intel_lrc.c 79.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
/*
 * Copyright © 2014 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Ben Widawsky <ben@bwidawsk.net>
 *    Michel Thierry <michel.thierry@intel.com>
 *    Thomas Daniel <thomas.daniel@intel.com>
 *    Oscar Mateo <oscar.mateo@intel.com>
 *
 */

31 32 33 34
/**
 * DOC: Logical Rings, Logical Ring Contexts and Execlists
 *
 * Motivation:
35 36 37 38
 * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
 * These expanded contexts enable a number of new abilities, especially
 * "Execlists" (also implemented in this file).
 *
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
 * One of the main differences with the legacy HW contexts is that logical
 * ring contexts incorporate many more things to the context's state, like
 * PDPs or ringbuffer control registers:
 *
 * The reason why PDPs are included in the context is straightforward: as
 * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
 * contained there mean you don't need to do a ppgtt->switch_mm yourself,
 * instead, the GPU will do it for you on the context switch.
 *
 * But, what about the ringbuffer control registers (head, tail, etc..)?
 * shouldn't we just need a set of those per engine command streamer? This is
 * where the name "Logical Rings" starts to make sense: by virtualizing the
 * rings, the engine cs shifts to a new "ring buffer" with every context
 * switch. When you want to submit a workload to the GPU you: A) choose your
 * context, B) find its appropriate virtualized ring, C) write commands to it
 * and then, finally, D) tell the GPU to switch to that context.
 *
 * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
 * to a contexts is via a context execution list, ergo "Execlists".
 *
 * LRC implementation:
 * Regarding the creation of contexts, we have:
 *
 * - One global default context.
 * - One local default context for each opened fd.
 * - One local extra context for each context create ioctl call.
 *
 * Now that ringbuffers belong per-context (and not per-engine, like before)
 * and that contexts are uniquely tied to a given engine (and not reusable,
 * like before) we need:
 *
 * - One ringbuffer per-engine inside each context.
 * - One backing object per-engine inside each context.
 *
 * The global default context starts its life with these new objects fully
 * allocated and populated. The local default context for each opened fd is
 * more complex, because we don't know at creation time which engine is going
 * to use them. To handle this, we have implemented a deferred creation of LR
 * contexts:
 *
 * The local context starts its life as a hollow or blank holder, that only
 * gets populated for a given engine once we receive an execbuffer. If later
 * on we receive another execbuffer ioctl for the same context but a different
 * engine, we allocate/populate a new ringbuffer and context backing object and
 * so on.
 *
 * Finally, regarding local contexts created using the ioctl call: as they are
 * only allowed with the render ring, we can allocate & populate them right
 * away (no need to defer anything, at least for now).
 *
 * Execlists implementation:
90 91
 * Execlists are the new method by which, on gen8+ hardware, workloads are
 * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
 * This method works as follows:
 *
 * When a request is committed, its commands (the BB start and any leading or
 * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
 * for the appropriate context. The tail pointer in the hardware context is not
 * updated at this time, but instead, kept by the driver in the ringbuffer
 * structure. A structure representing this request is added to a request queue
 * for the appropriate engine: this structure contains a copy of the context's
 * tail after the request was written to the ring buffer and a pointer to the
 * context itself.
 *
 * If the engine's request queue was empty before the request was added, the
 * queue is processed immediately. Otherwise the queue will be processed during
 * a context switch interrupt. In any case, elements on the queue will get sent
 * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
 * globally unique 20-bits submission ID.
 *
 * When execution of a request completes, the GPU updates the context status
 * buffer with a context complete event and generates a context switch interrupt.
 * During the interrupt handling, the driver examines the events in the buffer:
 * for each context complete event, if the announced ID matches that on the head
 * of the request queue, then that request is retired and removed from the queue.
 *
 * After processing, if any requests were retired and the queue is not empty
 * then a new execution list can be submitted. The two requests at the front of
 * the queue are next to be submitted but since a context may not occur twice in
 * an execution list, if subsequent requests have the same ID as the first then
 * the two requests must be combined. This is done simply by discarding requests
 * at the head of the queue until either only one requests is left (in which case
 * we use a NULL second context) or the first two requests have unique IDs.
 *
 * By always executing the first two requests in the queue the driver ensures
 * that the GPU is kept as busy as possible. In the case where a single context
 * completes but a second context is still executing, the request for this second
 * context will be at the head of the queue when we remove the first one. This
 * request will then be resubmitted along with a new request for a different context,
 * which will cause the hardware to continue executing the second request and queue
 * the new request (the GPU detects the condition of a context getting preempted
 * with the same context and optimizes the context switch flow by not doing
 * preemption, but just sampling the new tail pointer).
 *
133 134 135 136 137
 */

#include <drm/drmP.h>
#include <drm/i915_drm.h>
#include "i915_drv.h"
138
#include "intel_mocs.h"
139

140
#define GEN9_LR_CONTEXT_RENDER_SIZE (22 * PAGE_SIZE)
141 142 143
#define GEN8_LR_CONTEXT_RENDER_SIZE (20 * PAGE_SIZE)
#define GEN8_LR_CONTEXT_OTHER_SIZE (2 * PAGE_SIZE)

144 145 146 147 148 149 150 151 152 153 154 155 156
#define RING_EXECLIST_QFULL		(1 << 0x2)
#define RING_EXECLIST1_VALID		(1 << 0x3)
#define RING_EXECLIST0_VALID		(1 << 0x4)
#define RING_EXECLIST_ACTIVE_STATUS	(3 << 0xE)
#define RING_EXECLIST1_ACTIVE		(1 << 0x11)
#define RING_EXECLIST0_ACTIVE		(1 << 0x12)

#define GEN8_CTX_STATUS_IDLE_ACTIVE	(1 << 0)
#define GEN8_CTX_STATUS_PREEMPTED	(1 << 1)
#define GEN8_CTX_STATUS_ELEMENT_SWITCH	(1 << 2)
#define GEN8_CTX_STATUS_ACTIVE_IDLE	(1 << 3)
#define GEN8_CTX_STATUS_COMPLETE	(1 << 4)
#define GEN8_CTX_STATUS_LITE_RESTORE	(1 << 15)
157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186

#define CTX_LRI_HEADER_0		0x01
#define CTX_CONTEXT_CONTROL		0x02
#define CTX_RING_HEAD			0x04
#define CTX_RING_TAIL			0x06
#define CTX_RING_BUFFER_START		0x08
#define CTX_RING_BUFFER_CONTROL		0x0a
#define CTX_BB_HEAD_U			0x0c
#define CTX_BB_HEAD_L			0x0e
#define CTX_BB_STATE			0x10
#define CTX_SECOND_BB_HEAD_U		0x12
#define CTX_SECOND_BB_HEAD_L		0x14
#define CTX_SECOND_BB_STATE		0x16
#define CTX_BB_PER_CTX_PTR		0x18
#define CTX_RCS_INDIRECT_CTX		0x1a
#define CTX_RCS_INDIRECT_CTX_OFFSET	0x1c
#define CTX_LRI_HEADER_1		0x21
#define CTX_CTX_TIMESTAMP		0x22
#define CTX_PDP3_UDW			0x24
#define CTX_PDP3_LDW			0x26
#define CTX_PDP2_UDW			0x28
#define CTX_PDP2_LDW			0x2a
#define CTX_PDP1_UDW			0x2c
#define CTX_PDP1_LDW			0x2e
#define CTX_PDP0_UDW			0x30
#define CTX_PDP0_LDW			0x32
#define CTX_LRI_HEADER_2		0x41
#define CTX_R_PWR_CLK_STATE		0x42
#define CTX_GPGPU_CSR_BASE_ADDRESS	0x44

187 188 189 190 191
#define GEN8_CTX_VALID (1<<0)
#define GEN8_CTX_FORCE_PD_RESTORE (1<<1)
#define GEN8_CTX_FORCE_RESTORE (1<<2)
#define GEN8_CTX_L3LLC_COHERENT (1<<5)
#define GEN8_CTX_PRIVILEGE (1<<8)
192

193
#define ASSIGN_CTX_REG(reg_state, pos, reg, val) do { \
194
	(reg_state)[(pos)+0] = i915_mmio_reg_offset(reg); \
195 196 197 198
	(reg_state)[(pos)+1] = (val); \
} while (0)

#define ASSIGN_CTX_PDP(ppgtt, reg_state, n) do {		\
199
	const u64 _addr = i915_page_dir_dma_addr((ppgtt), (n));	\
200 201
	reg_state[CTX_PDP ## n ## _UDW+1] = upper_32_bits(_addr); \
	reg_state[CTX_PDP ## n ## _LDW+1] = lower_32_bits(_addr); \
202
} while (0)
203

204
#define ASSIGN_CTX_PML4(ppgtt, reg_state) do { \
205 206
	reg_state[CTX_PDP0_UDW + 1] = upper_32_bits(px_dma(&ppgtt->pml4)); \
	reg_state[CTX_PDP0_LDW + 1] = lower_32_bits(px_dma(&ppgtt->pml4)); \
207
} while (0)
208

209 210
enum {
	ADVANCED_CONTEXT = 0,
211
	LEGACY_32B_CONTEXT,
212 213 214
	ADVANCED_AD_CONTEXT,
	LEGACY_64B_CONTEXT
};
215 216 217 218
#define GEN8_CTX_ADDRESSING_MODE_SHIFT 3
#define GEN8_CTX_ADDRESSING_MODE(dev)  (USES_FULL_48BIT_PPGTT(dev) ?\
		LEGACY_64B_CONTEXT :\
		LEGACY_32B_CONTEXT)
219 220 221 222 223 224 225
enum {
	FAULT_AND_HANG = 0,
	FAULT_AND_HALT, /* Debug only */
	FAULT_AND_STREAM,
	FAULT_AND_CONTINUE /* Unsupported */
};
#define GEN8_CTX_ID_SHIFT 32
226 227
#define GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT	0x17
#define GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT	0x26
228

229 230
static int intel_lr_context_pin(struct intel_context *ctx,
				struct intel_engine_cs *engine);
231 232 233
static void lrc_setup_hardware_status_page(struct intel_engine_cs *ring,
		struct drm_i915_gem_object *default_ctx_obj);

234

235 236 237 238 239 240
/**
 * intel_sanitize_enable_execlists() - sanitize i915.enable_execlists
 * @dev: DRM device.
 * @enable_execlists: value of i915.enable_execlists module parameter.
 *
 * Only certain platforms support Execlists (the prerequisites being
241
 * support for Logical Ring Contexts and Aliasing PPGTT or better).
242 243 244
 *
 * Return: 1 if Execlists is supported and has to be enabled.
 */
245 246
int intel_sanitize_enable_execlists(struct drm_device *dev, int enable_execlists)
{
247 248
	WARN_ON(i915.enable_ppgtt == -1);

249 250 251 252 253 254
	/* On platforms with execlist available, vGPU will only
	 * support execlist mode, no ring buffer mode.
	 */
	if (HAS_LOGICAL_RING_CONTEXTS(dev) && intel_vgpu_active(dev))
		return 1;

255 256 257
	if (INTEL_INFO(dev)->gen >= 9)
		return 1;

258 259 260
	if (enable_execlists == 0)
		return 0;

261 262
	if (HAS_LOGICAL_RING_CONTEXTS(dev) && USES_PPGTT(dev) &&
	    i915.use_mmio_flip >= 0)
263 264 265 266
		return 1;

	return 0;
}
267

268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293
static void
logical_ring_init_platform_invariants(struct intel_engine_cs *ring)
{
	struct drm_device *dev = ring->dev;

	ring->disable_lite_restore_wa = (IS_SKL_REVID(dev, 0, SKL_REVID_B0) ||
					IS_BXT_REVID(dev, 0, BXT_REVID_A1)) &&
					(ring->id == VCS || ring->id == VCS2);

	ring->ctx_desc_template = GEN8_CTX_VALID;
	ring->ctx_desc_template |= GEN8_CTX_ADDRESSING_MODE(dev) <<
				   GEN8_CTX_ADDRESSING_MODE_SHIFT;
	if (IS_GEN8(dev))
		ring->ctx_desc_template |= GEN8_CTX_L3LLC_COHERENT;
	ring->ctx_desc_template |= GEN8_CTX_PRIVILEGE;

	/* TODO: WaDisableLiteRestore when we start using semaphore
	 * signalling between Command Streamers */
	/* ring->ctx_desc_template |= GEN8_CTX_FORCE_RESTORE; */

	/* WaEnableForceRestoreInCtxtDescForVCS:skl */
	/* WaEnableForceRestoreInCtxtDescForVCS:bxt */
	if (ring->disable_lite_restore_wa)
		ring->ctx_desc_template |= GEN8_CTX_FORCE_RESTORE;
}

294
/**
295 296
 * intel_lr_context_descriptor_update() - calculate & cache the descriptor
 * 					  descriptor for a pinned context
297
 *
298 299
 * @ctx: Context to work on
 * @ring: Engine the descriptor will be used with
300
 *
301 302 303 304 305 306 307 308 309 310
 * The context descriptor encodes various attributes of a context,
 * including its GTT address and some flags. Because it's fairly
 * expensive to calculate, we'll just do it once and cache the result,
 * which remains valid until the context is unpinned.
 *
 * This is what a descriptor looks like, from LSB to MSB:
 *    bits 0-11:    flags, GEN8_CTX_* (cached in ctx_desc_template)
 *    bits 12-31:    LRCA, GTT address of (the HWSP of) this context
 *    bits 32-51:    ctx ID, a globally unique tag (the LRCA again!)
 *    bits 52-63:    reserved, may encode the engine ID (for GuC)
311
 */
312 313 314
static void
intel_lr_context_descriptor_update(struct intel_context *ctx,
				   struct intel_engine_cs *ring)
315
{
316
	uint64_t lrca, desc;
317

318 319
	lrca = ctx->engine[ring->id].lrc_vma->node.start +
	       LRC_PPHWSP_PN * PAGE_SIZE;
320

321 322 323
	desc = ring->ctx_desc_template;			   /* bits  0-11 */
	desc |= lrca;					   /* bits 12-31 */
	desc |= (lrca >> PAGE_SHIFT) << GEN8_CTX_ID_SHIFT; /* bits 32-51 */
324

325
	ctx->engine[ring->id].lrc_desc = desc;
326 327
}

328 329
uint64_t intel_lr_context_descriptor(struct intel_context *ctx,
				     struct intel_engine_cs *ring)
330
{
331 332
	return ctx->engine[ring->id].lrc_desc;
}
333

334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353
/**
 * intel_execlists_ctx_id() - get the Execlists Context ID
 * @ctx: Context to get the ID for
 * @ring: Engine to get the ID for
 *
 * Do not confuse with ctx->id! Unfortunately we have a name overload
 * here: the old context ID we pass to userspace as a handler so that
 * they can refer to a context, and the new context ID we pass to the
 * ELSP so that the GPU can inform us of the context status via
 * interrupts.
 *
 * The context ID is a portion of the context descriptor, so we can
 * just extract the required part from the cached descriptor.
 *
 * Return: 20-bits globally unique context ID.
 */
u32 intel_execlists_ctx_id(struct intel_context *ctx,
			   struct intel_engine_cs *ring)
{
	return intel_lr_context_descriptor(ctx, ring) >> GEN8_CTX_ID_SHIFT;
354 355
}

356 357
static void execlists_elsp_write(struct drm_i915_gem_request *rq0,
				 struct drm_i915_gem_request *rq1)
358
{
359 360

	struct intel_engine_cs *ring = rq0->ring;
361 362
	struct drm_device *dev = ring->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
363
	uint64_t desc[2];
364

365
	if (rq1) {
366
		desc[1] = intel_lr_context_descriptor(rq1->ctx, rq1->ring);
367 368 369 370
		rq1->elsp_submitted++;
	} else {
		desc[1] = 0;
	}
371

372
	desc[0] = intel_lr_context_descriptor(rq0->ctx, rq0->ring);
373
	rq0->elsp_submitted++;
374

375
	/* You must always write both descriptors in the order below. */
376 377
	spin_lock(&dev_priv->uncore.lock);
	intel_uncore_forcewake_get__locked(dev_priv, FORCEWAKE_ALL);
378 379
	I915_WRITE_FW(RING_ELSP(ring), upper_32_bits(desc[1]));
	I915_WRITE_FW(RING_ELSP(ring), lower_32_bits(desc[1]));
380

381
	I915_WRITE_FW(RING_ELSP(ring), upper_32_bits(desc[0]));
382
	/* The context is automatically loaded after the following */
383
	I915_WRITE_FW(RING_ELSP(ring), lower_32_bits(desc[0]));
384

385
	/* ELSP is a wo register, use another nearby reg for posting */
386
	POSTING_READ_FW(RING_EXECLIST_STATUS_LO(ring));
387 388
	intel_uncore_forcewake_put__locked(dev_priv, FORCEWAKE_ALL);
	spin_unlock(&dev_priv->uncore.lock);
389 390
}

391
static int execlists_update_context(struct drm_i915_gem_request *rq)
392
{
393 394
	struct intel_engine_cs *ring = rq->ring;
	struct i915_hw_ppgtt *ppgtt = rq->ctx->ppgtt;
395
	uint32_t *reg_state = rq->ctx->engine[ring->id].lrc_reg_state;
396

397
	reg_state[CTX_RING_TAIL+1] = rq->tail;
398

399 400 401 402 403 404
	if (ppgtt && !USES_FULL_48BIT_PPGTT(ppgtt->base.dev)) {
		/* True 32b PPGTT with dynamic page allocation: update PDP
		 * registers and point the unallocated PDPs to scratch page.
		 * PML4 is allocated during ppgtt init, so this is not needed
		 * in 48-bit mode.
		 */
405 406 407 408 409 410
		ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
		ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
		ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
		ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
	}

411 412 413
	return 0;
}

414 415
static void execlists_submit_requests(struct drm_i915_gem_request *rq0,
				      struct drm_i915_gem_request *rq1)
416
{
417
	execlists_update_context(rq0);
418

419
	if (rq1)
420
		execlists_update_context(rq1);
421

422
	execlists_elsp_write(rq0, rq1);
423 424
}

425 426
static void execlists_context_unqueue(struct intel_engine_cs *ring)
{
427 428
	struct drm_i915_gem_request *req0 = NULL, *req1 = NULL;
	struct drm_i915_gem_request *cursor = NULL, *tmp = NULL;
429 430

	assert_spin_locked(&ring->execlist_lock);
431

432 433 434 435 436 437
	/*
	 * If irqs are not active generate a warning as batches that finish
	 * without the irqs may get lost and a GPU Hang may occur.
	 */
	WARN_ON(!intel_irqs_enabled(ring->dev->dev_private));

438 439 440 441 442 443 444 445
	if (list_empty(&ring->execlist_queue))
		return;

	/* Try to read in pairs */
	list_for_each_entry_safe(cursor, tmp, &ring->execlist_queue,
				 execlist_link) {
		if (!req0) {
			req0 = cursor;
446
		} else if (req0->ctx == cursor->ctx) {
447 448
			/* Same ctx: ignore first request, as second request
			 * will update tail past first request's workload */
449
			cursor->elsp_submitted = req0->elsp_submitted;
450 451
			list_move_tail(&req0->execlist_link,
				       &ring->execlist_retired_req_list);
452 453 454 455 456 457 458
			req0 = cursor;
		} else {
			req1 = cursor;
			break;
		}
	}

459 460 461 462 463
	if (IS_GEN8(ring->dev) || IS_GEN9(ring->dev)) {
		/*
		 * WaIdleLiteRestore: make sure we never cause a lite
		 * restore with HEAD==TAIL
		 */
464
		if (req0->elsp_submitted) {
465 466 467 468 469 470 471 472 473 474 475 476 477 478
			/*
			 * Apply the wa NOOPS to prevent ring:HEAD == req:TAIL
			 * as we resubmit the request. See gen8_emit_request()
			 * for where we prepare the padding after the end of the
			 * request.
			 */
			struct intel_ringbuffer *ringbuf;

			ringbuf = req0->ctx->engine[ring->id].ringbuf;
			req0->tail += 8;
			req0->tail &= ringbuf->size - 1;
		}
	}

479 480
	WARN_ON(req1 && req1->elsp_submitted);

481
	execlists_submit_requests(req0, req1);
482 483
}

484 485 486
static bool execlists_check_remove_request(struct intel_engine_cs *ring,
					   u32 request_id)
{
487
	struct drm_i915_gem_request *head_req;
488 489 490 491

	assert_spin_locked(&ring->execlist_lock);

	head_req = list_first_entry_or_null(&ring->execlist_queue,
492
					    struct drm_i915_gem_request,
493 494 495
					    execlist_link);

	if (head_req != NULL) {
496
		if (intel_execlists_ctx_id(head_req->ctx, ring) == request_id) {
497 498 499 500
			WARN(head_req->elsp_submitted == 0,
			     "Never submitted head request\n");

			if (--head_req->elsp_submitted <= 0) {
501 502
				list_move_tail(&head_req->execlist_link,
					       &ring->execlist_retired_req_list);
503 504
				return true;
			}
505 506 507 508 509 510
		}
	}

	return false;
}

B
Ben Widawsky 已提交
511 512 513 514 515 516 517 518 519 520 521 522 523
static void get_context_status(struct intel_engine_cs *ring,
			       u8 read_pointer,
			       u32 *status, u32 *context_id)
{
	struct drm_i915_private *dev_priv = ring->dev->dev_private;

	if (WARN_ON(read_pointer >= GEN8_CSB_ENTRIES))
		return;

	*status = I915_READ(RING_CONTEXT_STATUS_BUF_LO(ring, read_pointer));
	*context_id = I915_READ(RING_CONTEXT_STATUS_BUF_HI(ring, read_pointer));
}

524
/**
525
 * intel_lrc_irq_handler() - handle Context Switch interrupts
526 527 528 529 530
 * @ring: Engine Command Streamer to handle.
 *
 * Check the unread Context Status Buffers and manage the submission of new
 * contexts to the ELSP accordingly.
 */
531
void intel_lrc_irq_handler(struct intel_engine_cs *ring)
532 533 534 535 536
{
	struct drm_i915_private *dev_priv = ring->dev->dev_private;
	u32 status_pointer;
	u8 read_pointer;
	u8 write_pointer;
537
	u32 status = 0;
538 539 540 541 542 543
	u32 status_id;
	u32 submit_contexts = 0;

	status_pointer = I915_READ(RING_CONTEXT_STATUS_PTR(ring));

	read_pointer = ring->next_context_status_buffer;
544
	write_pointer = GEN8_CSB_WRITE_PTR(status_pointer);
545
	if (read_pointer > write_pointer)
546
		write_pointer += GEN8_CSB_ENTRIES;
547 548 549 550

	spin_lock(&ring->execlist_lock);

	while (read_pointer < write_pointer) {
B
Ben Widawsky 已提交
551 552 553

		get_context_status(ring, ++read_pointer % GEN8_CSB_ENTRIES,
				   &status, &status_id);
554

555 556 557
		if (status & GEN8_CTX_STATUS_IDLE_ACTIVE)
			continue;

558 559 560 561 562 563 564 565
		if (status & GEN8_CTX_STATUS_PREEMPTED) {
			if (status & GEN8_CTX_STATUS_LITE_RESTORE) {
				if (execlists_check_remove_request(ring, status_id))
					WARN(1, "Lite Restored request removed from queue\n");
			} else
				WARN(1, "Preemption without Lite Restore\n");
		}

B
Ben Widawsky 已提交
566 567
		if ((status & GEN8_CTX_STATUS_ACTIVE_IDLE) ||
		    (status & GEN8_CTX_STATUS_ELEMENT_SWITCH)) {
568 569 570 571 572
			if (execlists_check_remove_request(ring, status_id))
				submit_contexts++;
		}
	}

573
	if (ring->disable_lite_restore_wa) {
574 575 576 577 578
		/* Prevent a ctx to preempt itself */
		if ((status & GEN8_CTX_STATUS_ACTIVE_IDLE) &&
		    (submit_contexts != 0))
			execlists_context_unqueue(ring);
	} else if (submit_contexts != 0) {
579
		execlists_context_unqueue(ring);
580
	}
581 582 583

	spin_unlock(&ring->execlist_lock);

584 585 586
	if (unlikely(submit_contexts > 2))
		DRM_ERROR("More than two context complete events?\n");

587
	ring->next_context_status_buffer = write_pointer % GEN8_CSB_ENTRIES;
588

589 590
	/* Update the read pointer to the old write pointer. Manual ringbuffer
	 * management ftw </sarcasm> */
591
	I915_WRITE(RING_CONTEXT_STATUS_PTR(ring),
592 593
		   _MASKED_FIELD(GEN8_CSB_READ_PTR_MASK,
				 ring->next_context_status_buffer << 8));
594 595
}

596
static int execlists_context_queue(struct drm_i915_gem_request *request)
597
{
598
	struct intel_engine_cs *ring = request->ring;
599
	struct drm_i915_gem_request *cursor;
600
	int num_elements = 0;
601

602
	if (request->ctx != request->i915->kernel_context)
603
		intel_lr_context_pin(request->ctx, ring);
604

605 606
	i915_gem_request_reference(request);

607
	spin_lock_irq(&ring->execlist_lock);
608

609 610 611 612 613
	list_for_each_entry(cursor, &ring->execlist_queue, execlist_link)
		if (++num_elements > 2)
			break;

	if (num_elements > 2) {
614
		struct drm_i915_gem_request *tail_req;
615 616

		tail_req = list_last_entry(&ring->execlist_queue,
617
					   struct drm_i915_gem_request,
618 619
					   execlist_link);

620
		if (request->ctx == tail_req->ctx) {
621
			WARN(tail_req->elsp_submitted != 0,
622
				"More than 2 already-submitted reqs queued\n");
623 624
			list_move_tail(&tail_req->execlist_link,
				       &ring->execlist_retired_req_list);
625 626 627
		}
	}

628
	list_add_tail(&request->execlist_link, &ring->execlist_queue);
629
	if (num_elements == 0)
630 631
		execlists_context_unqueue(ring);

632
	spin_unlock_irq(&ring->execlist_lock);
633 634 635 636

	return 0;
}

637
static int logical_ring_invalidate_all_caches(struct drm_i915_gem_request *req)
638
{
639
	struct intel_engine_cs *ring = req->ring;
640 641 642 643 644 645 646
	uint32_t flush_domains;
	int ret;

	flush_domains = 0;
	if (ring->gpu_caches_dirty)
		flush_domains = I915_GEM_GPU_DOMAINS;

647
	ret = ring->emit_flush(req, I915_GEM_GPU_DOMAINS, flush_domains);
648 649 650 651 652 653 654
	if (ret)
		return ret;

	ring->gpu_caches_dirty = false;
	return 0;
}

655
static int execlists_move_to_gpu(struct drm_i915_gem_request *req,
656 657
				 struct list_head *vmas)
{
658
	const unsigned other_rings = ~intel_ring_flag(req->ring);
659 660 661 662 663 664 665 666
	struct i915_vma *vma;
	uint32_t flush_domains = 0;
	bool flush_chipset = false;
	int ret;

	list_for_each_entry(vma, vmas, exec_list) {
		struct drm_i915_gem_object *obj = vma->obj;

667
		if (obj->active & other_rings) {
668
			ret = i915_gem_object_sync(obj, req->ring, &req);
669 670 671
			if (ret)
				return ret;
		}
672 673 674 675 676 677 678 679 680 681 682 683 684

		if (obj->base.write_domain & I915_GEM_DOMAIN_CPU)
			flush_chipset |= i915_gem_clflush_object(obj, false);

		flush_domains |= obj->base.write_domain;
	}

	if (flush_domains & I915_GEM_DOMAIN_GTT)
		wmb();

	/* Unconditionally invalidate gpu caches and ensure that we do flush
	 * any residual writes from the previous batch.
	 */
685
	return logical_ring_invalidate_all_caches(req);
686 687
}

688
int intel_logical_ring_alloc_request_extras(struct drm_i915_gem_request *request)
689
{
D
Dave Gordon 已提交
690
	int ret = 0;
691

692 693
	request->ringbuf = request->ctx->engine[request->ring->id].ringbuf;

694 695 696 697 698 699 700 701 702 703 704 705 706
	if (i915.enable_guc_submission) {
		/*
		 * Check that the GuC has space for the request before
		 * going any further, as the i915_add_request() call
		 * later on mustn't fail ...
		 */
		struct intel_guc *guc = &request->i915->guc;

		ret = i915_guc_wq_check_space(guc->execbuf_client);
		if (ret)
			return ret;
	}

D
Dave Gordon 已提交
707
	if (request->ctx != request->i915->kernel_context)
708
		ret = intel_lr_context_pin(request->ctx, request->ring);
D
Dave Gordon 已提交
709 710

	return ret;
711 712
}

713
static int logical_ring_wait_for_space(struct drm_i915_gem_request *req,
714
				       int bytes)
715
{
716 717 718
	struct intel_ringbuffer *ringbuf = req->ringbuf;
	struct intel_engine_cs *ring = req->ring;
	struct drm_i915_gem_request *target;
719 720
	unsigned space;
	int ret;
721 722 723 724

	if (intel_ring_space(ringbuf) >= bytes)
		return 0;

725 726 727
	/* The whole point of reserving space is to not wait! */
	WARN_ON(ringbuf->reserved_in_use);

728
	list_for_each_entry(target, &ring->request_list, list) {
729 730 731 732 733
		/*
		 * The request queue is per-engine, so can contain requests
		 * from multiple ringbuffers. Here, we must ignore any that
		 * aren't from the ringbuffer we're considering.
		 */
734
		if (target->ringbuf != ringbuf)
735 736 737
			continue;

		/* Would completion of this request free enough space? */
738
		space = __intel_ring_space(target->postfix, ringbuf->tail,
739 740
					   ringbuf->size);
		if (space >= bytes)
741 742 743
			break;
	}

744
	if (WARN_ON(&target->list == &ring->request_list))
745 746
		return -ENOSPC;

747
	ret = i915_wait_request(target);
748 749 750
	if (ret)
		return ret;

751 752
	ringbuf->space = space;
	return 0;
753 754 755 756
}

/*
 * intel_logical_ring_advance_and_submit() - advance the tail and submit the workload
757
 * @request: Request to advance the logical ringbuffer of.
758 759 760 761 762 763
 *
 * The tail is updated in our logical ringbuffer struct, not in the actual context. What
 * really happens during submission is that the context and current tail will be placed
 * on a queue waiting for the ELSP to be ready to accept a new context submission. At that
 * point, the tail *inside* the context is updated and the ELSP written to.
 */
764
static int
765
intel_logical_ring_advance_and_submit(struct drm_i915_gem_request *request)
766
{
767
	struct intel_ringbuffer *ringbuf = request->ringbuf;
768
	struct drm_i915_private *dev_priv = request->i915;
769
	struct intel_engine_cs *engine = request->ring;
770

771 772
	intel_logical_ring_advance(ringbuf);
	request->tail = ringbuf->tail;
773

774 775 776 777 778 779 780 781 782
	/*
	 * Here we add two extra NOOPs as padding to avoid
	 * lite restore of a context with HEAD==TAIL.
	 *
	 * Caller must reserve WA_TAIL_DWORDS for us!
	 */
	intel_logical_ring_emit(ringbuf, MI_NOOP);
	intel_logical_ring_emit(ringbuf, MI_NOOP);
	intel_logical_ring_advance(ringbuf);
783

784
	if (intel_ring_stopped(engine))
785
		return 0;
786

787 788 789 790 791 792 793 794 795 796 797
	if (engine->last_context != request->ctx) {
		if (engine->last_context)
			intel_lr_context_unpin(engine->last_context, engine);
		if (request->ctx != request->i915->kernel_context) {
			intel_lr_context_pin(request->ctx, engine);
			engine->last_context = request->ctx;
		} else {
			engine->last_context = NULL;
		}
	}

798 799 800 801
	if (dev_priv->guc.execbuf_client)
		i915_guc_submit(dev_priv->guc.execbuf_client, request);
	else
		execlists_context_queue(request);
802 803

	return 0;
804 805
}

806
static void __wrap_ring_buffer(struct intel_ringbuffer *ringbuf)
807 808 809 810 811 812 813 814 815 816 817 818 819
{
	uint32_t __iomem *virt;
	int rem = ringbuf->size - ringbuf->tail;

	virt = ringbuf->virtual_start + ringbuf->tail;
	rem /= 4;
	while (rem--)
		iowrite32(MI_NOOP, virt++);

	ringbuf->tail = 0;
	intel_ring_update_space(ringbuf);
}

820
static int logical_ring_prepare(struct drm_i915_gem_request *req, int bytes)
821
{
822
	struct intel_ringbuffer *ringbuf = req->ringbuf;
823 824 825 826
	int remain_usable = ringbuf->effective_size - ringbuf->tail;
	int remain_actual = ringbuf->size - ringbuf->tail;
	int ret, total_bytes, wait_bytes = 0;
	bool need_wrap = false;
827

828 829 830 831
	if (ringbuf->reserved_in_use)
		total_bytes = bytes;
	else
		total_bytes = bytes + ringbuf->reserved_size;
832

833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851
	if (unlikely(bytes > remain_usable)) {
		/*
		 * Not enough space for the basic request. So need to flush
		 * out the remainder and then wait for base + reserved.
		 */
		wait_bytes = remain_actual + total_bytes;
		need_wrap = true;
	} else {
		if (unlikely(total_bytes > remain_usable)) {
			/*
			 * The base request will fit but the reserved space
			 * falls off the end. So only need to to wait for the
			 * reserved size after flushing out the remainder.
			 */
			wait_bytes = remain_actual + ringbuf->reserved_size;
			need_wrap = true;
		} else if (total_bytes > ringbuf->space) {
			/* No wrapping required, just waiting. */
			wait_bytes = total_bytes;
852
		}
853 854
	}

855 856
	if (wait_bytes) {
		ret = logical_ring_wait_for_space(req, wait_bytes);
857 858
		if (unlikely(ret))
			return ret;
859 860 861

		if (need_wrap)
			__wrap_ring_buffer(ringbuf);
862 863 864 865 866 867 868 869
	}

	return 0;
}

/**
 * intel_logical_ring_begin() - prepare the logical ringbuffer to accept some commands
 *
870
 * @req: The request to start some new work for
871 872 873 874 875 876 877 878 879
 * @num_dwords: number of DWORDs that we plan to write to the ringbuffer.
 *
 * The ringbuffer might not be ready to accept the commands right away (maybe it needs to
 * be wrapped, or wait a bit for the tail to be updated). This function takes care of that
 * and also preallocates a request (every workload submission is still mediated through
 * requests, same as it did with legacy ringbuffer submission).
 *
 * Return: non-zero if the ringbuffer is not ready to be written to.
 */
880
int intel_logical_ring_begin(struct drm_i915_gem_request *req, int num_dwords)
881
{
882
	struct drm_i915_private *dev_priv;
883 884
	int ret;

885 886 887
	WARN_ON(req == NULL);
	dev_priv = req->ring->dev->dev_private;

888 889 890 891 892
	ret = i915_gem_check_wedge(&dev_priv->gpu_error,
				   dev_priv->mm.interruptible);
	if (ret)
		return ret;

893
	ret = logical_ring_prepare(req, num_dwords * sizeof(uint32_t));
894 895 896
	if (ret)
		return ret;

897
	req->ringbuf->space -= num_dwords * sizeof(uint32_t);
898 899 900
	return 0;
}

901 902 903 904 905 906 907 908 909 910 911 912 913 914 915
int intel_logical_ring_reserve_space(struct drm_i915_gem_request *request)
{
	/*
	 * The first call merely notes the reserve request and is common for
	 * all back ends. The subsequent localised _begin() call actually
	 * ensures that the reservation is available. Without the begin, if
	 * the request creator immediately submitted the request without
	 * adding any commands to it then there might not actually be
	 * sufficient room for the submission commands.
	 */
	intel_ring_reserved_space_reserve(request->ringbuf, MIN_SPACE_FOR_ADD_REQUEST);

	return intel_logical_ring_begin(request, 0);
}

916 917 918 919 920 921 922 923 924 925
/**
 * execlists_submission() - submit a batchbuffer for execution, Execlists style
 * @dev: DRM device.
 * @file: DRM file.
 * @ring: Engine Command Streamer to submit to.
 * @ctx: Context to employ for this submission.
 * @args: execbuffer call arguments.
 * @vmas: list of vmas.
 * @batch_obj: the batchbuffer to submit.
 * @exec_start: batchbuffer start virtual address pointer.
926
 * @dispatch_flags: translated execbuffer call flags.
927 928 929 930 931 932
 *
 * This is the evil twin version of i915_gem_ringbuffer_submission. It abstracts
 * away the submission details of the execbuffer ioctl call.
 *
 * Return: non-zero if the submission fails.
 */
933
int intel_execlists_submission(struct i915_execbuffer_params *params,
934
			       struct drm_i915_gem_execbuffer2 *args,
935
			       struct list_head *vmas)
936
{
937 938
	struct drm_device       *dev = params->dev;
	struct intel_engine_cs  *ring = params->ring;
939
	struct drm_i915_private *dev_priv = dev->dev_private;
940 941
	struct intel_ringbuffer *ringbuf = params->ctx->engine[ring->id].ringbuf;
	u64 exec_start;
942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976
	int instp_mode;
	u32 instp_mask;
	int ret;

	instp_mode = args->flags & I915_EXEC_CONSTANTS_MASK;
	instp_mask = I915_EXEC_CONSTANTS_MASK;
	switch (instp_mode) {
	case I915_EXEC_CONSTANTS_REL_GENERAL:
	case I915_EXEC_CONSTANTS_ABSOLUTE:
	case I915_EXEC_CONSTANTS_REL_SURFACE:
		if (instp_mode != 0 && ring != &dev_priv->ring[RCS]) {
			DRM_DEBUG("non-0 rel constants mode on non-RCS\n");
			return -EINVAL;
		}

		if (instp_mode != dev_priv->relative_constants_mode) {
			if (instp_mode == I915_EXEC_CONSTANTS_REL_SURFACE) {
				DRM_DEBUG("rel surface constants mode invalid on gen5+\n");
				return -EINVAL;
			}

			/* The HW changed the meaning on this bit on gen6 */
			instp_mask &= ~I915_EXEC_CONSTANTS_REL_SURFACE;
		}
		break;
	default:
		DRM_DEBUG("execbuf with unknown constants: %d\n", instp_mode);
		return -EINVAL;
	}

	if (args->flags & I915_EXEC_GEN7_SOL_RESET) {
		DRM_DEBUG("sol reset is gen7 only\n");
		return -EINVAL;
	}

977
	ret = execlists_move_to_gpu(params->request, vmas);
978 979 980 981 982
	if (ret)
		return ret;

	if (ring == &dev_priv->ring[RCS] &&
	    instp_mode != dev_priv->relative_constants_mode) {
983
		ret = intel_logical_ring_begin(params->request, 4);
984 985 986 987 988
		if (ret)
			return ret;

		intel_logical_ring_emit(ringbuf, MI_NOOP);
		intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(1));
989
		intel_logical_ring_emit_reg(ringbuf, INSTPM);
990 991 992 993 994 995
		intel_logical_ring_emit(ringbuf, instp_mask << 16 | instp_mode);
		intel_logical_ring_advance(ringbuf);

		dev_priv->relative_constants_mode = instp_mode;
	}

996 997 998
	exec_start = params->batch_obj_vm_offset +
		     args->batch_start_offset;

999
	ret = ring->emit_bb_start(params->request, exec_start, params->dispatch_flags);
1000 1001 1002
	if (ret)
		return ret;

1003
	trace_i915_gem_ring_dispatch(params->request, params->dispatch_flags);
1004

1005
	i915_gem_execbuffer_move_to_active(vmas, params->request);
1006
	i915_gem_execbuffer_retire_commands(params);
1007

1008 1009 1010
	return 0;
}

1011 1012
void intel_execlists_retire_requests(struct intel_engine_cs *ring)
{
1013
	struct drm_i915_gem_request *req, *tmp;
1014 1015 1016 1017 1018 1019 1020
	struct list_head retired_list;

	WARN_ON(!mutex_is_locked(&ring->dev->struct_mutex));
	if (list_empty(&ring->execlist_retired_req_list))
		return;

	INIT_LIST_HEAD(&retired_list);
1021
	spin_lock_irq(&ring->execlist_lock);
1022
	list_replace_init(&ring->execlist_retired_req_list, &retired_list);
1023
	spin_unlock_irq(&ring->execlist_lock);
1024 1025

	list_for_each_entry_safe(req, tmp, &retired_list, execlist_link) {
1026 1027 1028 1029
		struct intel_context *ctx = req->ctx;
		struct drm_i915_gem_object *ctx_obj =
				ctx->engine[ring->id].state;

1030
		if (ctx_obj && (ctx != req->i915->kernel_context))
1031 1032
			intel_lr_context_unpin(ctx, ring);

1033
		list_del(&req->execlist_link);
1034
		i915_gem_request_unreference(req);
1035 1036 1037
	}
}

1038 1039
void intel_logical_ring_stop(struct intel_engine_cs *ring)
{
1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057
	struct drm_i915_private *dev_priv = ring->dev->dev_private;
	int ret;

	if (!intel_ring_initialized(ring))
		return;

	ret = intel_ring_idle(ring);
	if (ret && !i915_reset_in_progress(&to_i915(ring->dev)->gpu_error))
		DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
			  ring->name, ret);

	/* TODO: Is this correct with Execlists enabled? */
	I915_WRITE_MODE(ring, _MASKED_BIT_ENABLE(STOP_RING));
	if (wait_for_atomic((I915_READ_MODE(ring) & MODE_IDLE) != 0, 1000)) {
		DRM_ERROR("%s :timed out trying to stop ring\n", ring->name);
		return;
	}
	I915_WRITE_MODE(ring, _MASKED_BIT_DISABLE(STOP_RING));
1058 1059
}

1060
int logical_ring_flush_all_caches(struct drm_i915_gem_request *req)
1061
{
1062
	struct intel_engine_cs *ring = req->ring;
1063 1064 1065 1066 1067
	int ret;

	if (!ring->gpu_caches_dirty)
		return 0;

1068
	ret = ring->emit_flush(req, 0, I915_GEM_GPU_DOMAINS);
1069 1070 1071 1072 1073 1074 1075
	if (ret)
		return ret;

	ring->gpu_caches_dirty = false;
	return 0;
}

1076 1077
static int intel_lr_context_do_pin(struct intel_context *ctx,
				   struct intel_engine_cs *ring)
1078
{
1079 1080
	struct drm_device *dev = ring->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
1081 1082
	struct drm_i915_gem_object *ctx_obj = ctx->engine[ring->id].state;
	struct intel_ringbuffer *ringbuf = ctx->engine[ring->id].ringbuf;
1083
	struct page *lrc_state_page;
1084
	uint32_t *lrc_reg_state;
1085
	int ret;
1086 1087

	WARN_ON(!mutex_is_locked(&ring->dev->struct_mutex));
1088

1089 1090 1091 1092
	ret = i915_gem_obj_ggtt_pin(ctx_obj, GEN8_LR_CONTEXT_ALIGN,
			PIN_OFFSET_BIAS | GUC_WOPCM_TOP);
	if (ret)
		return ret;
1093

1094 1095 1096 1097 1098 1099
	lrc_state_page = i915_gem_object_get_dirty_page(ctx_obj, LRC_STATE_PN);
	if (WARN_ON(!lrc_state_page)) {
		ret = -ENODEV;
		goto unpin_ctx_obj;
	}

1100 1101 1102
	ret = intel_pin_and_map_ringbuffer_obj(ring->dev, ringbuf);
	if (ret)
		goto unpin_ctx_obj;
1103

1104 1105
	ctx->engine[ring->id].lrc_vma = i915_gem_obj_to_ggtt(ctx_obj);
	intel_lr_context_descriptor_update(ctx, ring);
1106 1107 1108
	lrc_reg_state = kmap(lrc_state_page);
	lrc_reg_state[CTX_RING_BUFFER_START+1] = ringbuf->vma->node.start;
	ctx->engine[ring->id].lrc_reg_state = lrc_reg_state;
1109
	ctx_obj->dirty = true;
1110

1111 1112 1113
	/* Invalidate GuC TLB. */
	if (i915.enable_guc_submission)
		I915_WRITE(GEN8_GTCR, GEN8_GTCR_INVALIDATE);
1114

1115 1116 1117 1118
	return ret;

unpin_ctx_obj:
	i915_gem_object_ggtt_unpin(ctx_obj);
1119 1120 1121 1122

	return ret;
}

1123 1124
static int intel_lr_context_pin(struct intel_context *ctx,
				struct intel_engine_cs *engine)
1125 1126 1127
{
	int ret = 0;

1128 1129
	if (ctx->engine[engine->id].pin_count++ == 0) {
		ret = intel_lr_context_do_pin(ctx, engine);
1130 1131
		if (ret)
			goto reset_pin_count;
1132 1133

		i915_gem_context_reference(ctx);
1134 1135 1136
	}
	return ret;

1137
reset_pin_count:
1138
	ctx->engine[engine->id].pin_count = 0;
1139 1140 1141
	return ret;
}

1142 1143
void intel_lr_context_unpin(struct intel_context *ctx,
			    struct intel_engine_cs *engine)
1144
{
1145
	struct drm_i915_gem_object *ctx_obj = ctx->engine[engine->id].state;
1146

1147
	WARN_ON(!mutex_is_locked(&ctx->i915->dev->struct_mutex));
1148

1149
	if (WARN_ON_ONCE(!ctx_obj))
1150 1151
		return;

1152 1153 1154
	if (--ctx->engine[engine->id].pin_count == 0) {
		kunmap(kmap_to_page(ctx->engine[engine->id].lrc_reg_state));
		intel_unpin_ringbuffer_obj(ctx->engine[engine->id].ringbuf);
1155
		i915_gem_object_ggtt_unpin(ctx_obj);
1156 1157 1158
		ctx->engine[engine->id].lrc_vma = NULL;
		ctx->engine[engine->id].lrc_desc = 0;
		ctx->engine[engine->id].lrc_reg_state = NULL;
1159 1160

		i915_gem_context_unreference(ctx);
1161 1162 1163
	}
}

1164
static int intel_logical_ring_workarounds_emit(struct drm_i915_gem_request *req)
1165 1166
{
	int ret, i;
1167 1168
	struct intel_engine_cs *ring = req->ring;
	struct intel_ringbuffer *ringbuf = req->ringbuf;
1169 1170 1171 1172
	struct drm_device *dev = ring->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct i915_workarounds *w = &dev_priv->workarounds;

1173
	if (w->count == 0)
1174 1175 1176
		return 0;

	ring->gpu_caches_dirty = true;
1177
	ret = logical_ring_flush_all_caches(req);
1178 1179 1180
	if (ret)
		return ret;

1181
	ret = intel_logical_ring_begin(req, w->count * 2 + 2);
1182 1183 1184 1185 1186
	if (ret)
		return ret;

	intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(w->count));
	for (i = 0; i < w->count; i++) {
1187
		intel_logical_ring_emit_reg(ringbuf, w->reg[i].addr);
1188 1189 1190 1191 1192 1193 1194
		intel_logical_ring_emit(ringbuf, w->reg[i].value);
	}
	intel_logical_ring_emit(ringbuf, MI_NOOP);

	intel_logical_ring_advance(ringbuf);

	ring->gpu_caches_dirty = true;
1195
	ret = logical_ring_flush_all_caches(req);
1196 1197 1198 1199 1200 1201
	if (ret)
		return ret;

	return 0;
}

1202
#define wa_ctx_emit(batch, index, cmd)					\
1203
	do {								\
1204 1205
		int __index = (index)++;				\
		if (WARN_ON(__index >= (PAGE_SIZE / sizeof(uint32_t)))) { \
1206 1207
			return -ENOSPC;					\
		}							\
1208
		batch[__index] = (cmd);					\
1209 1210
	} while (0)

V
Ville Syrjälä 已提交
1211
#define wa_ctx_emit_reg(batch, index, reg) \
1212
	wa_ctx_emit((batch), (index), i915_mmio_reg_offset(reg))
1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235

/*
 * In this WA we need to set GEN8_L3SQCREG4[21:21] and reset it after
 * PIPE_CONTROL instruction. This is required for the flush to happen correctly
 * but there is a slight complication as this is applied in WA batch where the
 * values are only initialized once so we cannot take register value at the
 * beginning and reuse it further; hence we save its value to memory, upload a
 * constant value with bit21 set and then we restore it back with the saved value.
 * To simplify the WA, a constant value is formed by using the default value
 * of this register. This shouldn't be a problem because we are only modifying
 * it for a short period and this batch in non-premptible. We can ofcourse
 * use additional instructions that read the actual value of the register
 * at that time and set our bit of interest but it makes the WA complicated.
 *
 * This WA is also required for Gen9 so extracting as a function avoids
 * code duplication.
 */
static inline int gen8_emit_flush_coherentl3_wa(struct intel_engine_cs *ring,
						uint32_t *const batch,
						uint32_t index)
{
	uint32_t l3sqc4_flush = (0x40400000 | GEN8_LQSC_FLUSH_COHERENT_LINES);

1236 1237 1238 1239 1240 1241
	/*
	 * WaDisableLSQCROPERFforOCL:skl
	 * This WA is implemented in skl_init_clock_gating() but since
	 * this batch updates GEN8_L3SQCREG4 with default value we need to
	 * set this bit here to retain the WA during flush.
	 */
1242
	if (IS_SKL_REVID(ring->dev, 0, SKL_REVID_E0))
1243 1244
		l3sqc4_flush |= GEN8_LQSC_RO_PERF_DIS;

1245
	wa_ctx_emit(batch, index, (MI_STORE_REGISTER_MEM_GEN8 |
1246
				   MI_SRM_LRM_GLOBAL_GTT));
V
Ville Syrjälä 已提交
1247
	wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
1248 1249 1250 1251
	wa_ctx_emit(batch, index, ring->scratch.gtt_offset + 256);
	wa_ctx_emit(batch, index, 0);

	wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
V
Ville Syrjälä 已提交
1252
	wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
1253 1254 1255 1256 1257 1258 1259 1260 1261 1262
	wa_ctx_emit(batch, index, l3sqc4_flush);

	wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
	wa_ctx_emit(batch, index, (PIPE_CONTROL_CS_STALL |
				   PIPE_CONTROL_DC_FLUSH_ENABLE));
	wa_ctx_emit(batch, index, 0);
	wa_ctx_emit(batch, index, 0);
	wa_ctx_emit(batch, index, 0);
	wa_ctx_emit(batch, index, 0);

1263
	wa_ctx_emit(batch, index, (MI_LOAD_REGISTER_MEM_GEN8 |
1264
				   MI_SRM_LRM_GLOBAL_GTT));
V
Ville Syrjälä 已提交
1265
	wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
1266 1267
	wa_ctx_emit(batch, index, ring->scratch.gtt_offset + 256);
	wa_ctx_emit(batch, index, 0);
1268 1269 1270 1271

	return index;
}

1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309
static inline uint32_t wa_ctx_start(struct i915_wa_ctx_bb *wa_ctx,
				    uint32_t offset,
				    uint32_t start_alignment)
{
	return wa_ctx->offset = ALIGN(offset, start_alignment);
}

static inline int wa_ctx_end(struct i915_wa_ctx_bb *wa_ctx,
			     uint32_t offset,
			     uint32_t size_alignment)
{
	wa_ctx->size = offset - wa_ctx->offset;

	WARN(wa_ctx->size % size_alignment,
	     "wa_ctx_bb failed sanity checks: size %d is not aligned to %d\n",
	     wa_ctx->size, size_alignment);
	return 0;
}

/**
 * gen8_init_indirectctx_bb() - initialize indirect ctx batch with WA
 *
 * @ring: only applicable for RCS
 * @wa_ctx: structure representing wa_ctx
 *  offset: specifies start of the batch, should be cache-aligned. This is updated
 *    with the offset value received as input.
 *  size: size of the batch in DWORDS but HW expects in terms of cachelines
 * @batch: page in which WA are loaded
 * @offset: This field specifies the start of the batch, it should be
 *  cache-aligned otherwise it is adjusted accordingly.
 *  Typically we only have one indirect_ctx and per_ctx batch buffer which are
 *  initialized at the beginning and shared across all contexts but this field
 *  helps us to have multiple batches at different offsets and select them based
 *  on a criteria. At the moment this batch always start at the beginning of the page
 *  and at this point we don't have multiple wa_ctx batch buffers.
 *
 *  The number of WA applied are not known at the beginning; we use this field
 *  to return the no of DWORDS written.
1310
 *
1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323
 *  It is to be noted that this batch does not contain MI_BATCH_BUFFER_END
 *  so it adds NOOPs as padding to make it cacheline aligned.
 *  MI_BATCH_BUFFER_END will be added to perctx batch and both of them together
 *  makes a complete batch buffer.
 *
 * Return: non-zero if we exceed the PAGE_SIZE limit.
 */

static int gen8_init_indirectctx_bb(struct intel_engine_cs *ring,
				    struct i915_wa_ctx_bb *wa_ctx,
				    uint32_t *const batch,
				    uint32_t *offset)
{
1324
	uint32_t scratch_addr;
1325 1326
	uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);

1327
	/* WaDisableCtxRestoreArbitration:bdw,chv */
1328
	wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_DISABLE);
1329

1330 1331
	/* WaFlushCoherentL3CacheLinesAtContextSwitch:bdw */
	if (IS_BROADWELL(ring->dev)) {
1332 1333 1334 1335
		int rc = gen8_emit_flush_coherentl3_wa(ring, batch, index);
		if (rc < 0)
			return rc;
		index = rc;
1336 1337
	}

1338 1339 1340 1341
	/* WaClearSlmSpaceAtContextSwitch:bdw,chv */
	/* Actual scratch location is at 128 bytes offset */
	scratch_addr = ring->scratch.gtt_offset + 2*CACHELINE_BYTES;

1342 1343 1344 1345 1346 1347 1348 1349 1350
	wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
	wa_ctx_emit(batch, index, (PIPE_CONTROL_FLUSH_L3 |
				   PIPE_CONTROL_GLOBAL_GTT_IVB |
				   PIPE_CONTROL_CS_STALL |
				   PIPE_CONTROL_QW_WRITE));
	wa_ctx_emit(batch, index, scratch_addr);
	wa_ctx_emit(batch, index, 0);
	wa_ctx_emit(batch, index, 0);
	wa_ctx_emit(batch, index, 0);
1351

1352 1353
	/* Pad to end of cacheline */
	while (index % CACHELINE_DWORDS)
1354
		wa_ctx_emit(batch, index, MI_NOOP);
1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371

	/*
	 * MI_BATCH_BUFFER_END is not required in Indirect ctx BB because
	 * execution depends on the length specified in terms of cache lines
	 * in the register CTX_RCS_INDIRECT_CTX
	 */

	return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
}

/**
 * gen8_init_perctx_bb() - initialize per ctx batch with WA
 *
 * @ring: only applicable for RCS
 * @wa_ctx: structure representing wa_ctx
 *  offset: specifies start of the batch, should be cache-aligned.
 *  size: size of the batch in DWORDS but HW expects in terms of cachelines
1372
 * @batch: page in which WA are loaded
1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388
 * @offset: This field specifies the start of this batch.
 *   This batch is started immediately after indirect_ctx batch. Since we ensure
 *   that indirect_ctx ends on a cacheline this batch is aligned automatically.
 *
 *   The number of DWORDS written are returned using this field.
 *
 *  This batch is terminated with MI_BATCH_BUFFER_END and so we need not add padding
 *  to align it with cacheline as padding after MI_BATCH_BUFFER_END is redundant.
 */
static int gen8_init_perctx_bb(struct intel_engine_cs *ring,
			       struct i915_wa_ctx_bb *wa_ctx,
			       uint32_t *const batch,
			       uint32_t *offset)
{
	uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);

1389
	/* WaDisableCtxRestoreArbitration:bdw,chv */
1390
	wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_ENABLE);
1391

1392
	wa_ctx_emit(batch, index, MI_BATCH_BUFFER_END);
1393 1394 1395 1396

	return wa_ctx_end(wa_ctx, *offset = index, 1);
}

1397 1398 1399 1400 1401
static int gen9_init_indirectctx_bb(struct intel_engine_cs *ring,
				    struct i915_wa_ctx_bb *wa_ctx,
				    uint32_t *const batch,
				    uint32_t *offset)
{
1402
	int ret;
1403
	struct drm_device *dev = ring->dev;
1404 1405
	uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);

1406
	/* WaDisableCtxRestoreArbitration:skl,bxt */
1407
	if (IS_SKL_REVID(dev, 0, SKL_REVID_D0) ||
T
Tim Gore 已提交
1408
	    IS_BXT_REVID(dev, 0, BXT_REVID_A1))
1409
		wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_DISABLE);
1410

1411 1412 1413 1414 1415 1416
	/* WaFlushCoherentL3CacheLinesAtContextSwitch:skl,bxt */
	ret = gen8_emit_flush_coherentl3_wa(ring, batch, index);
	if (ret < 0)
		return ret;
	index = ret;

1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428
	/* Pad to end of cacheline */
	while (index % CACHELINE_DWORDS)
		wa_ctx_emit(batch, index, MI_NOOP);

	return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
}

static int gen9_init_perctx_bb(struct intel_engine_cs *ring,
			       struct i915_wa_ctx_bb *wa_ctx,
			       uint32_t *const batch,
			       uint32_t *offset)
{
1429
	struct drm_device *dev = ring->dev;
1430 1431
	uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);

1432
	/* WaSetDisablePixMaskCammingAndRhwoInCommonSliceChicken:skl,bxt */
1433
	if (IS_SKL_REVID(dev, 0, SKL_REVID_B0) ||
T
Tim Gore 已提交
1434
	    IS_BXT_REVID(dev, 0, BXT_REVID_A1)) {
1435
		wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
V
Ville Syrjälä 已提交
1436
		wa_ctx_emit_reg(batch, index, GEN9_SLICE_COMMON_ECO_CHICKEN0);
1437 1438 1439 1440 1441
		wa_ctx_emit(batch, index,
			    _MASKED_BIT_ENABLE(DISABLE_PIXEL_MASK_CAMMING));
		wa_ctx_emit(batch, index, MI_NOOP);
	}

1442
	/* WaDisableCtxRestoreArbitration:skl,bxt */
1443
	if (IS_SKL_REVID(dev, 0, SKL_REVID_D0) ||
T
Tim Gore 已提交
1444
	    IS_BXT_REVID(dev, 0, BXT_REVID_A1))
1445 1446
		wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_ENABLE);

1447 1448 1449 1450 1451
	wa_ctx_emit(batch, index, MI_BATCH_BUFFER_END);

	return wa_ctx_end(wa_ctx, *offset = index, 1);
}

1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491
static int lrc_setup_wa_ctx_obj(struct intel_engine_cs *ring, u32 size)
{
	int ret;

	ring->wa_ctx.obj = i915_gem_alloc_object(ring->dev, PAGE_ALIGN(size));
	if (!ring->wa_ctx.obj) {
		DRM_DEBUG_DRIVER("alloc LRC WA ctx backing obj failed.\n");
		return -ENOMEM;
	}

	ret = i915_gem_obj_ggtt_pin(ring->wa_ctx.obj, PAGE_SIZE, 0);
	if (ret) {
		DRM_DEBUG_DRIVER("pin LRC WA ctx backing obj failed: %d\n",
				 ret);
		drm_gem_object_unreference(&ring->wa_ctx.obj->base);
		return ret;
	}

	return 0;
}

static void lrc_destroy_wa_ctx_obj(struct intel_engine_cs *ring)
{
	if (ring->wa_ctx.obj) {
		i915_gem_object_ggtt_unpin(ring->wa_ctx.obj);
		drm_gem_object_unreference(&ring->wa_ctx.obj->base);
		ring->wa_ctx.obj = NULL;
	}
}

static int intel_init_workaround_bb(struct intel_engine_cs *ring)
{
	int ret;
	uint32_t *batch;
	uint32_t offset;
	struct page *page;
	struct i915_ctx_workarounds *wa_ctx = &ring->wa_ctx;

	WARN_ON(ring->id != RCS);

1492
	/* update this when WA for higher Gen are added */
1493 1494 1495
	if (INTEL_INFO(ring->dev)->gen > 9) {
		DRM_ERROR("WA batch buffer is not initialized for Gen%d\n",
			  INTEL_INFO(ring->dev)->gen);
1496
		return 0;
1497
	}
1498

1499 1500 1501 1502 1503 1504
	/* some WA perform writes to scratch page, ensure it is valid */
	if (ring->scratch.obj == NULL) {
		DRM_ERROR("scratch page not allocated for %s\n", ring->name);
		return -EINVAL;
	}

1505 1506 1507 1508 1509 1510
	ret = lrc_setup_wa_ctx_obj(ring, PAGE_SIZE);
	if (ret) {
		DRM_DEBUG_DRIVER("Failed to setup context WA page: %d\n", ret);
		return ret;
	}

1511
	page = i915_gem_object_get_dirty_page(wa_ctx->obj, 0);
1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528
	batch = kmap_atomic(page);
	offset = 0;

	if (INTEL_INFO(ring->dev)->gen == 8) {
		ret = gen8_init_indirectctx_bb(ring,
					       &wa_ctx->indirect_ctx,
					       batch,
					       &offset);
		if (ret)
			goto out;

		ret = gen8_init_perctx_bb(ring,
					  &wa_ctx->per_ctx,
					  batch,
					  &offset);
		if (ret)
			goto out;
1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542
	} else if (INTEL_INFO(ring->dev)->gen == 9) {
		ret = gen9_init_indirectctx_bb(ring,
					       &wa_ctx->indirect_ctx,
					       batch,
					       &offset);
		if (ret)
			goto out;

		ret = gen9_init_perctx_bb(ring,
					  &wa_ctx->per_ctx,
					  batch,
					  &offset);
		if (ret)
			goto out;
1543 1544 1545 1546 1547 1548 1549 1550 1551 1552
	}

out:
	kunmap_atomic(batch);
	if (ret)
		lrc_destroy_wa_ctx_obj(ring);

	return ret;
}

1553 1554 1555 1556
static int gen8_init_common_ring(struct intel_engine_cs *ring)
{
	struct drm_device *dev = ring->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
1557
	u8 next_context_status_buffer_hw;
1558

1559
	lrc_setup_hardware_status_page(ring,
1560
				dev_priv->kernel_context->engine[ring->id].state);
1561

1562 1563 1564
	I915_WRITE_IMR(ring, ~(ring->irq_enable_mask | ring->irq_keep_mask));
	I915_WRITE(RING_HWSTAM(ring->mmio_base), 0xffffffff);

1565 1566 1567 1568
	I915_WRITE(RING_MODE_GEN7(ring),
		   _MASKED_BIT_DISABLE(GFX_REPLAY_MODE) |
		   _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE));
	POSTING_READ(RING_MODE_GEN7(ring));
1569 1570 1571 1572 1573 1574 1575 1576 1577 1578

	/*
	 * Instead of resetting the Context Status Buffer (CSB) read pointer to
	 * zero, we need to read the write pointer from hardware and use its
	 * value because "this register is power context save restored".
	 * Effectively, these states have been observed:
	 *
	 *      | Suspend-to-idle (freeze) | Suspend-to-RAM (mem) |
	 * BDW  | CSB regs not reset       | CSB regs reset       |
	 * CHT  | CSB regs not reset       | CSB regs not reset   |
1579 1580
	 * SKL  |         ?                |         ?            |
	 * BXT  |         ?                |         ?            |
1581
	 */
1582 1583
	next_context_status_buffer_hw =
		GEN8_CSB_WRITE_PTR(I915_READ(RING_CONTEXT_STATUS_PTR(ring)));
1584 1585 1586 1587 1588 1589 1590 1591 1592 1593

	/*
	 * When the CSB registers are reset (also after power-up / gpu reset),
	 * CSB write pointer is set to all 1's, which is not valid, use '5' in
	 * this special case, so the first element read is CSB[0].
	 */
	if (next_context_status_buffer_hw == GEN8_CSB_PTR_MASK)
		next_context_status_buffer_hw = (GEN8_CSB_ENTRIES - 1);

	ring->next_context_status_buffer = next_context_status_buffer_hw;
1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620
	DRM_DEBUG_DRIVER("Execlists enabled for %s\n", ring->name);

	memset(&ring->hangcheck, 0, sizeof(ring->hangcheck));

	return 0;
}

static int gen8_init_render_ring(struct intel_engine_cs *ring)
{
	struct drm_device *dev = ring->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	int ret;

	ret = gen8_init_common_ring(ring);
	if (ret)
		return ret;

	/* We need to disable the AsyncFlip performance optimisations in order
	 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
	 * programmed to '1' on all products.
	 *
	 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
	 */
	I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));

	I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));

1621
	return init_workarounds_ring(ring);
1622 1623
}

1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634
static int gen9_init_render_ring(struct intel_engine_cs *ring)
{
	int ret;

	ret = gen8_init_common_ring(ring);
	if (ret)
		return ret;

	return init_workarounds_ring(ring);
}

1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650
static int intel_logical_ring_emit_pdps(struct drm_i915_gem_request *req)
{
	struct i915_hw_ppgtt *ppgtt = req->ctx->ppgtt;
	struct intel_engine_cs *ring = req->ring;
	struct intel_ringbuffer *ringbuf = req->ringbuf;
	const int num_lri_cmds = GEN8_LEGACY_PDPES * 2;
	int i, ret;

	ret = intel_logical_ring_begin(req, num_lri_cmds * 2 + 2);
	if (ret)
		return ret;

	intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(num_lri_cmds));
	for (i = GEN8_LEGACY_PDPES - 1; i >= 0; i--) {
		const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);

1651
		intel_logical_ring_emit_reg(ringbuf, GEN8_RING_PDP_UDW(ring, i));
1652
		intel_logical_ring_emit(ringbuf, upper_32_bits(pd_daddr));
1653
		intel_logical_ring_emit_reg(ringbuf, GEN8_RING_PDP_LDW(ring, i));
1654 1655 1656 1657 1658 1659 1660 1661 1662
		intel_logical_ring_emit(ringbuf, lower_32_bits(pd_daddr));
	}

	intel_logical_ring_emit(ringbuf, MI_NOOP);
	intel_logical_ring_advance(ringbuf);

	return 0;
}

1663
static int gen8_emit_bb_start(struct drm_i915_gem_request *req,
1664
			      u64 offset, unsigned dispatch_flags)
1665
{
1666
	struct intel_ringbuffer *ringbuf = req->ringbuf;
1667
	bool ppgtt = !(dispatch_flags & I915_DISPATCH_SECURE);
1668 1669
	int ret;

1670 1671 1672 1673
	/* Don't rely in hw updating PDPs, specially in lite-restore.
	 * Ideally, we should set Force PD Restore in ctx descriptor,
	 * but we can't. Force Restore would be a second option, but
	 * it is unsafe in case of lite-restore (because the ctx is
1674 1675
	 * not idle). PML4 is allocated during ppgtt init so this is
	 * not needed in 48-bit.*/
1676 1677
	if (req->ctx->ppgtt &&
	    (intel_ring_flag(req->ring) & req->ctx->ppgtt->pd_dirty_rings)) {
1678 1679
		if (!USES_FULL_48BIT_PPGTT(req->i915) &&
		    !intel_vgpu_active(req->i915->dev)) {
1680 1681 1682 1683
			ret = intel_logical_ring_emit_pdps(req);
			if (ret)
				return ret;
		}
1684 1685 1686 1687

		req->ctx->ppgtt->pd_dirty_rings &= ~intel_ring_flag(req->ring);
	}

1688
	ret = intel_logical_ring_begin(req, 4);
1689 1690 1691 1692
	if (ret)
		return ret;

	/* FIXME(BDW): Address space and security selectors. */
1693 1694 1695 1696
	intel_logical_ring_emit(ringbuf, MI_BATCH_BUFFER_START_GEN8 |
				(ppgtt<<8) |
				(dispatch_flags & I915_DISPATCH_RS ?
				 MI_BATCH_RESOURCE_STREAMER : 0));
1697 1698 1699 1700 1701 1702 1703 1704
	intel_logical_ring_emit(ringbuf, lower_32_bits(offset));
	intel_logical_ring_emit(ringbuf, upper_32_bits(offset));
	intel_logical_ring_emit(ringbuf, MI_NOOP);
	intel_logical_ring_advance(ringbuf);

	return 0;
}

1705 1706 1707 1708 1709 1710
static bool gen8_logical_ring_get_irq(struct intel_engine_cs *ring)
{
	struct drm_device *dev = ring->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	unsigned long flags;

1711
	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737
		return false;

	spin_lock_irqsave(&dev_priv->irq_lock, flags);
	if (ring->irq_refcount++ == 0) {
		I915_WRITE_IMR(ring, ~(ring->irq_enable_mask | ring->irq_keep_mask));
		POSTING_READ(RING_IMR(ring->mmio_base));
	}
	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);

	return true;
}

static void gen8_logical_ring_put_irq(struct intel_engine_cs *ring)
{
	struct drm_device *dev = ring->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	unsigned long flags;

	spin_lock_irqsave(&dev_priv->irq_lock, flags);
	if (--ring->irq_refcount == 0) {
		I915_WRITE_IMR(ring, ~ring->irq_keep_mask);
		POSTING_READ(RING_IMR(ring->mmio_base));
	}
	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
}

1738
static int gen8_emit_flush(struct drm_i915_gem_request *request,
1739 1740 1741
			   u32 invalidate_domains,
			   u32 unused)
{
1742
	struct intel_ringbuffer *ringbuf = request->ringbuf;
1743 1744 1745 1746 1747 1748
	struct intel_engine_cs *ring = ringbuf->ring;
	struct drm_device *dev = ring->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	uint32_t cmd;
	int ret;

1749
	ret = intel_logical_ring_begin(request, 4);
1750 1751 1752 1753 1754
	if (ret)
		return ret;

	cmd = MI_FLUSH_DW + 1;

1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765
	/* We always require a command barrier so that subsequent
	 * commands, such as breadcrumb interrupts, are strictly ordered
	 * wrt the contents of the write cache being flushed to memory
	 * (and thus being coherent from the CPU).
	 */
	cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;

	if (invalidate_domains & I915_GEM_GPU_DOMAINS) {
		cmd |= MI_INVALIDATE_TLB;
		if (ring == &dev_priv->ring[VCS])
			cmd |= MI_INVALIDATE_BSD;
1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778
	}

	intel_logical_ring_emit(ringbuf, cmd);
	intel_logical_ring_emit(ringbuf,
				I915_GEM_HWS_SCRATCH_ADDR |
				MI_FLUSH_DW_USE_GTT);
	intel_logical_ring_emit(ringbuf, 0); /* upper addr */
	intel_logical_ring_emit(ringbuf, 0); /* value */
	intel_logical_ring_advance(ringbuf);

	return 0;
}

1779
static int gen8_emit_flush_render(struct drm_i915_gem_request *request,
1780 1781 1782
				  u32 invalidate_domains,
				  u32 flush_domains)
{
1783
	struct intel_ringbuffer *ringbuf = request->ringbuf;
1784 1785
	struct intel_engine_cs *ring = ringbuf->ring;
	u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
1786
	bool vf_flush_wa = false;
1787 1788 1789 1790 1791 1792 1793 1794
	u32 flags = 0;
	int ret;

	flags |= PIPE_CONTROL_CS_STALL;

	if (flush_domains) {
		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
1795
		flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
1796
		flags |= PIPE_CONTROL_FLUSH_ENABLE;
1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808
	}

	if (invalidate_domains) {
		flags |= PIPE_CONTROL_TLB_INVALIDATE;
		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_QW_WRITE;
		flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;

1809 1810 1811 1812 1813 1814 1815
		/*
		 * On GEN9: before VF_CACHE_INVALIDATE we need to emit a NULL
		 * pipe control.
		 */
		if (IS_GEN9(ring->dev))
			vf_flush_wa = true;
	}
1816

1817
	ret = intel_logical_ring_begin(request, vf_flush_wa ? 12 : 6);
1818 1819 1820
	if (ret)
		return ret;

1821 1822 1823 1824 1825 1826 1827 1828 1829
	if (vf_flush_wa) {
		intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
		intel_logical_ring_emit(ringbuf, 0);
		intel_logical_ring_emit(ringbuf, 0);
		intel_logical_ring_emit(ringbuf, 0);
		intel_logical_ring_emit(ringbuf, 0);
		intel_logical_ring_emit(ringbuf, 0);
	}

1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840
	intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
	intel_logical_ring_emit(ringbuf, flags);
	intel_logical_ring_emit(ringbuf, scratch_addr);
	intel_logical_ring_emit(ringbuf, 0);
	intel_logical_ring_emit(ringbuf, 0);
	intel_logical_ring_emit(ringbuf, 0);
	intel_logical_ring_advance(ringbuf);

	return 0;
}

1841 1842 1843 1844 1845 1846 1847 1848 1849 1850
static u32 gen8_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
{
	return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
}

static void gen8_set_seqno(struct intel_engine_cs *ring, u32 seqno)
{
	intel_write_status_page(ring, I915_GEM_HWS_INDEX, seqno);
}

1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878
static u32 bxt_a_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
{

	/*
	 * On BXT A steppings there is a HW coherency issue whereby the
	 * MI_STORE_DATA_IMM storing the completed request's seqno
	 * occasionally doesn't invalidate the CPU cache. Work around this by
	 * clflushing the corresponding cacheline whenever the caller wants
	 * the coherency to be guaranteed. Note that this cacheline is known
	 * to be clean at this point, since we only write it in
	 * bxt_a_set_seqno(), where we also do a clflush after the write. So
	 * this clflush in practice becomes an invalidate operation.
	 */

	if (!lazy_coherency)
		intel_flush_status_page(ring, I915_GEM_HWS_INDEX);

	return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
}

static void bxt_a_set_seqno(struct intel_engine_cs *ring, u32 seqno)
{
	intel_write_status_page(ring, I915_GEM_HWS_INDEX, seqno);

	/* See bxt_a_get_seqno() explaining the reason for the clflush. */
	intel_flush_status_page(ring, I915_GEM_HWS_INDEX);
}

1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890
/*
 * Reserve space for 2 NOOPs at the end of each request to be
 * used as a workaround for not being allowed to do lite
 * restore with HEAD==TAIL (WaIdleLiteRestore).
 */
#define WA_TAIL_DWORDS 2

static inline u32 hws_seqno_address(struct intel_engine_cs *engine)
{
	return engine->status_page.gfx_addr + I915_GEM_HWS_INDEX_ADDR;
}

1891
static int gen8_emit_request(struct drm_i915_gem_request *request)
1892
{
1893
	struct intel_ringbuffer *ringbuf = request->ringbuf;
1894 1895
	int ret;

1896
	ret = intel_logical_ring_begin(request, 6 + WA_TAIL_DWORDS);
1897 1898 1899
	if (ret)
		return ret;

1900 1901
	/* w/a: bit 5 needs to be zero for MI_FLUSH_DW address. */
	BUILD_BUG_ON(I915_GEM_HWS_INDEX_ADDR & (1 << 5));
1902 1903

	intel_logical_ring_emit(ringbuf,
1904 1905 1906 1907
				(MI_FLUSH_DW + 1) | MI_FLUSH_DW_OP_STOREDW);
	intel_logical_ring_emit(ringbuf,
				hws_seqno_address(request->ring) |
				MI_FLUSH_DW_USE_GTT);
1908
	intel_logical_ring_emit(ringbuf, 0);
1909
	intel_logical_ring_emit(ringbuf, i915_gem_request_get_seqno(request));
1910 1911
	intel_logical_ring_emit(ringbuf, MI_USER_INTERRUPT);
	intel_logical_ring_emit(ringbuf, MI_NOOP);
1912 1913
	return intel_logical_ring_advance_and_submit(request);
}
1914

1915 1916 1917 1918
static int gen8_emit_request_render(struct drm_i915_gem_request *request)
{
	struct intel_ringbuffer *ringbuf = request->ringbuf;
	int ret;
1919

1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937
	ret = intel_logical_ring_begin(request, 6 + WA_TAIL_DWORDS);
	if (ret)
		return ret;

	/* w/a for post sync ops following a GPGPU operation we
	 * need a prior CS_STALL, which is emitted by the flush
	 * following the batch.
	 */
	intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(5));
	intel_logical_ring_emit(ringbuf,
				(PIPE_CONTROL_GLOBAL_GTT_IVB |
				 PIPE_CONTROL_CS_STALL |
				 PIPE_CONTROL_QW_WRITE));
	intel_logical_ring_emit(ringbuf, hws_seqno_address(request->ring));
	intel_logical_ring_emit(ringbuf, 0);
	intel_logical_ring_emit(ringbuf, i915_gem_request_get_seqno(request));
	intel_logical_ring_emit(ringbuf, MI_USER_INTERRUPT);
	return intel_logical_ring_advance_and_submit(request);
1938 1939
}

1940
static int intel_lr_context_render_state_init(struct drm_i915_gem_request *req)
1941 1942 1943 1944
{
	struct render_state so;
	int ret;

1945
	ret = i915_gem_render_state_prepare(req->ring, &so);
1946 1947 1948 1949 1950 1951
	if (ret)
		return ret;

	if (so.rodata == NULL)
		return 0;

1952
	ret = req->ring->emit_bb_start(req, so.ggtt_offset,
1953
				       I915_DISPATCH_SECURE);
1954 1955 1956
	if (ret)
		goto out;

1957 1958 1959 1960 1961 1962
	ret = req->ring->emit_bb_start(req,
				       (so.ggtt_offset + so.aux_batch_offset),
				       I915_DISPATCH_SECURE);
	if (ret)
		goto out;

1963
	i915_vma_move_to_active(i915_gem_obj_to_ggtt(so.obj), req);
1964 1965 1966 1967 1968 1969

out:
	i915_gem_render_state_fini(&so);
	return ret;
}

1970
static int gen8_init_rcs_context(struct drm_i915_gem_request *req)
1971 1972 1973
{
	int ret;

1974
	ret = intel_logical_ring_workarounds_emit(req);
1975 1976 1977
	if (ret)
		return ret;

1978 1979 1980 1981 1982 1983 1984 1985
	ret = intel_rcs_context_init_mocs(req);
	/*
	 * Failing to program the MOCS is non-fatal.The system will not
	 * run at peak performance. So generate an error and carry on.
	 */
	if (ret)
		DRM_ERROR("MOCS failed to program: expect performance issues.\n");

1986
	return intel_lr_context_render_state_init(req);
1987 1988
}

1989 1990 1991 1992 1993 1994
/**
 * intel_logical_ring_cleanup() - deallocate the Engine Command Streamer
 *
 * @ring: Engine Command Streamer.
 *
 */
1995 1996
void intel_logical_ring_cleanup(struct intel_engine_cs *ring)
{
1997
	struct drm_i915_private *dev_priv;
1998

1999 2000 2001
	if (!intel_ring_initialized(ring))
		return;

2002 2003
	dev_priv = ring->dev->dev_private;

2004 2005 2006 2007
	if (ring->buffer) {
		intel_logical_ring_stop(ring);
		WARN_ON((I915_READ_MODE(ring) & MODE_IDLE) == 0);
	}
2008 2009 2010 2011 2012

	if (ring->cleanup)
		ring->cleanup(ring);

	i915_cmd_parser_fini_ring(ring);
2013
	i915_gem_batch_pool_fini(&ring->batch_pool);
2014 2015 2016 2017 2018

	if (ring->status_page.obj) {
		kunmap(sg_page(ring->status_page.obj->pages->sgl));
		ring->status_page.obj = NULL;
	}
2019

2020 2021 2022
	ring->disable_lite_restore_wa = false;
	ring->ctx_desc_template = 0;

2023
	lrc_destroy_wa_ctx_obj(ring);
2024
	ring->dev = NULL;
2025 2026
}

2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046
static void
logical_ring_default_vfuncs(struct drm_device *dev,
			    struct intel_engine_cs *ring)
{
	/* Default vfuncs which can be overriden by each engine. */
	ring->init_hw = gen8_init_common_ring;
	ring->emit_request = gen8_emit_request;
	ring->emit_flush = gen8_emit_flush;
	ring->irq_get = gen8_logical_ring_get_irq;
	ring->irq_put = gen8_logical_ring_put_irq;
	ring->emit_bb_start = gen8_emit_bb_start;
	if (IS_BXT_REVID(dev, 0, BXT_REVID_A1)) {
		ring->get_seqno = bxt_a_get_seqno;
		ring->set_seqno = bxt_a_set_seqno;
	} else {
		ring->get_seqno = gen8_get_seqno;
		ring->set_seqno = gen8_set_seqno;
	}
}

2047 2048 2049 2050 2051 2052 2053
static inline void
logical_ring_default_irqs(struct intel_engine_cs *ring, unsigned shift)
{
	ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT << shift;
	ring->irq_keep_mask = GT_CONTEXT_SWITCH_INTERRUPT << shift;
}

2054 2055
static int
logical_ring_init(struct drm_device *dev, struct intel_engine_cs *ring)
2056
{
2057
	struct intel_context *dctx = to_i915(dev)->kernel_context;
2058 2059 2060 2061 2062 2063 2064 2065
	int ret;

	/* Intentionally left blank. */
	ring->buffer = NULL;

	ring->dev = dev;
	INIT_LIST_HEAD(&ring->active_list);
	INIT_LIST_HEAD(&ring->request_list);
2066
	i915_gem_batch_pool_init(dev, &ring->batch_pool);
2067 2068
	init_waitqueue_head(&ring->irq_queue);

2069
	INIT_LIST_HEAD(&ring->buffers);
2070
	INIT_LIST_HEAD(&ring->execlist_queue);
2071
	INIT_LIST_HEAD(&ring->execlist_retired_req_list);
2072 2073
	spin_lock_init(&ring->execlist_lock);

2074 2075
	logical_ring_init_platform_invariants(ring);

2076 2077
	ret = i915_cmd_parser_init_ring(ring);
	if (ret)
2078
		goto error;
2079

2080
	ret = intel_lr_context_deferred_alloc(dctx, ring);
2081
	if (ret)
2082
		goto error;
2083 2084

	/* As this is the default context, always pin it */
2085
	ret = intel_lr_context_do_pin(dctx, ring);
2086 2087 2088 2089
	if (ret) {
		DRM_ERROR(
			"Failed to pin and map ringbuffer %s: %d\n",
			ring->name, ret);
2090
		goto error;
2091
	}
2092

2093 2094 2095 2096
	return 0;

error:
	intel_logical_ring_cleanup(ring);
2097
	return ret;
2098 2099 2100 2101 2102 2103
}

static int logical_render_ring_init(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct intel_engine_cs *ring = &dev_priv->ring[RCS];
2104
	int ret;
2105 2106 2107

	ring->name = "render ring";
	ring->id = RCS;
2108
	ring->exec_id = I915_EXEC_RENDER;
2109
	ring->guc_id = GUC_RENDER_ENGINE;
2110
	ring->mmio_base = RENDER_RING_BASE;
2111 2112

	logical_ring_default_irqs(ring, GEN8_RCS_IRQ_SHIFT);
2113 2114
	if (HAS_L3_DPF(dev))
		ring->irq_keep_mask |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
2115

2116 2117 2118
	logical_ring_default_vfuncs(dev, ring);

	/* Override some for render ring. */
2119 2120 2121 2122
	if (INTEL_INFO(dev)->gen >= 9)
		ring->init_hw = gen9_init_render_ring;
	else
		ring->init_hw = gen8_init_render_ring;
2123
	ring->init_context = gen8_init_rcs_context;
2124
	ring->cleanup = intel_fini_pipe_control;
2125
	ring->emit_flush = gen8_emit_flush_render;
2126
	ring->emit_request = gen8_emit_request_render;
2127

2128
	ring->dev = dev;
2129 2130

	ret = intel_init_pipe_control(ring);
2131 2132 2133
	if (ret)
		return ret;

2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144
	ret = intel_init_workaround_bb(ring);
	if (ret) {
		/*
		 * We continue even if we fail to initialize WA batch
		 * because we only expect rare glitches but nothing
		 * critical to prevent us from using GPU
		 */
		DRM_ERROR("WA batch buffer initialization failed: %d\n",
			  ret);
	}

2145 2146
	ret = logical_ring_init(dev, ring);
	if (ret) {
2147
		lrc_destroy_wa_ctx_obj(ring);
2148
	}
2149 2150

	return ret;
2151 2152 2153 2154 2155 2156 2157 2158 2159
}

static int logical_bsd_ring_init(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct intel_engine_cs *ring = &dev_priv->ring[VCS];

	ring->name = "bsd ring";
	ring->id = VCS;
2160
	ring->exec_id = I915_EXEC_BSD;
2161
	ring->guc_id = GUC_VIDEO_ENGINE;
2162 2163
	ring->mmio_base = GEN6_BSD_RING_BASE;

2164
	logical_ring_default_irqs(ring, GEN8_VCS1_IRQ_SHIFT);
2165
	logical_ring_default_vfuncs(dev, ring);
2166

2167 2168 2169 2170 2171 2172 2173 2174
	return logical_ring_init(dev, ring);
}

static int logical_bsd2_ring_init(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct intel_engine_cs *ring = &dev_priv->ring[VCS2];

T
Tvrtko Ursulin 已提交
2175
	ring->name = "bsd2 ring";
2176
	ring->id = VCS2;
2177
	ring->exec_id = I915_EXEC_BSD;
2178
	ring->guc_id = GUC_VIDEO_ENGINE2;
2179 2180
	ring->mmio_base = GEN8_BSD2_RING_BASE;

2181
	logical_ring_default_irqs(ring, GEN8_VCS2_IRQ_SHIFT);
2182
	logical_ring_default_vfuncs(dev, ring);
2183

2184 2185 2186 2187 2188 2189 2190 2191 2192 2193
	return logical_ring_init(dev, ring);
}

static int logical_blt_ring_init(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct intel_engine_cs *ring = &dev_priv->ring[BCS];

	ring->name = "blitter ring";
	ring->id = BCS;
2194
	ring->exec_id = I915_EXEC_BLT;
2195
	ring->guc_id = GUC_BLITTER_ENGINE;
2196 2197
	ring->mmio_base = BLT_RING_BASE;

2198
	logical_ring_default_irqs(ring, GEN8_BCS_IRQ_SHIFT);
2199
	logical_ring_default_vfuncs(dev, ring);
2200

2201 2202 2203 2204 2205 2206 2207 2208 2209 2210
	return logical_ring_init(dev, ring);
}

static int logical_vebox_ring_init(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct intel_engine_cs *ring = &dev_priv->ring[VECS];

	ring->name = "video enhancement ring";
	ring->id = VECS;
2211
	ring->exec_id = I915_EXEC_VEBOX;
2212
	ring->guc_id = GUC_VIDEOENHANCE_ENGINE;
2213 2214
	ring->mmio_base = VEBOX_RING_BASE;

2215
	logical_ring_default_irqs(ring, GEN8_VECS_IRQ_SHIFT);
2216
	logical_ring_default_vfuncs(dev, ring);
2217

2218 2219 2220
	return logical_ring_init(dev, ring);
}

2221 2222 2223 2224 2225 2226 2227 2228 2229 2230
/**
 * intel_logical_rings_init() - allocate, populate and init the Engine Command Streamers
 * @dev: DRM device.
 *
 * This function inits the engines for an Execlists submission style (the equivalent in the
 * legacy ringbuffer submission world would be i915_gem_init_rings). It does it only for
 * those engines that are present in the hardware.
 *
 * Return: non-zero if the initialization failed.
 */
2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277
int intel_logical_rings_init(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	int ret;

	ret = logical_render_ring_init(dev);
	if (ret)
		return ret;

	if (HAS_BSD(dev)) {
		ret = logical_bsd_ring_init(dev);
		if (ret)
			goto cleanup_render_ring;
	}

	if (HAS_BLT(dev)) {
		ret = logical_blt_ring_init(dev);
		if (ret)
			goto cleanup_bsd_ring;
	}

	if (HAS_VEBOX(dev)) {
		ret = logical_vebox_ring_init(dev);
		if (ret)
			goto cleanup_blt_ring;
	}

	if (HAS_BSD2(dev)) {
		ret = logical_bsd2_ring_init(dev);
		if (ret)
			goto cleanup_vebox_ring;
	}

	return 0;

cleanup_vebox_ring:
	intel_logical_ring_cleanup(&dev_priv->ring[VECS]);
cleanup_blt_ring:
	intel_logical_ring_cleanup(&dev_priv->ring[BCS]);
cleanup_bsd_ring:
	intel_logical_ring_cleanup(&dev_priv->ring[VCS]);
cleanup_render_ring:
	intel_logical_ring_cleanup(&dev_priv->ring[RCS]);

	return ret;
}

2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320
static u32
make_rpcs(struct drm_device *dev)
{
	u32 rpcs = 0;

	/*
	 * No explicit RPCS request is needed to ensure full
	 * slice/subslice/EU enablement prior to Gen9.
	*/
	if (INTEL_INFO(dev)->gen < 9)
		return 0;

	/*
	 * Starting in Gen9, render power gating can leave
	 * slice/subslice/EU in a partially enabled state. We
	 * must make an explicit request through RPCS for full
	 * enablement.
	*/
	if (INTEL_INFO(dev)->has_slice_pg) {
		rpcs |= GEN8_RPCS_S_CNT_ENABLE;
		rpcs |= INTEL_INFO(dev)->slice_total <<
			GEN8_RPCS_S_CNT_SHIFT;
		rpcs |= GEN8_RPCS_ENABLE;
	}

	if (INTEL_INFO(dev)->has_subslice_pg) {
		rpcs |= GEN8_RPCS_SS_CNT_ENABLE;
		rpcs |= INTEL_INFO(dev)->subslice_per_slice <<
			GEN8_RPCS_SS_CNT_SHIFT;
		rpcs |= GEN8_RPCS_ENABLE;
	}

	if (INTEL_INFO(dev)->has_eu_pg) {
		rpcs |= INTEL_INFO(dev)->eu_per_subslice <<
			GEN8_RPCS_EU_MIN_SHIFT;
		rpcs |= INTEL_INFO(dev)->eu_per_subslice <<
			GEN8_RPCS_EU_MAX_SHIFT;
		rpcs |= GEN8_RPCS_ENABLE;
	}

	return rpcs;
}

2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341
static u32 intel_lr_indirect_ctx_offset(struct intel_engine_cs *ring)
{
	u32 indirect_ctx_offset;

	switch (INTEL_INFO(ring->dev)->gen) {
	default:
		MISSING_CASE(INTEL_INFO(ring->dev)->gen);
		/* fall through */
	case 9:
		indirect_ctx_offset =
			GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
		break;
	case 8:
		indirect_ctx_offset =
			GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
		break;
	}

	return indirect_ctx_offset;
}

2342 2343 2344 2345
static int
populate_lr_context(struct intel_context *ctx, struct drm_i915_gem_object *ctx_obj,
		    struct intel_engine_cs *ring, struct intel_ringbuffer *ringbuf)
{
2346 2347
	struct drm_device *dev = ring->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
2348
	struct i915_hw_ppgtt *ppgtt = ctx->ppgtt;
2349 2350 2351 2352
	struct page *page;
	uint32_t *reg_state;
	int ret;

2353 2354 2355
	if (!ppgtt)
		ppgtt = dev_priv->mm.aliasing_ppgtt;

2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371
	ret = i915_gem_object_set_to_cpu_domain(ctx_obj, true);
	if (ret) {
		DRM_DEBUG_DRIVER("Could not set to CPU domain\n");
		return ret;
	}

	ret = i915_gem_object_get_pages(ctx_obj);
	if (ret) {
		DRM_DEBUG_DRIVER("Could not get object pages\n");
		return ret;
	}

	i915_gem_object_pin_pages(ctx_obj);

	/* The second page of the context object contains some fields which must
	 * be set up prior to the first execution. */
2372
	page = i915_gem_object_get_dirty_page(ctx_obj, LRC_STATE_PN);
2373 2374 2375 2376 2377 2378 2379
	reg_state = kmap_atomic(page);

	/* A context is actually a big batch buffer with several MI_LOAD_REGISTER_IMM
	 * commands followed by (reg, value) pairs. The values we are setting here are
	 * only for the first context restore: on a subsequent save, the GPU will
	 * recreate this batchbuffer with new values (including all the missing
	 * MI_LOAD_REGISTER_IMM commands that we are not initializing here). */
2380 2381 2382 2383 2384 2385 2386 2387
	reg_state[CTX_LRI_HEADER_0] =
		MI_LOAD_REGISTER_IMM(ring->id == RCS ? 14 : 11) | MI_LRI_FORCE_POSTED;
	ASSIGN_CTX_REG(reg_state, CTX_CONTEXT_CONTROL, RING_CONTEXT_CONTROL(ring),
		       _MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH |
					  CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
					  CTX_CTRL_RS_CTX_ENABLE));
	ASSIGN_CTX_REG(reg_state, CTX_RING_HEAD, RING_HEAD(ring->mmio_base), 0);
	ASSIGN_CTX_REG(reg_state, CTX_RING_TAIL, RING_TAIL(ring->mmio_base), 0);
2388 2389 2390
	/* Ring buffer start address is not known until the buffer is pinned.
	 * It is written to the context image in execlists_update_context()
	 */
2391 2392 2393 2394 2395 2396 2397 2398 2399 2400
	ASSIGN_CTX_REG(reg_state, CTX_RING_BUFFER_START, RING_START(ring->mmio_base), 0);
	ASSIGN_CTX_REG(reg_state, CTX_RING_BUFFER_CONTROL, RING_CTL(ring->mmio_base),
		       ((ringbuf->size - PAGE_SIZE) & RING_NR_PAGES) | RING_VALID);
	ASSIGN_CTX_REG(reg_state, CTX_BB_HEAD_U, RING_BBADDR_UDW(ring->mmio_base), 0);
	ASSIGN_CTX_REG(reg_state, CTX_BB_HEAD_L, RING_BBADDR(ring->mmio_base), 0);
	ASSIGN_CTX_REG(reg_state, CTX_BB_STATE, RING_BBSTATE(ring->mmio_base),
		       RING_BB_PPGTT);
	ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_HEAD_U, RING_SBBADDR_UDW(ring->mmio_base), 0);
	ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_HEAD_L, RING_SBBADDR(ring->mmio_base), 0);
	ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_STATE, RING_SBBSTATE(ring->mmio_base), 0);
2401
	if (ring->id == RCS) {
2402 2403 2404
		ASSIGN_CTX_REG(reg_state, CTX_BB_PER_CTX_PTR, RING_BB_PER_CTX_PTR(ring->mmio_base), 0);
		ASSIGN_CTX_REG(reg_state, CTX_RCS_INDIRECT_CTX, RING_INDIRECT_CTX(ring->mmio_base), 0);
		ASSIGN_CTX_REG(reg_state, CTX_RCS_INDIRECT_CTX_OFFSET, RING_INDIRECT_CTX_OFFSET(ring->mmio_base), 0);
2405 2406 2407 2408 2409 2410 2411 2412 2413
		if (ring->wa_ctx.obj) {
			struct i915_ctx_workarounds *wa_ctx = &ring->wa_ctx;
			uint32_t ggtt_offset = i915_gem_obj_ggtt_offset(wa_ctx->obj);

			reg_state[CTX_RCS_INDIRECT_CTX+1] =
				(ggtt_offset + wa_ctx->indirect_ctx.offset * sizeof(uint32_t)) |
				(wa_ctx->indirect_ctx.size / CACHELINE_DWORDS);

			reg_state[CTX_RCS_INDIRECT_CTX_OFFSET+1] =
2414
				intel_lr_indirect_ctx_offset(ring) << 6;
2415 2416 2417 2418 2419

			reg_state[CTX_BB_PER_CTX_PTR+1] =
				(ggtt_offset + wa_ctx->per_ctx.offset * sizeof(uint32_t)) |
				0x01;
		}
2420
	}
2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431
	reg_state[CTX_LRI_HEADER_1] = MI_LOAD_REGISTER_IMM(9) | MI_LRI_FORCE_POSTED;
	ASSIGN_CTX_REG(reg_state, CTX_CTX_TIMESTAMP, RING_CTX_TIMESTAMP(ring->mmio_base), 0);
	/* PDP values well be assigned later if needed */
	ASSIGN_CTX_REG(reg_state, CTX_PDP3_UDW, GEN8_RING_PDP_UDW(ring, 3), 0);
	ASSIGN_CTX_REG(reg_state, CTX_PDP3_LDW, GEN8_RING_PDP_LDW(ring, 3), 0);
	ASSIGN_CTX_REG(reg_state, CTX_PDP2_UDW, GEN8_RING_PDP_UDW(ring, 2), 0);
	ASSIGN_CTX_REG(reg_state, CTX_PDP2_LDW, GEN8_RING_PDP_LDW(ring, 2), 0);
	ASSIGN_CTX_REG(reg_state, CTX_PDP1_UDW, GEN8_RING_PDP_UDW(ring, 1), 0);
	ASSIGN_CTX_REG(reg_state, CTX_PDP1_LDW, GEN8_RING_PDP_LDW(ring, 1), 0);
	ASSIGN_CTX_REG(reg_state, CTX_PDP0_UDW, GEN8_RING_PDP_UDW(ring, 0), 0);
	ASSIGN_CTX_REG(reg_state, CTX_PDP0_LDW, GEN8_RING_PDP_LDW(ring, 0), 0);
2432

2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450
	if (USES_FULL_48BIT_PPGTT(ppgtt->base.dev)) {
		/* 64b PPGTT (48bit canonical)
		 * PDP0_DESCRIPTOR contains the base address to PML4 and
		 * other PDP Descriptors are ignored.
		 */
		ASSIGN_CTX_PML4(ppgtt, reg_state);
	} else {
		/* 32b PPGTT
		 * PDP*_DESCRIPTOR contains the base address of space supported.
		 * With dynamic page allocation, PDPs may not be allocated at
		 * this point. Point the unallocated PDPs to the scratch page
		 */
		ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
		ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
		ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
		ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
	}

2451 2452
	if (ring->id == RCS) {
		reg_state[CTX_LRI_HEADER_2] = MI_LOAD_REGISTER_IMM(1);
2453 2454
		ASSIGN_CTX_REG(reg_state, CTX_R_PWR_CLK_STATE, GEN8_R_PWR_CLK_STATE,
			       make_rpcs(dev));
2455 2456 2457 2458 2459 2460 2461 2462
	}

	kunmap_atomic(reg_state);
	i915_gem_object_unpin_pages(ctx_obj);

	return 0;
}

2463 2464 2465 2466 2467 2468 2469 2470
/**
 * intel_lr_context_free() - free the LRC specific bits of a context
 * @ctx: the LR context to free.
 *
 * The real context freeing is done in i915_gem_context_free: this only
 * takes care of the bits that are LRC related: the per-engine backing
 * objects and the logical ringbuffer.
 */
2471 2472
void intel_lr_context_free(struct intel_context *ctx)
{
2473 2474
	int i;

D
Dave Gordon 已提交
2475 2476
	for (i = I915_NUM_RINGS; --i >= 0; ) {
		struct intel_ringbuffer *ringbuf = ctx->engine[i].ringbuf;
2477
		struct drm_i915_gem_object *ctx_obj = ctx->engine[i].state;
2478

D
Dave Gordon 已提交
2479 2480
		if (!ctx_obj)
			continue;
2481

D
Dave Gordon 已提交
2482 2483 2484
		if (ctx == ctx->i915->kernel_context) {
			intel_unpin_ringbuffer_obj(ringbuf);
			i915_gem_object_ggtt_unpin(ctx_obj);
2485
		}
D
Dave Gordon 已提交
2486 2487 2488 2489

		WARN_ON(ctx->engine[i].pin_count);
		intel_ringbuffer_free(ringbuf);
		drm_gem_object_unreference(&ctx_obj->base);
2490 2491 2492
	}
}

2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506
/**
 * intel_lr_context_size() - return the size of the context for an engine
 * @ring: which engine to find the context size for
 *
 * Each engine may require a different amount of space for a context image,
 * so when allocating (or copying) an image, this function can be used to
 * find the right size for the specific engine.
 *
 * Return: size (in bytes) of an engine-specific context image
 *
 * Note: this size includes the HWSP, which is part of the context image
 * in LRC mode, but does not include the "shared data page" used with
 * GuC submission. The caller should account for this if using the GuC.
 */
2507
uint32_t intel_lr_context_size(struct intel_engine_cs *ring)
2508 2509 2510
{
	int ret = 0;

2511
	WARN_ON(INTEL_INFO(ring->dev)->gen < 8);
2512 2513 2514

	switch (ring->id) {
	case RCS:
2515 2516 2517 2518
		if (INTEL_INFO(ring->dev)->gen >= 9)
			ret = GEN9_LR_CONTEXT_RENDER_SIZE;
		else
			ret = GEN8_LR_CONTEXT_RENDER_SIZE;
2519 2520 2521 2522 2523 2524 2525 2526 2527 2528
		break;
	case VCS:
	case BCS:
	case VECS:
	case VCS2:
		ret = GEN8_LR_CONTEXT_OTHER_SIZE;
		break;
	}

	return ret;
2529 2530
}

2531
static void lrc_setup_hardware_status_page(struct intel_engine_cs *ring,
2532 2533 2534
		struct drm_i915_gem_object *default_ctx_obj)
{
	struct drm_i915_private *dev_priv = ring->dev->dev_private;
2535
	struct page *page;
2536

2537 2538 2539 2540 2541
	/* The HWSP is part of the default context object in LRC mode. */
	ring->status_page.gfx_addr = i915_gem_obj_ggtt_offset(default_ctx_obj)
			+ LRC_PPHWSP_PN * PAGE_SIZE;
	page = i915_gem_object_get_page(default_ctx_obj, LRC_PPHWSP_PN);
	ring->status_page.page_addr = kmap(page);
2542 2543 2544 2545 2546 2547 2548
	ring->status_page.obj = default_ctx_obj;

	I915_WRITE(RING_HWS_PGA(ring->mmio_base),
			(u32)ring->status_page.gfx_addr);
	POSTING_READ(RING_HWS_PGA(ring->mmio_base));
}

2549
/**
2550
 * intel_lr_context_deferred_alloc() - create the LRC specific bits of a context
2551 2552 2553 2554 2555 2556 2557 2558 2559
 * @ctx: LR context to create.
 * @ring: engine to be used with the context.
 *
 * This function can be called more than once, with different engines, if we plan
 * to use the context with them. The context backing objects and the ringbuffers
 * (specially the ringbuffer backing objects) suck a lot of memory up, and that's why
 * the creation is a deferred call: it's better to make sure first that we need to use
 * a given ring with the context.
 *
2560
 * Return: non-zero on error.
2561
 */
2562 2563

int intel_lr_context_deferred_alloc(struct intel_context *ctx,
D
Dave Gordon 已提交
2564
				    struct intel_engine_cs *ring)
2565
{
2566 2567 2568
	struct drm_device *dev = ring->dev;
	struct drm_i915_gem_object *ctx_obj;
	uint32_t context_size;
2569
	struct intel_ringbuffer *ringbuf;
2570 2571
	int ret;

2572
	WARN_ON(ctx->legacy_hw_ctx.rcs_state != NULL);
2573
	WARN_ON(ctx->engine[ring->id].state);
2574

2575
	context_size = round_up(intel_lr_context_size(ring), 4096);
2576

2577 2578 2579
	/* One extra page as the sharing data between driver and GuC */
	context_size += PAGE_SIZE * LRC_PPHWSP_PN;

2580
	ctx_obj = i915_gem_alloc_object(dev, context_size);
2581 2582 2583
	if (!ctx_obj) {
		DRM_DEBUG_DRIVER("Alloc LRC backing obj failed.\n");
		return -ENOMEM;
2584 2585
	}

2586 2587 2588
	ringbuf = intel_engine_create_ringbuffer(ring, 4 * PAGE_SIZE);
	if (IS_ERR(ringbuf)) {
		ret = PTR_ERR(ringbuf);
2589
		goto error_deref_obj;
2590 2591 2592 2593 2594
	}

	ret = populate_lr_context(ctx, ctx_obj, ring, ringbuf);
	if (ret) {
		DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret);
2595
		goto error_ringbuf;
2596 2597 2598
	}

	ctx->engine[ring->id].ringbuf = ringbuf;
2599
	ctx->engine[ring->id].state = ctx_obj;
2600

2601
	if (ctx != ctx->i915->kernel_context && ring->init_context) {
2602
		struct drm_i915_gem_request *req;
2603

2604 2605 2606 2607
		req = i915_gem_request_alloc(ring, ctx);
		if (IS_ERR(req)) {
			ret = PTR_ERR(req);
			DRM_ERROR("ring create req: %d\n", ret);
2608
			goto error_ringbuf;
2609 2610
		}

2611 2612 2613 2614 2615 2616 2617 2618
		ret = ring->init_context(req);
		if (ret) {
			DRM_ERROR("ring init context: %d\n",
				ret);
			i915_gem_request_cancel(req);
			goto error_ringbuf;
		}
		i915_add_request_no_flush(req);
2619
	}
2620
	return 0;
2621

2622 2623
error_ringbuf:
	intel_ringbuffer_free(ringbuf);
2624
error_deref_obj:
2625
	drm_gem_object_unreference(&ctx_obj->base);
2626 2627
	ctx->engine[ring->id].ringbuf = NULL;
	ctx->engine[ring->id].state = NULL;
2628
	return ret;
2629
}
2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652

void intel_lr_context_reset(struct drm_device *dev,
			struct intel_context *ctx)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct intel_engine_cs *ring;
	int i;

	for_each_ring(ring, dev_priv, i) {
		struct drm_i915_gem_object *ctx_obj =
				ctx->engine[ring->id].state;
		struct intel_ringbuffer *ringbuf =
				ctx->engine[ring->id].ringbuf;
		uint32_t *reg_state;
		struct page *page;

		if (!ctx_obj)
			continue;

		if (i915_gem_object_get_pages(ctx_obj)) {
			WARN(1, "Failed get_pages for context obj\n");
			continue;
		}
2653
		page = i915_gem_object_get_dirty_page(ctx_obj, LRC_STATE_PN);
2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664
		reg_state = kmap_atomic(page);

		reg_state[CTX_RING_HEAD+1] = 0;
		reg_state[CTX_RING_TAIL+1] = 0;

		kunmap_atomic(reg_state);

		ringbuf->head = 0;
		ringbuf->tail = 0;
	}
}