intel_lrc.c 77.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
/*
 * Copyright © 2014 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Ben Widawsky <ben@bwidawsk.net>
 *    Michel Thierry <michel.thierry@intel.com>
 *    Thomas Daniel <thomas.daniel@intel.com>
 *    Oscar Mateo <oscar.mateo@intel.com>
 *
 */

31 32 33 34
/**
 * DOC: Logical Rings, Logical Ring Contexts and Execlists
 *
 * Motivation:
35 36 37 38
 * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
 * These expanded contexts enable a number of new abilities, especially
 * "Execlists" (also implemented in this file).
 *
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
 * One of the main differences with the legacy HW contexts is that logical
 * ring contexts incorporate many more things to the context's state, like
 * PDPs or ringbuffer control registers:
 *
 * The reason why PDPs are included in the context is straightforward: as
 * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
 * contained there mean you don't need to do a ppgtt->switch_mm yourself,
 * instead, the GPU will do it for you on the context switch.
 *
 * But, what about the ringbuffer control registers (head, tail, etc..)?
 * shouldn't we just need a set of those per engine command streamer? This is
 * where the name "Logical Rings" starts to make sense: by virtualizing the
 * rings, the engine cs shifts to a new "ring buffer" with every context
 * switch. When you want to submit a workload to the GPU you: A) choose your
 * context, B) find its appropriate virtualized ring, C) write commands to it
 * and then, finally, D) tell the GPU to switch to that context.
 *
 * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
 * to a contexts is via a context execution list, ergo "Execlists".
 *
 * LRC implementation:
 * Regarding the creation of contexts, we have:
 *
 * - One global default context.
 * - One local default context for each opened fd.
 * - One local extra context for each context create ioctl call.
 *
 * Now that ringbuffers belong per-context (and not per-engine, like before)
 * and that contexts are uniquely tied to a given engine (and not reusable,
 * like before) we need:
 *
 * - One ringbuffer per-engine inside each context.
 * - One backing object per-engine inside each context.
 *
 * The global default context starts its life with these new objects fully
 * allocated and populated. The local default context for each opened fd is
 * more complex, because we don't know at creation time which engine is going
 * to use them. To handle this, we have implemented a deferred creation of LR
 * contexts:
 *
 * The local context starts its life as a hollow or blank holder, that only
 * gets populated for a given engine once we receive an execbuffer. If later
 * on we receive another execbuffer ioctl for the same context but a different
 * engine, we allocate/populate a new ringbuffer and context backing object and
 * so on.
 *
 * Finally, regarding local contexts created using the ioctl call: as they are
 * only allowed with the render ring, we can allocate & populate them right
 * away (no need to defer anything, at least for now).
 *
 * Execlists implementation:
90 91
 * Execlists are the new method by which, on gen8+ hardware, workloads are
 * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
 * This method works as follows:
 *
 * When a request is committed, its commands (the BB start and any leading or
 * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
 * for the appropriate context. The tail pointer in the hardware context is not
 * updated at this time, but instead, kept by the driver in the ringbuffer
 * structure. A structure representing this request is added to a request queue
 * for the appropriate engine: this structure contains a copy of the context's
 * tail after the request was written to the ring buffer and a pointer to the
 * context itself.
 *
 * If the engine's request queue was empty before the request was added, the
 * queue is processed immediately. Otherwise the queue will be processed during
 * a context switch interrupt. In any case, elements on the queue will get sent
 * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
 * globally unique 20-bits submission ID.
 *
 * When execution of a request completes, the GPU updates the context status
 * buffer with a context complete event and generates a context switch interrupt.
 * During the interrupt handling, the driver examines the events in the buffer:
 * for each context complete event, if the announced ID matches that on the head
 * of the request queue, then that request is retired and removed from the queue.
 *
 * After processing, if any requests were retired and the queue is not empty
 * then a new execution list can be submitted. The two requests at the front of
 * the queue are next to be submitted but since a context may not occur twice in
 * an execution list, if subsequent requests have the same ID as the first then
 * the two requests must be combined. This is done simply by discarding requests
 * at the head of the queue until either only one requests is left (in which case
 * we use a NULL second context) or the first two requests have unique IDs.
 *
 * By always executing the first two requests in the queue the driver ensures
 * that the GPU is kept as busy as possible. In the case where a single context
 * completes but a second context is still executing, the request for this second
 * context will be at the head of the queue when we remove the first one. This
 * request will then be resubmitted along with a new request for a different context,
 * which will cause the hardware to continue executing the second request and queue
 * the new request (the GPU detects the condition of a context getting preempted
 * with the same context and optimizes the context switch flow by not doing
 * preemption, but just sampling the new tail pointer).
 *
133
 */
134
#include <linux/interrupt.h>
135 136 137 138

#include <drm/drmP.h>
#include <drm/i915_drm.h>
#include "i915_drv.h"
139
#include "intel_mocs.h"
140

141
#define GEN9_LR_CONTEXT_RENDER_SIZE (22 * PAGE_SIZE)
142 143 144
#define GEN8_LR_CONTEXT_RENDER_SIZE (20 * PAGE_SIZE)
#define GEN8_LR_CONTEXT_OTHER_SIZE (2 * PAGE_SIZE)

145 146 147 148 149 150 151 152 153 154 155 156 157
#define RING_EXECLIST_QFULL		(1 << 0x2)
#define RING_EXECLIST1_VALID		(1 << 0x3)
#define RING_EXECLIST0_VALID		(1 << 0x4)
#define RING_EXECLIST_ACTIVE_STATUS	(3 << 0xE)
#define RING_EXECLIST1_ACTIVE		(1 << 0x11)
#define RING_EXECLIST0_ACTIVE		(1 << 0x12)

#define GEN8_CTX_STATUS_IDLE_ACTIVE	(1 << 0)
#define GEN8_CTX_STATUS_PREEMPTED	(1 << 1)
#define GEN8_CTX_STATUS_ELEMENT_SWITCH	(1 << 2)
#define GEN8_CTX_STATUS_ACTIVE_IDLE	(1 << 3)
#define GEN8_CTX_STATUS_COMPLETE	(1 << 4)
#define GEN8_CTX_STATUS_LITE_RESTORE	(1 << 15)
158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187

#define CTX_LRI_HEADER_0		0x01
#define CTX_CONTEXT_CONTROL		0x02
#define CTX_RING_HEAD			0x04
#define CTX_RING_TAIL			0x06
#define CTX_RING_BUFFER_START		0x08
#define CTX_RING_BUFFER_CONTROL		0x0a
#define CTX_BB_HEAD_U			0x0c
#define CTX_BB_HEAD_L			0x0e
#define CTX_BB_STATE			0x10
#define CTX_SECOND_BB_HEAD_U		0x12
#define CTX_SECOND_BB_HEAD_L		0x14
#define CTX_SECOND_BB_STATE		0x16
#define CTX_BB_PER_CTX_PTR		0x18
#define CTX_RCS_INDIRECT_CTX		0x1a
#define CTX_RCS_INDIRECT_CTX_OFFSET	0x1c
#define CTX_LRI_HEADER_1		0x21
#define CTX_CTX_TIMESTAMP		0x22
#define CTX_PDP3_UDW			0x24
#define CTX_PDP3_LDW			0x26
#define CTX_PDP2_UDW			0x28
#define CTX_PDP2_LDW			0x2a
#define CTX_PDP1_UDW			0x2c
#define CTX_PDP1_LDW			0x2e
#define CTX_PDP0_UDW			0x30
#define CTX_PDP0_LDW			0x32
#define CTX_LRI_HEADER_2		0x41
#define CTX_R_PWR_CLK_STATE		0x42
#define CTX_GPGPU_CSR_BASE_ADDRESS	0x44

188 189 190 191 192
#define GEN8_CTX_VALID (1<<0)
#define GEN8_CTX_FORCE_PD_RESTORE (1<<1)
#define GEN8_CTX_FORCE_RESTORE (1<<2)
#define GEN8_CTX_L3LLC_COHERENT (1<<5)
#define GEN8_CTX_PRIVILEGE (1<<8)
193

194
#define ASSIGN_CTX_REG(reg_state, pos, reg, val) do { \
195
	(reg_state)[(pos)+0] = i915_mmio_reg_offset(reg); \
196 197 198 199
	(reg_state)[(pos)+1] = (val); \
} while (0)

#define ASSIGN_CTX_PDP(ppgtt, reg_state, n) do {		\
200
	const u64 _addr = i915_page_dir_dma_addr((ppgtt), (n));	\
201 202
	reg_state[CTX_PDP ## n ## _UDW+1] = upper_32_bits(_addr); \
	reg_state[CTX_PDP ## n ## _LDW+1] = lower_32_bits(_addr); \
203
} while (0)
204

205
#define ASSIGN_CTX_PML4(ppgtt, reg_state) do { \
206 207
	reg_state[CTX_PDP0_UDW + 1] = upper_32_bits(px_dma(&ppgtt->pml4)); \
	reg_state[CTX_PDP0_LDW + 1] = lower_32_bits(px_dma(&ppgtt->pml4)); \
208
} while (0)
209

210 211
enum {
	ADVANCED_CONTEXT = 0,
212
	LEGACY_32B_CONTEXT,
213 214 215
	ADVANCED_AD_CONTEXT,
	LEGACY_64B_CONTEXT
};
216 217 218 219
#define GEN8_CTX_ADDRESSING_MODE_SHIFT 3
#define GEN8_CTX_ADDRESSING_MODE(dev)  (USES_FULL_48BIT_PPGTT(dev) ?\
		LEGACY_64B_CONTEXT :\
		LEGACY_32B_CONTEXT)
220 221 222 223 224 225 226
enum {
	FAULT_AND_HANG = 0,
	FAULT_AND_HALT, /* Debug only */
	FAULT_AND_STREAM,
	FAULT_AND_CONTINUE /* Unsupported */
};
#define GEN8_CTX_ID_SHIFT 32
227
#define GEN8_CTX_ID_WIDTH 21
228 229
#define GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT	0x17
#define GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT	0x26
230

231 232
static int execlists_context_deferred_alloc(struct intel_context *ctx,
					    struct intel_engine_cs *engine);
233 234
static int intel_lr_context_pin(struct intel_context *ctx,
				struct intel_engine_cs *engine);
235

236 237 238 239 240 241
/**
 * intel_sanitize_enable_execlists() - sanitize i915.enable_execlists
 * @dev: DRM device.
 * @enable_execlists: value of i915.enable_execlists module parameter.
 *
 * Only certain platforms support Execlists (the prerequisites being
242
 * support for Logical Ring Contexts and Aliasing PPGTT or better).
243 244 245
 *
 * Return: 1 if Execlists is supported and has to be enabled.
 */
246 247
int intel_sanitize_enable_execlists(struct drm_device *dev, int enable_execlists)
{
248 249
	WARN_ON(i915.enable_ppgtt == -1);

250 251 252 253 254 255
	/* On platforms with execlist available, vGPU will only
	 * support execlist mode, no ring buffer mode.
	 */
	if (HAS_LOGICAL_RING_CONTEXTS(dev) && intel_vgpu_active(dev))
		return 1;

256 257 258
	if (INTEL_INFO(dev)->gen >= 9)
		return 1;

259 260 261
	if (enable_execlists == 0)
		return 0;

262 263
	if (HAS_LOGICAL_RING_CONTEXTS(dev) && USES_PPGTT(dev) &&
	    i915.use_mmio_flip >= 0)
264 265 266 267
		return 1;

	return 0;
}
268

269
static void
270
logical_ring_init_platform_invariants(struct intel_engine_cs *engine)
271
{
272
	struct drm_device *dev = engine->dev;
273

274
	if (IS_GEN8(dev) || IS_GEN9(dev))
275
		engine->idle_lite_restore_wa = ~0;
276

277
	engine->disable_lite_restore_wa = (IS_SKL_REVID(dev, 0, SKL_REVID_B0) ||
278
					IS_BXT_REVID(dev, 0, BXT_REVID_A1)) &&
279
					(engine->id == VCS || engine->id == VCS2);
280

281 282
	engine->ctx_desc_template = GEN8_CTX_VALID;
	engine->ctx_desc_template |= GEN8_CTX_ADDRESSING_MODE(dev) <<
283 284
				   GEN8_CTX_ADDRESSING_MODE_SHIFT;
	if (IS_GEN8(dev))
285 286
		engine->ctx_desc_template |= GEN8_CTX_L3LLC_COHERENT;
	engine->ctx_desc_template |= GEN8_CTX_PRIVILEGE;
287 288 289 290 291 292 293

	/* TODO: WaDisableLiteRestore when we start using semaphore
	 * signalling between Command Streamers */
	/* ring->ctx_desc_template |= GEN8_CTX_FORCE_RESTORE; */

	/* WaEnableForceRestoreInCtxtDescForVCS:skl */
	/* WaEnableForceRestoreInCtxtDescForVCS:bxt */
294 295
	if (engine->disable_lite_restore_wa)
		engine->ctx_desc_template |= GEN8_CTX_FORCE_RESTORE;
296 297
}

298
/**
299 300
 * intel_lr_context_descriptor_update() - calculate & cache the descriptor
 * 					  descriptor for a pinned context
301
 *
302 303
 * @ctx: Context to work on
 * @ring: Engine the descriptor will be used with
304
 *
305 306 307 308 309 310
 * The context descriptor encodes various attributes of a context,
 * including its GTT address and some flags. Because it's fairly
 * expensive to calculate, we'll just do it once and cache the result,
 * which remains valid until the context is unpinned.
 *
 * This is what a descriptor looks like, from LSB to MSB:
311
 *    bits  0-11:    flags, GEN8_CTX_* (cached in ctx_desc_template)
312
 *    bits 12-31:    LRCA, GTT address of (the HWSP of) this context
313
 *    bits 32-52:    ctx ID, a globally unique tag
314 315
 *    bits 53-54:    mbz, reserved for use by hardware
 *    bits 55-63:    group ID, currently unused and set to 0
316
 */
317 318
static void
intel_lr_context_descriptor_update(struct intel_context *ctx,
319
				   struct intel_engine_cs *engine)
320
{
321
	u64 desc;
322

323
	BUILD_BUG_ON(MAX_CONTEXT_HW_ID > (1<<GEN8_CTX_ID_WIDTH));
324

325 326 327 328
	desc = engine->ctx_desc_template;			/* bits  0-11 */
	desc |= ctx->engine[engine->id].lrc_vma->node.start +	/* bits 12-31 */
	       LRC_PPHWSP_PN * PAGE_SIZE;
	desc |= (u64)ctx->hw_id << GEN8_CTX_ID_SHIFT;		/* bits 32-52 */
329

330
	ctx->engine[engine->id].lrc_desc = desc;
331 332
}

333
uint64_t intel_lr_context_descriptor(struct intel_context *ctx,
334
				     struct intel_engine_cs *engine)
335
{
336
	return ctx->engine[engine->id].lrc_desc;
337
}
338

339 340
static void execlists_elsp_write(struct drm_i915_gem_request *rq0,
				 struct drm_i915_gem_request *rq1)
341
{
342

343
	struct intel_engine_cs *engine = rq0->engine;
344
	struct drm_device *dev = engine->dev;
345
	struct drm_i915_private *dev_priv = dev->dev_private;
346
	uint64_t desc[2];
347

348
	if (rq1) {
349
		desc[1] = intel_lr_context_descriptor(rq1->ctx, rq1->engine);
350 351 352 353
		rq1->elsp_submitted++;
	} else {
		desc[1] = 0;
	}
354

355
	desc[0] = intel_lr_context_descriptor(rq0->ctx, rq0->engine);
356
	rq0->elsp_submitted++;
357

358
	/* You must always write both descriptors in the order below. */
359 360
	I915_WRITE_FW(RING_ELSP(engine), upper_32_bits(desc[1]));
	I915_WRITE_FW(RING_ELSP(engine), lower_32_bits(desc[1]));
361

362
	I915_WRITE_FW(RING_ELSP(engine), upper_32_bits(desc[0]));
363
	/* The context is automatically loaded after the following */
364
	I915_WRITE_FW(RING_ELSP(engine), lower_32_bits(desc[0]));
365

366
	/* ELSP is a wo register, use another nearby reg for posting */
367
	POSTING_READ_FW(RING_EXECLIST_STATUS_LO(engine));
368 369
}

370 371 372 373 374 375 376 377 378 379
static void
execlists_update_context_pdps(struct i915_hw_ppgtt *ppgtt, u32 *reg_state)
{
	ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
	ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
	ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
	ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
}

static void execlists_update_context(struct drm_i915_gem_request *rq)
380
{
381
	struct intel_engine_cs *engine = rq->engine;
382
	struct i915_hw_ppgtt *ppgtt = rq->ctx->ppgtt;
383
	uint32_t *reg_state = rq->ctx->engine[engine->id].lrc_reg_state;
384

385
	reg_state[CTX_RING_TAIL+1] = rq->tail;
386

387 388 389 390 391 392 393
	/* True 32b PPGTT with dynamic page allocation: update PDP
	 * registers and point the unallocated PDPs to scratch page.
	 * PML4 is allocated during ppgtt init, so this is not needed
	 * in 48-bit mode.
	 */
	if (ppgtt && !USES_FULL_48BIT_PPGTT(ppgtt->base.dev))
		execlists_update_context_pdps(ppgtt, reg_state);
394 395
}

396 397
static void execlists_submit_requests(struct drm_i915_gem_request *rq0,
				      struct drm_i915_gem_request *rq1)
398
{
399
	struct drm_i915_private *dev_priv = rq0->i915;
400
	unsigned int fw_domains = rq0->engine->fw_domains;
401

402
	execlists_update_context(rq0);
403

404
	if (rq1)
405
		execlists_update_context(rq1);
406

407
	spin_lock_irq(&dev_priv->uncore.lock);
408
	intel_uncore_forcewake_get__locked(dev_priv, fw_domains);
409

410
	execlists_elsp_write(rq0, rq1);
411

412
	intel_uncore_forcewake_put__locked(dev_priv, fw_domains);
413
	spin_unlock_irq(&dev_priv->uncore.lock);
414 415
}

416
static void execlists_context_unqueue(struct intel_engine_cs *engine)
417
{
418
	struct drm_i915_gem_request *req0 = NULL, *req1 = NULL;
419
	struct drm_i915_gem_request *cursor, *tmp;
420

421
	assert_spin_locked(&engine->execlist_lock);
422

423 424 425 426
	/*
	 * If irqs are not active generate a warning as batches that finish
	 * without the irqs may get lost and a GPU Hang may occur.
	 */
427
	WARN_ON(!intel_irqs_enabled(engine->dev->dev_private));
428

429
	/* Try to read in pairs */
430
	list_for_each_entry_safe(cursor, tmp, &engine->execlist_queue,
431 432 433
				 execlist_link) {
		if (!req0) {
			req0 = cursor;
434
		} else if (req0->ctx == cursor->ctx) {
435 436
			/* Same ctx: ignore first request, as second request
			 * will update tail past first request's workload */
437
			cursor->elsp_submitted = req0->elsp_submitted;
438
			list_move_tail(&req0->execlist_link,
439
				       &engine->execlist_retired_req_list);
440 441 442
			req0 = cursor;
		} else {
			req1 = cursor;
443
			WARN_ON(req1->elsp_submitted);
444 445 446 447
			break;
		}
	}

448 449 450
	if (unlikely(!req0))
		return;

451
	if (req0->elsp_submitted & engine->idle_lite_restore_wa) {
452
		/*
453 454 455 456 457 458
		 * WaIdleLiteRestore: make sure we never cause a lite restore
		 * with HEAD==TAIL.
		 *
		 * Apply the wa NOOPS to prevent ring:HEAD == req:TAIL as we
		 * resubmit the request. See gen8_emit_request() for where we
		 * prepare the padding after the end of the request.
459
		 */
460
		struct intel_ringbuffer *ringbuf;
461

462
		ringbuf = req0->ctx->engine[engine->id].ringbuf;
463 464
		req0->tail += 8;
		req0->tail &= ringbuf->size - 1;
465 466
	}

467
	execlists_submit_requests(req0, req1);
468 469
}

470
static unsigned int
471
execlists_check_remove_request(struct intel_engine_cs *engine, u32 request_id)
472
{
473
	struct drm_i915_gem_request *head_req;
474

475
	assert_spin_locked(&engine->execlist_lock);
476

477
	head_req = list_first_entry_or_null(&engine->execlist_queue,
478
					    struct drm_i915_gem_request,
479 480
					    execlist_link);

481 482
	if (!head_req)
		return 0;
483

484
	if (unlikely(head_req->ctx->hw_id != request_id))
485 486 487 488 489 490 491 492
		return 0;

	WARN(head_req->elsp_submitted == 0, "Never submitted head request\n");

	if (--head_req->elsp_submitted > 0)
		return 0;

	list_move_tail(&head_req->execlist_link,
493
		       &engine->execlist_retired_req_list);
494

495
	return 1;
496 497
}

498
static u32
499
get_context_status(struct intel_engine_cs *engine, unsigned int read_pointer,
500
		   u32 *context_id)
B
Ben Widawsky 已提交
501
{
502
	struct drm_i915_private *dev_priv = engine->dev->dev_private;
503
	u32 status;
B
Ben Widawsky 已提交
504

505 506
	read_pointer %= GEN8_CSB_ENTRIES;

507
	status = I915_READ_FW(RING_CONTEXT_STATUS_BUF_LO(engine, read_pointer));
508 509 510

	if (status & GEN8_CTX_STATUS_IDLE_ACTIVE)
		return 0;
B
Ben Widawsky 已提交
511

512
	*context_id = I915_READ_FW(RING_CONTEXT_STATUS_BUF_HI(engine,
513 514 515
							      read_pointer));

	return status;
B
Ben Widawsky 已提交
516 517
}

518
/**
519
 * intel_lrc_irq_handler() - handle Context Switch interrupts
520
 * @engine: Engine Command Streamer to handle.
521 522 523 524
 *
 * Check the unread Context Status Buffers and manage the submission of new
 * contexts to the ELSP accordingly.
 */
525
static void intel_lrc_irq_handler(unsigned long data)
526
{
527
	struct intel_engine_cs *engine = (struct intel_engine_cs *)data;
528
	struct drm_i915_private *dev_priv = engine->dev->dev_private;
529
	u32 status_pointer;
530
	unsigned int read_pointer, write_pointer;
531 532
	u32 csb[GEN8_CSB_ENTRIES][2];
	unsigned int csb_read = 0, i;
533 534
	unsigned int submit_contexts = 0;

535
	intel_uncore_forcewake_get(dev_priv, engine->fw_domains);
536

537
	status_pointer = I915_READ_FW(RING_CONTEXT_STATUS_PTR(engine));
538

539
	read_pointer = engine->next_context_status_buffer;
540
	write_pointer = GEN8_CSB_WRITE_PTR(status_pointer);
541
	if (read_pointer > write_pointer)
542
		write_pointer += GEN8_CSB_ENTRIES;
543 544

	while (read_pointer < write_pointer) {
545 546 547 548 549 550
		if (WARN_ON_ONCE(csb_read == GEN8_CSB_ENTRIES))
			break;
		csb[csb_read][0] = get_context_status(engine, ++read_pointer,
						      &csb[csb_read][1]);
		csb_read++;
	}
B
Ben Widawsky 已提交
551

552 553 554 555 556 557 558 559
	engine->next_context_status_buffer = write_pointer % GEN8_CSB_ENTRIES;

	/* Update the read pointer to the old write pointer. Manual ringbuffer
	 * management ftw </sarcasm> */
	I915_WRITE_FW(RING_CONTEXT_STATUS_PTR(engine),
		      _MASKED_FIELD(GEN8_CSB_READ_PTR_MASK,
				    engine->next_context_status_buffer << 8));

560
	intel_uncore_forcewake_put(dev_priv, engine->fw_domains);
561 562 563 564 565 566 567

	spin_lock(&engine->execlist_lock);

	for (i = 0; i < csb_read; i++) {
		if (unlikely(csb[i][0] & GEN8_CTX_STATUS_PREEMPTED)) {
			if (csb[i][0] & GEN8_CTX_STATUS_LITE_RESTORE) {
				if (execlists_check_remove_request(engine, csb[i][1]))
568 569 570 571 572
					WARN(1, "Lite Restored request removed from queue\n");
			} else
				WARN(1, "Preemption without Lite Restore\n");
		}

573
		if (csb[i][0] & (GEN8_CTX_STATUS_ACTIVE_IDLE |
574 575
		    GEN8_CTX_STATUS_ELEMENT_SWITCH))
			submit_contexts +=
576
				execlists_check_remove_request(engine, csb[i][1]);
577 578
	}

579
	if (submit_contexts) {
580
		if (!engine->disable_lite_restore_wa ||
581 582
		    (csb[i][0] & GEN8_CTX_STATUS_ACTIVE_IDLE))
			execlists_context_unqueue(engine);
583
	}
584

585
	spin_unlock(&engine->execlist_lock);
586 587 588

	if (unlikely(submit_contexts > 2))
		DRM_ERROR("More than two context complete events?\n");
589 590
}

591
static void execlists_context_queue(struct drm_i915_gem_request *request)
592
{
593
	struct intel_engine_cs *engine = request->engine;
594
	struct drm_i915_gem_request *cursor;
595
	int num_elements = 0;
596

597
	intel_lr_context_pin(request->ctx, request->engine);
598 599
	i915_gem_request_reference(request);

600
	spin_lock_bh(&engine->execlist_lock);
601

602
	list_for_each_entry(cursor, &engine->execlist_queue, execlist_link)
603 604 605 606
		if (++num_elements > 2)
			break;

	if (num_elements > 2) {
607
		struct drm_i915_gem_request *tail_req;
608

609
		tail_req = list_last_entry(&engine->execlist_queue,
610
					   struct drm_i915_gem_request,
611 612
					   execlist_link);

613
		if (request->ctx == tail_req->ctx) {
614
			WARN(tail_req->elsp_submitted != 0,
615
				"More than 2 already-submitted reqs queued\n");
616
			list_move_tail(&tail_req->execlist_link,
617
				       &engine->execlist_retired_req_list);
618 619 620
		}
	}

621
	list_add_tail(&request->execlist_link, &engine->execlist_queue);
622
	if (num_elements == 0)
623
		execlists_context_unqueue(engine);
624

625
	spin_unlock_bh(&engine->execlist_lock);
626 627
}

628
static int logical_ring_invalidate_all_caches(struct drm_i915_gem_request *req)
629
{
630
	struct intel_engine_cs *engine = req->engine;
631 632 633 634
	uint32_t flush_domains;
	int ret;

	flush_domains = 0;
635
	if (engine->gpu_caches_dirty)
636 637
		flush_domains = I915_GEM_GPU_DOMAINS;

638
	ret = engine->emit_flush(req, I915_GEM_GPU_DOMAINS, flush_domains);
639 640 641
	if (ret)
		return ret;

642
	engine->gpu_caches_dirty = false;
643 644 645
	return 0;
}

646
static int execlists_move_to_gpu(struct drm_i915_gem_request *req,
647 648
				 struct list_head *vmas)
{
649
	const unsigned other_rings = ~intel_engine_flag(req->engine);
650 651 652 653 654 655 656 657
	struct i915_vma *vma;
	uint32_t flush_domains = 0;
	bool flush_chipset = false;
	int ret;

	list_for_each_entry(vma, vmas, exec_list) {
		struct drm_i915_gem_object *obj = vma->obj;

658
		if (obj->active & other_rings) {
659
			ret = i915_gem_object_sync(obj, req->engine, &req);
660 661 662
			if (ret)
				return ret;
		}
663 664 665 666 667 668 669 670 671 672 673 674 675

		if (obj->base.write_domain & I915_GEM_DOMAIN_CPU)
			flush_chipset |= i915_gem_clflush_object(obj, false);

		flush_domains |= obj->base.write_domain;
	}

	if (flush_domains & I915_GEM_DOMAIN_GTT)
		wmb();

	/* Unconditionally invalidate gpu caches and ensure that we do flush
	 * any residual writes from the previous batch.
	 */
676
	return logical_ring_invalidate_all_caches(req);
677 678
}

679
int intel_logical_ring_alloc_request_extras(struct drm_i915_gem_request *request)
680
{
681
	struct intel_engine_cs *engine = request->engine;
682
	int ret;
683

684 685 686 687 688 689
	/* Flush enough space to reduce the likelihood of waiting after
	 * we start building the request - in which case we will just
	 * have to repeat work.
	 */
	request->reserved_space += MIN_SPACE_FOR_ADD_REQUEST;

690 691 692 693 694 695
	if (request->ctx->engine[engine->id].state == NULL) {
		ret = execlists_context_deferred_alloc(request->ctx, engine);
		if (ret)
			return ret;
	}

696
	request->ringbuf = request->ctx->engine[engine->id].ringbuf;
697

698 699 700 701 702 703 704 705 706 707 708 709 710
	if (i915.enable_guc_submission) {
		/*
		 * Check that the GuC has space for the request before
		 * going any further, as the i915_add_request() call
		 * later on mustn't fail ...
		 */
		struct intel_guc *guc = &request->i915->guc;

		ret = i915_guc_wq_check_space(guc->execbuf_client);
		if (ret)
			return ret;
	}

711 712 713
	ret = intel_lr_context_pin(request->ctx, engine);
	if (ret)
		return ret;
D
Dave Gordon 已提交
714

715 716 717 718
	ret = intel_ring_begin(request, 0);
	if (ret)
		goto err_unpin;

719 720 721 722 723 724 725 726 727 728 729 730 731 732 733
	if (!request->ctx->engine[engine->id].initialised) {
		ret = engine->init_context(request);
		if (ret)
			goto err_unpin;

		request->ctx->engine[engine->id].initialised = true;
	}

	/* Note that after this point, we have committed to using
	 * this request as it is being used to both track the
	 * state of engine initialisation and liveness of the
	 * golden renderstate above. Think twice before you try
	 * to cancel/unwind this request now.
	 */

734
	request->reserved_space -= MIN_SPACE_FOR_ADD_REQUEST;
735 736 737
	return 0;

err_unpin:
738
	intel_lr_context_unpin(request->ctx, engine);
D
Dave Gordon 已提交
739
	return ret;
740 741 742 743
}

/*
 * intel_logical_ring_advance_and_submit() - advance the tail and submit the workload
744
 * @request: Request to advance the logical ringbuffer of.
745 746 747 748 749 750
 *
 * The tail is updated in our logical ringbuffer struct, not in the actual context. What
 * really happens during submission is that the context and current tail will be placed
 * on a queue waiting for the ELSP to be ready to accept a new context submission. At that
 * point, the tail *inside* the context is updated and the ELSP written to.
 */
751
static int
752
intel_logical_ring_advance_and_submit(struct drm_i915_gem_request *request)
753
{
754
	struct intel_ringbuffer *ringbuf = request->ringbuf;
755
	struct drm_i915_private *dev_priv = request->i915;
756
	struct intel_engine_cs *engine = request->engine;
757

758 759
	intel_logical_ring_advance(ringbuf);
	request->tail = ringbuf->tail;
760

761 762 763 764 765 766 767 768 769
	/*
	 * Here we add two extra NOOPs as padding to avoid
	 * lite restore of a context with HEAD==TAIL.
	 *
	 * Caller must reserve WA_TAIL_DWORDS for us!
	 */
	intel_logical_ring_emit(ringbuf, MI_NOOP);
	intel_logical_ring_emit(ringbuf, MI_NOOP);
	intel_logical_ring_advance(ringbuf);
770

771
	if (intel_engine_stopped(engine))
772
		return 0;
773

774 775 776 777 778 779 780 781
	/* We keep the previous context alive until we retire the following
	 * request. This ensures that any the context object is still pinned
	 * for any residual writes the HW makes into it on the context switch
	 * into the next object following the breadcrumb. Otherwise, we may
	 * retire the context too early.
	 */
	request->previous_context = engine->last_context;
	engine->last_context = request->ctx;
782

783 784 785 786
	if (dev_priv->guc.execbuf_client)
		i915_guc_submit(dev_priv->guc.execbuf_client, request);
	else
		execlists_context_queue(request);
787 788

	return 0;
789 790
}

791 792 793 794 795 796 797 798 799 800
/**
 * execlists_submission() - submit a batchbuffer for execution, Execlists style
 * @dev: DRM device.
 * @file: DRM file.
 * @ring: Engine Command Streamer to submit to.
 * @ctx: Context to employ for this submission.
 * @args: execbuffer call arguments.
 * @vmas: list of vmas.
 * @batch_obj: the batchbuffer to submit.
 * @exec_start: batchbuffer start virtual address pointer.
801
 * @dispatch_flags: translated execbuffer call flags.
802 803 804 805 806 807
 *
 * This is the evil twin version of i915_gem_ringbuffer_submission. It abstracts
 * away the submission details of the execbuffer ioctl call.
 *
 * Return: non-zero if the submission fails.
 */
808
int intel_execlists_submission(struct i915_execbuffer_params *params,
809
			       struct drm_i915_gem_execbuffer2 *args,
810
			       struct list_head *vmas)
811
{
812
	struct drm_device       *dev = params->dev;
813
	struct intel_engine_cs *engine = params->engine;
814
	struct drm_i915_private *dev_priv = dev->dev_private;
815
	struct intel_ringbuffer *ringbuf = params->ctx->engine[engine->id].ringbuf;
816
	u64 exec_start;
817 818 819 820 821 822 823 824 825 826
	int instp_mode;
	u32 instp_mask;
	int ret;

	instp_mode = args->flags & I915_EXEC_CONSTANTS_MASK;
	instp_mask = I915_EXEC_CONSTANTS_MASK;
	switch (instp_mode) {
	case I915_EXEC_CONSTANTS_REL_GENERAL:
	case I915_EXEC_CONSTANTS_ABSOLUTE:
	case I915_EXEC_CONSTANTS_REL_SURFACE:
827
		if (instp_mode != 0 && engine != &dev_priv->engine[RCS]) {
828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851
			DRM_DEBUG("non-0 rel constants mode on non-RCS\n");
			return -EINVAL;
		}

		if (instp_mode != dev_priv->relative_constants_mode) {
			if (instp_mode == I915_EXEC_CONSTANTS_REL_SURFACE) {
				DRM_DEBUG("rel surface constants mode invalid on gen5+\n");
				return -EINVAL;
			}

			/* The HW changed the meaning on this bit on gen6 */
			instp_mask &= ~I915_EXEC_CONSTANTS_REL_SURFACE;
		}
		break;
	default:
		DRM_DEBUG("execbuf with unknown constants: %d\n", instp_mode);
		return -EINVAL;
	}

	if (args->flags & I915_EXEC_GEN7_SOL_RESET) {
		DRM_DEBUG("sol reset is gen7 only\n");
		return -EINVAL;
	}

852
	ret = execlists_move_to_gpu(params->request, vmas);
853 854 855
	if (ret)
		return ret;

856
	if (engine == &dev_priv->engine[RCS] &&
857
	    instp_mode != dev_priv->relative_constants_mode) {
858
		ret = intel_ring_begin(params->request, 4);
859 860 861 862 863
		if (ret)
			return ret;

		intel_logical_ring_emit(ringbuf, MI_NOOP);
		intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(1));
864
		intel_logical_ring_emit_reg(ringbuf, INSTPM);
865 866 867 868 869 870
		intel_logical_ring_emit(ringbuf, instp_mask << 16 | instp_mode);
		intel_logical_ring_advance(ringbuf);

		dev_priv->relative_constants_mode = instp_mode;
	}

871 872 873
	exec_start = params->batch_obj_vm_offset +
		     args->batch_start_offset;

874
	ret = engine->emit_bb_start(params->request, exec_start, params->dispatch_flags);
875 876 877
	if (ret)
		return ret;

878
	trace_i915_gem_ring_dispatch(params->request, params->dispatch_flags);
879

880
	i915_gem_execbuffer_move_to_active(vmas, params->request);
881

882 883 884
	return 0;
}

885
void intel_execlists_retire_requests(struct intel_engine_cs *engine)
886
{
887
	struct drm_i915_gem_request *req, *tmp;
888 889
	struct list_head retired_list;

890 891
	WARN_ON(!mutex_is_locked(&engine->dev->struct_mutex));
	if (list_empty(&engine->execlist_retired_req_list))
892 893 894
		return;

	INIT_LIST_HEAD(&retired_list);
895
	spin_lock_bh(&engine->execlist_lock);
896
	list_replace_init(&engine->execlist_retired_req_list, &retired_list);
897
	spin_unlock_bh(&engine->execlist_lock);
898 899

	list_for_each_entry_safe(req, tmp, &retired_list, execlist_link) {
900
		intel_lr_context_unpin(req->ctx, engine);
901

902
		list_del(&req->execlist_link);
903
		i915_gem_request_unreference(req);
904 905 906
	}
}

907
void intel_logical_ring_stop(struct intel_engine_cs *engine)
908
{
909
	struct drm_i915_private *dev_priv = engine->dev->dev_private;
910 911
	int ret;

912
	if (!intel_engine_initialized(engine))
913 914
		return;

915
	ret = intel_engine_idle(engine);
916
	if (ret)
917
		DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
918
			  engine->name, ret);
919 920

	/* TODO: Is this correct with Execlists enabled? */
921 922 923
	I915_WRITE_MODE(engine, _MASKED_BIT_ENABLE(STOP_RING));
	if (wait_for((I915_READ_MODE(engine) & MODE_IDLE) != 0, 1000)) {
		DRM_ERROR("%s :timed out trying to stop ring\n", engine->name);
924 925
		return;
	}
926
	I915_WRITE_MODE(engine, _MASKED_BIT_DISABLE(STOP_RING));
927 928
}

929
int logical_ring_flush_all_caches(struct drm_i915_gem_request *req)
930
{
931
	struct intel_engine_cs *engine = req->engine;
932 933
	int ret;

934
	if (!engine->gpu_caches_dirty)
935 936
		return 0;

937
	ret = engine->emit_flush(req, 0, I915_GEM_GPU_DOMAINS);
938 939 940
	if (ret)
		return ret;

941
	engine->gpu_caches_dirty = false;
942 943 944
	return 0;
}

945 946
static int intel_lr_context_pin(struct intel_context *ctx,
				struct intel_engine_cs *engine)
947
{
948 949 950
	struct drm_i915_private *dev_priv = ctx->i915;
	struct drm_i915_gem_object *ctx_obj;
	struct intel_ringbuffer *ringbuf;
951 952
	void *vaddr;
	u32 *lrc_reg_state;
953
	int ret;
954

955
	lockdep_assert_held(&ctx->i915->dev->struct_mutex);
956

957 958 959 960
	if (ctx->engine[engine->id].pin_count++)
		return 0;

	ctx_obj = ctx->engine[engine->id].state;
961 962 963
	ret = i915_gem_obj_ggtt_pin(ctx_obj, GEN8_LR_CONTEXT_ALIGN,
			PIN_OFFSET_BIAS | GUC_WOPCM_TOP);
	if (ret)
964
		goto err;
965

966 967 968
	vaddr = i915_gem_object_pin_map(ctx_obj);
	if (IS_ERR(vaddr)) {
		ret = PTR_ERR(vaddr);
969 970 971
		goto unpin_ctx_obj;
	}

972 973
	lrc_reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;

974
	ringbuf = ctx->engine[engine->id].ringbuf;
975
	ret = intel_pin_and_map_ringbuffer_obj(engine->dev, ringbuf);
976
	if (ret)
977
		goto unpin_map;
978

979
	i915_gem_context_reference(ctx);
980 981
	ctx->engine[engine->id].lrc_vma = i915_gem_obj_to_ggtt(ctx_obj);
	intel_lr_context_descriptor_update(ctx, engine);
982
	lrc_reg_state[CTX_RING_BUFFER_START+1] = ringbuf->vma->node.start;
983
	ctx->engine[engine->id].lrc_reg_state = lrc_reg_state;
984
	ctx_obj->dirty = true;
985

986 987 988
	/* Invalidate GuC TLB. */
	if (i915.enable_guc_submission)
		I915_WRITE(GEN8_GTCR, GEN8_GTCR_INVALIDATE);
989

990
	return 0;
991

992 993
unpin_map:
	i915_gem_object_unpin_map(ctx_obj);
994 995
unpin_ctx_obj:
	i915_gem_object_ggtt_unpin(ctx_obj);
996 997
err:
	ctx->engine[engine->id].pin_count = 0;
998 999 1000
	return ret;
}

1001 1002
void intel_lr_context_unpin(struct intel_context *ctx,
			    struct intel_engine_cs *engine)
1003
{
1004
	struct drm_i915_gem_object *ctx_obj;
1005

1006 1007
	lockdep_assert_held(&ctx->i915->dev->struct_mutex);
	GEM_BUG_ON(ctx->engine[engine->id].pin_count == 0);
1008

1009 1010
	if (--ctx->engine[engine->id].pin_count)
		return;
1011

1012
	intel_unpin_ringbuffer_obj(ctx->engine[engine->id].ringbuf);
1013

1014 1015 1016
	ctx_obj = ctx->engine[engine->id].state;
	i915_gem_object_unpin_map(ctx_obj);
	i915_gem_object_ggtt_unpin(ctx_obj);
1017

1018 1019 1020
	ctx->engine[engine->id].lrc_vma = NULL;
	ctx->engine[engine->id].lrc_desc = 0;
	ctx->engine[engine->id].lrc_reg_state = NULL;
1021

1022
	i915_gem_context_unreference(ctx);
1023 1024
}

1025
static int intel_logical_ring_workarounds_emit(struct drm_i915_gem_request *req)
1026 1027
{
	int ret, i;
1028
	struct intel_engine_cs *engine = req->engine;
1029
	struct intel_ringbuffer *ringbuf = req->ringbuf;
1030
	struct drm_device *dev = engine->dev;
1031 1032 1033
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct i915_workarounds *w = &dev_priv->workarounds;

1034
	if (w->count == 0)
1035 1036
		return 0;

1037
	engine->gpu_caches_dirty = true;
1038
	ret = logical_ring_flush_all_caches(req);
1039 1040 1041
	if (ret)
		return ret;

1042
	ret = intel_ring_begin(req, w->count * 2 + 2);
1043 1044 1045 1046 1047
	if (ret)
		return ret;

	intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(w->count));
	for (i = 0; i < w->count; i++) {
1048
		intel_logical_ring_emit_reg(ringbuf, w->reg[i].addr);
1049 1050 1051 1052 1053 1054
		intel_logical_ring_emit(ringbuf, w->reg[i].value);
	}
	intel_logical_ring_emit(ringbuf, MI_NOOP);

	intel_logical_ring_advance(ringbuf);

1055
	engine->gpu_caches_dirty = true;
1056
	ret = logical_ring_flush_all_caches(req);
1057 1058 1059 1060 1061 1062
	if (ret)
		return ret;

	return 0;
}

1063
#define wa_ctx_emit(batch, index, cmd)					\
1064
	do {								\
1065 1066
		int __index = (index)++;				\
		if (WARN_ON(__index >= (PAGE_SIZE / sizeof(uint32_t)))) { \
1067 1068
			return -ENOSPC;					\
		}							\
1069
		batch[__index] = (cmd);					\
1070 1071
	} while (0)

V
Ville Syrjälä 已提交
1072
#define wa_ctx_emit_reg(batch, index, reg) \
1073
	wa_ctx_emit((batch), (index), i915_mmio_reg_offset(reg))
1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090

/*
 * In this WA we need to set GEN8_L3SQCREG4[21:21] and reset it after
 * PIPE_CONTROL instruction. This is required for the flush to happen correctly
 * but there is a slight complication as this is applied in WA batch where the
 * values are only initialized once so we cannot take register value at the
 * beginning and reuse it further; hence we save its value to memory, upload a
 * constant value with bit21 set and then we restore it back with the saved value.
 * To simplify the WA, a constant value is formed by using the default value
 * of this register. This shouldn't be a problem because we are only modifying
 * it for a short period and this batch in non-premptible. We can ofcourse
 * use additional instructions that read the actual value of the register
 * at that time and set our bit of interest but it makes the WA complicated.
 *
 * This WA is also required for Gen9 so extracting as a function avoids
 * code duplication.
 */
1091
static inline int gen8_emit_flush_coherentl3_wa(struct intel_engine_cs *engine,
1092 1093 1094 1095 1096
						uint32_t *const batch,
						uint32_t index)
{
	uint32_t l3sqc4_flush = (0x40400000 | GEN8_LQSC_FLUSH_COHERENT_LINES);

1097 1098 1099 1100 1101 1102
	/*
	 * WaDisableLSQCROPERFforOCL:skl
	 * This WA is implemented in skl_init_clock_gating() but since
	 * this batch updates GEN8_L3SQCREG4 with default value we need to
	 * set this bit here to retain the WA during flush.
	 */
1103
	if (IS_SKL_REVID(engine->dev, 0, SKL_REVID_E0))
1104 1105
		l3sqc4_flush |= GEN8_LQSC_RO_PERF_DIS;

1106
	wa_ctx_emit(batch, index, (MI_STORE_REGISTER_MEM_GEN8 |
1107
				   MI_SRM_LRM_GLOBAL_GTT));
V
Ville Syrjälä 已提交
1108
	wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
1109
	wa_ctx_emit(batch, index, engine->scratch.gtt_offset + 256);
1110 1111 1112
	wa_ctx_emit(batch, index, 0);

	wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
V
Ville Syrjälä 已提交
1113
	wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
1114 1115 1116 1117 1118 1119 1120 1121 1122 1123
	wa_ctx_emit(batch, index, l3sqc4_flush);

	wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
	wa_ctx_emit(batch, index, (PIPE_CONTROL_CS_STALL |
				   PIPE_CONTROL_DC_FLUSH_ENABLE));
	wa_ctx_emit(batch, index, 0);
	wa_ctx_emit(batch, index, 0);
	wa_ctx_emit(batch, index, 0);
	wa_ctx_emit(batch, index, 0);

1124
	wa_ctx_emit(batch, index, (MI_LOAD_REGISTER_MEM_GEN8 |
1125
				   MI_SRM_LRM_GLOBAL_GTT));
V
Ville Syrjälä 已提交
1126
	wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
1127
	wa_ctx_emit(batch, index, engine->scratch.gtt_offset + 256);
1128
	wa_ctx_emit(batch, index, 0);
1129 1130 1131 1132

	return index;
}

1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170
static inline uint32_t wa_ctx_start(struct i915_wa_ctx_bb *wa_ctx,
				    uint32_t offset,
				    uint32_t start_alignment)
{
	return wa_ctx->offset = ALIGN(offset, start_alignment);
}

static inline int wa_ctx_end(struct i915_wa_ctx_bb *wa_ctx,
			     uint32_t offset,
			     uint32_t size_alignment)
{
	wa_ctx->size = offset - wa_ctx->offset;

	WARN(wa_ctx->size % size_alignment,
	     "wa_ctx_bb failed sanity checks: size %d is not aligned to %d\n",
	     wa_ctx->size, size_alignment);
	return 0;
}

/**
 * gen8_init_indirectctx_bb() - initialize indirect ctx batch with WA
 *
 * @ring: only applicable for RCS
 * @wa_ctx: structure representing wa_ctx
 *  offset: specifies start of the batch, should be cache-aligned. This is updated
 *    with the offset value received as input.
 *  size: size of the batch in DWORDS but HW expects in terms of cachelines
 * @batch: page in which WA are loaded
 * @offset: This field specifies the start of the batch, it should be
 *  cache-aligned otherwise it is adjusted accordingly.
 *  Typically we only have one indirect_ctx and per_ctx batch buffer which are
 *  initialized at the beginning and shared across all contexts but this field
 *  helps us to have multiple batches at different offsets and select them based
 *  on a criteria. At the moment this batch always start at the beginning of the page
 *  and at this point we don't have multiple wa_ctx batch buffers.
 *
 *  The number of WA applied are not known at the beginning; we use this field
 *  to return the no of DWORDS written.
1171
 *
1172 1173 1174 1175 1176 1177 1178 1179
 *  It is to be noted that this batch does not contain MI_BATCH_BUFFER_END
 *  so it adds NOOPs as padding to make it cacheline aligned.
 *  MI_BATCH_BUFFER_END will be added to perctx batch and both of them together
 *  makes a complete batch buffer.
 *
 * Return: non-zero if we exceed the PAGE_SIZE limit.
 */

1180
static int gen8_init_indirectctx_bb(struct intel_engine_cs *engine,
1181 1182 1183 1184
				    struct i915_wa_ctx_bb *wa_ctx,
				    uint32_t *const batch,
				    uint32_t *offset)
{
1185
	uint32_t scratch_addr;
1186 1187
	uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);

1188
	/* WaDisableCtxRestoreArbitration:bdw,chv */
1189
	wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_DISABLE);
1190

1191
	/* WaFlushCoherentL3CacheLinesAtContextSwitch:bdw */
1192 1193
	if (IS_BROADWELL(engine->dev)) {
		int rc = gen8_emit_flush_coherentl3_wa(engine, batch, index);
1194 1195 1196
		if (rc < 0)
			return rc;
		index = rc;
1197 1198
	}

1199 1200
	/* WaClearSlmSpaceAtContextSwitch:bdw,chv */
	/* Actual scratch location is at 128 bytes offset */
1201
	scratch_addr = engine->scratch.gtt_offset + 2*CACHELINE_BYTES;
1202

1203 1204 1205 1206 1207 1208 1209 1210 1211
	wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
	wa_ctx_emit(batch, index, (PIPE_CONTROL_FLUSH_L3 |
				   PIPE_CONTROL_GLOBAL_GTT_IVB |
				   PIPE_CONTROL_CS_STALL |
				   PIPE_CONTROL_QW_WRITE));
	wa_ctx_emit(batch, index, scratch_addr);
	wa_ctx_emit(batch, index, 0);
	wa_ctx_emit(batch, index, 0);
	wa_ctx_emit(batch, index, 0);
1212

1213 1214
	/* Pad to end of cacheline */
	while (index % CACHELINE_DWORDS)
1215
		wa_ctx_emit(batch, index, MI_NOOP);
1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232

	/*
	 * MI_BATCH_BUFFER_END is not required in Indirect ctx BB because
	 * execution depends on the length specified in terms of cache lines
	 * in the register CTX_RCS_INDIRECT_CTX
	 */

	return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
}

/**
 * gen8_init_perctx_bb() - initialize per ctx batch with WA
 *
 * @ring: only applicable for RCS
 * @wa_ctx: structure representing wa_ctx
 *  offset: specifies start of the batch, should be cache-aligned.
 *  size: size of the batch in DWORDS but HW expects in terms of cachelines
1233
 * @batch: page in which WA are loaded
1234 1235 1236 1237 1238 1239 1240 1241 1242
 * @offset: This field specifies the start of this batch.
 *   This batch is started immediately after indirect_ctx batch. Since we ensure
 *   that indirect_ctx ends on a cacheline this batch is aligned automatically.
 *
 *   The number of DWORDS written are returned using this field.
 *
 *  This batch is terminated with MI_BATCH_BUFFER_END and so we need not add padding
 *  to align it with cacheline as padding after MI_BATCH_BUFFER_END is redundant.
 */
1243
static int gen8_init_perctx_bb(struct intel_engine_cs *engine,
1244 1245 1246 1247 1248 1249
			       struct i915_wa_ctx_bb *wa_ctx,
			       uint32_t *const batch,
			       uint32_t *offset)
{
	uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);

1250
	/* WaDisableCtxRestoreArbitration:bdw,chv */
1251
	wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_ENABLE);
1252

1253
	wa_ctx_emit(batch, index, MI_BATCH_BUFFER_END);
1254 1255 1256 1257

	return wa_ctx_end(wa_ctx, *offset = index, 1);
}

1258
static int gen9_init_indirectctx_bb(struct intel_engine_cs *engine,
1259 1260 1261 1262
				    struct i915_wa_ctx_bb *wa_ctx,
				    uint32_t *const batch,
				    uint32_t *offset)
{
1263
	int ret;
1264
	struct drm_device *dev = engine->dev;
1265 1266
	uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);

1267
	/* WaDisableCtxRestoreArbitration:skl,bxt */
1268
	if (IS_SKL_REVID(dev, 0, SKL_REVID_D0) ||
T
Tim Gore 已提交
1269
	    IS_BXT_REVID(dev, 0, BXT_REVID_A1))
1270
		wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_DISABLE);
1271

1272
	/* WaFlushCoherentL3CacheLinesAtContextSwitch:skl,bxt */
1273
	ret = gen8_emit_flush_coherentl3_wa(engine, batch, index);
1274 1275 1276 1277
	if (ret < 0)
		return ret;
	index = ret;

1278 1279 1280 1281 1282 1283 1284
	/* Pad to end of cacheline */
	while (index % CACHELINE_DWORDS)
		wa_ctx_emit(batch, index, MI_NOOP);

	return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
}

1285
static int gen9_init_perctx_bb(struct intel_engine_cs *engine,
1286 1287 1288 1289
			       struct i915_wa_ctx_bb *wa_ctx,
			       uint32_t *const batch,
			       uint32_t *offset)
{
1290
	struct drm_device *dev = engine->dev;
1291 1292
	uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);

1293
	/* WaSetDisablePixMaskCammingAndRhwoInCommonSliceChicken:skl,bxt */
1294
	if (IS_SKL_REVID(dev, 0, SKL_REVID_B0) ||
T
Tim Gore 已提交
1295
	    IS_BXT_REVID(dev, 0, BXT_REVID_A1)) {
1296
		wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
V
Ville Syrjälä 已提交
1297
		wa_ctx_emit_reg(batch, index, GEN9_SLICE_COMMON_ECO_CHICKEN0);
1298 1299 1300 1301 1302
		wa_ctx_emit(batch, index,
			    _MASKED_BIT_ENABLE(DISABLE_PIXEL_MASK_CAMMING));
		wa_ctx_emit(batch, index, MI_NOOP);
	}

1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321
	/* WaClearTdlStateAckDirtyBits:bxt */
	if (IS_BXT_REVID(dev, 0, BXT_REVID_B0)) {
		wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(4));

		wa_ctx_emit_reg(batch, index, GEN8_STATE_ACK);
		wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(GEN9_SUBSLICE_TDL_ACK_BITS));

		wa_ctx_emit_reg(batch, index, GEN9_STATE_ACK_SLICE1);
		wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(GEN9_SUBSLICE_TDL_ACK_BITS));

		wa_ctx_emit_reg(batch, index, GEN9_STATE_ACK_SLICE2);
		wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(GEN9_SUBSLICE_TDL_ACK_BITS));

		wa_ctx_emit_reg(batch, index, GEN7_ROW_CHICKEN2);
		/* dummy write to CS, mask bits are 0 to ensure the register is not modified */
		wa_ctx_emit(batch, index, 0x0);
		wa_ctx_emit(batch, index, MI_NOOP);
	}

1322
	/* WaDisableCtxRestoreArbitration:skl,bxt */
1323
	if (IS_SKL_REVID(dev, 0, SKL_REVID_D0) ||
T
Tim Gore 已提交
1324
	    IS_BXT_REVID(dev, 0, BXT_REVID_A1))
1325 1326
		wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_ENABLE);

1327 1328 1329 1330 1331
	wa_ctx_emit(batch, index, MI_BATCH_BUFFER_END);

	return wa_ctx_end(wa_ctx, *offset = index, 1);
}

1332
static int lrc_setup_wa_ctx_obj(struct intel_engine_cs *engine, u32 size)
1333 1334 1335
{
	int ret;

1336
	engine->wa_ctx.obj = i915_gem_object_create(engine->dev,
1337
						   PAGE_ALIGN(size));
1338
	if (IS_ERR(engine->wa_ctx.obj)) {
1339
		DRM_DEBUG_DRIVER("alloc LRC WA ctx backing obj failed.\n");
1340 1341 1342
		ret = PTR_ERR(engine->wa_ctx.obj);
		engine->wa_ctx.obj = NULL;
		return ret;
1343 1344
	}

1345
	ret = i915_gem_obj_ggtt_pin(engine->wa_ctx.obj, PAGE_SIZE, 0);
1346 1347 1348
	if (ret) {
		DRM_DEBUG_DRIVER("pin LRC WA ctx backing obj failed: %d\n",
				 ret);
1349
		drm_gem_object_unreference(&engine->wa_ctx.obj->base);
1350 1351 1352 1353 1354 1355
		return ret;
	}

	return 0;
}

1356
static void lrc_destroy_wa_ctx_obj(struct intel_engine_cs *engine)
1357
{
1358 1359 1360 1361
	if (engine->wa_ctx.obj) {
		i915_gem_object_ggtt_unpin(engine->wa_ctx.obj);
		drm_gem_object_unreference(&engine->wa_ctx.obj->base);
		engine->wa_ctx.obj = NULL;
1362 1363 1364
	}
}

1365
static int intel_init_workaround_bb(struct intel_engine_cs *engine)
1366 1367 1368 1369 1370
{
	int ret;
	uint32_t *batch;
	uint32_t offset;
	struct page *page;
1371
	struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
1372

1373
	WARN_ON(engine->id != RCS);
1374

1375
	/* update this when WA for higher Gen are added */
1376
	if (INTEL_INFO(engine->dev)->gen > 9) {
1377
		DRM_ERROR("WA batch buffer is not initialized for Gen%d\n",
1378
			  INTEL_INFO(engine->dev)->gen);
1379
		return 0;
1380
	}
1381

1382
	/* some WA perform writes to scratch page, ensure it is valid */
1383 1384
	if (engine->scratch.obj == NULL) {
		DRM_ERROR("scratch page not allocated for %s\n", engine->name);
1385 1386 1387
		return -EINVAL;
	}

1388
	ret = lrc_setup_wa_ctx_obj(engine, PAGE_SIZE);
1389 1390 1391 1392 1393
	if (ret) {
		DRM_DEBUG_DRIVER("Failed to setup context WA page: %d\n", ret);
		return ret;
	}

1394
	page = i915_gem_object_get_dirty_page(wa_ctx->obj, 0);
1395 1396 1397
	batch = kmap_atomic(page);
	offset = 0;

1398 1399
	if (INTEL_INFO(engine->dev)->gen == 8) {
		ret = gen8_init_indirectctx_bb(engine,
1400 1401 1402 1403 1404 1405
					       &wa_ctx->indirect_ctx,
					       batch,
					       &offset);
		if (ret)
			goto out;

1406
		ret = gen8_init_perctx_bb(engine,
1407 1408 1409 1410 1411
					  &wa_ctx->per_ctx,
					  batch,
					  &offset);
		if (ret)
			goto out;
1412 1413
	} else if (INTEL_INFO(engine->dev)->gen == 9) {
		ret = gen9_init_indirectctx_bb(engine,
1414 1415 1416 1417 1418 1419
					       &wa_ctx->indirect_ctx,
					       batch,
					       &offset);
		if (ret)
			goto out;

1420
		ret = gen9_init_perctx_bb(engine,
1421 1422 1423 1424 1425
					  &wa_ctx->per_ctx,
					  batch,
					  &offset);
		if (ret)
			goto out;
1426 1427 1428 1429 1430
	}

out:
	kunmap_atomic(batch);
	if (ret)
1431
		lrc_destroy_wa_ctx_obj(engine);
1432 1433 1434 1435

	return ret;
}

1436 1437 1438 1439 1440 1441 1442 1443 1444
static void lrc_init_hws(struct intel_engine_cs *engine)
{
	struct drm_i915_private *dev_priv = engine->dev->dev_private;

	I915_WRITE(RING_HWS_PGA(engine->mmio_base),
		   (u32)engine->status_page.gfx_addr);
	POSTING_READ(RING_HWS_PGA(engine->mmio_base));
}

1445
static int gen8_init_common_ring(struct intel_engine_cs *engine)
1446
{
1447
	struct drm_device *dev = engine->dev;
1448
	struct drm_i915_private *dev_priv = dev->dev_private;
1449
	unsigned int next_context_status_buffer_hw;
1450

1451
	lrc_init_hws(engine);
1452

1453 1454 1455
	I915_WRITE_IMR(engine,
		       ~(engine->irq_enable_mask | engine->irq_keep_mask));
	I915_WRITE(RING_HWSTAM(engine->mmio_base), 0xffffffff);
1456

1457
	I915_WRITE(RING_MODE_GEN7(engine),
1458 1459
		   _MASKED_BIT_DISABLE(GFX_REPLAY_MODE) |
		   _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE));
1460
	POSTING_READ(RING_MODE_GEN7(engine));
1461 1462 1463 1464 1465 1466 1467 1468 1469 1470

	/*
	 * Instead of resetting the Context Status Buffer (CSB) read pointer to
	 * zero, we need to read the write pointer from hardware and use its
	 * value because "this register is power context save restored".
	 * Effectively, these states have been observed:
	 *
	 *      | Suspend-to-idle (freeze) | Suspend-to-RAM (mem) |
	 * BDW  | CSB regs not reset       | CSB regs reset       |
	 * CHT  | CSB regs not reset       | CSB regs not reset   |
1471 1472
	 * SKL  |         ?                |         ?            |
	 * BXT  |         ?                |         ?            |
1473
	 */
1474
	next_context_status_buffer_hw =
1475
		GEN8_CSB_WRITE_PTR(I915_READ(RING_CONTEXT_STATUS_PTR(engine)));
1476 1477 1478 1479 1480 1481 1482 1483 1484

	/*
	 * When the CSB registers are reset (also after power-up / gpu reset),
	 * CSB write pointer is set to all 1's, which is not valid, use '5' in
	 * this special case, so the first element read is CSB[0].
	 */
	if (next_context_status_buffer_hw == GEN8_CSB_PTR_MASK)
		next_context_status_buffer_hw = (GEN8_CSB_ENTRIES - 1);

1485 1486
	engine->next_context_status_buffer = next_context_status_buffer_hw;
	DRM_DEBUG_DRIVER("Execlists enabled for %s\n", engine->name);
1487

1488
	intel_engine_init_hangcheck(engine);
1489

1490
	return intel_mocs_init_engine(engine);
1491 1492
}

1493
static int gen8_init_render_ring(struct intel_engine_cs *engine)
1494
{
1495
	struct drm_device *dev = engine->dev;
1496 1497 1498
	struct drm_i915_private *dev_priv = dev->dev_private;
	int ret;

1499
	ret = gen8_init_common_ring(engine);
1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512
	if (ret)
		return ret;

	/* We need to disable the AsyncFlip performance optimisations in order
	 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
	 * programmed to '1' on all products.
	 *
	 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
	 */
	I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));

	I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));

1513
	return init_workarounds_ring(engine);
1514 1515
}

1516
static int gen9_init_render_ring(struct intel_engine_cs *engine)
1517 1518 1519
{
	int ret;

1520
	ret = gen8_init_common_ring(engine);
1521 1522 1523
	if (ret)
		return ret;

1524
	return init_workarounds_ring(engine);
1525 1526
}

1527 1528 1529
static int intel_logical_ring_emit_pdps(struct drm_i915_gem_request *req)
{
	struct i915_hw_ppgtt *ppgtt = req->ctx->ppgtt;
1530
	struct intel_engine_cs *engine = req->engine;
1531 1532 1533 1534
	struct intel_ringbuffer *ringbuf = req->ringbuf;
	const int num_lri_cmds = GEN8_LEGACY_PDPES * 2;
	int i, ret;

1535
	ret = intel_ring_begin(req, num_lri_cmds * 2 + 2);
1536 1537 1538 1539 1540 1541 1542
	if (ret)
		return ret;

	intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(num_lri_cmds));
	for (i = GEN8_LEGACY_PDPES - 1; i >= 0; i--) {
		const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);

1543 1544
		intel_logical_ring_emit_reg(ringbuf,
					    GEN8_RING_PDP_UDW(engine, i));
1545
		intel_logical_ring_emit(ringbuf, upper_32_bits(pd_daddr));
1546 1547
		intel_logical_ring_emit_reg(ringbuf,
					    GEN8_RING_PDP_LDW(engine, i));
1548 1549 1550 1551 1552 1553 1554 1555 1556
		intel_logical_ring_emit(ringbuf, lower_32_bits(pd_daddr));
	}

	intel_logical_ring_emit(ringbuf, MI_NOOP);
	intel_logical_ring_advance(ringbuf);

	return 0;
}

1557
static int gen8_emit_bb_start(struct drm_i915_gem_request *req,
1558
			      u64 offset, unsigned dispatch_flags)
1559
{
1560
	struct intel_ringbuffer *ringbuf = req->ringbuf;
1561
	bool ppgtt = !(dispatch_flags & I915_DISPATCH_SECURE);
1562 1563
	int ret;

1564 1565 1566 1567
	/* Don't rely in hw updating PDPs, specially in lite-restore.
	 * Ideally, we should set Force PD Restore in ctx descriptor,
	 * but we can't. Force Restore would be a second option, but
	 * it is unsafe in case of lite-restore (because the ctx is
1568 1569
	 * not idle). PML4 is allocated during ppgtt init so this is
	 * not needed in 48-bit.*/
1570
	if (req->ctx->ppgtt &&
1571
	    (intel_engine_flag(req->engine) & req->ctx->ppgtt->pd_dirty_rings)) {
1572 1573
		if (!USES_FULL_48BIT_PPGTT(req->i915) &&
		    !intel_vgpu_active(req->i915->dev)) {
1574 1575 1576 1577
			ret = intel_logical_ring_emit_pdps(req);
			if (ret)
				return ret;
		}
1578

1579
		req->ctx->ppgtt->pd_dirty_rings &= ~intel_engine_flag(req->engine);
1580 1581
	}

1582
	ret = intel_ring_begin(req, 4);
1583 1584 1585 1586
	if (ret)
		return ret;

	/* FIXME(BDW): Address space and security selectors. */
1587 1588 1589 1590
	intel_logical_ring_emit(ringbuf, MI_BATCH_BUFFER_START_GEN8 |
				(ppgtt<<8) |
				(dispatch_flags & I915_DISPATCH_RS ?
				 MI_BATCH_RESOURCE_STREAMER : 0));
1591 1592 1593 1594 1595 1596 1597 1598
	intel_logical_ring_emit(ringbuf, lower_32_bits(offset));
	intel_logical_ring_emit(ringbuf, upper_32_bits(offset));
	intel_logical_ring_emit(ringbuf, MI_NOOP);
	intel_logical_ring_advance(ringbuf);

	return 0;
}

1599
static bool gen8_logical_ring_get_irq(struct intel_engine_cs *engine)
1600
{
1601
	struct drm_device *dev = engine->dev;
1602 1603 1604
	struct drm_i915_private *dev_priv = dev->dev_private;
	unsigned long flags;

1605
	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1606 1607 1608
		return false;

	spin_lock_irqsave(&dev_priv->irq_lock, flags);
1609 1610 1611 1612
	if (engine->irq_refcount++ == 0) {
		I915_WRITE_IMR(engine,
			       ~(engine->irq_enable_mask | engine->irq_keep_mask));
		POSTING_READ(RING_IMR(engine->mmio_base));
1613 1614 1615 1616 1617 1618
	}
	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);

	return true;
}

1619
static void gen8_logical_ring_put_irq(struct intel_engine_cs *engine)
1620
{
1621
	struct drm_device *dev = engine->dev;
1622 1623 1624 1625
	struct drm_i915_private *dev_priv = dev->dev_private;
	unsigned long flags;

	spin_lock_irqsave(&dev_priv->irq_lock, flags);
1626 1627 1628
	if (--engine->irq_refcount == 0) {
		I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
		POSTING_READ(RING_IMR(engine->mmio_base));
1629 1630 1631 1632
	}
	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
}

1633
static int gen8_emit_flush(struct drm_i915_gem_request *request,
1634 1635 1636
			   u32 invalidate_domains,
			   u32 unused)
{
1637
	struct intel_ringbuffer *ringbuf = request->ringbuf;
1638
	struct intel_engine_cs *engine = ringbuf->engine;
1639
	struct drm_device *dev = engine->dev;
1640 1641 1642 1643
	struct drm_i915_private *dev_priv = dev->dev_private;
	uint32_t cmd;
	int ret;

1644
	ret = intel_ring_begin(request, 4);
1645 1646 1647 1648 1649
	if (ret)
		return ret;

	cmd = MI_FLUSH_DW + 1;

1650 1651 1652 1653 1654 1655 1656 1657 1658
	/* We always require a command barrier so that subsequent
	 * commands, such as breadcrumb interrupts, are strictly ordered
	 * wrt the contents of the write cache being flushed to memory
	 * (and thus being coherent from the CPU).
	 */
	cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;

	if (invalidate_domains & I915_GEM_GPU_DOMAINS) {
		cmd |= MI_INVALIDATE_TLB;
1659
		if (engine == &dev_priv->engine[VCS])
1660
			cmd |= MI_INVALIDATE_BSD;
1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673
	}

	intel_logical_ring_emit(ringbuf, cmd);
	intel_logical_ring_emit(ringbuf,
				I915_GEM_HWS_SCRATCH_ADDR |
				MI_FLUSH_DW_USE_GTT);
	intel_logical_ring_emit(ringbuf, 0); /* upper addr */
	intel_logical_ring_emit(ringbuf, 0); /* value */
	intel_logical_ring_advance(ringbuf);

	return 0;
}

1674
static int gen8_emit_flush_render(struct drm_i915_gem_request *request,
1675 1676 1677
				  u32 invalidate_domains,
				  u32 flush_domains)
{
1678
	struct intel_ringbuffer *ringbuf = request->ringbuf;
1679
	struct intel_engine_cs *engine = ringbuf->engine;
1680
	u32 scratch_addr = engine->scratch.gtt_offset + 2 * CACHELINE_BYTES;
1681
	bool vf_flush_wa = false;
1682 1683 1684 1685 1686 1687 1688 1689
	u32 flags = 0;
	int ret;

	flags |= PIPE_CONTROL_CS_STALL;

	if (flush_domains) {
		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
1690
		flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
1691
		flags |= PIPE_CONTROL_FLUSH_ENABLE;
1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703
	}

	if (invalidate_domains) {
		flags |= PIPE_CONTROL_TLB_INVALIDATE;
		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_QW_WRITE;
		flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;

1704 1705 1706 1707
		/*
		 * On GEN9: before VF_CACHE_INVALIDATE we need to emit a NULL
		 * pipe control.
		 */
1708
		if (IS_GEN9(engine->dev))
1709 1710
			vf_flush_wa = true;
	}
1711

1712
	ret = intel_ring_begin(request, vf_flush_wa ? 12 : 6);
1713 1714 1715
	if (ret)
		return ret;

1716 1717 1718 1719 1720 1721 1722 1723 1724
	if (vf_flush_wa) {
		intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
		intel_logical_ring_emit(ringbuf, 0);
		intel_logical_ring_emit(ringbuf, 0);
		intel_logical_ring_emit(ringbuf, 0);
		intel_logical_ring_emit(ringbuf, 0);
		intel_logical_ring_emit(ringbuf, 0);
	}

1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735
	intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
	intel_logical_ring_emit(ringbuf, flags);
	intel_logical_ring_emit(ringbuf, scratch_addr);
	intel_logical_ring_emit(ringbuf, 0);
	intel_logical_ring_emit(ringbuf, 0);
	intel_logical_ring_emit(ringbuf, 0);
	intel_logical_ring_advance(ringbuf);

	return 0;
}

1736
static u32 gen8_get_seqno(struct intel_engine_cs *engine)
1737
{
1738
	return intel_read_status_page(engine, I915_GEM_HWS_INDEX);
1739 1740
}

1741
static void gen8_set_seqno(struct intel_engine_cs *engine, u32 seqno)
1742
{
1743
	intel_write_status_page(engine, I915_GEM_HWS_INDEX, seqno);
1744 1745
}

1746
static void bxt_a_seqno_barrier(struct intel_engine_cs *engine)
1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757
{
	/*
	 * On BXT A steppings there is a HW coherency issue whereby the
	 * MI_STORE_DATA_IMM storing the completed request's seqno
	 * occasionally doesn't invalidate the CPU cache. Work around this by
	 * clflushing the corresponding cacheline whenever the caller wants
	 * the coherency to be guaranteed. Note that this cacheline is known
	 * to be clean at this point, since we only write it in
	 * bxt_a_set_seqno(), where we also do a clflush after the write. So
	 * this clflush in practice becomes an invalidate operation.
	 */
1758
	intel_flush_status_page(engine, I915_GEM_HWS_INDEX);
1759 1760
}

1761
static void bxt_a_set_seqno(struct intel_engine_cs *engine, u32 seqno)
1762
{
1763
	intel_write_status_page(engine, I915_GEM_HWS_INDEX, seqno);
1764 1765

	/* See bxt_a_get_seqno() explaining the reason for the clflush. */
1766
	intel_flush_status_page(engine, I915_GEM_HWS_INDEX);
1767 1768
}

1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780
/*
 * Reserve space for 2 NOOPs at the end of each request to be
 * used as a workaround for not being allowed to do lite
 * restore with HEAD==TAIL (WaIdleLiteRestore).
 */
#define WA_TAIL_DWORDS 2

static inline u32 hws_seqno_address(struct intel_engine_cs *engine)
{
	return engine->status_page.gfx_addr + I915_GEM_HWS_INDEX_ADDR;
}

1781
static int gen8_emit_request(struct drm_i915_gem_request *request)
1782
{
1783
	struct intel_ringbuffer *ringbuf = request->ringbuf;
1784 1785
	int ret;

1786
	ret = intel_ring_begin(request, 6 + WA_TAIL_DWORDS);
1787 1788 1789
	if (ret)
		return ret;

1790 1791
	/* w/a: bit 5 needs to be zero for MI_FLUSH_DW address. */
	BUILD_BUG_ON(I915_GEM_HWS_INDEX_ADDR & (1 << 5));
1792 1793

	intel_logical_ring_emit(ringbuf,
1794 1795
				(MI_FLUSH_DW + 1) | MI_FLUSH_DW_OP_STOREDW);
	intel_logical_ring_emit(ringbuf,
1796
				hws_seqno_address(request->engine) |
1797
				MI_FLUSH_DW_USE_GTT);
1798
	intel_logical_ring_emit(ringbuf, 0);
1799
	intel_logical_ring_emit(ringbuf, i915_gem_request_get_seqno(request));
1800 1801
	intel_logical_ring_emit(ringbuf, MI_USER_INTERRUPT);
	intel_logical_ring_emit(ringbuf, MI_NOOP);
1802 1803
	return intel_logical_ring_advance_and_submit(request);
}
1804

1805 1806 1807 1808
static int gen8_emit_request_render(struct drm_i915_gem_request *request)
{
	struct intel_ringbuffer *ringbuf = request->ringbuf;
	int ret;
1809

1810
	ret = intel_ring_begin(request, 8 + WA_TAIL_DWORDS);
1811 1812 1813
	if (ret)
		return ret;

1814 1815 1816
	/* We're using qword write, seqno should be aligned to 8 bytes. */
	BUILD_BUG_ON(I915_GEM_HWS_INDEX & 1);

1817 1818 1819 1820
	/* w/a for post sync ops following a GPGPU operation we
	 * need a prior CS_STALL, which is emitted by the flush
	 * following the batch.
	 */
1821
	intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
1822 1823 1824 1825
	intel_logical_ring_emit(ringbuf,
				(PIPE_CONTROL_GLOBAL_GTT_IVB |
				 PIPE_CONTROL_CS_STALL |
				 PIPE_CONTROL_QW_WRITE));
1826
	intel_logical_ring_emit(ringbuf, hws_seqno_address(request->engine));
1827 1828
	intel_logical_ring_emit(ringbuf, 0);
	intel_logical_ring_emit(ringbuf, i915_gem_request_get_seqno(request));
1829 1830
	/* We're thrashing one dword of HWS. */
	intel_logical_ring_emit(ringbuf, 0);
1831
	intel_logical_ring_emit(ringbuf, MI_USER_INTERRUPT);
1832
	intel_logical_ring_emit(ringbuf, MI_NOOP);
1833
	return intel_logical_ring_advance_and_submit(request);
1834 1835
}

1836
static int intel_lr_context_render_state_init(struct drm_i915_gem_request *req)
1837 1838 1839 1840
{
	struct render_state so;
	int ret;

1841
	ret = i915_gem_render_state_prepare(req->engine, &so);
1842 1843 1844 1845 1846 1847
	if (ret)
		return ret;

	if (so.rodata == NULL)
		return 0;

1848
	ret = req->engine->emit_bb_start(req, so.ggtt_offset,
1849
				       I915_DISPATCH_SECURE);
1850 1851 1852
	if (ret)
		goto out;

1853
	ret = req->engine->emit_bb_start(req,
1854 1855 1856 1857 1858
				       (so.ggtt_offset + so.aux_batch_offset),
				       I915_DISPATCH_SECURE);
	if (ret)
		goto out;

1859
	i915_vma_move_to_active(i915_gem_obj_to_ggtt(so.obj), req);
1860 1861 1862 1863 1864 1865

out:
	i915_gem_render_state_fini(&so);
	return ret;
}

1866
static int gen8_init_rcs_context(struct drm_i915_gem_request *req)
1867 1868 1869
{
	int ret;

1870
	ret = intel_logical_ring_workarounds_emit(req);
1871 1872 1873
	if (ret)
		return ret;

1874 1875 1876 1877 1878 1879 1880 1881
	ret = intel_rcs_context_init_mocs(req);
	/*
	 * Failing to program the MOCS is non-fatal.The system will not
	 * run at peak performance. So generate an error and carry on.
	 */
	if (ret)
		DRM_ERROR("MOCS failed to program: expect performance issues.\n");

1882
	return intel_lr_context_render_state_init(req);
1883 1884
}

1885 1886 1887 1888 1889 1890
/**
 * intel_logical_ring_cleanup() - deallocate the Engine Command Streamer
 *
 * @ring: Engine Command Streamer.
 *
 */
1891
void intel_logical_ring_cleanup(struct intel_engine_cs *engine)
1892
{
1893
	struct drm_i915_private *dev_priv;
1894

1895
	if (!intel_engine_initialized(engine))
1896 1897
		return;

1898 1899 1900 1901 1902 1903 1904
	/*
	 * Tasklet cannot be active at this point due intel_mark_active/idle
	 * so this is just for documentation.
	 */
	if (WARN_ON(test_bit(TASKLET_STATE_SCHED, &engine->irq_tasklet.state)))
		tasklet_kill(&engine->irq_tasklet);

1905
	dev_priv = engine->dev->dev_private;
1906

1907 1908 1909
	if (engine->buffer) {
		intel_logical_ring_stop(engine);
		WARN_ON((I915_READ_MODE(engine) & MODE_IDLE) == 0);
1910
	}
1911

1912 1913
	if (engine->cleanup)
		engine->cleanup(engine);
1914

1915 1916
	i915_cmd_parser_fini_ring(engine);
	i915_gem_batch_pool_fini(&engine->batch_pool);
1917

1918
	if (engine->status_page.obj) {
1919
		i915_gem_object_unpin_map(engine->status_page.obj);
1920
		engine->status_page.obj = NULL;
1921
	}
1922
	intel_lr_context_unpin(dev_priv->kernel_context, engine);
1923

1924 1925 1926
	engine->idle_lite_restore_wa = 0;
	engine->disable_lite_restore_wa = false;
	engine->ctx_desc_template = 0;
1927

1928 1929
	lrc_destroy_wa_ctx_obj(engine);
	engine->dev = NULL;
1930 1931
}

1932 1933
static void
logical_ring_default_vfuncs(struct drm_device *dev,
1934
			    struct intel_engine_cs *engine)
1935 1936
{
	/* Default vfuncs which can be overriden by each engine. */
1937 1938 1939 1940 1941 1942
	engine->init_hw = gen8_init_common_ring;
	engine->emit_request = gen8_emit_request;
	engine->emit_flush = gen8_emit_flush;
	engine->irq_get = gen8_logical_ring_get_irq;
	engine->irq_put = gen8_logical_ring_put_irq;
	engine->emit_bb_start = gen8_emit_bb_start;
1943 1944
	engine->get_seqno = gen8_get_seqno;
	engine->set_seqno = gen8_set_seqno;
1945
	if (IS_BXT_REVID(dev, 0, BXT_REVID_A1)) {
1946
		engine->irq_seqno_barrier = bxt_a_seqno_barrier;
1947
		engine->set_seqno = bxt_a_set_seqno;
1948 1949 1950
	}
}

1951
static inline void
1952
logical_ring_default_irqs(struct intel_engine_cs *engine, unsigned shift)
1953
{
1954 1955
	engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT << shift;
	engine->irq_keep_mask = GT_CONTEXT_SWITCH_INTERRUPT << shift;
1956 1957
}

1958
static int
1959 1960 1961
lrc_setup_hws(struct intel_engine_cs *engine,
	      struct drm_i915_gem_object *dctx_obj)
{
1962
	void *hws;
1963 1964 1965 1966

	/* The HWSP is part of the default context object in LRC mode. */
	engine->status_page.gfx_addr = i915_gem_obj_ggtt_offset(dctx_obj) +
				       LRC_PPHWSP_PN * PAGE_SIZE;
1967 1968 1969 1970
	hws = i915_gem_object_pin_map(dctx_obj);
	if (IS_ERR(hws))
		return PTR_ERR(hws);
	engine->status_page.page_addr = hws + LRC_PPHWSP_PN * PAGE_SIZE;
1971
	engine->status_page.obj = dctx_obj;
1972 1973

	return 0;
1974 1975
}

1976
static int
1977
logical_ring_init(struct drm_device *dev, struct intel_engine_cs *engine)
1978
{
1979 1980 1981
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct intel_context *dctx = dev_priv->kernel_context;
	enum forcewake_domains fw_domains;
1982 1983 1984
	int ret;

	/* Intentionally left blank. */
1985
	engine->buffer = NULL;
1986

1987 1988 1989 1990 1991
	engine->dev = dev;
	INIT_LIST_HEAD(&engine->active_list);
	INIT_LIST_HEAD(&engine->request_list);
	i915_gem_batch_pool_init(dev, &engine->batch_pool);
	init_waitqueue_head(&engine->irq_queue);
1992

1993 1994 1995 1996
	INIT_LIST_HEAD(&engine->buffers);
	INIT_LIST_HEAD(&engine->execlist_queue);
	INIT_LIST_HEAD(&engine->execlist_retired_req_list);
	spin_lock_init(&engine->execlist_lock);
1997

1998 1999 2000
	tasklet_init(&engine->irq_tasklet,
		     intel_lrc_irq_handler, (unsigned long)engine);

2001
	logical_ring_init_platform_invariants(engine);
2002

2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016
	fw_domains = intel_uncore_forcewake_for_reg(dev_priv,
						    RING_ELSP(engine),
						    FW_REG_WRITE);

	fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
						     RING_CONTEXT_STATUS_PTR(engine),
						     FW_REG_READ | FW_REG_WRITE);

	fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
						     RING_CONTEXT_STATUS_BUF_BASE(engine),
						     FW_REG_READ);

	engine->fw_domains = fw_domains;

2017
	ret = i915_cmd_parser_init_ring(engine);
2018
	if (ret)
2019
		goto error;
2020

2021
	ret = execlists_context_deferred_alloc(dctx, engine);
2022
	if (ret)
2023
		goto error;
2024 2025

	/* As this is the default context, always pin it */
2026
	ret = intel_lr_context_pin(dctx, engine);
2027
	if (ret) {
2028 2029
		DRM_ERROR("Failed to pin context for %s: %d\n",
			  engine->name, ret);
2030
		goto error;
2031
	}
2032

2033
	/* And setup the hardware status page. */
2034 2035 2036 2037 2038
	ret = lrc_setup_hws(engine, dctx->engine[engine->id].state);
	if (ret) {
		DRM_ERROR("Failed to set up hws %s: %d\n", engine->name, ret);
		goto error;
	}
2039

2040 2041 2042
	return 0;

error:
2043
	intel_logical_ring_cleanup(engine);
2044
	return ret;
2045 2046 2047 2048 2049
}

static int logical_render_ring_init(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
2050
	struct intel_engine_cs *engine = &dev_priv->engine[RCS];
2051
	int ret;
2052

2053 2054 2055 2056 2057
	engine->name = "render ring";
	engine->id = RCS;
	engine->exec_id = I915_EXEC_RENDER;
	engine->guc_id = GUC_RENDER_ENGINE;
	engine->mmio_base = RENDER_RING_BASE;
2058

2059
	logical_ring_default_irqs(engine, GEN8_RCS_IRQ_SHIFT);
2060
	if (HAS_L3_DPF(dev))
2061
		engine->irq_keep_mask |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
2062

2063
	logical_ring_default_vfuncs(dev, engine);
2064 2065

	/* Override some for render ring. */
2066
	if (INTEL_INFO(dev)->gen >= 9)
2067
		engine->init_hw = gen9_init_render_ring;
2068
	else
2069 2070 2071 2072 2073
		engine->init_hw = gen8_init_render_ring;
	engine->init_context = gen8_init_rcs_context;
	engine->cleanup = intel_fini_pipe_control;
	engine->emit_flush = gen8_emit_flush_render;
	engine->emit_request = gen8_emit_request_render;
2074

2075
	engine->dev = dev;
2076

2077
	ret = intel_init_pipe_control(engine);
2078 2079 2080
	if (ret)
		return ret;

2081
	ret = intel_init_workaround_bb(engine);
2082 2083 2084 2085 2086 2087 2088 2089 2090 2091
	if (ret) {
		/*
		 * We continue even if we fail to initialize WA batch
		 * because we only expect rare glitches but nothing
		 * critical to prevent us from using GPU
		 */
		DRM_ERROR("WA batch buffer initialization failed: %d\n",
			  ret);
	}

2092
	ret = logical_ring_init(dev, engine);
2093
	if (ret) {
2094
		lrc_destroy_wa_ctx_obj(engine);
2095
	}
2096 2097

	return ret;
2098 2099 2100 2101 2102
}

static int logical_bsd_ring_init(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
2103
	struct intel_engine_cs *engine = &dev_priv->engine[VCS];
2104

2105 2106 2107 2108 2109
	engine->name = "bsd ring";
	engine->id = VCS;
	engine->exec_id = I915_EXEC_BSD;
	engine->guc_id = GUC_VIDEO_ENGINE;
	engine->mmio_base = GEN6_BSD_RING_BASE;
2110

2111 2112
	logical_ring_default_irqs(engine, GEN8_VCS1_IRQ_SHIFT);
	logical_ring_default_vfuncs(dev, engine);
2113

2114
	return logical_ring_init(dev, engine);
2115 2116 2117 2118 2119
}

static int logical_bsd2_ring_init(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
2120
	struct intel_engine_cs *engine = &dev_priv->engine[VCS2];
2121

2122 2123 2124 2125 2126
	engine->name = "bsd2 ring";
	engine->id = VCS2;
	engine->exec_id = I915_EXEC_BSD;
	engine->guc_id = GUC_VIDEO_ENGINE2;
	engine->mmio_base = GEN8_BSD2_RING_BASE;
2127

2128 2129
	logical_ring_default_irqs(engine, GEN8_VCS2_IRQ_SHIFT);
	logical_ring_default_vfuncs(dev, engine);
2130

2131
	return logical_ring_init(dev, engine);
2132 2133 2134 2135 2136
}

static int logical_blt_ring_init(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
2137
	struct intel_engine_cs *engine = &dev_priv->engine[BCS];
2138

2139 2140 2141 2142 2143
	engine->name = "blitter ring";
	engine->id = BCS;
	engine->exec_id = I915_EXEC_BLT;
	engine->guc_id = GUC_BLITTER_ENGINE;
	engine->mmio_base = BLT_RING_BASE;
2144

2145 2146
	logical_ring_default_irqs(engine, GEN8_BCS_IRQ_SHIFT);
	logical_ring_default_vfuncs(dev, engine);
2147

2148
	return logical_ring_init(dev, engine);
2149 2150 2151 2152 2153
}

static int logical_vebox_ring_init(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
2154
	struct intel_engine_cs *engine = &dev_priv->engine[VECS];
2155

2156 2157 2158 2159 2160
	engine->name = "video enhancement ring";
	engine->id = VECS;
	engine->exec_id = I915_EXEC_VEBOX;
	engine->guc_id = GUC_VIDEOENHANCE_ENGINE;
	engine->mmio_base = VEBOX_RING_BASE;
2161

2162 2163
	logical_ring_default_irqs(engine, GEN8_VECS_IRQ_SHIFT);
	logical_ring_default_vfuncs(dev, engine);
2164

2165
	return logical_ring_init(dev, engine);
2166 2167
}

2168 2169 2170 2171 2172
/**
 * intel_logical_rings_init() - allocate, populate and init the Engine Command Streamers
 * @dev: DRM device.
 *
 * This function inits the engines for an Execlists submission style (the equivalent in the
2173
 * legacy ringbuffer submission world would be i915_gem_init_engines). It does it only for
2174 2175 2176 2177
 * those engines that are present in the hardware.
 *
 * Return: non-zero if the initialization failed.
 */
2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213
int intel_logical_rings_init(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	int ret;

	ret = logical_render_ring_init(dev);
	if (ret)
		return ret;

	if (HAS_BSD(dev)) {
		ret = logical_bsd_ring_init(dev);
		if (ret)
			goto cleanup_render_ring;
	}

	if (HAS_BLT(dev)) {
		ret = logical_blt_ring_init(dev);
		if (ret)
			goto cleanup_bsd_ring;
	}

	if (HAS_VEBOX(dev)) {
		ret = logical_vebox_ring_init(dev);
		if (ret)
			goto cleanup_blt_ring;
	}

	if (HAS_BSD2(dev)) {
		ret = logical_bsd2_ring_init(dev);
		if (ret)
			goto cleanup_vebox_ring;
	}

	return 0;

cleanup_vebox_ring:
2214
	intel_logical_ring_cleanup(&dev_priv->engine[VECS]);
2215
cleanup_blt_ring:
2216
	intel_logical_ring_cleanup(&dev_priv->engine[BCS]);
2217
cleanup_bsd_ring:
2218
	intel_logical_ring_cleanup(&dev_priv->engine[VCS]);
2219
cleanup_render_ring:
2220
	intel_logical_ring_cleanup(&dev_priv->engine[RCS]);
2221 2222 2223 2224

	return ret;
}

2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267
static u32
make_rpcs(struct drm_device *dev)
{
	u32 rpcs = 0;

	/*
	 * No explicit RPCS request is needed to ensure full
	 * slice/subslice/EU enablement prior to Gen9.
	*/
	if (INTEL_INFO(dev)->gen < 9)
		return 0;

	/*
	 * Starting in Gen9, render power gating can leave
	 * slice/subslice/EU in a partially enabled state. We
	 * must make an explicit request through RPCS for full
	 * enablement.
	*/
	if (INTEL_INFO(dev)->has_slice_pg) {
		rpcs |= GEN8_RPCS_S_CNT_ENABLE;
		rpcs |= INTEL_INFO(dev)->slice_total <<
			GEN8_RPCS_S_CNT_SHIFT;
		rpcs |= GEN8_RPCS_ENABLE;
	}

	if (INTEL_INFO(dev)->has_subslice_pg) {
		rpcs |= GEN8_RPCS_SS_CNT_ENABLE;
		rpcs |= INTEL_INFO(dev)->subslice_per_slice <<
			GEN8_RPCS_SS_CNT_SHIFT;
		rpcs |= GEN8_RPCS_ENABLE;
	}

	if (INTEL_INFO(dev)->has_eu_pg) {
		rpcs |= INTEL_INFO(dev)->eu_per_subslice <<
			GEN8_RPCS_EU_MIN_SHIFT;
		rpcs |= INTEL_INFO(dev)->eu_per_subslice <<
			GEN8_RPCS_EU_MAX_SHIFT;
		rpcs |= GEN8_RPCS_ENABLE;
	}

	return rpcs;
}

2268
static u32 intel_lr_indirect_ctx_offset(struct intel_engine_cs *engine)
2269 2270 2271
{
	u32 indirect_ctx_offset;

2272
	switch (INTEL_INFO(engine->dev)->gen) {
2273
	default:
2274
		MISSING_CASE(INTEL_INFO(engine->dev)->gen);
2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288
		/* fall through */
	case 9:
		indirect_ctx_offset =
			GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
		break;
	case 8:
		indirect_ctx_offset =
			GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
		break;
	}

	return indirect_ctx_offset;
}

2289
static int
2290 2291
populate_lr_context(struct intel_context *ctx,
		    struct drm_i915_gem_object *ctx_obj,
2292 2293
		    struct intel_engine_cs *engine,
		    struct intel_ringbuffer *ringbuf)
2294
{
2295
	struct drm_device *dev = engine->dev;
2296
	struct drm_i915_private *dev_priv = dev->dev_private;
2297
	struct i915_hw_ppgtt *ppgtt = ctx->ppgtt;
2298 2299
	void *vaddr;
	u32 *reg_state;
2300 2301
	int ret;

2302 2303 2304
	if (!ppgtt)
		ppgtt = dev_priv->mm.aliasing_ppgtt;

2305 2306 2307 2308 2309 2310
	ret = i915_gem_object_set_to_cpu_domain(ctx_obj, true);
	if (ret) {
		DRM_DEBUG_DRIVER("Could not set to CPU domain\n");
		return ret;
	}

2311 2312 2313 2314
	vaddr = i915_gem_object_pin_map(ctx_obj);
	if (IS_ERR(vaddr)) {
		ret = PTR_ERR(vaddr);
		DRM_DEBUG_DRIVER("Could not map object pages! (%d)\n", ret);
2315 2316
		return ret;
	}
2317
	ctx_obj->dirty = true;
2318 2319 2320

	/* The second page of the context object contains some fields which must
	 * be set up prior to the first execution. */
2321
	reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;
2322 2323 2324 2325 2326 2327

	/* A context is actually a big batch buffer with several MI_LOAD_REGISTER_IMM
	 * commands followed by (reg, value) pairs. The values we are setting here are
	 * only for the first context restore: on a subsequent save, the GPU will
	 * recreate this batchbuffer with new values (including all the missing
	 * MI_LOAD_REGISTER_IMM commands that we are not initializing here). */
2328
	reg_state[CTX_LRI_HEADER_0] =
2329 2330 2331
		MI_LOAD_REGISTER_IMM(engine->id == RCS ? 14 : 11) | MI_LRI_FORCE_POSTED;
	ASSIGN_CTX_REG(reg_state, CTX_CONTEXT_CONTROL,
		       RING_CONTEXT_CONTROL(engine),
2332 2333
		       _MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH |
					  CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
2334 2335
					  (HAS_RESOURCE_STREAMER(dev) ?
					    CTX_CTRL_RS_CTX_ENABLE : 0)));
2336 2337 2338 2339
	ASSIGN_CTX_REG(reg_state, CTX_RING_HEAD, RING_HEAD(engine->mmio_base),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_RING_TAIL, RING_TAIL(engine->mmio_base),
		       0);
2340 2341 2342
	/* Ring buffer start address is not known until the buffer is pinned.
	 * It is written to the context image in execlists_update_context()
	 */
2343 2344 2345 2346
	ASSIGN_CTX_REG(reg_state, CTX_RING_BUFFER_START,
		       RING_START(engine->mmio_base), 0);
	ASSIGN_CTX_REG(reg_state, CTX_RING_BUFFER_CONTROL,
		       RING_CTL(engine->mmio_base),
2347
		       ((ringbuf->size - PAGE_SIZE) & RING_NR_PAGES) | RING_VALID);
2348 2349 2350 2351 2352 2353
	ASSIGN_CTX_REG(reg_state, CTX_BB_HEAD_U,
		       RING_BBADDR_UDW(engine->mmio_base), 0);
	ASSIGN_CTX_REG(reg_state, CTX_BB_HEAD_L,
		       RING_BBADDR(engine->mmio_base), 0);
	ASSIGN_CTX_REG(reg_state, CTX_BB_STATE,
		       RING_BBSTATE(engine->mmio_base),
2354
		       RING_BB_PPGTT);
2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369
	ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_HEAD_U,
		       RING_SBBADDR_UDW(engine->mmio_base), 0);
	ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_HEAD_L,
		       RING_SBBADDR(engine->mmio_base), 0);
	ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_STATE,
		       RING_SBBSTATE(engine->mmio_base), 0);
	if (engine->id == RCS) {
		ASSIGN_CTX_REG(reg_state, CTX_BB_PER_CTX_PTR,
			       RING_BB_PER_CTX_PTR(engine->mmio_base), 0);
		ASSIGN_CTX_REG(reg_state, CTX_RCS_INDIRECT_CTX,
			       RING_INDIRECT_CTX(engine->mmio_base), 0);
		ASSIGN_CTX_REG(reg_state, CTX_RCS_INDIRECT_CTX_OFFSET,
			       RING_INDIRECT_CTX_OFFSET(engine->mmio_base), 0);
		if (engine->wa_ctx.obj) {
			struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
2370 2371 2372 2373 2374 2375 2376
			uint32_t ggtt_offset = i915_gem_obj_ggtt_offset(wa_ctx->obj);

			reg_state[CTX_RCS_INDIRECT_CTX+1] =
				(ggtt_offset + wa_ctx->indirect_ctx.offset * sizeof(uint32_t)) |
				(wa_ctx->indirect_ctx.size / CACHELINE_DWORDS);

			reg_state[CTX_RCS_INDIRECT_CTX_OFFSET+1] =
2377
				intel_lr_indirect_ctx_offset(engine) << 6;
2378 2379 2380 2381 2382

			reg_state[CTX_BB_PER_CTX_PTR+1] =
				(ggtt_offset + wa_ctx->per_ctx.offset * sizeof(uint32_t)) |
				0x01;
		}
2383
	}
2384
	reg_state[CTX_LRI_HEADER_1] = MI_LOAD_REGISTER_IMM(9) | MI_LRI_FORCE_POSTED;
2385 2386
	ASSIGN_CTX_REG(reg_state, CTX_CTX_TIMESTAMP,
		       RING_CTX_TIMESTAMP(engine->mmio_base), 0);
2387
	/* PDP values well be assigned later if needed */
2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403
	ASSIGN_CTX_REG(reg_state, CTX_PDP3_UDW, GEN8_RING_PDP_UDW(engine, 3),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_PDP3_LDW, GEN8_RING_PDP_LDW(engine, 3),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_PDP2_UDW, GEN8_RING_PDP_UDW(engine, 2),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_PDP2_LDW, GEN8_RING_PDP_LDW(engine, 2),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_PDP1_UDW, GEN8_RING_PDP_UDW(engine, 1),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_PDP1_LDW, GEN8_RING_PDP_LDW(engine, 1),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_PDP0_UDW, GEN8_RING_PDP_UDW(engine, 0),
		       0);
	ASSIGN_CTX_REG(reg_state, CTX_PDP0_LDW, GEN8_RING_PDP_LDW(engine, 0),
		       0);
2404

2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416
	if (USES_FULL_48BIT_PPGTT(ppgtt->base.dev)) {
		/* 64b PPGTT (48bit canonical)
		 * PDP0_DESCRIPTOR contains the base address to PML4 and
		 * other PDP Descriptors are ignored.
		 */
		ASSIGN_CTX_PML4(ppgtt, reg_state);
	} else {
		/* 32b PPGTT
		 * PDP*_DESCRIPTOR contains the base address of space supported.
		 * With dynamic page allocation, PDPs may not be allocated at
		 * this point. Point the unallocated PDPs to the scratch page
		 */
2417
		execlists_update_context_pdps(ppgtt, reg_state);
2418 2419
	}

2420
	if (engine->id == RCS) {
2421
		reg_state[CTX_LRI_HEADER_2] = MI_LOAD_REGISTER_IMM(1);
2422 2423
		ASSIGN_CTX_REG(reg_state, CTX_R_PWR_CLK_STATE, GEN8_R_PWR_CLK_STATE,
			       make_rpcs(dev));
2424 2425
	}

2426
	i915_gem_object_unpin_map(ctx_obj);
2427 2428 2429 2430

	return 0;
}

2431 2432 2433 2434 2435 2436 2437 2438
/**
 * intel_lr_context_free() - free the LRC specific bits of a context
 * @ctx: the LR context to free.
 *
 * The real context freeing is done in i915_gem_context_free: this only
 * takes care of the bits that are LRC related: the per-engine backing
 * objects and the logical ringbuffer.
 */
2439 2440
void intel_lr_context_free(struct intel_context *ctx)
{
2441 2442
	int i;

2443
	for (i = I915_NUM_ENGINES; --i >= 0; ) {
D
Dave Gordon 已提交
2444
		struct intel_ringbuffer *ringbuf = ctx->engine[i].ringbuf;
2445
		struct drm_i915_gem_object *ctx_obj = ctx->engine[i].state;
2446

D
Dave Gordon 已提交
2447 2448
		if (!ctx_obj)
			continue;
2449

D
Dave Gordon 已提交
2450 2451 2452
		WARN_ON(ctx->engine[i].pin_count);
		intel_ringbuffer_free(ringbuf);
		drm_gem_object_unreference(&ctx_obj->base);
2453 2454 2455
	}
}

2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469
/**
 * intel_lr_context_size() - return the size of the context for an engine
 * @ring: which engine to find the context size for
 *
 * Each engine may require a different amount of space for a context image,
 * so when allocating (or copying) an image, this function can be used to
 * find the right size for the specific engine.
 *
 * Return: size (in bytes) of an engine-specific context image
 *
 * Note: this size includes the HWSP, which is part of the context image
 * in LRC mode, but does not include the "shared data page" used with
 * GuC submission. The caller should account for this if using the GuC.
 */
2470
uint32_t intel_lr_context_size(struct intel_engine_cs *engine)
2471 2472 2473
{
	int ret = 0;

2474
	WARN_ON(INTEL_INFO(engine->dev)->gen < 8);
2475

2476
	switch (engine->id) {
2477
	case RCS:
2478
		if (INTEL_INFO(engine->dev)->gen >= 9)
2479 2480 2481
			ret = GEN9_LR_CONTEXT_RENDER_SIZE;
		else
			ret = GEN8_LR_CONTEXT_RENDER_SIZE;
2482 2483 2484 2485 2486 2487 2488 2489 2490 2491
		break;
	case VCS:
	case BCS:
	case VECS:
	case VCS2:
		ret = GEN8_LR_CONTEXT_OTHER_SIZE;
		break;
	}

	return ret;
2492 2493
}

2494
/**
2495
 * execlists_context_deferred_alloc() - create the LRC specific bits of a context
2496
 * @ctx: LR context to create.
2497
 * @engine: engine to be used with the context.
2498 2499 2500 2501 2502 2503 2504
 *
 * This function can be called more than once, with different engines, if we plan
 * to use the context with them. The context backing objects and the ringbuffers
 * (specially the ringbuffer backing objects) suck a lot of memory up, and that's why
 * the creation is a deferred call: it's better to make sure first that we need to use
 * a given ring with the context.
 *
2505
 * Return: non-zero on error.
2506
 */
2507 2508
static int execlists_context_deferred_alloc(struct intel_context *ctx,
					    struct intel_engine_cs *engine)
2509
{
2510
	struct drm_device *dev = engine->dev;
2511 2512
	struct drm_i915_gem_object *ctx_obj;
	uint32_t context_size;
2513
	struct intel_ringbuffer *ringbuf;
2514 2515
	int ret;

2516
	WARN_ON(ctx->legacy_hw_ctx.rcs_state != NULL);
2517
	WARN_ON(ctx->engine[engine->id].state);
2518

2519
	context_size = round_up(intel_lr_context_size(engine), 4096);
2520

2521 2522 2523
	/* One extra page as the sharing data between driver and GuC */
	context_size += PAGE_SIZE * LRC_PPHWSP_PN;

2524
	ctx_obj = i915_gem_object_create(dev, context_size);
2525
	if (IS_ERR(ctx_obj)) {
2526
		DRM_DEBUG_DRIVER("Alloc LRC backing obj failed.\n");
2527
		return PTR_ERR(ctx_obj);
2528 2529
	}

2530
	ringbuf = intel_engine_create_ringbuffer(engine, 4 * PAGE_SIZE);
2531 2532
	if (IS_ERR(ringbuf)) {
		ret = PTR_ERR(ringbuf);
2533
		goto error_deref_obj;
2534 2535
	}

2536
	ret = populate_lr_context(ctx, ctx_obj, engine, ringbuf);
2537 2538
	if (ret) {
		DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret);
2539
		goto error_ringbuf;
2540 2541
	}

2542 2543
	ctx->engine[engine->id].ringbuf = ringbuf;
	ctx->engine[engine->id].state = ctx_obj;
2544
	ctx->engine[engine->id].initialised = engine->init_context == NULL;
2545 2546

	return 0;
2547

2548 2549
error_ringbuf:
	intel_ringbuffer_free(ringbuf);
2550
error_deref_obj:
2551
	drm_gem_object_unreference(&ctx_obj->base);
2552 2553
	ctx->engine[engine->id].ringbuf = NULL;
	ctx->engine[engine->id].state = NULL;
2554
	return ret;
2555
}
2556

2557 2558
void intel_lr_context_reset(struct drm_i915_private *dev_priv,
			    struct intel_context *ctx)
2559
{
2560
	struct intel_engine_cs *engine;
2561

2562
	for_each_engine(engine, dev_priv) {
2563
		struct drm_i915_gem_object *ctx_obj =
2564
				ctx->engine[engine->id].state;
2565
		struct intel_ringbuffer *ringbuf =
2566
				ctx->engine[engine->id].ringbuf;
2567
		void *vaddr;
2568 2569 2570 2571 2572
		uint32_t *reg_state;

		if (!ctx_obj)
			continue;

2573 2574
		vaddr = i915_gem_object_pin_map(ctx_obj);
		if (WARN_ON(IS_ERR(vaddr)))
2575
			continue;
2576 2577 2578

		reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;
		ctx_obj->dirty = true;
2579 2580 2581 2582

		reg_state[CTX_RING_HEAD+1] = 0;
		reg_state[CTX_RING_TAIL+1] = 0;

2583
		i915_gem_object_unpin_map(ctx_obj);
2584 2585 2586 2587 2588

		ringbuf->head = 0;
		ringbuf->tail = 0;
	}
}