev_priv: i915 device private
 *
 * Return true if there are no requests pending on any of the submission ports
 * of any engines.
 */
bool intel_execlists_idle(struct drm_i915_private *dev_priv)
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

	if (!i915.enable_execlists)
		return true;

	for_each_engine(engine, dev_priv, id)
		if (!execlists_elsp_idle(engine))
			return false;

	return true;
}

557
static bool execlists_elsp_ready(struct intel_engine_cs *engine)
B
Ben Widawsky 已提交
558
{
559
	int port;
B
Ben Widawsky 已提交
560

561 562 563
	port = 1; /* wait for a free slot */
	if (engine->disable_lite_restore_wa || engine->preempt_wa)
		port = 0; /* wait for GPU to be idle before continuing */
564

565
	return !engine->execlist_port[port].request;
B
Ben Widawsky 已提交
566 567
}

568
/*
569 570 571
 * Check the unread Context Status Buffers and manage the submission of new
 * contexts to the ELSP accordingly.
 */
572
static void intel_lrc_irq_handler(unsigned long data)
573
{
574
	struct intel_engine_cs *engine = (struct intel_engine_cs *)data;
575
	struct execlist_port *port = engine->execlist_port;
576
	struct drm_i915_private *dev_priv = engine->i915;
577

578
	intel_uncore_forcewake_get(dev_priv, engine->fw_domains);
579

580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610
	if (!execlists_elsp_idle(engine)) {
		u32 __iomem *csb_mmio =
			dev_priv->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_PTR(engine));
		u32 __iomem *buf =
			dev_priv->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_BUF_LO(engine, 0));
		unsigned int csb, head, tail;

		csb = readl(csb_mmio);
		head = GEN8_CSB_READ_PTR(csb);
		tail = GEN8_CSB_WRITE_PTR(csb);
		if (tail < head)
			tail += GEN8_CSB_ENTRIES;
		while (head < tail) {
			unsigned int idx = ++head % GEN8_CSB_ENTRIES;
			unsigned int status = readl(buf + 2 * idx);

			if (!(status & GEN8_CTX_STATUS_COMPLETED_MASK))
				continue;

			GEM_BUG_ON(port[0].count == 0);
			if (--port[0].count == 0) {
				GEM_BUG_ON(status & GEN8_CTX_STATUS_PREEMPTED);
				execlists_context_status_change(port[0].request,
								INTEL_CONTEXT_SCHEDULE_OUT);

				i915_gem_request_put(port[0].request);
				port[0] = port[1];
				memset(&port[1], 0, sizeof(port[1]));

				engine->preempt_wa = false;
			}
611

612 613
			GEM_BUG_ON(port[0].count == 0 &&
				   !(status & GEN8_CTX_STATUS_ACTIVE_IDLE));
614 615
		}

616 617 618
		writel(_MASKED_FIELD(GEN8_CSB_READ_PTR_MASK,
				     GEN8_CSB_WRITE_PTR(csb) << 8),
		       csb_mmio);
619 620
	}

621 622
	if (execlists_elsp_ready(engine))
		execlists_dequeue(engine);
623

624
	intel_uncore_forcewake_put(dev_priv, engine->fw_domains);
625 626
}

627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652
static bool insert_request(struct i915_priotree *pt, struct rb_root *root)
{
	struct rb_node **p, *rb;
	bool first = true;

	/* most positive priority is scheduled first, equal priorities fifo */
	rb = NULL;
	p = &root->rb_node;
	while (*p) {
		struct i915_priotree *pos;

		rb = *p;
		pos = rb_entry(rb, typeof(*pos), node);
		if (pt->priority > pos->priority) {
			p = &rb->rb_left;
		} else {
			p = &rb->rb_right;
			first = false;
		}
	}
	rb_link_node(&pt->node, rb, p);
	rb_insert_color(&pt->node, root);

	return first;
}

653
static void execlists_submit_request(struct drm_i915_gem_request *request)
654
{
655
	struct intel_engine_cs *engine = request->engine;
656
	unsigned long flags;
657

658 659
	/* Will be called from irq-context when using foreign fences. */
	spin_lock_irqsave(&engine->timeline->lock, flags);
660

661 662
	if (insert_request(&request->priotree, &engine->execlist_queue))
		engine->execlist_first = &request->priotree.node;
663 664
	if (execlists_elsp_idle(engine))
		tasklet_hi_schedule(&engine->irq_tasklet);
665

666
	spin_unlock_irqrestore(&engine->timeline->lock, flags);
667 668
}

669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695
static struct intel_engine_cs *
pt_lock_engine(struct i915_priotree *pt, struct intel_engine_cs *locked)
{
	struct intel_engine_cs *engine;

	engine = container_of(pt,
			      struct drm_i915_gem_request,
			      priotree)->engine;
	if (engine != locked) {
		if (locked)
			spin_unlock_irq(&locked->timeline->lock);
		spin_lock_irq(&engine->timeline->lock);
	}

	return engine;
}

static void execlists_schedule(struct drm_i915_gem_request *request, int prio)
{
	struct intel_engine_cs *engine = NULL;
	struct i915_dependency *dep, *p;
	struct i915_dependency stack;
	LIST_HEAD(dfs);

	if (prio <= READ_ONCE(request->priotree.priority))
		return;

696 697
	/* Need BKL in order to use the temporary link inside i915_dependency */
	lockdep_assert_held(&request->i915->drm.struct_mutex);
698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725

	stack.signaler = &request->priotree;
	list_add(&stack.dfs_link, &dfs);

	/* Recursively bump all dependent priorities to match the new request.
	 *
	 * A naive approach would be to use recursion:
	 * static void update_priorities(struct i915_priotree *pt, prio) {
	 *	list_for_each_entry(dep, &pt->signalers_list, signal_link)
	 *		update_priorities(dep->signal, prio)
	 *	insert_request(pt);
	 * }
	 * but that may have unlimited recursion depth and so runs a very
	 * real risk of overunning the kernel stack. Instead, we build
	 * a flat list of all dependencies starting with the current request.
	 * As we walk the list of dependencies, we add all of its dependencies
	 * to the end of the list (this may include an already visited
	 * request) and continue to walk onwards onto the new dependencies. The
	 * end result is a topological list of requests in reverse order, the
	 * last element in the list is the request we must execute first.
	 */
	list_for_each_entry_safe(dep, p, &dfs, dfs_link) {
		struct i915_priotree *pt = dep->signaler;

		list_for_each_entry(p, &pt->signalers_list, signal_link)
			if (prio > READ_ONCE(p->signaler->priority))
				list_move_tail(&p->dfs_link, &dfs);

726
		list_safe_reset_next(dep, p, dfs_link);
727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766
		if (!RB_EMPTY_NODE(&pt->node))
			continue;

		engine = pt_lock_engine(pt, engine);

		/* If it is not already in the rbtree, we can update the
		 * priority inplace and skip over it (and its dependencies)
		 * if it is referenced *again* as we descend the dfs.
		 */
		if (prio > pt->priority && RB_EMPTY_NODE(&pt->node)) {
			pt->priority = prio;
			list_del_init(&dep->dfs_link);
		}
	}

	/* Fifo and depth-first replacement ensure our deps execute before us */
	list_for_each_entry_safe_reverse(dep, p, &dfs, dfs_link) {
		struct i915_priotree *pt = dep->signaler;

		INIT_LIST_HEAD(&dep->dfs_link);

		engine = pt_lock_engine(pt, engine);

		if (prio <= pt->priority)
			continue;

		GEM_BUG_ON(RB_EMPTY_NODE(&pt->node));

		pt->priority = prio;
		rb_erase(&pt->node, &engine->execlist_queue);
		if (insert_request(pt, &engine->execlist_queue))
			engine->execlist_first = &pt->node;
	}

	if (engine)
		spin_unlock_irq(&engine->timeline->lock);

	/* XXX Do we need to preempt to make room for us and our deps? */
}

767 768
static int execlists_context_pin(struct intel_engine_cs *engine,
				 struct i915_gem_context *ctx)
769
{
770
	struct intel_context *ce = &ctx->engine[engine->id];
771
	unsigned int flags;
772
	void *vaddr;
773
	int ret;
774

775
	lockdep_assert_held(&ctx->i915->drm.struct_mutex);
776

777
	if (ce->pin_count++)
778 779
		return 0;

780 781 782 783 784
	if (!ce->state) {
		ret = execlists_context_deferred_alloc(ctx, engine);
		if (ret)
			goto err;
	}
785
	GEM_BUG_ON(!ce->state);
786

787 788 789
	flags = PIN_GLOBAL;
	if (ctx->ggtt_offset_bias)
		flags |= PIN_OFFSET_BIAS | ctx->ggtt_offset_bias;
790
	if (i915_gem_context_is_kernel(ctx))
791 792 793
		flags |= PIN_HIGH;

	ret = i915_vma_pin(ce->state, 0, GEN8_LR_CONTEXT_ALIGN, flags);
794
	if (ret)
795
		goto err;
796

797
	vaddr = i915_gem_object_pin_map(ce->state->obj, I915_MAP_WB);
798 799
	if (IS_ERR(vaddr)) {
		ret = PTR_ERR(vaddr);
800
		goto unpin_vma;
801 802
	}

803
	ret = intel_ring_pin(ce->ring, ctx->ggtt_offset_bias);
804
	if (ret)
805
		goto unpin_map;
806

807
	intel_lr_context_descriptor_update(ctx, engine);
808

809 810
	ce->lrc_reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;
	ce->lrc_reg_state[CTX_RING_BUFFER_START+1] =
811
		i915_ggtt_offset(ce->ring->vma);
812

C
Chris Wilson 已提交
813
	ce->state->obj->mm.dirty = true;
814

815
	i915_gem_context_get(ctx);
816
	return 0;
817

818
unpin_map:
819 820 821
	i915_gem_object_unpin_map(ce->state->obj);
unpin_vma:
	__i915_vma_unpin(ce->state);
822
err:
823
	ce->pin_count = 0;
824 825 826
	return ret;
}

827 828
static void execlists_context_unpin(struct intel_engine_cs *engine,
				    struct i915_gem_context *ctx)
829
{
830
	struct intel_context *ce = &ctx->engine[engine->id];
831

832
	lockdep_assert_held(&ctx->i915->drm.struct_mutex);
833
	GEM_BUG_ON(ce->pin_count == 0);
834

835
	if (--ce->pin_count)
836
		return;
837

838
	intel_ring_unpin(ce->ring);
839

840 841
	i915_gem_object_unpin_map(ce->state->obj);
	i915_vma_unpin(ce->state);
842

843
	i915_gem_context_put(ctx);
844 845
}

846
static int execlists_request_alloc(struct drm_i915_gem_request *request)
847 848 849 850 851
{
	struct intel_engine_cs *engine = request->engine;
	struct intel_context *ce = &request->ctx->engine[engine->id];
	int ret;

852 853
	GEM_BUG_ON(!ce->pin_count);

854 855 856 857 858 859
	/* Flush enough space to reduce the likelihood of waiting after
	 * we start building the request - in which case we will just
	 * have to repeat work.
	 */
	request->reserved_space += EXECLISTS_REQUEST_SIZE;

860
	GEM_BUG_ON(!ce->ring);
861 862 863 864 865 866 867 868 869 870
	request->ring = ce->ring;

	if (i915.enable_guc_submission) {
		/*
		 * Check that the GuC has space for the request before
		 * going any further, as the i915_add_request() call
		 * later on mustn't fail ...
		 */
		ret = i915_guc_wq_reserve(request);
		if (ret)
871
			goto err;
872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898
	}

	ret = intel_ring_begin(request, 0);
	if (ret)
		goto err_unreserve;

	if (!ce->initialised) {
		ret = engine->init_context(request);
		if (ret)
			goto err_unreserve;

		ce->initialised = true;
	}

	/* Note that after this point, we have committed to using
	 * this request as it is being used to both track the
	 * state of engine initialisation and liveness of the
	 * golden renderstate above. Think twice before you try
	 * to cancel/unwind this request now.
	 */

	request->reserved_space -= EXECLISTS_REQUEST_SIZE;
	return 0;

err_unreserve:
	if (i915.enable_guc_submission)
		i915_guc_wq_unreserve(request);
899
err:
900 901 902
	return ret;
}

903
static int intel_logical_ring_workarounds_emit(struct drm_i915_gem_request *req)
904 905
{
	int ret, i;
906
	struct intel_ring *ring = req->ring;
907
	struct i915_workarounds *w = &req->i915->workarounds;
908

909
	if (w->count == 0)
910 911
		return 0;

912
	ret = req->engine->emit_flush(req, EMIT_BARRIER);
913 914 915
	if (ret)
		return ret;

916
	ret = intel_ring_begin(req, w->count * 2 + 2);
917 918 919
	if (ret)
		return ret;

920
	intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(w->count));
921
	for (i = 0; i < w->count; i++) {
922 923
		intel_ring_emit_reg(ring, w->reg[i].addr);
		intel_ring_emit(ring, w->reg[i].value);
924
	}
925
	intel_ring_emit(ring, MI_NOOP);
926

927
	intel_ring_advance(ring);
928

929
	ret = req->engine->emit_flush(req, EMIT_BARRIER);
930 931 932 933 934 935
	if (ret)
		return ret;

	return 0;
}

936
#define wa_ctx_emit(batch, index, cmd)					\
937
	do {								\
938 939
		int __index = (index)++;				\
		if (WARN_ON(__index >= (PAGE_SIZE / sizeof(uint32_t)))) { \
940 941
			return -ENOSPC;					\
		}							\
942
		batch[__index] = (cmd);					\
943 944
	} while (0)

V
Ville Syrjälä 已提交
945
#define wa_ctx_emit_reg(batch, index, reg) \
946
	wa_ctx_emit((batch), (index), i915_mmio_reg_offset(reg))
947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963

/*
 * In this WA we need to set GEN8_L3SQCREG4[21:21] and reset it after
 * PIPE_CONTROL instruction. This is required for the flush to happen correctly
 * but there is a slight complication as this is applied in WA batch where the
 * values are only initialized once so we cannot take register value at the
 * beginning and reuse it further; hence we save its value to memory, upload a
 * constant value with bit21 set and then we restore it back with the saved value.
 * To simplify the WA, a constant value is formed by using the default value
 * of this register. This shouldn't be a problem because we are only modifying
 * it for a short period and this batch in non-premptible. We can ofcourse
 * use additional instructions that read the actual value of the register
 * at that time and set our bit of interest but it makes the WA complicated.
 *
 * This WA is also required for Gen9 so extracting as a function avoids
 * code duplication.
 */
964
static inline int gen8_emit_flush_coherentl3_wa(struct intel_engine_cs *engine,
965
						uint32_t *batch,
966 967 968 969
						uint32_t index)
{
	uint32_t l3sqc4_flush = (0x40400000 | GEN8_LQSC_FLUSH_COHERENT_LINES);

970
	wa_ctx_emit(batch, index, (MI_STORE_REGISTER_MEM_GEN8 |
971
				   MI_SRM_LRM_GLOBAL_GTT));
V
Ville Syrjälä 已提交
972
	wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
973
	wa_ctx_emit(batch, index, i915_ggtt_offset(engine->scratch) + 256);
974 975 976
	wa_ctx_emit(batch, index, 0);

	wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
V
Ville Syrjälä 已提交
977
	wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
978 979 980 981 982 983 984 985 986 987
	wa_ctx_emit(batch, index, l3sqc4_flush);

	wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
	wa_ctx_emit(batch, index, (PIPE_CONTROL_CS_STALL |
				   PIPE_CONTROL_DC_FLUSH_ENABLE));
	wa_ctx_emit(batch, index, 0);
	wa_ctx_emit(batch, index, 0);
	wa_ctx_emit(batch, index, 0);
	wa_ctx_emit(batch, index, 0);

988
	wa_ctx_emit(batch, index, (MI_LOAD_REGISTER_MEM_GEN8 |
989
				   MI_SRM_LRM_GLOBAL_GTT));
V
Ville Syrjälä 已提交
990
	wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
991
	wa_ctx_emit(batch, index, i915_ggtt_offset(engine->scratch) + 256);
992
	wa_ctx_emit(batch, index, 0);
993 994 995 996

	return index;
}

997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015
static inline uint32_t wa_ctx_start(struct i915_wa_ctx_bb *wa_ctx,
				    uint32_t offset,
				    uint32_t start_alignment)
{
	return wa_ctx->offset = ALIGN(offset, start_alignment);
}

static inline int wa_ctx_end(struct i915_wa_ctx_bb *wa_ctx,
			     uint32_t offset,
			     uint32_t size_alignment)
{
	wa_ctx->size = offset - wa_ctx->offset;

	WARN(wa_ctx->size % size_alignment,
	     "wa_ctx_bb failed sanity checks: size %d is not aligned to %d\n",
	     wa_ctx->size, size_alignment);
	return 0;
}

1016 1017 1018 1019 1020 1021
/*
 * Typically we only have one indirect_ctx and per_ctx batch buffer which are
 * initialized at the beginning and shared across all contexts but this field
 * helps us to have multiple batches at different offsets and select them based
 * on a criteria. At the moment this batch always start at the beginning of the page
 * and at this point we don't have multiple wa_ctx batch buffers.
1022
 *
1023 1024
 * The number of WA applied are not known at the beginning; we use this field
 * to return the no of DWORDS written.
1025
 *
1026 1027 1028 1029
 * It is to be noted that this batch does not contain MI_BATCH_BUFFER_END
 * so it adds NOOPs as padding to make it cacheline aligned.
 * MI_BATCH_BUFFER_END will be added to perctx batch and both of them together
 * makes a complete batch buffer.
1030
 */
1031
static int gen8_init_indirectctx_bb(struct intel_engine_cs *engine,
1032
				    struct i915_wa_ctx_bb *wa_ctx,
1033
				    uint32_t *batch,
1034 1035
				    uint32_t *offset)
{
1036
	uint32_t scratch_addr;
1037 1038
	uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);

1039
	/* WaDisableCtxRestoreArbitration:bdw,chv */
1040
	wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_DISABLE);
1041

1042
	/* WaFlushCoherentL3CacheLinesAtContextSwitch:bdw */
1043
	if (IS_BROADWELL(engine->i915)) {
1044
		int rc = gen8_emit_flush_coherentl3_wa(engine, batch, index);
1045 1046 1047
		if (rc < 0)
			return rc;
		index = rc;
1048 1049
	}

1050 1051
	/* WaClearSlmSpaceAtContextSwitch:bdw,chv */
	/* Actual scratch location is at 128 bytes offset */
1052
	scratch_addr = i915_ggtt_offset(engine->scratch) + 2 * CACHELINE_BYTES;
1053

1054 1055 1056 1057 1058 1059 1060 1061 1062
	wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
	wa_ctx_emit(batch, index, (PIPE_CONTROL_FLUSH_L3 |
				   PIPE_CONTROL_GLOBAL_GTT_IVB |
				   PIPE_CONTROL_CS_STALL |
				   PIPE_CONTROL_QW_WRITE));
	wa_ctx_emit(batch, index, scratch_addr);
	wa_ctx_emit(batch, index, 0);
	wa_ctx_emit(batch, index, 0);
	wa_ctx_emit(batch, index, 0);
1063

1064 1065
	/* Pad to end of cacheline */
	while (index % CACHELINE_DWORDS)
1066
		wa_ctx_emit(batch, index, MI_NOOP);
1067 1068 1069 1070 1071 1072 1073 1074 1075 1076

	/*
	 * MI_BATCH_BUFFER_END is not required in Indirect ctx BB because
	 * execution depends on the length specified in terms of cache lines
	 * in the register CTX_RCS_INDIRECT_CTX
	 */

	return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
}

1077 1078 1079
/*
 *  This batch is started immediately after indirect_ctx batch. Since we ensure
 *  that indirect_ctx ends on a cacheline this batch is aligned automatically.
1080
 *
1081
 *  The number of DWORDS written are returned using this field.
1082 1083 1084 1085
 *
 *  This batch is terminated with MI_BATCH_BUFFER_END and so we need not add padding
 *  to align it with cacheline as padding after MI_BATCH_BUFFER_END is redundant.
 */
1086
static int gen8_init_perctx_bb(struct intel_engine_cs *engine,
1087
			       struct i915_wa_ctx_bb *wa_ctx,
1088
			       uint32_t *batch,
1089 1090 1091 1092
			       uint32_t *offset)
{
	uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);

1093
	/* WaDisableCtxRestoreArbitration:bdw,chv */
1094
	wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_ENABLE);
1095

1096
	wa_ctx_emit(batch, index, MI_BATCH_BUFFER_END);
1097 1098 1099 1100

	return wa_ctx_end(wa_ctx, *offset = index, 1);
}

1101
static int gen9_init_indirectctx_bb(struct intel_engine_cs *engine,
1102
				    struct i915_wa_ctx_bb *wa_ctx,
1103
				    uint32_t *batch,
1104 1105
				    uint32_t *offset)
{
1106
	int ret;
D
Dave Airlie 已提交
1107
	struct drm_i915_private *dev_priv = engine->i915;
1108 1109
	uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);

1110 1111
	/* WaDisableCtxRestoreArbitration:bxt */
	if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1))
1112
		wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_DISABLE);
1113

1114
	/* WaFlushCoherentL3CacheLinesAtContextSwitch:skl,bxt */
1115
	ret = gen8_emit_flush_coherentl3_wa(engine, batch, index);
1116 1117 1118 1119
	if (ret < 0)
		return ret;
	index = ret;

1120 1121 1122 1123 1124 1125 1126
	/* WaDisableGatherAtSetShaderCommonSlice:skl,bxt,kbl */
	wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
	wa_ctx_emit_reg(batch, index, COMMON_SLICE_CHICKEN2);
	wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(
			    GEN9_DISABLE_GATHER_AT_SET_SHADER_COMMON_SLICE));
	wa_ctx_emit(batch, index, MI_NOOP);

1127 1128
	/* WaClearSlmSpaceAtContextSwitch:kbl */
	/* Actual scratch location is at 128 bytes offset */
1129
	if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_A0)) {
1130
		u32 scratch_addr =
1131
			i915_ggtt_offset(engine->scratch) + 2 * CACHELINE_BYTES;
1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142

		wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
		wa_ctx_emit(batch, index, (PIPE_CONTROL_FLUSH_L3 |
					   PIPE_CONTROL_GLOBAL_GTT_IVB |
					   PIPE_CONTROL_CS_STALL |
					   PIPE_CONTROL_QW_WRITE));
		wa_ctx_emit(batch, index, scratch_addr);
		wa_ctx_emit(batch, index, 0);
		wa_ctx_emit(batch, index, 0);
		wa_ctx_emit(batch, index, 0);
	}
1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167

	/* WaMediaPoolStateCmdInWABB:bxt */
	if (HAS_POOLED_EU(engine->i915)) {
		/*
		 * EU pool configuration is setup along with golden context
		 * during context initialization. This value depends on
		 * device type (2x6 or 3x6) and needs to be updated based
		 * on which subslice is disabled especially for 2x6
		 * devices, however it is safe to load default
		 * configuration of 3x6 device instead of masking off
		 * corresponding bits because HW ignores bits of a disabled
		 * subslice and drops down to appropriate config. Please
		 * see render_state_setup() in i915_gem_render_state.c for
		 * possible configurations, to avoid duplication they are
		 * not shown here again.
		 */
		u32 eu_pool_config = 0x00777000;
		wa_ctx_emit(batch, index, GEN9_MEDIA_POOL_STATE);
		wa_ctx_emit(batch, index, GEN9_MEDIA_POOL_ENABLE);
		wa_ctx_emit(batch, index, eu_pool_config);
		wa_ctx_emit(batch, index, 0);
		wa_ctx_emit(batch, index, 0);
		wa_ctx_emit(batch, index, 0);
	}

1168 1169 1170 1171 1172 1173 1174
	/* Pad to end of cacheline */
	while (index % CACHELINE_DWORDS)
		wa_ctx_emit(batch, index, MI_NOOP);

	return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
}

1175
static int gen9_init_perctx_bb(struct intel_engine_cs *engine,
1176
			       struct i915_wa_ctx_bb *wa_ctx,
1177
			       uint32_t *batch,
1178 1179 1180 1181
			       uint32_t *offset)
{
	uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);

1182 1183
	/* WaSetDisablePixMaskCammingAndRhwoInCommonSliceChicken:bxt */
	if (IS_BXT_REVID(engine->i915, 0, BXT_REVID_A1)) {
1184
		wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
V
Ville Syrjälä 已提交
1185
		wa_ctx_emit_reg(batch, index, GEN9_SLICE_COMMON_ECO_CHICKEN0);
1186 1187 1188 1189 1190
		wa_ctx_emit(batch, index,
			    _MASKED_BIT_ENABLE(DISABLE_PIXEL_MASK_CAMMING));
		wa_ctx_emit(batch, index, MI_NOOP);
	}

1191
	/* WaClearTdlStateAckDirtyBits:bxt */
1192
	if (IS_BXT_REVID(engine->i915, 0, BXT_REVID_B0)) {
1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209
		wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(4));

		wa_ctx_emit_reg(batch, index, GEN8_STATE_ACK);
		wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(GEN9_SUBSLICE_TDL_ACK_BITS));

		wa_ctx_emit_reg(batch, index, GEN9_STATE_ACK_SLICE1);
		wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(GEN9_SUBSLICE_TDL_ACK_BITS));

		wa_ctx_emit_reg(batch, index, GEN9_STATE_ACK_SLICE2);
		wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(GEN9_SUBSLICE_TDL_ACK_BITS));

		wa_ctx_emit_reg(batch, index, GEN7_ROW_CHICKEN2);
		/* dummy write to CS, mask bits are 0 to ensure the register is not modified */
		wa_ctx_emit(batch, index, 0x0);
		wa_ctx_emit(batch, index, MI_NOOP);
	}

1210 1211
	/* WaDisableCtxRestoreArbitration:bxt */
	if (IS_BXT_REVID(engine->i915, 0, BXT_REVID_A1))
1212 1213
		wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_ENABLE);

1214 1215 1216 1217 1218
	wa_ctx_emit(batch, index, MI_BATCH_BUFFER_END);

	return wa_ctx_end(wa_ctx, *offset = index, 1);
}

1219
static int lrc_setup_wa_ctx_obj(struct intel_engine_cs *engine, u32 size)
1220
{
1221 1222 1223
	struct drm_i915_gem_object *obj;
	struct i915_vma *vma;
	int err;
1224

1225
	obj = i915_gem_object_create(engine->i915, PAGE_ALIGN(size));
1226 1227
	if (IS_ERR(obj))
		return PTR_ERR(obj);
1228

1229
	vma = i915_vma_instance(obj, &engine->i915->ggtt.base, NULL);
1230 1231 1232
	if (IS_ERR(vma)) {
		err = PTR_ERR(vma);
		goto err;
1233 1234
	}

1235 1236 1237 1238 1239
	err = i915_vma_pin(vma, 0, PAGE_SIZE, PIN_GLOBAL | PIN_HIGH);
	if (err)
		goto err;

	engine->wa_ctx.vma = vma;
1240
	return 0;
1241 1242 1243 1244

err:
	i915_gem_object_put(obj);
	return err;
1245 1246
}

1247
static void lrc_destroy_wa_ctx_obj(struct intel_engine_cs *engine)
1248
{
1249
	i915_vma_unpin_and_release(&engine->wa_ctx.vma);
1250 1251
}

1252
static int intel_init_workaround_bb(struct intel_engine_cs *engine)
1253
{
1254
	struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
1255 1256 1257
	uint32_t *batch;
	uint32_t offset;
	struct page *page;
1258
	int ret;
1259

1260
	WARN_ON(engine->id != RCS);
1261

1262
	/* update this when WA for higher Gen are added */
1263
	if (INTEL_GEN(engine->i915) > 9) {
1264
		DRM_ERROR("WA batch buffer is not initialized for Gen%d\n",
1265
			  INTEL_GEN(engine->i915));
1266
		return 0;
1267
	}
1268

1269
	/* some WA perform writes to scratch page, ensure it is valid */
1270
	if (!engine->scratch) {
1271
		DRM_ERROR("scratch page not allocated for %s\n", engine->name);
1272 1273 1274
		return -EINVAL;
	}

1275
	ret = lrc_setup_wa_ctx_obj(engine, PAGE_SIZE);
1276 1277 1278 1279 1280
	if (ret) {
		DRM_DEBUG_DRIVER("Failed to setup context WA page: %d\n", ret);
		return ret;
	}

1281
	page = i915_gem_object_get_dirty_page(wa_ctx->vma->obj, 0);
1282 1283 1284
	batch = kmap_atomic(page);
	offset = 0;

1285
	if (IS_GEN8(engine->i915)) {
1286
		ret = gen8_init_indirectctx_bb(engine,
1287 1288 1289 1290 1291 1292
					       &wa_ctx->indirect_ctx,
					       batch,
					       &offset);
		if (ret)
			goto out;

1293
		ret = gen8_init_perctx_bb(engine,
1294 1295 1296 1297 1298
					  &wa_ctx->per_ctx,
					  batch,
					  &offset);
		if (ret)
			goto out;
1299
	} else if (IS_GEN9(engine->i915)) {
1300
		ret = gen9_init_indirectctx_bb(engine,
1301 1302 1303 1304 1305 1306
					       &wa_ctx->indirect_ctx,
					       batch,
					       &offset);
		if (ret)
			goto out;

1307
		ret = gen9_init_perctx_bb(engine,
1308 1309 1310 1311 1312
					  &wa_ctx->per_ctx,
					  batch,
					  &offset);
		if (ret)
			goto out;
1313 1314 1315 1316 1317
	}

out:
	kunmap_atomic(batch);
	if (ret)
1318
		lrc_destroy_wa_ctx_obj(engine);
1319 1320 1321 1322

	return ret;
}

1323
static int gen8_init_common_ring(struct intel_engine_cs *engine)
1324
{
1325
	struct drm_i915_private *dev_priv = engine->i915;
1326 1327 1328 1329 1330
	int ret;

	ret = intel_mocs_init_engine(engine);
	if (ret)
		return ret;
1331

1332
	intel_engine_reset_breadcrumbs(engine);
1333
	intel_engine_init_hangcheck(engine);
1334

1335 1336
	I915_WRITE(RING_HWSTAM(engine->mmio_base), 0xffffffff);
	I915_WRITE(RING_MODE_GEN7(engine),
1337 1338
		   _MASKED_BIT_DISABLE(GFX_REPLAY_MODE) |
		   _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE));
1339 1340 1341
	I915_WRITE(RING_HWS_PGA(engine->mmio_base),
		   engine->status_page.ggtt_offset);
	POSTING_READ(RING_HWS_PGA(engine->mmio_base));
1342

1343
	DRM_DEBUG_DRIVER("Execlists enabled for %s\n", engine->name);
1344

1345 1346 1347 1348
	/* After a GPU reset, we may have requests to replay */
	if (!execlists_elsp_idle(engine)) {
		engine->execlist_port[0].count = 0;
		engine->execlist_port[1].count = 0;
1349
		execlists_submit_ports(engine);
1350
	}
1351 1352

	return 0;
1353 1354
}

1355
static int gen8_init_render_ring(struct intel_engine_cs *engine)
1356
{
1357
	struct drm_i915_private *dev_priv = engine->i915;
1358 1359
	int ret;

1360
	ret = gen8_init_common_ring(engine);
1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373
	if (ret)
		return ret;

	/* We need to disable the AsyncFlip performance optimisations in order
	 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
	 * programmed to '1' on all products.
	 *
	 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
	 */
	I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));

	I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));

1374
	return init_workarounds_ring(engine);
1375 1376
}

1377
static int gen9_init_render_ring(struct intel_engine_cs *engine)
1378 1379 1380
{
	int ret;

1381
	ret = gen8_init_common_ring(engine);
1382 1383 1384
	if (ret)
		return ret;

1385
	return init_workarounds_ring(engine);
1386 1387
}

1388 1389 1390 1391 1392
static void reset_common_ring(struct intel_engine_cs *engine,
			      struct drm_i915_gem_request *request)
{
	struct drm_i915_private *dev_priv = engine->i915;
	struct execlist_port *port = engine->execlist_port;
1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406
	struct intel_context *ce;

	/* If the request was innocent, we leave the request in the ELSP
	 * and will try to replay it on restarting. The context image may
	 * have been corrupted by the reset, in which case we may have
	 * to service a new GPU hang, but more likely we can continue on
	 * without impact.
	 *
	 * If the request was guilty, we presume the context is corrupt
	 * and have to at least restore the RING register in the context
	 * image back to the expected values to skip over the guilty request.
	 */
	if (!request || request->fence.error != -EIO)
		return;
1407

1408 1409 1410 1411 1412 1413 1414
	/* We want a simple context + ring to execute the breadcrumb update.
	 * We cannot rely on the context being intact across the GPU hang,
	 * so clear it and rebuild just what we need for the breadcrumb.
	 * All pending requests for this context will be zapped, and any
	 * future request will be after userspace has had the opportunity
	 * to recreate its own state.
	 */
1415
	ce = &request->ctx->engine[engine->id];
1416 1417 1418
	execlists_init_reg_state(ce->lrc_reg_state,
				 request->ctx, engine, ce->ring);

1419
	/* Move the RING_HEAD onto the breadcrumb, past the hanging batch */
1420 1421
	ce->lrc_reg_state[CTX_RING_BUFFER_START+1] =
		i915_ggtt_offset(ce->ring->vma);
1422
	ce->lrc_reg_state[CTX_RING_HEAD+1] = request->postfix;
1423

1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439
	request->ring->head = request->postfix;
	request->ring->last_retired_head = -1;
	intel_ring_update_space(request->ring);

	if (i915.enable_guc_submission)
		return;

	/* Catch up with any missed context-switch interrupts */
	I915_WRITE(RING_CONTEXT_STATUS_PTR(engine), _MASKED_FIELD(0xffff, 0));
	if (request->ctx != port[0].request->ctx) {
		i915_gem_request_put(port[0].request);
		port[0] = port[1];
		memset(&port[1], 0, sizeof(port[1]));
	}

	GEM_BUG_ON(request->ctx != port[0].request->ctx);
1440 1441 1442

	/* Reset WaIdleLiteRestore:bdw,skl as well */
	request->tail = request->wa_tail - WA_TAIL_DWORDS * sizeof(u32);
1443 1444
}

1445 1446 1447
static int intel_logical_ring_emit_pdps(struct drm_i915_gem_request *req)
{
	struct i915_hw_ppgtt *ppgtt = req->ctx->ppgtt;
1448
	struct intel_ring *ring = req->ring;
1449
	struct intel_engine_cs *engine = req->engine;
1450 1451 1452
	const int num_lri_cmds = GEN8_LEGACY_PDPES * 2;
	int i, ret;

1453
	ret = intel_ring_begin(req, num_lri_cmds * 2 + 2);
1454 1455 1456
	if (ret)
		return ret;

1457
	intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(num_lri_cmds));
1458 1459 1460
	for (i = GEN8_LEGACY_PDPES - 1; i >= 0; i--) {
		const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);

1461 1462 1463 1464
		intel_ring_emit_reg(ring, GEN8_RING_PDP_UDW(engine, i));
		intel_ring_emit(ring, upper_32_bits(pd_daddr));
		intel_ring_emit_reg(ring, GEN8_RING_PDP_LDW(engine, i));
		intel_ring_emit(ring, lower_32_bits(pd_daddr));
1465 1466
	}

1467 1468
	intel_ring_emit(ring, MI_NOOP);
	intel_ring_advance(ring);
1469 1470 1471 1472

	return 0;
}

1473
static int gen8_emit_bb_start(struct drm_i915_gem_request *req,
1474 1475
			      u64 offset, u32 len,
			      unsigned int dispatch_flags)
1476
{
1477
	struct intel_ring *ring = req->ring;
1478
	bool ppgtt = !(dispatch_flags & I915_DISPATCH_SECURE);
1479 1480
	int ret;

1481 1482 1483 1484
	/* Don't rely in hw updating PDPs, specially in lite-restore.
	 * Ideally, we should set Force PD Restore in ctx descriptor,
	 * but we can't. Force Restore would be a second option, but
	 * it is unsafe in case of lite-restore (because the ctx is
1485 1486
	 * not idle). PML4 is allocated during ppgtt init so this is
	 * not needed in 48-bit.*/
1487
	if (req->ctx->ppgtt &&
1488
	    (intel_engine_flag(req->engine) & req->ctx->ppgtt->pd_dirty_rings)) {
1489
		if (!USES_FULL_48BIT_PPGTT(req->i915) &&
1490
		    !intel_vgpu_active(req->i915)) {
1491 1492 1493 1494
			ret = intel_logical_ring_emit_pdps(req);
			if (ret)
				return ret;
		}
1495

1496
		req->ctx->ppgtt->pd_dirty_rings &= ~intel_engine_flag(req->engine);
1497 1498
	}

1499
	ret = intel_ring_begin(req, 4);
1500 1501 1502 1503
	if (ret)
		return ret;

	/* FIXME(BDW): Address space and security selectors. */
1504 1505 1506 1507 1508 1509 1510 1511
	intel_ring_emit(ring, MI_BATCH_BUFFER_START_GEN8 |
			(ppgtt<<8) |
			(dispatch_flags & I915_DISPATCH_RS ?
			 MI_BATCH_RESOURCE_STREAMER : 0));
	intel_ring_emit(ring, lower_32_bits(offset));
	intel_ring_emit(ring, upper_32_bits(offset));
	intel_ring_emit(ring, MI_NOOP);
	intel_ring_advance(ring);
1512 1513 1514 1515

	return 0;
}

1516
static void gen8_logical_ring_enable_irq(struct intel_engine_cs *engine)
1517
{
1518
	struct drm_i915_private *dev_priv = engine->i915;
1519 1520 1521
	I915_WRITE_IMR(engine,
		       ~(engine->irq_enable_mask | engine->irq_keep_mask));
	POSTING_READ_FW(RING_IMR(engine->mmio_base));
1522 1523
}

1524
static void gen8_logical_ring_disable_irq(struct intel_engine_cs *engine)
1525
{
1526
	struct drm_i915_private *dev_priv = engine->i915;
1527
	I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
1528 1529
}

1530
static int gen8_emit_flush(struct drm_i915_gem_request *request, u32 mode)
1531
{
1532 1533
	struct intel_ring *ring = request->ring;
	u32 cmd;
1534 1535
	int ret;

1536
	ret = intel_ring_begin(request, 4);
1537 1538 1539 1540 1541
	if (ret)
		return ret;

	cmd = MI_FLUSH_DW + 1;

1542 1543 1544 1545 1546 1547 1548
	/* We always require a command barrier so that subsequent
	 * commands, such as breadcrumb interrupts, are strictly ordered
	 * wrt the contents of the write cache being flushed to memory
	 * (and thus being coherent from the CPU).
	 */
	cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;

1549
	if (mode & EMIT_INVALIDATE) {
1550
		cmd |= MI_INVALIDATE_TLB;
1551
		if (request->engine->id == VCS)
1552
			cmd |= MI_INVALIDATE_BSD;
1553 1554
	}

1555 1556 1557 1558 1559 1560 1561
	intel_ring_emit(ring, cmd);
	intel_ring_emit(ring,
			I915_GEM_HWS_SCRATCH_ADDR |
			MI_FLUSH_DW_USE_GTT);
	intel_ring_emit(ring, 0); /* upper addr */
	intel_ring_emit(ring, 0); /* value */
	intel_ring_advance(ring);
1562 1563 1564 1565

	return 0;
}

1566
static int gen8_emit_flush_render(struct drm_i915_gem_request *request,
1567
				  u32 mode)
1568
{
1569
	struct intel_ring *ring = request->ring;
1570
	struct intel_engine_cs *engine = request->engine;
1571 1572
	u32 scratch_addr =
		i915_ggtt_offset(engine->scratch) + 2 * CACHELINE_BYTES;
M
Mika Kuoppala 已提交
1573
	bool vf_flush_wa = false, dc_flush_wa = false;
1574 1575
	u32 flags = 0;
	int ret;
M
Mika Kuoppala 已提交
1576
	int len;
1577 1578 1579

	flags |= PIPE_CONTROL_CS_STALL;

1580
	if (mode & EMIT_FLUSH) {
1581 1582
		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
1583
		flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
1584
		flags |= PIPE_CONTROL_FLUSH_ENABLE;
1585 1586
	}

1587
	if (mode & EMIT_INVALIDATE) {
1588 1589 1590 1591 1592 1593 1594 1595 1596
		flags |= PIPE_CONTROL_TLB_INVALIDATE;
		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_QW_WRITE;
		flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;

1597 1598 1599 1600
		/*
		 * On GEN9: before VF_CACHE_INVALIDATE we need to emit a NULL
		 * pipe control.
		 */
1601
		if (IS_GEN9(request->i915))
1602
			vf_flush_wa = true;
M
Mika Kuoppala 已提交
1603 1604 1605 1606

		/* WaForGAMHang:kbl */
		if (IS_KBL_REVID(request->i915, 0, KBL_REVID_B0))
			dc_flush_wa = true;
1607
	}
1608

M
Mika Kuoppala 已提交
1609 1610 1611 1612 1613 1614 1615 1616 1617
	len = 6;

	if (vf_flush_wa)
		len += 6;

	if (dc_flush_wa)
		len += 12;

	ret = intel_ring_begin(request, len);
1618 1619 1620
	if (ret)
		return ret;

1621
	if (vf_flush_wa) {
1622 1623 1624 1625 1626 1627
		intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
		intel_ring_emit(ring, 0);
		intel_ring_emit(ring, 0);
		intel_ring_emit(ring, 0);
		intel_ring_emit(ring, 0);
		intel_ring_emit(ring, 0);
1628 1629
	}

M
Mika Kuoppala 已提交
1630
	if (dc_flush_wa) {
1631 1632 1633 1634 1635 1636
		intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
		intel_ring_emit(ring, PIPE_CONTROL_DC_FLUSH_ENABLE);
		intel_ring_emit(ring, 0);
		intel_ring_emit(ring, 0);
		intel_ring_emit(ring, 0);
		intel_ring_emit(ring, 0);
M
Mika Kuoppala 已提交
1637 1638
	}

1639 1640 1641 1642 1643 1644
	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
	intel_ring_emit(ring, flags);
	intel_ring_emit(ring, scratch_addr);
	intel_ring_emit(ring, 0);
	intel_ring_emit(ring, 0);
	intel_ring_emit(ring, 0);
M
Mika Kuoppala 已提交
1645 1646

	if (dc_flush_wa) {
1647 1648 1649 1650 1651 1652
		intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
		intel_ring_emit(ring, PIPE_CONTROL_CS_STALL);
		intel_ring_emit(ring, 0);
		intel_ring_emit(ring, 0);
		intel_ring_emit(ring, 0);
		intel_ring_emit(ring, 0);
M
Mika Kuoppala 已提交
1653 1654
	}

1655
	intel_ring_advance(ring);
1656 1657 1658 1659

	return 0;
}

1660
static void bxt_a_seqno_barrier(struct intel_engine_cs *engine)
1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671
{
	/*
	 * On BXT A steppings there is a HW coherency issue whereby the
	 * MI_STORE_DATA_IMM storing the completed request's seqno
	 * occasionally doesn't invalidate the CPU cache. Work around this by
	 * clflushing the corresponding cacheline whenever the caller wants
	 * the coherency to be guaranteed. Note that this cacheline is known
	 * to be clean at this point, since we only write it in
	 * bxt_a_set_seqno(), where we also do a clflush after the write. So
	 * this clflush in practice becomes an invalidate operation.
	 */
1672
	intel_flush_status_page(engine, I915_GEM_HWS_INDEX);
1673 1674
}

1675 1676 1677 1678 1679
/*
 * Reserve space for 2 NOOPs at the end of each request to be
 * used as a workaround for not being allowed to do lite
 * restore with HEAD==TAIL (WaIdleLiteRestore).
 */
C
Chris Wilson 已提交
1680
static void gen8_emit_wa_tail(struct drm_i915_gem_request *request, u32 *out)
1681
{
C
Chris Wilson 已提交
1682 1683 1684 1685
	*out++ = MI_NOOP;
	*out++ = MI_NOOP;
	request->wa_tail = intel_ring_offset(request->ring, out);
}
1686

C
Chris Wilson 已提交
1687 1688 1689
static void gen8_emit_breadcrumb(struct drm_i915_gem_request *request,
				 u32 *out)
{
1690 1691
	/* w/a: bit 5 needs to be zero for MI_FLUSH_DW address. */
	BUILD_BUG_ON(I915_GEM_HWS_INDEX_ADDR & (1 << 5));
1692

C
Chris Wilson 已提交
1693 1694 1695 1696 1697 1698 1699 1700 1701
	*out++ = (MI_FLUSH_DW + 1) | MI_FLUSH_DW_OP_STOREDW;
	*out++ = intel_hws_seqno_address(request->engine) | MI_FLUSH_DW_USE_GTT;
	*out++ = 0;
	*out++ = request->global_seqno;
	*out++ = MI_USER_INTERRUPT;
	*out++ = MI_NOOP;
	request->tail = intel_ring_offset(request->ring, out);

	gen8_emit_wa_tail(request, out);
1702
}
1703

1704 1705
static const int gen8_emit_breadcrumb_sz = 6 + WA_TAIL_DWORDS;

C
Chris Wilson 已提交
1706 1707
static void gen8_emit_breadcrumb_render(struct drm_i915_gem_request *request,
					u32 *out)
1708
{
1709 1710 1711
	/* We're using qword write, seqno should be aligned to 8 bytes. */
	BUILD_BUG_ON(I915_GEM_HWS_INDEX & 1);

1712 1713 1714 1715
	/* w/a for post sync ops following a GPGPU operation we
	 * need a prior CS_STALL, which is emitted by the flush
	 * following the batch.
	 */
C
Chris Wilson 已提交
1716 1717 1718 1719 1720 1721 1722
	*out++ = GFX_OP_PIPE_CONTROL(6);
	*out++ = (PIPE_CONTROL_GLOBAL_GTT_IVB |
		  PIPE_CONTROL_CS_STALL |
		  PIPE_CONTROL_QW_WRITE);
	*out++ = intel_hws_seqno_address(request->engine);
	*out++ = 0;
	*out++ = request->global_seqno;
1723
	/* We're thrashing one dword of HWS. */
C
Chris Wilson 已提交
1724 1725 1726 1727 1728 1729
	*out++ = 0;
	*out++ = MI_USER_INTERRUPT;
	*out++ = MI_NOOP;
	request->tail = intel_ring_offset(request->ring, out);

	gen8_emit_wa_tail(request, out);
1730 1731
}

1732 1733
static const int gen8_emit_breadcrumb_render_sz = 8 + WA_TAIL_DWORDS;

1734
static int gen8_init_rcs_context(struct drm_i915_gem_request *req)
1735 1736 1737
{
	int ret;

1738
	ret = intel_logical_ring_workarounds_emit(req);
1739 1740 1741
	if (ret)
		return ret;

1742 1743 1744 1745 1746 1747 1748 1749
	ret = intel_rcs_context_init_mocs(req);
	/*
	 * Failing to program the MOCS is non-fatal.The system will not
	 * run at peak performance. So generate an error and carry on.
	 */
	if (ret)
		DRM_ERROR("MOCS failed to program: expect performance issues.\n");

1750
	return i915_gem_render_state_emit(req);
1751 1752
}

1753 1754
/**
 * intel_logical_ring_cleanup() - deallocate the Engine Command Streamer
1755
 * @engine: Engine Command Streamer.
1756
 */
1757
void intel_logical_ring_cleanup(struct intel_engine_cs *engine)
1758
{
1759
	struct drm_i915_private *dev_priv;
1760

1761 1762 1763 1764 1765 1766 1767
	/*
	 * Tasklet cannot be active at this point due intel_mark_active/idle
	 * so this is just for documentation.
	 */
	if (WARN_ON(test_bit(TASKLET_STATE_SCHED, &engine->irq_tasklet.state)))
		tasklet_kill(&engine->irq_tasklet);

1768
	dev_priv = engine->i915;
1769

1770 1771
	if (engine->buffer) {
		WARN_ON((I915_READ_MODE(engine) & MODE_IDLE) == 0);
1772
	}
1773

1774 1775
	if (engine->cleanup)
		engine->cleanup(engine);
1776

1777 1778 1779
	if (engine->status_page.vma) {
		i915_gem_object_unpin_map(engine->status_page.vma->obj);
		engine->status_page.vma = NULL;
1780
	}
1781 1782

	intel_engine_cleanup_common(engine);
1783

1784
	lrc_destroy_wa_ctx_obj(engine);
1785
	engine->i915 = NULL;
1786 1787
	dev_priv->engine[engine->id] = NULL;
	kfree(engine);
1788 1789
}

1790 1791 1792
void intel_execlists_enable_submission(struct drm_i915_private *dev_priv)
{
	struct intel_engine_cs *engine;
1793
	enum intel_engine_id id;
1794

1795
	for_each_engine(engine, dev_priv, id) {
1796
		engine->submit_request = execlists_submit_request;
1797 1798
		engine->schedule = execlists_schedule;
	}
1799 1800
}

1801
static void
1802
logical_ring_default_vfuncs(struct intel_engine_cs *engine)
1803 1804
{
	/* Default vfuncs which can be overriden by each engine. */
1805
	engine->init_hw = gen8_init_common_ring;
1806
	engine->reset_hw = reset_common_ring;
1807 1808 1809 1810

	engine->context_pin = execlists_context_pin;
	engine->context_unpin = execlists_context_unpin;

1811 1812
	engine->request_alloc = execlists_request_alloc;

1813
	engine->emit_flush = gen8_emit_flush;
1814
	engine->emit_breadcrumb = gen8_emit_breadcrumb;
1815
	engine->emit_breadcrumb_sz = gen8_emit_breadcrumb_sz;
1816
	engine->submit_request = execlists_submit_request;
1817
	engine->schedule = execlists_schedule;
1818

1819 1820
	engine->irq_enable = gen8_logical_ring_enable_irq;
	engine->irq_disable = gen8_logical_ring_disable_irq;
1821
	engine->emit_bb_start = gen8_emit_bb_start;
1822
	if (IS_BXT_REVID(engine->i915, 0, BXT_REVID_A1))
1823
		engine->irq_seqno_barrier = bxt_a_seqno_barrier;
1824 1825
}

1826
static inline void
1827
logical_ring_default_irqs(struct intel_engine_cs *engine)
1828
{
1829
	unsigned shift = engine->irq_shift;
1830 1831
	engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT << shift;
	engine->irq_keep_mask = GT_CONTEXT_SWITCH_INTERRUPT << shift;
1832 1833
}

1834
static int
1835
lrc_setup_hws(struct intel_engine_cs *engine, struct i915_vma *vma)
1836
{
1837
	const int hws_offset = LRC_PPHWSP_PN * PAGE_SIZE;
1838
	void *hws;
1839 1840

	/* The HWSP is part of the default context object in LRC mode. */
1841
	hws = i915_gem_object_pin_map(vma->obj, I915_MAP_WB);
1842 1843
	if (IS_ERR(hws))
		return PTR_ERR(hws);
1844 1845

	engine->status_page.page_addr = hws + hws_offset;
1846
	engine->status_page.ggtt_offset = i915_ggtt_offset(vma) + hws_offset;
1847
	engine->status_page.vma = vma;
1848 1849

	return 0;
1850 1851
}

1852 1853 1854 1855 1856 1857
static void
logical_ring_setup(struct intel_engine_cs *engine)
{
	struct drm_i915_private *dev_priv = engine->i915;
	enum forcewake_domains fw_domains;

1858 1859
	intel_engine_setup_common(engine);

1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884
	/* Intentionally left blank. */
	engine->buffer = NULL;

	fw_domains = intel_uncore_forcewake_for_reg(dev_priv,
						    RING_ELSP(engine),
						    FW_REG_WRITE);

	fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
						     RING_CONTEXT_STATUS_PTR(engine),
						     FW_REG_READ | FW_REG_WRITE);

	fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
						     RING_CONTEXT_STATUS_BUF_BASE(engine),
						     FW_REG_READ);

	engine->fw_domains = fw_domains;

	tasklet_init(&engine->irq_tasklet,
		     intel_lrc_irq_handler, (unsigned long)engine);

	logical_ring_init_platform_invariants(engine);
	logical_ring_default_vfuncs(engine);
	logical_ring_default_irqs(engine);
}

1885 1886 1887 1888 1889 1890
static int
logical_ring_init(struct intel_engine_cs *engine)
{
	struct i915_gem_context *dctx = engine->i915->kernel_context;
	int ret;

1891
	ret = intel_engine_init_common(engine);
1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908
	if (ret)
		goto error;

	/* And setup the hardware status page. */
	ret = lrc_setup_hws(engine, dctx->engine[engine->id].state);
	if (ret) {
		DRM_ERROR("Failed to set up hws %s: %d\n", engine->name, ret);
		goto error;
	}

	return 0;

error:
	intel_logical_ring_cleanup(engine);
	return ret;
}

1909
int logical_render_ring_init(struct intel_engine_cs *engine)
1910 1911 1912 1913
{
	struct drm_i915_private *dev_priv = engine->i915;
	int ret;

1914 1915
	logical_ring_setup(engine);

1916 1917 1918 1919 1920 1921 1922 1923 1924 1925
	if (HAS_L3_DPF(dev_priv))
		engine->irq_keep_mask |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;

	/* Override some for render ring. */
	if (INTEL_GEN(dev_priv) >= 9)
		engine->init_hw = gen9_init_render_ring;
	else
		engine->init_hw = gen8_init_render_ring;
	engine->init_context = gen8_init_rcs_context;
	engine->emit_flush = gen8_emit_flush_render;
1926
	engine->emit_breadcrumb = gen8_emit_breadcrumb_render;
1927
	engine->emit_breadcrumb_sz = gen8_emit_breadcrumb_render_sz;
1928

1929
	ret = intel_engine_create_scratch(engine, PAGE_SIZE);
1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943
	if (ret)
		return ret;

	ret = intel_init_workaround_bb(engine);
	if (ret) {
		/*
		 * We continue even if we fail to initialize WA batch
		 * because we only expect rare glitches but nothing
		 * critical to prevent us from using GPU
		 */
		DRM_ERROR("WA batch buffer initialization failed: %d\n",
			  ret);
	}

1944
	return logical_ring_init(engine);
1945 1946
}

1947
int logical_xcs_ring_init(struct intel_engine_cs *engine)
1948 1949 1950 1951
{
	logical_ring_setup(engine);

	return logical_ring_init(engine);
1952 1953
}

1954
static u32
1955
make_rpcs(struct drm_i915_private *dev_priv)
1956 1957 1958 1959 1960 1961 1962
{
	u32 rpcs = 0;

	/*
	 * No explicit RPCS request is needed to ensure full
	 * slice/subslice/EU enablement prior to Gen9.
	*/
1963
	if (INTEL_GEN(dev_priv) < 9)
1964 1965 1966 1967 1968 1969 1970 1971
		return 0;

	/*
	 * Starting in Gen9, render power gating can leave
	 * slice/subslice/EU in a partially enabled state. We
	 * must make an explicit request through RPCS for full
	 * enablement.
	*/
1972
	if (INTEL_INFO(dev_priv)->sseu.has_slice_pg) {
1973
		rpcs |= GEN8_RPCS_S_CNT_ENABLE;
1974
		rpcs |= hweight8(INTEL_INFO(dev_priv)->sseu.slice_mask) <<
1975 1976 1977 1978
			GEN8_RPCS_S_CNT_SHIFT;
		rpcs |= GEN8_RPCS_ENABLE;
	}

1979
	if (INTEL_INFO(dev_priv)->sseu.has_subslice_pg) {
1980
		rpcs |= GEN8_RPCS_SS_CNT_ENABLE;
1981
		rpcs |= hweight8(INTEL_INFO(dev_priv)->sseu.subslice_mask) <<
1982 1983 1984 1985
			GEN8_RPCS_SS_CNT_SHIFT;
		rpcs |= GEN8_RPCS_ENABLE;
	}

1986 1987
	if (INTEL_INFO(dev_priv)->sseu.has_eu_pg) {
		rpcs |= INTEL_INFO(dev_priv)->sseu.eu_per_subslice <<
1988
			GEN8_RPCS_EU_MIN_SHIFT;
1989
		rpcs |= INTEL_INFO(dev_priv)->sseu.eu_per_subslice <<
1990 1991 1992 1993 1994 1995 1996
			GEN8_RPCS_EU_MAX_SHIFT;
		rpcs |= GEN8_RPCS_ENABLE;
	}

	return rpcs;
}

1997
static u32 intel_lr_indirect_ctx_offset(struct intel_engine_cs *engine)
1998 1999 2000
{
	u32 indirect_ctx_offset;

2001
	switch (INTEL_GEN(engine->i915)) {
2002
	default:
2003
		MISSING_CASE(INTEL_GEN(engine->i915));
2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017
		/* fall through */
	case 9:
		indirect_ctx_offset =
			GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
		break;
	case 8:
		indirect_ctx_offset =
			GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
		break;
	}

	return indirect_ctx_offset;
}

2018 2019 2020 2021
static void execlists_init_reg_state(u32 *reg_state,
				     struct i915_gem_context *ctx,
				     struct intel_engine_cs *engine,
				     struct intel_ring *ring)
2022
{
2023 2024
	struct drm_i915_private *dev_priv = engine->i915;
	struct i915_hw_ppgtt *ppgtt = ctx->ppgtt ?: dev_priv->mm.aliasing_ppgtt;
2025 2026 2027 2028 2029 2030

	/* A context is actually a big batch buffer with several MI_LOAD_REGISTER_IMM
	 * commands followed by (reg, value) pairs. The values we are setting here are
	 * only for the first context restore: on a subsequent save, the GPU will
	 * recreate this batchbuffer with new values (including all the missing
	 * MI_LOAD_REGISTER_IMM commands that we are not initializing here). */
2031
	reg_state[CTX_LRI_HEADER_0] =
2032 2033 2034
		MI_LOAD_REGISTER_IMM(engine->id == RCS ? 14 : 11) | MI_LRI_FORCE_POSTED;
	ASSIGN_CTX_REG(reg_state, CTX_CONTEXT_CONTROL,
		       RING_CONTEXT_CONTROL(engine),
2035 2036
		       _MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH |
					  CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
2037
					  (HAS_RESOURCE_STREAMER(dev_priv) ?
2038
					   CTX_CTRL_RS_CTX_ENABLE : 0)));
2039 2040 2041 2042 2043 2044 2045 2046
	ASSIGN_CTX_REG(reg_state, CTX_RING_HEAD, RING_HEAD(engine->mmio_base),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_RING_TAIL, RING_TAIL(engine->mmio_base),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_RING_BUFFER_START,
		       RING_START(engine->mmio_base), 0);
	ASSIGN_CTX_REG(reg_state, CTX_RING_BUFFER_CONTROL,
		       RING_CTL(engine->mmio_base),
2047
		       RING_CTL_SIZE(ring->size) | RING_VALID);
2048 2049 2050 2051 2052 2053
	ASSIGN_CTX_REG(reg_state, CTX_BB_HEAD_U,
		       RING_BBADDR_UDW(engine->mmio_base), 0);
	ASSIGN_CTX_REG(reg_state, CTX_BB_HEAD_L,
		       RING_BBADDR(engine->mmio_base), 0);
	ASSIGN_CTX_REG(reg_state, CTX_BB_STATE,
		       RING_BBSTATE(engine->mmio_base),
2054
		       RING_BB_PPGTT);
2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067
	ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_HEAD_U,
		       RING_SBBADDR_UDW(engine->mmio_base), 0);
	ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_HEAD_L,
		       RING_SBBADDR(engine->mmio_base), 0);
	ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_STATE,
		       RING_SBBSTATE(engine->mmio_base), 0);
	if (engine->id == RCS) {
		ASSIGN_CTX_REG(reg_state, CTX_BB_PER_CTX_PTR,
			       RING_BB_PER_CTX_PTR(engine->mmio_base), 0);
		ASSIGN_CTX_REG(reg_state, CTX_RCS_INDIRECT_CTX,
			       RING_INDIRECT_CTX(engine->mmio_base), 0);
		ASSIGN_CTX_REG(reg_state, CTX_RCS_INDIRECT_CTX_OFFSET,
			       RING_INDIRECT_CTX_OFFSET(engine->mmio_base), 0);
2068
		if (engine->wa_ctx.vma) {
2069
			struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
2070
			u32 ggtt_offset = i915_ggtt_offset(wa_ctx->vma);
2071 2072 2073 2074 2075 2076

			reg_state[CTX_RCS_INDIRECT_CTX+1] =
				(ggtt_offset + wa_ctx->indirect_ctx.offset * sizeof(uint32_t)) |
				(wa_ctx->indirect_ctx.size / CACHELINE_DWORDS);

			reg_state[CTX_RCS_INDIRECT_CTX_OFFSET+1] =
2077
				intel_lr_indirect_ctx_offset(engine) << 6;
2078 2079 2080 2081 2082

			reg_state[CTX_BB_PER_CTX_PTR+1] =
				(ggtt_offset + wa_ctx->per_ctx.offset * sizeof(uint32_t)) |
				0x01;
		}
2083
	}
2084
	reg_state[CTX_LRI_HEADER_1] = MI_LOAD_REGISTER_IMM(9) | MI_LRI_FORCE_POSTED;
2085 2086
	ASSIGN_CTX_REG(reg_state, CTX_CTX_TIMESTAMP,
		       RING_CTX_TIMESTAMP(engine->mmio_base), 0);
2087
	/* PDP values well be assigned later if needed */
2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103
	ASSIGN_CTX_REG(reg_state, CTX_PDP3_UDW, GEN8_RING_PDP_UDW(engine, 3),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_PDP3_LDW, GEN8_RING_PDP_LDW(engine, 3),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_PDP2_UDW, GEN8_RING_PDP_UDW(engine, 2),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_PDP2_LDW, GEN8_RING_PDP_LDW(engine, 2),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_PDP1_UDW, GEN8_RING_PDP_UDW(engine, 1),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_PDP1_LDW, GEN8_RING_PDP_LDW(engine, 1),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_PDP0_UDW, GEN8_RING_PDP_UDW(engine, 0),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_PDP0_LDW, GEN8_RING_PDP_LDW(engine, 0),
		       0);
2104

2105
	if (ppgtt && USES_FULL_48BIT_PPGTT(ppgtt->base.dev)) {
2106 2107 2108 2109 2110 2111 2112
		/* 64b PPGTT (48bit canonical)
		 * PDP0_DESCRIPTOR contains the base address to PML4 and
		 * other PDP Descriptors are ignored.
		 */
		ASSIGN_CTX_PML4(ppgtt, reg_state);
	}

2113
	if (engine->id == RCS) {
2114
		reg_state[CTX_LRI_HEADER_2] = MI_LOAD_REGISTER_IMM(1);
2115
		ASSIGN_CTX_REG(reg_state, CTX_R_PWR_CLK_STATE, GEN8_R_PWR_CLK_STATE,
2116
			       make_rpcs(dev_priv));
2117
	}
2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140
}

static int
populate_lr_context(struct i915_gem_context *ctx,
		    struct drm_i915_gem_object *ctx_obj,
		    struct intel_engine_cs *engine,
		    struct intel_ring *ring)
{
	void *vaddr;
	int ret;

	ret = i915_gem_object_set_to_cpu_domain(ctx_obj, true);
	if (ret) {
		DRM_DEBUG_DRIVER("Could not set to CPU domain\n");
		return ret;
	}

	vaddr = i915_gem_object_pin_map(ctx_obj, I915_MAP_WB);
	if (IS_ERR(vaddr)) {
		ret = PTR_ERR(vaddr);
		DRM_DEBUG_DRIVER("Could not map object pages! (%d)\n", ret);
		return ret;
	}
C
Chris Wilson 已提交
2141
	ctx_obj->mm.dirty = true;
2142 2143 2144 2145 2146 2147

	/* The second page of the context object contains some fields which must
	 * be set up prior to the first execution. */

	execlists_init_reg_state(vaddr + LRC_STATE_PN * PAGE_SIZE,
				 ctx, engine, ring);
2148

2149
	i915_gem_object_unpin_map(ctx_obj);
2150 2151 2152 2153

	return 0;
}

2154 2155
/**
 * intel_lr_context_size() - return the size of the context for an engine
2156
 * @engine: which engine to find the context size for
2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167
 *
 * Each engine may require a different amount of space for a context image,
 * so when allocating (or copying) an image, this function can be used to
 * find the right size for the specific engine.
 *
 * Return: size (in bytes) of an engine-specific context image
 *
 * Note: this size includes the HWSP, which is part of the context image
 * in LRC mode, but does not include the "shared data page" used with
 * GuC submission. The caller should account for this if using the GuC.
 */
2168
uint32_t intel_lr_context_size(struct intel_engine_cs *engine)
2169 2170 2171
{
	int ret = 0;

2172
	WARN_ON(INTEL_GEN(engine->i915) < 8);
2173

2174
	switch (engine->id) {
2175
	case RCS:
2176
		if (INTEL_GEN(engine->i915) >= 9)
2177 2178 2179
			ret = GEN9_LR_CONTEXT_RENDER_SIZE;
		else
			ret = GEN8_LR_CONTEXT_RENDER_SIZE;
2180 2181 2182 2183 2184 2185 2186 2187 2188 2189
		break;
	case VCS:
	case BCS:
	case VECS:
	case VCS2:
		ret = GEN8_LR_CONTEXT_OTHER_SIZE;
		break;
	}

	return ret;
2190 2191
}

2192
static int execlists_context_deferred_alloc(struct i915_gem_context *ctx,
2193
					    struct intel_engine_cs *engine)
2194
{
2195
	struct drm_i915_gem_object *ctx_obj;
2196
	struct intel_context *ce = &ctx->engine[engine->id];
2197
	struct i915_vma *vma;
2198
	uint32_t context_size;
2199
	struct intel_ring *ring;
2200 2201
	int ret;

2202
	WARN_ON(ce->state);
2203

2204 2205
	context_size = round_up(intel_lr_context_size(engine),
				I915_GTT_PAGE_SIZE);
2206

2207 2208 2209
	/* One extra page as the sharing data between driver and GuC */
	context_size += PAGE_SIZE * LRC_PPHWSP_PN;

2210
	ctx_obj = i915_gem_object_create(ctx->i915, context_size);
2211
	if (IS_ERR(ctx_obj)) {
2212
		DRM_DEBUG_DRIVER("Alloc LRC backing obj failed.\n");
2213
		return PTR_ERR(ctx_obj);
2214 2215
	}

2216
	vma = i915_vma_instance(ctx_obj, &ctx->i915->ggtt.base, NULL);
2217 2218 2219 2220 2221
	if (IS_ERR(vma)) {
		ret = PTR_ERR(vma);
		goto error_deref_obj;
	}

2222
	ring = intel_engine_create_ring(engine, ctx->ring_size);
2223 2224
	if (IS_ERR(ring)) {
		ret = PTR_ERR(ring);
2225
		goto error_deref_obj;
2226 2227
	}

2228
	ret = populate_lr_context(ctx, ctx_obj, engine, ring);
2229 2230
	if (ret) {
		DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret);
2231
		goto error_ring_free;
2232 2233
	}

2234
	ce->ring = ring;
2235
	ce->state = vma;
2236
	ce->initialised = engine->init_context == NULL;
2237 2238

	return 0;
2239

2240
error_ring_free:
2241
	intel_ring_free(ring);
2242
error_deref_obj:
2243
	i915_gem_object_put(ctx_obj);
2244
	return ret;
2245
}
2246

2247
void intel_lr_context_resume(struct drm_i915_private *dev_priv)
2248
{
2249
	struct intel_engine_cs *engine;
2250
	struct i915_gem_context *ctx;
2251
	enum intel_engine_id id;
2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263

	/* Because we emit WA_TAIL_DWORDS there may be a disparity
	 * between our bookkeeping in ce->ring->head and ce->ring->tail and
	 * that stored in context. As we only write new commands from
	 * ce->ring->tail onwards, everything before that is junk. If the GPU
	 * starts reading from its RING_HEAD from the context, it may try to
	 * execute that junk and die.
	 *
	 * So to avoid that we reset the context images upon resume. For
	 * simplicity, we just zero everything out.
	 */
	list_for_each_entry(ctx, &dev_priv->context_list, link) {
2264
		for_each_engine(engine, dev_priv, id) {
2265 2266
			struct intel_context *ce = &ctx->engine[engine->id];
			u32 *reg;
2267

2268 2269
			if (!ce->state)
				continue;
2270

2271 2272 2273 2274
			reg = i915_gem_object_pin_map(ce->state->obj,
						      I915_MAP_WB);
			if (WARN_ON(IS_ERR(reg)))
				continue;
2275

2276 2277 2278
			reg += LRC_STATE_PN * PAGE_SIZE / sizeof(*reg);
			reg[CTX_RING_HEAD+1] = 0;
			reg[CTX_RING_TAIL+1] = 0;
2279

C
Chris Wilson 已提交
2280
			ce->state->obj->mm.dirty = true;
2281
			i915_gem_object_unpin_map(ce->state->obj);
2282

2283 2284 2285 2286
			ce->ring->head = ce->ring->tail = 0;
			ce->ring->last_retired_head = -1;
			intel_ring_update_space(ce->ring);
		}
2287 2288
	}
}