core.c 115.8 KB
Newer Older
1 2 3 4
/*
 * core.c  --  Voltage/Current Regulator framework.
 *
 * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5
 * Copyright 2008 SlimLogic Ltd.
6
 *
7
 * Author: Liam Girdwood <lrg@slimlogic.co.uk>
8 9 10 11 12 13 14 15 16 17
 *
 *  This program is free software; you can redistribute  it and/or modify it
 *  under  the terms of  the GNU General  Public License as published by the
 *  Free Software Foundation;  either version 2 of the  License, or (at your
 *  option) any later version.
 *
 */

#include <linux/kernel.h>
#include <linux/init.h>
18
#include <linux/debugfs.h>
19
#include <linux/device.h>
20
#include <linux/slab.h>
21
#include <linux/async.h>
22 23 24
#include <linux/err.h>
#include <linux/mutex.h>
#include <linux/suspend.h>
25
#include <linux/delay.h>
26
#include <linux/gpio.h>
27
#include <linux/gpio/consumer.h>
28
#include <linux/of.h>
29
#include <linux/regmap.h>
30
#include <linux/regulator/of_regulator.h>
31 32 33
#include <linux/regulator/consumer.h>
#include <linux/regulator/driver.h>
#include <linux/regulator/machine.h>
34
#include <linux/module.h>
35

36 37 38
#define CREATE_TRACE_POINTS
#include <trace/events/regulator.h>

39
#include "dummy.h"
40
#include "internal.h"
41

M
Mark Brown 已提交
42 43
#define rdev_crit(rdev, fmt, ...)					\
	pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
44 45 46 47 48 49 50 51 52
#define rdev_err(rdev, fmt, ...)					\
	pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
#define rdev_warn(rdev, fmt, ...)					\
	pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
#define rdev_info(rdev, fmt, ...)					\
	pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
#define rdev_dbg(rdev, fmt, ...)					\
	pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)

53 54
static DEFINE_MUTEX(regulator_list_mutex);
static LIST_HEAD(regulator_map_list);
55
static LIST_HEAD(regulator_ena_gpio_list);
56
static LIST_HEAD(regulator_supply_alias_list);
57
static bool has_full_constraints;
58

59 60
static struct dentry *debugfs_root;

61 62
static struct class regulator_class;

63
/*
64 65 66 67 68 69
 * struct regulator_map
 *
 * Used to provide symbolic supply names to devices.
 */
struct regulator_map {
	struct list_head list;
70
	const char *dev_name;   /* The dev_name() for the consumer */
71
	const char *supply;
72
	struct regulator_dev *regulator;
73 74
};

75 76 77 78 79 80 81
/*
 * struct regulator_enable_gpio
 *
 * Management for shared enable GPIO pin
 */
struct regulator_enable_gpio {
	struct list_head list;
82
	struct gpio_desc *gpiod;
83 84 85 86 87
	u32 enable_count;	/* a number of enabled shared GPIO */
	u32 request_count;	/* a number of requested shared GPIO */
	unsigned int ena_gpio_invert:1;
};

88 89 90 91 92 93 94 95 96 97 98 99 100
/*
 * struct regulator_supply_alias
 *
 * Used to map lookups for a supply onto an alternative device.
 */
struct regulator_supply_alias {
	struct list_head list;
	struct device *src_dev;
	const char *src_supply;
	struct device *alias_dev;
	const char *alias_supply;
};

101
static int _regulator_is_enabled(struct regulator_dev *rdev);
102
static int _regulator_disable(struct regulator_dev *rdev);
103 104 105
static int _regulator_get_voltage(struct regulator_dev *rdev);
static int _regulator_get_current_limit(struct regulator_dev *rdev);
static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
106
static int _notifier_call_chain(struct regulator_dev *rdev,
107
				  unsigned long event, void *data);
108 109
static int _regulator_do_set_voltage(struct regulator_dev *rdev,
				     int min_uV, int max_uV);
110 111 112
static struct regulator *create_regulator(struct regulator_dev *rdev,
					  struct device *dev,
					  const char *supply_name);
113
static void _regulator_put(struct regulator *regulator);
114

115 116 117 118
static struct regulator_dev *dev_to_rdev(struct device *dev)
{
	return container_of(dev, struct regulator_dev, dev);
}
119

120 121 122 123 124 125 126 127 128 129
static const char *rdev_get_name(struct regulator_dev *rdev)
{
	if (rdev->constraints && rdev->constraints->name)
		return rdev->constraints->name;
	else if (rdev->desc->name)
		return rdev->desc->name;
	else
		return "";
}

130 131
static bool have_full_constraints(void)
{
132
	return has_full_constraints || of_have_populated_dt();
133 134
}

135 136 137 138 139 140 141 142 143 144 145 146 147
static bool regulator_ops_is_valid(struct regulator_dev *rdev, int ops)
{
	if (!rdev->constraints) {
		rdev_err(rdev, "no constraints\n");
		return false;
	}

	if (rdev->constraints->valid_ops_mask & ops)
		return true;

	return false;
}

148 149 150 151 152 153 154 155
static inline struct regulator_dev *rdev_get_supply(struct regulator_dev *rdev)
{
	if (rdev && rdev->supply)
		return rdev->supply->rdev;

	return NULL;
}

156 157 158 159 160 161
/**
 * regulator_lock_supply - lock a regulator and its supplies
 * @rdev:         regulator source
 */
static void regulator_lock_supply(struct regulator_dev *rdev)
{
162
	int i;
163

164
	for (i = 0; rdev; rdev = rdev_get_supply(rdev), i++)
165
		mutex_lock_nested(&rdev->mutex, i);
166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186
}

/**
 * regulator_unlock_supply - unlock a regulator and its supplies
 * @rdev:         regulator source
 */
static void regulator_unlock_supply(struct regulator_dev *rdev)
{
	struct regulator *supply;

	while (1) {
		mutex_unlock(&rdev->mutex);
		supply = rdev->supply;

		if (!rdev->supply)
			return;

		rdev = supply->rdev;
	}
}

187 188 189 190 191 192
/**
 * of_get_regulator - get a regulator device node based on supply name
 * @dev: Device pointer for the consumer (of regulator) device
 * @supply: regulator supply name
 *
 * Extract the regulator device node corresponding to the supply name.
193
 * returns the device node corresponding to the regulator if found, else
194 195 196 197 198 199 200 201 202 203 204 205 206
 * returns NULL.
 */
static struct device_node *of_get_regulator(struct device *dev, const char *supply)
{
	struct device_node *regnode = NULL;
	char prop_name[32]; /* 32 is max size of property name */

	dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);

	snprintf(prop_name, 32, "%s-supply", supply);
	regnode = of_parse_phandle(dev->of_node, prop_name, 0);

	if (!regnode) {
207
		dev_dbg(dev, "Looking up %s property in node %s failed",
208 209 210 211 212 213
				prop_name, dev->of_node->full_name);
		return NULL;
	}
	return regnode;
}

214 215 216 217 218 219
/* Platform voltage constraint check */
static int regulator_check_voltage(struct regulator_dev *rdev,
				   int *min_uV, int *max_uV)
{
	BUG_ON(*min_uV > *max_uV);

220
	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
221
		rdev_err(rdev, "voltage operation not allowed\n");
222 223 224 225 226 227 228 229
		return -EPERM;
	}

	if (*max_uV > rdev->constraints->max_uV)
		*max_uV = rdev->constraints->max_uV;
	if (*min_uV < rdev->constraints->min_uV)
		*min_uV = rdev->constraints->min_uV;

230 231
	if (*min_uV > *max_uV) {
		rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
232
			 *min_uV, *max_uV);
233
		return -EINVAL;
234
	}
235 236 237 238

	return 0;
}

239 240 241 242 243 244 245 246 247
/* Make sure we select a voltage that suits the needs of all
 * regulator consumers
 */
static int regulator_check_consumers(struct regulator_dev *rdev,
				     int *min_uV, int *max_uV)
{
	struct regulator *regulator;

	list_for_each_entry(regulator, &rdev->consumer_list, list) {
248 249 250 251 252 253 254
		/*
		 * Assume consumers that didn't say anything are OK
		 * with anything in the constraint range.
		 */
		if (!regulator->min_uV && !regulator->max_uV)
			continue;

255 256 257 258 259 260
		if (*max_uV > regulator->max_uV)
			*max_uV = regulator->max_uV;
		if (*min_uV < regulator->min_uV)
			*min_uV = regulator->min_uV;
	}

261
	if (*min_uV > *max_uV) {
262 263
		rdev_err(rdev, "Restricting voltage, %u-%uuV\n",
			*min_uV, *max_uV);
264
		return -EINVAL;
265
	}
266 267 268 269

	return 0;
}

270 271 272 273 274 275
/* current constraint check */
static int regulator_check_current_limit(struct regulator_dev *rdev,
					int *min_uA, int *max_uA)
{
	BUG_ON(*min_uA > *max_uA);

276
	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_CURRENT)) {
277
		rdev_err(rdev, "current operation not allowed\n");
278 279 280 281 282 283 284 285
		return -EPERM;
	}

	if (*max_uA > rdev->constraints->max_uA)
		*max_uA = rdev->constraints->max_uA;
	if (*min_uA < rdev->constraints->min_uA)
		*min_uA = rdev->constraints->min_uA;

286 287
	if (*min_uA > *max_uA) {
		rdev_err(rdev, "unsupportable current range: %d-%duA\n",
288
			 *min_uA, *max_uA);
289
		return -EINVAL;
290
	}
291 292 293 294 295

	return 0;
}

/* operating mode constraint check */
296
static int regulator_mode_constrain(struct regulator_dev *rdev, int *mode)
297
{
298
	switch (*mode) {
299 300 301 302 303 304
	case REGULATOR_MODE_FAST:
	case REGULATOR_MODE_NORMAL:
	case REGULATOR_MODE_IDLE:
	case REGULATOR_MODE_STANDBY:
		break;
	default:
305
		rdev_err(rdev, "invalid mode %x specified\n", *mode);
306 307 308
		return -EINVAL;
	}

309
	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_MODE)) {
310
		rdev_err(rdev, "mode operation not allowed\n");
311 312
		return -EPERM;
	}
313 314 315 316 317 318 319 320

	/* The modes are bitmasks, the most power hungry modes having
	 * the lowest values. If the requested mode isn't supported
	 * try higher modes. */
	while (*mode) {
		if (rdev->constraints->valid_modes_mask & *mode)
			return 0;
		*mode /= 2;
321
	}
322 323

	return -EINVAL;
324 325 326 327 328
}

static ssize_t regulator_uV_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
329
	struct regulator_dev *rdev = dev_get_drvdata(dev);
330 331 332 333 334 335 336 337
	ssize_t ret;

	mutex_lock(&rdev->mutex);
	ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
	mutex_unlock(&rdev->mutex);

	return ret;
}
338
static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
339 340 341 342

static ssize_t regulator_uA_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
343
	struct regulator_dev *rdev = dev_get_drvdata(dev);
344 345 346

	return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
}
347
static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
348

349 350
static ssize_t name_show(struct device *dev, struct device_attribute *attr,
			 char *buf)
351 352 353
{
	struct regulator_dev *rdev = dev_get_drvdata(dev);

354
	return sprintf(buf, "%s\n", rdev_get_name(rdev));
355
}
356
static DEVICE_ATTR_RO(name);
357

D
David Brownell 已提交
358
static ssize_t regulator_print_opmode(char *buf, int mode)
359 360 361 362 363 364 365 366 367 368 369 370 371 372
{
	switch (mode) {
	case REGULATOR_MODE_FAST:
		return sprintf(buf, "fast\n");
	case REGULATOR_MODE_NORMAL:
		return sprintf(buf, "normal\n");
	case REGULATOR_MODE_IDLE:
		return sprintf(buf, "idle\n");
	case REGULATOR_MODE_STANDBY:
		return sprintf(buf, "standby\n");
	}
	return sprintf(buf, "unknown\n");
}

D
David Brownell 已提交
373 374
static ssize_t regulator_opmode_show(struct device *dev,
				    struct device_attribute *attr, char *buf)
375
{
376
	struct regulator_dev *rdev = dev_get_drvdata(dev);
377

D
David Brownell 已提交
378 379
	return regulator_print_opmode(buf, _regulator_get_mode(rdev));
}
380
static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
D
David Brownell 已提交
381 382 383

static ssize_t regulator_print_state(char *buf, int state)
{
384 385 386 387 388 389 390 391
	if (state > 0)
		return sprintf(buf, "enabled\n");
	else if (state == 0)
		return sprintf(buf, "disabled\n");
	else
		return sprintf(buf, "unknown\n");
}

D
David Brownell 已提交
392 393 394 395
static ssize_t regulator_state_show(struct device *dev,
				   struct device_attribute *attr, char *buf)
{
	struct regulator_dev *rdev = dev_get_drvdata(dev);
396 397 398 399 400
	ssize_t ret;

	mutex_lock(&rdev->mutex);
	ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
	mutex_unlock(&rdev->mutex);
D
David Brownell 已提交
401

402
	return ret;
D
David Brownell 已提交
403
}
404
static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
D
David Brownell 已提交
405

D
David Brownell 已提交
406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438
static ssize_t regulator_status_show(struct device *dev,
				   struct device_attribute *attr, char *buf)
{
	struct regulator_dev *rdev = dev_get_drvdata(dev);
	int status;
	char *label;

	status = rdev->desc->ops->get_status(rdev);
	if (status < 0)
		return status;

	switch (status) {
	case REGULATOR_STATUS_OFF:
		label = "off";
		break;
	case REGULATOR_STATUS_ON:
		label = "on";
		break;
	case REGULATOR_STATUS_ERROR:
		label = "error";
		break;
	case REGULATOR_STATUS_FAST:
		label = "fast";
		break;
	case REGULATOR_STATUS_NORMAL:
		label = "normal";
		break;
	case REGULATOR_STATUS_IDLE:
		label = "idle";
		break;
	case REGULATOR_STATUS_STANDBY:
		label = "standby";
		break;
439 440 441
	case REGULATOR_STATUS_BYPASS:
		label = "bypass";
		break;
442 443 444
	case REGULATOR_STATUS_UNDEFINED:
		label = "undefined";
		break;
D
David Brownell 已提交
445 446 447 448 449 450 451 452
	default:
		return -ERANGE;
	}

	return sprintf(buf, "%s\n", label);
}
static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);

453 454 455
static ssize_t regulator_min_uA_show(struct device *dev,
				    struct device_attribute *attr, char *buf)
{
456
	struct regulator_dev *rdev = dev_get_drvdata(dev);
457 458 459 460 461 462

	if (!rdev->constraints)
		return sprintf(buf, "constraint not defined\n");

	return sprintf(buf, "%d\n", rdev->constraints->min_uA);
}
463
static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
464 465 466 467

static ssize_t regulator_max_uA_show(struct device *dev,
				    struct device_attribute *attr, char *buf)
{
468
	struct regulator_dev *rdev = dev_get_drvdata(dev);
469 470 471 472 473 474

	if (!rdev->constraints)
		return sprintf(buf, "constraint not defined\n");

	return sprintf(buf, "%d\n", rdev->constraints->max_uA);
}
475
static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
476 477 478 479

static ssize_t regulator_min_uV_show(struct device *dev,
				    struct device_attribute *attr, char *buf)
{
480
	struct regulator_dev *rdev = dev_get_drvdata(dev);
481 482 483 484 485 486

	if (!rdev->constraints)
		return sprintf(buf, "constraint not defined\n");

	return sprintf(buf, "%d\n", rdev->constraints->min_uV);
}
487
static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
488 489 490 491

static ssize_t regulator_max_uV_show(struct device *dev,
				    struct device_attribute *attr, char *buf)
{
492
	struct regulator_dev *rdev = dev_get_drvdata(dev);
493 494 495 496 497 498

	if (!rdev->constraints)
		return sprintf(buf, "constraint not defined\n");

	return sprintf(buf, "%d\n", rdev->constraints->max_uV);
}
499
static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
500 501 502 503

static ssize_t regulator_total_uA_show(struct device *dev,
				      struct device_attribute *attr, char *buf)
{
504
	struct regulator_dev *rdev = dev_get_drvdata(dev);
505 506 507 508 509
	struct regulator *regulator;
	int uA = 0;

	mutex_lock(&rdev->mutex);
	list_for_each_entry(regulator, &rdev->consumer_list, list)
510
		uA += regulator->uA_load;
511 512 513
	mutex_unlock(&rdev->mutex);
	return sprintf(buf, "%d\n", uA);
}
514
static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
515

516 517
static ssize_t num_users_show(struct device *dev, struct device_attribute *attr,
			      char *buf)
518
{
519
	struct regulator_dev *rdev = dev_get_drvdata(dev);
520 521
	return sprintf(buf, "%d\n", rdev->use_count);
}
522
static DEVICE_ATTR_RO(num_users);
523

524 525
static ssize_t type_show(struct device *dev, struct device_attribute *attr,
			 char *buf)
526
{
527
	struct regulator_dev *rdev = dev_get_drvdata(dev);
528 529 530 531 532 533 534 535 536

	switch (rdev->desc->type) {
	case REGULATOR_VOLTAGE:
		return sprintf(buf, "voltage\n");
	case REGULATOR_CURRENT:
		return sprintf(buf, "current\n");
	}
	return sprintf(buf, "unknown\n");
}
537
static DEVICE_ATTR_RO(type);
538 539 540 541

static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
542
	struct regulator_dev *rdev = dev_get_drvdata(dev);
543 544 545

	return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
}
546 547
static DEVICE_ATTR(suspend_mem_microvolts, 0444,
		regulator_suspend_mem_uV_show, NULL);
548 549 550 551

static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
552
	struct regulator_dev *rdev = dev_get_drvdata(dev);
553 554 555

	return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
}
556 557
static DEVICE_ATTR(suspend_disk_microvolts, 0444,
		regulator_suspend_disk_uV_show, NULL);
558 559 560 561

static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
562
	struct regulator_dev *rdev = dev_get_drvdata(dev);
563 564 565

	return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
}
566 567
static DEVICE_ATTR(suspend_standby_microvolts, 0444,
		regulator_suspend_standby_uV_show, NULL);
568 569 570 571

static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
572
	struct regulator_dev *rdev = dev_get_drvdata(dev);
573

D
David Brownell 已提交
574 575
	return regulator_print_opmode(buf,
		rdev->constraints->state_mem.mode);
576
}
577 578
static DEVICE_ATTR(suspend_mem_mode, 0444,
		regulator_suspend_mem_mode_show, NULL);
579 580 581 582

static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
583
	struct regulator_dev *rdev = dev_get_drvdata(dev);
584

D
David Brownell 已提交
585 586
	return regulator_print_opmode(buf,
		rdev->constraints->state_disk.mode);
587
}
588 589
static DEVICE_ATTR(suspend_disk_mode, 0444,
		regulator_suspend_disk_mode_show, NULL);
590 591 592 593

static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
594
	struct regulator_dev *rdev = dev_get_drvdata(dev);
595

D
David Brownell 已提交
596 597
	return regulator_print_opmode(buf,
		rdev->constraints->state_standby.mode);
598
}
599 600
static DEVICE_ATTR(suspend_standby_mode, 0444,
		regulator_suspend_standby_mode_show, NULL);
601 602 603 604

static ssize_t regulator_suspend_mem_state_show(struct device *dev,
				   struct device_attribute *attr, char *buf)
{
605
	struct regulator_dev *rdev = dev_get_drvdata(dev);
606

D
David Brownell 已提交
607 608
	return regulator_print_state(buf,
			rdev->constraints->state_mem.enabled);
609
}
610 611
static DEVICE_ATTR(suspend_mem_state, 0444,
		regulator_suspend_mem_state_show, NULL);
612 613 614 615

static ssize_t regulator_suspend_disk_state_show(struct device *dev,
				   struct device_attribute *attr, char *buf)
{
616
	struct regulator_dev *rdev = dev_get_drvdata(dev);
617

D
David Brownell 已提交
618 619
	return regulator_print_state(buf,
			rdev->constraints->state_disk.enabled);
620
}
621 622
static DEVICE_ATTR(suspend_disk_state, 0444,
		regulator_suspend_disk_state_show, NULL);
623 624 625 626

static ssize_t regulator_suspend_standby_state_show(struct device *dev,
				   struct device_attribute *attr, char *buf)
{
627
	struct regulator_dev *rdev = dev_get_drvdata(dev);
628

D
David Brownell 已提交
629 630
	return regulator_print_state(buf,
			rdev->constraints->state_standby.enabled);
631
}
632 633 634
static DEVICE_ATTR(suspend_standby_state, 0444,
		regulator_suspend_standby_state_show, NULL);

635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655
static ssize_t regulator_bypass_show(struct device *dev,
				     struct device_attribute *attr, char *buf)
{
	struct regulator_dev *rdev = dev_get_drvdata(dev);
	const char *report;
	bool bypass;
	int ret;

	ret = rdev->desc->ops->get_bypass(rdev, &bypass);

	if (ret != 0)
		report = "unknown";
	else if (bypass)
		report = "enabled";
	else
		report = "disabled";

	return sprintf(buf, "%s\n", report);
}
static DEVICE_ATTR(bypass, 0444,
		   regulator_bypass_show, NULL);
656

657 658
/* Calculate the new optimum regulator operating mode based on the new total
 * consumer load. All locks held by caller */
659
static int drms_uA_update(struct regulator_dev *rdev)
660 661 662 663 664
{
	struct regulator *sibling;
	int current_uA = 0, output_uV, input_uV, err;
	unsigned int mode;

665 666
	lockdep_assert_held_once(&rdev->mutex);

667 668 669 670
	/*
	 * first check to see if we can set modes at all, otherwise just
	 * tell the consumer everything is OK.
	 */
671
	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS))
672 673
		return 0;

674 675
	if (!rdev->desc->ops->get_optimum_mode &&
	    !rdev->desc->ops->set_load)
676 677
		return 0;

678 679
	if (!rdev->desc->ops->set_mode &&
	    !rdev->desc->ops->set_load)
680
		return -EINVAL;
681 682 683

	/* calc total requested load */
	list_for_each_entry(sibling, &rdev->consumer_list, list)
684
		current_uA += sibling->uA_load;
685

686 687
	current_uA += rdev->constraints->system_load;

688 689 690 691 692 693
	if (rdev->desc->ops->set_load) {
		/* set the optimum mode for our new total regulator load */
		err = rdev->desc->ops->set_load(rdev, current_uA);
		if (err < 0)
			rdev_err(rdev, "failed to set load %d\n", current_uA);
	} else {
694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711
		/* get output voltage */
		output_uV = _regulator_get_voltage(rdev);
		if (output_uV <= 0) {
			rdev_err(rdev, "invalid output voltage found\n");
			return -EINVAL;
		}

		/* get input voltage */
		input_uV = 0;
		if (rdev->supply)
			input_uV = regulator_get_voltage(rdev->supply);
		if (input_uV <= 0)
			input_uV = rdev->constraints->input_uV;
		if (input_uV <= 0) {
			rdev_err(rdev, "invalid input voltage found\n");
			return -EINVAL;
		}

712 713 714 715 716 717 718 719 720 721 722
		/* now get the optimum mode for our new total regulator load */
		mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
							 output_uV, current_uA);

		/* check the new mode is allowed */
		err = regulator_mode_constrain(rdev, &mode);
		if (err < 0) {
			rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
				 current_uA, input_uV, output_uV);
			return err;
		}
723

724 725 726
		err = rdev->desc->ops->set_mode(rdev, mode);
		if (err < 0)
			rdev_err(rdev, "failed to set optimum mode %x\n", mode);
727 728 729
	}

	return err;
730 731 732 733 734 735
}

static int suspend_set_state(struct regulator_dev *rdev,
	struct regulator_state *rstate)
{
	int ret = 0;
736 737

	/* If we have no suspend mode configration don't set anything;
738 739
	 * only warn if the driver implements set_suspend_voltage or
	 * set_suspend_mode callback.
740 741
	 */
	if (!rstate->enabled && !rstate->disabled) {
742 743
		if (rdev->desc->ops->set_suspend_voltage ||
		    rdev->desc->ops->set_suspend_mode)
744
			rdev_warn(rdev, "No configuration\n");
745 746 747 748
		return 0;
	}

	if (rstate->enabled && rstate->disabled) {
749
		rdev_err(rdev, "invalid configuration\n");
750 751
		return -EINVAL;
	}
752

753
	if (rstate->enabled && rdev->desc->ops->set_suspend_enable)
754
		ret = rdev->desc->ops->set_suspend_enable(rdev);
755
	else if (rstate->disabled && rdev->desc->ops->set_suspend_disable)
756
		ret = rdev->desc->ops->set_suspend_disable(rdev);
757 758 759
	else /* OK if set_suspend_enable or set_suspend_disable is NULL */
		ret = 0;

760
	if (ret < 0) {
761
		rdev_err(rdev, "failed to enabled/disable\n");
762 763 764 765 766 767
		return ret;
	}

	if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
		ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
		if (ret < 0) {
768
			rdev_err(rdev, "failed to set voltage\n");
769 770 771 772 773 774 775
			return ret;
		}
	}

	if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
		ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
		if (ret < 0) {
776
			rdev_err(rdev, "failed to set mode\n");
777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806
			return ret;
		}
	}
	return ret;
}

/* locks held by caller */
static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
{
	if (!rdev->constraints)
		return -EINVAL;

	switch (state) {
	case PM_SUSPEND_STANDBY:
		return suspend_set_state(rdev,
			&rdev->constraints->state_standby);
	case PM_SUSPEND_MEM:
		return suspend_set_state(rdev,
			&rdev->constraints->state_mem);
	case PM_SUSPEND_MAX:
		return suspend_set_state(rdev,
			&rdev->constraints->state_disk);
	default:
		return -EINVAL;
	}
}

static void print_constraints(struct regulator_dev *rdev)
{
	struct regulation_constraints *constraints = rdev->constraints;
807
	char buf[160] = "";
808
	size_t len = sizeof(buf) - 1;
809 810
	int count = 0;
	int ret;
811

812
	if (constraints->min_uV && constraints->max_uV) {
813
		if (constraints->min_uV == constraints->max_uV)
814 815
			count += scnprintf(buf + count, len - count, "%d mV ",
					   constraints->min_uV / 1000);
816
		else
817 818 819 820
			count += scnprintf(buf + count, len - count,
					   "%d <--> %d mV ",
					   constraints->min_uV / 1000,
					   constraints->max_uV / 1000);
821 822 823 824 825 826
	}

	if (!constraints->min_uV ||
	    constraints->min_uV != constraints->max_uV) {
		ret = _regulator_get_voltage(rdev);
		if (ret > 0)
827 828
			count += scnprintf(buf + count, len - count,
					   "at %d mV ", ret / 1000);
829 830
	}

831
	if (constraints->uV_offset)
832 833
		count += scnprintf(buf + count, len - count, "%dmV offset ",
				   constraints->uV_offset / 1000);
834

835
	if (constraints->min_uA && constraints->max_uA) {
836
		if (constraints->min_uA == constraints->max_uA)
837 838
			count += scnprintf(buf + count, len - count, "%d mA ",
					   constraints->min_uA / 1000);
839
		else
840 841 842 843
			count += scnprintf(buf + count, len - count,
					   "%d <--> %d mA ",
					   constraints->min_uA / 1000,
					   constraints->max_uA / 1000);
844 845 846 847 848 849
	}

	if (!constraints->min_uA ||
	    constraints->min_uA != constraints->max_uA) {
		ret = _regulator_get_current_limit(rdev);
		if (ret > 0)
850 851
			count += scnprintf(buf + count, len - count,
					   "at %d mA ", ret / 1000);
852
	}
853

854
	if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
855
		count += scnprintf(buf + count, len - count, "fast ");
856
	if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
857
		count += scnprintf(buf + count, len - count, "normal ");
858
	if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
859
		count += scnprintf(buf + count, len - count, "idle ");
860
	if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
861
		count += scnprintf(buf + count, len - count, "standby");
862

863
	if (!count)
864
		scnprintf(buf, len, "no parameters");
865

866
	rdev_dbg(rdev, "%s\n", buf);
867 868

	if ((constraints->min_uV != constraints->max_uV) &&
869
	    !regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE))
870 871
		rdev_warn(rdev,
			  "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
872 873
}

874
static int machine_constraints_voltage(struct regulator_dev *rdev,
875
	struct regulation_constraints *constraints)
876
{
877
	const struct regulator_ops *ops = rdev->desc->ops;
878 879 880 881
	int ret;

	/* do we need to apply the constraint voltage */
	if (rdev->constraints->apply_uV &&
882 883
	    rdev->constraints->min_uV && rdev->constraints->max_uV) {
		int target_min, target_max;
884 885
		int current_uV = _regulator_get_voltage(rdev);
		if (current_uV < 0) {
886 887 888
			rdev_err(rdev,
				 "failed to get the current voltage(%d)\n",
				 current_uV);
889 890
			return current_uV;
		}
891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910

		/*
		 * If we're below the minimum voltage move up to the
		 * minimum voltage, if we're above the maximum voltage
		 * then move down to the maximum.
		 */
		target_min = current_uV;
		target_max = current_uV;

		if (current_uV < rdev->constraints->min_uV) {
			target_min = rdev->constraints->min_uV;
			target_max = rdev->constraints->min_uV;
		}

		if (current_uV > rdev->constraints->max_uV) {
			target_min = rdev->constraints->max_uV;
			target_max = rdev->constraints->max_uV;
		}

		if (target_min != current_uV || target_max != current_uV) {
911 912
			rdev_info(rdev, "Bringing %duV into %d-%duV\n",
				  current_uV, target_min, target_max);
913
			ret = _regulator_do_set_voltage(
914
				rdev, target_min, target_max);
915 916
			if (ret < 0) {
				rdev_err(rdev,
917 918
					"failed to apply %d-%duV constraint(%d)\n",
					target_min, target_max, ret);
919 920
				return ret;
			}
921
		}
922
	}
923

924 925 926 927 928 929 930 931 932 933 934
	/* constrain machine-level voltage specs to fit
	 * the actual range supported by this regulator.
	 */
	if (ops->list_voltage && rdev->desc->n_voltages) {
		int	count = rdev->desc->n_voltages;
		int	i;
		int	min_uV = INT_MAX;
		int	max_uV = INT_MIN;
		int	cmin = constraints->min_uV;
		int	cmax = constraints->max_uV;

935 936
		/* it's safe to autoconfigure fixed-voltage supplies
		   and the constraints are used by list_voltage. */
937
		if (count == 1 && !cmin) {
938
			cmin = 1;
939
			cmax = INT_MAX;
940 941
			constraints->min_uV = cmin;
			constraints->max_uV = cmax;
942 943
		}

944 945
		/* voltage constraints are optional */
		if ((cmin == 0) && (cmax == 0))
946
			return 0;
947

948
		/* else require explicit machine-level constraints */
949
		if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
950
			rdev_err(rdev, "invalid voltage constraints\n");
951
			return -EINVAL;
952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970
		}

		/* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
		for (i = 0; i < count; i++) {
			int	value;

			value = ops->list_voltage(rdev, i);
			if (value <= 0)
				continue;

			/* maybe adjust [min_uV..max_uV] */
			if (value >= cmin && value < min_uV)
				min_uV = value;
			if (value <= cmax && value > max_uV)
				max_uV = value;
		}

		/* final: [min_uV..max_uV] valid iff constraints valid */
		if (max_uV < min_uV) {
971 972 973
			rdev_err(rdev,
				 "unsupportable voltage constraints %u-%uuV\n",
				 min_uV, max_uV);
974
			return -EINVAL;
975 976 977 978
		}

		/* use regulator's subset of machine constraints */
		if (constraints->min_uV < min_uV) {
979 980
			rdev_dbg(rdev, "override min_uV, %d -> %d\n",
				 constraints->min_uV, min_uV);
981 982 983
			constraints->min_uV = min_uV;
		}
		if (constraints->max_uV > max_uV) {
984 985
			rdev_dbg(rdev, "override max_uV, %d -> %d\n",
				 constraints->max_uV, max_uV);
986 987 988 989
			constraints->max_uV = max_uV;
		}
	}

990 991 992
	return 0;
}

993 994 995
static int machine_constraints_current(struct regulator_dev *rdev,
	struct regulation_constraints *constraints)
{
996
	const struct regulator_ops *ops = rdev->desc->ops;
997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022
	int ret;

	if (!constraints->min_uA && !constraints->max_uA)
		return 0;

	if (constraints->min_uA > constraints->max_uA) {
		rdev_err(rdev, "Invalid current constraints\n");
		return -EINVAL;
	}

	if (!ops->set_current_limit || !ops->get_current_limit) {
		rdev_warn(rdev, "Operation of current configuration missing\n");
		return 0;
	}

	/* Set regulator current in constraints range */
	ret = ops->set_current_limit(rdev, constraints->min_uA,
			constraints->max_uA);
	if (ret < 0) {
		rdev_err(rdev, "Failed to set current constraint, %d\n", ret);
		return ret;
	}

	return 0;
}

1023 1024
static int _regulator_do_enable(struct regulator_dev *rdev);

1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036
/**
 * set_machine_constraints - sets regulator constraints
 * @rdev: regulator source
 * @constraints: constraints to apply
 *
 * Allows platform initialisation code to define and constrain
 * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
 * Constraints *must* be set by platform code in order for some
 * regulator operations to proceed i.e. set_voltage, set_current_limit,
 * set_mode.
 */
static int set_machine_constraints(struct regulator_dev *rdev,
1037
	const struct regulation_constraints *constraints)
1038 1039
{
	int ret = 0;
1040
	const struct regulator_ops *ops = rdev->desc->ops;
1041

1042 1043 1044 1045 1046 1047
	if (constraints)
		rdev->constraints = kmemdup(constraints, sizeof(*constraints),
					    GFP_KERNEL);
	else
		rdev->constraints = kzalloc(sizeof(*constraints),
					    GFP_KERNEL);
1048 1049
	if (!rdev->constraints)
		return -ENOMEM;
1050

1051
	ret = machine_constraints_voltage(rdev, rdev->constraints);
1052
	if (ret != 0)
1053
		return ret;
1054

1055
	ret = machine_constraints_current(rdev, rdev->constraints);
1056
	if (ret != 0)
1057
		return ret;
1058

1059 1060 1061 1062 1063
	if (rdev->constraints->ilim_uA && ops->set_input_current_limit) {
		ret = ops->set_input_current_limit(rdev,
						   rdev->constraints->ilim_uA);
		if (ret < 0) {
			rdev_err(rdev, "failed to set input limit\n");
1064
			return ret;
1065 1066 1067
		}
	}

1068
	/* do we need to setup our suspend state */
1069
	if (rdev->constraints->initial_state) {
1070
		ret = suspend_prepare(rdev, rdev->constraints->initial_state);
1071
		if (ret < 0) {
1072
			rdev_err(rdev, "failed to set suspend state\n");
1073
			return ret;
1074 1075
		}
	}
1076

1077
	if (rdev->constraints->initial_mode) {
1078
		if (!ops->set_mode) {
1079
			rdev_err(rdev, "no set_mode operation\n");
1080
			return -EINVAL;
1081 1082
		}

1083
		ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
1084
		if (ret < 0) {
1085
			rdev_err(rdev, "failed to set initial mode: %d\n", ret);
1086
			return ret;
1087 1088 1089
		}
	}

1090 1091 1092
	/* If the constraints say the regulator should be on at this point
	 * and we have control then make sure it is enabled.
	 */
1093 1094 1095
	if (rdev->constraints->always_on || rdev->constraints->boot_on) {
		ret = _regulator_do_enable(rdev);
		if (ret < 0 && ret != -EINVAL) {
1096
			rdev_err(rdev, "failed to enable\n");
1097
			return ret;
1098 1099 1100
		}
	}

1101 1102
	if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable)
		&& ops->set_ramp_delay) {
1103 1104 1105
		ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
		if (ret < 0) {
			rdev_err(rdev, "failed to set ramp_delay\n");
1106
			return ret;
1107 1108 1109
		}
	}

S
Stephen Boyd 已提交
1110 1111 1112 1113
	if (rdev->constraints->pull_down && ops->set_pull_down) {
		ret = ops->set_pull_down(rdev);
		if (ret < 0) {
			rdev_err(rdev, "failed to set pull down\n");
1114
			return ret;
S
Stephen Boyd 已提交
1115 1116 1117
		}
	}

S
Stephen Boyd 已提交
1118 1119 1120 1121
	if (rdev->constraints->soft_start && ops->set_soft_start) {
		ret = ops->set_soft_start(rdev);
		if (ret < 0) {
			rdev_err(rdev, "failed to set soft start\n");
1122
			return ret;
S
Stephen Boyd 已提交
1123 1124 1125
		}
	}

1126 1127 1128 1129 1130
	if (rdev->constraints->over_current_protection
		&& ops->set_over_current_protection) {
		ret = ops->set_over_current_protection(rdev);
		if (ret < 0) {
			rdev_err(rdev, "failed to set over current protection\n");
1131
			return ret;
1132 1133 1134
		}
	}

1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145
	if (rdev->constraints->active_discharge && ops->set_active_discharge) {
		bool ad_state = (rdev->constraints->active_discharge ==
			      REGULATOR_ACTIVE_DISCHARGE_ENABLE) ? true : false;

		ret = ops->set_active_discharge(rdev, ad_state);
		if (ret < 0) {
			rdev_err(rdev, "failed to set active discharge\n");
			return ret;
		}
	}

1146
	print_constraints(rdev);
1147
	return 0;
1148 1149 1150 1151
}

/**
 * set_supply - set regulator supply regulator
1152 1153
 * @rdev: regulator name
 * @supply_rdev: supply regulator name
1154 1155 1156 1157 1158 1159
 *
 * Called by platform initialisation code to set the supply regulator for this
 * regulator. This ensures that a regulators supply will also be enabled by the
 * core if it's child is enabled.
 */
static int set_supply(struct regulator_dev *rdev,
1160
		      struct regulator_dev *supply_rdev)
1161 1162 1163
{
	int err;

1164 1165
	rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));

1166 1167 1168
	if (!try_module_get(supply_rdev->owner))
		return -ENODEV;

1169
	rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
1170 1171
	if (rdev->supply == NULL) {
		err = -ENOMEM;
1172
		return err;
1173
	}
1174
	supply_rdev->open_count++;
1175 1176

	return 0;
1177 1178 1179
}

/**
1180
 * set_consumer_device_supply - Bind a regulator to a symbolic supply
1181
 * @rdev:         regulator source
1182
 * @consumer_dev_name: dev_name() string for device supply applies to
1183
 * @supply:       symbolic name for supply
1184 1185 1186 1187 1188 1189 1190
 *
 * Allows platform initialisation code to map physical regulator
 * sources to symbolic names for supplies for use by devices.  Devices
 * should use these symbolic names to request regulators, avoiding the
 * need to provide board-specific regulator names as platform data.
 */
static int set_consumer_device_supply(struct regulator_dev *rdev,
1191 1192
				      const char *consumer_dev_name,
				      const char *supply)
1193 1194
{
	struct regulator_map *node;
1195
	int has_dev;
1196 1197 1198 1199

	if (supply == NULL)
		return -EINVAL;

1200 1201 1202 1203 1204
	if (consumer_dev_name != NULL)
		has_dev = 1;
	else
		has_dev = 0;

1205
	list_for_each_entry(node, &regulator_map_list, list) {
1206 1207 1208 1209
		if (node->dev_name && consumer_dev_name) {
			if (strcmp(node->dev_name, consumer_dev_name) != 0)
				continue;
		} else if (node->dev_name || consumer_dev_name) {
1210
			continue;
1211 1212
		}

1213 1214 1215
		if (strcmp(node->supply, supply) != 0)
			continue;

1216 1217 1218 1219 1220 1221
		pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
			 consumer_dev_name,
			 dev_name(&node->regulator->dev),
			 node->regulator->desc->name,
			 supply,
			 dev_name(&rdev->dev), rdev_get_name(rdev));
1222 1223 1224
		return -EBUSY;
	}

1225
	node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1226 1227 1228 1229 1230 1231
	if (node == NULL)
		return -ENOMEM;

	node->regulator = rdev;
	node->supply = supply;

1232 1233 1234 1235 1236 1237
	if (has_dev) {
		node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
		if (node->dev_name == NULL) {
			kfree(node);
			return -ENOMEM;
		}
1238 1239
	}

1240 1241 1242 1243
	list_add(&node->list, &regulator_map_list);
	return 0;
}

1244 1245 1246 1247 1248 1249 1250
static void unset_regulator_supplies(struct regulator_dev *rdev)
{
	struct regulator_map *node, *n;

	list_for_each_entry_safe(node, n, &regulator_map_list, list) {
		if (rdev == node->regulator) {
			list_del(&node->list);
1251
			kfree(node->dev_name);
1252 1253 1254 1255 1256
			kfree(node);
		}
	}
}

1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305
#ifdef CONFIG_DEBUG_FS
static ssize_t constraint_flags_read_file(struct file *file,
					  char __user *user_buf,
					  size_t count, loff_t *ppos)
{
	const struct regulator *regulator = file->private_data;
	const struct regulation_constraints *c = regulator->rdev->constraints;
	char *buf;
	ssize_t ret;

	if (!c)
		return 0;

	buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
	if (!buf)
		return -ENOMEM;

	ret = snprintf(buf, PAGE_SIZE,
			"always_on: %u\n"
			"boot_on: %u\n"
			"apply_uV: %u\n"
			"ramp_disable: %u\n"
			"soft_start: %u\n"
			"pull_down: %u\n"
			"over_current_protection: %u\n",
			c->always_on,
			c->boot_on,
			c->apply_uV,
			c->ramp_disable,
			c->soft_start,
			c->pull_down,
			c->over_current_protection);

	ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
	kfree(buf);

	return ret;
}

#endif

static const struct file_operations constraint_flags_fops = {
#ifdef CONFIG_DEBUG_FS
	.open = simple_open,
	.read = constraint_flags_read_file,
	.llseek = default_llseek,
#endif
};

1306
#define REG_STR_SIZE	64
1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324

static struct regulator *create_regulator(struct regulator_dev *rdev,
					  struct device *dev,
					  const char *supply_name)
{
	struct regulator *regulator;
	char buf[REG_STR_SIZE];
	int err, size;

	regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
	if (regulator == NULL)
		return NULL;

	mutex_lock(&rdev->mutex);
	regulator->rdev = rdev;
	list_add(&regulator->list, &rdev->consumer_list);

	if (dev) {
1325 1326
		regulator->dev = dev;

1327
		/* Add a link to the device sysfs entry */
1328 1329 1330
		size = scnprintf(buf, REG_STR_SIZE, "%s-%s",
				 dev->kobj.name, supply_name);
		if (size >= REG_STR_SIZE)
1331
			goto overflow_err;
1332 1333 1334

		regulator->supply_name = kstrdup(buf, GFP_KERNEL);
		if (regulator->supply_name == NULL)
1335
			goto overflow_err;
1336

1337
		err = sysfs_create_link_nowarn(&rdev->dev.kobj, &dev->kobj,
1338 1339
					buf);
		if (err) {
1340
			rdev_dbg(rdev, "could not add device link %s err %d\n",
1341
				  dev->kobj.name, err);
1342
			/* non-fatal */
1343
		}
1344 1345 1346
	} else {
		regulator->supply_name = kstrdup(supply_name, GFP_KERNEL);
		if (regulator->supply_name == NULL)
1347
			goto overflow_err;
1348 1349 1350 1351
	}

	regulator->debugfs = debugfs_create_dir(regulator->supply_name,
						rdev->debugfs);
1352
	if (!regulator->debugfs) {
1353
		rdev_dbg(rdev, "Failed to create debugfs directory\n");
1354 1355 1356 1357 1358 1359 1360
	} else {
		debugfs_create_u32("uA_load", 0444, regulator->debugfs,
				   &regulator->uA_load);
		debugfs_create_u32("min_uV", 0444, regulator->debugfs,
				   &regulator->min_uV);
		debugfs_create_u32("max_uV", 0444, regulator->debugfs,
				   &regulator->max_uV);
1361 1362 1363
		debugfs_create_file("constraint_flags", 0444,
				    regulator->debugfs, regulator,
				    &constraint_flags_fops);
1364
	}
1365

1366 1367 1368 1369 1370
	/*
	 * Check now if the regulator is an always on regulator - if
	 * it is then we don't need to do nearly so much work for
	 * enable/disable calls.
	 */
1371
	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS) &&
1372 1373 1374
	    _regulator_is_enabled(rdev))
		regulator->always_on = true;

1375 1376 1377 1378 1379 1380 1381 1382 1383
	mutex_unlock(&rdev->mutex);
	return regulator;
overflow_err:
	list_del(&regulator->list);
	kfree(regulator);
	mutex_unlock(&rdev->mutex);
	return NULL;
}

1384 1385
static int _regulator_get_enable_time(struct regulator_dev *rdev)
{
1386 1387
	if (rdev->constraints && rdev->constraints->enable_time)
		return rdev->constraints->enable_time;
1388
	if (!rdev->desc->ops->enable_time)
1389
		return rdev->desc->enable_time;
1390 1391 1392
	return rdev->desc->ops->enable_time(rdev);
}

1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418
static struct regulator_supply_alias *regulator_find_supply_alias(
		struct device *dev, const char *supply)
{
	struct regulator_supply_alias *map;

	list_for_each_entry(map, &regulator_supply_alias_list, list)
		if (map->src_dev == dev && strcmp(map->src_supply, supply) == 0)
			return map;

	return NULL;
}

static void regulator_supply_alias(struct device **dev, const char **supply)
{
	struct regulator_supply_alias *map;

	map = regulator_find_supply_alias(*dev, *supply);
	if (map) {
		dev_dbg(*dev, "Mapping supply %s to %s,%s\n",
				*supply, map->alias_supply,
				dev_name(map->alias_dev));
		*dev = map->alias_dev;
		*supply = map->alias_supply;
	}
}

1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459
static int of_node_match(struct device *dev, const void *data)
{
	return dev->of_node == data;
}

static struct regulator_dev *of_find_regulator_by_node(struct device_node *np)
{
	struct device *dev;

	dev = class_find_device(&regulator_class, NULL, np, of_node_match);

	return dev ? dev_to_rdev(dev) : NULL;
}

static int regulator_match(struct device *dev, const void *data)
{
	struct regulator_dev *r = dev_to_rdev(dev);

	return strcmp(rdev_get_name(r), data) == 0;
}

static struct regulator_dev *regulator_lookup_by_name(const char *name)
{
	struct device *dev;

	dev = class_find_device(&regulator_class, NULL, name, regulator_match);

	return dev ? dev_to_rdev(dev) : NULL;
}

/**
 * regulator_dev_lookup - lookup a regulator device.
 * @dev: device for regulator "consumer".
 * @supply: Supply name or regulator ID.
 * @ret: 0 on success, -ENODEV if lookup fails permanently, -EPROBE_DEFER if
 * lookup could succeed in the future.
 *
 * If successful, returns a struct regulator_dev that corresponds to the name
 * @supply and with the embedded struct device refcount incremented by one,
 * or NULL on failure. The refcount must be dropped by calling put_device().
 */
1460
static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1461 1462
						  const char *supply,
						  int *ret)
1463 1464 1465
{
	struct regulator_dev *r;
	struct device_node *node;
1466 1467
	struct regulator_map *map;
	const char *devname = NULL;
1468

1469 1470
	regulator_supply_alias(&dev, &supply);

1471 1472 1473
	/* first do a dt based lookup */
	if (dev && dev->of_node) {
		node = of_get_regulator(dev, supply);
1474
		if (node) {
1475 1476 1477
			r = of_find_regulator_by_node(node);
			if (r)
				return r;
1478 1479
			*ret = -EPROBE_DEFER;
			return NULL;
1480 1481 1482 1483 1484 1485 1486 1487 1488
		} else {
			/*
			 * If we couldn't even get the node then it's
			 * not just that the device didn't register
			 * yet, there's no node and we'll never
			 * succeed.
			 */
			*ret = -ENODEV;
		}
1489 1490 1491
	}

	/* if not found, try doing it non-dt way */
1492 1493 1494
	if (dev)
		devname = dev_name(dev);

1495 1496 1497
	r = regulator_lookup_by_name(supply);
	if (r)
		return r;
1498

1499
	mutex_lock(&regulator_list_mutex);
1500 1501 1502 1503 1504 1505
	list_for_each_entry(map, &regulator_map_list, list) {
		/* If the mapping has a device set up it must match */
		if (map->dev_name &&
		    (!devname || strcmp(map->dev_name, devname)))
			continue;

1506 1507 1508
		if (strcmp(map->supply, supply) == 0 &&
		    get_device(&map->regulator->dev)) {
			mutex_unlock(&regulator_list_mutex);
1509
			return map->regulator;
1510
		}
1511
	}
1512
	mutex_unlock(&regulator_list_mutex);
1513

1514 1515 1516
	return NULL;
}

1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532
static int regulator_resolve_supply(struct regulator_dev *rdev)
{
	struct regulator_dev *r;
	struct device *dev = rdev->dev.parent;
	int ret;

	/* No supply to resovle? */
	if (!rdev->supply_name)
		return 0;

	/* Supply already resolved? */
	if (rdev->supply)
		return 0;

	r = regulator_dev_lookup(dev, rdev->supply_name, &ret);
	if (!r) {
1533 1534 1535 1536 1537 1538 1539 1540
		if (ret == -ENODEV) {
			/*
			 * No supply was specified for this regulator and
			 * there will never be one.
			 */
			return 0;
		}

1541 1542 1543 1544
		/* Did the lookup explicitly defer for us? */
		if (ret == -EPROBE_DEFER)
			return ret;

1545 1546
		if (have_full_constraints()) {
			r = dummy_regulator_rdev;
1547
			get_device(&r->dev);
1548 1549 1550 1551 1552
		} else {
			dev_err(dev, "Failed to resolve %s-supply for %s\n",
				rdev->supply_name, rdev->desc->name);
			return -EPROBE_DEFER;
		}
1553 1554 1555 1556
	}

	/* Recursively resolve the supply of the supply */
	ret = regulator_resolve_supply(r);
1557 1558
	if (ret < 0) {
		put_device(&r->dev);
1559
		return ret;
1560
	}
1561 1562

	ret = set_supply(rdev, r);
1563 1564
	if (ret < 0) {
		put_device(&r->dev);
1565
		return ret;
1566
	}
1567 1568

	/* Cascade always-on state to supply */
1569
	if (_regulator_is_enabled(rdev)) {
1570
		ret = regulator_enable(rdev->supply);
1571
		if (ret < 0) {
1572
			_regulator_put(rdev->supply);
1573
			rdev->supply = NULL;
1574
			return ret;
1575
		}
1576 1577 1578 1579 1580
	}

	return 0;
}

1581 1582
/* Internal regulator request function */
static struct regulator *_regulator_get(struct device *dev, const char *id,
1583
					bool exclusive, bool allow_dummy)
1584 1585
{
	struct regulator_dev *rdev;
1586
	struct regulator *regulator = ERR_PTR(-EPROBE_DEFER);
1587
	const char *devname = NULL;
1588
	int ret;
1589 1590

	if (id == NULL) {
1591
		pr_err("get() with no identifier\n");
1592
		return ERR_PTR(-EINVAL);
1593 1594
	}

1595 1596 1597
	if (dev)
		devname = dev_name(dev);

1598 1599 1600 1601 1602
	if (have_full_constraints())
		ret = -ENODEV;
	else
		ret = -EPROBE_DEFER;

1603
	rdev = regulator_dev_lookup(dev, id, &ret);
1604 1605 1606
	if (rdev)
		goto found;

1607 1608
	regulator = ERR_PTR(ret);

1609 1610 1611 1612
	/*
	 * If we have return value from dev_lookup fail, we do not expect to
	 * succeed, so, quit with appropriate error value
	 */
1613
	if (ret && ret != -ENODEV)
1614
		return regulator;
1615

1616 1617 1618
	if (!devname)
		devname = "deviceless";

1619 1620 1621
	/*
	 * Assume that a regulator is physically present and enabled
	 * even if it isn't hooked up and just provide a dummy.
1622
	 */
1623
	if (have_full_constraints() && allow_dummy) {
1624 1625
		pr_warn("%s supply %s not found, using dummy regulator\n",
			devname, id);
1626

1627
		rdev = dummy_regulator_rdev;
1628
		get_device(&rdev->dev);
1629
		goto found;
1630 1631
	/* Don't log an error when called from regulator_get_optional() */
	} else if (!have_full_constraints() || exclusive) {
1632
		dev_warn(dev, "dummy supplies not allowed\n");
1633 1634
	}

1635 1636 1637
	return regulator;

found:
1638 1639
	if (rdev->exclusive) {
		regulator = ERR_PTR(-EPERM);
1640 1641
		put_device(&rdev->dev);
		return regulator;
1642 1643 1644 1645
	}

	if (exclusive && rdev->open_count) {
		regulator = ERR_PTR(-EBUSY);
1646 1647
		put_device(&rdev->dev);
		return regulator;
1648 1649
	}

1650 1651 1652
	ret = regulator_resolve_supply(rdev);
	if (ret < 0) {
		regulator = ERR_PTR(ret);
1653 1654
		put_device(&rdev->dev);
		return regulator;
1655 1656
	}

1657 1658 1659 1660
	if (!try_module_get(rdev->owner)) {
		put_device(&rdev->dev);
		return regulator;
	}
1661

1662 1663 1664
	regulator = create_regulator(rdev, dev, id);
	if (regulator == NULL) {
		regulator = ERR_PTR(-ENOMEM);
1665
		put_device(&rdev->dev);
1666
		module_put(rdev->owner);
1667
		return regulator;
1668 1669
	}

1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680
	rdev->open_count++;
	if (exclusive) {
		rdev->exclusive = 1;

		ret = _regulator_is_enabled(rdev);
		if (ret > 0)
			rdev->use_count = 1;
		else
			rdev->use_count = 0;
	}

1681 1682
	return regulator;
}
1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698

/**
 * regulator_get - lookup and obtain a reference to a regulator.
 * @dev: device for regulator "consumer"
 * @id: Supply name or regulator ID.
 *
 * Returns a struct regulator corresponding to the regulator producer,
 * or IS_ERR() condition containing errno.
 *
 * Use of supply names configured via regulator_set_device_supply() is
 * strongly encouraged.  It is recommended that the supply name used
 * should match the name used for the supply and/or the relevant
 * device pins in the datasheet.
 */
struct regulator *regulator_get(struct device *dev, const char *id)
{
1699
	return _regulator_get(dev, id, false, true);
1700
}
1701 1702
EXPORT_SYMBOL_GPL(regulator_get);

1703 1704 1705 1706 1707 1708 1709
/**
 * regulator_get_exclusive - obtain exclusive access to a regulator.
 * @dev: device for regulator "consumer"
 * @id: Supply name or regulator ID.
 *
 * Returns a struct regulator corresponding to the regulator producer,
 * or IS_ERR() condition containing errno.  Other consumers will be
1710 1711 1712
 * unable to obtain this regulator while this reference is held and the
 * use count for the regulator will be initialised to reflect the current
 * state of the regulator.
1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725
 *
 * This is intended for use by consumers which cannot tolerate shared
 * use of the regulator such as those which need to force the
 * regulator off for correct operation of the hardware they are
 * controlling.
 *
 * Use of supply names configured via regulator_set_device_supply() is
 * strongly encouraged.  It is recommended that the supply name used
 * should match the name used for the supply and/or the relevant
 * device pins in the datasheet.
 */
struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
{
1726
	return _regulator_get(dev, id, true, false);
1727 1728 1729
}
EXPORT_SYMBOL_GPL(regulator_get_exclusive);

1730 1731 1732 1733 1734 1735
/**
 * regulator_get_optional - obtain optional access to a regulator.
 * @dev: device for regulator "consumer"
 * @id: Supply name or regulator ID.
 *
 * Returns a struct regulator corresponding to the regulator producer,
1736
 * or IS_ERR() condition containing errno.
1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751
 *
 * This is intended for use by consumers for devices which can have
 * some supplies unconnected in normal use, such as some MMC devices.
 * It can allow the regulator core to provide stub supplies for other
 * supplies requested using normal regulator_get() calls without
 * disrupting the operation of drivers that can handle absent
 * supplies.
 *
 * Use of supply names configured via regulator_set_device_supply() is
 * strongly encouraged.  It is recommended that the supply name used
 * should match the name used for the supply and/or the relevant
 * device pins in the datasheet.
 */
struct regulator *regulator_get_optional(struct device *dev, const char *id)
{
1752
	return _regulator_get(dev, id, false, false);
1753 1754 1755
}
EXPORT_SYMBOL_GPL(regulator_get_optional);

1756
/* regulator_list_mutex lock held by regulator_put() */
1757
static void _regulator_put(struct regulator *regulator)
1758 1759 1760
{
	struct regulator_dev *rdev;

1761
	if (IS_ERR_OR_NULL(regulator))
1762 1763
		return;

1764 1765
	lockdep_assert_held_once(&regulator_list_mutex);

1766 1767
	rdev = regulator->rdev;

1768 1769
	debugfs_remove_recursive(regulator->debugfs);

1770
	/* remove any sysfs entries */
1771
	if (regulator->dev)
1772
		sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
1773
	mutex_lock(&rdev->mutex);
1774 1775
	list_del(&regulator->list);

1776 1777
	rdev->open_count--;
	rdev->exclusive = 0;
1778
	put_device(&rdev->dev);
1779
	mutex_unlock(&rdev->mutex);
1780

1781 1782 1783
	kfree(regulator->supply_name);
	kfree(regulator);

1784
	module_put(rdev->owner);
1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798
}

/**
 * regulator_put - "free" the regulator source
 * @regulator: regulator source
 *
 * Note: drivers must ensure that all regulator_enable calls made on this
 * regulator source are balanced by regulator_disable calls prior to calling
 * this function.
 */
void regulator_put(struct regulator *regulator)
{
	mutex_lock(&regulator_list_mutex);
	_regulator_put(regulator);
1799 1800 1801 1802
	mutex_unlock(&regulator_list_mutex);
}
EXPORT_SYMBOL_GPL(regulator_put);

1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879
/**
 * regulator_register_supply_alias - Provide device alias for supply lookup
 *
 * @dev: device that will be given as the regulator "consumer"
 * @id: Supply name or regulator ID
 * @alias_dev: device that should be used to lookup the supply
 * @alias_id: Supply name or regulator ID that should be used to lookup the
 * supply
 *
 * All lookups for id on dev will instead be conducted for alias_id on
 * alias_dev.
 */
int regulator_register_supply_alias(struct device *dev, const char *id,
				    struct device *alias_dev,
				    const char *alias_id)
{
	struct regulator_supply_alias *map;

	map = regulator_find_supply_alias(dev, id);
	if (map)
		return -EEXIST;

	map = kzalloc(sizeof(struct regulator_supply_alias), GFP_KERNEL);
	if (!map)
		return -ENOMEM;

	map->src_dev = dev;
	map->src_supply = id;
	map->alias_dev = alias_dev;
	map->alias_supply = alias_id;

	list_add(&map->list, &regulator_supply_alias_list);

	pr_info("Adding alias for supply %s,%s -> %s,%s\n",
		id, dev_name(dev), alias_id, dev_name(alias_dev));

	return 0;
}
EXPORT_SYMBOL_GPL(regulator_register_supply_alias);

/**
 * regulator_unregister_supply_alias - Remove device alias
 *
 * @dev: device that will be given as the regulator "consumer"
 * @id: Supply name or regulator ID
 *
 * Remove a lookup alias if one exists for id on dev.
 */
void regulator_unregister_supply_alias(struct device *dev, const char *id)
{
	struct regulator_supply_alias *map;

	map = regulator_find_supply_alias(dev, id);
	if (map) {
		list_del(&map->list);
		kfree(map);
	}
}
EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias);

/**
 * regulator_bulk_register_supply_alias - register multiple aliases
 *
 * @dev: device that will be given as the regulator "consumer"
 * @id: List of supply names or regulator IDs
 * @alias_dev: device that should be used to lookup the supply
 * @alias_id: List of supply names or regulator IDs that should be used to
 * lookup the supply
 * @num_id: Number of aliases to register
 *
 * @return 0 on success, an errno on failure.
 *
 * This helper function allows drivers to register several supply
 * aliases in one operation.  If any of the aliases cannot be
 * registered any aliases that were registered will be removed
 * before returning to the caller.
 */
1880 1881
int regulator_bulk_register_supply_alias(struct device *dev,
					 const char *const *id,
1882
					 struct device *alias_dev,
1883
					 const char *const *alias_id,
1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920
					 int num_id)
{
	int i;
	int ret;

	for (i = 0; i < num_id; ++i) {
		ret = regulator_register_supply_alias(dev, id[i], alias_dev,
						      alias_id[i]);
		if (ret < 0)
			goto err;
	}

	return 0;

err:
	dev_err(dev,
		"Failed to create supply alias %s,%s -> %s,%s\n",
		id[i], dev_name(dev), alias_id[i], dev_name(alias_dev));

	while (--i >= 0)
		regulator_unregister_supply_alias(dev, id[i]);

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias);

/**
 * regulator_bulk_unregister_supply_alias - unregister multiple aliases
 *
 * @dev: device that will be given as the regulator "consumer"
 * @id: List of supply names or regulator IDs
 * @num_id: Number of aliases to unregister
 *
 * This helper function allows drivers to unregister several supply
 * aliases in one operation.
 */
void regulator_bulk_unregister_supply_alias(struct device *dev,
1921
					    const char *const *id,
1922 1923 1924 1925 1926 1927 1928 1929 1930 1931
					    int num_id)
{
	int i;

	for (i = 0; i < num_id; ++i)
		regulator_unregister_supply_alias(dev, id[i]);
}
EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias);


1932 1933 1934 1935 1936
/* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
static int regulator_ena_gpio_request(struct regulator_dev *rdev,
				const struct regulator_config *config)
{
	struct regulator_enable_gpio *pin;
1937
	struct gpio_desc *gpiod;
1938 1939
	int ret;

1940 1941
	gpiod = gpio_to_desc(config->ena_gpio);

1942
	list_for_each_entry(pin, &regulator_ena_gpio_list, list) {
1943
		if (pin->gpiod == gpiod) {
1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961
			rdev_dbg(rdev, "GPIO %d is already used\n",
				config->ena_gpio);
			goto update_ena_gpio_to_rdev;
		}
	}

	ret = gpio_request_one(config->ena_gpio,
				GPIOF_DIR_OUT | config->ena_gpio_flags,
				rdev_get_name(rdev));
	if (ret)
		return ret;

	pin = kzalloc(sizeof(struct regulator_enable_gpio), GFP_KERNEL);
	if (pin == NULL) {
		gpio_free(config->ena_gpio);
		return -ENOMEM;
	}

1962
	pin->gpiod = gpiod;
1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980
	pin->ena_gpio_invert = config->ena_gpio_invert;
	list_add(&pin->list, &regulator_ena_gpio_list);

update_ena_gpio_to_rdev:
	pin->request_count++;
	rdev->ena_pin = pin;
	return 0;
}

static void regulator_ena_gpio_free(struct regulator_dev *rdev)
{
	struct regulator_enable_gpio *pin, *n;

	if (!rdev->ena_pin)
		return;

	/* Free the GPIO only in case of no use */
	list_for_each_entry_safe(pin, n, &regulator_ena_gpio_list, list) {
1981
		if (pin->gpiod == rdev->ena_pin->gpiod) {
1982 1983
			if (pin->request_count <= 1) {
				pin->request_count = 0;
1984
				gpiod_put(pin->gpiod);
1985 1986
				list_del(&pin->list);
				kfree(pin);
1987 1988
				rdev->ena_pin = NULL;
				return;
1989 1990 1991 1992 1993 1994 1995
			} else {
				pin->request_count--;
			}
		}
	}
}

1996
/**
1997 1998 1999 2000
 * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control
 * @rdev: regulator_dev structure
 * @enable: enable GPIO at initial use?
 *
2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013
 * GPIO is enabled in case of initial use. (enable_count is 0)
 * GPIO is disabled when it is not shared any more. (enable_count <= 1)
 */
static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable)
{
	struct regulator_enable_gpio *pin = rdev->ena_pin;

	if (!pin)
		return -EINVAL;

	if (enable) {
		/* Enable GPIO at initial use */
		if (pin->enable_count == 0)
2014 2015
			gpiod_set_value_cansleep(pin->gpiod,
						 !pin->ena_gpio_invert);
2016 2017 2018 2019 2020 2021 2022 2023 2024 2025

		pin->enable_count++;
	} else {
		if (pin->enable_count > 1) {
			pin->enable_count--;
			return 0;
		}

		/* Disable GPIO if not used */
		if (pin->enable_count <= 1) {
2026 2027
			gpiod_set_value_cansleep(pin->gpiod,
						 pin->ena_gpio_invert);
2028 2029 2030 2031 2032 2033 2034
			pin->enable_count = 0;
		}
	}

	return 0;
}

2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073
/**
 * _regulator_enable_delay - a delay helper function
 * @delay: time to delay in microseconds
 *
 * Delay for the requested amount of time as per the guidelines in:
 *
 *     Documentation/timers/timers-howto.txt
 *
 * The assumption here is that regulators will never be enabled in
 * atomic context and therefore sleeping functions can be used.
 */
static void _regulator_enable_delay(unsigned int delay)
{
	unsigned int ms = delay / 1000;
	unsigned int us = delay % 1000;

	if (ms > 0) {
		/*
		 * For small enough values, handle super-millisecond
		 * delays in the usleep_range() call below.
		 */
		if (ms < 20)
			us += ms * 1000;
		else
			msleep(ms);
	}

	/*
	 * Give the scheduler some room to coalesce with any other
	 * wakeup sources. For delays shorter than 10 us, don't even
	 * bother setting up high-resolution timers and just busy-
	 * loop.
	 */
	if (us >= 10)
		usleep_range(us, us + 100);
	else
		udelay(us);
}

2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088
static int _regulator_do_enable(struct regulator_dev *rdev)
{
	int ret, delay;

	/* Query before enabling in case configuration dependent.  */
	ret = _regulator_get_enable_time(rdev);
	if (ret >= 0) {
		delay = ret;
	} else {
		rdev_warn(rdev, "enable_time() failed: %d\n", ret);
		delay = 0;
	}

	trace_regulator_enable(rdev_get_name(rdev));

2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113
	if (rdev->desc->off_on_delay) {
		/* if needed, keep a distance of off_on_delay from last time
		 * this regulator was disabled.
		 */
		unsigned long start_jiffy = jiffies;
		unsigned long intended, max_delay, remaining;

		max_delay = usecs_to_jiffies(rdev->desc->off_on_delay);
		intended = rdev->last_off_jiffy + max_delay;

		if (time_before(start_jiffy, intended)) {
			/* calc remaining jiffies to deal with one-time
			 * timer wrapping.
			 * in case of multiple timer wrapping, either it can be
			 * detected by out-of-range remaining, or it cannot be
			 * detected and we gets a panelty of
			 * _regulator_enable_delay().
			 */
			remaining = intended - start_jiffy;
			if (remaining <= max_delay)
				_regulator_enable_delay(
						jiffies_to_usecs(remaining));
		}
	}

2114
	if (rdev->ena_pin) {
2115 2116 2117 2118 2119 2120
		if (!rdev->ena_gpio_state) {
			ret = regulator_ena_gpio_ctrl(rdev, true);
			if (ret < 0)
				return ret;
			rdev->ena_gpio_state = 1;
		}
2121
	} else if (rdev->desc->ops->enable) {
2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133
		ret = rdev->desc->ops->enable(rdev);
		if (ret < 0)
			return ret;
	} else {
		return -EINVAL;
	}

	/* Allow the regulator to ramp; it would be useful to extend
	 * this for bulk operations so that the regulators can ramp
	 * together.  */
	trace_regulator_enable_delay(rdev_get_name(rdev));

2134
	_regulator_enable_delay(delay);
2135 2136 2137 2138 2139 2140

	trace_regulator_enable_complete(rdev_get_name(rdev));

	return 0;
}

2141 2142 2143
/* locks held by regulator_enable() */
static int _regulator_enable(struct regulator_dev *rdev)
{
2144
	int ret;
2145

2146 2147
	lockdep_assert_held_once(&rdev->mutex);

2148
	/* check voltage and requested load before enabling */
2149
	if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS))
2150
		drms_uA_update(rdev);
2151

2152 2153 2154 2155
	if (rdev->use_count == 0) {
		/* The regulator may on if it's not switchable or left on */
		ret = _regulator_is_enabled(rdev);
		if (ret == -EINVAL || ret == 0) {
2156 2157
			if (!regulator_ops_is_valid(rdev,
					REGULATOR_CHANGE_STATUS))
2158 2159
				return -EPERM;

2160
			ret = _regulator_do_enable(rdev);
2161 2162 2163
			if (ret < 0)
				return ret;

2164
		} else if (ret < 0) {
2165
			rdev_err(rdev, "is_enabled() failed: %d\n", ret);
2166 2167
			return ret;
		}
2168
		/* Fallthrough on positive return values - already enabled */
2169 2170
	}

2171 2172 2173
	rdev->use_count++;

	return 0;
2174 2175 2176 2177 2178 2179
}

/**
 * regulator_enable - enable regulator output
 * @regulator: regulator source
 *
2180 2181 2182 2183
 * Request that the regulator be enabled with the regulator output at
 * the predefined voltage or current value.  Calls to regulator_enable()
 * must be balanced with calls to regulator_disable().
 *
2184
 * NOTE: the output value can be set by other drivers, boot loader or may be
2185
 * hardwired in the regulator.
2186 2187 2188
 */
int regulator_enable(struct regulator *regulator)
{
2189 2190
	struct regulator_dev *rdev = regulator->rdev;
	int ret = 0;
2191

2192 2193 2194
	if (regulator->always_on)
		return 0;

2195 2196 2197 2198 2199 2200
	if (rdev->supply) {
		ret = regulator_enable(rdev->supply);
		if (ret != 0)
			return ret;
	}

2201
	mutex_lock(&rdev->mutex);
D
David Brownell 已提交
2202
	ret = _regulator_enable(rdev);
2203
	mutex_unlock(&rdev->mutex);
2204

2205
	if (ret != 0 && rdev->supply)
2206 2207
		regulator_disable(rdev->supply);

2208 2209 2210 2211
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_enable);

2212 2213 2214 2215 2216 2217
static int _regulator_do_disable(struct regulator_dev *rdev)
{
	int ret;

	trace_regulator_disable(rdev_get_name(rdev));

2218
	if (rdev->ena_pin) {
2219 2220 2221 2222 2223 2224
		if (rdev->ena_gpio_state) {
			ret = regulator_ena_gpio_ctrl(rdev, false);
			if (ret < 0)
				return ret;
			rdev->ena_gpio_state = 0;
		}
2225 2226 2227 2228 2229 2230 2231

	} else if (rdev->desc->ops->disable) {
		ret = rdev->desc->ops->disable(rdev);
		if (ret != 0)
			return ret;
	}

2232 2233 2234 2235 2236 2237
	/* cares about last_off_jiffy only if off_on_delay is required by
	 * device.
	 */
	if (rdev->desc->off_on_delay)
		rdev->last_off_jiffy = jiffies;

2238 2239 2240 2241 2242
	trace_regulator_disable_complete(rdev_get_name(rdev));

	return 0;
}

2243
/* locks held by regulator_disable() */
2244
static int _regulator_disable(struct regulator_dev *rdev)
2245 2246 2247
{
	int ret = 0;

2248 2249
	lockdep_assert_held_once(&rdev->mutex);

D
David Brownell 已提交
2250
	if (WARN(rdev->use_count <= 0,
2251
		 "unbalanced disables for %s\n", rdev_get_name(rdev)))
D
David Brownell 已提交
2252 2253
		return -EIO;

2254
	/* are we the last user and permitted to disable ? */
2255 2256
	if (rdev->use_count == 1 &&
	    (rdev->constraints && !rdev->constraints->always_on)) {
2257 2258

		/* we are last user */
2259
		if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS)) {
2260 2261 2262 2263 2264 2265
			ret = _notifier_call_chain(rdev,
						   REGULATOR_EVENT_PRE_DISABLE,
						   NULL);
			if (ret & NOTIFY_STOP_MASK)
				return -EINVAL;

2266
			ret = _regulator_do_disable(rdev);
2267
			if (ret < 0) {
2268
				rdev_err(rdev, "failed to disable\n");
2269 2270 2271
				_notifier_call_chain(rdev,
						REGULATOR_EVENT_ABORT_DISABLE,
						NULL);
2272 2273
				return ret;
			}
2274 2275
			_notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
					NULL);
2276 2277 2278 2279
		}

		rdev->use_count = 0;
	} else if (rdev->use_count > 1) {
2280
		if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS))
2281 2282 2283 2284
			drms_uA_update(rdev);

		rdev->use_count--;
	}
2285

2286 2287 2288 2289 2290 2291 2292
	return ret;
}

/**
 * regulator_disable - disable regulator output
 * @regulator: regulator source
 *
2293 2294 2295
 * Disable the regulator output voltage or current.  Calls to
 * regulator_enable() must be balanced with calls to
 * regulator_disable().
2296
 *
2297
 * NOTE: this will only disable the regulator output if no other consumer
2298 2299
 * devices have it enabled, the regulator device supports disabling and
 * machine constraints permit this operation.
2300 2301 2302
 */
int regulator_disable(struct regulator *regulator)
{
2303 2304
	struct regulator_dev *rdev = regulator->rdev;
	int ret = 0;
2305

2306 2307 2308
	if (regulator->always_on)
		return 0;

2309
	mutex_lock(&rdev->mutex);
2310
	ret = _regulator_disable(rdev);
2311
	mutex_unlock(&rdev->mutex);
2312

2313 2314
	if (ret == 0 && rdev->supply)
		regulator_disable(rdev->supply);
2315

2316 2317 2318 2319 2320
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_disable);

/* locks held by regulator_force_disable() */
2321
static int _regulator_force_disable(struct regulator_dev *rdev)
2322 2323 2324
{
	int ret = 0;

2325 2326
	lockdep_assert_held_once(&rdev->mutex);

2327 2328 2329 2330 2331
	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
			REGULATOR_EVENT_PRE_DISABLE, NULL);
	if (ret & NOTIFY_STOP_MASK)
		return -EINVAL;

2332 2333 2334
	ret = _regulator_do_disable(rdev);
	if (ret < 0) {
		rdev_err(rdev, "failed to force disable\n");
2335 2336
		_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
				REGULATOR_EVENT_ABORT_DISABLE, NULL);
2337
		return ret;
2338 2339
	}

2340 2341 2342 2343
	_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
			REGULATOR_EVENT_DISABLE, NULL);

	return 0;
2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356
}

/**
 * regulator_force_disable - force disable regulator output
 * @regulator: regulator source
 *
 * Forcibly disable the regulator output voltage or current.
 * NOTE: this *will* disable the regulator output even if other consumer
 * devices have it enabled. This should be used for situations when device
 * damage will likely occur if the regulator is not disabled (e.g. over temp).
 */
int regulator_force_disable(struct regulator *regulator)
{
2357
	struct regulator_dev *rdev = regulator->rdev;
2358 2359
	int ret;

2360
	mutex_lock(&rdev->mutex);
2361
	regulator->uA_load = 0;
2362
	ret = _regulator_force_disable(regulator->rdev);
2363
	mutex_unlock(&rdev->mutex);
2364

2365 2366 2367
	if (rdev->supply)
		while (rdev->open_count--)
			regulator_disable(rdev->supply);
2368

2369 2370 2371 2372
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_force_disable);

2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420
static void regulator_disable_work(struct work_struct *work)
{
	struct regulator_dev *rdev = container_of(work, struct regulator_dev,
						  disable_work.work);
	int count, i, ret;

	mutex_lock(&rdev->mutex);

	BUG_ON(!rdev->deferred_disables);

	count = rdev->deferred_disables;
	rdev->deferred_disables = 0;

	for (i = 0; i < count; i++) {
		ret = _regulator_disable(rdev);
		if (ret != 0)
			rdev_err(rdev, "Deferred disable failed: %d\n", ret);
	}

	mutex_unlock(&rdev->mutex);

	if (rdev->supply) {
		for (i = 0; i < count; i++) {
			ret = regulator_disable(rdev->supply);
			if (ret != 0) {
				rdev_err(rdev,
					 "Supply disable failed: %d\n", ret);
			}
		}
	}
}

/**
 * regulator_disable_deferred - disable regulator output with delay
 * @regulator: regulator source
 * @ms: miliseconds until the regulator is disabled
 *
 * Execute regulator_disable() on the regulator after a delay.  This
 * is intended for use with devices that require some time to quiesce.
 *
 * NOTE: this will only disable the regulator output if no other consumer
 * devices have it enabled, the regulator device supports disabling and
 * machine constraints permit this operation.
 */
int regulator_disable_deferred(struct regulator *regulator, int ms)
{
	struct regulator_dev *rdev = regulator->rdev;

2421 2422 2423
	if (regulator->always_on)
		return 0;

2424 2425 2426
	if (!ms)
		return regulator_disable(regulator);

2427 2428 2429 2430
	mutex_lock(&rdev->mutex);
	rdev->deferred_disables++;
	mutex_unlock(&rdev->mutex);

2431 2432 2433
	queue_delayed_work(system_power_efficient_wq, &rdev->disable_work,
			   msecs_to_jiffies(ms));
	return 0;
2434 2435 2436
}
EXPORT_SYMBOL_GPL(regulator_disable_deferred);

2437 2438
static int _regulator_is_enabled(struct regulator_dev *rdev)
{
2439
	/* A GPIO control always takes precedence */
2440
	if (rdev->ena_pin)
2441 2442
		return rdev->ena_gpio_state;

2443
	/* If we don't know then assume that the regulator is always on */
2444
	if (!rdev->desc->ops->is_enabled)
2445
		return 1;
2446

2447
	return rdev->desc->ops->is_enabled(rdev);
2448 2449
}

2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483
static int _regulator_list_voltage(struct regulator *regulator,
				    unsigned selector, int lock)
{
	struct regulator_dev *rdev = regulator->rdev;
	const struct regulator_ops *ops = rdev->desc->ops;
	int ret;

	if (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1 && !selector)
		return rdev->desc->fixed_uV;

	if (ops->list_voltage) {
		if (selector >= rdev->desc->n_voltages)
			return -EINVAL;
		if (lock)
			mutex_lock(&rdev->mutex);
		ret = ops->list_voltage(rdev, selector);
		if (lock)
			mutex_unlock(&rdev->mutex);
	} else if (rdev->supply) {
		ret = _regulator_list_voltage(rdev->supply, selector, lock);
	} else {
		return -EINVAL;
	}

	if (ret > 0) {
		if (ret < rdev->constraints->min_uV)
			ret = 0;
		else if (ret > rdev->constraints->max_uV)
			ret = 0;
	}

	return ret;
}

2484 2485 2486 2487
/**
 * regulator_is_enabled - is the regulator output enabled
 * @regulator: regulator source
 *
2488 2489 2490 2491 2492 2493 2494
 * Returns positive if the regulator driver backing the source/client
 * has requested that the device be enabled, zero if it hasn't, else a
 * negative errno code.
 *
 * Note that the device backing this regulator handle can have multiple
 * users, so it might be enabled even if regulator_enable() was never
 * called for this particular source.
2495 2496 2497
 */
int regulator_is_enabled(struct regulator *regulator)
{
2498 2499
	int ret;

2500 2501 2502
	if (regulator->always_on)
		return 1;

2503 2504 2505 2506 2507
	mutex_lock(&regulator->rdev->mutex);
	ret = _regulator_is_enabled(regulator->rdev);
	mutex_unlock(&regulator->rdev->mutex);

	return ret;
2508 2509 2510
}
EXPORT_SYMBOL_GPL(regulator_is_enabled);

2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522
/**
 * regulator_count_voltages - count regulator_list_voltage() selectors
 * @regulator: regulator source
 *
 * Returns number of selectors, or negative errno.  Selectors are
 * numbered starting at zero, and typically correspond to bitfields
 * in hardware registers.
 */
int regulator_count_voltages(struct regulator *regulator)
{
	struct regulator_dev	*rdev = regulator->rdev;

2523 2524 2525 2526 2527 2528 2529
	if (rdev->desc->n_voltages)
		return rdev->desc->n_voltages;

	if (!rdev->supply)
		return -EINVAL;

	return regulator_count_voltages(rdev->supply);
2530 2531 2532 2533 2534 2535 2536 2537 2538 2539
}
EXPORT_SYMBOL_GPL(regulator_count_voltages);

/**
 * regulator_list_voltage - enumerate supported voltages
 * @regulator: regulator source
 * @selector: identify voltage to list
 * Context: can sleep
 *
 * Returns a voltage that can be passed to @regulator_set_voltage(),
T
Thomas Weber 已提交
2540
 * zero if this selector code can't be used on this system, or a
2541 2542 2543 2544
 * negative errno.
 */
int regulator_list_voltage(struct regulator *regulator, unsigned selector)
{
2545
	return _regulator_list_voltage(regulator, selector, 1);
2546 2547 2548
}
EXPORT_SYMBOL_GPL(regulator_list_voltage);

2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580
/**
 * regulator_get_regmap - get the regulator's register map
 * @regulator: regulator source
 *
 * Returns the register map for the given regulator, or an ERR_PTR value
 * if the regulator doesn't use regmap.
 */
struct regmap *regulator_get_regmap(struct regulator *regulator)
{
	struct regmap *map = regulator->rdev->regmap;

	return map ? map : ERR_PTR(-EOPNOTSUPP);
}

/**
 * regulator_get_hardware_vsel_register - get the HW voltage selector register
 * @regulator: regulator source
 * @vsel_reg: voltage selector register, output parameter
 * @vsel_mask: mask for voltage selector bitfield, output parameter
 *
 * Returns the hardware register offset and bitmask used for setting the
 * regulator voltage. This might be useful when configuring voltage-scaling
 * hardware or firmware that can make I2C requests behind the kernel's back,
 * for example.
 *
 * On success, the output parameters @vsel_reg and @vsel_mask are filled in
 * and 0 is returned, otherwise a negative errno is returned.
 */
int regulator_get_hardware_vsel_register(struct regulator *regulator,
					 unsigned *vsel_reg,
					 unsigned *vsel_mask)
{
2581 2582
	struct regulator_dev *rdev = regulator->rdev;
	const struct regulator_ops *ops = rdev->desc->ops;
2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607

	if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
		return -EOPNOTSUPP;

	 *vsel_reg = rdev->desc->vsel_reg;
	 *vsel_mask = rdev->desc->vsel_mask;

	 return 0;
}
EXPORT_SYMBOL_GPL(regulator_get_hardware_vsel_register);

/**
 * regulator_list_hardware_vsel - get the HW-specific register value for a selector
 * @regulator: regulator source
 * @selector: identify voltage to list
 *
 * Converts the selector to a hardware-specific voltage selector that can be
 * directly written to the regulator registers. The address of the voltage
 * register can be determined by calling @regulator_get_hardware_vsel_register.
 *
 * On error a negative errno is returned.
 */
int regulator_list_hardware_vsel(struct regulator *regulator,
				 unsigned selector)
{
2608 2609
	struct regulator_dev *rdev = regulator->rdev;
	const struct regulator_ops *ops = rdev->desc->ops;
2610 2611 2612 2613 2614 2615 2616 2617 2618 2619

	if (selector >= rdev->desc->n_voltages)
		return -EINVAL;
	if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
		return -EOPNOTSUPP;

	return selector;
}
EXPORT_SYMBOL_GPL(regulator_list_hardware_vsel);

2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634
/**
 * regulator_get_linear_step - return the voltage step size between VSEL values
 * @regulator: regulator source
 *
 * Returns the voltage step size between VSEL values for linear
 * regulators, or return 0 if the regulator isn't a linear regulator.
 */
unsigned int regulator_get_linear_step(struct regulator *regulator)
{
	struct regulator_dev *rdev = regulator->rdev;

	return rdev->desc->uV_step;
}
EXPORT_SYMBOL_GPL(regulator_get_linear_step);

2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646
/**
 * regulator_is_supported_voltage - check if a voltage range can be supported
 *
 * @regulator: Regulator to check.
 * @min_uV: Minimum required voltage in uV.
 * @max_uV: Maximum required voltage in uV.
 *
 * Returns a boolean or a negative error code.
 */
int regulator_is_supported_voltage(struct regulator *regulator,
				   int min_uV, int max_uV)
{
2647
	struct regulator_dev *rdev = regulator->rdev;
2648 2649
	int i, voltages, ret;

2650
	/* If we can't change voltage check the current voltage */
2651
	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
2652 2653
		ret = regulator_get_voltage(regulator);
		if (ret >= 0)
2654
			return min_uV <= ret && ret <= max_uV;
2655 2656 2657 2658
		else
			return ret;
	}

2659 2660 2661 2662 2663
	/* Any voltage within constrains range is fine? */
	if (rdev->desc->continuous_voltage_range)
		return min_uV >= rdev->constraints->min_uV &&
				max_uV <= rdev->constraints->max_uV;

2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677
	ret = regulator_count_voltages(regulator);
	if (ret < 0)
		return ret;
	voltages = ret;

	for (i = 0; i < voltages; i++) {
		ret = regulator_list_voltage(regulator, i);

		if (ret >= min_uV && ret <= max_uV)
			return 1;
	}

	return 0;
}
2678
EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
2679

2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696
static int regulator_map_voltage(struct regulator_dev *rdev, int min_uV,
				 int max_uV)
{
	const struct regulator_desc *desc = rdev->desc;

	if (desc->ops->map_voltage)
		return desc->ops->map_voltage(rdev, min_uV, max_uV);

	if (desc->ops->list_voltage == regulator_list_voltage_linear)
		return regulator_map_voltage_linear(rdev, min_uV, max_uV);

	if (desc->ops->list_voltage == regulator_list_voltage_linear_range)
		return regulator_map_voltage_linear_range(rdev, min_uV, max_uV);

	return regulator_map_voltage_iterate(rdev, min_uV, max_uV);
}

2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745
static int _regulator_call_set_voltage(struct regulator_dev *rdev,
				       int min_uV, int max_uV,
				       unsigned *selector)
{
	struct pre_voltage_change_data data;
	int ret;

	data.old_uV = _regulator_get_voltage(rdev);
	data.min_uV = min_uV;
	data.max_uV = max_uV;
	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
				   &data);
	if (ret & NOTIFY_STOP_MASK)
		return -EINVAL;

	ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV, selector);
	if (ret >= 0)
		return ret;

	_notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
			     (void *)data.old_uV);

	return ret;
}

static int _regulator_call_set_voltage_sel(struct regulator_dev *rdev,
					   int uV, unsigned selector)
{
	struct pre_voltage_change_data data;
	int ret;

	data.old_uV = _regulator_get_voltage(rdev);
	data.min_uV = uV;
	data.max_uV = uV;
	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
				   &data);
	if (ret & NOTIFY_STOP_MASK)
		return -EINVAL;

	ret = rdev->desc->ops->set_voltage_sel(rdev, selector);
	if (ret >= 0)
		return ret;

	_notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
			     (void *)data.old_uV);

	return ret;
}

2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756
static int _regulator_set_voltage_time(struct regulator_dev *rdev,
				       int old_uV, int new_uV)
{
	unsigned int ramp_delay = 0;

	if (rdev->constraints->ramp_delay)
		ramp_delay = rdev->constraints->ramp_delay;
	else if (rdev->desc->ramp_delay)
		ramp_delay = rdev->desc->ramp_delay;

	if (ramp_delay == 0) {
2757
		rdev_dbg(rdev, "ramp_delay not set\n");
2758 2759 2760 2761 2762 2763
		return 0;
	}

	return DIV_ROUND_UP(abs(new_uV - old_uV), ramp_delay);
}

2764 2765 2766 2767
static int _regulator_do_set_voltage(struct regulator_dev *rdev,
				     int min_uV, int max_uV)
{
	int ret;
2768
	int delay = 0;
2769
	int best_val = 0;
2770
	unsigned int selector;
2771
	int old_selector = -1;
2772
	const struct regulator_ops *ops = rdev->desc->ops;
2773
	int old_uV = _regulator_get_voltage(rdev);
2774 2775 2776

	trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);

2777 2778 2779
	min_uV += rdev->constraints->uV_offset;
	max_uV += rdev->constraints->uV_offset;

2780 2781 2782 2783
	/*
	 * If we can't obtain the old selector there is not enough
	 * info to call set_voltage_time_sel().
	 */
2784
	if (_regulator_is_enabled(rdev) &&
2785 2786
	    ops->set_voltage_time_sel && ops->get_voltage_sel) {
		old_selector = ops->get_voltage_sel(rdev);
2787 2788 2789 2790
		if (old_selector < 0)
			return old_selector;
	}

2791
	if (ops->set_voltage) {
2792 2793
		ret = _regulator_call_set_voltage(rdev, min_uV, max_uV,
						  &selector);
2794 2795

		if (ret >= 0) {
2796 2797 2798
			if (ops->list_voltage)
				best_val = ops->list_voltage(rdev,
							     selector);
2799 2800 2801 2802
			else
				best_val = _regulator_get_voltage(rdev);
		}

2803
	} else if (ops->set_voltage_sel) {
2804
		ret = regulator_map_voltage(rdev, min_uV, max_uV);
2805
		if (ret >= 0) {
2806
			best_val = ops->list_voltage(rdev, ret);
2807 2808
			if (min_uV <= best_val && max_uV >= best_val) {
				selector = ret;
2809 2810 2811
				if (old_selector == selector)
					ret = 0;
				else
2812 2813
					ret = _regulator_call_set_voltage_sel(
						rdev, best_val, selector);
2814 2815 2816
			} else {
				ret = -EINVAL;
			}
2817
		}
2818 2819 2820
	} else {
		ret = -EINVAL;
	}
2821

2822 2823
	if (ret)
		goto out;
2824

2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841
	if (ops->set_voltage_time_sel) {
		/*
		 * Call set_voltage_time_sel if successfully obtained
		 * old_selector
		 */
		if (old_selector >= 0 && old_selector != selector)
			delay = ops->set_voltage_time_sel(rdev, old_selector,
							  selector);
	} else {
		if (old_uV != best_val) {
			if (ops->set_voltage_time)
				delay = ops->set_voltage_time(rdev, old_uV,
							      best_val);
			else
				delay = _regulator_set_voltage_time(rdev,
								    old_uV,
								    best_val);
2842
		}
2843
	}
2844

2845 2846 2847
	if (delay < 0) {
		rdev_warn(rdev, "failed to get delay: %d\n", delay);
		delay = 0;
2848 2849
	}

2850 2851 2852 2853 2854 2855
	/* Insert any necessary delays */
	if (delay >= 1000) {
		mdelay(delay / 1000);
		udelay(delay % 1000);
	} else if (delay) {
		udelay(delay);
2856 2857
	}

2858
	if (best_val >= 0) {
2859 2860
		unsigned long data = best_val;

2861
		_notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
2862 2863
				     (void *)data);
	}
2864

2865
out:
2866
	trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
2867 2868 2869 2870

	return ret;
}

2871 2872
static int regulator_set_voltage_unlocked(struct regulator *regulator,
					  int min_uV, int max_uV)
2873 2874
{
	struct regulator_dev *rdev = regulator->rdev;
2875
	int ret = 0;
2876
	int old_min_uV, old_max_uV;
2877
	int current_uV;
2878 2879
	int best_supply_uV = 0;
	int supply_change_uV = 0;
2880

2881 2882 2883 2884 2885 2886 2887
	/* If we're setting the same range as last time the change
	 * should be a noop (some cpufreq implementations use the same
	 * voltage for multiple frequencies, for example).
	 */
	if (regulator->min_uV == min_uV && regulator->max_uV == max_uV)
		goto out;

2888
	/* If we're trying to set a range that overlaps the current voltage,
V
Viresh Kumar 已提交
2889
	 * return successfully even though the regulator does not support
2890 2891
	 * changing the voltage.
	 */
2892
	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
2893 2894 2895 2896 2897 2898 2899 2900
		current_uV = _regulator_get_voltage(rdev);
		if (min_uV <= current_uV && current_uV <= max_uV) {
			regulator->min_uV = min_uV;
			regulator->max_uV = max_uV;
			goto out;
		}
	}

2901
	/* sanity check */
2902 2903
	if (!rdev->desc->ops->set_voltage &&
	    !rdev->desc->ops->set_voltage_sel) {
2904 2905 2906 2907 2908 2909 2910 2911
		ret = -EINVAL;
		goto out;
	}

	/* constraints check */
	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
	if (ret < 0)
		goto out;
2912

2913 2914 2915
	/* restore original values in case of error */
	old_min_uV = regulator->min_uV;
	old_max_uV = regulator->max_uV;
2916 2917
	regulator->min_uV = min_uV;
	regulator->max_uV = max_uV;
2918

2919 2920
	ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
	if (ret < 0)
2921
		goto out2;
2922

2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960
	if (rdev->supply && (rdev->desc->min_dropout_uV ||
				!rdev->desc->ops->get_voltage)) {
		int current_supply_uV;
		int selector;

		selector = regulator_map_voltage(rdev, min_uV, max_uV);
		if (selector < 0) {
			ret = selector;
			goto out2;
		}

		best_supply_uV = _regulator_list_voltage(regulator, selector, 0);
		if (best_supply_uV < 0) {
			ret = best_supply_uV;
			goto out2;
		}

		best_supply_uV += rdev->desc->min_dropout_uV;

		current_supply_uV = _regulator_get_voltage(rdev->supply->rdev);
		if (current_supply_uV < 0) {
			ret = current_supply_uV;
			goto out2;
		}

		supply_change_uV = best_supply_uV - current_supply_uV;
	}

	if (supply_change_uV > 0) {
		ret = regulator_set_voltage_unlocked(rdev->supply,
				best_supply_uV, INT_MAX);
		if (ret) {
			dev_err(&rdev->dev, "Failed to increase supply voltage: %d\n",
					ret);
			goto out2;
		}
	}

2961
	ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
2962 2963
	if (ret < 0)
		goto out2;
2964

2965 2966 2967 2968 2969 2970 2971 2972 2973 2974
	if (supply_change_uV < 0) {
		ret = regulator_set_voltage_unlocked(rdev->supply,
				best_supply_uV, INT_MAX);
		if (ret)
			dev_warn(&rdev->dev, "Failed to decrease supply voltage: %d\n",
					ret);
		/* No need to fail here */
		ret = 0;
	}

2975 2976
out:
	return ret;
2977 2978 2979
out2:
	regulator->min_uV = old_min_uV;
	regulator->max_uV = old_max_uV;
2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005

	return ret;
}

/**
 * regulator_set_voltage - set regulator output voltage
 * @regulator: regulator source
 * @min_uV: Minimum required voltage in uV
 * @max_uV: Maximum acceptable voltage in uV
 *
 * Sets a voltage regulator to the desired output voltage. This can be set
 * during any regulator state. IOW, regulator can be disabled or enabled.
 *
 * If the regulator is enabled then the voltage will change to the new value
 * immediately otherwise if the regulator is disabled the regulator will
 * output at the new voltage when enabled.
 *
 * NOTE: If the regulator is shared between several devices then the lowest
 * request voltage that meets the system constraints will be used.
 * Regulator system constraints must be set for this regulator before
 * calling this function otherwise this call will fail.
 */
int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
{
	int ret = 0;

3006
	regulator_lock_supply(regulator->rdev);
3007 3008 3009

	ret = regulator_set_voltage_unlocked(regulator, min_uV, max_uV);

3010
	regulator_unlock_supply(regulator->rdev);
3011

3012 3013 3014 3015
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_set_voltage);

3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028
/**
 * regulator_set_voltage_time - get raise/fall time
 * @regulator: regulator source
 * @old_uV: starting voltage in microvolts
 * @new_uV: target voltage in microvolts
 *
 * Provided with the starting and ending voltage, this function attempts to
 * calculate the time in microseconds required to rise or fall to this new
 * voltage.
 */
int regulator_set_voltage_time(struct regulator *regulator,
			       int old_uV, int new_uV)
{
3029 3030
	struct regulator_dev *rdev = regulator->rdev;
	const struct regulator_ops *ops = rdev->desc->ops;
3031 3032 3033 3034 3035
	int old_sel = -1;
	int new_sel = -1;
	int voltage;
	int i;

3036 3037 3038 3039 3040
	if (ops->set_voltage_time)
		return ops->set_voltage_time(rdev, old_uV, new_uV);
	else if (!ops->set_voltage_time_sel)
		return _regulator_set_voltage_time(rdev, old_uV, new_uV);

3041
	/* Currently requires operations to do this */
3042
	if (!ops->list_voltage || !rdev->desc->n_voltages)
3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064
		return -EINVAL;

	for (i = 0; i < rdev->desc->n_voltages; i++) {
		/* We only look for exact voltage matches here */
		voltage = regulator_list_voltage(regulator, i);
		if (voltage < 0)
			return -EINVAL;
		if (voltage == 0)
			continue;
		if (voltage == old_uV)
			old_sel = i;
		if (voltage == new_uV)
			new_sel = i;
	}

	if (old_sel < 0 || new_sel < 0)
		return -EINVAL;

	return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
}
EXPORT_SYMBOL_GPL(regulator_set_voltage_time);

3065
/**
3066 3067
 * regulator_set_voltage_time_sel - get raise/fall time
 * @rdev: regulator source device
3068 3069 3070 3071 3072 3073
 * @old_selector: selector for starting voltage
 * @new_selector: selector for target voltage
 *
 * Provided with the starting and target voltage selectors, this function
 * returns time in microseconds required to rise or fall to this new voltage
 *
3074
 * Drivers providing ramp_delay in regulation_constraints can use this as their
3075
 * set_voltage_time_sel() operation.
3076 3077 3078 3079 3080
 */
int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
				   unsigned int old_selector,
				   unsigned int new_selector)
{
3081
	int old_volt, new_volt;
3082

3083 3084 3085
	/* sanity check */
	if (!rdev->desc->ops->list_voltage)
		return -EINVAL;
3086

3087 3088 3089
	old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
	new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);

3090 3091 3092 3093 3094
	if (rdev->desc->ops->set_voltage_time)
		return rdev->desc->ops->set_voltage_time(rdev, old_volt,
							 new_volt);
	else
		return _regulator_set_voltage_time(rdev, old_volt, new_volt);
3095
}
3096
EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
3097

3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144
/**
 * regulator_sync_voltage - re-apply last regulator output voltage
 * @regulator: regulator source
 *
 * Re-apply the last configured voltage.  This is intended to be used
 * where some external control source the consumer is cooperating with
 * has caused the configured voltage to change.
 */
int regulator_sync_voltage(struct regulator *regulator)
{
	struct regulator_dev *rdev = regulator->rdev;
	int ret, min_uV, max_uV;

	mutex_lock(&rdev->mutex);

	if (!rdev->desc->ops->set_voltage &&
	    !rdev->desc->ops->set_voltage_sel) {
		ret = -EINVAL;
		goto out;
	}

	/* This is only going to work if we've had a voltage configured. */
	if (!regulator->min_uV && !regulator->max_uV) {
		ret = -EINVAL;
		goto out;
	}

	min_uV = regulator->min_uV;
	max_uV = regulator->max_uV;

	/* This should be a paranoia check... */
	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
	if (ret < 0)
		goto out;

	ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
	if (ret < 0)
		goto out;

	ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);

out:
	mutex_unlock(&rdev->mutex);
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_sync_voltage);

3145 3146
static int _regulator_get_voltage(struct regulator_dev *rdev)
{
3147
	int sel, ret;
3148 3149 3150 3151 3152 3153 3154 3155
	bool bypassed;

	if (rdev->desc->ops->get_bypass) {
		ret = rdev->desc->ops->get_bypass(rdev, &bypassed);
		if (ret < 0)
			return ret;
		if (bypassed) {
			/* if bypassed the regulator must have a supply */
3156 3157 3158 3159 3160
			if (!rdev->supply) {
				rdev_err(rdev,
					 "bypassed regulator has no supply!\n");
				return -EPROBE_DEFER;
			}
3161 3162 3163 3164

			return _regulator_get_voltage(rdev->supply->rdev);
		}
	}
3165 3166 3167 3168 3169

	if (rdev->desc->ops->get_voltage_sel) {
		sel = rdev->desc->ops->get_voltage_sel(rdev);
		if (sel < 0)
			return sel;
3170
		ret = rdev->desc->ops->list_voltage(rdev, sel);
3171
	} else if (rdev->desc->ops->get_voltage) {
3172
		ret = rdev->desc->ops->get_voltage(rdev);
3173 3174
	} else if (rdev->desc->ops->list_voltage) {
		ret = rdev->desc->ops->list_voltage(rdev, 0);
3175 3176
	} else if (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1)) {
		ret = rdev->desc->fixed_uV;
3177
	} else if (rdev->supply) {
3178
		ret = _regulator_get_voltage(rdev->supply->rdev);
3179
	} else {
3180
		return -EINVAL;
3181
	}
3182

3183 3184
	if (ret < 0)
		return ret;
3185
	return ret - rdev->constraints->uV_offset;
3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200
}

/**
 * regulator_get_voltage - get regulator output voltage
 * @regulator: regulator source
 *
 * This returns the current regulator voltage in uV.
 *
 * NOTE: If the regulator is disabled it will return the voltage value. This
 * function should not be used to determine regulator state.
 */
int regulator_get_voltage(struct regulator *regulator)
{
	int ret;

3201
	regulator_lock_supply(regulator->rdev);
3202 3203 3204

	ret = _regulator_get_voltage(regulator->rdev);

3205
	regulator_unlock_supply(regulator->rdev);
3206 3207 3208 3209 3210 3211 3212 3213

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_get_voltage);

/**
 * regulator_set_current_limit - set regulator output current limit
 * @regulator: regulator source
3214
 * @min_uA: Minimum supported current in uA
3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300
 * @max_uA: Maximum supported current in uA
 *
 * Sets current sink to the desired output current. This can be set during
 * any regulator state. IOW, regulator can be disabled or enabled.
 *
 * If the regulator is enabled then the current will change to the new value
 * immediately otherwise if the regulator is disabled the regulator will
 * output at the new current when enabled.
 *
 * NOTE: Regulator system constraints must be set for this regulator before
 * calling this function otherwise this call will fail.
 */
int regulator_set_current_limit(struct regulator *regulator,
			       int min_uA, int max_uA)
{
	struct regulator_dev *rdev = regulator->rdev;
	int ret;

	mutex_lock(&rdev->mutex);

	/* sanity check */
	if (!rdev->desc->ops->set_current_limit) {
		ret = -EINVAL;
		goto out;
	}

	/* constraints check */
	ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
	if (ret < 0)
		goto out;

	ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
out:
	mutex_unlock(&rdev->mutex);
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_set_current_limit);

static int _regulator_get_current_limit(struct regulator_dev *rdev)
{
	int ret;

	mutex_lock(&rdev->mutex);

	/* sanity check */
	if (!rdev->desc->ops->get_current_limit) {
		ret = -EINVAL;
		goto out;
	}

	ret = rdev->desc->ops->get_current_limit(rdev);
out:
	mutex_unlock(&rdev->mutex);
	return ret;
}

/**
 * regulator_get_current_limit - get regulator output current
 * @regulator: regulator source
 *
 * This returns the current supplied by the specified current sink in uA.
 *
 * NOTE: If the regulator is disabled it will return the current value. This
 * function should not be used to determine regulator state.
 */
int regulator_get_current_limit(struct regulator *regulator)
{
	return _regulator_get_current_limit(regulator->rdev);
}
EXPORT_SYMBOL_GPL(regulator_get_current_limit);

/**
 * regulator_set_mode - set regulator operating mode
 * @regulator: regulator source
 * @mode: operating mode - one of the REGULATOR_MODE constants
 *
 * Set regulator operating mode to increase regulator efficiency or improve
 * regulation performance.
 *
 * NOTE: Regulator system constraints must be set for this regulator before
 * calling this function otherwise this call will fail.
 */
int regulator_set_mode(struct regulator *regulator, unsigned int mode)
{
	struct regulator_dev *rdev = regulator->rdev;
	int ret;
3301
	int regulator_curr_mode;
3302 3303 3304 3305 3306 3307 3308 3309 3310

	mutex_lock(&rdev->mutex);

	/* sanity check */
	if (!rdev->desc->ops->set_mode) {
		ret = -EINVAL;
		goto out;
	}

3311 3312 3313 3314 3315 3316 3317 3318 3319
	/* return if the same mode is requested */
	if (rdev->desc->ops->get_mode) {
		regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
		if (regulator_curr_mode == mode) {
			ret = 0;
			goto out;
		}
	}

3320
	/* constraints check */
3321
	ret = regulator_mode_constrain(rdev, &mode);
3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362
	if (ret < 0)
		goto out;

	ret = rdev->desc->ops->set_mode(rdev, mode);
out:
	mutex_unlock(&rdev->mutex);
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_set_mode);

static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
{
	int ret;

	mutex_lock(&rdev->mutex);

	/* sanity check */
	if (!rdev->desc->ops->get_mode) {
		ret = -EINVAL;
		goto out;
	}

	ret = rdev->desc->ops->get_mode(rdev);
out:
	mutex_unlock(&rdev->mutex);
	return ret;
}

/**
 * regulator_get_mode - get regulator operating mode
 * @regulator: regulator source
 *
 * Get the current regulator operating mode.
 */
unsigned int regulator_get_mode(struct regulator *regulator)
{
	return _regulator_get_mode(regulator->rdev);
}
EXPORT_SYMBOL_GPL(regulator_get_mode);

/**
3363
 * regulator_set_load - set regulator load
3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385
 * @regulator: regulator source
 * @uA_load: load current
 *
 * Notifies the regulator core of a new device load. This is then used by
 * DRMS (if enabled by constraints) to set the most efficient regulator
 * operating mode for the new regulator loading.
 *
 * Consumer devices notify their supply regulator of the maximum power
 * they will require (can be taken from device datasheet in the power
 * consumption tables) when they change operational status and hence power
 * state. Examples of operational state changes that can affect power
 * consumption are :-
 *
 *    o Device is opened / closed.
 *    o Device I/O is about to begin or has just finished.
 *    o Device is idling in between work.
 *
 * This information is also exported via sysfs to userspace.
 *
 * DRMS will sum the total requested load on the regulator and change
 * to the most efficient operating mode if platform constraints allow.
 *
3386
 * On error a negative errno is returned.
3387
 */
3388
int regulator_set_load(struct regulator *regulator, int uA_load)
3389 3390
{
	struct regulator_dev *rdev = regulator->rdev;
3391
	int ret;
3392

3393 3394
	mutex_lock(&rdev->mutex);
	regulator->uA_load = uA_load;
3395
	ret = drms_uA_update(rdev);
3396
	mutex_unlock(&rdev->mutex);
3397

3398 3399
	return ret;
}
3400
EXPORT_SYMBOL_GPL(regulator_set_load);
3401

3402 3403 3404 3405
/**
 * regulator_allow_bypass - allow the regulator to go into bypass mode
 *
 * @regulator: Regulator to configure
3406
 * @enable: enable or disable bypass mode
3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420
 *
 * Allow the regulator to go into bypass mode if all other consumers
 * for the regulator also enable bypass mode and the machine
 * constraints allow this.  Bypass mode means that the regulator is
 * simply passing the input directly to the output with no regulation.
 */
int regulator_allow_bypass(struct regulator *regulator, bool enable)
{
	struct regulator_dev *rdev = regulator->rdev;
	int ret = 0;

	if (!rdev->desc->ops->set_bypass)
		return 0;

3421
	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_BYPASS))
3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453
		return 0;

	mutex_lock(&rdev->mutex);

	if (enable && !regulator->bypass) {
		rdev->bypass_count++;

		if (rdev->bypass_count == rdev->open_count) {
			ret = rdev->desc->ops->set_bypass(rdev, enable);
			if (ret != 0)
				rdev->bypass_count--;
		}

	} else if (!enable && regulator->bypass) {
		rdev->bypass_count--;

		if (rdev->bypass_count != rdev->open_count) {
			ret = rdev->desc->ops->set_bypass(rdev, enable);
			if (ret != 0)
				rdev->bypass_count++;
		}
	}

	if (ret == 0)
		regulator->bypass = enable;

	mutex_unlock(&rdev->mutex);

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_allow_bypass);

3454 3455 3456
/**
 * regulator_register_notifier - register regulator event notifier
 * @regulator: regulator source
3457
 * @nb: notifier block
3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471
 *
 * Register notifier block to receive regulator events.
 */
int regulator_register_notifier(struct regulator *regulator,
			      struct notifier_block *nb)
{
	return blocking_notifier_chain_register(&regulator->rdev->notifier,
						nb);
}
EXPORT_SYMBOL_GPL(regulator_register_notifier);

/**
 * regulator_unregister_notifier - unregister regulator event notifier
 * @regulator: regulator source
3472
 * @nb: notifier block
3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483
 *
 * Unregister regulator event notifier block.
 */
int regulator_unregister_notifier(struct regulator *regulator,
				struct notifier_block *nb)
{
	return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
						  nb);
}
EXPORT_SYMBOL_GPL(regulator_unregister_notifier);

3484 3485 3486
/* notify regulator consumers and downstream regulator consumers.
 * Note mutex must be held by caller.
 */
3487
static int _notifier_call_chain(struct regulator_dev *rdev,
3488 3489 3490
				  unsigned long event, void *data)
{
	/* call rdev chain first */
3491
	return blocking_notifier_call_chain(&rdev->notifier, event, data);
3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517
}

/**
 * regulator_bulk_get - get multiple regulator consumers
 *
 * @dev:           Device to supply
 * @num_consumers: Number of consumers to register
 * @consumers:     Configuration of consumers; clients are stored here.
 *
 * @return 0 on success, an errno on failure.
 *
 * This helper function allows drivers to get several regulator
 * consumers in one operation.  If any of the regulators cannot be
 * acquired then any regulators that were allocated will be freed
 * before returning to the caller.
 */
int regulator_bulk_get(struct device *dev, int num_consumers,
		       struct regulator_bulk_data *consumers)
{
	int i;
	int ret;

	for (i = 0; i < num_consumers; i++)
		consumers[i].consumer = NULL;

	for (i = 0; i < num_consumers; i++) {
3518 3519
		consumers[i].consumer = regulator_get(dev,
						      consumers[i].supply);
3520 3521
		if (IS_ERR(consumers[i].consumer)) {
			ret = PTR_ERR(consumers[i].consumer);
3522 3523
			dev_err(dev, "Failed to get supply '%s': %d\n",
				consumers[i].supply, ret);
3524 3525 3526 3527 3528 3529 3530 3531
			consumers[i].consumer = NULL;
			goto err;
		}
	}

	return 0;

err:
3532
	while (--i >= 0)
3533 3534 3535 3536 3537 3538
		regulator_put(consumers[i].consumer);

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_bulk_get);

3539 3540 3541 3542 3543 3544 3545
static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
{
	struct regulator_bulk_data *bulk = data;

	bulk->ret = regulator_enable(bulk->consumer);
}

3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560
/**
 * regulator_bulk_enable - enable multiple regulator consumers
 *
 * @num_consumers: Number of consumers
 * @consumers:     Consumer data; clients are stored here.
 * @return         0 on success, an errno on failure
 *
 * This convenience API allows consumers to enable multiple regulator
 * clients in a single API call.  If any consumers cannot be enabled
 * then any others that were enabled will be disabled again prior to
 * return.
 */
int regulator_bulk_enable(int num_consumers,
			  struct regulator_bulk_data *consumers)
{
3561
	ASYNC_DOMAIN_EXCLUSIVE(async_domain);
3562
	int i;
3563
	int ret = 0;
3564

3565 3566 3567 3568 3569 3570 3571
	for (i = 0; i < num_consumers; i++) {
		if (consumers[i].consumer->always_on)
			consumers[i].ret = 0;
		else
			async_schedule_domain(regulator_bulk_enable_async,
					      &consumers[i], &async_domain);
	}
3572 3573 3574 3575

	async_synchronize_full_domain(&async_domain);

	/* If any consumer failed we need to unwind any that succeeded */
3576
	for (i = 0; i < num_consumers; i++) {
3577 3578
		if (consumers[i].ret != 0) {
			ret = consumers[i].ret;
3579
			goto err;
3580
		}
3581 3582 3583 3584 3585
	}

	return 0;

err:
3586 3587 3588 3589 3590 3591 3592
	for (i = 0; i < num_consumers; i++) {
		if (consumers[i].ret < 0)
			pr_err("Failed to enable %s: %d\n", consumers[i].supply,
			       consumers[i].ret);
		else
			regulator_disable(consumers[i].consumer);
	}
3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_bulk_enable);

/**
 * regulator_bulk_disable - disable multiple regulator consumers
 *
 * @num_consumers: Number of consumers
 * @consumers:     Consumer data; clients are stored here.
 * @return         0 on success, an errno on failure
 *
 * This convenience API allows consumers to disable multiple regulator
3606 3607
 * clients in a single API call.  If any consumers cannot be disabled
 * then any others that were disabled will be enabled again prior to
3608 3609 3610 3611 3612 3613
 * return.
 */
int regulator_bulk_disable(int num_consumers,
			   struct regulator_bulk_data *consumers)
{
	int i;
3614
	int ret, r;
3615

3616
	for (i = num_consumers - 1; i >= 0; --i) {
3617 3618 3619 3620 3621 3622 3623 3624
		ret = regulator_disable(consumers[i].consumer);
		if (ret != 0)
			goto err;
	}

	return 0;

err:
3625
	pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
3626 3627 3628 3629 3630 3631
	for (++i; i < num_consumers; ++i) {
		r = regulator_enable(consumers[i].consumer);
		if (r != 0)
			pr_err("Failed to reename %s: %d\n",
			       consumers[i].supply, r);
	}
3632 3633 3634 3635 3636

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_bulk_disable);

3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673
/**
 * regulator_bulk_force_disable - force disable multiple regulator consumers
 *
 * @num_consumers: Number of consumers
 * @consumers:     Consumer data; clients are stored here.
 * @return         0 on success, an errno on failure
 *
 * This convenience API allows consumers to forcibly disable multiple regulator
 * clients in a single API call.
 * NOTE: This should be used for situations when device damage will
 * likely occur if the regulators are not disabled (e.g. over temp).
 * Although regulator_force_disable function call for some consumers can
 * return error numbers, the function is called for all consumers.
 */
int regulator_bulk_force_disable(int num_consumers,
			   struct regulator_bulk_data *consumers)
{
	int i;
	int ret;

	for (i = 0; i < num_consumers; i++)
		consumers[i].ret =
			    regulator_force_disable(consumers[i].consumer);

	for (i = 0; i < num_consumers; i++) {
		if (consumers[i].ret != 0) {
			ret = consumers[i].ret;
			goto out;
		}
	}

	return 0;
out:
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);

3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696
/**
 * regulator_bulk_free - free multiple regulator consumers
 *
 * @num_consumers: Number of consumers
 * @consumers:     Consumer data; clients are stored here.
 *
 * This convenience API allows consumers to free multiple regulator
 * clients in a single API call.
 */
void regulator_bulk_free(int num_consumers,
			 struct regulator_bulk_data *consumers)
{
	int i;

	for (i = 0; i < num_consumers; i++) {
		regulator_put(consumers[i].consumer);
		consumers[i].consumer = NULL;
	}
}
EXPORT_SYMBOL_GPL(regulator_bulk_free);

/**
 * regulator_notifier_call_chain - call regulator event notifier
3697
 * @rdev: regulator source
3698
 * @event: notifier block
3699
 * @data: callback-specific data.
3700 3701 3702
 *
 * Called by regulator drivers to notify clients a regulator event has
 * occurred. We also notify regulator clients downstream.
3703
 * Note lock must be held by caller.
3704 3705 3706 3707
 */
int regulator_notifier_call_chain(struct regulator_dev *rdev,
				  unsigned long event, void *data)
{
3708 3709
	lockdep_assert_held_once(&rdev->mutex);

3710 3711 3712 3713 3714 3715
	_notifier_call_chain(rdev, event, data);
	return NOTIFY_DONE;

}
EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);

3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731
/**
 * regulator_mode_to_status - convert a regulator mode into a status
 *
 * @mode: Mode to convert
 *
 * Convert a regulator mode into a status.
 */
int regulator_mode_to_status(unsigned int mode)
{
	switch (mode) {
	case REGULATOR_MODE_FAST:
		return REGULATOR_STATUS_FAST;
	case REGULATOR_MODE_NORMAL:
		return REGULATOR_STATUS_NORMAL;
	case REGULATOR_MODE_IDLE:
		return REGULATOR_STATUS_IDLE;
3732
	case REGULATOR_MODE_STANDBY:
3733 3734
		return REGULATOR_STATUS_STANDBY;
	default:
3735
		return REGULATOR_STATUS_UNDEFINED;
3736 3737 3738 3739
	}
}
EXPORT_SYMBOL_GPL(regulator_mode_to_status);

3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766
static struct attribute *regulator_dev_attrs[] = {
	&dev_attr_name.attr,
	&dev_attr_num_users.attr,
	&dev_attr_type.attr,
	&dev_attr_microvolts.attr,
	&dev_attr_microamps.attr,
	&dev_attr_opmode.attr,
	&dev_attr_state.attr,
	&dev_attr_status.attr,
	&dev_attr_bypass.attr,
	&dev_attr_requested_microamps.attr,
	&dev_attr_min_microvolts.attr,
	&dev_attr_max_microvolts.attr,
	&dev_attr_min_microamps.attr,
	&dev_attr_max_microamps.attr,
	&dev_attr_suspend_standby_state.attr,
	&dev_attr_suspend_mem_state.attr,
	&dev_attr_suspend_disk_state.attr,
	&dev_attr_suspend_standby_microvolts.attr,
	&dev_attr_suspend_mem_microvolts.attr,
	&dev_attr_suspend_disk_microvolts.attr,
	&dev_attr_suspend_standby_mode.attr,
	&dev_attr_suspend_mem_mode.attr,
	&dev_attr_suspend_disk_mode.attr,
	NULL
};

3767 3768 3769 3770
/*
 * To avoid cluttering sysfs (and memory) with useless state, only
 * create attributes that can be meaningfully displayed.
 */
3771 3772
static umode_t regulator_attr_is_visible(struct kobject *kobj,
					 struct attribute *attr, int idx)
3773
{
3774
	struct device *dev = kobj_to_dev(kobj);
G
Geliang Tang 已提交
3775
	struct regulator_dev *rdev = dev_to_rdev(dev);
3776
	const struct regulator_ops *ops = rdev->desc->ops;
3777 3778 3779 3780 3781 3782 3783
	umode_t mode = attr->mode;

	/* these three are always present */
	if (attr == &dev_attr_name.attr ||
	    attr == &dev_attr_num_users.attr ||
	    attr == &dev_attr_type.attr)
		return mode;
3784 3785

	/* some attributes need specific methods to be displayed */
3786 3787 3788 3789 3790 3791 3792
	if (attr == &dev_attr_microvolts.attr) {
		if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
		    (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
		    (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0) ||
		    (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1))
			return mode;
		return 0;
3793
	}
3794

3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809
	if (attr == &dev_attr_microamps.attr)
		return ops->get_current_limit ? mode : 0;

	if (attr == &dev_attr_opmode.attr)
		return ops->get_mode ? mode : 0;

	if (attr == &dev_attr_state.attr)
		return (rdev->ena_pin || ops->is_enabled) ? mode : 0;

	if (attr == &dev_attr_status.attr)
		return ops->get_status ? mode : 0;

	if (attr == &dev_attr_bypass.attr)
		return ops->get_bypass ? mode : 0;

3810
	/* some attributes are type-specific */
3811 3812
	if (attr == &dev_attr_requested_microamps.attr)
		return rdev->desc->type == REGULATOR_CURRENT ? mode : 0;
3813 3814

	/* constraints need specific supporting methods */
3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849
	if (attr == &dev_attr_min_microvolts.attr ||
	    attr == &dev_attr_max_microvolts.attr)
		return (ops->set_voltage || ops->set_voltage_sel) ? mode : 0;

	if (attr == &dev_attr_min_microamps.attr ||
	    attr == &dev_attr_max_microamps.attr)
		return ops->set_current_limit ? mode : 0;

	if (attr == &dev_attr_suspend_standby_state.attr ||
	    attr == &dev_attr_suspend_mem_state.attr ||
	    attr == &dev_attr_suspend_disk_state.attr)
		return mode;

	if (attr == &dev_attr_suspend_standby_microvolts.attr ||
	    attr == &dev_attr_suspend_mem_microvolts.attr ||
	    attr == &dev_attr_suspend_disk_microvolts.attr)
		return ops->set_suspend_voltage ? mode : 0;

	if (attr == &dev_attr_suspend_standby_mode.attr ||
	    attr == &dev_attr_suspend_mem_mode.attr ||
	    attr == &dev_attr_suspend_disk_mode.attr)
		return ops->set_suspend_mode ? mode : 0;

	return mode;
}

static const struct attribute_group regulator_dev_group = {
	.attrs = regulator_dev_attrs,
	.is_visible = regulator_attr_is_visible,
};

static const struct attribute_group *regulator_dev_groups[] = {
	&regulator_dev_group,
	NULL
};
3850

3851 3852 3853
static void regulator_dev_release(struct device *dev)
{
	struct regulator_dev *rdev = dev_get_drvdata(dev);
3854 3855 3856

	kfree(rdev->constraints);
	of_node_put(rdev->dev.of_node);
3857
	kfree(rdev);
3858 3859
}

3860 3861 3862 3863 3864 3865
static struct class regulator_class = {
	.name = "regulator",
	.dev_release = regulator_dev_release,
	.dev_groups = regulator_dev_groups,
};

3866 3867
static void rdev_init_debugfs(struct regulator_dev *rdev)
{
3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879
	struct device *parent = rdev->dev.parent;
	const char *rname = rdev_get_name(rdev);
	char name[NAME_MAX];

	/* Avoid duplicate debugfs directory names */
	if (parent && rname == rdev->desc->name) {
		snprintf(name, sizeof(name), "%s-%s", dev_name(parent),
			 rname);
		rname = name;
	}

	rdev->debugfs = debugfs_create_dir(rname, debugfs_root);
3880
	if (!rdev->debugfs) {
3881 3882 3883 3884 3885 3886 3887 3888
		rdev_warn(rdev, "Failed to create debugfs directory\n");
		return;
	}

	debugfs_create_u32("use_count", 0444, rdev->debugfs,
			   &rdev->use_count);
	debugfs_create_u32("open_count", 0444, rdev->debugfs,
			   &rdev->open_count);
3889 3890
	debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
			   &rdev->bypass_count);
3891 3892
}

3893 3894
static int regulator_register_resolve_supply(struct device *dev, void *data)
{
3895 3896 3897 3898 3899 3900
	struct regulator_dev *rdev = dev_to_rdev(dev);

	if (regulator_resolve_supply(rdev))
		rdev_dbg(rdev, "unable to resolve supply\n");

	return 0;
3901 3902
}

3903 3904
/**
 * regulator_register - register regulator
3905
 * @regulator_desc: regulator to register
3906
 * @cfg: runtime configuration for regulator
3907 3908
 *
 * Called by regulator drivers to register a regulator.
3909 3910
 * Returns a valid pointer to struct regulator_dev on success
 * or an ERR_PTR() on error.
3911
 */
3912 3913
struct regulator_dev *
regulator_register(const struct regulator_desc *regulator_desc,
3914
		   const struct regulator_config *cfg)
3915
{
3916
	const struct regulation_constraints *constraints = NULL;
3917
	const struct regulator_init_data *init_data;
3918
	struct regulator_config *config = NULL;
3919
	static atomic_t regulator_no = ATOMIC_INIT(-1);
3920
	struct regulator_dev *rdev;
3921
	struct device *dev;
3922
	int ret, i;
3923

3924
	if (regulator_desc == NULL || cfg == NULL)
3925 3926
		return ERR_PTR(-EINVAL);

3927
	dev = cfg->dev;
3928
	WARN_ON(!dev);
3929

3930 3931 3932
	if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
		return ERR_PTR(-EINVAL);

3933 3934
	if (regulator_desc->type != REGULATOR_VOLTAGE &&
	    regulator_desc->type != REGULATOR_CURRENT)
3935 3936
		return ERR_PTR(-EINVAL);

3937 3938 3939
	/* Only one of each should be implemented */
	WARN_ON(regulator_desc->ops->get_voltage &&
		regulator_desc->ops->get_voltage_sel);
3940 3941
	WARN_ON(regulator_desc->ops->set_voltage &&
		regulator_desc->ops->set_voltage_sel);
3942 3943 3944 3945 3946 3947

	/* If we're using selectors we must implement list_voltage. */
	if (regulator_desc->ops->get_voltage_sel &&
	    !regulator_desc->ops->list_voltage) {
		return ERR_PTR(-EINVAL);
	}
3948 3949 3950 3951
	if (regulator_desc->ops->set_voltage_sel &&
	    !regulator_desc->ops->list_voltage) {
		return ERR_PTR(-EINVAL);
	}
3952

3953 3954 3955 3956
	rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
	if (rdev == NULL)
		return ERR_PTR(-ENOMEM);

3957 3958 3959 3960 3961 3962 3963 3964 3965 3966
	/*
	 * Duplicate the config so the driver could override it after
	 * parsing init data.
	 */
	config = kmemdup(cfg, sizeof(*cfg), GFP_KERNEL);
	if (config == NULL) {
		kfree(rdev);
		return ERR_PTR(-ENOMEM);
	}

3967
	init_data = regulator_of_get_init_data(dev, regulator_desc, config,
3968 3969 3970 3971 3972 3973
					       &rdev->dev.of_node);
	if (!init_data) {
		init_data = config->init_data;
		rdev->dev.of_node = of_node_get(config->of_node);
	}

3974
	mutex_init(&rdev->mutex);
3975
	rdev->reg_data = config->driver_data;
3976 3977
	rdev->owner = regulator_desc->owner;
	rdev->desc = regulator_desc;
3978 3979
	if (config->regmap)
		rdev->regmap = config->regmap;
3980
	else if (dev_get_regmap(dev, NULL))
3981
		rdev->regmap = dev_get_regmap(dev, NULL);
3982 3983
	else if (dev->parent)
		rdev->regmap = dev_get_regmap(dev->parent, NULL);
3984 3985 3986
	INIT_LIST_HEAD(&rdev->consumer_list);
	INIT_LIST_HEAD(&rdev->list);
	BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
3987
	INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
3988

3989
	/* preform any regulator specific init */
3990
	if (init_data && init_data->regulator_init) {
3991
		ret = init_data->regulator_init(rdev->reg_data);
D
David Brownell 已提交
3992 3993
		if (ret < 0)
			goto clean;
3994 3995
	}

3996 3997
	if ((config->ena_gpio || config->ena_gpio_initialized) &&
	    gpio_is_valid(config->ena_gpio)) {
3998
		mutex_lock(&regulator_list_mutex);
3999
		ret = regulator_ena_gpio_request(rdev, config);
4000
		mutex_unlock(&regulator_list_mutex);
4001 4002 4003
		if (ret != 0) {
			rdev_err(rdev, "Failed to request enable GPIO%d: %d\n",
				 config->ena_gpio, ret);
4004
			goto clean;
4005 4006 4007
		}
	}

4008
	/* register with sysfs */
4009
	rdev->dev.class = &regulator_class;
4010
	rdev->dev.parent = dev;
4011
	dev_set_name(&rdev->dev, "regulator.%lu",
4012
		    (unsigned long) atomic_inc_return(&regulator_no));
4013

4014
	/* set regulator constraints */
4015 4016 4017 4018
	if (init_data)
		constraints = &init_data->constraints;

	if (init_data && init_data->supply_regulator)
4019
		rdev->supply_name = init_data->supply_regulator;
4020
	else if (regulator_desc->supply_name)
4021
		rdev->supply_name = regulator_desc->supply_name;
4022

4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034
	/*
	 * Attempt to resolve the regulator supply, if specified,
	 * but don't return an error if we fail because we will try
	 * to resolve it again later as more regulators are added.
	 */
	if (regulator_resolve_supply(rdev))
		rdev_dbg(rdev, "unable to resolve supply\n");

	ret = set_machine_constraints(rdev, constraints);
	if (ret < 0)
		goto wash;

4035
	/* add consumers devices */
4036
	if (init_data) {
4037
		mutex_lock(&regulator_list_mutex);
4038 4039 4040
		for (i = 0; i < init_data->num_consumer_supplies; i++) {
			ret = set_consumer_device_supply(rdev,
				init_data->consumer_supplies[i].dev_name,
4041
				init_data->consumer_supplies[i].supply);
4042
			if (ret < 0) {
4043
				mutex_unlock(&regulator_list_mutex);
4044 4045 4046 4047
				dev_err(dev, "Failed to set supply %s\n",
					init_data->consumer_supplies[i].supply);
				goto unset_supplies;
			}
4048
		}
4049
		mutex_unlock(&regulator_list_mutex);
4050
	}
4051

4052 4053 4054 4055 4056 4057 4058
	ret = device_register(&rdev->dev);
	if (ret != 0) {
		put_device(&rdev->dev);
		goto unset_supplies;
	}

	dev_set_drvdata(&rdev->dev, rdev);
4059
	rdev_init_debugfs(rdev);
4060 4061 4062 4063

	/* try to resolve regulators supply since a new one was registered */
	class_for_each_device(&regulator_class, NULL, NULL,
			      regulator_register_resolve_supply);
4064
	kfree(config);
4065
	return rdev;
D
David Brownell 已提交
4066

4067
unset_supplies:
4068
	mutex_lock(&regulator_list_mutex);
4069
	unset_regulator_supplies(rdev);
4070
	mutex_unlock(&regulator_list_mutex);
4071
wash:
4072
	kfree(rdev->constraints);
4073
	mutex_lock(&regulator_list_mutex);
4074
	regulator_ena_gpio_free(rdev);
4075
	mutex_unlock(&regulator_list_mutex);
D
David Brownell 已提交
4076 4077
clean:
	kfree(rdev);
4078 4079
	kfree(config);
	return ERR_PTR(ret);
4080 4081 4082 4083 4084
}
EXPORT_SYMBOL_GPL(regulator_register);

/**
 * regulator_unregister - unregister regulator
4085
 * @rdev: regulator to unregister
4086 4087 4088 4089 4090 4091 4092 4093
 *
 * Called by regulator drivers to unregister a regulator.
 */
void regulator_unregister(struct regulator_dev *rdev)
{
	if (rdev == NULL)
		return;

4094 4095 4096
	if (rdev->supply) {
		while (rdev->use_count--)
			regulator_disable(rdev->supply);
4097
		regulator_put(rdev->supply);
4098
	}
4099
	mutex_lock(&regulator_list_mutex);
4100
	debugfs_remove_recursive(rdev->debugfs);
4101
	flush_work(&rdev->disable_work.work);
4102
	WARN_ON(rdev->open_count);
4103
	unset_regulator_supplies(rdev);
4104
	list_del(&rdev->list);
4105
	regulator_ena_gpio_free(rdev);
4106
	mutex_unlock(&regulator_list_mutex);
4107
	device_unregister(&rdev->dev);
4108 4109 4110
}
EXPORT_SYMBOL_GPL(regulator_unregister);

4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123
static int _regulator_suspend_prepare(struct device *dev, void *data)
{
	struct regulator_dev *rdev = dev_to_rdev(dev);
	const suspend_state_t *state = data;
	int ret;

	mutex_lock(&rdev->mutex);
	ret = suspend_prepare(rdev, *state);
	mutex_unlock(&rdev->mutex);

	return ret;
}

4124
/**
4125
 * regulator_suspend_prepare - prepare regulators for system wide suspend
4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136
 * @state: system suspend state
 *
 * Configure each regulator with it's suspend operating parameters for state.
 * This will usually be called by machine suspend code prior to supending.
 */
int regulator_suspend_prepare(suspend_state_t state)
{
	/* ON is handled by regulator active state */
	if (state == PM_SUSPEND_ON)
		return -EINVAL;

4137 4138 4139 4140
	return class_for_each_device(&regulator_class, NULL, &state,
				     _regulator_suspend_prepare);
}
EXPORT_SYMBOL_GPL(regulator_suspend_prepare);
4141

4142 4143 4144 4145
static int _regulator_suspend_finish(struct device *dev, void *data)
{
	struct regulator_dev *rdev = dev_to_rdev(dev);
	int ret;
4146

4147 4148 4149 4150 4151 4152 4153 4154
	mutex_lock(&rdev->mutex);
	if (rdev->use_count > 0  || rdev->constraints->always_on) {
		if (!_regulator_is_enabled(rdev)) {
			ret = _regulator_do_enable(rdev);
			if (ret)
				dev_err(dev,
					"Failed to resume regulator %d\n",
					ret);
4155
		}
4156 4157 4158 4159 4160 4161 4162 4163 4164
	} else {
		if (!have_full_constraints())
			goto unlock;
		if (!_regulator_is_enabled(rdev))
			goto unlock;

		ret = _regulator_do_disable(rdev);
		if (ret)
			dev_err(dev, "Failed to suspend regulator %d\n", ret);
4165
	}
4166 4167 4168 4169 4170
unlock:
	mutex_unlock(&rdev->mutex);

	/* Keep processing regulators in spite of any errors */
	return 0;
4171 4172
}

4173 4174 4175 4176 4177 4178 4179 4180
/**
 * regulator_suspend_finish - resume regulators from system wide suspend
 *
 * Turn on regulators that might be turned off by regulator_suspend_prepare
 * and that should be turned on according to the regulators properties.
 */
int regulator_suspend_finish(void)
{
4181 4182
	return class_for_each_device(&regulator_class, NULL, NULL,
				     _regulator_suspend_finish);
4183 4184 4185
}
EXPORT_SYMBOL_GPL(regulator_suspend_finish);

4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202
/**
 * regulator_has_full_constraints - the system has fully specified constraints
 *
 * Calling this function will cause the regulator API to disable all
 * regulators which have a zero use count and don't have an always_on
 * constraint in a late_initcall.
 *
 * The intention is that this will become the default behaviour in a
 * future kernel release so users are encouraged to use this facility
 * now.
 */
void regulator_has_full_constraints(void)
{
	has_full_constraints = 1;
}
EXPORT_SYMBOL_GPL(regulator_has_full_constraints);

4203 4204
/**
 * rdev_get_drvdata - get rdev regulator driver data
4205
 * @rdev: regulator
4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241
 *
 * Get rdev regulator driver private data. This call can be used in the
 * regulator driver context.
 */
void *rdev_get_drvdata(struct regulator_dev *rdev)
{
	return rdev->reg_data;
}
EXPORT_SYMBOL_GPL(rdev_get_drvdata);

/**
 * regulator_get_drvdata - get regulator driver data
 * @regulator: regulator
 *
 * Get regulator driver private data. This call can be used in the consumer
 * driver context when non API regulator specific functions need to be called.
 */
void *regulator_get_drvdata(struct regulator *regulator)
{
	return regulator->rdev->reg_data;
}
EXPORT_SYMBOL_GPL(regulator_get_drvdata);

/**
 * regulator_set_drvdata - set regulator driver data
 * @regulator: regulator
 * @data: data
 */
void regulator_set_drvdata(struct regulator *regulator, void *data)
{
	regulator->rdev->reg_data = data;
}
EXPORT_SYMBOL_GPL(regulator_set_drvdata);

/**
 * regulator_get_id - get regulator ID
4242
 * @rdev: regulator
4243 4244 4245 4246 4247 4248 4249
 */
int rdev_get_id(struct regulator_dev *rdev)
{
	return rdev->desc->id;
}
EXPORT_SYMBOL_GPL(rdev_get_id);

4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261
struct device *rdev_get_dev(struct regulator_dev *rdev)
{
	return &rdev->dev;
}
EXPORT_SYMBOL_GPL(rdev_get_dev);

void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
{
	return reg_init_data->driver_data;
}
EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);

4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291
#ifdef CONFIG_DEBUG_FS
static ssize_t supply_map_read_file(struct file *file, char __user *user_buf,
				    size_t count, loff_t *ppos)
{
	char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
	ssize_t len, ret = 0;
	struct regulator_map *map;

	if (!buf)
		return -ENOMEM;

	list_for_each_entry(map, &regulator_map_list, list) {
		len = snprintf(buf + ret, PAGE_SIZE - ret,
			       "%s -> %s.%s\n",
			       rdev_get_name(map->regulator), map->dev_name,
			       map->supply);
		if (len >= 0)
			ret += len;
		if (ret > PAGE_SIZE) {
			ret = PAGE_SIZE;
			break;
		}
	}

	ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);

	kfree(buf);

	return ret;
}
4292
#endif
4293 4294

static const struct file_operations supply_map_fops = {
4295
#ifdef CONFIG_DEBUG_FS
4296 4297 4298
	.read = supply_map_read_file,
	.llseek = default_llseek,
#endif
4299
};
4300

4301
#ifdef CONFIG_DEBUG_FS
4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323
struct summary_data {
	struct seq_file *s;
	struct regulator_dev *parent;
	int level;
};

static void regulator_summary_show_subtree(struct seq_file *s,
					   struct regulator_dev *rdev,
					   int level);

static int regulator_summary_show_children(struct device *dev, void *data)
{
	struct regulator_dev *rdev = dev_to_rdev(dev);
	struct summary_data *summary_data = data;

	if (rdev->supply && rdev->supply->rdev == summary_data->parent)
		regulator_summary_show_subtree(summary_data->s, rdev,
					       summary_data->level + 1);

	return 0;
}

4324 4325 4326 4327 4328 4329
static void regulator_summary_show_subtree(struct seq_file *s,
					   struct regulator_dev *rdev,
					   int level)
{
	struct regulation_constraints *c;
	struct regulator *consumer;
4330
	struct summary_data summary_data;
4331 4332 4333 4334 4335 4336 4337 4338 4339

	if (!rdev)
		return;

	seq_printf(s, "%*s%-*s %3d %4d %6d ",
		   level * 3 + 1, "",
		   30 - level * 3, rdev_get_name(rdev),
		   rdev->use_count, rdev->open_count, rdev->bypass_count);

4340 4341
	seq_printf(s, "%5dmV ", _regulator_get_voltage(rdev) / 1000);
	seq_printf(s, "%5dmA ", _regulator_get_current_limit(rdev) / 1000);
4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368

	c = rdev->constraints;
	if (c) {
		switch (rdev->desc->type) {
		case REGULATOR_VOLTAGE:
			seq_printf(s, "%5dmV %5dmV ",
				   c->min_uV / 1000, c->max_uV / 1000);
			break;
		case REGULATOR_CURRENT:
			seq_printf(s, "%5dmA %5dmA ",
				   c->min_uA / 1000, c->max_uA / 1000);
			break;
		}
	}

	seq_puts(s, "\n");

	list_for_each_entry(consumer, &rdev->consumer_list, list) {
		if (consumer->dev->class == &regulator_class)
			continue;

		seq_printf(s, "%*s%-*s ",
			   (level + 1) * 3 + 1, "",
			   30 - (level + 1) * 3, dev_name(consumer->dev));

		switch (rdev->desc->type) {
		case REGULATOR_VOLTAGE:
4369
			seq_printf(s, "%37dmV %5dmV",
4370 4371 4372 4373 4374 4375 4376 4377 4378 4379
				   consumer->min_uV / 1000,
				   consumer->max_uV / 1000);
			break;
		case REGULATOR_CURRENT:
			break;
		}

		seq_puts(s, "\n");
	}

4380 4381 4382
	summary_data.s = s;
	summary_data.level = level;
	summary_data.parent = rdev;
4383

4384 4385
	class_for_each_device(&regulator_class, NULL, &summary_data,
			      regulator_summary_show_children);
4386 4387
}

4388
static int regulator_summary_show_roots(struct device *dev, void *data)
4389
{
4390 4391
	struct regulator_dev *rdev = dev_to_rdev(dev);
	struct seq_file *s = data;
4392

4393 4394
	if (!rdev->supply)
		regulator_summary_show_subtree(s, rdev, 0);
4395

4396 4397
	return 0;
}
4398

4399 4400 4401 4402
static int regulator_summary_show(struct seq_file *s, void *data)
{
	seq_puts(s, " regulator                      use open bypass voltage current     min     max\n");
	seq_puts(s, "-------------------------------------------------------------------------------\n");
4403

4404 4405
	class_for_each_device(&regulator_class, NULL, s,
			      regulator_summary_show_roots);
4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424

	return 0;
}

static int regulator_summary_open(struct inode *inode, struct file *file)
{
	return single_open(file, regulator_summary_show, inode->i_private);
}
#endif

static const struct file_operations regulator_summary_fops = {
#ifdef CONFIG_DEBUG_FS
	.open		= regulator_summary_open,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
#endif
};

4425 4426
static int __init regulator_init(void)
{
4427 4428 4429 4430
	int ret;

	ret = class_register(&regulator_class);

4431
	debugfs_root = debugfs_create_dir("regulator", NULL);
4432
	if (!debugfs_root)
4433
		pr_warn("regulator: Failed to create debugfs directory\n");
4434

4435 4436
	debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
			    &supply_map_fops);
4437

4438
	debugfs_create_file("regulator_summary", 0444, debugfs_root,
4439
			    NULL, &regulator_summary_fops);
4440

4441 4442 4443
	regulator_dummy_init();

	return ret;
4444 4445 4446 4447
}

/* init early to allow our consumers to complete system booting */
core_initcall(regulator_init);
4448

4449
static int __init regulator_late_cleanup(struct device *dev, void *data)
4450
{
4451 4452 4453
	struct regulator_dev *rdev = dev_to_rdev(dev);
	const struct regulator_ops *ops = rdev->desc->ops;
	struct regulation_constraints *c = rdev->constraints;
4454 4455
	int enabled, ret;

4456 4457 4458
	if (c && c->always_on)
		return 0;

4459
	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS))
4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499
		return 0;

	mutex_lock(&rdev->mutex);

	if (rdev->use_count)
		goto unlock;

	/* If we can't read the status assume it's on. */
	if (ops->is_enabled)
		enabled = ops->is_enabled(rdev);
	else
		enabled = 1;

	if (!enabled)
		goto unlock;

	if (have_full_constraints()) {
		/* We log since this may kill the system if it goes
		 * wrong. */
		rdev_info(rdev, "disabling\n");
		ret = _regulator_do_disable(rdev);
		if (ret != 0)
			rdev_err(rdev, "couldn't disable: %d\n", ret);
	} else {
		/* The intention is that in future we will
		 * assume that full constraints are provided
		 * so warn even if we aren't going to do
		 * anything here.
		 */
		rdev_warn(rdev, "incomplete constraints, leaving on\n");
	}

unlock:
	mutex_unlock(&rdev->mutex);

	return 0;
}

static int __init regulator_init_complete(void)
{
4500 4501 4502 4503 4504 4505 4506 4507 4508
	/*
	 * Since DT doesn't provide an idiomatic mechanism for
	 * enabling full constraints and since it's much more natural
	 * with DT to provide them just assume that a DT enabled
	 * system has full constraints.
	 */
	if (of_have_populated_dt())
		has_full_constraints = true;

4509
	/* If we have a full configuration then disable any regulators
4510 4511 4512
	 * we have permission to change the status for and which are
	 * not in use or always_on.  This is effectively the default
	 * for DT and ACPI as they have full constraints.
4513
	 */
4514 4515
	class_for_each_device(&regulator_class, NULL, NULL,
			      regulator_late_cleanup);
4516 4517 4518

	return 0;
}
4519
late_initcall_sync(regulator_init_complete);