intel_lrc.c 65.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
/*
 * Copyright © 2014 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Ben Widawsky <ben@bwidawsk.net>
 *    Michel Thierry <michel.thierry@intel.com>
 *    Thomas Daniel <thomas.daniel@intel.com>
 *    Oscar Mateo <oscar.mateo@intel.com>
 *
 */

31 32 33 34
/**
 * DOC: Logical Rings, Logical Ring Contexts and Execlists
 *
 * Motivation:
35 36 37 38
 * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
 * These expanded contexts enable a number of new abilities, especially
 * "Execlists" (also implemented in this file).
 *
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
 * One of the main differences with the legacy HW contexts is that logical
 * ring contexts incorporate many more things to the context's state, like
 * PDPs or ringbuffer control registers:
 *
 * The reason why PDPs are included in the context is straightforward: as
 * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
 * contained there mean you don't need to do a ppgtt->switch_mm yourself,
 * instead, the GPU will do it for you on the context switch.
 *
 * But, what about the ringbuffer control registers (head, tail, etc..)?
 * shouldn't we just need a set of those per engine command streamer? This is
 * where the name "Logical Rings" starts to make sense: by virtualizing the
 * rings, the engine cs shifts to a new "ring buffer" with every context
 * switch. When you want to submit a workload to the GPU you: A) choose your
 * context, B) find its appropriate virtualized ring, C) write commands to it
 * and then, finally, D) tell the GPU to switch to that context.
 *
 * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
 * to a contexts is via a context execution list, ergo "Execlists".
 *
 * LRC implementation:
 * Regarding the creation of contexts, we have:
 *
 * - One global default context.
 * - One local default context for each opened fd.
 * - One local extra context for each context create ioctl call.
 *
 * Now that ringbuffers belong per-context (and not per-engine, like before)
 * and that contexts are uniquely tied to a given engine (and not reusable,
 * like before) we need:
 *
 * - One ringbuffer per-engine inside each context.
 * - One backing object per-engine inside each context.
 *
 * The global default context starts its life with these new objects fully
 * allocated and populated. The local default context for each opened fd is
 * more complex, because we don't know at creation time which engine is going
 * to use them. To handle this, we have implemented a deferred creation of LR
 * contexts:
 *
 * The local context starts its life as a hollow or blank holder, that only
 * gets populated for a given engine once we receive an execbuffer. If later
 * on we receive another execbuffer ioctl for the same context but a different
 * engine, we allocate/populate a new ringbuffer and context backing object and
 * so on.
 *
 * Finally, regarding local contexts created using the ioctl call: as they are
 * only allowed with the render ring, we can allocate & populate them right
 * away (no need to defer anything, at least for now).
 *
 * Execlists implementation:
90 91
 * Execlists are the new method by which, on gen8+ hardware, workloads are
 * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
 * This method works as follows:
 *
 * When a request is committed, its commands (the BB start and any leading or
 * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
 * for the appropriate context. The tail pointer in the hardware context is not
 * updated at this time, but instead, kept by the driver in the ringbuffer
 * structure. A structure representing this request is added to a request queue
 * for the appropriate engine: this structure contains a copy of the context's
 * tail after the request was written to the ring buffer and a pointer to the
 * context itself.
 *
 * If the engine's request queue was empty before the request was added, the
 * queue is processed immediately. Otherwise the queue will be processed during
 * a context switch interrupt. In any case, elements on the queue will get sent
 * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
 * globally unique 20-bits submission ID.
 *
 * When execution of a request completes, the GPU updates the context status
 * buffer with a context complete event and generates a context switch interrupt.
 * During the interrupt handling, the driver examines the events in the buffer:
 * for each context complete event, if the announced ID matches that on the head
 * of the request queue, then that request is retired and removed from the queue.
 *
 * After processing, if any requests were retired and the queue is not empty
 * then a new execution list can be submitted. The two requests at the front of
 * the queue are next to be submitted but since a context may not occur twice in
 * an execution list, if subsequent requests have the same ID as the first then
 * the two requests must be combined. This is done simply by discarding requests
 * at the head of the queue until either only one requests is left (in which case
 * we use a NULL second context) or the first two requests have unique IDs.
 *
 * By always executing the first two requests in the queue the driver ensures
 * that the GPU is kept as busy as possible. In the case where a single context
 * completes but a second context is still executing, the request for this second
 * context will be at the head of the queue when we remove the first one. This
 * request will then be resubmitted along with a new request for a different context,
 * which will cause the hardware to continue executing the second request and queue
 * the new request (the GPU detects the condition of a context getting preempted
 * with the same context and optimizes the context switch flow by not doing
 * preemption, but just sampling the new tail pointer).
 *
133
 */
134
#include <linux/interrupt.h>
135 136 137 138

#include <drm/drmP.h>
#include <drm/i915_drm.h>
#include "i915_drv.h"
139
#include "intel_mocs.h"
140

141
#define GEN9_LR_CONTEXT_RENDER_SIZE (22 * PAGE_SIZE)
142 143 144
#define GEN8_LR_CONTEXT_RENDER_SIZE (20 * PAGE_SIZE)
#define GEN8_LR_CONTEXT_OTHER_SIZE (2 * PAGE_SIZE)

145 146 147 148 149 150 151 152 153 154 155 156 157
#define RING_EXECLIST_QFULL		(1 << 0x2)
#define RING_EXECLIST1_VALID		(1 << 0x3)
#define RING_EXECLIST0_VALID		(1 << 0x4)
#define RING_EXECLIST_ACTIVE_STATUS	(3 << 0xE)
#define RING_EXECLIST1_ACTIVE		(1 << 0x11)
#define RING_EXECLIST0_ACTIVE		(1 << 0x12)

#define GEN8_CTX_STATUS_IDLE_ACTIVE	(1 << 0)
#define GEN8_CTX_STATUS_PREEMPTED	(1 << 1)
#define GEN8_CTX_STATUS_ELEMENT_SWITCH	(1 << 2)
#define GEN8_CTX_STATUS_ACTIVE_IDLE	(1 << 3)
#define GEN8_CTX_STATUS_COMPLETE	(1 << 4)
#define GEN8_CTX_STATUS_LITE_RESTORE	(1 << 15)
158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187

#define CTX_LRI_HEADER_0		0x01
#define CTX_CONTEXT_CONTROL		0x02
#define CTX_RING_HEAD			0x04
#define CTX_RING_TAIL			0x06
#define CTX_RING_BUFFER_START		0x08
#define CTX_RING_BUFFER_CONTROL		0x0a
#define CTX_BB_HEAD_U			0x0c
#define CTX_BB_HEAD_L			0x0e
#define CTX_BB_STATE			0x10
#define CTX_SECOND_BB_HEAD_U		0x12
#define CTX_SECOND_BB_HEAD_L		0x14
#define CTX_SECOND_BB_STATE		0x16
#define CTX_BB_PER_CTX_PTR		0x18
#define CTX_RCS_INDIRECT_CTX		0x1a
#define CTX_RCS_INDIRECT_CTX_OFFSET	0x1c
#define CTX_LRI_HEADER_1		0x21
#define CTX_CTX_TIMESTAMP		0x22
#define CTX_PDP3_UDW			0x24
#define CTX_PDP3_LDW			0x26
#define CTX_PDP2_UDW			0x28
#define CTX_PDP2_LDW			0x2a
#define CTX_PDP1_UDW			0x2c
#define CTX_PDP1_LDW			0x2e
#define CTX_PDP0_UDW			0x30
#define CTX_PDP0_LDW			0x32
#define CTX_LRI_HEADER_2		0x41
#define CTX_R_PWR_CLK_STATE		0x42
#define CTX_GPGPU_CSR_BASE_ADDRESS	0x44

188 189 190 191 192
#define GEN8_CTX_VALID (1<<0)
#define GEN8_CTX_FORCE_PD_RESTORE (1<<1)
#define GEN8_CTX_FORCE_RESTORE (1<<2)
#define GEN8_CTX_L3LLC_COHERENT (1<<5)
#define GEN8_CTX_PRIVILEGE (1<<8)
193

194
#define ASSIGN_CTX_REG(reg_state, pos, reg, val) do { \
195
	(reg_state)[(pos)+0] = i915_mmio_reg_offset(reg); \
196 197 198 199
	(reg_state)[(pos)+1] = (val); \
} while (0)

#define ASSIGN_CTX_PDP(ppgtt, reg_state, n) do {		\
200
	const u64 _addr = i915_page_dir_dma_addr((ppgtt), (n));	\
201 202
	reg_state[CTX_PDP ## n ## _UDW+1] = upper_32_bits(_addr); \
	reg_state[CTX_PDP ## n ## _LDW+1] = lower_32_bits(_addr); \
203
} while (0)
204

205
#define ASSIGN_CTX_PML4(ppgtt, reg_state) do { \
206 207
	reg_state[CTX_PDP0_UDW + 1] = upper_32_bits(px_dma(&ppgtt->pml4)); \
	reg_state[CTX_PDP0_LDW + 1] = lower_32_bits(px_dma(&ppgtt->pml4)); \
208
} while (0)
209

210 211 212 213 214 215 216
enum {
	FAULT_AND_HANG = 0,
	FAULT_AND_HALT, /* Debug only */
	FAULT_AND_STREAM,
	FAULT_AND_CONTINUE /* Unsupported */
};
#define GEN8_CTX_ID_SHIFT 32
217
#define GEN8_CTX_ID_WIDTH 21
218 219
#define GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT	0x17
#define GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT	0x26
220

221 222 223
/* Typical size of the average request (2 pipecontrols and a MI_BB) */
#define EXECLISTS_REQUEST_SIZE 64 /* bytes */

224
static int execlists_context_deferred_alloc(struct i915_gem_context *ctx,
225
					    struct intel_engine_cs *engine);
226
static int intel_lr_context_pin(struct i915_gem_context *ctx,
227
				struct intel_engine_cs *engine);
228

229 230
/**
 * intel_sanitize_enable_execlists() - sanitize i915.enable_execlists
231
 * @dev_priv: i915 device private
232 233 234
 * @enable_execlists: value of i915.enable_execlists module parameter.
 *
 * Only certain platforms support Execlists (the prerequisites being
235
 * support for Logical Ring Contexts and Aliasing PPGTT or better).
236 237 238
 *
 * Return: 1 if Execlists is supported and has to be enabled.
 */
239
int intel_sanitize_enable_execlists(struct drm_i915_private *dev_priv, int enable_execlists)
240
{
241 242 243
	/* On platforms with execlist available, vGPU will only
	 * support execlist mode, no ring buffer mode.
	 */
244
	if (HAS_LOGICAL_RING_CONTEXTS(dev_priv) && intel_vgpu_active(dev_priv))
245 246
		return 1;

247
	if (INTEL_GEN(dev_priv) >= 9)
248 249
		return 1;

250 251 252
	if (enable_execlists == 0)
		return 0;

253 254 255
	if (HAS_LOGICAL_RING_CONTEXTS(dev_priv) &&
	    USES_PPGTT(dev_priv) &&
	    i915.use_mmio_flip >= 0)
256 257 258 259
		return 1;

	return 0;
}
260

261
static void
262
logical_ring_init_platform_invariants(struct intel_engine_cs *engine)
263
{
264
	struct drm_i915_private *dev_priv = engine->i915;
265

266
	if (IS_GEN8(dev_priv) || IS_GEN9(dev_priv))
267
		engine->idle_lite_restore_wa = ~0;
268

269 270
	engine->disable_lite_restore_wa = (IS_SKL_REVID(dev_priv, 0, SKL_REVID_B0) ||
					IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1)) &&
271
					(engine->id == VCS || engine->id == VCS2);
272

273
	engine->ctx_desc_template = GEN8_CTX_VALID;
274
	if (IS_GEN8(dev_priv))
275 276
		engine->ctx_desc_template |= GEN8_CTX_L3LLC_COHERENT;
	engine->ctx_desc_template |= GEN8_CTX_PRIVILEGE;
277 278 279 280 281 282 283

	/* TODO: WaDisableLiteRestore when we start using semaphore
	 * signalling between Command Streamers */
	/* ring->ctx_desc_template |= GEN8_CTX_FORCE_RESTORE; */

	/* WaEnableForceRestoreInCtxtDescForVCS:skl */
	/* WaEnableForceRestoreInCtxtDescForVCS:bxt */
284 285
	if (engine->disable_lite_restore_wa)
		engine->ctx_desc_template |= GEN8_CTX_FORCE_RESTORE;
286 287
}

288
/**
289 290 291
 * intel_lr_context_descriptor_update() - calculate & cache the descriptor
 * 					  descriptor for a pinned context
 * @ctx: Context to work on
292
 * @engine: Engine the descriptor will be used with
293
 *
294 295 296 297 298
 * The context descriptor encodes various attributes of a context,
 * including its GTT address and some flags. Because it's fairly
 * expensive to calculate, we'll just do it once and cache the result,
 * which remains valid until the context is unpinned.
 *
299 300 301 302 303 304 305
 * This is what a descriptor looks like, from LSB to MSB::
 *
 *      bits  0-11:    flags, GEN8_CTX_* (cached in ctx_desc_template)
 *      bits 12-31:    LRCA, GTT address of (the HWSP of) this context
 *      bits 32-52:    ctx ID, a globally unique tag
 *      bits 53-54:    mbz, reserved for use by hardware
 *      bits 55-63:    group ID, currently unused and set to 0
306
 */
307
static void
308
intel_lr_context_descriptor_update(struct i915_gem_context *ctx,
309
				   struct intel_engine_cs *engine)
310
{
311
	struct intel_context *ce = &ctx->engine[engine->id];
312
	u64 desc;
313

314
	BUILD_BUG_ON(MAX_CONTEXT_HW_ID > (1<<GEN8_CTX_ID_WIDTH));
315

316 317
	desc = ctx->desc_template;				/* bits  3-4  */
	desc |= engine->ctx_desc_template;			/* bits  0-11 */
318
	desc |= i915_ggtt_offset(ce->state) + LRC_PPHWSP_PN * PAGE_SIZE;
319
								/* bits 12-31 */
320
	desc |= (u64)ctx->hw_id << GEN8_CTX_ID_SHIFT;		/* bits 32-52 */
321

322
	ce->lrc_desc = desc;
323 324
}

325
uint64_t intel_lr_context_descriptor(struct i915_gem_context *ctx,
326
				     struct intel_engine_cs *engine)
327
{
328
	return ctx->engine[engine->id].lrc_desc;
329
}
330

331 332
static void execlists_elsp_write(struct drm_i915_gem_request *rq0,
				 struct drm_i915_gem_request *rq1)
333
{
334

335
	struct intel_engine_cs *engine = rq0->engine;
336
	struct drm_i915_private *dev_priv = rq0->i915;
337
	uint64_t desc[2];
338

339
	if (rq1) {
340
		desc[1] = intel_lr_context_descriptor(rq1->ctx, rq1->engine);
341 342 343 344
		rq1->elsp_submitted++;
	} else {
		desc[1] = 0;
	}
345

346
	desc[0] = intel_lr_context_descriptor(rq0->ctx, rq0->engine);
347
	rq0->elsp_submitted++;
348

349
	/* You must always write both descriptors in the order below. */
350 351
	I915_WRITE_FW(RING_ELSP(engine), upper_32_bits(desc[1]));
	I915_WRITE_FW(RING_ELSP(engine), lower_32_bits(desc[1]));
352

353
	I915_WRITE_FW(RING_ELSP(engine), upper_32_bits(desc[0]));
354
	/* The context is automatically loaded after the following */
355
	I915_WRITE_FW(RING_ELSP(engine), lower_32_bits(desc[0]));
356

357
	/* ELSP is a wo register, use another nearby reg for posting */
358
	POSTING_READ_FW(RING_EXECLIST_STATUS_LO(engine));
359 360
}

361 362 363 364 365 366 367 368 369 370
static void
execlists_update_context_pdps(struct i915_hw_ppgtt *ppgtt, u32 *reg_state)
{
	ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
	ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
	ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
	ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
}

static void execlists_update_context(struct drm_i915_gem_request *rq)
371
{
372
	struct intel_engine_cs *engine = rq->engine;
373
	struct i915_hw_ppgtt *ppgtt = rq->ctx->ppgtt;
374
	uint32_t *reg_state = rq->ctx->engine[engine->id].lrc_reg_state;
375

376
	reg_state[CTX_RING_TAIL+1] = intel_ring_offset(rq->ring, rq->tail);
377

378 379 380 381 382 383 384
	/* True 32b PPGTT with dynamic page allocation: update PDP
	 * registers and point the unallocated PDPs to scratch page.
	 * PML4 is allocated during ppgtt init, so this is not needed
	 * in 48-bit mode.
	 */
	if (ppgtt && !USES_FULL_48BIT_PPGTT(ppgtt->base.dev))
		execlists_update_context_pdps(ppgtt, reg_state);
385 386
}

387 388
static void execlists_elsp_submit_contexts(struct drm_i915_gem_request *rq0,
					   struct drm_i915_gem_request *rq1)
389
{
390
	struct drm_i915_private *dev_priv = rq0->i915;
391
	unsigned int fw_domains = rq0->engine->fw_domains;
392

393
	execlists_update_context(rq0);
394

395
	if (rq1)
396
		execlists_update_context(rq1);
397

398
	spin_lock_irq(&dev_priv->uncore.lock);
399
	intel_uncore_forcewake_get__locked(dev_priv, fw_domains);
400

401
	execlists_elsp_write(rq0, rq1);
402

403
	intel_uncore_forcewake_put__locked(dev_priv, fw_domains);
404
	spin_unlock_irq(&dev_priv->uncore.lock);
405 406
}

407 408 409 410 411 412 413 414 415 416 417 418 419 420
static inline void execlists_context_status_change(
		struct drm_i915_gem_request *rq,
		unsigned long status)
{
	/*
	 * Only used when GVT-g is enabled now. When GVT-g is disabled,
	 * The compiler should eliminate this function as dead-code.
	 */
	if (!IS_ENABLED(CONFIG_DRM_I915_GVT))
		return;

	atomic_notifier_call_chain(&rq->ctx->status_notifier, status, rq);
}

421
static void execlists_unqueue(struct intel_engine_cs *engine)
422
{
423
	struct drm_i915_gem_request *req0 = NULL, *req1 = NULL;
424
	struct drm_i915_gem_request *cursor, *tmp;
425

426
	assert_spin_locked(&engine->execlist_lock);
427

428 429 430 431
	/*
	 * If irqs are not active generate a warning as batches that finish
	 * without the irqs may get lost and a GPU Hang may occur.
	 */
432
	WARN_ON(!intel_irqs_enabled(engine->i915));
433

434
	/* Try to read in pairs */
435
	list_for_each_entry_safe(cursor, tmp, &engine->execlist_queue,
436 437 438
				 execlist_link) {
		if (!req0) {
			req0 = cursor;
439
		} else if (req0->ctx == cursor->ctx) {
440 441
			/* Same ctx: ignore first request, as second request
			 * will update tail past first request's workload */
442
			cursor->elsp_submitted = req0->elsp_submitted;
443
			list_del(&req0->execlist_link);
444
			i915_gem_request_put(req0);
445 446
			req0 = cursor;
		} else {
447 448 449 450 451 452 453 454 455 456 457 458 459 460
			if (IS_ENABLED(CONFIG_DRM_I915_GVT)) {
				/*
				 * req0 (after merged) ctx requires single
				 * submission, stop picking
				 */
				if (req0->ctx->execlists_force_single_submission)
					break;
				/*
				 * req0 ctx doesn't require single submission,
				 * but next req ctx requires, stop picking
				 */
				if (cursor->ctx->execlists_force_single_submission)
					break;
			}
461
			req1 = cursor;
462
			WARN_ON(req1->elsp_submitted);
463 464 465 466
			break;
		}
	}

467 468 469
	if (unlikely(!req0))
		return;

470 471 472 473 474 475
	execlists_context_status_change(req0, INTEL_CONTEXT_SCHEDULE_IN);

	if (req1)
		execlists_context_status_change(req1,
						INTEL_CONTEXT_SCHEDULE_IN);

476
	if (req0->elsp_submitted & engine->idle_lite_restore_wa) {
477
		/*
478 479 480 481 482 483
		 * WaIdleLiteRestore: make sure we never cause a lite restore
		 * with HEAD==TAIL.
		 *
		 * Apply the wa NOOPS to prevent ring:HEAD == req:TAIL as we
		 * resubmit the request. See gen8_emit_request() for where we
		 * prepare the padding after the end of the request.
484
		 */
485
		req0->tail += 8;
486
		req0->tail &= req0->ring->size - 1;
487 488
	}

489
	execlists_elsp_submit_contexts(req0, req1);
490 491
}

492
static unsigned int
493
execlists_check_remove_request(struct intel_engine_cs *engine, u32 ctx_id)
494
{
495
	struct drm_i915_gem_request *head_req;
496

497
	assert_spin_locked(&engine->execlist_lock);
498

499
	head_req = list_first_entry_or_null(&engine->execlist_queue,
500
					    struct drm_i915_gem_request,
501 502
					    execlist_link);

503 504
	if (WARN_ON(!head_req || (head_req->ctx_hw_id != ctx_id)))
               return 0;
505 506 507 508 509 510

	WARN(head_req->elsp_submitted == 0, "Never submitted head request\n");

	if (--head_req->elsp_submitted > 0)
		return 0;

511 512
	execlists_context_status_change(head_req, INTEL_CONTEXT_SCHEDULE_OUT);

513
	list_del(&head_req->execlist_link);
514
	i915_gem_request_put(head_req);
515

516
	return 1;
517 518
}

519
static u32
520
get_context_status(struct intel_engine_cs *engine, unsigned int read_pointer,
521
		   u32 *context_id)
B
Ben Widawsky 已提交
522
{
523
	struct drm_i915_private *dev_priv = engine->i915;
524
	u32 status;
B
Ben Widawsky 已提交
525

526 527
	read_pointer %= GEN8_CSB_ENTRIES;

528
	status = I915_READ_FW(RING_CONTEXT_STATUS_BUF_LO(engine, read_pointer));
529 530 531

	if (status & GEN8_CTX_STATUS_IDLE_ACTIVE)
		return 0;
B
Ben Widawsky 已提交
532

533
	*context_id = I915_READ_FW(RING_CONTEXT_STATUS_BUF_HI(engine,
534 535 536
							      read_pointer));

	return status;
B
Ben Widawsky 已提交
537 538
}

539
/*
540 541 542
 * Check the unread Context Status Buffers and manage the submission of new
 * contexts to the ELSP accordingly.
 */
543
static void intel_lrc_irq_handler(unsigned long data)
544
{
545
	struct intel_engine_cs *engine = (struct intel_engine_cs *)data;
546
	struct drm_i915_private *dev_priv = engine->i915;
547
	u32 status_pointer;
548
	unsigned int read_pointer, write_pointer;
549 550
	u32 csb[GEN8_CSB_ENTRIES][2];
	unsigned int csb_read = 0, i;
551 552
	unsigned int submit_contexts = 0;

553
	intel_uncore_forcewake_get(dev_priv, engine->fw_domains);
554

555
	status_pointer = I915_READ_FW(RING_CONTEXT_STATUS_PTR(engine));
556

557
	read_pointer = engine->next_context_status_buffer;
558
	write_pointer = GEN8_CSB_WRITE_PTR(status_pointer);
559
	if (read_pointer > write_pointer)
560
		write_pointer += GEN8_CSB_ENTRIES;
561 562

	while (read_pointer < write_pointer) {
563 564 565 566 567 568
		if (WARN_ON_ONCE(csb_read == GEN8_CSB_ENTRIES))
			break;
		csb[csb_read][0] = get_context_status(engine, ++read_pointer,
						      &csb[csb_read][1]);
		csb_read++;
	}
B
Ben Widawsky 已提交
569

570 571 572 573 574 575 576 577
	engine->next_context_status_buffer = write_pointer % GEN8_CSB_ENTRIES;

	/* Update the read pointer to the old write pointer. Manual ringbuffer
	 * management ftw </sarcasm> */
	I915_WRITE_FW(RING_CONTEXT_STATUS_PTR(engine),
		      _MASKED_FIELD(GEN8_CSB_READ_PTR_MASK,
				    engine->next_context_status_buffer << 8));

578
	intel_uncore_forcewake_put(dev_priv, engine->fw_domains);
579 580 581 582 583 584 585

	spin_lock(&engine->execlist_lock);

	for (i = 0; i < csb_read; i++) {
		if (unlikely(csb[i][0] & GEN8_CTX_STATUS_PREEMPTED)) {
			if (csb[i][0] & GEN8_CTX_STATUS_LITE_RESTORE) {
				if (execlists_check_remove_request(engine, csb[i][1]))
586 587 588 589 590
					WARN(1, "Lite Restored request removed from queue\n");
			} else
				WARN(1, "Preemption without Lite Restore\n");
		}

591
		if (csb[i][0] & (GEN8_CTX_STATUS_ACTIVE_IDLE |
592 593
		    GEN8_CTX_STATUS_ELEMENT_SWITCH))
			submit_contexts +=
594
				execlists_check_remove_request(engine, csb[i][1]);
595 596
	}

597
	if (submit_contexts) {
598
		if (!engine->disable_lite_restore_wa ||
599
		    (csb[i][0] & GEN8_CTX_STATUS_ACTIVE_IDLE))
600
			execlists_unqueue(engine);
601
	}
602

603
	spin_unlock(&engine->execlist_lock);
604 605 606

	if (unlikely(submit_contexts > 2))
		DRM_ERROR("More than two context complete events?\n");
607 608
}

609
static void execlists_submit_request(struct drm_i915_gem_request *request)
610
{
611
	struct intel_engine_cs *engine = request->engine;
612

613
	spin_lock_bh(&engine->execlist_lock);
614

615
	i915_gem_request_get(request);
616
	request->ctx_hw_id = request->ctx->hw_id;
617 618 619 620

	if (list_empty(&engine->execlist_queue))
		tasklet_hi_schedule(&engine->irq_tasklet);
	list_add_tail(&request->execlist_link, &engine->execlist_queue);
621

622
	spin_unlock_bh(&engine->execlist_lock);
623 624
}

625
int intel_logical_ring_alloc_request_extras(struct drm_i915_gem_request *request)
626
{
627
	struct intel_engine_cs *engine = request->engine;
628
	struct intel_context *ce = &request->ctx->engine[engine->id];
629
	int ret;
630

631 632 633 634
	/* Flush enough space to reduce the likelihood of waiting after
	 * we start building the request - in which case we will just
	 * have to repeat work.
	 */
635
	request->reserved_space += EXECLISTS_REQUEST_SIZE;
636

637
	if (!ce->state) {
638 639 640 641 642
		ret = execlists_context_deferred_alloc(request->ctx, engine);
		if (ret)
			return ret;
	}

643
	request->ring = ce->ring;
644

645 646 647 648 649 650
	if (i915.enable_guc_submission) {
		/*
		 * Check that the GuC has space for the request before
		 * going any further, as the i915_add_request() call
		 * later on mustn't fail ...
		 */
651
		ret = i915_guc_wq_check_space(request);
652 653 654 655
		if (ret)
			return ret;
	}

656 657 658
	ret = intel_lr_context_pin(request->ctx, engine);
	if (ret)
		return ret;
D
Dave Gordon 已提交
659

660 661 662 663
	ret = intel_ring_begin(request, 0);
	if (ret)
		goto err_unpin;

664
	if (!ce->initialised) {
665 666 667 668
		ret = engine->init_context(request);
		if (ret)
			goto err_unpin;

669
		ce->initialised = true;
670 671 672 673 674 675 676 677 678
	}

	/* Note that after this point, we have committed to using
	 * this request as it is being used to both track the
	 * state of engine initialisation and liveness of the
	 * golden renderstate above. Think twice before you try
	 * to cancel/unwind this request now.
	 */

679
	request->reserved_space -= EXECLISTS_REQUEST_SIZE;
680 681 682
	return 0;

err_unpin:
683
	intel_lr_context_unpin(request->ctx, engine);
D
Dave Gordon 已提交
684
	return ret;
685 686 687
}

/*
688
 * intel_logical_ring_advance() - advance the tail and prepare for submission
689
 * @request: Request to advance the logical ringbuffer of.
690 691 692 693 694 695
 *
 * The tail is updated in our logical ringbuffer struct, not in the actual context. What
 * really happens during submission is that the context and current tail will be placed
 * on a queue waiting for the ELSP to be ready to accept a new context submission. At that
 * point, the tail *inside* the context is updated and the ELSP written to.
 */
696
static int
697
intel_logical_ring_advance(struct drm_i915_gem_request *request)
698
{
699
	struct intel_ring *ring = request->ring;
700
	struct intel_engine_cs *engine = request->engine;
701

702 703
	intel_ring_advance(ring);
	request->tail = ring->tail;
704

705 706 707 708 709 710
	/*
	 * Here we add two extra NOOPs as padding to avoid
	 * lite restore of a context with HEAD==TAIL.
	 *
	 * Caller must reserve WA_TAIL_DWORDS for us!
	 */
711 712 713
	intel_ring_emit(ring, MI_NOOP);
	intel_ring_emit(ring, MI_NOOP);
	intel_ring_advance(ring);
714

715 716 717 718 719 720 721 722
	/* We keep the previous context alive until we retire the following
	 * request. This ensures that any the context object is still pinned
	 * for any residual writes the HW makes into it on the context switch
	 * into the next object following the breadcrumb. Otherwise, we may
	 * retire the context too early.
	 */
	request->previous_context = engine->last_context;
	engine->last_context = request->ctx;
723
	return 0;
724 725
}

726
void intel_execlists_cancel_requests(struct intel_engine_cs *engine)
727
{
728
	struct drm_i915_gem_request *req, *tmp;
729
	LIST_HEAD(cancel_list);
730

731
	WARN_ON(!mutex_is_locked(&engine->i915->drm.struct_mutex));
732

733
	spin_lock_bh(&engine->execlist_lock);
734
	list_replace_init(&engine->execlist_queue, &cancel_list);
735
	spin_unlock_bh(&engine->execlist_lock);
736

737
	list_for_each_entry_safe(req, tmp, &cancel_list, execlist_link) {
738
		list_del(&req->execlist_link);
739
		i915_gem_request_put(req);
740 741 742
	}
}

743
static int intel_lr_context_pin(struct i915_gem_context *ctx,
744
				struct intel_engine_cs *engine)
745
{
746
	struct intel_context *ce = &ctx->engine[engine->id];
747 748
	void *vaddr;
	u32 *lrc_reg_state;
749
	int ret;
750

751
	lockdep_assert_held(&ctx->i915->drm.struct_mutex);
752

753
	if (ce->pin_count++)
754 755
		return 0;

756 757
	ret = i915_vma_pin(ce->state, 0, GEN8_LR_CONTEXT_ALIGN,
			   PIN_OFFSET_BIAS | GUC_WOPCM_TOP | PIN_GLOBAL);
758
	if (ret)
759
		goto err;
760

761
	vaddr = i915_gem_object_pin_map(ce->state->obj, I915_MAP_WB);
762 763
	if (IS_ERR(vaddr)) {
		ret = PTR_ERR(vaddr);
764
		goto unpin_vma;
765 766
	}

767 768
	lrc_reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;

769
	ret = intel_ring_pin(ce->ring);
770
	if (ret)
771
		goto unpin_map;
772

773
	intel_lr_context_descriptor_update(ctx, engine);
774

775 776
	lrc_reg_state[CTX_RING_BUFFER_START+1] =
		i915_ggtt_offset(ce->ring->vma);
777
	ce->lrc_reg_state = lrc_reg_state;
778
	ce->state->obj->dirty = true;
779

780
	/* Invalidate GuC TLB. */
781 782
	if (i915.enable_guc_submission) {
		struct drm_i915_private *dev_priv = ctx->i915;
783
		I915_WRITE(GEN8_GTCR, GEN8_GTCR_INVALIDATE);
784
	}
785

786
	i915_gem_context_get(ctx);
787
	return 0;
788

789
unpin_map:
790 791 792
	i915_gem_object_unpin_map(ce->state->obj);
unpin_vma:
	__i915_vma_unpin(ce->state);
793
err:
794
	ce->pin_count = 0;
795 796 797
	return ret;
}

798
void intel_lr_context_unpin(struct i915_gem_context *ctx,
799
			    struct intel_engine_cs *engine)
800
{
801
	struct intel_context *ce = &ctx->engine[engine->id];
802

803
	lockdep_assert_held(&ctx->i915->drm.struct_mutex);
804
	GEM_BUG_ON(ce->pin_count == 0);
805

806
	if (--ce->pin_count)
807
		return;
808

809
	intel_ring_unpin(ce->ring);
810

811 812
	i915_gem_object_unpin_map(ce->state->obj);
	i915_vma_unpin(ce->state);
813

814
	i915_gem_context_put(ctx);
815 816
}

817
static int intel_logical_ring_workarounds_emit(struct drm_i915_gem_request *req)
818 819
{
	int ret, i;
820
	struct intel_ring *ring = req->ring;
821
	struct i915_workarounds *w = &req->i915->workarounds;
822

823
	if (w->count == 0)
824 825
		return 0;

826
	ret = req->engine->emit_flush(req, EMIT_BARRIER);
827 828 829
	if (ret)
		return ret;

830
	ret = intel_ring_begin(req, w->count * 2 + 2);
831 832 833
	if (ret)
		return ret;

834
	intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(w->count));
835
	for (i = 0; i < w->count; i++) {
836 837
		intel_ring_emit_reg(ring, w->reg[i].addr);
		intel_ring_emit(ring, w->reg[i].value);
838
	}
839
	intel_ring_emit(ring, MI_NOOP);
840

841
	intel_ring_advance(ring);
842

843
	ret = req->engine->emit_flush(req, EMIT_BARRIER);
844 845 846 847 848 849
	if (ret)
		return ret;

	return 0;
}

850
#define wa_ctx_emit(batch, index, cmd)					\
851
	do {								\
852 853
		int __index = (index)++;				\
		if (WARN_ON(__index >= (PAGE_SIZE / sizeof(uint32_t)))) { \
854 855
			return -ENOSPC;					\
		}							\
856
		batch[__index] = (cmd);					\
857 858
	} while (0)

V
Ville Syrjälä 已提交
859
#define wa_ctx_emit_reg(batch, index, reg) \
860
	wa_ctx_emit((batch), (index), i915_mmio_reg_offset(reg))
861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877

/*
 * In this WA we need to set GEN8_L3SQCREG4[21:21] and reset it after
 * PIPE_CONTROL instruction. This is required for the flush to happen correctly
 * but there is a slight complication as this is applied in WA batch where the
 * values are only initialized once so we cannot take register value at the
 * beginning and reuse it further; hence we save its value to memory, upload a
 * constant value with bit21 set and then we restore it back with the saved value.
 * To simplify the WA, a constant value is formed by using the default value
 * of this register. This shouldn't be a problem because we are only modifying
 * it for a short period and this batch in non-premptible. We can ofcourse
 * use additional instructions that read the actual value of the register
 * at that time and set our bit of interest but it makes the WA complicated.
 *
 * This WA is also required for Gen9 so extracting as a function avoids
 * code duplication.
 */
878
static inline int gen8_emit_flush_coherentl3_wa(struct intel_engine_cs *engine,
879
						uint32_t *batch,
880 881
						uint32_t index)
{
D
Dave Airlie 已提交
882
	struct drm_i915_private *dev_priv = engine->i915;
883 884
	uint32_t l3sqc4_flush = (0x40400000 | GEN8_LQSC_FLUSH_COHERENT_LINES);

885
	/*
886
	 * WaDisableLSQCROPERFforOCL:skl,kbl
887 888 889 890
	 * This WA is implemented in skl_init_clock_gating() but since
	 * this batch updates GEN8_L3SQCREG4 with default value we need to
	 * set this bit here to retain the WA during flush.
	 */
891 892
	if (IS_SKL_REVID(dev_priv, 0, SKL_REVID_E0) ||
	    IS_KBL_REVID(dev_priv, 0, KBL_REVID_E0))
893 894
		l3sqc4_flush |= GEN8_LQSC_RO_PERF_DIS;

895
	wa_ctx_emit(batch, index, (MI_STORE_REGISTER_MEM_GEN8 |
896
				   MI_SRM_LRM_GLOBAL_GTT));
V
Ville Syrjälä 已提交
897
	wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
898
	wa_ctx_emit(batch, index, i915_ggtt_offset(engine->scratch) + 256);
899 900 901
	wa_ctx_emit(batch, index, 0);

	wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
V
Ville Syrjälä 已提交
902
	wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
903 904 905 906 907 908 909 910 911 912
	wa_ctx_emit(batch, index, l3sqc4_flush);

	wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
	wa_ctx_emit(batch, index, (PIPE_CONTROL_CS_STALL |
				   PIPE_CONTROL_DC_FLUSH_ENABLE));
	wa_ctx_emit(batch, index, 0);
	wa_ctx_emit(batch, index, 0);
	wa_ctx_emit(batch, index, 0);
	wa_ctx_emit(batch, index, 0);

913
	wa_ctx_emit(batch, index, (MI_LOAD_REGISTER_MEM_GEN8 |
914
				   MI_SRM_LRM_GLOBAL_GTT));
V
Ville Syrjälä 已提交
915
	wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
916
	wa_ctx_emit(batch, index, i915_ggtt_offset(engine->scratch) + 256);
917
	wa_ctx_emit(batch, index, 0);
918 919 920 921

	return index;
}

922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940
static inline uint32_t wa_ctx_start(struct i915_wa_ctx_bb *wa_ctx,
				    uint32_t offset,
				    uint32_t start_alignment)
{
	return wa_ctx->offset = ALIGN(offset, start_alignment);
}

static inline int wa_ctx_end(struct i915_wa_ctx_bb *wa_ctx,
			     uint32_t offset,
			     uint32_t size_alignment)
{
	wa_ctx->size = offset - wa_ctx->offset;

	WARN(wa_ctx->size % size_alignment,
	     "wa_ctx_bb failed sanity checks: size %d is not aligned to %d\n",
	     wa_ctx->size, size_alignment);
	return 0;
}

941 942 943 944 945 946
/*
 * Typically we only have one indirect_ctx and per_ctx batch buffer which are
 * initialized at the beginning and shared across all contexts but this field
 * helps us to have multiple batches at different offsets and select them based
 * on a criteria. At the moment this batch always start at the beginning of the page
 * and at this point we don't have multiple wa_ctx batch buffers.
947
 *
948 949
 * The number of WA applied are not known at the beginning; we use this field
 * to return the no of DWORDS written.
950
 *
951 952 953 954
 * It is to be noted that this batch does not contain MI_BATCH_BUFFER_END
 * so it adds NOOPs as padding to make it cacheline aligned.
 * MI_BATCH_BUFFER_END will be added to perctx batch and both of them together
 * makes a complete batch buffer.
955
 */
956
static int gen8_init_indirectctx_bb(struct intel_engine_cs *engine,
957
				    struct i915_wa_ctx_bb *wa_ctx,
958
				    uint32_t *batch,
959 960
				    uint32_t *offset)
{
961
	uint32_t scratch_addr;
962 963
	uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);

964
	/* WaDisableCtxRestoreArbitration:bdw,chv */
965
	wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_DISABLE);
966

967
	/* WaFlushCoherentL3CacheLinesAtContextSwitch:bdw */
968
	if (IS_BROADWELL(engine->i915)) {
969
		int rc = gen8_emit_flush_coherentl3_wa(engine, batch, index);
970 971 972
		if (rc < 0)
			return rc;
		index = rc;
973 974
	}

975 976
	/* WaClearSlmSpaceAtContextSwitch:bdw,chv */
	/* Actual scratch location is at 128 bytes offset */
977
	scratch_addr = i915_ggtt_offset(engine->scratch) + 2 * CACHELINE_BYTES;
978

979 980 981 982 983 984 985 986 987
	wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
	wa_ctx_emit(batch, index, (PIPE_CONTROL_FLUSH_L3 |
				   PIPE_CONTROL_GLOBAL_GTT_IVB |
				   PIPE_CONTROL_CS_STALL |
				   PIPE_CONTROL_QW_WRITE));
	wa_ctx_emit(batch, index, scratch_addr);
	wa_ctx_emit(batch, index, 0);
	wa_ctx_emit(batch, index, 0);
	wa_ctx_emit(batch, index, 0);
988

989 990
	/* Pad to end of cacheline */
	while (index % CACHELINE_DWORDS)
991
		wa_ctx_emit(batch, index, MI_NOOP);
992 993 994 995 996 997 998 999 1000 1001

	/*
	 * MI_BATCH_BUFFER_END is not required in Indirect ctx BB because
	 * execution depends on the length specified in terms of cache lines
	 * in the register CTX_RCS_INDIRECT_CTX
	 */

	return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
}

1002 1003 1004
/*
 *  This batch is started immediately after indirect_ctx batch. Since we ensure
 *  that indirect_ctx ends on a cacheline this batch is aligned automatically.
1005
 *
1006
 *  The number of DWORDS written are returned using this field.
1007 1008 1009 1010
 *
 *  This batch is terminated with MI_BATCH_BUFFER_END and so we need not add padding
 *  to align it with cacheline as padding after MI_BATCH_BUFFER_END is redundant.
 */
1011
static int gen8_init_perctx_bb(struct intel_engine_cs *engine,
1012
			       struct i915_wa_ctx_bb *wa_ctx,
1013
			       uint32_t *batch,
1014 1015 1016 1017
			       uint32_t *offset)
{
	uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);

1018
	/* WaDisableCtxRestoreArbitration:bdw,chv */
1019
	wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_ENABLE);
1020

1021
	wa_ctx_emit(batch, index, MI_BATCH_BUFFER_END);
1022 1023 1024 1025

	return wa_ctx_end(wa_ctx, *offset = index, 1);
}

1026
static int gen9_init_indirectctx_bb(struct intel_engine_cs *engine,
1027
				    struct i915_wa_ctx_bb *wa_ctx,
1028
				    uint32_t *batch,
1029 1030
				    uint32_t *offset)
{
1031
	int ret;
D
Dave Airlie 已提交
1032
	struct drm_i915_private *dev_priv = engine->i915;
1033 1034
	uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);

1035
	/* WaDisableCtxRestoreArbitration:skl,bxt */
D
Dave Airlie 已提交
1036 1037
	if (IS_SKL_REVID(dev_priv, 0, SKL_REVID_D0) ||
	    IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1))
1038
		wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_DISABLE);
1039

1040
	/* WaFlushCoherentL3CacheLinesAtContextSwitch:skl,bxt */
1041
	ret = gen8_emit_flush_coherentl3_wa(engine, batch, index);
1042 1043 1044 1045
	if (ret < 0)
		return ret;
	index = ret;

1046 1047 1048 1049 1050 1051 1052
	/* WaDisableGatherAtSetShaderCommonSlice:skl,bxt,kbl */
	wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
	wa_ctx_emit_reg(batch, index, COMMON_SLICE_CHICKEN2);
	wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(
			    GEN9_DISABLE_GATHER_AT_SET_SHADER_COMMON_SLICE));
	wa_ctx_emit(batch, index, MI_NOOP);

1053 1054
	/* WaClearSlmSpaceAtContextSwitch:kbl */
	/* Actual scratch location is at 128 bytes offset */
1055
	if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_A0)) {
1056
		u32 scratch_addr =
1057
			i915_ggtt_offset(engine->scratch) + 2 * CACHELINE_BYTES;
1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068

		wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
		wa_ctx_emit(batch, index, (PIPE_CONTROL_FLUSH_L3 |
					   PIPE_CONTROL_GLOBAL_GTT_IVB |
					   PIPE_CONTROL_CS_STALL |
					   PIPE_CONTROL_QW_WRITE));
		wa_ctx_emit(batch, index, scratch_addr);
		wa_ctx_emit(batch, index, 0);
		wa_ctx_emit(batch, index, 0);
		wa_ctx_emit(batch, index, 0);
	}
1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093

	/* WaMediaPoolStateCmdInWABB:bxt */
	if (HAS_POOLED_EU(engine->i915)) {
		/*
		 * EU pool configuration is setup along with golden context
		 * during context initialization. This value depends on
		 * device type (2x6 or 3x6) and needs to be updated based
		 * on which subslice is disabled especially for 2x6
		 * devices, however it is safe to load default
		 * configuration of 3x6 device instead of masking off
		 * corresponding bits because HW ignores bits of a disabled
		 * subslice and drops down to appropriate config. Please
		 * see render_state_setup() in i915_gem_render_state.c for
		 * possible configurations, to avoid duplication they are
		 * not shown here again.
		 */
		u32 eu_pool_config = 0x00777000;
		wa_ctx_emit(batch, index, GEN9_MEDIA_POOL_STATE);
		wa_ctx_emit(batch, index, GEN9_MEDIA_POOL_ENABLE);
		wa_ctx_emit(batch, index, eu_pool_config);
		wa_ctx_emit(batch, index, 0);
		wa_ctx_emit(batch, index, 0);
		wa_ctx_emit(batch, index, 0);
	}

1094 1095 1096 1097 1098 1099 1100
	/* Pad to end of cacheline */
	while (index % CACHELINE_DWORDS)
		wa_ctx_emit(batch, index, MI_NOOP);

	return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
}

1101
static int gen9_init_perctx_bb(struct intel_engine_cs *engine,
1102
			       struct i915_wa_ctx_bb *wa_ctx,
1103
			       uint32_t *batch,
1104 1105 1106 1107
			       uint32_t *offset)
{
	uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);

1108
	/* WaSetDisablePixMaskCammingAndRhwoInCommonSliceChicken:skl,bxt */
1109 1110
	if (IS_SKL_REVID(engine->i915, 0, SKL_REVID_B0) ||
	    IS_BXT_REVID(engine->i915, 0, BXT_REVID_A1)) {
1111
		wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
V
Ville Syrjälä 已提交
1112
		wa_ctx_emit_reg(batch, index, GEN9_SLICE_COMMON_ECO_CHICKEN0);
1113 1114 1115 1116 1117
		wa_ctx_emit(batch, index,
			    _MASKED_BIT_ENABLE(DISABLE_PIXEL_MASK_CAMMING));
		wa_ctx_emit(batch, index, MI_NOOP);
	}

1118
	/* WaClearTdlStateAckDirtyBits:bxt */
1119
	if (IS_BXT_REVID(engine->i915, 0, BXT_REVID_B0)) {
1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136
		wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(4));

		wa_ctx_emit_reg(batch, index, GEN8_STATE_ACK);
		wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(GEN9_SUBSLICE_TDL_ACK_BITS));

		wa_ctx_emit_reg(batch, index, GEN9_STATE_ACK_SLICE1);
		wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(GEN9_SUBSLICE_TDL_ACK_BITS));

		wa_ctx_emit_reg(batch, index, GEN9_STATE_ACK_SLICE2);
		wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(GEN9_SUBSLICE_TDL_ACK_BITS));

		wa_ctx_emit_reg(batch, index, GEN7_ROW_CHICKEN2);
		/* dummy write to CS, mask bits are 0 to ensure the register is not modified */
		wa_ctx_emit(batch, index, 0x0);
		wa_ctx_emit(batch, index, MI_NOOP);
	}

1137
	/* WaDisableCtxRestoreArbitration:skl,bxt */
1138 1139
	if (IS_SKL_REVID(engine->i915, 0, SKL_REVID_D0) ||
	    IS_BXT_REVID(engine->i915, 0, BXT_REVID_A1))
1140 1141
		wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_ENABLE);

1142 1143 1144 1145 1146
	wa_ctx_emit(batch, index, MI_BATCH_BUFFER_END);

	return wa_ctx_end(wa_ctx, *offset = index, 1);
}

1147
static int lrc_setup_wa_ctx_obj(struct intel_engine_cs *engine, u32 size)
1148
{
1149 1150 1151
	struct drm_i915_gem_object *obj;
	struct i915_vma *vma;
	int err;
1152

1153 1154 1155
	obj = i915_gem_object_create(&engine->i915->drm, PAGE_ALIGN(size));
	if (IS_ERR(obj))
		return PTR_ERR(obj);
1156

1157 1158 1159 1160
	vma = i915_vma_create(obj, &engine->i915->ggtt.base, NULL);
	if (IS_ERR(vma)) {
		err = PTR_ERR(vma);
		goto err;
1161 1162
	}

1163 1164 1165 1166 1167
	err = i915_vma_pin(vma, 0, PAGE_SIZE, PIN_GLOBAL | PIN_HIGH);
	if (err)
		goto err;

	engine->wa_ctx.vma = vma;
1168
	return 0;
1169 1170 1171 1172

err:
	i915_gem_object_put(obj);
	return err;
1173 1174
}

1175
static void lrc_destroy_wa_ctx_obj(struct intel_engine_cs *engine)
1176
{
1177
	i915_vma_unpin_and_release(&engine->wa_ctx.vma);
1178 1179
}

1180
static int intel_init_workaround_bb(struct intel_engine_cs *engine)
1181
{
1182
	struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
1183 1184 1185
	uint32_t *batch;
	uint32_t offset;
	struct page *page;
1186
	int ret;
1187

1188
	WARN_ON(engine->id != RCS);
1189

1190
	/* update this when WA for higher Gen are added */
1191
	if (INTEL_GEN(engine->i915) > 9) {
1192
		DRM_ERROR("WA batch buffer is not initialized for Gen%d\n",
1193
			  INTEL_GEN(engine->i915));
1194
		return 0;
1195
	}
1196

1197
	/* some WA perform writes to scratch page, ensure it is valid */
1198
	if (!engine->scratch) {
1199
		DRM_ERROR("scratch page not allocated for %s\n", engine->name);
1200 1201 1202
		return -EINVAL;
	}

1203
	ret = lrc_setup_wa_ctx_obj(engine, PAGE_SIZE);
1204 1205 1206 1207 1208
	if (ret) {
		DRM_DEBUG_DRIVER("Failed to setup context WA page: %d\n", ret);
		return ret;
	}

1209
	page = i915_gem_object_get_dirty_page(wa_ctx->vma->obj, 0);
1210 1211 1212
	batch = kmap_atomic(page);
	offset = 0;

1213
	if (IS_GEN8(engine->i915)) {
1214
		ret = gen8_init_indirectctx_bb(engine,
1215 1216 1217 1218 1219 1220
					       &wa_ctx->indirect_ctx,
					       batch,
					       &offset);
		if (ret)
			goto out;

1221
		ret = gen8_init_perctx_bb(engine,
1222 1223 1224 1225 1226
					  &wa_ctx->per_ctx,
					  batch,
					  &offset);
		if (ret)
			goto out;
1227
	} else if (IS_GEN9(engine->i915)) {
1228
		ret = gen9_init_indirectctx_bb(engine,
1229 1230 1231 1232 1233 1234
					       &wa_ctx->indirect_ctx,
					       batch,
					       &offset);
		if (ret)
			goto out;

1235
		ret = gen9_init_perctx_bb(engine,
1236 1237 1238 1239 1240
					  &wa_ctx->per_ctx,
					  batch,
					  &offset);
		if (ret)
			goto out;
1241 1242 1243 1244 1245
	}

out:
	kunmap_atomic(batch);
	if (ret)
1246
		lrc_destroy_wa_ctx_obj(engine);
1247 1248 1249 1250

	return ret;
}

1251 1252
static void lrc_init_hws(struct intel_engine_cs *engine)
{
1253
	struct drm_i915_private *dev_priv = engine->i915;
1254 1255

	I915_WRITE(RING_HWS_PGA(engine->mmio_base),
1256
		   engine->status_page.ggtt_offset);
1257 1258 1259
	POSTING_READ(RING_HWS_PGA(engine->mmio_base));
}

1260
static int gen8_init_common_ring(struct intel_engine_cs *engine)
1261
{
1262
	struct drm_i915_private *dev_priv = engine->i915;
1263
	unsigned int next_context_status_buffer_hw;
1264

1265
	lrc_init_hws(engine);
1266

1267 1268 1269
	I915_WRITE_IMR(engine,
		       ~(engine->irq_enable_mask | engine->irq_keep_mask));
	I915_WRITE(RING_HWSTAM(engine->mmio_base), 0xffffffff);
1270

1271
	I915_WRITE(RING_MODE_GEN7(engine),
1272 1273
		   _MASKED_BIT_DISABLE(GFX_REPLAY_MODE) |
		   _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE));
1274
	POSTING_READ(RING_MODE_GEN7(engine));
1275 1276 1277 1278 1279 1280 1281 1282 1283 1284

	/*
	 * Instead of resetting the Context Status Buffer (CSB) read pointer to
	 * zero, we need to read the write pointer from hardware and use its
	 * value because "this register is power context save restored".
	 * Effectively, these states have been observed:
	 *
	 *      | Suspend-to-idle (freeze) | Suspend-to-RAM (mem) |
	 * BDW  | CSB regs not reset       | CSB regs reset       |
	 * CHT  | CSB regs not reset       | CSB regs not reset   |
1285 1286
	 * SKL  |         ?                |         ?            |
	 * BXT  |         ?                |         ?            |
1287
	 */
1288
	next_context_status_buffer_hw =
1289
		GEN8_CSB_WRITE_PTR(I915_READ(RING_CONTEXT_STATUS_PTR(engine)));
1290 1291 1292 1293 1294 1295 1296 1297 1298

	/*
	 * When the CSB registers are reset (also after power-up / gpu reset),
	 * CSB write pointer is set to all 1's, which is not valid, use '5' in
	 * this special case, so the first element read is CSB[0].
	 */
	if (next_context_status_buffer_hw == GEN8_CSB_PTR_MASK)
		next_context_status_buffer_hw = (GEN8_CSB_ENTRIES - 1);

1299 1300
	engine->next_context_status_buffer = next_context_status_buffer_hw;
	DRM_DEBUG_DRIVER("Execlists enabled for %s\n", engine->name);
1301

1302
	intel_engine_init_hangcheck(engine);
1303

1304
	return intel_mocs_init_engine(engine);
1305 1306
}

1307
static int gen8_init_render_ring(struct intel_engine_cs *engine)
1308
{
1309
	struct drm_i915_private *dev_priv = engine->i915;
1310 1311
	int ret;

1312
	ret = gen8_init_common_ring(engine);
1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325
	if (ret)
		return ret;

	/* We need to disable the AsyncFlip performance optimisations in order
	 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
	 * programmed to '1' on all products.
	 *
	 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
	 */
	I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));

	I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));

1326
	return init_workarounds_ring(engine);
1327 1328
}

1329
static int gen9_init_render_ring(struct intel_engine_cs *engine)
1330 1331 1332
{
	int ret;

1333
	ret = gen8_init_common_ring(engine);
1334 1335 1336
	if (ret)
		return ret;

1337
	return init_workarounds_ring(engine);
1338 1339
}

1340 1341 1342
static int intel_logical_ring_emit_pdps(struct drm_i915_gem_request *req)
{
	struct i915_hw_ppgtt *ppgtt = req->ctx->ppgtt;
1343
	struct intel_ring *ring = req->ring;
1344
	struct intel_engine_cs *engine = req->engine;
1345 1346 1347
	const int num_lri_cmds = GEN8_LEGACY_PDPES * 2;
	int i, ret;

1348
	ret = intel_ring_begin(req, num_lri_cmds * 2 + 2);
1349 1350 1351
	if (ret)
		return ret;

1352
	intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(num_lri_cmds));
1353 1354 1355
	for (i = GEN8_LEGACY_PDPES - 1; i >= 0; i--) {
		const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);

1356 1357 1358 1359
		intel_ring_emit_reg(ring, GEN8_RING_PDP_UDW(engine, i));
		intel_ring_emit(ring, upper_32_bits(pd_daddr));
		intel_ring_emit_reg(ring, GEN8_RING_PDP_LDW(engine, i));
		intel_ring_emit(ring, lower_32_bits(pd_daddr));
1360 1361
	}

1362 1363
	intel_ring_emit(ring, MI_NOOP);
	intel_ring_advance(ring);
1364 1365 1366 1367

	return 0;
}

1368
static int gen8_emit_bb_start(struct drm_i915_gem_request *req,
1369 1370
			      u64 offset, u32 len,
			      unsigned int dispatch_flags)
1371
{
1372
	struct intel_ring *ring = req->ring;
1373
	bool ppgtt = !(dispatch_flags & I915_DISPATCH_SECURE);
1374 1375
	int ret;

1376 1377 1378 1379
	/* Don't rely in hw updating PDPs, specially in lite-restore.
	 * Ideally, we should set Force PD Restore in ctx descriptor,
	 * but we can't. Force Restore would be a second option, but
	 * it is unsafe in case of lite-restore (because the ctx is
1380 1381
	 * not idle). PML4 is allocated during ppgtt init so this is
	 * not needed in 48-bit.*/
1382
	if (req->ctx->ppgtt &&
1383
	    (intel_engine_flag(req->engine) & req->ctx->ppgtt->pd_dirty_rings)) {
1384
		if (!USES_FULL_48BIT_PPGTT(req->i915) &&
1385
		    !intel_vgpu_active(req->i915)) {
1386 1387 1388 1389
			ret = intel_logical_ring_emit_pdps(req);
			if (ret)
				return ret;
		}
1390

1391
		req->ctx->ppgtt->pd_dirty_rings &= ~intel_engine_flag(req->engine);
1392 1393
	}

1394
	ret = intel_ring_begin(req, 4);
1395 1396 1397 1398
	if (ret)
		return ret;

	/* FIXME(BDW): Address space and security selectors. */
1399 1400 1401 1402 1403 1404 1405 1406
	intel_ring_emit(ring, MI_BATCH_BUFFER_START_GEN8 |
			(ppgtt<<8) |
			(dispatch_flags & I915_DISPATCH_RS ?
			 MI_BATCH_RESOURCE_STREAMER : 0));
	intel_ring_emit(ring, lower_32_bits(offset));
	intel_ring_emit(ring, upper_32_bits(offset));
	intel_ring_emit(ring, MI_NOOP);
	intel_ring_advance(ring);
1407 1408 1409 1410

	return 0;
}

1411
static void gen8_logical_ring_enable_irq(struct intel_engine_cs *engine)
1412
{
1413
	struct drm_i915_private *dev_priv = engine->i915;
1414 1415 1416
	I915_WRITE_IMR(engine,
		       ~(engine->irq_enable_mask | engine->irq_keep_mask));
	POSTING_READ_FW(RING_IMR(engine->mmio_base));
1417 1418
}

1419
static void gen8_logical_ring_disable_irq(struct intel_engine_cs *engine)
1420
{
1421
	struct drm_i915_private *dev_priv = engine->i915;
1422
	I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
1423 1424
}

1425
static int gen8_emit_flush(struct drm_i915_gem_request *request, u32 mode)
1426
{
1427 1428
	struct intel_ring *ring = request->ring;
	u32 cmd;
1429 1430
	int ret;

1431
	ret = intel_ring_begin(request, 4);
1432 1433 1434 1435 1436
	if (ret)
		return ret;

	cmd = MI_FLUSH_DW + 1;

1437 1438 1439 1440 1441 1442 1443
	/* We always require a command barrier so that subsequent
	 * commands, such as breadcrumb interrupts, are strictly ordered
	 * wrt the contents of the write cache being flushed to memory
	 * (and thus being coherent from the CPU).
	 */
	cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;

1444
	if (mode & EMIT_INVALIDATE) {
1445
		cmd |= MI_INVALIDATE_TLB;
1446
		if (request->engine->id == VCS)
1447
			cmd |= MI_INVALIDATE_BSD;
1448 1449
	}

1450 1451 1452 1453 1454 1455 1456
	intel_ring_emit(ring, cmd);
	intel_ring_emit(ring,
			I915_GEM_HWS_SCRATCH_ADDR |
			MI_FLUSH_DW_USE_GTT);
	intel_ring_emit(ring, 0); /* upper addr */
	intel_ring_emit(ring, 0); /* value */
	intel_ring_advance(ring);
1457 1458 1459 1460

	return 0;
}

1461
static int gen8_emit_flush_render(struct drm_i915_gem_request *request,
1462
				  u32 mode)
1463
{
1464
	struct intel_ring *ring = request->ring;
1465
	struct intel_engine_cs *engine = request->engine;
1466 1467
	u32 scratch_addr =
		i915_ggtt_offset(engine->scratch) + 2 * CACHELINE_BYTES;
M
Mika Kuoppala 已提交
1468
	bool vf_flush_wa = false, dc_flush_wa = false;
1469 1470
	u32 flags = 0;
	int ret;
M
Mika Kuoppala 已提交
1471
	int len;
1472 1473 1474

	flags |= PIPE_CONTROL_CS_STALL;

1475
	if (mode & EMIT_FLUSH) {
1476 1477
		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
1478
		flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
1479
		flags |= PIPE_CONTROL_FLUSH_ENABLE;
1480 1481
	}

1482
	if (mode & EMIT_INVALIDATE) {
1483 1484 1485 1486 1487 1488 1489 1490 1491
		flags |= PIPE_CONTROL_TLB_INVALIDATE;
		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_QW_WRITE;
		flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;

1492 1493 1494 1495
		/*
		 * On GEN9: before VF_CACHE_INVALIDATE we need to emit a NULL
		 * pipe control.
		 */
1496
		if (IS_GEN9(request->i915))
1497
			vf_flush_wa = true;
M
Mika Kuoppala 已提交
1498 1499 1500 1501

		/* WaForGAMHang:kbl */
		if (IS_KBL_REVID(request->i915, 0, KBL_REVID_B0))
			dc_flush_wa = true;
1502
	}
1503

M
Mika Kuoppala 已提交
1504 1505 1506 1507 1508 1509 1510 1511 1512
	len = 6;

	if (vf_flush_wa)
		len += 6;

	if (dc_flush_wa)
		len += 12;

	ret = intel_ring_begin(request, len);
1513 1514 1515
	if (ret)
		return ret;

1516
	if (vf_flush_wa) {
1517 1518 1519 1520 1521 1522
		intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
		intel_ring_emit(ring, 0);
		intel_ring_emit(ring, 0);
		intel_ring_emit(ring, 0);
		intel_ring_emit(ring, 0);
		intel_ring_emit(ring, 0);
1523 1524
	}

M
Mika Kuoppala 已提交
1525
	if (dc_flush_wa) {
1526 1527 1528 1529 1530 1531
		intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
		intel_ring_emit(ring, PIPE_CONTROL_DC_FLUSH_ENABLE);
		intel_ring_emit(ring, 0);
		intel_ring_emit(ring, 0);
		intel_ring_emit(ring, 0);
		intel_ring_emit(ring, 0);
M
Mika Kuoppala 已提交
1532 1533
	}

1534 1535 1536 1537 1538 1539
	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
	intel_ring_emit(ring, flags);
	intel_ring_emit(ring, scratch_addr);
	intel_ring_emit(ring, 0);
	intel_ring_emit(ring, 0);
	intel_ring_emit(ring, 0);
M
Mika Kuoppala 已提交
1540 1541

	if (dc_flush_wa) {
1542 1543 1544 1545 1546 1547
		intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
		intel_ring_emit(ring, PIPE_CONTROL_CS_STALL);
		intel_ring_emit(ring, 0);
		intel_ring_emit(ring, 0);
		intel_ring_emit(ring, 0);
		intel_ring_emit(ring, 0);
M
Mika Kuoppala 已提交
1548 1549
	}

1550
	intel_ring_advance(ring);
1551 1552 1553 1554

	return 0;
}

1555
static void bxt_a_seqno_barrier(struct intel_engine_cs *engine)
1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566
{
	/*
	 * On BXT A steppings there is a HW coherency issue whereby the
	 * MI_STORE_DATA_IMM storing the completed request's seqno
	 * occasionally doesn't invalidate the CPU cache. Work around this by
	 * clflushing the corresponding cacheline whenever the caller wants
	 * the coherency to be guaranteed. Note that this cacheline is known
	 * to be clean at this point, since we only write it in
	 * bxt_a_set_seqno(), where we also do a clflush after the write. So
	 * this clflush in practice becomes an invalidate operation.
	 */
1567
	intel_flush_status_page(engine, I915_GEM_HWS_INDEX);
1568 1569
}

1570 1571 1572 1573 1574 1575 1576
/*
 * Reserve space for 2 NOOPs at the end of each request to be
 * used as a workaround for not being allowed to do lite
 * restore with HEAD==TAIL (WaIdleLiteRestore).
 */
#define WA_TAIL_DWORDS 2

1577
static int gen8_emit_request(struct drm_i915_gem_request *request)
1578
{
1579
	struct intel_ring *ring = request->ring;
1580 1581
	int ret;

1582
	ret = intel_ring_begin(request, 6 + WA_TAIL_DWORDS);
1583 1584 1585
	if (ret)
		return ret;

1586 1587
	/* w/a: bit 5 needs to be zero for MI_FLUSH_DW address. */
	BUILD_BUG_ON(I915_GEM_HWS_INDEX_ADDR & (1 << 5));
1588

1589 1590 1591 1592 1593 1594 1595 1596
	intel_ring_emit(ring, (MI_FLUSH_DW + 1) | MI_FLUSH_DW_OP_STOREDW);
	intel_ring_emit(ring,
			intel_hws_seqno_address(request->engine) |
			MI_FLUSH_DW_USE_GTT);
	intel_ring_emit(ring, 0);
	intel_ring_emit(ring, request->fence.seqno);
	intel_ring_emit(ring, MI_USER_INTERRUPT);
	intel_ring_emit(ring, MI_NOOP);
1597
	return intel_logical_ring_advance(request);
1598
}
1599

1600 1601
static int gen8_emit_request_render(struct drm_i915_gem_request *request)
{
1602
	struct intel_ring *ring = request->ring;
1603
	int ret;
1604

1605
	ret = intel_ring_begin(request, 8 + WA_TAIL_DWORDS);
1606 1607 1608
	if (ret)
		return ret;

1609 1610 1611
	/* We're using qword write, seqno should be aligned to 8 bytes. */
	BUILD_BUG_ON(I915_GEM_HWS_INDEX & 1);

1612 1613 1614 1615
	/* w/a for post sync ops following a GPGPU operation we
	 * need a prior CS_STALL, which is emitted by the flush
	 * following the batch.
	 */
1616 1617 1618 1619 1620 1621 1622 1623
	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
	intel_ring_emit(ring,
			(PIPE_CONTROL_GLOBAL_GTT_IVB |
			 PIPE_CONTROL_CS_STALL |
			 PIPE_CONTROL_QW_WRITE));
	intel_ring_emit(ring, intel_hws_seqno_address(request->engine));
	intel_ring_emit(ring, 0);
	intel_ring_emit(ring, i915_gem_request_get_seqno(request));
1624
	/* We're thrashing one dword of HWS. */
1625 1626 1627
	intel_ring_emit(ring, 0);
	intel_ring_emit(ring, MI_USER_INTERRUPT);
	intel_ring_emit(ring, MI_NOOP);
1628
	return intel_logical_ring_advance(request);
1629 1630
}

1631
static int gen8_init_rcs_context(struct drm_i915_gem_request *req)
1632 1633 1634
{
	int ret;

1635
	ret = intel_logical_ring_workarounds_emit(req);
1636 1637 1638
	if (ret)
		return ret;

1639 1640 1641 1642 1643 1644 1645 1646
	ret = intel_rcs_context_init_mocs(req);
	/*
	 * Failing to program the MOCS is non-fatal.The system will not
	 * run at peak performance. So generate an error and carry on.
	 */
	if (ret)
		DRM_ERROR("MOCS failed to program: expect performance issues.\n");

1647
	return i915_gem_render_state_init(req);
1648 1649
}

1650 1651
/**
 * intel_logical_ring_cleanup() - deallocate the Engine Command Streamer
1652
 * @engine: Engine Command Streamer.
1653
 */
1654
void intel_logical_ring_cleanup(struct intel_engine_cs *engine)
1655
{
1656
	struct drm_i915_private *dev_priv;
1657

1658
	if (!intel_engine_initialized(engine))
1659 1660
		return;

1661 1662 1663 1664 1665 1666 1667
	/*
	 * Tasklet cannot be active at this point due intel_mark_active/idle
	 * so this is just for documentation.
	 */
	if (WARN_ON(test_bit(TASKLET_STATE_SCHED, &engine->irq_tasklet.state)))
		tasklet_kill(&engine->irq_tasklet);

1668
	dev_priv = engine->i915;
1669

1670 1671
	if (engine->buffer) {
		WARN_ON((I915_READ_MODE(engine) & MODE_IDLE) == 0);
1672
	}
1673

1674 1675
	if (engine->cleanup)
		engine->cleanup(engine);
1676

1677
	intel_engine_cleanup_common(engine);
1678

1679 1680 1681
	if (engine->status_page.vma) {
		i915_gem_object_unpin_map(engine->status_page.vma->obj);
		engine->status_page.vma = NULL;
1682
	}
1683
	intel_lr_context_unpin(dev_priv->kernel_context, engine);
1684

1685 1686 1687
	engine->idle_lite_restore_wa = 0;
	engine->disable_lite_restore_wa = false;
	engine->ctx_desc_template = 0;
1688

1689
	lrc_destroy_wa_ctx_obj(engine);
1690
	engine->i915 = NULL;
1691 1692
}

1693 1694 1695 1696 1697
void intel_execlists_enable_submission(struct drm_i915_private *dev_priv)
{
	struct intel_engine_cs *engine;

	for_each_engine(engine, dev_priv)
1698
		engine->submit_request = execlists_submit_request;
1699 1700
}

1701
static void
1702
logical_ring_default_vfuncs(struct intel_engine_cs *engine)
1703 1704
{
	/* Default vfuncs which can be overriden by each engine. */
1705 1706
	engine->init_hw = gen8_init_common_ring;
	engine->emit_flush = gen8_emit_flush;
1707
	engine->emit_request = gen8_emit_request;
1708
	engine->submit_request = execlists_submit_request;
1709

1710 1711
	engine->irq_enable = gen8_logical_ring_enable_irq;
	engine->irq_disable = gen8_logical_ring_disable_irq;
1712
	engine->emit_bb_start = gen8_emit_bb_start;
1713
	if (IS_BXT_REVID(engine->i915, 0, BXT_REVID_A1))
1714
		engine->irq_seqno_barrier = bxt_a_seqno_barrier;
1715 1716
}

1717
static inline void
1718
logical_ring_default_irqs(struct intel_engine_cs *engine)
1719
{
1720
	unsigned shift = engine->irq_shift;
1721 1722
	engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT << shift;
	engine->irq_keep_mask = GT_CONTEXT_SWITCH_INTERRUPT << shift;
1723 1724
}

1725
static int
1726
lrc_setup_hws(struct intel_engine_cs *engine, struct i915_vma *vma)
1727
{
1728
	const int hws_offset = LRC_PPHWSP_PN * PAGE_SIZE;
1729
	void *hws;
1730 1731

	/* The HWSP is part of the default context object in LRC mode. */
1732
	hws = i915_gem_object_pin_map(vma->obj, I915_MAP_WB);
1733 1734
	if (IS_ERR(hws))
		return PTR_ERR(hws);
1735 1736

	engine->status_page.page_addr = hws + hws_offset;
1737
	engine->status_page.ggtt_offset = i915_ggtt_offset(vma) + hws_offset;
1738
	engine->status_page.vma = vma;
1739 1740

	return 0;
1741 1742
}

1743 1744 1745 1746 1747 1748
static void
logical_ring_setup(struct intel_engine_cs *engine)
{
	struct drm_i915_private *dev_priv = engine->i915;
	enum forcewake_domains fw_domains;

1749 1750
	intel_engine_setup_common(engine);

1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775
	/* Intentionally left blank. */
	engine->buffer = NULL;

	fw_domains = intel_uncore_forcewake_for_reg(dev_priv,
						    RING_ELSP(engine),
						    FW_REG_WRITE);

	fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
						     RING_CONTEXT_STATUS_PTR(engine),
						     FW_REG_READ | FW_REG_WRITE);

	fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
						     RING_CONTEXT_STATUS_BUF_BASE(engine),
						     FW_REG_READ);

	engine->fw_domains = fw_domains;

	tasklet_init(&engine->irq_tasklet,
		     intel_lrc_irq_handler, (unsigned long)engine);

	logical_ring_init_platform_invariants(engine);
	logical_ring_default_vfuncs(engine);
	logical_ring_default_irqs(engine);
}

1776 1777 1778 1779 1780 1781
static int
logical_ring_init(struct intel_engine_cs *engine)
{
	struct i915_gem_context *dctx = engine->i915->kernel_context;
	int ret;

1782
	ret = intel_engine_init_common(engine);
1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811
	if (ret)
		goto error;

	ret = execlists_context_deferred_alloc(dctx, engine);
	if (ret)
		goto error;

	/* As this is the default context, always pin it */
	ret = intel_lr_context_pin(dctx, engine);
	if (ret) {
		DRM_ERROR("Failed to pin context for %s: %d\n",
			  engine->name, ret);
		goto error;
	}

	/* And setup the hardware status page. */
	ret = lrc_setup_hws(engine, dctx->engine[engine->id].state);
	if (ret) {
		DRM_ERROR("Failed to set up hws %s: %d\n", engine->name, ret);
		goto error;
	}

	return 0;

error:
	intel_logical_ring_cleanup(engine);
	return ret;
}

1812
int logical_render_ring_init(struct intel_engine_cs *engine)
1813 1814 1815 1816
{
	struct drm_i915_private *dev_priv = engine->i915;
	int ret;

1817 1818
	logical_ring_setup(engine);

1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830
	if (HAS_L3_DPF(dev_priv))
		engine->irq_keep_mask |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;

	/* Override some for render ring. */
	if (INTEL_GEN(dev_priv) >= 9)
		engine->init_hw = gen9_init_render_ring;
	else
		engine->init_hw = gen8_init_render_ring;
	engine->init_context = gen8_init_rcs_context;
	engine->emit_flush = gen8_emit_flush_render;
	engine->emit_request = gen8_emit_request_render;

1831
	ret = intel_engine_create_scratch(engine, 4096);
1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853
	if (ret)
		return ret;

	ret = intel_init_workaround_bb(engine);
	if (ret) {
		/*
		 * We continue even if we fail to initialize WA batch
		 * because we only expect rare glitches but nothing
		 * critical to prevent us from using GPU
		 */
		DRM_ERROR("WA batch buffer initialization failed: %d\n",
			  ret);
	}

	ret = logical_ring_init(engine);
	if (ret) {
		lrc_destroy_wa_ctx_obj(engine);
	}

	return ret;
}

1854
int logical_xcs_ring_init(struct intel_engine_cs *engine)
1855 1856 1857 1858
{
	logical_ring_setup(engine);

	return logical_ring_init(engine);
1859 1860
}

1861
static u32
1862
make_rpcs(struct drm_i915_private *dev_priv)
1863 1864 1865 1866 1867 1868 1869
{
	u32 rpcs = 0;

	/*
	 * No explicit RPCS request is needed to ensure full
	 * slice/subslice/EU enablement prior to Gen9.
	*/
1870
	if (INTEL_GEN(dev_priv) < 9)
1871 1872 1873 1874 1875 1876 1877 1878
		return 0;

	/*
	 * Starting in Gen9, render power gating can leave
	 * slice/subslice/EU in a partially enabled state. We
	 * must make an explicit request through RPCS for full
	 * enablement.
	*/
1879
	if (INTEL_INFO(dev_priv)->sseu.has_slice_pg) {
1880
		rpcs |= GEN8_RPCS_S_CNT_ENABLE;
1881
		rpcs |= hweight8(INTEL_INFO(dev_priv)->sseu.slice_mask) <<
1882 1883 1884 1885
			GEN8_RPCS_S_CNT_SHIFT;
		rpcs |= GEN8_RPCS_ENABLE;
	}

1886
	if (INTEL_INFO(dev_priv)->sseu.has_subslice_pg) {
1887
		rpcs |= GEN8_RPCS_SS_CNT_ENABLE;
1888
		rpcs |= hweight8(INTEL_INFO(dev_priv)->sseu.subslice_mask) <<
1889 1890 1891 1892
			GEN8_RPCS_SS_CNT_SHIFT;
		rpcs |= GEN8_RPCS_ENABLE;
	}

1893 1894
	if (INTEL_INFO(dev_priv)->sseu.has_eu_pg) {
		rpcs |= INTEL_INFO(dev_priv)->sseu.eu_per_subslice <<
1895
			GEN8_RPCS_EU_MIN_SHIFT;
1896
		rpcs |= INTEL_INFO(dev_priv)->sseu.eu_per_subslice <<
1897 1898 1899 1900 1901 1902 1903
			GEN8_RPCS_EU_MAX_SHIFT;
		rpcs |= GEN8_RPCS_ENABLE;
	}

	return rpcs;
}

1904
static u32 intel_lr_indirect_ctx_offset(struct intel_engine_cs *engine)
1905 1906 1907
{
	u32 indirect_ctx_offset;

1908
	switch (INTEL_GEN(engine->i915)) {
1909
	default:
1910
		MISSING_CASE(INTEL_GEN(engine->i915));
1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924
		/* fall through */
	case 9:
		indirect_ctx_offset =
			GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
		break;
	case 8:
		indirect_ctx_offset =
			GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
		break;
	}

	return indirect_ctx_offset;
}

1925
static int
1926
populate_lr_context(struct i915_gem_context *ctx,
1927
		    struct drm_i915_gem_object *ctx_obj,
1928
		    struct intel_engine_cs *engine,
1929
		    struct intel_ring *ring)
1930
{
1931
	struct drm_i915_private *dev_priv = ctx->i915;
1932
	struct i915_hw_ppgtt *ppgtt = ctx->ppgtt;
1933 1934
	void *vaddr;
	u32 *reg_state;
1935 1936
	int ret;

1937 1938 1939
	if (!ppgtt)
		ppgtt = dev_priv->mm.aliasing_ppgtt;

1940 1941 1942 1943 1944 1945
	ret = i915_gem_object_set_to_cpu_domain(ctx_obj, true);
	if (ret) {
		DRM_DEBUG_DRIVER("Could not set to CPU domain\n");
		return ret;
	}

1946
	vaddr = i915_gem_object_pin_map(ctx_obj, I915_MAP_WB);
1947 1948 1949
	if (IS_ERR(vaddr)) {
		ret = PTR_ERR(vaddr);
		DRM_DEBUG_DRIVER("Could not map object pages! (%d)\n", ret);
1950 1951
		return ret;
	}
1952
	ctx_obj->dirty = true;
1953 1954 1955

	/* The second page of the context object contains some fields which must
	 * be set up prior to the first execution. */
1956
	reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;
1957 1958 1959 1960 1961 1962

	/* A context is actually a big batch buffer with several MI_LOAD_REGISTER_IMM
	 * commands followed by (reg, value) pairs. The values we are setting here are
	 * only for the first context restore: on a subsequent save, the GPU will
	 * recreate this batchbuffer with new values (including all the missing
	 * MI_LOAD_REGISTER_IMM commands that we are not initializing here). */
1963
	reg_state[CTX_LRI_HEADER_0] =
1964 1965 1966
		MI_LOAD_REGISTER_IMM(engine->id == RCS ? 14 : 11) | MI_LRI_FORCE_POSTED;
	ASSIGN_CTX_REG(reg_state, CTX_CONTEXT_CONTROL,
		       RING_CONTEXT_CONTROL(engine),
1967 1968
		       _MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH |
					  CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
1969
					  (HAS_RESOURCE_STREAMER(dev_priv) ?
1970
					    CTX_CTRL_RS_CTX_ENABLE : 0)));
1971 1972 1973 1974
	ASSIGN_CTX_REG(reg_state, CTX_RING_HEAD, RING_HEAD(engine->mmio_base),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_RING_TAIL, RING_TAIL(engine->mmio_base),
		       0);
1975 1976 1977
	/* Ring buffer start address is not known until the buffer is pinned.
	 * It is written to the context image in execlists_update_context()
	 */
1978 1979 1980 1981
	ASSIGN_CTX_REG(reg_state, CTX_RING_BUFFER_START,
		       RING_START(engine->mmio_base), 0);
	ASSIGN_CTX_REG(reg_state, CTX_RING_BUFFER_CONTROL,
		       RING_CTL(engine->mmio_base),
1982
		       ((ring->size - PAGE_SIZE) & RING_NR_PAGES) | RING_VALID);
1983 1984 1985 1986 1987 1988
	ASSIGN_CTX_REG(reg_state, CTX_BB_HEAD_U,
		       RING_BBADDR_UDW(engine->mmio_base), 0);
	ASSIGN_CTX_REG(reg_state, CTX_BB_HEAD_L,
		       RING_BBADDR(engine->mmio_base), 0);
	ASSIGN_CTX_REG(reg_state, CTX_BB_STATE,
		       RING_BBSTATE(engine->mmio_base),
1989
		       RING_BB_PPGTT);
1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002
	ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_HEAD_U,
		       RING_SBBADDR_UDW(engine->mmio_base), 0);
	ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_HEAD_L,
		       RING_SBBADDR(engine->mmio_base), 0);
	ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_STATE,
		       RING_SBBSTATE(engine->mmio_base), 0);
	if (engine->id == RCS) {
		ASSIGN_CTX_REG(reg_state, CTX_BB_PER_CTX_PTR,
			       RING_BB_PER_CTX_PTR(engine->mmio_base), 0);
		ASSIGN_CTX_REG(reg_state, CTX_RCS_INDIRECT_CTX,
			       RING_INDIRECT_CTX(engine->mmio_base), 0);
		ASSIGN_CTX_REG(reg_state, CTX_RCS_INDIRECT_CTX_OFFSET,
			       RING_INDIRECT_CTX_OFFSET(engine->mmio_base), 0);
2003
		if (engine->wa_ctx.vma) {
2004
			struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
2005
			u32 ggtt_offset = i915_ggtt_offset(wa_ctx->vma);
2006 2007 2008 2009 2010 2011

			reg_state[CTX_RCS_INDIRECT_CTX+1] =
				(ggtt_offset + wa_ctx->indirect_ctx.offset * sizeof(uint32_t)) |
				(wa_ctx->indirect_ctx.size / CACHELINE_DWORDS);

			reg_state[CTX_RCS_INDIRECT_CTX_OFFSET+1] =
2012
				intel_lr_indirect_ctx_offset(engine) << 6;
2013 2014 2015 2016 2017

			reg_state[CTX_BB_PER_CTX_PTR+1] =
				(ggtt_offset + wa_ctx->per_ctx.offset * sizeof(uint32_t)) |
				0x01;
		}
2018
	}
2019
	reg_state[CTX_LRI_HEADER_1] = MI_LOAD_REGISTER_IMM(9) | MI_LRI_FORCE_POSTED;
2020 2021
	ASSIGN_CTX_REG(reg_state, CTX_CTX_TIMESTAMP,
		       RING_CTX_TIMESTAMP(engine->mmio_base), 0);
2022
	/* PDP values well be assigned later if needed */
2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038
	ASSIGN_CTX_REG(reg_state, CTX_PDP3_UDW, GEN8_RING_PDP_UDW(engine, 3),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_PDP3_LDW, GEN8_RING_PDP_LDW(engine, 3),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_PDP2_UDW, GEN8_RING_PDP_UDW(engine, 2),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_PDP2_LDW, GEN8_RING_PDP_LDW(engine, 2),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_PDP1_UDW, GEN8_RING_PDP_UDW(engine, 1),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_PDP1_LDW, GEN8_RING_PDP_LDW(engine, 1),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_PDP0_UDW, GEN8_RING_PDP_UDW(engine, 0),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_PDP0_LDW, GEN8_RING_PDP_LDW(engine, 0),
		       0);
2039

2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051
	if (USES_FULL_48BIT_PPGTT(ppgtt->base.dev)) {
		/* 64b PPGTT (48bit canonical)
		 * PDP0_DESCRIPTOR contains the base address to PML4 and
		 * other PDP Descriptors are ignored.
		 */
		ASSIGN_CTX_PML4(ppgtt, reg_state);
	} else {
		/* 32b PPGTT
		 * PDP*_DESCRIPTOR contains the base address of space supported.
		 * With dynamic page allocation, PDPs may not be allocated at
		 * this point. Point the unallocated PDPs to the scratch page
		 */
2052
		execlists_update_context_pdps(ppgtt, reg_state);
2053 2054
	}

2055
	if (engine->id == RCS) {
2056
		reg_state[CTX_LRI_HEADER_2] = MI_LOAD_REGISTER_IMM(1);
2057
		ASSIGN_CTX_REG(reg_state, CTX_R_PWR_CLK_STATE, GEN8_R_PWR_CLK_STATE,
2058
			       make_rpcs(dev_priv));
2059 2060
	}

2061
	i915_gem_object_unpin_map(ctx_obj);
2062 2063 2064 2065

	return 0;
}

2066 2067
/**
 * intel_lr_context_size() - return the size of the context for an engine
2068
 * @engine: which engine to find the context size for
2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079
 *
 * Each engine may require a different amount of space for a context image,
 * so when allocating (or copying) an image, this function can be used to
 * find the right size for the specific engine.
 *
 * Return: size (in bytes) of an engine-specific context image
 *
 * Note: this size includes the HWSP, which is part of the context image
 * in LRC mode, but does not include the "shared data page" used with
 * GuC submission. The caller should account for this if using the GuC.
 */
2080
uint32_t intel_lr_context_size(struct intel_engine_cs *engine)
2081 2082 2083
{
	int ret = 0;

2084
	WARN_ON(INTEL_GEN(engine->i915) < 8);
2085

2086
	switch (engine->id) {
2087
	case RCS:
2088
		if (INTEL_GEN(engine->i915) >= 9)
2089 2090 2091
			ret = GEN9_LR_CONTEXT_RENDER_SIZE;
		else
			ret = GEN8_LR_CONTEXT_RENDER_SIZE;
2092 2093 2094 2095 2096 2097 2098 2099 2100 2101
		break;
	case VCS:
	case BCS:
	case VECS:
	case VCS2:
		ret = GEN8_LR_CONTEXT_OTHER_SIZE;
		break;
	}

	return ret;
2102 2103
}

2104
static int execlists_context_deferred_alloc(struct i915_gem_context *ctx,
2105
					    struct intel_engine_cs *engine)
2106
{
2107
	struct drm_i915_gem_object *ctx_obj;
2108
	struct intel_context *ce = &ctx->engine[engine->id];
2109
	struct i915_vma *vma;
2110
	uint32_t context_size;
2111
	struct intel_ring *ring;
2112 2113
	int ret;

2114
	WARN_ON(ce->state);
2115

2116
	context_size = round_up(intel_lr_context_size(engine), 4096);
2117

2118 2119 2120
	/* One extra page as the sharing data between driver and GuC */
	context_size += PAGE_SIZE * LRC_PPHWSP_PN;

2121
	ctx_obj = i915_gem_object_create(&ctx->i915->drm, context_size);
2122
	if (IS_ERR(ctx_obj)) {
2123
		DRM_DEBUG_DRIVER("Alloc LRC backing obj failed.\n");
2124
		return PTR_ERR(ctx_obj);
2125 2126
	}

2127 2128 2129 2130 2131 2132
	vma = i915_vma_create(ctx_obj, &ctx->i915->ggtt.base, NULL);
	if (IS_ERR(vma)) {
		ret = PTR_ERR(vma);
		goto error_deref_obj;
	}

2133
	ring = intel_engine_create_ring(engine, ctx->ring_size);
2134 2135
	if (IS_ERR(ring)) {
		ret = PTR_ERR(ring);
2136
		goto error_deref_obj;
2137 2138
	}

2139
	ret = populate_lr_context(ctx, ctx_obj, engine, ring);
2140 2141
	if (ret) {
		DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret);
2142
		goto error_ring_free;
2143 2144
	}

2145
	ce->ring = ring;
2146
	ce->state = vma;
2147
	ce->initialised = engine->init_context == NULL;
2148 2149

	return 0;
2150

2151
error_ring_free:
2152
	intel_ring_free(ring);
2153
error_deref_obj:
2154
	i915_gem_object_put(ctx_obj);
2155
	return ret;
2156
}
2157

2158
void intel_lr_context_reset(struct drm_i915_private *dev_priv,
2159
			    struct i915_gem_context *ctx)
2160
{
2161
	struct intel_engine_cs *engine;
2162

2163
	for_each_engine(engine, dev_priv) {
2164
		struct intel_context *ce = &ctx->engine[engine->id];
2165
		void *vaddr;
2166 2167
		uint32_t *reg_state;

2168
		if (!ce->state)
2169 2170
			continue;

2171
		vaddr = i915_gem_object_pin_map(ce->state->obj, I915_MAP_WB);
2172
		if (WARN_ON(IS_ERR(vaddr)))
2173
			continue;
2174 2175

		reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;
2176 2177 2178 2179

		reg_state[CTX_RING_HEAD+1] = 0;
		reg_state[CTX_RING_TAIL+1] = 0;

2180 2181
		ce->state->obj->dirty = true;
		i915_gem_object_unpin_map(ce->state->obj);
2182

2183 2184
		ce->ring->head = 0;
		ce->ring->tail = 0;
2185 2186
	}
}