ctree.c 142.7 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
C
Chris Mason 已提交
2
/*
C
Chris Mason 已提交
3
 * Copyright (C) 2007,2008 Oracle.  All rights reserved.
C
Chris Mason 已提交
4 5
 */

6
#include <linux/sched.h>
7
#include <linux/slab.h>
8
#include <linux/rbtree.h>
9
#include <linux/mm.h>
10 11
#include "ctree.h"
#include "disk-io.h"
12
#include "transaction.h"
13
#include "print-tree.h"
14
#include "locking.h"
15
#include "volumes.h"
16
#include "qgroup.h"
17

18 19
static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
		      *root, struct btrfs_path *path, int level);
20 21 22
static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root *root,
		      const struct btrfs_key *ins_key, struct btrfs_path *path,
		      int data_size, int extend);
23
static int push_node_left(struct btrfs_trans_handle *trans,
24
			  struct extent_buffer *dst,
25
			  struct extent_buffer *src, int empty);
26 27 28
static int balance_node_right(struct btrfs_trans_handle *trans,
			      struct extent_buffer *dst_buf,
			      struct extent_buffer *src_buf);
29 30
static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
		    int level, int slot);
31

32 33
static const struct btrfs_csums {
	u16		size;
34 35
	const char	name[10];
	const char	driver[12];
36 37
} btrfs_csums[] = {
	[BTRFS_CSUM_TYPE_CRC32] = { .size = 4, .name = "crc32c" },
38
	[BTRFS_CSUM_TYPE_XXHASH] = { .size = 8, .name = "xxhash64" },
39
	[BTRFS_CSUM_TYPE_SHA256] = { .size = 32, .name = "sha256" },
40 41
	[BTRFS_CSUM_TYPE_BLAKE2] = { .size = 32, .name = "blake2b",
				     .driver = "blake2b-256" },
42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58
};

int btrfs_super_csum_size(const struct btrfs_super_block *s)
{
	u16 t = btrfs_super_csum_type(s);
	/*
	 * csum type is validated at mount time
	 */
	return btrfs_csums[t].size;
}

const char *btrfs_super_csum_name(u16 csum_type)
{
	/* csum type is validated at mount time */
	return btrfs_csums[csum_type].name;
}

59 60 61 62 63 64 65
/*
 * Return driver name if defined, otherwise the name that's also a valid driver
 * name
 */
const char *btrfs_super_csum_driver(u16 csum_type)
{
	/* csum type is validated at mount time */
66 67
	return btrfs_csums[csum_type].driver[0] ?
		btrfs_csums[csum_type].driver :
68 69 70
		btrfs_csums[csum_type].name;
}

71
size_t __attribute_const__ btrfs_get_num_csums(void)
72 73 74 75
{
	return ARRAY_SIZE(btrfs_csums);
}

C
Chris Mason 已提交
76
struct btrfs_path *btrfs_alloc_path(void)
C
Chris Mason 已提交
77
{
78
	return kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS);
C
Chris Mason 已提交
79 80
}

C
Chris Mason 已提交
81
/* this also releases the path */
C
Chris Mason 已提交
82
void btrfs_free_path(struct btrfs_path *p)
83
{
84 85
	if (!p)
		return;
86
	btrfs_release_path(p);
C
Chris Mason 已提交
87
	kmem_cache_free(btrfs_path_cachep, p);
88 89
}

C
Chris Mason 已提交
90 91 92 93 94 95
/*
 * path release drops references on the extent buffers in the path
 * and it drops any locks held by this path
 *
 * It is safe to call this on paths that no locks or extent buffers held.
 */
96
noinline void btrfs_release_path(struct btrfs_path *p)
97 98
{
	int i;
99

C
Chris Mason 已提交
100
	for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
101
		p->slots[i] = 0;
102
		if (!p->nodes[i])
103 104
			continue;
		if (p->locks[i]) {
105
			btrfs_tree_unlock_rw(p->nodes[i], p->locks[i]);
106 107
			p->locks[i] = 0;
		}
108
		free_extent_buffer(p->nodes[i]);
109
		p->nodes[i] = NULL;
110 111 112
	}
}

C
Chris Mason 已提交
113 114 115 116 117 118 119 120 121 122
/*
 * safely gets a reference on the root node of a tree.  A lock
 * is not taken, so a concurrent writer may put a different node
 * at the root of the tree.  See btrfs_lock_root_node for the
 * looping required.
 *
 * The extent buffer returned by this has a reference taken, so
 * it won't disappear.  It may stop being the root of the tree
 * at any time because there are no locks held.
 */
123 124 125
struct extent_buffer *btrfs_root_node(struct btrfs_root *root)
{
	struct extent_buffer *eb;
126

127 128 129 130 131 132
	while (1) {
		rcu_read_lock();
		eb = rcu_dereference(root->node);

		/*
		 * RCU really hurts here, we could free up the root node because
133
		 * it was COWed but we may not get the new root node yet so do
134 135 136 137 138 139 140 141 142 143
		 * the inc_not_zero dance and if it doesn't work then
		 * synchronize_rcu and try again.
		 */
		if (atomic_inc_not_zero(&eb->refs)) {
			rcu_read_unlock();
			break;
		}
		rcu_read_unlock();
		synchronize_rcu();
	}
144 145 146
	return eb;
}

147 148 149 150
/*
 * Cowonly root (not-shareable trees, everything not subvolume or reloc roots),
 * just get put onto a simple dirty list.  Transaction walks this list to make
 * sure they get properly updated on disk.
C
Chris Mason 已提交
151
 */
152 153
static void add_root_to_dirty_list(struct btrfs_root *root)
{
154 155
	struct btrfs_fs_info *fs_info = root->fs_info;

156 157 158 159
	if (test_bit(BTRFS_ROOT_DIRTY, &root->state) ||
	    !test_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state))
		return;

160
	spin_lock(&fs_info->trans_lock);
161 162
	if (!test_and_set_bit(BTRFS_ROOT_DIRTY, &root->state)) {
		/* Want the extent tree to be the last on the list */
163
		if (root->root_key.objectid == BTRFS_EXTENT_TREE_OBJECTID)
164
			list_move_tail(&root->dirty_list,
165
				       &fs_info->dirty_cowonly_roots);
166 167
		else
			list_move(&root->dirty_list,
168
				  &fs_info->dirty_cowonly_roots);
169
	}
170
	spin_unlock(&fs_info->trans_lock);
171 172
}

C
Chris Mason 已提交
173 174 175 176 177
/*
 * used by snapshot creation to make a copy of a root for a tree with
 * a given objectid.  The buffer with the new root node is returned in
 * cow_ret, and this func returns zero on success or a negative error code.
 */
178 179 180 181 182
int btrfs_copy_root(struct btrfs_trans_handle *trans,
		      struct btrfs_root *root,
		      struct extent_buffer *buf,
		      struct extent_buffer **cow_ret, u64 new_root_objectid)
{
183
	struct btrfs_fs_info *fs_info = root->fs_info;
184 185 186
	struct extent_buffer *cow;
	int ret = 0;
	int level;
187
	struct btrfs_disk_key disk_key;
188

189
	WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
190
		trans->transid != fs_info->running_transaction->transid);
191
	WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
192
		trans->transid != root->last_trans);
193 194

	level = btrfs_header_level(buf);
195 196 197 198
	if (level == 0)
		btrfs_item_key(buf, &disk_key, 0);
	else
		btrfs_node_key(buf, &disk_key, 0);
Z
Zheng Yan 已提交
199

200
	cow = btrfs_alloc_tree_block(trans, root, 0, new_root_objectid,
201 202
				     &disk_key, level, buf->start, 0,
				     BTRFS_NESTING_NEW_ROOT);
203
	if (IS_ERR(cow))
204 205
		return PTR_ERR(cow);

206
	copy_extent_buffer_full(cow, buf);
207 208
	btrfs_set_header_bytenr(cow, cow->start);
	btrfs_set_header_generation(cow, trans->transid);
209 210 211 212 213 214 215
	btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
	btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
				     BTRFS_HEADER_FLAG_RELOC);
	if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
		btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
	else
		btrfs_set_header_owner(cow, new_root_objectid);
216

217
	write_extent_buffer_fsid(cow, fs_info->fs_devices->metadata_uuid);
Y
Yan Zheng 已提交
218

219
	WARN_ON(btrfs_header_generation(buf) > trans->transid);
220
	if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
221
		ret = btrfs_inc_ref(trans, root, cow, 1);
222
	else
223
		ret = btrfs_inc_ref(trans, root, cow, 0);
224

225 226 227 228 229 230 231 232
	if (ret)
		return ret;

	btrfs_mark_buffer_dirty(cow);
	*cow_ret = cow;
	return 0;
}

233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249
enum mod_log_op {
	MOD_LOG_KEY_REPLACE,
	MOD_LOG_KEY_ADD,
	MOD_LOG_KEY_REMOVE,
	MOD_LOG_KEY_REMOVE_WHILE_FREEING,
	MOD_LOG_KEY_REMOVE_WHILE_MOVING,
	MOD_LOG_MOVE_KEYS,
	MOD_LOG_ROOT_REPLACE,
};

struct tree_mod_root {
	u64 logical;
	u8 level;
};

struct tree_mod_elem {
	struct rb_node node;
250
	u64 logical;
251
	u64 seq;
252 253 254 255 256 257 258 259 260 261 262 263 264
	enum mod_log_op op;

	/* this is used for MOD_LOG_KEY_* and MOD_LOG_MOVE_KEYS operations */
	int slot;

	/* this is used for MOD_LOG_KEY* and MOD_LOG_ROOT_REPLACE */
	u64 generation;

	/* those are used for op == MOD_LOG_KEY_{REPLACE,REMOVE} */
	struct btrfs_disk_key key;
	u64 blockptr;

	/* this is used for op == MOD_LOG_MOVE_KEYS */
265 266 267 268
	struct {
		int dst_slot;
		int nr_items;
	} move;
269 270 271 272 273

	/* this is used for op == MOD_LOG_ROOT_REPLACE */
	struct tree_mod_root old_root;
};

274
/*
J
Josef Bacik 已提交
275
 * Pull a new tree mod seq number for our operation.
276
 */
J
Josef Bacik 已提交
277
static inline u64 btrfs_inc_tree_mod_seq(struct btrfs_fs_info *fs_info)
278 279 280 281
{
	return atomic64_inc_return(&fs_info->tree_mod_seq);
}

282 283 284 285 286 287 288 289 290 291
/*
 * This adds a new blocker to the tree mod log's blocker list if the @elem
 * passed does not already have a sequence number set. So when a caller expects
 * to record tree modifications, it should ensure to set elem->seq to zero
 * before calling btrfs_get_tree_mod_seq.
 * Returns a fresh, unused tree log modification sequence number, even if no new
 * blocker was added.
 */
u64 btrfs_get_tree_mod_seq(struct btrfs_fs_info *fs_info,
			   struct seq_list *elem)
292
{
293
	write_lock(&fs_info->tree_mod_log_lock);
294
	if (!elem->seq) {
J
Josef Bacik 已提交
295
		elem->seq = btrfs_inc_tree_mod_seq(fs_info);
296 297
		list_add_tail(&elem->list, &fs_info->tree_mod_seq_list);
	}
298
	write_unlock(&fs_info->tree_mod_log_lock);
299

J
Josef Bacik 已提交
300
	return elem->seq;
301 302 303 304 305 306 307 308 309 310 311 312 313 314 315
}

void btrfs_put_tree_mod_seq(struct btrfs_fs_info *fs_info,
			    struct seq_list *elem)
{
	struct rb_root *tm_root;
	struct rb_node *node;
	struct rb_node *next;
	struct tree_mod_elem *tm;
	u64 min_seq = (u64)-1;
	u64 seq_putting = elem->seq;

	if (!seq_putting)
		return;

316
	write_lock(&fs_info->tree_mod_log_lock);
317
	list_del(&elem->list);
318
	elem->seq = 0;
319

320 321 322 323 324 325 326 327 328 329 330 331
	if (!list_empty(&fs_info->tree_mod_seq_list)) {
		struct seq_list *first;

		first = list_first_entry(&fs_info->tree_mod_seq_list,
					 struct seq_list, list);
		if (seq_putting > first->seq) {
			/*
			 * Blocker with lower sequence number exists, we
			 * cannot remove anything from the log.
			 */
			write_unlock(&fs_info->tree_mod_log_lock);
			return;
332
		}
333
		min_seq = first->seq;
334
	}
335

336 337 338 339 340 341 342
	/*
	 * anything that's lower than the lowest existing (read: blocked)
	 * sequence number can be removed from the tree.
	 */
	tm_root = &fs_info->tree_mod_log;
	for (node = rb_first(tm_root); node; node = next) {
		next = rb_next(node);
343
		tm = rb_entry(node, struct tree_mod_elem, node);
344
		if (tm->seq >= min_seq)
345 346 347 348
			continue;
		rb_erase(node, tm_root);
		kfree(tm);
	}
349
	write_unlock(&fs_info->tree_mod_log_lock);
350 351 352 353
}

/*
 * key order of the log:
354
 *       node/leaf start address -> sequence
355
 *
356 357 358
 * The 'start address' is the logical address of the *new* root node
 * for root replace operations, or the logical address of the affected
 * block for all other operations.
359 360 361 362 363 364 365 366
 */
static noinline int
__tree_mod_log_insert(struct btrfs_fs_info *fs_info, struct tree_mod_elem *tm)
{
	struct rb_root *tm_root;
	struct rb_node **new;
	struct rb_node *parent = NULL;
	struct tree_mod_elem *cur;
367

368 369
	lockdep_assert_held_write(&fs_info->tree_mod_log_lock);

J
Josef Bacik 已提交
370
	tm->seq = btrfs_inc_tree_mod_seq(fs_info);
371 372 373 374

	tm_root = &fs_info->tree_mod_log;
	new = &tm_root->rb_node;
	while (*new) {
375
		cur = rb_entry(*new, struct tree_mod_elem, node);
376
		parent = *new;
377
		if (cur->logical < tm->logical)
378
			new = &((*new)->rb_left);
379
		else if (cur->logical > tm->logical)
380
			new = &((*new)->rb_right);
381
		else if (cur->seq < tm->seq)
382
			new = &((*new)->rb_left);
383
		else if (cur->seq > tm->seq)
384
			new = &((*new)->rb_right);
385 386
		else
			return -EEXIST;
387 388 389 390
	}

	rb_link_node(&tm->node, parent, new);
	rb_insert_color(&tm->node, tm_root);
391
	return 0;
392 393
}

394 395 396 397
/*
 * Determines if logging can be omitted. Returns 1 if it can. Otherwise, it
 * returns zero with the tree_mod_log_lock acquired. The caller must hold
 * this until all tree mod log insertions are recorded in the rb tree and then
398
 * write unlock fs_info::tree_mod_log_lock.
399
 */
400 401 402 403 404
static inline int tree_mod_dont_log(struct btrfs_fs_info *fs_info,
				    struct extent_buffer *eb) {
	smp_mb();
	if (list_empty(&(fs_info)->tree_mod_seq_list))
		return 1;
405 406
	if (eb && btrfs_header_level(eb) == 0)
		return 1;
407

408
	write_lock(&fs_info->tree_mod_log_lock);
409
	if (list_empty(&(fs_info)->tree_mod_seq_list)) {
410
		write_unlock(&fs_info->tree_mod_log_lock);
411 412 413
		return 1;
	}

414 415 416
	return 0;
}

417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432
/* Similar to tree_mod_dont_log, but doesn't acquire any locks. */
static inline int tree_mod_need_log(const struct btrfs_fs_info *fs_info,
				    struct extent_buffer *eb)
{
	smp_mb();
	if (list_empty(&(fs_info)->tree_mod_seq_list))
		return 0;
	if (eb && btrfs_header_level(eb) == 0)
		return 0;

	return 1;
}

static struct tree_mod_elem *
alloc_tree_mod_elem(struct extent_buffer *eb, int slot,
		    enum mod_log_op op, gfp_t flags)
433
{
434
	struct tree_mod_elem *tm;
435

436 437
	tm = kzalloc(sizeof(*tm), flags);
	if (!tm)
438
		return NULL;
439

440
	tm->logical = eb->start;
441 442 443 444 445 446 447
	if (op != MOD_LOG_KEY_ADD) {
		btrfs_node_key(eb, &tm->key, slot);
		tm->blockptr = btrfs_node_blockptr(eb, slot);
	}
	tm->op = op;
	tm->slot = slot;
	tm->generation = btrfs_node_ptr_generation(eb, slot);
448
	RB_CLEAR_NODE(&tm->node);
449

450
	return tm;
451 452
}

453 454
static noinline int tree_mod_log_insert_key(struct extent_buffer *eb, int slot,
		enum mod_log_op op, gfp_t flags)
455
{
456 457 458
	struct tree_mod_elem *tm;
	int ret;

459
	if (!tree_mod_need_log(eb->fs_info, eb))
460 461 462 463 464 465
		return 0;

	tm = alloc_tree_mod_elem(eb, slot, op, flags);
	if (!tm)
		return -ENOMEM;

466
	if (tree_mod_dont_log(eb->fs_info, eb)) {
467
		kfree(tm);
468
		return 0;
469 470
	}

471
	ret = __tree_mod_log_insert(eb->fs_info, tm);
472
	write_unlock(&eb->fs_info->tree_mod_log_lock);
473 474
	if (ret)
		kfree(tm);
475

476
	return ret;
477 478
}

479 480
static noinline int tree_mod_log_insert_move(struct extent_buffer *eb,
		int dst_slot, int src_slot, int nr_items)
481
{
482 483 484
	struct tree_mod_elem *tm = NULL;
	struct tree_mod_elem **tm_list = NULL;
	int ret = 0;
485
	int i;
486
	int locked = 0;
487

488
	if (!tree_mod_need_log(eb->fs_info, eb))
J
Jan Schmidt 已提交
489
		return 0;
490

491
	tm_list = kcalloc(nr_items, sizeof(struct tree_mod_elem *), GFP_NOFS);
492 493 494
	if (!tm_list)
		return -ENOMEM;

495
	tm = kzalloc(sizeof(*tm), GFP_NOFS);
496 497 498 499 500
	if (!tm) {
		ret = -ENOMEM;
		goto free_tms;
	}

501
	tm->logical = eb->start;
502 503 504 505 506 507 508
	tm->slot = src_slot;
	tm->move.dst_slot = dst_slot;
	tm->move.nr_items = nr_items;
	tm->op = MOD_LOG_MOVE_KEYS;

	for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) {
		tm_list[i] = alloc_tree_mod_elem(eb, i + dst_slot,
509
		    MOD_LOG_KEY_REMOVE_WHILE_MOVING, GFP_NOFS);
510 511 512 513 514 515
		if (!tm_list[i]) {
			ret = -ENOMEM;
			goto free_tms;
		}
	}

516
	if (tree_mod_dont_log(eb->fs_info, eb))
517 518 519
		goto free_tms;
	locked = 1;

520 521 522 523 524
	/*
	 * When we override something during the move, we log these removals.
	 * This can only happen when we move towards the beginning of the
	 * buffer, i.e. dst_slot < src_slot.
	 */
525
	for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) {
526
		ret = __tree_mod_log_insert(eb->fs_info, tm_list[i]);
527 528
		if (ret)
			goto free_tms;
529 530
	}

531
	ret = __tree_mod_log_insert(eb->fs_info, tm);
532 533
	if (ret)
		goto free_tms;
534
	write_unlock(&eb->fs_info->tree_mod_log_lock);
535
	kfree(tm_list);
J
Jan Schmidt 已提交
536

537 538 539 540
	return 0;
free_tms:
	for (i = 0; i < nr_items; i++) {
		if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node))
541
			rb_erase(&tm_list[i]->node, &eb->fs_info->tree_mod_log);
542 543 544
		kfree(tm_list[i]);
	}
	if (locked)
545
		write_unlock(&eb->fs_info->tree_mod_log_lock);
546 547
	kfree(tm_list);
	kfree(tm);
548

549
	return ret;
550 551
}

552 553 554 555
static inline int
__tree_mod_log_free_eb(struct btrfs_fs_info *fs_info,
		       struct tree_mod_elem **tm_list,
		       int nritems)
556
{
557
	int i, j;
558 559 560
	int ret;

	for (i = nritems - 1; i >= 0; i--) {
561 562 563 564 565 566 567
		ret = __tree_mod_log_insert(fs_info, tm_list[i]);
		if (ret) {
			for (j = nritems - 1; j > i; j--)
				rb_erase(&tm_list[j]->node,
					 &fs_info->tree_mod_log);
			return ret;
		}
568
	}
569 570

	return 0;
571 572
}

573 574
static noinline int tree_mod_log_insert_root(struct extent_buffer *old_root,
			 struct extent_buffer *new_root, int log_removal)
575
{
576
	struct btrfs_fs_info *fs_info = old_root->fs_info;
577 578 579 580 581
	struct tree_mod_elem *tm = NULL;
	struct tree_mod_elem **tm_list = NULL;
	int nritems = 0;
	int ret = 0;
	int i;
582

583
	if (!tree_mod_need_log(fs_info, NULL))
584 585
		return 0;

586 587
	if (log_removal && btrfs_header_level(old_root) > 0) {
		nritems = btrfs_header_nritems(old_root);
588
		tm_list = kcalloc(nritems, sizeof(struct tree_mod_elem *),
589
				  GFP_NOFS);
590 591 592 593 594 595
		if (!tm_list) {
			ret = -ENOMEM;
			goto free_tms;
		}
		for (i = 0; i < nritems; i++) {
			tm_list[i] = alloc_tree_mod_elem(old_root, i,
596
			    MOD_LOG_KEY_REMOVE_WHILE_FREEING, GFP_NOFS);
597 598 599 600 601 602
			if (!tm_list[i]) {
				ret = -ENOMEM;
				goto free_tms;
			}
		}
	}
603

604
	tm = kzalloc(sizeof(*tm), GFP_NOFS);
605 606 607 608
	if (!tm) {
		ret = -ENOMEM;
		goto free_tms;
	}
609

610
	tm->logical = new_root->start;
611 612 613 614 615
	tm->old_root.logical = old_root->start;
	tm->old_root.level = btrfs_header_level(old_root);
	tm->generation = btrfs_header_generation(old_root);
	tm->op = MOD_LOG_ROOT_REPLACE;

616 617 618 619 620 621 622 623
	if (tree_mod_dont_log(fs_info, NULL))
		goto free_tms;

	if (tm_list)
		ret = __tree_mod_log_free_eb(fs_info, tm_list, nritems);
	if (!ret)
		ret = __tree_mod_log_insert(fs_info, tm);

624
	write_unlock(&fs_info->tree_mod_log_lock);
625 626 627 628 629 630 631 632 633 634 635 636 637 638 639
	if (ret)
		goto free_tms;
	kfree(tm_list);

	return ret;

free_tms:
	if (tm_list) {
		for (i = 0; i < nritems; i++)
			kfree(tm_list[i]);
		kfree(tm_list);
	}
	kfree(tm);

	return ret;
640 641 642 643 644 645 646 647 648 649 650
}

static struct tree_mod_elem *
__tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq,
		      int smallest)
{
	struct rb_root *tm_root;
	struct rb_node *node;
	struct tree_mod_elem *cur = NULL;
	struct tree_mod_elem *found = NULL;

651
	read_lock(&fs_info->tree_mod_log_lock);
652 653 654
	tm_root = &fs_info->tree_mod_log;
	node = tm_root->rb_node;
	while (node) {
655
		cur = rb_entry(node, struct tree_mod_elem, node);
656
		if (cur->logical < start) {
657
			node = node->rb_left;
658
		} else if (cur->logical > start) {
659
			node = node->rb_right;
660
		} else if (cur->seq < min_seq) {
661 662 663 664
			node = node->rb_left;
		} else if (!smallest) {
			/* we want the node with the highest seq */
			if (found)
665
				BUG_ON(found->seq > cur->seq);
666 667
			found = cur;
			node = node->rb_left;
668
		} else if (cur->seq > min_seq) {
669 670
			/* we want the node with the smallest seq */
			if (found)
671
				BUG_ON(found->seq < cur->seq);
672 673 674 675 676 677 678
			found = cur;
			node = node->rb_right;
		} else {
			found = cur;
			break;
		}
	}
679
	read_unlock(&fs_info->tree_mod_log_lock);
680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706

	return found;
}

/*
 * this returns the element from the log with the smallest time sequence
 * value that's in the log (the oldest log item). any element with a time
 * sequence lower than min_seq will be ignored.
 */
static struct tree_mod_elem *
tree_mod_log_search_oldest(struct btrfs_fs_info *fs_info, u64 start,
			   u64 min_seq)
{
	return __tree_mod_log_search(fs_info, start, min_seq, 1);
}

/*
 * this returns the element from the log with the largest time sequence
 * value that's in the log (the most recent log item). any element with
 * a time sequence lower than min_seq will be ignored.
 */
static struct tree_mod_elem *
tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq)
{
	return __tree_mod_log_search(fs_info, start, min_seq, 0);
}

707
static noinline int tree_mod_log_eb_copy(struct extent_buffer *dst,
708
		     struct extent_buffer *src, unsigned long dst_offset,
709
		     unsigned long src_offset, int nr_items)
710
{
711
	struct btrfs_fs_info *fs_info = dst->fs_info;
712 713 714
	int ret = 0;
	struct tree_mod_elem **tm_list = NULL;
	struct tree_mod_elem **tm_list_add, **tm_list_rem;
715
	int i;
716
	int locked = 0;
717

718 719
	if (!tree_mod_need_log(fs_info, NULL))
		return 0;
720

721
	if (btrfs_header_level(dst) == 0 && btrfs_header_level(src) == 0)
722 723
		return 0;

724
	tm_list = kcalloc(nr_items * 2, sizeof(struct tree_mod_elem *),
725 726 727
			  GFP_NOFS);
	if (!tm_list)
		return -ENOMEM;
728

729 730
	tm_list_add = tm_list;
	tm_list_rem = tm_list + nr_items;
731
	for (i = 0; i < nr_items; i++) {
732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757
		tm_list_rem[i] = alloc_tree_mod_elem(src, i + src_offset,
		    MOD_LOG_KEY_REMOVE, GFP_NOFS);
		if (!tm_list_rem[i]) {
			ret = -ENOMEM;
			goto free_tms;
		}

		tm_list_add[i] = alloc_tree_mod_elem(dst, i + dst_offset,
		    MOD_LOG_KEY_ADD, GFP_NOFS);
		if (!tm_list_add[i]) {
			ret = -ENOMEM;
			goto free_tms;
		}
	}

	if (tree_mod_dont_log(fs_info, NULL))
		goto free_tms;
	locked = 1;

	for (i = 0; i < nr_items; i++) {
		ret = __tree_mod_log_insert(fs_info, tm_list_rem[i]);
		if (ret)
			goto free_tms;
		ret = __tree_mod_log_insert(fs_info, tm_list_add[i]);
		if (ret)
			goto free_tms;
758
	}
759

760
	write_unlock(&fs_info->tree_mod_log_lock);
761 762 763 764 765 766 767 768 769 770 771
	kfree(tm_list);

	return 0;

free_tms:
	for (i = 0; i < nr_items * 2; i++) {
		if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node))
			rb_erase(&tm_list[i]->node, &fs_info->tree_mod_log);
		kfree(tm_list[i]);
	}
	if (locked)
772
		write_unlock(&fs_info->tree_mod_log_lock);
773 774 775
	kfree(tm_list);

	return ret;
776 777
}

778
static noinline int tree_mod_log_free_eb(struct extent_buffer *eb)
779
{
780 781 782 783 784 785 786 787
	struct tree_mod_elem **tm_list = NULL;
	int nritems = 0;
	int i;
	int ret = 0;

	if (btrfs_header_level(eb) == 0)
		return 0;

788
	if (!tree_mod_need_log(eb->fs_info, NULL))
789 790 791
		return 0;

	nritems = btrfs_header_nritems(eb);
792
	tm_list = kcalloc(nritems, sizeof(struct tree_mod_elem *), GFP_NOFS);
793 794 795 796 797 798 799 800 801 802 803 804
	if (!tm_list)
		return -ENOMEM;

	for (i = 0; i < nritems; i++) {
		tm_list[i] = alloc_tree_mod_elem(eb, i,
		    MOD_LOG_KEY_REMOVE_WHILE_FREEING, GFP_NOFS);
		if (!tm_list[i]) {
			ret = -ENOMEM;
			goto free_tms;
		}
	}

805
	if (tree_mod_dont_log(eb->fs_info, eb))
806 807
		goto free_tms;

808
	ret = __tree_mod_log_free_eb(eb->fs_info, tm_list, nritems);
809
	write_unlock(&eb->fs_info->tree_mod_log_lock);
810 811 812 813 814 815 816 817 818 819 820 821
	if (ret)
		goto free_tms;
	kfree(tm_list);

	return 0;

free_tms:
	for (i = 0; i < nritems; i++)
		kfree(tm_list[i]);
	kfree(tm_list);

	return ret;
822 823
}

824 825 826 827 828 829 830
/*
 * check if the tree block can be shared by multiple trees
 */
int btrfs_block_can_be_shared(struct btrfs_root *root,
			      struct extent_buffer *buf)
{
	/*
831 832 833
	 * Tree blocks not in shareable trees and tree roots are never shared.
	 * If a block was allocated after the last snapshot and the block was
	 * not allocated by tree relocation, we know the block is not shared.
834
	 */
835
	if (test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
836 837 838 839 840
	    buf != root->node && buf != root->commit_root &&
	    (btrfs_header_generation(buf) <=
	     btrfs_root_last_snapshot(&root->root_item) ||
	     btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)))
		return 1;
841

842 843 844 845 846 847
	return 0;
}

static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans,
				       struct btrfs_root *root,
				       struct extent_buffer *buf,
848 849
				       struct extent_buffer *cow,
				       int *last_ref)
850
{
851
	struct btrfs_fs_info *fs_info = root->fs_info;
852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875
	u64 refs;
	u64 owner;
	u64 flags;
	u64 new_flags = 0;
	int ret;

	/*
	 * Backrefs update rules:
	 *
	 * Always use full backrefs for extent pointers in tree block
	 * allocated by tree relocation.
	 *
	 * If a shared tree block is no longer referenced by its owner
	 * tree (btrfs_header_owner(buf) == root->root_key.objectid),
	 * use full backrefs for extent pointers in tree block.
	 *
	 * If a tree block is been relocating
	 * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID),
	 * use full backrefs for extent pointers in tree block.
	 * The reason for this is some operations (such as drop tree)
	 * are only allowed for blocks use full backrefs.
	 */

	if (btrfs_block_can_be_shared(root, buf)) {
876
		ret = btrfs_lookup_extent_info(trans, fs_info, buf->start,
877 878
					       btrfs_header_level(buf), 1,
					       &refs, &flags);
879 880
		if (ret)
			return ret;
881 882
		if (refs == 0) {
			ret = -EROFS;
883
			btrfs_handle_fs_error(fs_info, ret, NULL);
884 885
			return ret;
		}
886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902
	} else {
		refs = 1;
		if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
		    btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
			flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
		else
			flags = 0;
	}

	owner = btrfs_header_owner(buf);
	BUG_ON(owner == BTRFS_TREE_RELOC_OBJECTID &&
	       !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));

	if (refs > 1) {
		if ((owner == root->root_key.objectid ||
		     root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) &&
		    !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) {
903
			ret = btrfs_inc_ref(trans, root, buf, 1);
904 905
			if (ret)
				return ret;
906 907 908

			if (root->root_key.objectid ==
			    BTRFS_TREE_RELOC_OBJECTID) {
909
				ret = btrfs_dec_ref(trans, root, buf, 0);
910 911
				if (ret)
					return ret;
912
				ret = btrfs_inc_ref(trans, root, cow, 1);
913 914
				if (ret)
					return ret;
915 916 917 918 919 920
			}
			new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
		} else {

			if (root->root_key.objectid ==
			    BTRFS_TREE_RELOC_OBJECTID)
921
				ret = btrfs_inc_ref(trans, root, cow, 1);
922
			else
923
				ret = btrfs_inc_ref(trans, root, cow, 0);
924 925
			if (ret)
				return ret;
926 927
		}
		if (new_flags != 0) {
928 929
			int level = btrfs_header_level(buf);

930
			ret = btrfs_set_disk_extent_flags(trans, buf,
931
							  new_flags, level, 0);
932 933
			if (ret)
				return ret;
934 935 936 937 938
		}
	} else {
		if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
			if (root->root_key.objectid ==
			    BTRFS_TREE_RELOC_OBJECTID)
939
				ret = btrfs_inc_ref(trans, root, cow, 1);
940
			else
941
				ret = btrfs_inc_ref(trans, root, cow, 0);
942 943
			if (ret)
				return ret;
944
			ret = btrfs_dec_ref(trans, root, buf, 1);
945 946
			if (ret)
				return ret;
947
		}
948
		btrfs_clean_tree_block(buf);
949
		*last_ref = 1;
950 951 952 953
	}
	return 0;
}

954 955 956 957 958 959 960
static struct extent_buffer *alloc_tree_block_no_bg_flush(
					  struct btrfs_trans_handle *trans,
					  struct btrfs_root *root,
					  u64 parent_start,
					  const struct btrfs_disk_key *disk_key,
					  int level,
					  u64 hint,
961 962
					  u64 empty_size,
					  enum btrfs_lock_nesting nest)
963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990
{
	struct btrfs_fs_info *fs_info = root->fs_info;
	struct extent_buffer *ret;

	/*
	 * If we are COWing a node/leaf from the extent, chunk, device or free
	 * space trees, make sure that we do not finish block group creation of
	 * pending block groups. We do this to avoid a deadlock.
	 * COWing can result in allocation of a new chunk, and flushing pending
	 * block groups (btrfs_create_pending_block_groups()) can be triggered
	 * when finishing allocation of a new chunk. Creation of a pending block
	 * group modifies the extent, chunk, device and free space trees,
	 * therefore we could deadlock with ourselves since we are holding a
	 * lock on an extent buffer that btrfs_create_pending_block_groups() may
	 * try to COW later.
	 * For similar reasons, we also need to delay flushing pending block
	 * groups when splitting a leaf or node, from one of those trees, since
	 * we are holding a write lock on it and its parent or when inserting a
	 * new root node for one of those trees.
	 */
	if (root == fs_info->extent_root ||
	    root == fs_info->chunk_root ||
	    root == fs_info->dev_root ||
	    root == fs_info->free_space_root)
		trans->can_flush_pending_bgs = false;

	ret = btrfs_alloc_tree_block(trans, root, parent_start,
				     root->root_key.objectid, disk_key, level,
991
				     hint, empty_size, nest);
992 993 994 995 996
	trans->can_flush_pending_bgs = true;

	return ret;
}

C
Chris Mason 已提交
997
/*
C
Chris Mason 已提交
998 999 1000 1001
 * does the dirty work in cow of a single block.  The parent block (if
 * supplied) is updated to point to the new cow copy.  The new buffer is marked
 * dirty and returned locked.  If you modify the block it needs to be marked
 * dirty again.
C
Chris Mason 已提交
1002 1003 1004
 *
 * search_start -- an allocation hint for the new block
 *
C
Chris Mason 已提交
1005 1006 1007
 * empty_size -- a hint that you plan on doing more cow.  This is the size in
 * bytes the allocator should try to find free next to the block it returns.
 * This is just a hint and may be ignored by the allocator.
C
Chris Mason 已提交
1008
 */
C
Chris Mason 已提交
1009
static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans,
1010 1011 1012 1013
			     struct btrfs_root *root,
			     struct extent_buffer *buf,
			     struct extent_buffer *parent, int parent_slot,
			     struct extent_buffer **cow_ret,
1014 1015
			     u64 search_start, u64 empty_size,
			     enum btrfs_lock_nesting nest)
C
Chris Mason 已提交
1016
{
1017
	struct btrfs_fs_info *fs_info = root->fs_info;
1018
	struct btrfs_disk_key disk_key;
1019
	struct extent_buffer *cow;
1020
	int level, ret;
1021
	int last_ref = 0;
1022
	int unlock_orig = 0;
1023
	u64 parent_start = 0;
1024

1025 1026 1027
	if (*cow_ret == buf)
		unlock_orig = 1;

1028
	btrfs_assert_tree_locked(buf);
1029

1030
	WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
1031
		trans->transid != fs_info->running_transaction->transid);
1032
	WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
1033
		trans->transid != root->last_trans);
1034

1035
	level = btrfs_header_level(buf);
Z
Zheng Yan 已提交
1036

1037 1038 1039 1040 1041
	if (level == 0)
		btrfs_item_key(buf, &disk_key, 0);
	else
		btrfs_node_key(buf, &disk_key, 0);

1042 1043
	if ((root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) && parent)
		parent_start = parent->start;
1044

1045
	cow = alloc_tree_block_no_bg_flush(trans, root, parent_start, &disk_key,
1046
					   level, search_start, empty_size, nest);
1047 1048
	if (IS_ERR(cow))
		return PTR_ERR(cow);
1049

1050 1051
	/* cow is set to blocking by btrfs_init_new_buffer */

1052
	copy_extent_buffer_full(cow, buf);
1053
	btrfs_set_header_bytenr(cow, cow->start);
1054
	btrfs_set_header_generation(cow, trans->transid);
1055 1056 1057 1058 1059 1060 1061
	btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
	btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
				     BTRFS_HEADER_FLAG_RELOC);
	if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
		btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
	else
		btrfs_set_header_owner(cow, root->root_key.objectid);
1062

1063
	write_extent_buffer_fsid(cow, fs_info->fs_devices->metadata_uuid);
Y
Yan Zheng 已提交
1064

1065
	ret = update_ref_for_cow(trans, root, buf, cow, &last_ref);
1066
	if (ret) {
J
Josef Bacik 已提交
1067 1068
		btrfs_tree_unlock(cow);
		free_extent_buffer(cow);
1069
		btrfs_abort_transaction(trans, ret);
1070 1071
		return ret;
	}
Z
Zheng Yan 已提交
1072

1073
	if (test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) {
1074
		ret = btrfs_reloc_cow_block(trans, root, buf, cow);
1075
		if (ret) {
J
Josef Bacik 已提交
1076 1077
			btrfs_tree_unlock(cow);
			free_extent_buffer(cow);
1078
			btrfs_abort_transaction(trans, ret);
1079
			return ret;
1080
		}
1081
	}
1082

C
Chris Mason 已提交
1083
	if (buf == root->node) {
1084
		WARN_ON(parent && parent != buf);
1085 1086 1087
		if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
		    btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
			parent_start = buf->start;
1088

D
David Sterba 已提交
1089
		atomic_inc(&cow->refs);
1090 1091
		ret = tree_mod_log_insert_root(root->node, cow, 1);
		BUG_ON(ret < 0);
1092
		rcu_assign_pointer(root->node, cow);
1093

1094
		btrfs_free_tree_block(trans, root, buf, parent_start,
1095
				      last_ref);
1096
		free_extent_buffer(buf);
1097
		add_root_to_dirty_list(root);
C
Chris Mason 已提交
1098
	} else {
1099
		WARN_ON(trans->transid != btrfs_header_generation(parent));
1100
		tree_mod_log_insert_key(parent, parent_slot,
1101
					MOD_LOG_KEY_REPLACE, GFP_NOFS);
1102
		btrfs_set_node_blockptr(parent, parent_slot,
1103
					cow->start);
1104 1105
		btrfs_set_node_ptr_generation(parent, parent_slot,
					      trans->transid);
C
Chris Mason 已提交
1106
		btrfs_mark_buffer_dirty(parent);
1107
		if (last_ref) {
1108
			ret = tree_mod_log_free_eb(buf);
1109
			if (ret) {
J
Josef Bacik 已提交
1110 1111
				btrfs_tree_unlock(cow);
				free_extent_buffer(cow);
1112
				btrfs_abort_transaction(trans, ret);
1113 1114 1115
				return ret;
			}
		}
1116
		btrfs_free_tree_block(trans, root, buf, parent_start,
1117
				      last_ref);
C
Chris Mason 已提交
1118
	}
1119 1120
	if (unlock_orig)
		btrfs_tree_unlock(buf);
1121
	free_extent_buffer_stale(buf);
C
Chris Mason 已提交
1122
	btrfs_mark_buffer_dirty(cow);
C
Chris Mason 已提交
1123
	*cow_ret = cow;
C
Chris Mason 已提交
1124 1125 1126
	return 0;
}

J
Jan Schmidt 已提交
1127 1128 1129 1130
/*
 * returns the logical address of the oldest predecessor of the given root.
 * entries older than time_seq are ignored.
 */
1131 1132
static struct tree_mod_elem *__tree_mod_log_oldest_root(
		struct extent_buffer *eb_root, u64 time_seq)
J
Jan Schmidt 已提交
1133 1134 1135
{
	struct tree_mod_elem *tm;
	struct tree_mod_elem *found = NULL;
1136
	u64 root_logical = eb_root->start;
J
Jan Schmidt 已提交
1137 1138 1139
	int looped = 0;

	if (!time_seq)
1140
		return NULL;
J
Jan Schmidt 已提交
1141 1142

	/*
1143 1144 1145 1146
	 * the very last operation that's logged for a root is the
	 * replacement operation (if it is replaced at all). this has
	 * the logical address of the *new* root, making it the very
	 * first operation that's logged for this root.
J
Jan Schmidt 已提交
1147 1148
	 */
	while (1) {
1149
		tm = tree_mod_log_search_oldest(eb_root->fs_info, root_logical,
J
Jan Schmidt 已提交
1150 1151
						time_seq);
		if (!looped && !tm)
1152
			return NULL;
J
Jan Schmidt 已提交
1153
		/*
1154 1155 1156
		 * if there are no tree operation for the oldest root, we simply
		 * return it. this should only happen if that (old) root is at
		 * level 0.
J
Jan Schmidt 已提交
1157
		 */
1158 1159
		if (!tm)
			break;
J
Jan Schmidt 已提交
1160

1161 1162 1163 1164 1165
		/*
		 * if there's an operation that's not a root replacement, we
		 * found the oldest version of our root. normally, we'll find a
		 * MOD_LOG_KEY_REMOVE_WHILE_FREEING operation here.
		 */
J
Jan Schmidt 已提交
1166 1167 1168 1169 1170 1171 1172 1173
		if (tm->op != MOD_LOG_ROOT_REPLACE)
			break;

		found = tm;
		root_logical = tm->old_root.logical;
		looped = 1;
	}

1174 1175 1176 1177
	/* if there's no old root to return, return what we found instead */
	if (!found)
		found = tm;

J
Jan Schmidt 已提交
1178 1179 1180 1181 1182
	return found;
}

/*
 * tm is a pointer to the first operation to rewind within eb. then, all
1183
 * previous operations will be rewound (until we reach something older than
J
Jan Schmidt 已提交
1184 1185 1186
 * time_seq).
 */
static void
1187 1188
__tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct extent_buffer *eb,
		      u64 time_seq, struct tree_mod_elem *first_tm)
J
Jan Schmidt 已提交
1189 1190 1191 1192 1193 1194 1195 1196 1197
{
	u32 n;
	struct rb_node *next;
	struct tree_mod_elem *tm = first_tm;
	unsigned long o_dst;
	unsigned long o_src;
	unsigned long p_size = sizeof(struct btrfs_key_ptr);

	n = btrfs_header_nritems(eb);
1198
	read_lock(&fs_info->tree_mod_log_lock);
1199
	while (tm && tm->seq >= time_seq) {
J
Jan Schmidt 已提交
1200 1201 1202 1203 1204 1205 1206 1207
		/*
		 * all the operations are recorded with the operator used for
		 * the modification. as we're going backwards, we do the
		 * opposite of each operation here.
		 */
		switch (tm->op) {
		case MOD_LOG_KEY_REMOVE_WHILE_FREEING:
			BUG_ON(tm->slot < n);
1208
			fallthrough;
1209
		case MOD_LOG_KEY_REMOVE_WHILE_MOVING:
1210
		case MOD_LOG_KEY_REMOVE:
J
Jan Schmidt 已提交
1211 1212 1213 1214
			btrfs_set_node_key(eb, &tm->key, tm->slot);
			btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
			btrfs_set_node_ptr_generation(eb, tm->slot,
						      tm->generation);
1215
			n++;
J
Jan Schmidt 已提交
1216 1217 1218 1219 1220 1221 1222 1223 1224
			break;
		case MOD_LOG_KEY_REPLACE:
			BUG_ON(tm->slot >= n);
			btrfs_set_node_key(eb, &tm->key, tm->slot);
			btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
			btrfs_set_node_ptr_generation(eb, tm->slot,
						      tm->generation);
			break;
		case MOD_LOG_KEY_ADD:
1225
			/* if a move operation is needed it's in the log */
J
Jan Schmidt 已提交
1226 1227 1228
			n--;
			break;
		case MOD_LOG_MOVE_KEYS:
1229 1230 1231
			o_dst = btrfs_node_key_ptr_offset(tm->slot);
			o_src = btrfs_node_key_ptr_offset(tm->move.dst_slot);
			memmove_extent_buffer(eb, o_dst, o_src,
J
Jan Schmidt 已提交
1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248
					      tm->move.nr_items * p_size);
			break;
		case MOD_LOG_ROOT_REPLACE:
			/*
			 * this operation is special. for roots, this must be
			 * handled explicitly before rewinding.
			 * for non-roots, this operation may exist if the node
			 * was a root: root A -> child B; then A gets empty and
			 * B is promoted to the new root. in the mod log, we'll
			 * have a root-replace operation for B, a tree block
			 * that is no root. we simply ignore that operation.
			 */
			break;
		}
		next = rb_next(&tm->node);
		if (!next)
			break;
1249
		tm = rb_entry(next, struct tree_mod_elem, node);
1250
		if (tm->logical != first_tm->logical)
J
Jan Schmidt 已提交
1251 1252
			break;
	}
1253
	read_unlock(&fs_info->tree_mod_log_lock);
J
Jan Schmidt 已提交
1254 1255 1256
	btrfs_set_header_nritems(eb, n);
}

1257
/*
1258
 * Called with eb read locked. If the buffer cannot be rewound, the same buffer
1259 1260 1261 1262 1263
 * is returned. If rewind operations happen, a fresh buffer is returned. The
 * returned buffer is always read-locked. If the returned buffer is not the
 * input buffer, the lock on the input buffer is released and the input buffer
 * is freed (its refcount is decremented).
 */
J
Jan Schmidt 已提交
1264
static struct extent_buffer *
1265 1266
tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct btrfs_path *path,
		    struct extent_buffer *eb, u64 time_seq)
J
Jan Schmidt 已提交
1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282
{
	struct extent_buffer *eb_rewin;
	struct tree_mod_elem *tm;

	if (!time_seq)
		return eb;

	if (btrfs_header_level(eb) == 0)
		return eb;

	tm = tree_mod_log_search(fs_info, eb->start, time_seq);
	if (!tm)
		return eb;

	if (tm->op == MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
		BUG_ON(tm->slot != 0);
1283
		eb_rewin = alloc_dummy_extent_buffer(fs_info, eb->start);
1284
		if (!eb_rewin) {
1285
			btrfs_tree_read_unlock(eb);
1286 1287 1288
			free_extent_buffer(eb);
			return NULL;
		}
J
Jan Schmidt 已提交
1289 1290 1291 1292
		btrfs_set_header_bytenr(eb_rewin, eb->start);
		btrfs_set_header_backref_rev(eb_rewin,
					     btrfs_header_backref_rev(eb));
		btrfs_set_header_owner(eb_rewin, btrfs_header_owner(eb));
1293
		btrfs_set_header_level(eb_rewin, btrfs_header_level(eb));
J
Jan Schmidt 已提交
1294 1295
	} else {
		eb_rewin = btrfs_clone_extent_buffer(eb);
1296
		if (!eb_rewin) {
1297
			btrfs_tree_read_unlock(eb);
1298 1299 1300
			free_extent_buffer(eb);
			return NULL;
		}
J
Jan Schmidt 已提交
1301 1302
	}

1303
	btrfs_tree_read_unlock(eb);
J
Jan Schmidt 已提交
1304 1305
	free_extent_buffer(eb);

1306 1307
	btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb_rewin),
				       eb_rewin, btrfs_header_level(eb_rewin));
1308
	btrfs_tree_read_lock(eb_rewin);
1309
	__tree_mod_log_rewind(fs_info, eb_rewin, time_seq, tm);
1310
	WARN_ON(btrfs_header_nritems(eb_rewin) >
1311
		BTRFS_NODEPTRS_PER_BLOCK(fs_info));
J
Jan Schmidt 已提交
1312 1313 1314 1315

	return eb_rewin;
}

1316 1317 1318 1319 1320 1321 1322
/*
 * get_old_root() rewinds the state of @root's root node to the given @time_seq
 * value. If there are no changes, the current root->root_node is returned. If
 * anything changed in between, there's a fresh buffer allocated on which the
 * rewind operations are done. In any case, the returned buffer is read locked.
 * Returns NULL on error (with no locks held).
 */
J
Jan Schmidt 已提交
1323 1324 1325
static inline struct extent_buffer *
get_old_root(struct btrfs_root *root, u64 time_seq)
{
1326
	struct btrfs_fs_info *fs_info = root->fs_info;
J
Jan Schmidt 已提交
1327
	struct tree_mod_elem *tm;
1328 1329
	struct extent_buffer *eb = NULL;
	struct extent_buffer *eb_root;
1330
	u64 eb_root_owner = 0;
1331
	struct extent_buffer *old;
1332
	struct tree_mod_root *old_root = NULL;
1333
	u64 old_generation = 0;
1334
	u64 logical;
1335
	int level;
J
Jan Schmidt 已提交
1336

1337
	eb_root = btrfs_read_lock_root_node(root);
1338
	tm = __tree_mod_log_oldest_root(eb_root, time_seq);
J
Jan Schmidt 已提交
1339
	if (!tm)
1340
		return eb_root;
J
Jan Schmidt 已提交
1341

1342 1343 1344 1345
	if (tm->op == MOD_LOG_ROOT_REPLACE) {
		old_root = &tm->old_root;
		old_generation = tm->generation;
		logical = old_root->logical;
1346
		level = old_root->level;
1347
	} else {
1348
		logical = eb_root->start;
1349
		level = btrfs_header_level(eb_root);
1350
	}
J
Jan Schmidt 已提交
1351

1352
	tm = tree_mod_log_search(fs_info, logical, time_seq);
1353
	if (old_root && tm && tm->op != MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
1354 1355
		btrfs_tree_read_unlock(eb_root);
		free_extent_buffer(eb_root);
1356
		old = read_tree_block(fs_info, logical, 0, level, NULL);
1357 1358 1359
		if (WARN_ON(IS_ERR(old) || !extent_buffer_uptodate(old))) {
			if (!IS_ERR(old))
				free_extent_buffer(old);
1360 1361 1362
			btrfs_warn(fs_info,
				   "failed to read tree block %llu from get_old_root",
				   logical);
1363
		} else {
1364 1365
			eb = btrfs_clone_extent_buffer(old);
			free_extent_buffer(old);
1366 1367
		}
	} else if (old_root) {
1368
		eb_root_owner = btrfs_header_owner(eb_root);
1369 1370
		btrfs_tree_read_unlock(eb_root);
		free_extent_buffer(eb_root);
1371
		eb = alloc_dummy_extent_buffer(fs_info, logical);
1372
	} else {
1373
		eb = btrfs_clone_extent_buffer(eb_root);
1374
		btrfs_tree_read_unlock(eb_root);
1375
		free_extent_buffer(eb_root);
1376 1377
	}

1378 1379
	if (!eb)
		return NULL;
1380
	if (old_root) {
J
Jan Schmidt 已提交
1381 1382
		btrfs_set_header_bytenr(eb, eb->start);
		btrfs_set_header_backref_rev(eb, BTRFS_MIXED_BACKREF_REV);
1383
		btrfs_set_header_owner(eb, eb_root_owner);
1384 1385
		btrfs_set_header_level(eb, old_root->level);
		btrfs_set_header_generation(eb, old_generation);
J
Jan Schmidt 已提交
1386
	}
1387 1388 1389
	btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb), eb,
				       btrfs_header_level(eb));
	btrfs_tree_read_lock(eb);
1390
	if (tm)
1391
		__tree_mod_log_rewind(fs_info, eb, time_seq, tm);
1392 1393
	else
		WARN_ON(btrfs_header_level(eb) != 0);
1394
	WARN_ON(btrfs_header_nritems(eb) > BTRFS_NODEPTRS_PER_BLOCK(fs_info));
J
Jan Schmidt 已提交
1395 1396 1397 1398

	return eb;
}

J
Jan Schmidt 已提交
1399 1400 1401 1402
int btrfs_old_root_level(struct btrfs_root *root, u64 time_seq)
{
	struct tree_mod_elem *tm;
	int level;
1403
	struct extent_buffer *eb_root = btrfs_root_node(root);
J
Jan Schmidt 已提交
1404

1405
	tm = __tree_mod_log_oldest_root(eb_root, time_seq);
J
Jan Schmidt 已提交
1406 1407 1408
	if (tm && tm->op == MOD_LOG_ROOT_REPLACE) {
		level = tm->old_root.level;
	} else {
1409
		level = btrfs_header_level(eb_root);
J
Jan Schmidt 已提交
1410
	}
1411
	free_extent_buffer(eb_root);
J
Jan Schmidt 已提交
1412 1413 1414 1415

	return level;
}

1416 1417 1418 1419
static inline int should_cow_block(struct btrfs_trans_handle *trans,
				   struct btrfs_root *root,
				   struct extent_buffer *buf)
{
1420
	if (btrfs_is_testing(root->fs_info))
1421
		return 0;
1422

1423 1424
	/* Ensure we can see the FORCE_COW bit */
	smp_mb__before_atomic();
1425 1426 1427 1428 1429 1430 1431 1432

	/*
	 * We do not need to cow a block if
	 * 1) this block is not created or changed in this transaction;
	 * 2) this block does not belong to TREE_RELOC tree;
	 * 3) the root is not forced COW.
	 *
	 * What is forced COW:
1433
	 *    when we create snapshot during committing the transaction,
1434
	 *    after we've finished copying src root, we must COW the shared
1435 1436
	 *    block to ensure the metadata consistency.
	 */
1437 1438 1439
	if (btrfs_header_generation(buf) == trans->transid &&
	    !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) &&
	    !(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
1440
	      btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)) &&
1441
	    !test_bit(BTRFS_ROOT_FORCE_COW, &root->state))
1442 1443 1444 1445
		return 0;
	return 1;
}

C
Chris Mason 已提交
1446 1447
/*
 * cows a single block, see __btrfs_cow_block for the real work.
1448
 * This version of it has extra checks so that a block isn't COWed more than
C
Chris Mason 已提交
1449 1450
 * once per transaction, as long as it hasn't been written yet
 */
C
Chris Mason 已提交
1451
noinline int btrfs_cow_block(struct btrfs_trans_handle *trans,
1452 1453
		    struct btrfs_root *root, struct extent_buffer *buf,
		    struct extent_buffer *parent, int parent_slot,
1454 1455
		    struct extent_buffer **cow_ret,
		    enum btrfs_lock_nesting nest)
1456
{
1457
	struct btrfs_fs_info *fs_info = root->fs_info;
1458
	u64 search_start;
1459
	int ret;
C
Chris Mason 已提交
1460

1461 1462 1463 1464
	if (test_bit(BTRFS_ROOT_DELETING, &root->state))
		btrfs_err(fs_info,
			"COW'ing blocks on a fs root that's being dropped");

1465
	if (trans->transaction != fs_info->running_transaction)
J
Julia Lawall 已提交
1466
		WARN(1, KERN_CRIT "trans %llu running %llu\n",
1467
		       trans->transid,
1468
		       fs_info->running_transaction->transid);
J
Julia Lawall 已提交
1469

1470
	if (trans->transid != fs_info->generation)
J
Julia Lawall 已提交
1471
		WARN(1, KERN_CRIT "trans %llu running %llu\n",
1472
		       trans->transid, fs_info->generation);
C
Chris Mason 已提交
1473

1474
	if (!should_cow_block(trans, root, buf)) {
1475
		trans->dirty = true;
1476 1477 1478
		*cow_ret = buf;
		return 0;
	}
1479

1480
	search_start = buf->start & ~((u64)SZ_1G - 1);
1481

1482 1483 1484 1485 1486 1487 1488
	/*
	 * Before CoWing this block for later modification, check if it's
	 * the subtree root and do the delayed subtree trace if needed.
	 *
	 * Also We don't care about the error, as it's handled internally.
	 */
	btrfs_qgroup_trace_subtree_after_cow(trans, root, buf);
1489
	ret = __btrfs_cow_block(trans, root, buf, parent,
1490
				 parent_slot, cow_ret, search_start, 0, nest);
1491 1492 1493

	trace_btrfs_cow_block(root, buf, *cow_ret);

1494
	return ret;
1495 1496
}

C
Chris Mason 已提交
1497 1498 1499 1500
/*
 * helper function for defrag to decide if two blocks pointed to by a
 * node are actually close by
 */
1501
static int close_blocks(u64 blocknr, u64 other, u32 blocksize)
1502
{
1503
	if (blocknr < other && other - (blocknr + blocksize) < 32768)
1504
		return 1;
1505
	if (blocknr > other && blocknr - (other + blocksize) < 32768)
1506 1507 1508 1509
		return 1;
	return 0;
}

1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525
#ifdef __LITTLE_ENDIAN

/*
 * Compare two keys, on little-endian the disk order is same as CPU order and
 * we can avoid the conversion.
 */
static int comp_keys(const struct btrfs_disk_key *disk_key,
		     const struct btrfs_key *k2)
{
	const struct btrfs_key *k1 = (const struct btrfs_key *)disk_key;

	return btrfs_comp_cpu_keys(k1, k2);
}

#else

1526 1527 1528
/*
 * compare two keys in a memcmp fashion
 */
1529 1530
static int comp_keys(const struct btrfs_disk_key *disk,
		     const struct btrfs_key *k2)
1531 1532 1533 1534 1535
{
	struct btrfs_key k1;

	btrfs_disk_key_to_cpu(&k1, disk);

1536
	return btrfs_comp_cpu_keys(&k1, k2);
1537
}
1538
#endif
1539

1540 1541 1542
/*
 * same as comp_keys only with two btrfs_key's
 */
1543
int __pure btrfs_comp_cpu_keys(const struct btrfs_key *k1, const struct btrfs_key *k2)
1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558
{
	if (k1->objectid > k2->objectid)
		return 1;
	if (k1->objectid < k2->objectid)
		return -1;
	if (k1->type > k2->type)
		return 1;
	if (k1->type < k2->type)
		return -1;
	if (k1->offset > k2->offset)
		return 1;
	if (k1->offset < k2->offset)
		return -1;
	return 0;
}
1559

C
Chris Mason 已提交
1560 1561 1562 1563 1564
/*
 * this is used by the defrag code to go through all the
 * leaves pointed to by a node and reallocate them so that
 * disk order is close to key order
 */
1565
int btrfs_realloc_node(struct btrfs_trans_handle *trans,
1566
		       struct btrfs_root *root, struct extent_buffer *parent,
1567
		       int start_slot, u64 *last_ret,
1568
		       struct btrfs_key *progress)
1569
{
1570
	struct btrfs_fs_info *fs_info = root->fs_info;
1571
	struct extent_buffer *cur;
1572
	u64 blocknr;
1573
	u64 gen;
1574 1575
	u64 search_start = *last_ret;
	u64 last_block = 0;
1576 1577 1578 1579 1580
	u64 other;
	u32 parent_nritems;
	int end_slot;
	int i;
	int err = 0;
1581
	int parent_level;
1582 1583
	int uptodate;
	u32 blocksize;
1584 1585
	int progress_passed = 0;
	struct btrfs_disk_key disk_key;
1586

1587 1588
	parent_level = btrfs_header_level(parent);

1589 1590
	WARN_ON(trans->transaction != fs_info->running_transaction);
	WARN_ON(trans->transid != fs_info->generation);
1591

1592
	parent_nritems = btrfs_header_nritems(parent);
1593
	blocksize = fs_info->nodesize;
1594
	end_slot = parent_nritems - 1;
1595

1596
	if (parent_nritems <= 1)
1597 1598
		return 0;

1599
	for (i = start_slot; i <= end_slot; i++) {
1600
		struct btrfs_key first_key;
1601
		int close = 1;
1602

1603 1604 1605 1606 1607
		btrfs_node_key(parent, &disk_key, i);
		if (!progress_passed && comp_keys(&disk_key, progress) < 0)
			continue;

		progress_passed = 1;
1608
		blocknr = btrfs_node_blockptr(parent, i);
1609
		gen = btrfs_node_ptr_generation(parent, i);
1610
		btrfs_node_key_to_cpu(parent, &first_key, i);
1611 1612
		if (last_block == 0)
			last_block = blocknr;
1613

1614
		if (i > 0) {
1615 1616
			other = btrfs_node_blockptr(parent, i - 1);
			close = close_blocks(blocknr, other, blocksize);
1617
		}
1618
		if (!close && i < end_slot) {
1619 1620
			other = btrfs_node_blockptr(parent, i + 1);
			close = close_blocks(blocknr, other, blocksize);
1621
		}
1622 1623
		if (close) {
			last_block = blocknr;
1624
			continue;
1625
		}
1626

1627
		cur = find_extent_buffer(fs_info, blocknr);
1628
		if (cur)
1629
			uptodate = btrfs_buffer_uptodate(cur, gen, 0);
1630 1631
		else
			uptodate = 0;
1632
		if (!cur || !uptodate) {
1633
			if (!cur) {
1634 1635 1636
				cur = read_tree_block(fs_info, blocknr, gen,
						      parent_level - 1,
						      &first_key);
1637 1638 1639
				if (IS_ERR(cur)) {
					return PTR_ERR(cur);
				} else if (!extent_buffer_uptodate(cur)) {
1640
					free_extent_buffer(cur);
1641
					return -EIO;
1642
				}
1643
			} else if (!uptodate) {
1644 1645
				err = btrfs_read_buffer(cur, gen,
						parent_level - 1,&first_key);
1646 1647 1648 1649
				if (err) {
					free_extent_buffer(cur);
					return err;
				}
1650
			}
1651
		}
1652
		if (search_start == 0)
1653
			search_start = last_block;
1654

1655
		btrfs_tree_lock(cur);
1656
		err = __btrfs_cow_block(trans, root, cur, parent, i,
1657
					&cur, search_start,
1658
					min(16 * blocksize,
1659 1660
					    (end_slot - i) * blocksize),
					BTRFS_NESTING_COW);
Y
Yan 已提交
1661
		if (err) {
1662
			btrfs_tree_unlock(cur);
1663
			free_extent_buffer(cur);
1664
			break;
Y
Yan 已提交
1665
		}
1666 1667
		search_start = cur->start;
		last_block = cur->start;
1668
		*last_ret = search_start;
1669 1670
		btrfs_tree_unlock(cur);
		free_extent_buffer(cur);
1671 1672 1673 1674
	}
	return err;
}

C
Chris Mason 已提交
1675
/*
1676 1677 1678
 * search for key in the extent_buffer.  The items start at offset p,
 * and they are item_size apart.  There are 'max' items in p.
 *
C
Chris Mason 已提交
1679 1680 1681 1682 1683 1684
 * the slot in the array is returned via slot, and it points to
 * the place where you would insert key if it is not found in
 * the array.
 *
 * slot may point to max if the key is bigger than all of the keys
 */
1685
static noinline int generic_bin_search(struct extent_buffer *eb,
1686 1687
				       unsigned long p, int item_size,
				       const struct btrfs_key *key,
1688
				       int max, int *slot)
1689 1690 1691 1692
{
	int low = 0;
	int high = max;
	int ret;
1693
	const int key_size = sizeof(struct btrfs_disk_key);
1694

1695 1696 1697 1698 1699 1700 1701 1702
	if (low > high) {
		btrfs_err(eb->fs_info,
		 "%s: low (%d) > high (%d) eb %llu owner %llu level %d",
			  __func__, low, high, eb->start,
			  btrfs_header_owner(eb), btrfs_header_level(eb));
		return -EINVAL;
	}

C
Chris Mason 已提交
1703
	while (low < high) {
1704 1705 1706 1707 1708 1709
		unsigned long oip;
		unsigned long offset;
		struct btrfs_disk_key *tmp;
		struct btrfs_disk_key unaligned;
		int mid;

1710
		mid = (low + high) / 2;
1711
		offset = p + mid * item_size;
1712
		oip = offset_in_page(offset);
1713

1714 1715 1716
		if (oip + key_size <= PAGE_SIZE) {
			const unsigned long idx = offset >> PAGE_SHIFT;
			char *kaddr = page_address(eb->pages[idx]);
1717

1718
			tmp = (struct btrfs_disk_key *)(kaddr + oip);
1719
		} else {
1720 1721
			read_extent_buffer(eb, &unaligned, offset, key_size);
			tmp = &unaligned;
1722
		}
1723

1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738
		ret = comp_keys(tmp, key);

		if (ret < 0)
			low = mid + 1;
		else if (ret > 0)
			high = mid;
		else {
			*slot = mid;
			return 0;
		}
	}
	*slot = low;
	return 1;
}

C
Chris Mason 已提交
1739 1740 1741 1742
/*
 * simple bin_search frontend that does the right thing for
 * leaves vs nodes
 */
1743
int btrfs_bin_search(struct extent_buffer *eb, const struct btrfs_key *key,
1744
		     int *slot)
1745
{
1746
	if (btrfs_header_level(eb) == 0)
1747 1748
		return generic_bin_search(eb,
					  offsetof(struct btrfs_leaf, items),
C
Chris Mason 已提交
1749
					  sizeof(struct btrfs_item),
1750
					  key, btrfs_header_nritems(eb),
1751
					  slot);
1752
	else
1753 1754
		return generic_bin_search(eb,
					  offsetof(struct btrfs_node, ptrs),
C
Chris Mason 已提交
1755
					  sizeof(struct btrfs_key_ptr),
1756
					  key, btrfs_header_nritems(eb),
1757
					  slot);
1758 1759
}

1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775
static void root_add_used(struct btrfs_root *root, u32 size)
{
	spin_lock(&root->accounting_lock);
	btrfs_set_root_used(&root->root_item,
			    btrfs_root_used(&root->root_item) + size);
	spin_unlock(&root->accounting_lock);
}

static void root_sub_used(struct btrfs_root *root, u32 size)
{
	spin_lock(&root->accounting_lock);
	btrfs_set_root_used(&root->root_item,
			    btrfs_root_used(&root->root_item) - size);
	spin_unlock(&root->accounting_lock);
}

C
Chris Mason 已提交
1776 1777 1778
/* given a node and slot number, this reads the blocks it points to.  The
 * extent buffer is returned with a reference taken (but unlocked).
 */
1779 1780
struct extent_buffer *btrfs_read_node_slot(struct extent_buffer *parent,
					   int slot)
1781
{
1782
	int level = btrfs_header_level(parent);
1783
	struct extent_buffer *eb;
1784
	struct btrfs_key first_key;
1785

1786 1787
	if (slot < 0 || slot >= btrfs_header_nritems(parent))
		return ERR_PTR(-ENOENT);
1788 1789 1790

	BUG_ON(level == 0);

1791
	btrfs_node_key_to_cpu(parent, &first_key, slot);
1792
	eb = read_tree_block(parent->fs_info, btrfs_node_blockptr(parent, slot),
1793 1794
			     btrfs_node_ptr_generation(parent, slot),
			     level - 1, &first_key);
1795 1796 1797
	if (!IS_ERR(eb) && !extent_buffer_uptodate(eb)) {
		free_extent_buffer(eb);
		eb = ERR_PTR(-EIO);
1798 1799 1800
	}

	return eb;
1801 1802
}

C
Chris Mason 已提交
1803 1804 1805 1806 1807
/*
 * node level balancing, used to make sure nodes are in proper order for
 * item deletion.  We balance from the top down, so we have to make sure
 * that a deletion won't leave an node completely empty later on.
 */
1808
static noinline int balance_level(struct btrfs_trans_handle *trans,
1809 1810
			 struct btrfs_root *root,
			 struct btrfs_path *path, int level)
1811
{
1812
	struct btrfs_fs_info *fs_info = root->fs_info;
1813 1814 1815 1816
	struct extent_buffer *right = NULL;
	struct extent_buffer *mid;
	struct extent_buffer *left = NULL;
	struct extent_buffer *parent = NULL;
1817 1818 1819 1820
	int ret = 0;
	int wret;
	int pslot;
	int orig_slot = path->slots[level];
1821
	u64 orig_ptr;
1822

1823
	ASSERT(level > 0);
1824

1825
	mid = path->nodes[level];
1826

1827
	WARN_ON(path->locks[level] != BTRFS_WRITE_LOCK);
1828 1829
	WARN_ON(btrfs_header_generation(mid) != trans->transid);

1830
	orig_ptr = btrfs_node_blockptr(mid, orig_slot);
1831

L
Li Zefan 已提交
1832
	if (level < BTRFS_MAX_LEVEL - 1) {
1833
		parent = path->nodes[level + 1];
L
Li Zefan 已提交
1834 1835
		pslot = path->slots[level + 1];
	}
1836

C
Chris Mason 已提交
1837 1838 1839 1840
	/*
	 * deal with the case where there is only one pointer in the root
	 * by promoting the node below to a root
	 */
1841 1842
	if (!parent) {
		struct extent_buffer *child;
1843

1844
		if (btrfs_header_nritems(mid) != 1)
1845 1846 1847
			return 0;

		/* promote the child to a root */
1848
		child = btrfs_read_node_slot(mid, 0);
1849 1850
		if (IS_ERR(child)) {
			ret = PTR_ERR(child);
1851
			btrfs_handle_fs_error(fs_info, ret, NULL);
1852 1853 1854
			goto enospc;
		}

1855
		btrfs_tree_lock(child);
1856 1857
		ret = btrfs_cow_block(trans, root, child, mid, 0, &child,
				      BTRFS_NESTING_COW);
1858 1859 1860 1861 1862
		if (ret) {
			btrfs_tree_unlock(child);
			free_extent_buffer(child);
			goto enospc;
		}
1863

1864 1865
		ret = tree_mod_log_insert_root(root->node, child, 1);
		BUG_ON(ret < 0);
1866
		rcu_assign_pointer(root->node, child);
1867

1868
		add_root_to_dirty_list(root);
1869
		btrfs_tree_unlock(child);
1870

1871
		path->locks[level] = 0;
1872
		path->nodes[level] = NULL;
1873
		btrfs_clean_tree_block(mid);
1874
		btrfs_tree_unlock(mid);
1875
		/* once for the path */
1876
		free_extent_buffer(mid);
1877 1878

		root_sub_used(root, mid->len);
1879
		btrfs_free_tree_block(trans, root, mid, 0, 1);
1880
		/* once for the root ptr */
1881
		free_extent_buffer_stale(mid);
1882
		return 0;
1883
	}
1884
	if (btrfs_header_nritems(mid) >
1885
	    BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 4)
1886 1887
		return 0;

1888
	left = btrfs_read_node_slot(parent, pslot - 1);
1889 1890 1891
	if (IS_ERR(left))
		left = NULL;

1892
	if (left) {
1893
		__btrfs_tree_lock(left, BTRFS_NESTING_LEFT);
1894
		wret = btrfs_cow_block(trans, root, left,
1895
				       parent, pslot - 1, &left,
1896
				       BTRFS_NESTING_LEFT_COW);
1897 1898 1899 1900
		if (wret) {
			ret = wret;
			goto enospc;
		}
1901
	}
1902

1903
	right = btrfs_read_node_slot(parent, pslot + 1);
1904 1905 1906
	if (IS_ERR(right))
		right = NULL;

1907
	if (right) {
1908
		__btrfs_tree_lock(right, BTRFS_NESTING_RIGHT);
1909
		wret = btrfs_cow_block(trans, root, right,
1910
				       parent, pslot + 1, &right,
1911
				       BTRFS_NESTING_RIGHT_COW);
1912 1913 1914 1915 1916 1917 1918
		if (wret) {
			ret = wret;
			goto enospc;
		}
	}

	/* first, try to make some room in the middle buffer */
1919 1920
	if (left) {
		orig_slot += btrfs_header_nritems(left);
1921
		wret = push_node_left(trans, left, mid, 1);
1922 1923
		if (wret < 0)
			ret = wret;
1924
	}
1925 1926 1927 1928

	/*
	 * then try to empty the right most buffer into the middle
	 */
1929
	if (right) {
1930
		wret = push_node_left(trans, mid, right, 1);
1931
		if (wret < 0 && wret != -ENOSPC)
1932
			ret = wret;
1933
		if (btrfs_header_nritems(right) == 0) {
1934
			btrfs_clean_tree_block(right);
1935
			btrfs_tree_unlock(right);
1936
			del_ptr(root, path, level + 1, pslot + 1);
1937
			root_sub_used(root, right->len);
1938
			btrfs_free_tree_block(trans, root, right, 0, 1);
1939
			free_extent_buffer_stale(right);
1940
			right = NULL;
1941
		} else {
1942 1943
			struct btrfs_disk_key right_key;
			btrfs_node_key(right, &right_key, 0);
1944 1945 1946
			ret = tree_mod_log_insert_key(parent, pslot + 1,
					MOD_LOG_KEY_REPLACE, GFP_NOFS);
			BUG_ON(ret < 0);
1947 1948
			btrfs_set_node_key(parent, &right_key, pslot + 1);
			btrfs_mark_buffer_dirty(parent);
1949 1950
		}
	}
1951
	if (btrfs_header_nritems(mid) == 1) {
1952 1953 1954 1955 1956 1957 1958 1959 1960
		/*
		 * we're not allowed to leave a node with one item in the
		 * tree during a delete.  A deletion from lower in the tree
		 * could try to delete the only pointer in this node.
		 * So, pull some keys from the left.
		 * There has to be a left pointer at this point because
		 * otherwise we would have pulled some pointers from the
		 * right
		 */
1961 1962
		if (!left) {
			ret = -EROFS;
1963
			btrfs_handle_fs_error(fs_info, ret, NULL);
1964 1965
			goto enospc;
		}
1966
		wret = balance_node_right(trans, mid, left);
1967
		if (wret < 0) {
1968
			ret = wret;
1969 1970
			goto enospc;
		}
1971
		if (wret == 1) {
1972
			wret = push_node_left(trans, left, mid, 1);
1973 1974 1975
			if (wret < 0)
				ret = wret;
		}
1976 1977
		BUG_ON(wret == 1);
	}
1978
	if (btrfs_header_nritems(mid) == 0) {
1979
		btrfs_clean_tree_block(mid);
1980
		btrfs_tree_unlock(mid);
1981
		del_ptr(root, path, level + 1, pslot);
1982
		root_sub_used(root, mid->len);
1983
		btrfs_free_tree_block(trans, root, mid, 0, 1);
1984
		free_extent_buffer_stale(mid);
1985
		mid = NULL;
1986 1987
	} else {
		/* update the parent key to reflect our changes */
1988 1989
		struct btrfs_disk_key mid_key;
		btrfs_node_key(mid, &mid_key, 0);
1990 1991 1992
		ret = tree_mod_log_insert_key(parent, pslot,
				MOD_LOG_KEY_REPLACE, GFP_NOFS);
		BUG_ON(ret < 0);
1993 1994
		btrfs_set_node_key(parent, &mid_key, pslot);
		btrfs_mark_buffer_dirty(parent);
1995
	}
1996

1997
	/* update the path */
1998 1999
	if (left) {
		if (btrfs_header_nritems(left) > orig_slot) {
D
David Sterba 已提交
2000
			atomic_inc(&left->refs);
2001
			/* left was locked after cow */
2002
			path->nodes[level] = left;
2003 2004
			path->slots[level + 1] -= 1;
			path->slots[level] = orig_slot;
2005 2006
			if (mid) {
				btrfs_tree_unlock(mid);
2007
				free_extent_buffer(mid);
2008
			}
2009
		} else {
2010
			orig_slot -= btrfs_header_nritems(left);
2011 2012 2013
			path->slots[level] = orig_slot;
		}
	}
2014
	/* double check we haven't messed things up */
C
Chris Mason 已提交
2015
	if (orig_ptr !=
2016
	    btrfs_node_blockptr(path->nodes[level], path->slots[level]))
2017
		BUG();
2018
enospc:
2019 2020
	if (right) {
		btrfs_tree_unlock(right);
2021
		free_extent_buffer(right);
2022 2023 2024 2025
	}
	if (left) {
		if (path->nodes[level] != left)
			btrfs_tree_unlock(left);
2026
		free_extent_buffer(left);
2027
	}
2028 2029 2030
	return ret;
}

C
Chris Mason 已提交
2031 2032 2033 2034
/* Node balancing for insertion.  Here we only split or push nodes around
 * when they are completely full.  This is also done top down, so we
 * have to be pessimistic.
 */
C
Chris Mason 已提交
2035
static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans,
2036 2037
					  struct btrfs_root *root,
					  struct btrfs_path *path, int level)
2038
{
2039
	struct btrfs_fs_info *fs_info = root->fs_info;
2040 2041 2042 2043
	struct extent_buffer *right = NULL;
	struct extent_buffer *mid;
	struct extent_buffer *left = NULL;
	struct extent_buffer *parent = NULL;
2044 2045 2046 2047 2048 2049 2050 2051
	int ret = 0;
	int wret;
	int pslot;
	int orig_slot = path->slots[level];

	if (level == 0)
		return 1;

2052
	mid = path->nodes[level];
2053
	WARN_ON(btrfs_header_generation(mid) != trans->transid);
2054

L
Li Zefan 已提交
2055
	if (level < BTRFS_MAX_LEVEL - 1) {
2056
		parent = path->nodes[level + 1];
L
Li Zefan 已提交
2057 2058
		pslot = path->slots[level + 1];
	}
2059

2060
	if (!parent)
2061 2062
		return 1;

2063
	left = btrfs_read_node_slot(parent, pslot - 1);
2064 2065
	if (IS_ERR(left))
		left = NULL;
2066 2067

	/* first, try to make some room in the middle buffer */
2068
	if (left) {
2069
		u32 left_nr;
2070

2071
		__btrfs_tree_lock(left, BTRFS_NESTING_LEFT);
2072

2073
		left_nr = btrfs_header_nritems(left);
2074
		if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) {
C
Chris Mason 已提交
2075 2076
			wret = 1;
		} else {
2077
			ret = btrfs_cow_block(trans, root, left, parent,
2078
					      pslot - 1, &left,
2079
					      BTRFS_NESTING_LEFT_COW);
2080 2081 2082
			if (ret)
				wret = 1;
			else {
2083
				wret = push_node_left(trans, left, mid, 0);
2084
			}
C
Chris Mason 已提交
2085
		}
2086 2087 2088
		if (wret < 0)
			ret = wret;
		if (wret == 0) {
2089
			struct btrfs_disk_key disk_key;
2090
			orig_slot += left_nr;
2091
			btrfs_node_key(mid, &disk_key, 0);
2092 2093 2094
			ret = tree_mod_log_insert_key(parent, pslot,
					MOD_LOG_KEY_REPLACE, GFP_NOFS);
			BUG_ON(ret < 0);
2095 2096 2097 2098
			btrfs_set_node_key(parent, &disk_key, pslot);
			btrfs_mark_buffer_dirty(parent);
			if (btrfs_header_nritems(left) > orig_slot) {
				path->nodes[level] = left;
2099 2100
				path->slots[level + 1] -= 1;
				path->slots[level] = orig_slot;
2101
				btrfs_tree_unlock(mid);
2102
				free_extent_buffer(mid);
2103 2104
			} else {
				orig_slot -=
2105
					btrfs_header_nritems(left);
2106
				path->slots[level] = orig_slot;
2107
				btrfs_tree_unlock(left);
2108
				free_extent_buffer(left);
2109 2110 2111
			}
			return 0;
		}
2112
		btrfs_tree_unlock(left);
2113
		free_extent_buffer(left);
2114
	}
2115
	right = btrfs_read_node_slot(parent, pslot + 1);
2116 2117
	if (IS_ERR(right))
		right = NULL;
2118 2119 2120 2121

	/*
	 * then try to empty the right most buffer into the middle
	 */
2122
	if (right) {
C
Chris Mason 已提交
2123
		u32 right_nr;
2124

2125
		__btrfs_tree_lock(right, BTRFS_NESTING_RIGHT);
2126

2127
		right_nr = btrfs_header_nritems(right);
2128
		if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) {
C
Chris Mason 已提交
2129 2130
			wret = 1;
		} else {
2131 2132
			ret = btrfs_cow_block(trans, root, right,
					      parent, pslot + 1,
2133
					      &right, BTRFS_NESTING_RIGHT_COW);
2134 2135 2136
			if (ret)
				wret = 1;
			else {
2137
				wret = balance_node_right(trans, right, mid);
2138
			}
C
Chris Mason 已提交
2139
		}
2140 2141 2142
		if (wret < 0)
			ret = wret;
		if (wret == 0) {
2143 2144 2145
			struct btrfs_disk_key disk_key;

			btrfs_node_key(right, &disk_key, 0);
2146 2147 2148
			ret = tree_mod_log_insert_key(parent, pslot + 1,
					MOD_LOG_KEY_REPLACE, GFP_NOFS);
			BUG_ON(ret < 0);
2149 2150 2151 2152 2153
			btrfs_set_node_key(parent, &disk_key, pslot + 1);
			btrfs_mark_buffer_dirty(parent);

			if (btrfs_header_nritems(mid) <= orig_slot) {
				path->nodes[level] = right;
2154 2155
				path->slots[level + 1] += 1;
				path->slots[level] = orig_slot -
2156
					btrfs_header_nritems(mid);
2157
				btrfs_tree_unlock(mid);
2158
				free_extent_buffer(mid);
2159
			} else {
2160
				btrfs_tree_unlock(right);
2161
				free_extent_buffer(right);
2162 2163 2164
			}
			return 0;
		}
2165
		btrfs_tree_unlock(right);
2166
		free_extent_buffer(right);
2167 2168 2169 2170
	}
	return 1;
}

2171
/*
C
Chris Mason 已提交
2172 2173
 * readahead one full node of leaves, finding things that are close
 * to the block in 'slot', and triggering ra on them.
2174
 */
2175
static void reada_for_search(struct btrfs_fs_info *fs_info,
2176 2177
			     struct btrfs_path *path,
			     int level, int slot, u64 objectid)
2178
{
2179
	struct extent_buffer *node;
2180
	struct btrfs_disk_key disk_key;
2181 2182
	u32 nritems;
	u64 search;
2183
	u64 target;
2184
	u64 nread = 0;
2185
	struct extent_buffer *eb;
2186 2187 2188
	u32 nr;
	u32 blocksize;
	u32 nscan = 0;
2189

2190
	if (level != 1)
2191 2192 2193
		return;

	if (!path->nodes[level])
2194 2195
		return;

2196
	node = path->nodes[level];
2197

2198
	search = btrfs_node_blockptr(node, slot);
2199 2200
	blocksize = fs_info->nodesize;
	eb = find_extent_buffer(fs_info, search);
2201 2202
	if (eb) {
		free_extent_buffer(eb);
2203 2204 2205
		return;
	}

2206
	target = search;
2207

2208
	nritems = btrfs_header_nritems(node);
2209
	nr = slot;
2210

C
Chris Mason 已提交
2211
	while (1) {
2212
		if (path->reada == READA_BACK) {
2213 2214 2215
			if (nr == 0)
				break;
			nr--;
2216
		} else if (path->reada == READA_FORWARD) {
2217 2218 2219
			nr++;
			if (nr >= nritems)
				break;
2220
		}
2221
		if (path->reada == READA_BACK && objectid) {
2222 2223 2224 2225
			btrfs_node_key(node, &disk_key, nr);
			if (btrfs_disk_key_objectid(&disk_key) != objectid)
				break;
		}
2226
		search = btrfs_node_blockptr(node, nr);
2227 2228
		if ((search <= target && target - search <= 65536) ||
		    (search > target && search - target <= 65536)) {
2229
			readahead_tree_block(fs_info, search);
2230 2231 2232
			nread += blocksize;
		}
		nscan++;
2233
		if ((nread > 65536 || nscan > 32))
2234
			break;
2235 2236
	}
}
2237

2238
static noinline void reada_for_balance(struct btrfs_fs_info *fs_info,
J
Josef Bacik 已提交
2239
				       struct btrfs_path *path, int level)
2240 2241 2242 2243 2244 2245 2246 2247 2248
{
	int slot;
	int nritems;
	struct extent_buffer *parent;
	struct extent_buffer *eb;
	u64 gen;
	u64 block1 = 0;
	u64 block2 = 0;

2249
	parent = path->nodes[level + 1];
2250
	if (!parent)
J
Josef Bacik 已提交
2251
		return;
2252 2253

	nritems = btrfs_header_nritems(parent);
2254
	slot = path->slots[level + 1];
2255 2256 2257 2258

	if (slot > 0) {
		block1 = btrfs_node_blockptr(parent, slot - 1);
		gen = btrfs_node_ptr_generation(parent, slot - 1);
2259
		eb = find_extent_buffer(fs_info, block1);
2260 2261 2262 2263 2264 2265
		/*
		 * if we get -eagain from btrfs_buffer_uptodate, we
		 * don't want to return eagain here.  That will loop
		 * forever
		 */
		if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
2266 2267 2268
			block1 = 0;
		free_extent_buffer(eb);
	}
2269
	if (slot + 1 < nritems) {
2270 2271
		block2 = btrfs_node_blockptr(parent, slot + 1);
		gen = btrfs_node_ptr_generation(parent, slot + 1);
2272
		eb = find_extent_buffer(fs_info, block2);
2273
		if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
2274 2275 2276
			block2 = 0;
		free_extent_buffer(eb);
	}
2277

J
Josef Bacik 已提交
2278
	if (block1)
2279
		readahead_tree_block(fs_info, block1);
J
Josef Bacik 已提交
2280
	if (block2)
2281
		readahead_tree_block(fs_info, block2);
2282 2283 2284
}


C
Chris Mason 已提交
2285
/*
C
Chris Mason 已提交
2286 2287 2288 2289
 * when we walk down the tree, it is usually safe to unlock the higher layers
 * in the tree.  The exceptions are when our path goes through slot 0, because
 * operations on the tree might require changing key pointers higher up in the
 * tree.
C
Chris Mason 已提交
2290
 *
C
Chris Mason 已提交
2291 2292 2293
 * callers might also have set path->keep_locks, which tells this code to keep
 * the lock if the path points to the last slot in the block.  This is part of
 * walking through the tree, and selecting the next slot in the higher block.
C
Chris Mason 已提交
2294
 *
C
Chris Mason 已提交
2295 2296
 * lowest_unlock sets the lowest level in the tree we're allowed to unlock.  so
 * if lowest_unlock is 1, level 0 won't be unlocked
C
Chris Mason 已提交
2297
 */
2298
static noinline void unlock_up(struct btrfs_path *path, int level,
2299 2300
			       int lowest_unlock, int min_write_lock_level,
			       int *write_lock_level)
2301 2302 2303
{
	int i;
	int skip_level = level;
2304
	int no_skips = 0;
2305 2306 2307 2308 2309 2310 2311
	struct extent_buffer *t;

	for (i = level; i < BTRFS_MAX_LEVEL; i++) {
		if (!path->nodes[i])
			break;
		if (!path->locks[i])
			break;
2312
		if (!no_skips && path->slots[i] == 0) {
2313 2314 2315
			skip_level = i + 1;
			continue;
		}
2316
		if (!no_skips && path->keep_locks) {
2317 2318 2319
			u32 nritems;
			t = path->nodes[i];
			nritems = btrfs_header_nritems(t);
2320
			if (nritems < 1 || path->slots[i] >= nritems - 1) {
2321 2322 2323 2324
				skip_level = i + 1;
				continue;
			}
		}
2325 2326 2327
		if (skip_level < i && i >= lowest_unlock)
			no_skips = 1;

2328
		t = path->nodes[i];
2329
		if (i >= lowest_unlock && i > skip_level) {
2330
			btrfs_tree_unlock_rw(t, path->locks[i]);
2331
			path->locks[i] = 0;
2332 2333 2334 2335 2336
			if (write_lock_level &&
			    i > min_write_lock_level &&
			    i <= *write_lock_level) {
				*write_lock_level = i - 1;
			}
2337 2338 2339 2340
		}
	}
}

2341 2342 2343 2344 2345 2346 2347 2348 2349
/*
 * helper function for btrfs_search_slot.  The goal is to find a block
 * in cache without setting the path to blocking.  If we find the block
 * we return zero and the path is unchanged.
 *
 * If we can't find the block, we set the path blocking and do some
 * reada.  -EAGAIN is returned and the search must be repeated.
 */
static int
2350 2351
read_block_for_search(struct btrfs_root *root, struct btrfs_path *p,
		      struct extent_buffer **eb_ret, int level, int slot,
2352
		      const struct btrfs_key *key)
2353
{
2354
	struct btrfs_fs_info *fs_info = root->fs_info;
2355 2356 2357
	u64 blocknr;
	u64 gen;
	struct extent_buffer *tmp;
2358
	struct btrfs_key first_key;
2359
	int ret;
2360
	int parent_level;
2361

2362 2363 2364 2365
	blocknr = btrfs_node_blockptr(*eb_ret, slot);
	gen = btrfs_node_ptr_generation(*eb_ret, slot);
	parent_level = btrfs_header_level(*eb_ret);
	btrfs_node_key_to_cpu(*eb_ret, &first_key, slot);
2366

2367
	tmp = find_extent_buffer(fs_info, blocknr);
2368
	if (tmp) {
2369
		/* first we do an atomic uptodate check */
2370
		if (btrfs_buffer_uptodate(tmp, gen, 1) > 0) {
2371 2372 2373 2374 2375
			/*
			 * Do extra check for first_key, eb can be stale due to
			 * being cached, read from scrub, or have multiple
			 * parents (shared tree blocks).
			 */
2376
			if (btrfs_verify_level_key(tmp,
2377 2378 2379 2380
					parent_level - 1, &first_key, gen)) {
				free_extent_buffer(tmp);
				return -EUCLEAN;
			}
2381 2382 2383 2384 2385
			*eb_ret = tmp;
			return 0;
		}

		/* now we're allowed to do a blocking uptodate check */
2386
		ret = btrfs_read_buffer(tmp, gen, parent_level - 1, &first_key);
2387 2388 2389
		if (!ret) {
			*eb_ret = tmp;
			return 0;
2390
		}
2391 2392 2393
		free_extent_buffer(tmp);
		btrfs_release_path(p);
		return -EIO;
2394 2395 2396 2397 2398
	}

	/*
	 * reduce lock contention at high levels
	 * of the btree by dropping locks before
2399 2400 2401
	 * we read.  Don't release the lock on the current
	 * level because we need to walk this node to figure
	 * out which blocks to read.
2402
	 */
2403 2404
	btrfs_unlock_up_safe(p, level + 1);

2405
	if (p->reada != READA_NONE)
2406
		reada_for_search(fs_info, p, level, slot, key->objectid);
2407

2408
	ret = -EAGAIN;
2409
	tmp = read_tree_block(fs_info, blocknr, gen, parent_level - 1,
2410
			      &first_key);
2411
	if (!IS_ERR(tmp)) {
2412 2413 2414 2415 2416 2417
		/*
		 * If the read above didn't mark this buffer up to date,
		 * it will never end up being up to date.  Set ret to EIO now
		 * and give up so that our caller doesn't loop forever
		 * on our EAGAINs.
		 */
2418
		if (!extent_buffer_uptodate(tmp))
2419
			ret = -EIO;
2420
		free_extent_buffer(tmp);
2421 2422
	} else {
		ret = PTR_ERR(tmp);
2423
	}
2424 2425

	btrfs_release_path(p);
2426
	return ret;
2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440
}

/*
 * helper function for btrfs_search_slot.  This does all of the checks
 * for node-level blocks and does any balancing required based on
 * the ins_len.
 *
 * If no extra work was required, zero is returned.  If we had to
 * drop the path, -EAGAIN is returned and btrfs_search_slot must
 * start over
 */
static int
setup_nodes_for_search(struct btrfs_trans_handle *trans,
		       struct btrfs_root *root, struct btrfs_path *p,
2441 2442
		       struct extent_buffer *b, int level, int ins_len,
		       int *write_lock_level)
2443
{
2444
	struct btrfs_fs_info *fs_info = root->fs_info;
2445
	int ret;
2446

2447
	if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >=
2448
	    BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3) {
2449 2450
		int sret;

2451 2452 2453 2454 2455 2456
		if (*write_lock_level < level + 1) {
			*write_lock_level = level + 1;
			btrfs_release_path(p);
			goto again;
		}

2457
		reada_for_balance(fs_info, p, level);
2458 2459 2460 2461 2462 2463 2464 2465 2466
		sret = split_node(trans, root, p, level);

		BUG_ON(sret > 0);
		if (sret) {
			ret = sret;
			goto done;
		}
		b = p->nodes[level];
	} else if (ins_len < 0 && btrfs_header_nritems(b) <
2467
		   BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 2) {
2468 2469
		int sret;

2470 2471 2472 2473 2474 2475
		if (*write_lock_level < level + 1) {
			*write_lock_level = level + 1;
			btrfs_release_path(p);
			goto again;
		}

2476
		reada_for_balance(fs_info, p, level);
2477 2478 2479 2480 2481 2482 2483 2484
		sret = balance_level(trans, root, p, level);

		if (sret) {
			ret = sret;
			goto done;
		}
		b = p->nodes[level];
		if (!b) {
2485
			btrfs_release_path(p);
2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497
			goto again;
		}
		BUG_ON(btrfs_header_nritems(b) == 1);
	}
	return 0;

again:
	ret = -EAGAIN;
done:
	return ret;
}

2498
int btrfs_find_item(struct btrfs_root *fs_root, struct btrfs_path *path,
2499 2500 2501 2502 2503 2504
		u64 iobjectid, u64 ioff, u8 key_type,
		struct btrfs_key *found_key)
{
	int ret;
	struct btrfs_key key;
	struct extent_buffer *eb;
2505 2506

	ASSERT(path);
2507
	ASSERT(found_key);
2508 2509 2510 2511 2512 2513

	key.type = key_type;
	key.objectid = iobjectid;
	key.offset = ioff;

	ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0);
2514
	if (ret < 0)
2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532
		return ret;

	eb = path->nodes[0];
	if (ret && path->slots[0] >= btrfs_header_nritems(eb)) {
		ret = btrfs_next_leaf(fs_root, path);
		if (ret)
			return ret;
		eb = path->nodes[0];
	}

	btrfs_item_key_to_cpu(eb, found_key, path->slots[0]);
	if (found_key->type != key.type ||
			found_key->objectid != key.objectid)
		return 1;

	return 0;
}

2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545
static struct extent_buffer *btrfs_search_slot_get_root(struct btrfs_root *root,
							struct btrfs_path *p,
							int write_lock_level)
{
	struct btrfs_fs_info *fs_info = root->fs_info;
	struct extent_buffer *b;
	int root_lock;
	int level = 0;

	/* We try very hard to do read locks on the root */
	root_lock = BTRFS_READ_LOCK;

	if (p->search_commit_root) {
2546 2547 2548 2549 2550 2551 2552 2553 2554 2555
		/*
		 * The commit roots are read only so we always do read locks,
		 * and we always must hold the commit_root_sem when doing
		 * searches on them, the only exception is send where we don't
		 * want to block transaction commits for a long time, so
		 * we need to clone the commit root in order to avoid races
		 * with transaction commits that create a snapshot of one of
		 * the roots used by a send operation.
		 */
		if (p->need_commit_sem) {
2556
			down_read(&fs_info->commit_root_sem);
2557
			b = btrfs_clone_extent_buffer(root->commit_root);
2558
			up_read(&fs_info->commit_root_sem);
2559 2560 2561 2562 2563
			if (!b)
				return ERR_PTR(-ENOMEM);

		} else {
			b = root->commit_root;
D
David Sterba 已提交
2564
			atomic_inc(&b->refs);
2565 2566
		}
		level = btrfs_header_level(b);
2567 2568 2569 2570 2571
		/*
		 * Ensure that all callers have set skip_locking when
		 * p->search_commit_root = 1.
		 */
		ASSERT(p->skip_locking == 1);
2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582

		goto out;
	}

	if (p->skip_locking) {
		b = btrfs_root_node(root);
		level = btrfs_header_level(b);
		goto out;
	}

	/*
2583 2584
	 * If the level is set to maximum, we can skip trying to get the read
	 * lock.
2585
	 */
2586 2587 2588 2589 2590
	if (write_lock_level < BTRFS_MAX_LEVEL) {
		/*
		 * We don't know the level of the root node until we actually
		 * have it read locked
		 */
J
Josef Bacik 已提交
2591
		b = __btrfs_read_lock_root_node(root, p->recurse);
2592 2593 2594 2595 2596 2597 2598 2599
		level = btrfs_header_level(b);
		if (level > write_lock_level)
			goto out;

		/* Whoops, must trade for write lock */
		btrfs_tree_read_unlock(b);
		free_extent_buffer(b);
	}
2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617

	b = btrfs_lock_root_node(root);
	root_lock = BTRFS_WRITE_LOCK;

	/* The level might have changed, check again */
	level = btrfs_header_level(b);

out:
	p->nodes[level] = b;
	if (!p->skip_locking)
		p->locks[level] = root_lock;
	/*
	 * Callers are responsible for dropping b's references.
	 */
	return b;
}


C
Chris Mason 已提交
2618
/*
2619 2620
 * btrfs_search_slot - look for a key in a tree and perform necessary
 * modifications to preserve tree invariants.
C
Chris Mason 已提交
2621
 *
2622 2623 2624 2625 2626 2627 2628 2629
 * @trans:	Handle of transaction, used when modifying the tree
 * @p:		Holds all btree nodes along the search path
 * @root:	The root node of the tree
 * @key:	The key we are looking for
 * @ins_len:	Indicates purpose of search, for inserts it is 1, for
 *		deletions it's -1. 0 for plain searches
 * @cow:	boolean should CoW operations be performed. Must always be 1
 *		when modifying the tree.
C
Chris Mason 已提交
2630
 *
2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641
 * If @ins_len > 0, nodes and leaves will be split as we walk down the tree.
 * If @ins_len < 0, nodes will be merged as we walk down the tree (if possible)
 *
 * If @key is found, 0 is returned and you can find the item in the leaf level
 * of the path (level 0)
 *
 * If @key isn't found, 1 is returned and the leaf level of the path (level 0)
 * points to the slot where it should be inserted
 *
 * If an error is encountered while searching the tree a negative error number
 * is returned
C
Chris Mason 已提交
2642
 */
2643 2644 2645
int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root *root,
		      const struct btrfs_key *key, struct btrfs_path *p,
		      int ins_len, int cow)
2646
{
2647
	struct extent_buffer *b;
2648 2649
	int slot;
	int ret;
2650
	int err;
2651
	int level;
2652
	int lowest_unlock = 1;
2653 2654
	/* everything at write_lock_level or lower must be write locked */
	int write_lock_level = 0;
2655
	u8 lowest_level = 0;
2656
	int min_write_lock_level;
2657
	int prev_cmp;
2658

2659
	lowest_level = p->lowest_level;
2660
	WARN_ON(lowest_level && ins_len > 0);
C
Chris Mason 已提交
2661
	WARN_ON(p->nodes[0] != NULL);
2662
	BUG_ON(!cow && ins_len);
2663

2664
	if (ins_len < 0) {
2665
		lowest_unlock = 2;
2666

2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682
		/* when we are removing items, we might have to go up to level
		 * two as we update tree pointers  Make sure we keep write
		 * for those levels as well
		 */
		write_lock_level = 2;
	} else if (ins_len > 0) {
		/*
		 * for inserting items, make sure we have a write lock on
		 * level 1 so we can update keys
		 */
		write_lock_level = 1;
	}

	if (!cow)
		write_lock_level = -1;

J
Josef Bacik 已提交
2683
	if (cow && (p->keep_locks || p->lowest_level))
2684 2685
		write_lock_level = BTRFS_MAX_LEVEL;

2686 2687
	min_write_lock_level = write_lock_level;

2688
again:
2689
	prev_cmp = -1;
2690
	b = btrfs_search_slot_get_root(root, p, write_lock_level);
2691 2692 2693 2694
	if (IS_ERR(b)) {
		ret = PTR_ERR(b);
		goto done;
	}
2695

2696
	while (b) {
2697 2698
		int dec = 0;

2699
		level = btrfs_header_level(b);
2700

C
Chris Mason 已提交
2701
		if (cow) {
2702 2703
			bool last_level = (level == (BTRFS_MAX_LEVEL - 1));

2704 2705 2706 2707 2708
			/*
			 * if we don't really need to cow this block
			 * then we don't want to set the path blocking,
			 * so we test it here
			 */
2709 2710
			if (!should_cow_block(trans, root, b)) {
				trans->dirty = true;
2711
				goto cow_done;
2712
			}
2713

2714 2715 2716 2717
			/*
			 * must have write locks on this node and the
			 * parent
			 */
2718 2719 2720 2721
			if (level > write_lock_level ||
			    (level + 1 > write_lock_level &&
			    level + 1 < BTRFS_MAX_LEVEL &&
			    p->nodes[level + 1])) {
2722 2723 2724 2725 2726
				write_lock_level = level + 1;
				btrfs_release_path(p);
				goto again;
			}

2727 2728
			if (last_level)
				err = btrfs_cow_block(trans, root, b, NULL, 0,
2729 2730
						      &b,
						      BTRFS_NESTING_COW);
2731 2732 2733
			else
				err = btrfs_cow_block(trans, root, b,
						      p->nodes[level + 1],
2734 2735
						      p->slots[level + 1], &b,
						      BTRFS_NESTING_COW);
2736 2737
			if (err) {
				ret = err;
2738
				goto done;
2739
			}
C
Chris Mason 已提交
2740
		}
2741
cow_done:
2742
		p->nodes[level] = b;
L
Liu Bo 已提交
2743 2744 2745 2746
		/*
		 * Leave path with blocking locks to avoid massive
		 * lock context switch, this is made on purpose.
		 */
2747 2748 2749 2750 2751 2752 2753

		/*
		 * we have a lock on b and as long as we aren't changing
		 * the tree, there is no way to for the items in b to change.
		 * It is safe to drop the lock on our parent before we
		 * go through the expensive btree search on b.
		 *
2754 2755 2756 2757
		 * If we're inserting or deleting (ins_len != 0), then we might
		 * be changing slot zero, which may require changing the parent.
		 * So, we can't drop the lock until after we know which slot
		 * we're operating on.
2758
		 */
2759 2760 2761 2762 2763 2764 2765 2766
		if (!ins_len && !p->keep_locks) {
			int u = level + 1;

			if (u < BTRFS_MAX_LEVEL && p->locks[u]) {
				btrfs_tree_unlock_rw(p->nodes[u], p->locks[u]);
				p->locks[u] = 0;
			}
		}
2767

N
Nikolay Borisov 已提交
2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784
		/*
		 * If btrfs_bin_search returns an exact match (prev_cmp == 0)
		 * we can safely assume the target key will always be in slot 0
		 * on lower levels due to the invariants BTRFS' btree provides,
		 * namely that a btrfs_key_ptr entry always points to the
		 * lowest key in the child node, thus we can skip searching
		 * lower levels
		 */
		if (prev_cmp == 0) {
			slot = 0;
			ret = 0;
		} else {
			ret = btrfs_bin_search(b, key, &slot);
			prev_cmp = ret;
			if (ret < 0)
				goto done;
		}
2785

2786
		if (level == 0) {
2787
			p->slots[level] = slot;
2788
			if (ins_len > 0 &&
2789
			    btrfs_leaf_free_space(b) < ins_len) {
2790 2791 2792 2793 2794 2795
				if (write_lock_level < 1) {
					write_lock_level = 1;
					btrfs_release_path(p);
					goto again;
				}

2796 2797
				err = split_leaf(trans, root, key,
						 p, ins_len, ret == 0);
2798

2799 2800 2801
				BUG_ON(err > 0);
				if (err) {
					ret = err;
2802 2803
					goto done;
				}
C
Chris Mason 已提交
2804
			}
2805
			if (!p->search_for_split)
2806
				unlock_up(p, level, lowest_unlock,
2807
					  min_write_lock_level, NULL);
2808
			goto done;
2809
		}
2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856
		if (ret && slot > 0) {
			dec = 1;
			slot--;
		}
		p->slots[level] = slot;
		err = setup_nodes_for_search(trans, root, p, b, level, ins_len,
					     &write_lock_level);
		if (err == -EAGAIN)
			goto again;
		if (err) {
			ret = err;
			goto done;
		}
		b = p->nodes[level];
		slot = p->slots[level];

		/*
		 * Slot 0 is special, if we change the key we have to update
		 * the parent pointer which means we must have a write lock on
		 * the parent
		 */
		if (slot == 0 && ins_len && write_lock_level < level + 1) {
			write_lock_level = level + 1;
			btrfs_release_path(p);
			goto again;
		}

		unlock_up(p, level, lowest_unlock, min_write_lock_level,
			  &write_lock_level);

		if (level == lowest_level) {
			if (dec)
				p->slots[level]++;
			goto done;
		}

		err = read_block_for_search(root, p, &b, level, slot, key);
		if (err == -EAGAIN)
			goto again;
		if (err) {
			ret = err;
			goto done;
		}

		if (!p->skip_locking) {
			level = btrfs_header_level(b);
			if (level <= write_lock_level) {
2857
				btrfs_tree_lock(b);
2858 2859
				p->locks[level] = BTRFS_WRITE_LOCK;
			} else {
2860 2861
				__btrfs_tree_read_lock(b, BTRFS_NESTING_NORMAL,
						       p->recurse);
2862 2863 2864 2865
				p->locks[level] = BTRFS_READ_LOCK;
			}
			p->nodes[level] = b;
		}
2866
	}
2867 2868
	ret = 1;
done:
2869
	if (ret < 0 && !p->skip_release_on_error)
2870
		btrfs_release_path(p);
2871
	return ret;
2872 2873
}

J
Jan Schmidt 已提交
2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884
/*
 * Like btrfs_search_slot, this looks for a key in the given tree. It uses the
 * current state of the tree together with the operations recorded in the tree
 * modification log to search for the key in a previous version of this tree, as
 * denoted by the time_seq parameter.
 *
 * Naturally, there is no support for insert, delete or cow operations.
 *
 * The resulting path and return value will be set up as if we called
 * btrfs_search_slot at that point in time with ins_len and cow both set to 0.
 */
2885
int btrfs_search_old_slot(struct btrfs_root *root, const struct btrfs_key *key,
J
Jan Schmidt 已提交
2886 2887
			  struct btrfs_path *p, u64 time_seq)
{
2888
	struct btrfs_fs_info *fs_info = root->fs_info;
J
Jan Schmidt 已提交
2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906
	struct extent_buffer *b;
	int slot;
	int ret;
	int err;
	int level;
	int lowest_unlock = 1;
	u8 lowest_level = 0;

	lowest_level = p->lowest_level;
	WARN_ON(p->nodes[0] != NULL);

	if (p->search_commit_root) {
		BUG_ON(time_seq);
		return btrfs_search_slot(NULL, root, key, p, 0, 0);
	}

again:
	b = get_old_root(root, time_seq);
2907 2908 2909 2910
	if (!b) {
		ret = -EIO;
		goto done;
	}
J
Jan Schmidt 已提交
2911 2912 2913 2914
	level = btrfs_header_level(b);
	p->locks[level] = BTRFS_READ_LOCK;

	while (b) {
2915 2916
		int dec = 0;

J
Jan Schmidt 已提交
2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927
		level = btrfs_header_level(b);
		p->nodes[level] = b;

		/*
		 * we have a lock on b and as long as we aren't changing
		 * the tree, there is no way to for the items in b to change.
		 * It is safe to drop the lock on our parent before we
		 * go through the expensive btree search on b.
		 */
		btrfs_unlock_up_safe(p, level + 1);

N
Nikolay Borisov 已提交
2928
		ret = btrfs_bin_search(b, key, &slot);
2929 2930
		if (ret < 0)
			goto done;
J
Jan Schmidt 已提交
2931

2932
		if (level == 0) {
J
Jan Schmidt 已提交
2933 2934
			p->slots[level] = slot;
			unlock_up(p, level, lowest_unlock, 0, NULL);
2935 2936
			goto done;
		}
J
Jan Schmidt 已提交
2937

2938 2939 2940 2941 2942 2943
		if (ret && slot > 0) {
			dec = 1;
			slot--;
		}
		p->slots[level] = slot;
		unlock_up(p, level, lowest_unlock, 0, NULL);
J
Jan Schmidt 已提交
2944

2945 2946 2947 2948 2949
		if (level == lowest_level) {
			if (dec)
				p->slots[level]++;
			goto done;
		}
J
Jan Schmidt 已提交
2950

2951 2952 2953 2954 2955
		err = read_block_for_search(root, p, &b, level, slot, key);
		if (err == -EAGAIN)
			goto again;
		if (err) {
			ret = err;
J
Jan Schmidt 已提交
2956 2957
			goto done;
		}
2958 2959

		level = btrfs_header_level(b);
2960
		btrfs_tree_read_lock(b);
2961 2962 2963 2964 2965 2966 2967
		b = tree_mod_log_rewind(fs_info, p, b, time_seq);
		if (!b) {
			ret = -ENOMEM;
			goto done;
		}
		p->locks[level] = BTRFS_READ_LOCK;
		p->nodes[level] = b;
J
Jan Schmidt 已提交
2968 2969 2970 2971 2972 2973 2974 2975 2976
	}
	ret = 1;
done:
	if (ret < 0)
		btrfs_release_path(p);

	return ret;
}

2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989
/*
 * helper to use instead of search slot if no exact match is needed but
 * instead the next or previous item should be returned.
 * When find_higher is true, the next higher item is returned, the next lower
 * otherwise.
 * When return_any and find_higher are both true, and no higher item is found,
 * return the next lower instead.
 * When return_any is true and find_higher is false, and no lower item is found,
 * return the next higher instead.
 * It returns 0 if any item is found, 1 if none is found (tree empty), and
 * < 0 on error
 */
int btrfs_search_slot_for_read(struct btrfs_root *root,
2990 2991 2992
			       const struct btrfs_key *key,
			       struct btrfs_path *p, int find_higher,
			       int return_any)
2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026
{
	int ret;
	struct extent_buffer *leaf;

again:
	ret = btrfs_search_slot(NULL, root, key, p, 0, 0);
	if (ret <= 0)
		return ret;
	/*
	 * a return value of 1 means the path is at the position where the
	 * item should be inserted. Normally this is the next bigger item,
	 * but in case the previous item is the last in a leaf, path points
	 * to the first free slot in the previous leaf, i.e. at an invalid
	 * item.
	 */
	leaf = p->nodes[0];

	if (find_higher) {
		if (p->slots[0] >= btrfs_header_nritems(leaf)) {
			ret = btrfs_next_leaf(root, p);
			if (ret <= 0)
				return ret;
			if (!return_any)
				return 1;
			/*
			 * no higher item found, return the next
			 * lower instead
			 */
			return_any = 0;
			find_higher = 0;
			btrfs_release_path(p);
			goto again;
		}
	} else {
3027 3028 3029 3030 3031
		if (p->slots[0] == 0) {
			ret = btrfs_prev_leaf(root, p);
			if (ret < 0)
				return ret;
			if (!ret) {
3032 3033 3034
				leaf = p->nodes[0];
				if (p->slots[0] == btrfs_header_nritems(leaf))
					p->slots[0]--;
3035
				return 0;
3036
			}
3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047
			if (!return_any)
				return 1;
			/*
			 * no lower item found, return the next
			 * higher instead
			 */
			return_any = 0;
			find_higher = 1;
			btrfs_release_path(p);
			goto again;
		} else {
3048 3049 3050 3051 3052 3053
			--p->slots[0];
		}
	}
	return 0;
}

C
Chris Mason 已提交
3054 3055 3056 3057 3058 3059
/*
 * adjust the pointers going up the tree, starting at level
 * making sure the right key of each node is points to 'key'.
 * This is used after shifting pointers to the left, so it stops
 * fixing up pointers when a given leaf/node is not in slot 0 of the
 * higher levels
C
Chris Mason 已提交
3060
 *
C
Chris Mason 已提交
3061
 */
3062
static void fixup_low_keys(struct btrfs_path *path,
3063
			   struct btrfs_disk_key *key, int level)
3064 3065
{
	int i;
3066
	struct extent_buffer *t;
3067
	int ret;
3068

C
Chris Mason 已提交
3069
	for (i = level; i < BTRFS_MAX_LEVEL; i++) {
3070
		int tslot = path->slots[i];
3071

3072
		if (!path->nodes[i])
3073
			break;
3074
		t = path->nodes[i];
3075 3076 3077
		ret = tree_mod_log_insert_key(t, tslot, MOD_LOG_KEY_REPLACE,
				GFP_ATOMIC);
		BUG_ON(ret < 0);
3078
		btrfs_set_node_key(t, key, tslot);
C
Chris Mason 已提交
3079
		btrfs_mark_buffer_dirty(path->nodes[i]);
3080 3081 3082 3083 3084
		if (tslot != 0)
			break;
	}
}

Z
Zheng Yan 已提交
3085 3086 3087 3088 3089 3090
/*
 * update item key.
 *
 * This function isn't completely safe. It's the caller's responsibility
 * that the new key won't break the order
 */
3091 3092
void btrfs_set_item_key_safe(struct btrfs_fs_info *fs_info,
			     struct btrfs_path *path,
3093
			     const struct btrfs_key *new_key)
Z
Zheng Yan 已提交
3094 3095 3096 3097 3098 3099 3100 3101 3102
{
	struct btrfs_disk_key disk_key;
	struct extent_buffer *eb;
	int slot;

	eb = path->nodes[0];
	slot = path->slots[0];
	if (slot > 0) {
		btrfs_item_key(eb, &disk_key, slot - 1);
3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113
		if (unlikely(comp_keys(&disk_key, new_key) >= 0)) {
			btrfs_crit(fs_info,
		"slot %u key (%llu %u %llu) new key (%llu %u %llu)",
				   slot, btrfs_disk_key_objectid(&disk_key),
				   btrfs_disk_key_type(&disk_key),
				   btrfs_disk_key_offset(&disk_key),
				   new_key->objectid, new_key->type,
				   new_key->offset);
			btrfs_print_leaf(eb);
			BUG();
		}
Z
Zheng Yan 已提交
3114 3115 3116
	}
	if (slot < btrfs_header_nritems(eb) - 1) {
		btrfs_item_key(eb, &disk_key, slot + 1);
3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127
		if (unlikely(comp_keys(&disk_key, new_key) <= 0)) {
			btrfs_crit(fs_info,
		"slot %u key (%llu %u %llu) new key (%llu %u %llu)",
				   slot, btrfs_disk_key_objectid(&disk_key),
				   btrfs_disk_key_type(&disk_key),
				   btrfs_disk_key_offset(&disk_key),
				   new_key->objectid, new_key->type,
				   new_key->offset);
			btrfs_print_leaf(eb);
			BUG();
		}
Z
Zheng Yan 已提交
3128 3129 3130 3131 3132 3133
	}

	btrfs_cpu_key_to_disk(&disk_key, new_key);
	btrfs_set_item_key(eb, &disk_key, slot);
	btrfs_mark_buffer_dirty(eb);
	if (slot == 0)
3134
		fixup_low_keys(path, &disk_key, 1);
Z
Zheng Yan 已提交
3135 3136
}

3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188
/*
 * Check key order of two sibling extent buffers.
 *
 * Return true if something is wrong.
 * Return false if everything is fine.
 *
 * Tree-checker only works inside one tree block, thus the following
 * corruption can not be detected by tree-checker:
 *
 * Leaf @left			| Leaf @right
 * --------------------------------------------------------------
 * | 1 | 2 | 3 | 4 | 5 | f6 |   | 7 | 8 |
 *
 * Key f6 in leaf @left itself is valid, but not valid when the next
 * key in leaf @right is 7.
 * This can only be checked at tree block merge time.
 * And since tree checker has ensured all key order in each tree block
 * is correct, we only need to bother the last key of @left and the first
 * key of @right.
 */
static bool check_sibling_keys(struct extent_buffer *left,
			       struct extent_buffer *right)
{
	struct btrfs_key left_last;
	struct btrfs_key right_first;
	int level = btrfs_header_level(left);
	int nr_left = btrfs_header_nritems(left);
	int nr_right = btrfs_header_nritems(right);

	/* No key to check in one of the tree blocks */
	if (!nr_left || !nr_right)
		return false;

	if (level) {
		btrfs_node_key_to_cpu(left, &left_last, nr_left - 1);
		btrfs_node_key_to_cpu(right, &right_first, 0);
	} else {
		btrfs_item_key_to_cpu(left, &left_last, nr_left - 1);
		btrfs_item_key_to_cpu(right, &right_first, 0);
	}

	if (btrfs_comp_cpu_keys(&left_last, &right_first) >= 0) {
		btrfs_crit(left->fs_info,
"bad key order, sibling blocks, left last (%llu %u %llu) right first (%llu %u %llu)",
			   left_last.objectid, left_last.type,
			   left_last.offset, right_first.objectid,
			   right_first.type, right_first.offset);
		return true;
	}
	return false;
}

C
Chris Mason 已提交
3189 3190
/*
 * try to push data from one node into the next node left in the
3191
 * tree.
C
Chris Mason 已提交
3192 3193 3194
 *
 * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
 * error, and > 0 if there was no room in the left hand block.
C
Chris Mason 已提交
3195
 */
3196
static int push_node_left(struct btrfs_trans_handle *trans,
3197
			  struct extent_buffer *dst,
3198
			  struct extent_buffer *src, int empty)
3199
{
3200
	struct btrfs_fs_info *fs_info = trans->fs_info;
3201
	int push_items = 0;
3202 3203
	int src_nritems;
	int dst_nritems;
C
Chris Mason 已提交
3204
	int ret = 0;
3205

3206 3207
	src_nritems = btrfs_header_nritems(src);
	dst_nritems = btrfs_header_nritems(dst);
3208
	push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems;
3209 3210
	WARN_ON(btrfs_header_generation(src) != trans->transid);
	WARN_ON(btrfs_header_generation(dst) != trans->transid);
3211

3212
	if (!empty && src_nritems <= 8)
3213 3214
		return 1;

C
Chris Mason 已提交
3215
	if (push_items <= 0)
3216 3217
		return 1;

3218
	if (empty) {
3219
		push_items = min(src_nritems, push_items);
3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231
		if (push_items < src_nritems) {
			/* leave at least 8 pointers in the node if
			 * we aren't going to empty it
			 */
			if (src_nritems - push_items < 8) {
				if (push_items <= 8)
					return 1;
				push_items -= 8;
			}
		}
	} else
		push_items = min(src_nritems - 8, push_items);
3232

3233 3234 3235 3236 3237 3238
	/* dst is the left eb, src is the middle eb */
	if (check_sibling_keys(dst, src)) {
		ret = -EUCLEAN;
		btrfs_abort_transaction(trans, ret);
		return ret;
	}
3239
	ret = tree_mod_log_eb_copy(dst, src, dst_nritems, 0, push_items);
3240
	if (ret) {
3241
		btrfs_abort_transaction(trans, ret);
3242 3243
		return ret;
	}
3244 3245 3246
	copy_extent_buffer(dst, src,
			   btrfs_node_key_ptr_offset(dst_nritems),
			   btrfs_node_key_ptr_offset(0),
C
Chris Mason 已提交
3247
			   push_items * sizeof(struct btrfs_key_ptr));
3248

3249
	if (push_items < src_nritems) {
3250
		/*
3251 3252
		 * Don't call tree_mod_log_insert_move here, key removal was
		 * already fully logged by tree_mod_log_eb_copy above.
3253
		 */
3254 3255 3256 3257 3258 3259 3260 3261 3262
		memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0),
				      btrfs_node_key_ptr_offset(push_items),
				      (src_nritems - push_items) *
				      sizeof(struct btrfs_key_ptr));
	}
	btrfs_set_header_nritems(src, src_nritems - push_items);
	btrfs_set_header_nritems(dst, dst_nritems + push_items);
	btrfs_mark_buffer_dirty(src);
	btrfs_mark_buffer_dirty(dst);
Z
Zheng Yan 已提交
3263

3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275
	return ret;
}

/*
 * try to push data from one node into the next node right in the
 * tree.
 *
 * returns 0 if some ptrs were pushed, < 0 if there was some horrible
 * error, and > 0 if there was no room in the right hand block.
 *
 * this will  only push up to 1/2 the contents of the left node over
 */
3276 3277 3278
static int balance_node_right(struct btrfs_trans_handle *trans,
			      struct extent_buffer *dst,
			      struct extent_buffer *src)
3279
{
3280
	struct btrfs_fs_info *fs_info = trans->fs_info;
3281 3282 3283 3284 3285 3286
	int push_items = 0;
	int max_push;
	int src_nritems;
	int dst_nritems;
	int ret = 0;

3287 3288 3289
	WARN_ON(btrfs_header_generation(src) != trans->transid);
	WARN_ON(btrfs_header_generation(dst) != trans->transid);

3290 3291
	src_nritems = btrfs_header_nritems(src);
	dst_nritems = btrfs_header_nritems(dst);
3292
	push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems;
C
Chris Mason 已提交
3293
	if (push_items <= 0)
3294
		return 1;
3295

C
Chris Mason 已提交
3296
	if (src_nritems < 4)
3297
		return 1;
3298 3299 3300

	max_push = src_nritems / 2 + 1;
	/* don't try to empty the node */
C
Chris Mason 已提交
3301
	if (max_push >= src_nritems)
3302
		return 1;
Y
Yan 已提交
3303

3304 3305 3306
	if (max_push < push_items)
		push_items = max_push;

3307 3308 3309 3310 3311 3312
	/* dst is the right eb, src is the middle eb */
	if (check_sibling_keys(src, dst)) {
		ret = -EUCLEAN;
		btrfs_abort_transaction(trans, ret);
		return ret;
	}
3313 3314
	ret = tree_mod_log_insert_move(dst, push_items, 0, dst_nritems);
	BUG_ON(ret < 0);
3315 3316 3317 3318
	memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items),
				      btrfs_node_key_ptr_offset(0),
				      (dst_nritems) *
				      sizeof(struct btrfs_key_ptr));
C
Chris Mason 已提交
3319

3320 3321
	ret = tree_mod_log_eb_copy(dst, src, 0, src_nritems - push_items,
				   push_items);
3322
	if (ret) {
3323
		btrfs_abort_transaction(trans, ret);
3324 3325
		return ret;
	}
3326 3327 3328
	copy_extent_buffer(dst, src,
			   btrfs_node_key_ptr_offset(0),
			   btrfs_node_key_ptr_offset(src_nritems - push_items),
C
Chris Mason 已提交
3329
			   push_items * sizeof(struct btrfs_key_ptr));
3330

3331 3332
	btrfs_set_header_nritems(src, src_nritems - push_items);
	btrfs_set_header_nritems(dst, dst_nritems + push_items);
3333

3334 3335
	btrfs_mark_buffer_dirty(src);
	btrfs_mark_buffer_dirty(dst);
Z
Zheng Yan 已提交
3336

C
Chris Mason 已提交
3337
	return ret;
3338 3339
}

C
Chris Mason 已提交
3340 3341 3342 3343
/*
 * helper function to insert a new root level in the tree.
 * A new node is allocated, and a single item is inserted to
 * point to the existing root
C
Chris Mason 已提交
3344 3345
 *
 * returns zero on success or < 0 on failure.
C
Chris Mason 已提交
3346
 */
C
Chris Mason 已提交
3347
static noinline int insert_new_root(struct btrfs_trans_handle *trans,
3348
			   struct btrfs_root *root,
3349
			   struct btrfs_path *path, int level)
C
Chris Mason 已提交
3350
{
3351
	struct btrfs_fs_info *fs_info = root->fs_info;
3352
	u64 lower_gen;
3353 3354
	struct extent_buffer *lower;
	struct extent_buffer *c;
3355
	struct extent_buffer *old;
3356
	struct btrfs_disk_key lower_key;
3357
	int ret;
C
Chris Mason 已提交
3358 3359 3360 3361

	BUG_ON(path->nodes[level]);
	BUG_ON(path->nodes[level-1] != root->node);

3362 3363 3364 3365 3366 3367
	lower = path->nodes[level-1];
	if (level == 1)
		btrfs_item_key(lower, &lower_key, 0);
	else
		btrfs_node_key(lower, &lower_key, 0);

3368
	c = alloc_tree_block_no_bg_flush(trans, root, 0, &lower_key, level,
3369
					 root->node->start, 0,
3370
					 BTRFS_NESTING_NEW_ROOT);
3371 3372
	if (IS_ERR(c))
		return PTR_ERR(c);
3373

3374
	root_add_used(root, fs_info->nodesize);
3375

3376 3377
	btrfs_set_header_nritems(c, 1);
	btrfs_set_node_key(c, &lower_key, 0);
3378
	btrfs_set_node_blockptr(c, 0, lower->start);
3379
	lower_gen = btrfs_header_generation(lower);
Z
Zheng Yan 已提交
3380
	WARN_ON(lower_gen != trans->transid);
3381 3382

	btrfs_set_node_ptr_generation(c, 0, lower_gen);
3383

3384
	btrfs_mark_buffer_dirty(c);
3385

3386
	old = root->node;
3387 3388
	ret = tree_mod_log_insert_root(root->node, c, 0);
	BUG_ON(ret < 0);
3389
	rcu_assign_pointer(root->node, c);
3390 3391 3392 3393

	/* the super has an extra ref to root->node */
	free_extent_buffer(old);

3394
	add_root_to_dirty_list(root);
D
David Sterba 已提交
3395
	atomic_inc(&c->refs);
3396
	path->nodes[level] = c;
3397
	path->locks[level] = BTRFS_WRITE_LOCK;
C
Chris Mason 已提交
3398 3399 3400 3401
	path->slots[level] = 0;
	return 0;
}

C
Chris Mason 已提交
3402 3403 3404
/*
 * worker function to insert a single pointer in a node.
 * the node should have enough room for the pointer already
C
Chris Mason 已提交
3405
 *
C
Chris Mason 已提交
3406 3407 3408
 * slot and level indicate where you want the key to go, and
 * blocknr is the block the key points to.
 */
3409
static void insert_ptr(struct btrfs_trans_handle *trans,
3410
		       struct btrfs_path *path,
3411
		       struct btrfs_disk_key *key, u64 bytenr,
3412
		       int slot, int level)
C
Chris Mason 已提交
3413
{
3414
	struct extent_buffer *lower;
C
Chris Mason 已提交
3415
	int nritems;
3416
	int ret;
C
Chris Mason 已提交
3417 3418

	BUG_ON(!path->nodes[level]);
3419
	btrfs_assert_tree_locked(path->nodes[level]);
3420 3421
	lower = path->nodes[level];
	nritems = btrfs_header_nritems(lower);
S
Stoyan Gaydarov 已提交
3422
	BUG_ON(slot > nritems);
3423
	BUG_ON(nritems == BTRFS_NODEPTRS_PER_BLOCK(trans->fs_info));
C
Chris Mason 已提交
3424
	if (slot != nritems) {
3425 3426
		if (level) {
			ret = tree_mod_log_insert_move(lower, slot + 1, slot,
3427
					nritems - slot);
3428 3429
			BUG_ON(ret < 0);
		}
3430 3431 3432
		memmove_extent_buffer(lower,
			      btrfs_node_key_ptr_offset(slot + 1),
			      btrfs_node_key_ptr_offset(slot),
C
Chris Mason 已提交
3433
			      (nritems - slot) * sizeof(struct btrfs_key_ptr));
C
Chris Mason 已提交
3434
	}
3435
	if (level) {
3436 3437
		ret = tree_mod_log_insert_key(lower, slot, MOD_LOG_KEY_ADD,
				GFP_NOFS);
3438 3439
		BUG_ON(ret < 0);
	}
3440
	btrfs_set_node_key(lower, key, slot);
3441
	btrfs_set_node_blockptr(lower, slot, bytenr);
3442 3443
	WARN_ON(trans->transid == 0);
	btrfs_set_node_ptr_generation(lower, slot, trans->transid);
3444 3445
	btrfs_set_header_nritems(lower, nritems + 1);
	btrfs_mark_buffer_dirty(lower);
C
Chris Mason 已提交
3446 3447
}

C
Chris Mason 已提交
3448 3449 3450 3451 3452 3453
/*
 * split the node at the specified level in path in two.
 * The path is corrected to point to the appropriate node after the split
 *
 * Before splitting this tries to make some room in the node by pushing
 * left and right, if either one works, it returns right away.
C
Chris Mason 已提交
3454 3455
 *
 * returns 0 on success and < 0 on failure
C
Chris Mason 已提交
3456
 */
3457 3458 3459
static noinline int split_node(struct btrfs_trans_handle *trans,
			       struct btrfs_root *root,
			       struct btrfs_path *path, int level)
3460
{
3461
	struct btrfs_fs_info *fs_info = root->fs_info;
3462 3463 3464
	struct extent_buffer *c;
	struct extent_buffer *split;
	struct btrfs_disk_key disk_key;
3465
	int mid;
C
Chris Mason 已提交
3466
	int ret;
3467
	u32 c_nritems;
3468

3469
	c = path->nodes[level];
3470
	WARN_ON(btrfs_header_generation(c) != trans->transid);
3471
	if (c == root->node) {
3472
		/*
3473 3474
		 * trying to split the root, lets make a new one
		 *
3475
		 * tree mod log: We don't log_removal old root in
3476 3477 3478 3479 3480
		 * insert_new_root, because that root buffer will be kept as a
		 * normal node. We are going to log removal of half of the
		 * elements below with tree_mod_log_eb_copy. We're holding a
		 * tree lock on the buffer, which is why we cannot race with
		 * other tree_mod_log users.
3481
		 */
3482
		ret = insert_new_root(trans, root, path, level + 1);
C
Chris Mason 已提交
3483 3484
		if (ret)
			return ret;
3485
	} else {
3486
		ret = push_nodes_for_insert(trans, root, path, level);
3487 3488
		c = path->nodes[level];
		if (!ret && btrfs_header_nritems(c) <
3489
		    BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3)
3490
			return 0;
3491 3492
		if (ret < 0)
			return ret;
3493
	}
3494

3495
	c_nritems = btrfs_header_nritems(c);
3496 3497
	mid = (c_nritems + 1) / 2;
	btrfs_node_key(c, &disk_key, mid);
3498

3499
	split = alloc_tree_block_no_bg_flush(trans, root, 0, &disk_key, level,
3500
					     c->start, 0, BTRFS_NESTING_SPLIT);
3501 3502 3503
	if (IS_ERR(split))
		return PTR_ERR(split);

3504
	root_add_used(root, fs_info->nodesize);
3505
	ASSERT(btrfs_header_level(c) == level);
3506

3507
	ret = tree_mod_log_eb_copy(split, c, 0, mid, c_nritems - mid);
3508
	if (ret) {
3509
		btrfs_abort_transaction(trans, ret);
3510 3511
		return ret;
	}
3512 3513 3514 3515 3516 3517
	copy_extent_buffer(split, c,
			   btrfs_node_key_ptr_offset(0),
			   btrfs_node_key_ptr_offset(mid),
			   (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
	btrfs_set_header_nritems(split, c_nritems - mid);
	btrfs_set_header_nritems(c, mid);
C
Chris Mason 已提交
3518 3519
	ret = 0;

3520 3521 3522
	btrfs_mark_buffer_dirty(c);
	btrfs_mark_buffer_dirty(split);

3523
	insert_ptr(trans, path, &disk_key, split->start,
3524
		   path->slots[level + 1] + 1, level + 1);
C
Chris Mason 已提交
3525

C
Chris Mason 已提交
3526
	if (path->slots[level] >= mid) {
C
Chris Mason 已提交
3527
		path->slots[level] -= mid;
3528
		btrfs_tree_unlock(c);
3529 3530
		free_extent_buffer(c);
		path->nodes[level] = split;
C
Chris Mason 已提交
3531 3532
		path->slots[level + 1] += 1;
	} else {
3533
		btrfs_tree_unlock(split);
3534
		free_extent_buffer(split);
3535
	}
C
Chris Mason 已提交
3536
	return ret;
3537 3538
}

C
Chris Mason 已提交
3539 3540 3541 3542 3543
/*
 * how many bytes are required to store the items in a leaf.  start
 * and nr indicate which items in the leaf to check.  This totals up the
 * space used both by the item structs and the item data
 */
3544
static int leaf_space_used(struct extent_buffer *l, int start, int nr)
3545
{
J
Josef Bacik 已提交
3546 3547
	struct btrfs_item *start_item;
	struct btrfs_item *end_item;
3548
	int data_len;
3549
	int nritems = btrfs_header_nritems(l);
3550
	int end = min(nritems, start + nr) - 1;
3551 3552 3553

	if (!nr)
		return 0;
3554 3555
	start_item = btrfs_item_nr(start);
	end_item = btrfs_item_nr(end);
3556 3557 3558
	data_len = btrfs_item_offset(l, start_item) +
		   btrfs_item_size(l, start_item);
	data_len = data_len - btrfs_item_offset(l, end_item);
C
Chris Mason 已提交
3559
	data_len += sizeof(struct btrfs_item) * nr;
3560
	WARN_ON(data_len < 0);
3561 3562 3563
	return data_len;
}

3564 3565 3566 3567 3568
/*
 * The space between the end of the leaf items and
 * the start of the leaf data.  IOW, how much room
 * the leaf has left for both items and data
 */
3569
noinline int btrfs_leaf_free_space(struct extent_buffer *leaf)
3570
{
3571
	struct btrfs_fs_info *fs_info = leaf->fs_info;
3572 3573
	int nritems = btrfs_header_nritems(leaf);
	int ret;
3574 3575

	ret = BTRFS_LEAF_DATA_SIZE(fs_info) - leaf_space_used(leaf, 0, nritems);
3576
	if (ret < 0) {
3577 3578 3579 3580 3581
		btrfs_crit(fs_info,
			   "leaf free space ret %d, leaf data size %lu, used %d nritems %d",
			   ret,
			   (unsigned long) BTRFS_LEAF_DATA_SIZE(fs_info),
			   leaf_space_used(leaf, 0, nritems), nritems);
3582 3583
	}
	return ret;
3584 3585
}

3586 3587 3588 3589
/*
 * min slot controls the lowest index we're willing to push to the
 * right.  We'll push up to and including min_slot, but no lower
 */
3590
static noinline int __push_leaf_right(struct btrfs_path *path,
3591 3592
				      int data_size, int empty,
				      struct extent_buffer *right,
3593 3594
				      int free_space, u32 left_nritems,
				      u32 min_slot)
C
Chris Mason 已提交
3595
{
3596
	struct btrfs_fs_info *fs_info = right->fs_info;
3597
	struct extent_buffer *left = path->nodes[0];
3598
	struct extent_buffer *upper = path->nodes[1];
3599
	struct btrfs_map_token token;
3600
	struct btrfs_disk_key disk_key;
C
Chris Mason 已提交
3601
	int slot;
3602
	u32 i;
C
Chris Mason 已提交
3603 3604
	int push_space = 0;
	int push_items = 0;
C
Chris Mason 已提交
3605
	struct btrfs_item *item;
3606
	u32 nr;
3607
	u32 right_nritems;
3608
	u32 data_end;
3609
	u32 this_item_size;
C
Chris Mason 已提交
3610

3611 3612 3613
	if (empty)
		nr = 0;
	else
3614
		nr = max_t(u32, 1, min_slot);
3615

Z
Zheng Yan 已提交
3616
	if (path->slots[0] >= left_nritems)
3617
		push_space += data_size;
Z
Zheng Yan 已提交
3618

3619
	slot = path->slots[1];
3620 3621
	i = left_nritems - 1;
	while (i >= nr) {
3622
		item = btrfs_item_nr(i);
3623

Z
Zheng Yan 已提交
3624 3625 3626 3627
		if (!empty && push_items > 0) {
			if (path->slots[0] > i)
				break;
			if (path->slots[0] == i) {
3628 3629
				int space = btrfs_leaf_free_space(left);

Z
Zheng Yan 已提交
3630 3631 3632 3633 3634
				if (space + push_space * 2 > free_space)
					break;
			}
		}

C
Chris Mason 已提交
3635
		if (path->slots[0] == i)
3636
			push_space += data_size;
3637 3638 3639

		this_item_size = btrfs_item_size(left, item);
		if (this_item_size + sizeof(*item) + push_space > free_space)
C
Chris Mason 已提交
3640
			break;
Z
Zheng Yan 已提交
3641

C
Chris Mason 已提交
3642
		push_items++;
3643
		push_space += this_item_size + sizeof(*item);
3644 3645 3646
		if (i == 0)
			break;
		i--;
3647
	}
3648

3649 3650
	if (push_items == 0)
		goto out_unlock;
3651

J
Julia Lawall 已提交
3652
	WARN_ON(!empty && push_items == left_nritems);
3653

C
Chris Mason 已提交
3654
	/* push left to right */
3655
	right_nritems = btrfs_header_nritems(right);
3656

3657
	push_space = btrfs_item_end_nr(left, left_nritems - push_items);
3658
	push_space -= leaf_data_end(left);
3659

C
Chris Mason 已提交
3660
	/* make room in the right data area */
3661
	data_end = leaf_data_end(right);
3662
	memmove_extent_buffer(right,
3663 3664
			      BTRFS_LEAF_DATA_OFFSET + data_end - push_space,
			      BTRFS_LEAF_DATA_OFFSET + data_end,
3665
			      BTRFS_LEAF_DATA_SIZE(fs_info) - data_end);
3666

C
Chris Mason 已提交
3667
	/* copy from the left data area */
3668
	copy_extent_buffer(right, left, BTRFS_LEAF_DATA_OFFSET +
3669
		     BTRFS_LEAF_DATA_SIZE(fs_info) - push_space,
3670
		     BTRFS_LEAF_DATA_OFFSET + leaf_data_end(left),
C
Chris Mason 已提交
3671
		     push_space);
3672 3673 3674 3675 3676

	memmove_extent_buffer(right, btrfs_item_nr_offset(push_items),
			      btrfs_item_nr_offset(0),
			      right_nritems * sizeof(struct btrfs_item));

C
Chris Mason 已提交
3677
	/* copy the items from left to right */
3678 3679 3680
	copy_extent_buffer(right, left, btrfs_item_nr_offset(0),
		   btrfs_item_nr_offset(left_nritems - push_items),
		   push_items * sizeof(struct btrfs_item));
C
Chris Mason 已提交
3681 3682

	/* update the item pointers */
3683
	btrfs_init_map_token(&token, right);
3684
	right_nritems += push_items;
3685
	btrfs_set_header_nritems(right, right_nritems);
3686
	push_space = BTRFS_LEAF_DATA_SIZE(fs_info);
3687
	for (i = 0; i < right_nritems; i++) {
3688
		item = btrfs_item_nr(i);
3689 3690
		push_space -= btrfs_token_item_size(&token, item);
		btrfs_set_token_item_offset(&token, item, push_space);
3691 3692
	}

3693
	left_nritems -= push_items;
3694
	btrfs_set_header_nritems(left, left_nritems);
C
Chris Mason 已提交
3695

3696 3697
	if (left_nritems)
		btrfs_mark_buffer_dirty(left);
3698
	else
3699
		btrfs_clean_tree_block(left);
3700

3701
	btrfs_mark_buffer_dirty(right);
3702

3703 3704
	btrfs_item_key(right, &disk_key, 0);
	btrfs_set_node_key(upper, &disk_key, slot + 1);
C
Chris Mason 已提交
3705
	btrfs_mark_buffer_dirty(upper);
C
Chris Mason 已提交
3706

C
Chris Mason 已提交
3707
	/* then fixup the leaf pointer in the path */
3708 3709
	if (path->slots[0] >= left_nritems) {
		path->slots[0] -= left_nritems;
3710
		if (btrfs_header_nritems(path->nodes[0]) == 0)
3711
			btrfs_clean_tree_block(path->nodes[0]);
3712
		btrfs_tree_unlock(path->nodes[0]);
3713 3714
		free_extent_buffer(path->nodes[0]);
		path->nodes[0] = right;
C
Chris Mason 已提交
3715 3716
		path->slots[1] += 1;
	} else {
3717
		btrfs_tree_unlock(right);
3718
		free_extent_buffer(right);
C
Chris Mason 已提交
3719 3720
	}
	return 0;
3721 3722 3723 3724 3725

out_unlock:
	btrfs_tree_unlock(right);
	free_extent_buffer(right);
	return 1;
C
Chris Mason 已提交
3726
}
3727

3728 3729 3730 3731 3732 3733
/*
 * push some data in the path leaf to the right, trying to free up at
 * least data_size bytes.  returns zero if the push worked, nonzero otherwise
 *
 * returns 1 if the push failed because the other node didn't have enough
 * room, 0 if everything worked out and < 0 if there were major errors.
3734 3735 3736
 *
 * this will push starting from min_slot to the end of the leaf.  It won't
 * push any slot lower than min_slot
3737 3738
 */
static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
3739 3740 3741
			   *root, struct btrfs_path *path,
			   int min_data_size, int data_size,
			   int empty, u32 min_slot)
3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760
{
	struct extent_buffer *left = path->nodes[0];
	struct extent_buffer *right;
	struct extent_buffer *upper;
	int slot;
	int free_space;
	u32 left_nritems;
	int ret;

	if (!path->nodes[1])
		return 1;

	slot = path->slots[1];
	upper = path->nodes[1];
	if (slot >= btrfs_header_nritems(upper) - 1)
		return 1;

	btrfs_assert_tree_locked(path->nodes[1]);

3761
	right = btrfs_read_node_slot(upper, slot + 1);
3762 3763 3764 3765 3766
	/*
	 * slot + 1 is not valid or we fail to read the right node,
	 * no big deal, just return.
	 */
	if (IS_ERR(right))
T
Tsutomu Itoh 已提交
3767 3768
		return 1;

3769
	__btrfs_tree_lock(right, BTRFS_NESTING_RIGHT);
3770

3771
	free_space = btrfs_leaf_free_space(right);
3772 3773 3774 3775 3776
	if (free_space < data_size)
		goto out_unlock;

	/* cow and double check */
	ret = btrfs_cow_block(trans, root, right, upper,
3777
			      slot + 1, &right, BTRFS_NESTING_RIGHT_COW);
3778 3779 3780
	if (ret)
		goto out_unlock;

3781
	free_space = btrfs_leaf_free_space(right);
3782 3783 3784 3785 3786 3787 3788
	if (free_space < data_size)
		goto out_unlock;

	left_nritems = btrfs_header_nritems(left);
	if (left_nritems == 0)
		goto out_unlock;

3789 3790 3791 3792 3793 3794
	if (check_sibling_keys(left, right)) {
		ret = -EUCLEAN;
		btrfs_tree_unlock(right);
		free_extent_buffer(right);
		return ret;
	}
3795 3796 3797 3798
	if (path->slots[0] == left_nritems && !empty) {
		/* Key greater than all keys in the leaf, right neighbor has
		 * enough room for it and we're not emptying our leaf to delete
		 * it, therefore use right neighbor to insert the new item and
3799
		 * no need to touch/dirty our left leaf. */
3800 3801 3802 3803 3804 3805 3806 3807
		btrfs_tree_unlock(left);
		free_extent_buffer(left);
		path->nodes[0] = right;
		path->slots[0] = 0;
		path->slots[1]++;
		return 0;
	}

3808
	return __push_leaf_right(path, min_data_size, empty,
3809
				right, free_space, left_nritems, min_slot);
3810 3811 3812 3813 3814 3815
out_unlock:
	btrfs_tree_unlock(right);
	free_extent_buffer(right);
	return 1;
}

C
Chris Mason 已提交
3816 3817 3818
/*
 * push some data in the path leaf to the left, trying to free up at
 * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3819 3820 3821 3822
 *
 * max_slot can put a limit on how far into the leaf we'll push items.  The
 * item at 'max_slot' won't be touched.  Use (u32)-1 to make us do all the
 * items
C
Chris Mason 已提交
3823
 */
3824
static noinline int __push_leaf_left(struct btrfs_path *path, int data_size,
3825
				     int empty, struct extent_buffer *left,
3826 3827
				     int free_space, u32 right_nritems,
				     u32 max_slot)
3828
{
3829
	struct btrfs_fs_info *fs_info = left->fs_info;
3830 3831
	struct btrfs_disk_key disk_key;
	struct extent_buffer *right = path->nodes[0];
3832 3833 3834
	int i;
	int push_space = 0;
	int push_items = 0;
C
Chris Mason 已提交
3835
	struct btrfs_item *item;
3836
	u32 old_left_nritems;
3837
	u32 nr;
C
Chris Mason 已提交
3838
	int ret = 0;
3839 3840
	u32 this_item_size;
	u32 old_left_item_size;
3841 3842
	struct btrfs_map_token token;

3843
	if (empty)
3844
		nr = min(right_nritems, max_slot);
3845
	else
3846
		nr = min(right_nritems - 1, max_slot);
3847 3848

	for (i = 0; i < nr; i++) {
3849
		item = btrfs_item_nr(i);
3850

Z
Zheng Yan 已提交
3851 3852 3853 3854
		if (!empty && push_items > 0) {
			if (path->slots[0] < i)
				break;
			if (path->slots[0] == i) {
3855 3856
				int space = btrfs_leaf_free_space(right);

Z
Zheng Yan 已提交
3857 3858 3859 3860 3861
				if (space + push_space * 2 > free_space)
					break;
			}
		}

3862
		if (path->slots[0] == i)
3863
			push_space += data_size;
3864 3865 3866

		this_item_size = btrfs_item_size(right, item);
		if (this_item_size + sizeof(*item) + push_space > free_space)
3867
			break;
3868

3869
		push_items++;
3870 3871 3872
		push_space += this_item_size + sizeof(*item);
	}

3873
	if (push_items == 0) {
3874 3875
		ret = 1;
		goto out;
3876
	}
3877
	WARN_ON(!empty && push_items == btrfs_header_nritems(right));
3878

3879
	/* push data from right to left */
3880 3881 3882 3883 3884
	copy_extent_buffer(left, right,
			   btrfs_item_nr_offset(btrfs_header_nritems(left)),
			   btrfs_item_nr_offset(0),
			   push_items * sizeof(struct btrfs_item));

3885
	push_space = BTRFS_LEAF_DATA_SIZE(fs_info) -
C
Chris Mason 已提交
3886
		     btrfs_item_offset_nr(right, push_items - 1);
3887

3888
	copy_extent_buffer(left, right, BTRFS_LEAF_DATA_OFFSET +
3889
		     leaf_data_end(left) - push_space,
3890
		     BTRFS_LEAF_DATA_OFFSET +
3891
		     btrfs_item_offset_nr(right, push_items - 1),
C
Chris Mason 已提交
3892
		     push_space);
3893
	old_left_nritems = btrfs_header_nritems(left);
3894
	BUG_ON(old_left_nritems <= 0);
3895

3896
	btrfs_init_map_token(&token, left);
3897
	old_left_item_size = btrfs_item_offset_nr(left, old_left_nritems - 1);
C
Chris Mason 已提交
3898
	for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
3899
		u32 ioff;
3900

3901
		item = btrfs_item_nr(i);
3902

3903 3904 3905
		ioff = btrfs_token_item_offset(&token, item);
		btrfs_set_token_item_offset(&token, item,
		      ioff - (BTRFS_LEAF_DATA_SIZE(fs_info) - old_left_item_size));
3906
	}
3907
	btrfs_set_header_nritems(left, old_left_nritems + push_items);
3908 3909

	/* fixup right node */
J
Julia Lawall 已提交
3910 3911
	if (push_items > right_nritems)
		WARN(1, KERN_CRIT "push items %d nr %u\n", push_items,
C
Chris Mason 已提交
3912
		       right_nritems);
3913 3914 3915

	if (push_items < right_nritems) {
		push_space = btrfs_item_offset_nr(right, push_items - 1) -
3916
						  leaf_data_end(right);
3917
		memmove_extent_buffer(right, BTRFS_LEAF_DATA_OFFSET +
3918
				      BTRFS_LEAF_DATA_SIZE(fs_info) - push_space,
3919
				      BTRFS_LEAF_DATA_OFFSET +
3920
				      leaf_data_end(right), push_space);
3921 3922

		memmove_extent_buffer(right, btrfs_item_nr_offset(0),
3923 3924 3925
			      btrfs_item_nr_offset(push_items),
			     (btrfs_header_nritems(right) - push_items) *
			     sizeof(struct btrfs_item));
3926
	}
3927 3928

	btrfs_init_map_token(&token, right);
3929 3930
	right_nritems -= push_items;
	btrfs_set_header_nritems(right, right_nritems);
3931
	push_space = BTRFS_LEAF_DATA_SIZE(fs_info);
3932
	for (i = 0; i < right_nritems; i++) {
3933
		item = btrfs_item_nr(i);
3934

3935 3936
		push_space = push_space - btrfs_token_item_size(&token, item);
		btrfs_set_token_item_offset(&token, item, push_space);
3937
	}
3938

3939
	btrfs_mark_buffer_dirty(left);
3940 3941
	if (right_nritems)
		btrfs_mark_buffer_dirty(right);
3942
	else
3943
		btrfs_clean_tree_block(right);
3944

3945
	btrfs_item_key(right, &disk_key, 0);
3946
	fixup_low_keys(path, &disk_key, 1);
3947 3948 3949 3950

	/* then fixup the leaf pointer in the path */
	if (path->slots[0] < push_items) {
		path->slots[0] += old_left_nritems;
3951
		btrfs_tree_unlock(path->nodes[0]);
3952 3953
		free_extent_buffer(path->nodes[0]);
		path->nodes[0] = left;
3954 3955
		path->slots[1] -= 1;
	} else {
3956
		btrfs_tree_unlock(left);
3957
		free_extent_buffer(left);
3958 3959
		path->slots[0] -= push_items;
	}
3960
	BUG_ON(path->slots[0] < 0);
C
Chris Mason 已提交
3961
	return ret;
3962 3963 3964 3965
out:
	btrfs_tree_unlock(left);
	free_extent_buffer(left);
	return ret;
3966 3967
}

3968 3969 3970
/*
 * push some data in the path leaf to the left, trying to free up at
 * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3971 3972 3973 3974
 *
 * max_slot can put a limit on how far into the leaf we'll push items.  The
 * item at 'max_slot' won't be touched.  Use (u32)-1 to make us push all the
 * items
3975 3976
 */
static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
3977 3978
			  *root, struct btrfs_path *path, int min_data_size,
			  int data_size, int empty, u32 max_slot)
3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998
{
	struct extent_buffer *right = path->nodes[0];
	struct extent_buffer *left;
	int slot;
	int free_space;
	u32 right_nritems;
	int ret = 0;

	slot = path->slots[1];
	if (slot == 0)
		return 1;
	if (!path->nodes[1])
		return 1;

	right_nritems = btrfs_header_nritems(right);
	if (right_nritems == 0)
		return 1;

	btrfs_assert_tree_locked(path->nodes[1]);

3999
	left = btrfs_read_node_slot(path->nodes[1], slot - 1);
4000 4001 4002 4003 4004
	/*
	 * slot - 1 is not valid or we fail to read the left node,
	 * no big deal, just return.
	 */
	if (IS_ERR(left))
T
Tsutomu Itoh 已提交
4005 4006
		return 1;

4007
	__btrfs_tree_lock(left, BTRFS_NESTING_LEFT);
4008

4009
	free_space = btrfs_leaf_free_space(left);
4010 4011 4012 4013 4014 4015 4016
	if (free_space < data_size) {
		ret = 1;
		goto out;
	}

	/* cow and double check */
	ret = btrfs_cow_block(trans, root, left,
4017
			      path->nodes[1], slot - 1, &left,
4018
			      BTRFS_NESTING_LEFT_COW);
4019 4020
	if (ret) {
		/* we hit -ENOSPC, but it isn't fatal here */
4021 4022
		if (ret == -ENOSPC)
			ret = 1;
4023 4024 4025
		goto out;
	}

4026
	free_space = btrfs_leaf_free_space(left);
4027 4028 4029 4030 4031
	if (free_space < data_size) {
		ret = 1;
		goto out;
	}

4032 4033 4034 4035
	if (check_sibling_keys(left, right)) {
		ret = -EUCLEAN;
		goto out;
	}
4036
	return __push_leaf_left(path, min_data_size,
4037 4038
			       empty, left, free_space, right_nritems,
			       max_slot);
4039 4040 4041 4042 4043 4044 4045 4046 4047 4048
out:
	btrfs_tree_unlock(left);
	free_extent_buffer(left);
	return ret;
}

/*
 * split the path's leaf in two, making sure there is at least data_size
 * available for the resulting leaf level of the path.
 */
4049 4050 4051 4052 4053
static noinline void copy_for_split(struct btrfs_trans_handle *trans,
				    struct btrfs_path *path,
				    struct extent_buffer *l,
				    struct extent_buffer *right,
				    int slot, int mid, int nritems)
4054
{
4055
	struct btrfs_fs_info *fs_info = trans->fs_info;
4056 4057 4058 4059
	int data_copy_size;
	int rt_data_off;
	int i;
	struct btrfs_disk_key disk_key;
4060 4061
	struct btrfs_map_token token;

4062 4063
	nritems = nritems - mid;
	btrfs_set_header_nritems(right, nritems);
4064
	data_copy_size = btrfs_item_end_nr(l, mid) - leaf_data_end(l);
4065 4066 4067 4068 4069 4070

	copy_extent_buffer(right, l, btrfs_item_nr_offset(0),
			   btrfs_item_nr_offset(mid),
			   nritems * sizeof(struct btrfs_item));

	copy_extent_buffer(right, l,
4071 4072
		     BTRFS_LEAF_DATA_OFFSET + BTRFS_LEAF_DATA_SIZE(fs_info) -
		     data_copy_size, BTRFS_LEAF_DATA_OFFSET +
4073
		     leaf_data_end(l), data_copy_size);
4074

4075
	rt_data_off = BTRFS_LEAF_DATA_SIZE(fs_info) - btrfs_item_end_nr(l, mid);
4076

4077
	btrfs_init_map_token(&token, right);
4078
	for (i = 0; i < nritems; i++) {
4079
		struct btrfs_item *item = btrfs_item_nr(i);
4080 4081
		u32 ioff;

4082 4083
		ioff = btrfs_token_item_offset(&token, item);
		btrfs_set_token_item_offset(&token, item, ioff + rt_data_off);
4084 4085 4086 4087
	}

	btrfs_set_header_nritems(l, mid);
	btrfs_item_key(right, &disk_key, 0);
4088
	insert_ptr(trans, path, &disk_key, right->start, path->slots[1] + 1, 1);
4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107

	btrfs_mark_buffer_dirty(right);
	btrfs_mark_buffer_dirty(l);
	BUG_ON(path->slots[0] != slot);

	if (mid <= slot) {
		btrfs_tree_unlock(path->nodes[0]);
		free_extent_buffer(path->nodes[0]);
		path->nodes[0] = right;
		path->slots[0] -= mid;
		path->slots[1] += 1;
	} else {
		btrfs_tree_unlock(right);
		free_extent_buffer(right);
	}

	BUG_ON(path->slots[0] < 0);
}

4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126
/*
 * double splits happen when we need to insert a big item in the middle
 * of a leaf.  A double split can leave us with 3 mostly empty leaves:
 * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ]
 *          A                 B                 C
 *
 * We avoid this by trying to push the items on either side of our target
 * into the adjacent leaves.  If all goes well we can avoid the double split
 * completely.
 */
static noinline int push_for_double_split(struct btrfs_trans_handle *trans,
					  struct btrfs_root *root,
					  struct btrfs_path *path,
					  int data_size)
{
	int ret;
	int progress = 0;
	int slot;
	u32 nritems;
4127
	int space_needed = data_size;
4128 4129

	slot = path->slots[0];
4130
	if (slot < btrfs_header_nritems(path->nodes[0]))
4131
		space_needed -= btrfs_leaf_free_space(path->nodes[0]);
4132 4133 4134 4135 4136

	/*
	 * try to push all the items after our slot into the
	 * right leaf
	 */
4137
	ret = push_leaf_right(trans, root, path, 1, space_needed, 0, slot);
4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151
	if (ret < 0)
		return ret;

	if (ret == 0)
		progress++;

	nritems = btrfs_header_nritems(path->nodes[0]);
	/*
	 * our goal is to get our slot at the start or end of a leaf.  If
	 * we've done so we're done
	 */
	if (path->slots[0] == 0 || path->slots[0] == nritems)
		return 0;

4152
	if (btrfs_leaf_free_space(path->nodes[0]) >= data_size)
4153 4154 4155 4156
		return 0;

	/* try to push all the items before our slot into the next leaf */
	slot = path->slots[0];
4157 4158
	space_needed = data_size;
	if (slot > 0)
4159
		space_needed -= btrfs_leaf_free_space(path->nodes[0]);
4160
	ret = push_leaf_left(trans, root, path, 1, space_needed, 0, slot);
4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171
	if (ret < 0)
		return ret;

	if (ret == 0)
		progress++;

	if (progress)
		return 0;
	return 1;
}

C
Chris Mason 已提交
4172 4173 4174
/*
 * split the path's leaf in two, making sure there is at least data_size
 * available for the resulting leaf level of the path.
C
Chris Mason 已提交
4175 4176
 *
 * returns 0 if all went well and < 0 on failure.
C
Chris Mason 已提交
4177
 */
4178 4179
static noinline int split_leaf(struct btrfs_trans_handle *trans,
			       struct btrfs_root *root,
4180
			       const struct btrfs_key *ins_key,
4181 4182
			       struct btrfs_path *path, int data_size,
			       int extend)
4183
{
4184
	struct btrfs_disk_key disk_key;
4185
	struct extent_buffer *l;
4186
	u32 nritems;
4187 4188
	int mid;
	int slot;
4189
	struct extent_buffer *right;
4190
	struct btrfs_fs_info *fs_info = root->fs_info;
4191
	int ret = 0;
C
Chris Mason 已提交
4192
	int wret;
4193
	int split;
4194
	int num_doubles = 0;
4195
	int tried_avoid_double = 0;
C
Chris Mason 已提交
4196

4197 4198 4199
	l = path->nodes[0];
	slot = path->slots[0];
	if (extend && data_size + btrfs_item_size_nr(l, slot) +
4200
	    sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(fs_info))
4201 4202
		return -EOVERFLOW;

C
Chris Mason 已提交
4203
	/* first try to make some room by pushing left and right */
4204
	if (data_size && path->nodes[1]) {
4205 4206 4207
		int space_needed = data_size;

		if (slot < btrfs_header_nritems(l))
4208
			space_needed -= btrfs_leaf_free_space(l);
4209 4210 4211

		wret = push_leaf_right(trans, root, path, space_needed,
				       space_needed, 0, 0);
C
Chris Mason 已提交
4212
		if (wret < 0)
C
Chris Mason 已提交
4213
			return wret;
4214
		if (wret) {
4215 4216
			space_needed = data_size;
			if (slot > 0)
4217
				space_needed -= btrfs_leaf_free_space(l);
4218 4219
			wret = push_leaf_left(trans, root, path, space_needed,
					      space_needed, 0, (u32)-1);
4220 4221 4222 4223
			if (wret < 0)
				return wret;
		}
		l = path->nodes[0];
C
Chris Mason 已提交
4224

4225
		/* did the pushes work? */
4226
		if (btrfs_leaf_free_space(l) >= data_size)
4227
			return 0;
4228
	}
C
Chris Mason 已提交
4229

C
Chris Mason 已提交
4230
	if (!path->nodes[1]) {
4231
		ret = insert_new_root(trans, root, path, 1);
C
Chris Mason 已提交
4232 4233 4234
		if (ret)
			return ret;
	}
4235
again:
4236
	split = 1;
4237
	l = path->nodes[0];
4238
	slot = path->slots[0];
4239
	nritems = btrfs_header_nritems(l);
C
Chris Mason 已提交
4240
	mid = (nritems + 1) / 2;
4241

4242 4243 4244
	if (mid <= slot) {
		if (nritems == 1 ||
		    leaf_space_used(l, mid, nritems - mid) + data_size >
4245
			BTRFS_LEAF_DATA_SIZE(fs_info)) {
4246 4247 4248 4249 4250 4251
			if (slot >= nritems) {
				split = 0;
			} else {
				mid = slot;
				if (mid != nritems &&
				    leaf_space_used(l, mid, nritems - mid) +
4252
				    data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) {
4253 4254
					if (data_size && !tried_avoid_double)
						goto push_for_double;
4255 4256 4257 4258 4259 4260
					split = 2;
				}
			}
		}
	} else {
		if (leaf_space_used(l, 0, mid) + data_size >
4261
			BTRFS_LEAF_DATA_SIZE(fs_info)) {
4262 4263 4264 4265 4266 4267 4268 4269
			if (!extend && data_size && slot == 0) {
				split = 0;
			} else if ((extend || !data_size) && slot == 0) {
				mid = 1;
			} else {
				mid = slot;
				if (mid != nritems &&
				    leaf_space_used(l, mid, nritems - mid) +
4270
				    data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) {
4271 4272
					if (data_size && !tried_avoid_double)
						goto push_for_double;
4273
					split = 2;
4274 4275 4276 4277 4278 4279 4280 4281 4282 4283
				}
			}
		}
	}

	if (split == 0)
		btrfs_cpu_key_to_disk(&disk_key, ins_key);
	else
		btrfs_item_key(l, &disk_key, mid);

4284 4285 4286 4287 4288 4289 4290 4291
	/*
	 * We have to about BTRFS_NESTING_NEW_ROOT here if we've done a double
	 * split, because we're only allowed to have MAX_LOCKDEP_SUBCLASSES
	 * subclasses, which is 8 at the time of this patch, and we've maxed it
	 * out.  In the future we could add a
	 * BTRFS_NESTING_SPLIT_THE_SPLITTENING if we need to, but for now just
	 * use BTRFS_NESTING_NEW_ROOT.
	 */
4292
	right = alloc_tree_block_no_bg_flush(trans, root, 0, &disk_key, 0,
4293 4294 4295
					     l->start, 0, num_doubles ?
					     BTRFS_NESTING_NEW_ROOT :
					     BTRFS_NESTING_SPLIT);
4296
	if (IS_ERR(right))
4297
		return PTR_ERR(right);
4298

4299
	root_add_used(root, fs_info->nodesize);
4300

4301 4302 4303
	if (split == 0) {
		if (mid <= slot) {
			btrfs_set_header_nritems(right, 0);
4304
			insert_ptr(trans, path, &disk_key,
4305
				   right->start, path->slots[1] + 1, 1);
4306 4307 4308 4309 4310 4311 4312
			btrfs_tree_unlock(path->nodes[0]);
			free_extent_buffer(path->nodes[0]);
			path->nodes[0] = right;
			path->slots[0] = 0;
			path->slots[1] += 1;
		} else {
			btrfs_set_header_nritems(right, 0);
4313
			insert_ptr(trans, path, &disk_key,
4314
				   right->start, path->slots[1], 1);
4315 4316 4317 4318
			btrfs_tree_unlock(path->nodes[0]);
			free_extent_buffer(path->nodes[0]);
			path->nodes[0] = right;
			path->slots[0] = 0;
4319
			if (path->slots[1] == 0)
4320
				fixup_low_keys(path, &disk_key, 1);
4321
		}
4322 4323 4324 4325 4326
		/*
		 * We create a new leaf 'right' for the required ins_len and
		 * we'll do btrfs_mark_buffer_dirty() on this leaf after copying
		 * the content of ins_len to 'right'.
		 */
4327
		return ret;
4328
	}
C
Chris Mason 已提交
4329

4330
	copy_for_split(trans, path, l, right, slot, mid, nritems);
Z
Zheng Yan 已提交
4331

4332
	if (split == 2) {
4333 4334 4335
		BUG_ON(num_doubles != 0);
		num_doubles++;
		goto again;
4336
	}
4337

4338
	return 0;
4339 4340 4341 4342

push_for_double:
	push_for_double_split(trans, root, path, data_size);
	tried_avoid_double = 1;
4343
	if (btrfs_leaf_free_space(path->nodes[0]) >= data_size)
4344 4345
		return 0;
	goto again;
4346 4347
}

Y
Yan, Zheng 已提交
4348 4349 4350
static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans,
					 struct btrfs_root *root,
					 struct btrfs_path *path, int ins_len)
4351
{
Y
Yan, Zheng 已提交
4352
	struct btrfs_key key;
4353
	struct extent_buffer *leaf;
Y
Yan, Zheng 已提交
4354 4355 4356 4357
	struct btrfs_file_extent_item *fi;
	u64 extent_len = 0;
	u32 item_size;
	int ret;
4358 4359

	leaf = path->nodes[0];
Y
Yan, Zheng 已提交
4360 4361 4362 4363 4364
	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);

	BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY &&
	       key.type != BTRFS_EXTENT_CSUM_KEY);

4365
	if (btrfs_leaf_free_space(leaf) >= ins_len)
Y
Yan, Zheng 已提交
4366
		return 0;
4367 4368

	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
Y
Yan, Zheng 已提交
4369 4370 4371 4372 4373
	if (key.type == BTRFS_EXTENT_DATA_KEY) {
		fi = btrfs_item_ptr(leaf, path->slots[0],
				    struct btrfs_file_extent_item);
		extent_len = btrfs_file_extent_num_bytes(leaf, fi);
	}
4374
	btrfs_release_path(path);
4375 4376

	path->keep_locks = 1;
Y
Yan, Zheng 已提交
4377 4378
	path->search_for_split = 1;
	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
4379
	path->search_for_split = 0;
4380 4381
	if (ret > 0)
		ret = -EAGAIN;
Y
Yan, Zheng 已提交
4382 4383
	if (ret < 0)
		goto err;
4384

Y
Yan, Zheng 已提交
4385 4386
	ret = -EAGAIN;
	leaf = path->nodes[0];
4387 4388
	/* if our item isn't there, return now */
	if (item_size != btrfs_item_size_nr(leaf, path->slots[0]))
Y
Yan, Zheng 已提交
4389 4390
		goto err;

4391
	/* the leaf has  changed, it now has room.  return now */
4392
	if (btrfs_leaf_free_space(path->nodes[0]) >= ins_len)
4393 4394
		goto err;

Y
Yan, Zheng 已提交
4395 4396 4397 4398 4399
	if (key.type == BTRFS_EXTENT_DATA_KEY) {
		fi = btrfs_item_ptr(leaf, path->slots[0],
				    struct btrfs_file_extent_item);
		if (extent_len != btrfs_file_extent_num_bytes(leaf, fi))
			goto err;
4400 4401
	}

Y
Yan, Zheng 已提交
4402
	ret = split_leaf(trans, root, &key, path, ins_len, 1);
4403 4404
	if (ret)
		goto err;
4405

Y
Yan, Zheng 已提交
4406
	path->keep_locks = 0;
4407
	btrfs_unlock_up_safe(path, 1);
Y
Yan, Zheng 已提交
4408 4409 4410 4411 4412 4413
	return 0;
err:
	path->keep_locks = 0;
	return ret;
}

4414
static noinline int split_item(struct btrfs_path *path,
4415
			       const struct btrfs_key *new_key,
Y
Yan, Zheng 已提交
4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427
			       unsigned long split_offset)
{
	struct extent_buffer *leaf;
	struct btrfs_item *item;
	struct btrfs_item *new_item;
	int slot;
	char *buf;
	u32 nritems;
	u32 item_size;
	u32 orig_offset;
	struct btrfs_disk_key disk_key;

4428
	leaf = path->nodes[0];
4429
	BUG_ON(btrfs_leaf_free_space(leaf) < sizeof(struct btrfs_item));
4430

4431
	item = btrfs_item_nr(path->slots[0]);
4432 4433 4434 4435
	orig_offset = btrfs_item_offset(leaf, item);
	item_size = btrfs_item_size(leaf, item);

	buf = kmalloc(item_size, GFP_NOFS);
Y
Yan, Zheng 已提交
4436 4437 4438
	if (!buf)
		return -ENOMEM;

4439 4440 4441
	read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf,
			    path->slots[0]), item_size);

Y
Yan, Zheng 已提交
4442
	slot = path->slots[0] + 1;
4443 4444 4445 4446
	nritems = btrfs_header_nritems(leaf);
	if (slot != nritems) {
		/* shift the items */
		memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1),
Y
Yan, Zheng 已提交
4447 4448
				btrfs_item_nr_offset(slot),
				(nritems - slot) * sizeof(struct btrfs_item));
4449 4450 4451 4452 4453
	}

	btrfs_cpu_key_to_disk(&disk_key, new_key);
	btrfs_set_item_key(leaf, &disk_key, slot);

4454
	new_item = btrfs_item_nr(slot);
4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475

	btrfs_set_item_offset(leaf, new_item, orig_offset);
	btrfs_set_item_size(leaf, new_item, item_size - split_offset);

	btrfs_set_item_offset(leaf, item,
			      orig_offset + item_size - split_offset);
	btrfs_set_item_size(leaf, item, split_offset);

	btrfs_set_header_nritems(leaf, nritems + 1);

	/* write the data for the start of the original item */
	write_extent_buffer(leaf, buf,
			    btrfs_item_ptr_offset(leaf, path->slots[0]),
			    split_offset);

	/* write the data for the new item */
	write_extent_buffer(leaf, buf + split_offset,
			    btrfs_item_ptr_offset(leaf, slot),
			    item_size - split_offset);
	btrfs_mark_buffer_dirty(leaf);

4476
	BUG_ON(btrfs_leaf_free_space(leaf) < 0);
4477
	kfree(buf);
Y
Yan, Zheng 已提交
4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498
	return 0;
}

/*
 * This function splits a single item into two items,
 * giving 'new_key' to the new item and splitting the
 * old one at split_offset (from the start of the item).
 *
 * The path may be released by this operation.  After
 * the split, the path is pointing to the old item.  The
 * new item is going to be in the same node as the old one.
 *
 * Note, the item being split must be smaller enough to live alone on
 * a tree block with room for one extra struct btrfs_item
 *
 * This allows us to split the item in place, keeping a lock on the
 * leaf the entire time.
 */
int btrfs_split_item(struct btrfs_trans_handle *trans,
		     struct btrfs_root *root,
		     struct btrfs_path *path,
4499
		     const struct btrfs_key *new_key,
Y
Yan, Zheng 已提交
4500 4501 4502 4503 4504 4505 4506 4507
		     unsigned long split_offset)
{
	int ret;
	ret = setup_leaf_for_split(trans, root, path,
				   sizeof(struct btrfs_item));
	if (ret)
		return ret;

4508
	ret = split_item(path, new_key, split_offset);
4509 4510 4511
	return ret;
}

Y
Yan, Zheng 已提交
4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522
/*
 * This function duplicate a item, giving 'new_key' to the new item.
 * It guarantees both items live in the same tree leaf and the new item
 * is contiguous with the original item.
 *
 * This allows us to split file extent in place, keeping a lock on the
 * leaf the entire time.
 */
int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
			 struct btrfs_root *root,
			 struct btrfs_path *path,
4523
			 const struct btrfs_key *new_key)
Y
Yan, Zheng 已提交
4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536
{
	struct extent_buffer *leaf;
	int ret;
	u32 item_size;

	leaf = path->nodes[0];
	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
	ret = setup_leaf_for_split(trans, root, path,
				   item_size + sizeof(struct btrfs_item));
	if (ret)
		return ret;

	path->slots[0]++;
4537
	setup_items_for_insert(root, path, new_key, &item_size, 1);
Y
Yan, Zheng 已提交
4538 4539 4540 4541 4542 4543 4544 4545
	leaf = path->nodes[0];
	memcpy_extent_buffer(leaf,
			     btrfs_item_ptr_offset(leaf, path->slots[0]),
			     btrfs_item_ptr_offset(leaf, path->slots[0] - 1),
			     item_size);
	return 0;
}

C
Chris Mason 已提交
4546 4547 4548 4549 4550 4551
/*
 * make the item pointed to by the path smaller.  new_size indicates
 * how small to make it, and from_end tells us if we just chop bytes
 * off the end of the item or if we shift the item to chop bytes off
 * the front.
 */
4552
void btrfs_truncate_item(struct btrfs_path *path, u32 new_size, int from_end)
C
Chris Mason 已提交
4553 4554
{
	int slot;
4555 4556
	struct extent_buffer *leaf;
	struct btrfs_item *item;
C
Chris Mason 已提交
4557 4558 4559 4560 4561 4562
	u32 nritems;
	unsigned int data_end;
	unsigned int old_data_start;
	unsigned int old_size;
	unsigned int size_diff;
	int i;
4563 4564
	struct btrfs_map_token token;

4565
	leaf = path->nodes[0];
4566 4567 4568 4569
	slot = path->slots[0];

	old_size = btrfs_item_size_nr(leaf, slot);
	if (old_size == new_size)
4570
		return;
C
Chris Mason 已提交
4571

4572
	nritems = btrfs_header_nritems(leaf);
4573
	data_end = leaf_data_end(leaf);
C
Chris Mason 已提交
4574

4575
	old_data_start = btrfs_item_offset_nr(leaf, slot);
4576

C
Chris Mason 已提交
4577 4578 4579 4580 4581 4582 4583 4584 4585
	size_diff = old_size - new_size;

	BUG_ON(slot < 0);
	BUG_ON(slot >= nritems);

	/*
	 * item0..itemN ... dataN.offset..dataN.size .. data0.size
	 */
	/* first correct the data pointers */
4586
	btrfs_init_map_token(&token, leaf);
C
Chris Mason 已提交
4587
	for (i = slot; i < nritems; i++) {
4588
		u32 ioff;
4589
		item = btrfs_item_nr(i);
4590

4591 4592
		ioff = btrfs_token_item_offset(&token, item);
		btrfs_set_token_item_offset(&token, item, ioff + size_diff);
C
Chris Mason 已提交
4593
	}
4594

C
Chris Mason 已提交
4595
	/* shift the data */
4596
	if (from_end) {
4597 4598
		memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
			      data_end + size_diff, BTRFS_LEAF_DATA_OFFSET +
4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618
			      data_end, old_data_start + new_size - data_end);
	} else {
		struct btrfs_disk_key disk_key;
		u64 offset;

		btrfs_item_key(leaf, &disk_key, slot);

		if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) {
			unsigned long ptr;
			struct btrfs_file_extent_item *fi;

			fi = btrfs_item_ptr(leaf, slot,
					    struct btrfs_file_extent_item);
			fi = (struct btrfs_file_extent_item *)(
			     (unsigned long)fi - size_diff);

			if (btrfs_file_extent_type(leaf, fi) ==
			    BTRFS_FILE_EXTENT_INLINE) {
				ptr = btrfs_item_ptr_offset(leaf, slot);
				memmove_extent_buffer(leaf, ptr,
C
Chris Mason 已提交
4619
				      (unsigned long)fi,
4620
				      BTRFS_FILE_EXTENT_INLINE_DATA_START);
4621 4622 4623
			}
		}

4624 4625
		memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
			      data_end + size_diff, BTRFS_LEAF_DATA_OFFSET +
4626 4627 4628 4629 4630 4631
			      data_end, old_data_start - data_end);

		offset = btrfs_disk_key_offset(&disk_key);
		btrfs_set_disk_key_offset(&disk_key, offset + size_diff);
		btrfs_set_item_key(leaf, &disk_key, slot);
		if (slot == 0)
4632
			fixup_low_keys(path, &disk_key, 1);
4633
	}
4634

4635
	item = btrfs_item_nr(slot);
4636 4637
	btrfs_set_item_size(leaf, item, new_size);
	btrfs_mark_buffer_dirty(leaf);
C
Chris Mason 已提交
4638

4639
	if (btrfs_leaf_free_space(leaf) < 0) {
4640
		btrfs_print_leaf(leaf);
C
Chris Mason 已提交
4641
		BUG();
4642
	}
C
Chris Mason 已提交
4643 4644
}

C
Chris Mason 已提交
4645
/*
S
Stefan Behrens 已提交
4646
 * make the item pointed to by the path bigger, data_size is the added size.
C
Chris Mason 已提交
4647
 */
4648
void btrfs_extend_item(struct btrfs_path *path, u32 data_size)
4649 4650
{
	int slot;
4651 4652
	struct extent_buffer *leaf;
	struct btrfs_item *item;
4653 4654 4655 4656 4657
	u32 nritems;
	unsigned int data_end;
	unsigned int old_data;
	unsigned int old_size;
	int i;
4658 4659
	struct btrfs_map_token token;

4660
	leaf = path->nodes[0];
4661

4662
	nritems = btrfs_header_nritems(leaf);
4663
	data_end = leaf_data_end(leaf);
4664

4665
	if (btrfs_leaf_free_space(leaf) < data_size) {
4666
		btrfs_print_leaf(leaf);
4667
		BUG();
4668
	}
4669
	slot = path->slots[0];
4670
	old_data = btrfs_item_end_nr(leaf, slot);
4671 4672

	BUG_ON(slot < 0);
4673
	if (slot >= nritems) {
4674
		btrfs_print_leaf(leaf);
4675
		btrfs_crit(leaf->fs_info, "slot %d too large, nritems %d",
4676
			   slot, nritems);
4677
		BUG();
4678
	}
4679 4680 4681 4682 4683

	/*
	 * item0..itemN ... dataN.offset..dataN.size .. data0.size
	 */
	/* first correct the data pointers */
4684
	btrfs_init_map_token(&token, leaf);
4685
	for (i = slot; i < nritems; i++) {
4686
		u32 ioff;
4687
		item = btrfs_item_nr(i);
4688

4689 4690
		ioff = btrfs_token_item_offset(&token, item);
		btrfs_set_token_item_offset(&token, item, ioff - data_size);
4691
	}
4692

4693
	/* shift the data */
4694 4695
	memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
		      data_end - data_size, BTRFS_LEAF_DATA_OFFSET +
4696
		      data_end, old_data - data_end);
4697

4698
	data_end = old_data;
4699
	old_size = btrfs_item_size_nr(leaf, slot);
4700
	item = btrfs_item_nr(slot);
4701 4702
	btrfs_set_item_size(leaf, item, old_size + data_size);
	btrfs_mark_buffer_dirty(leaf);
4703

4704
	if (btrfs_leaf_free_space(leaf) < 0) {
4705
		btrfs_print_leaf(leaf);
4706
		BUG();
4707
	}
4708 4709
}

4710 4711 4712 4713 4714 4715 4716 4717 4718 4719
/**
 * setup_items_for_insert - Helper called before inserting one or more items
 * to a leaf. Main purpose is to save stack depth by doing the bulk of the work
 * in a function that doesn't call btrfs_search_slot
 *
 * @root:	root we are inserting items to
 * @path:	points to the leaf/slot where we are going to insert new items
 * @cpu_key:	array of keys for items to be inserted
 * @data_size:	size of the body of each item we are going to insert
 * @nr:		size of @cpu_key/@data_size arrays
C
Chris Mason 已提交
4720
 */
4721
void setup_items_for_insert(struct btrfs_root *root, struct btrfs_path *path,
4722
			    const struct btrfs_key *cpu_key, u32 *data_size,
4723
			    int nr)
4724
{
4725
	struct btrfs_fs_info *fs_info = root->fs_info;
4726
	struct btrfs_item *item;
4727
	int i;
4728
	u32 nritems;
4729
	unsigned int data_end;
C
Chris Mason 已提交
4730
	struct btrfs_disk_key disk_key;
4731 4732
	struct extent_buffer *leaf;
	int slot;
4733
	struct btrfs_map_token token;
4734 4735 4736 4737 4738 4739
	u32 total_size;
	u32 total_data = 0;

	for (i = 0; i < nr; i++)
		total_data += data_size[i];
	total_size = total_data + (nr * sizeof(struct btrfs_item));
4740

4741 4742
	if (path->slots[0] == 0) {
		btrfs_cpu_key_to_disk(&disk_key, cpu_key);
4743
		fixup_low_keys(path, &disk_key, 1);
4744 4745 4746
	}
	btrfs_unlock_up_safe(path, 1);

4747
	leaf = path->nodes[0];
4748
	slot = path->slots[0];
C
Chris Mason 已提交
4749

4750
	nritems = btrfs_header_nritems(leaf);
4751
	data_end = leaf_data_end(leaf);
4752

4753
	if (btrfs_leaf_free_space(leaf) < total_size) {
4754
		btrfs_print_leaf(leaf);
4755
		btrfs_crit(fs_info, "not enough freespace need %u have %d",
4756
			   total_size, btrfs_leaf_free_space(leaf));
4757
		BUG();
4758
	}
4759

4760
	btrfs_init_map_token(&token, leaf);
4761
	if (slot != nritems) {
4762
		unsigned int old_data = btrfs_item_end_nr(leaf, slot);
4763

4764
		if (old_data < data_end) {
4765
			btrfs_print_leaf(leaf);
4766 4767
			btrfs_crit(fs_info,
		"item at slot %d with data offset %u beyond data end of leaf %u",
J
Jeff Mahoney 已提交
4768
				   slot, old_data, data_end);
4769
			BUG();
4770
		}
4771 4772 4773 4774
		/*
		 * item0..itemN ... dataN.offset..dataN.size .. data0.size
		 */
		/* first correct the data pointers */
C
Chris Mason 已提交
4775
		for (i = slot; i < nritems; i++) {
4776
			u32 ioff;
4777

4778
			item = btrfs_item_nr(i);
4779 4780 4781
			ioff = btrfs_token_item_offset(&token, item);
			btrfs_set_token_item_offset(&token, item,
						    ioff - total_data);
C
Chris Mason 已提交
4782
		}
4783
		/* shift the items */
4784
		memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
4785
			      btrfs_item_nr_offset(slot),
C
Chris Mason 已提交
4786
			      (nritems - slot) * sizeof(struct btrfs_item));
4787 4788

		/* shift the data */
4789 4790
		memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
			      data_end - total_data, BTRFS_LEAF_DATA_OFFSET +
C
Chris Mason 已提交
4791
			      data_end, old_data - data_end);
4792 4793
		data_end = old_data;
	}
4794

4795
	/* setup the item for the new data */
4796 4797 4798
	for (i = 0; i < nr; i++) {
		btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
		btrfs_set_item_key(leaf, &disk_key, slot + i);
4799
		item = btrfs_item_nr(slot + i);
4800
		data_end -= data_size[i];
4801
		btrfs_set_token_item_offset(&token, item, data_end);
4802
		btrfs_set_token_item_size(&token, item, data_size[i]);
4803
	}
4804

4805
	btrfs_set_header_nritems(leaf, nritems + nr);
4806
	btrfs_mark_buffer_dirty(leaf);
C
Chris Mason 已提交
4807

4808
	if (btrfs_leaf_free_space(leaf) < 0) {
4809
		btrfs_print_leaf(leaf);
4810
		BUG();
4811
	}
4812 4813 4814 4815 4816 4817 4818 4819 4820
}

/*
 * Given a key and some data, insert items into the tree.
 * This does all the path init required, making room in the tree if needed.
 */
int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
			    struct btrfs_root *root,
			    struct btrfs_path *path,
4821
			    const struct btrfs_key *cpu_key, u32 *data_size,
4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837
			    int nr)
{
	int ret = 0;
	int slot;
	int i;
	u32 total_size = 0;
	u32 total_data = 0;

	for (i = 0; i < nr; i++)
		total_data += data_size[i];

	total_size = total_data + (nr * sizeof(struct btrfs_item));
	ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
	if (ret == 0)
		return -EEXIST;
	if (ret < 0)
4838
		return ret;
4839 4840 4841 4842

	slot = path->slots[0];
	BUG_ON(slot < 0);

4843
	setup_items_for_insert(root, path, cpu_key, data_size, nr);
4844
	return 0;
4845 4846 4847 4848 4849 4850
}

/*
 * Given a key and some data, insert an item into the tree.
 * This does all the path init required, making room in the tree if needed.
 */
4851 4852 4853
int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root *root,
		      const struct btrfs_key *cpu_key, void *data,
		      u32 data_size)
4854 4855
{
	int ret = 0;
C
Chris Mason 已提交
4856
	struct btrfs_path *path;
4857 4858
	struct extent_buffer *leaf;
	unsigned long ptr;
4859

C
Chris Mason 已提交
4860
	path = btrfs_alloc_path();
T
Tsutomu Itoh 已提交
4861 4862
	if (!path)
		return -ENOMEM;
C
Chris Mason 已提交
4863
	ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
4864
	if (!ret) {
4865 4866 4867 4868
		leaf = path->nodes[0];
		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
		write_extent_buffer(leaf, data, ptr, data_size);
		btrfs_mark_buffer_dirty(leaf);
4869
	}
C
Chris Mason 已提交
4870
	btrfs_free_path(path);
C
Chris Mason 已提交
4871
	return ret;
4872 4873
}

C
Chris Mason 已提交
4874
/*
C
Chris Mason 已提交
4875
 * delete the pointer from a given node.
C
Chris Mason 已提交
4876
 *
C
Chris Mason 已提交
4877 4878
 * the tree should have been previously balanced so the deletion does not
 * empty a node.
C
Chris Mason 已提交
4879
 */
4880 4881
static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
		    int level, int slot)
4882
{
4883
	struct extent_buffer *parent = path->nodes[level];
4884
	u32 nritems;
4885
	int ret;
4886

4887
	nritems = btrfs_header_nritems(parent);
C
Chris Mason 已提交
4888
	if (slot != nritems - 1) {
4889 4890
		if (level) {
			ret = tree_mod_log_insert_move(parent, slot, slot + 1,
4891
					nritems - slot - 1);
4892 4893
			BUG_ON(ret < 0);
		}
4894 4895 4896
		memmove_extent_buffer(parent,
			      btrfs_node_key_ptr_offset(slot),
			      btrfs_node_key_ptr_offset(slot + 1),
C
Chris Mason 已提交
4897 4898
			      sizeof(struct btrfs_key_ptr) *
			      (nritems - slot - 1));
4899
	} else if (level) {
4900 4901
		ret = tree_mod_log_insert_key(parent, slot, MOD_LOG_KEY_REMOVE,
				GFP_NOFS);
4902
		BUG_ON(ret < 0);
4903
	}
4904

4905
	nritems--;
4906
	btrfs_set_header_nritems(parent, nritems);
4907
	if (nritems == 0 && parent == root->node) {
4908
		BUG_ON(btrfs_header_level(root->node) != 1);
4909
		/* just turn the root into a leaf and break */
4910
		btrfs_set_header_level(root->node, 0);
4911
	} else if (slot == 0) {
4912 4913 4914
		struct btrfs_disk_key disk_key;

		btrfs_node_key(parent, &disk_key, 0);
4915
		fixup_low_keys(path, &disk_key, level + 1);
4916
	}
C
Chris Mason 已提交
4917
	btrfs_mark_buffer_dirty(parent);
4918 4919
}

4920 4921
/*
 * a helper function to delete the leaf pointed to by path->slots[1] and
4922
 * path->nodes[1].
4923 4924 4925 4926 4927 4928 4929
 *
 * This deletes the pointer in path->nodes[1] and frees the leaf
 * block extent.  zero is returned if it all worked out, < 0 otherwise.
 *
 * The path must have already been setup for deleting the leaf, including
 * all the proper balancing.  path->nodes[1] must be locked.
 */
4930 4931 4932 4933
static noinline void btrfs_del_leaf(struct btrfs_trans_handle *trans,
				    struct btrfs_root *root,
				    struct btrfs_path *path,
				    struct extent_buffer *leaf)
4934
{
4935
	WARN_ON(btrfs_header_generation(leaf) != trans->transid);
4936
	del_ptr(root, path, 1, path->slots[1]);
4937

4938 4939 4940 4941 4942 4943
	/*
	 * btrfs_free_extent is expensive, we want to make sure we
	 * aren't holding any locks when we call it
	 */
	btrfs_unlock_up_safe(path, 0);

4944 4945
	root_sub_used(root, leaf->len);

D
David Sterba 已提交
4946
	atomic_inc(&leaf->refs);
4947
	btrfs_free_tree_block(trans, root, leaf, 0, 1);
4948
	free_extent_buffer_stale(leaf);
4949
}
C
Chris Mason 已提交
4950 4951 4952 4953
/*
 * delete the item at the leaf level in path.  If that empties
 * the leaf, remove it from the tree
 */
4954 4955
int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
		    struct btrfs_path *path, int slot, int nr)
4956
{
4957
	struct btrfs_fs_info *fs_info = root->fs_info;
4958 4959
	struct extent_buffer *leaf;
	struct btrfs_item *item;
4960 4961
	u32 last_off;
	u32 dsize = 0;
C
Chris Mason 已提交
4962 4963
	int ret = 0;
	int wret;
4964
	int i;
4965
	u32 nritems;
4966

4967
	leaf = path->nodes[0];
4968 4969 4970 4971 4972
	last_off = btrfs_item_offset_nr(leaf, slot + nr - 1);

	for (i = 0; i < nr; i++)
		dsize += btrfs_item_size_nr(leaf, slot + i);

4973
	nritems = btrfs_header_nritems(leaf);
4974

4975
	if (slot + nr != nritems) {
4976
		int data_end = leaf_data_end(leaf);
4977
		struct btrfs_map_token token;
4978

4979
		memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
C
Chris Mason 已提交
4980
			      data_end + dsize,
4981
			      BTRFS_LEAF_DATA_OFFSET + data_end,
4982
			      last_off - data_end);
4983

4984
		btrfs_init_map_token(&token, leaf);
4985
		for (i = slot + nr; i < nritems; i++) {
4986
			u32 ioff;
4987

4988
			item = btrfs_item_nr(i);
4989 4990
			ioff = btrfs_token_item_offset(&token, item);
			btrfs_set_token_item_offset(&token, item, ioff + dsize);
C
Chris Mason 已提交
4991
		}
4992

4993
		memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot),
4994
			      btrfs_item_nr_offset(slot + nr),
C
Chris Mason 已提交
4995
			      sizeof(struct btrfs_item) *
4996
			      (nritems - slot - nr));
4997
	}
4998 4999
	btrfs_set_header_nritems(leaf, nritems - nr);
	nritems -= nr;
5000

C
Chris Mason 已提交
5001
	/* delete the leaf if we've emptied it */
5002
	if (nritems == 0) {
5003 5004
		if (leaf == root->node) {
			btrfs_set_header_level(leaf, 0);
5005
		} else {
5006
			btrfs_clean_tree_block(leaf);
5007
			btrfs_del_leaf(trans, root, path, leaf);
5008
		}
5009
	} else {
5010
		int used = leaf_space_used(leaf, 0, nritems);
C
Chris Mason 已提交
5011
		if (slot == 0) {
5012 5013 5014
			struct btrfs_disk_key disk_key;

			btrfs_item_key(leaf, &disk_key, 0);
5015
			fixup_low_keys(path, &disk_key, 1);
C
Chris Mason 已提交
5016 5017
		}

C
Chris Mason 已提交
5018
		/* delete the leaf if it is mostly empty */
5019
		if (used < BTRFS_LEAF_DATA_SIZE(fs_info) / 3) {
5020 5021 5022 5023
			/* push_leaf_left fixes the path.
			 * make sure the path still points to our leaf
			 * for possible call to del_ptr below
			 */
5024
			slot = path->slots[1];
D
David Sterba 已提交
5025
			atomic_inc(&leaf->refs);
5026

5027 5028
			wret = push_leaf_left(trans, root, path, 1, 1,
					      1, (u32)-1);
5029
			if (wret < 0 && wret != -ENOSPC)
C
Chris Mason 已提交
5030
				ret = wret;
5031 5032 5033

			if (path->nodes[0] == leaf &&
			    btrfs_header_nritems(leaf)) {
5034 5035
				wret = push_leaf_right(trans, root, path, 1,
						       1, 1, 0);
5036
				if (wret < 0 && wret != -ENOSPC)
C
Chris Mason 已提交
5037 5038
					ret = wret;
			}
5039 5040

			if (btrfs_header_nritems(leaf) == 0) {
5041
				path->slots[1] = slot;
5042
				btrfs_del_leaf(trans, root, path, leaf);
5043
				free_extent_buffer(leaf);
5044
				ret = 0;
C
Chris Mason 已提交
5045
			} else {
5046 5047 5048 5049 5050 5051 5052
				/* if we're still in the path, make sure
				 * we're dirty.  Otherwise, one of the
				 * push_leaf functions must have already
				 * dirtied this buffer
				 */
				if (path->nodes[0] == leaf)
					btrfs_mark_buffer_dirty(leaf);
5053
				free_extent_buffer(leaf);
5054
			}
5055
		} else {
5056
			btrfs_mark_buffer_dirty(leaf);
5057 5058
		}
	}
C
Chris Mason 已提交
5059
	return ret;
5060 5061
}

5062
/*
5063
 * search the tree again to find a leaf with lesser keys
5064 5065
 * returns 0 if it found something or 1 if there are no lesser leaves.
 * returns < 0 on io errors.
C
Chris Mason 已提交
5066 5067 5068
 *
 * This may release the path, and so you may lose any locks held at the
 * time you call it.
5069
 */
5070
int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path)
5071
{
5072 5073 5074
	struct btrfs_key key;
	struct btrfs_disk_key found_key;
	int ret;
5075

5076
	btrfs_item_key_to_cpu(path->nodes[0], &key, 0);
5077

5078
	if (key.offset > 0) {
5079
		key.offset--;
5080
	} else if (key.type > 0) {
5081
		key.type--;
5082 5083
		key.offset = (u64)-1;
	} else if (key.objectid > 0) {
5084
		key.objectid--;
5085 5086 5087
		key.type = (u8)-1;
		key.offset = (u64)-1;
	} else {
5088
		return 1;
5089
	}
5090

5091
	btrfs_release_path(path);
5092 5093 5094 5095 5096
	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
	if (ret < 0)
		return ret;
	btrfs_item_key(path->nodes[0], &found_key, 0);
	ret = comp_keys(&found_key, &key);
5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107
	/*
	 * We might have had an item with the previous key in the tree right
	 * before we released our path. And after we released our path, that
	 * item might have been pushed to the first slot (0) of the leaf we
	 * were holding due to a tree balance. Alternatively, an item with the
	 * previous key can exist as the only element of a leaf (big fat item).
	 * Therefore account for these 2 cases, so that our callers (like
	 * btrfs_previous_item) don't miss an existing item with a key matching
	 * the previous key we computed above.
	 */
	if (ret <= 0)
5108 5109
		return 0;
	return 1;
5110 5111
}

5112 5113
/*
 * A helper function to walk down the tree starting at min_key, and looking
5114 5115
 * for nodes or leaves that are have a minimum transaction id.
 * This is used by the btree defrag code, and tree logging
5116 5117 5118 5119 5120 5121 5122 5123
 *
 * This does not cow, but it does stuff the starting key it finds back
 * into min_key, so you can call btrfs_search_slot with cow=1 on the
 * key and get a writable path.
 *
 * This honors path->lowest_level to prevent descent past a given level
 * of the tree.
 *
C
Chris Mason 已提交
5124 5125 5126 5127
 * min_trans indicates the oldest transaction that you are interested
 * in walking through.  Any nodes or leaves older than min_trans are
 * skipped over (without reading them).
 *
5128 5129 5130 5131
 * returns zero if something useful was found, < 0 on error and 1 if there
 * was nothing in the tree that matched the search criteria.
 */
int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
5132
			 struct btrfs_path *path,
5133 5134 5135 5136 5137
			 u64 min_trans)
{
	struct extent_buffer *cur;
	struct btrfs_key found_key;
	int slot;
5138
	int sret;
5139 5140 5141
	u32 nritems;
	int level;
	int ret = 1;
5142
	int keep_locks = path->keep_locks;
5143

5144
	path->keep_locks = 1;
5145
again:
5146
	cur = btrfs_read_lock_root_node(root);
5147
	level = btrfs_header_level(cur);
5148
	WARN_ON(path->nodes[level]);
5149
	path->nodes[level] = cur;
5150
	path->locks[level] = BTRFS_READ_LOCK;
5151 5152 5153 5154 5155

	if (btrfs_header_generation(cur) < min_trans) {
		ret = 1;
		goto out;
	}
C
Chris Mason 已提交
5156
	while (1) {
5157 5158
		nritems = btrfs_header_nritems(cur);
		level = btrfs_header_level(cur);
5159
		sret = btrfs_bin_search(cur, min_key, &slot);
5160 5161 5162 5163
		if (sret < 0) {
			ret = sret;
			goto out;
		}
5164

5165 5166
		/* at the lowest level, we're done, setup the path and exit */
		if (level == path->lowest_level) {
5167 5168
			if (slot >= nritems)
				goto find_next_key;
5169 5170 5171 5172 5173
			ret = 0;
			path->slots[level] = slot;
			btrfs_item_key_to_cpu(cur, &found_key, slot);
			goto out;
		}
5174 5175
		if (sret && slot > 0)
			slot--;
5176
		/*
5177
		 * check this node pointer against the min_trans parameters.
5178
		 * If it is too old, skip to the next one.
5179
		 */
C
Chris Mason 已提交
5180
		while (slot < nritems) {
5181
			u64 gen;
5182

5183 5184 5185 5186 5187
			gen = btrfs_node_ptr_generation(cur, slot);
			if (gen < min_trans) {
				slot++;
				continue;
			}
5188
			break;
5189
		}
5190
find_next_key:
5191 5192 5193 5194 5195
		/*
		 * we didn't find a candidate key in this node, walk forward
		 * and find another one
		 */
		if (slot >= nritems) {
5196 5197
			path->slots[level] = slot;
			sret = btrfs_find_next_key(root, path, min_key, level,
5198
						  min_trans);
5199
			if (sret == 0) {
5200
				btrfs_release_path(path);
5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212
				goto again;
			} else {
				goto out;
			}
		}
		/* save our key for returning back */
		btrfs_node_key_to_cpu(cur, &found_key, slot);
		path->slots[level] = slot;
		if (level == path->lowest_level) {
			ret = 0;
			goto out;
		}
5213
		cur = btrfs_read_node_slot(cur, slot);
5214 5215 5216 5217
		if (IS_ERR(cur)) {
			ret = PTR_ERR(cur);
			goto out;
		}
5218

5219
		btrfs_tree_read_lock(cur);
5220

5221
		path->locks[level - 1] = BTRFS_READ_LOCK;
5222
		path->nodes[level - 1] = cur;
5223
		unlock_up(path, level, 1, 0, NULL);
5224 5225
	}
out:
5226 5227 5228
	path->keep_locks = keep_locks;
	if (ret == 0) {
		btrfs_unlock_up_safe(path, path->lowest_level + 1);
5229
		memcpy(min_key, &found_key, sizeof(found_key));
5230
	}
5231 5232 5233 5234 5235 5236
	return ret;
}

/*
 * this is similar to btrfs_next_leaf, but does not try to preserve
 * and fixup the path.  It looks for and returns the next key in the
5237
 * tree based on the current path and the min_trans parameters.
5238 5239 5240 5241 5242 5243 5244
 *
 * 0 is returned if another key is found, < 0 if there are any errors
 * and 1 is returned if there are no higher keys in the tree
 *
 * path->keep_locks should be set to 1 on the search made before
 * calling this function.
 */
5245
int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
5246
			struct btrfs_key *key, int level, u64 min_trans)
5247 5248 5249 5250
{
	int slot;
	struct extent_buffer *c;

5251
	WARN_ON(!path->keep_locks && !path->skip_locking);
C
Chris Mason 已提交
5252
	while (level < BTRFS_MAX_LEVEL) {
5253 5254 5255 5256 5257
		if (!path->nodes[level])
			return 1;

		slot = path->slots[level] + 1;
		c = path->nodes[level];
5258
next:
5259
		if (slot >= btrfs_header_nritems(c)) {
5260 5261 5262 5263 5264
			int ret;
			int orig_lowest;
			struct btrfs_key cur_key;
			if (level + 1 >= BTRFS_MAX_LEVEL ||
			    !path->nodes[level + 1])
5265
				return 1;
5266

5267
			if (path->locks[level + 1] || path->skip_locking) {
5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278
				level++;
				continue;
			}

			slot = btrfs_header_nritems(c) - 1;
			if (level == 0)
				btrfs_item_key_to_cpu(c, &cur_key, slot);
			else
				btrfs_node_key_to_cpu(c, &cur_key, slot);

			orig_lowest = path->lowest_level;
5279
			btrfs_release_path(path);
5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291
			path->lowest_level = level;
			ret = btrfs_search_slot(NULL, root, &cur_key, path,
						0, 0);
			path->lowest_level = orig_lowest;
			if (ret < 0)
				return ret;

			c = path->nodes[level];
			slot = path->slots[level];
			if (ret == 0)
				slot++;
			goto next;
5292
		}
5293

5294 5295
		if (level == 0)
			btrfs_item_key_to_cpu(c, key, slot);
5296 5297 5298 5299 5300 5301 5302
		else {
			u64 gen = btrfs_node_ptr_generation(c, slot);

			if (gen < min_trans) {
				slot++;
				goto next;
			}
5303
			btrfs_node_key_to_cpu(c, key, slot);
5304
		}
5305 5306 5307 5308 5309
		return 0;
	}
	return 1;
}

C
Chris Mason 已提交
5310
/*
5311
 * search the tree again to find a leaf with greater keys
C
Chris Mason 已提交
5312 5313
 * returns 0 if it found something or 1 if there are no greater leaves.
 * returns < 0 on io errors.
C
Chris Mason 已提交
5314
 */
C
Chris Mason 已提交
5315
int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path)
J
Jan Schmidt 已提交
5316 5317 5318 5319 5320 5321
{
	return btrfs_next_old_leaf(root, path, 0);
}

int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path,
			u64 time_seq)
5322 5323
{
	int slot;
5324
	int level;
5325
	struct extent_buffer *c;
5326
	struct extent_buffer *next;
5327 5328 5329
	struct btrfs_key key;
	u32 nritems;
	int ret;
5330
	int old_spinning = path->leave_spinning;
5331
	int next_rw_lock = 0;
5332 5333

	nritems = btrfs_header_nritems(path->nodes[0]);
C
Chris Mason 已提交
5334
	if (nritems == 0)
5335 5336
		return 1;

5337 5338 5339 5340
	btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1);
again:
	level = 1;
	next = NULL;
5341
	next_rw_lock = 0;
5342
	btrfs_release_path(path);
5343

5344
	path->keep_locks = 1;
5345
	path->leave_spinning = 1;
5346

J
Jan Schmidt 已提交
5347 5348 5349 5350
	if (time_seq)
		ret = btrfs_search_old_slot(root, &key, path, time_seq);
	else
		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5351 5352 5353 5354 5355
	path->keep_locks = 0;

	if (ret < 0)
		return ret;

5356
	nritems = btrfs_header_nritems(path->nodes[0]);
5357 5358 5359 5360 5361 5362
	/*
	 * by releasing the path above we dropped all our locks.  A balance
	 * could have added more items next to the key that used to be
	 * at the very end of the block.  So, check again here and
	 * advance the path if there are now more items available.
	 */
5363
	if (nritems > 0 && path->slots[0] < nritems - 1) {
5364 5365
		if (ret == 0)
			path->slots[0]++;
5366
		ret = 0;
5367 5368
		goto done;
	}
5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386
	/*
	 * So the above check misses one case:
	 * - after releasing the path above, someone has removed the item that
	 *   used to be at the very end of the block, and balance between leafs
	 *   gets another one with bigger key.offset to replace it.
	 *
	 * This one should be returned as well, or we can get leaf corruption
	 * later(esp. in __btrfs_drop_extents()).
	 *
	 * And a bit more explanation about this check,
	 * with ret > 0, the key isn't found, the path points to the slot
	 * where it should be inserted, so the path->slots[0] item must be the
	 * bigger one.
	 */
	if (nritems > 0 && ret > 0 && path->slots[0] == nritems - 1) {
		ret = 0;
		goto done;
	}
5387

C
Chris Mason 已提交
5388
	while (level < BTRFS_MAX_LEVEL) {
5389 5390 5391 5392
		if (!path->nodes[level]) {
			ret = 1;
			goto done;
		}
5393

5394 5395
		slot = path->slots[level] + 1;
		c = path->nodes[level];
5396
		if (slot >= btrfs_header_nritems(c)) {
5397
			level++;
5398 5399 5400 5401
			if (level == BTRFS_MAX_LEVEL) {
				ret = 1;
				goto done;
			}
5402 5403
			continue;
		}
5404

5405
		if (next) {
5406
			btrfs_tree_unlock_rw(next, next_rw_lock);
5407
			free_extent_buffer(next);
5408
		}
5409

5410
		next = c;
5411
		next_rw_lock = path->locks[level];
5412
		ret = read_block_for_search(root, path, &next, level,
5413
					    slot, &key);
5414 5415
		if (ret == -EAGAIN)
			goto again;
5416

5417
		if (ret < 0) {
5418
			btrfs_release_path(path);
5419 5420 5421
			goto done;
		}

5422
		if (!path->skip_locking) {
5423
			ret = btrfs_try_tree_read_lock(next);
5424 5425 5426 5427 5428 5429 5430 5431
			if (!ret && time_seq) {
				/*
				 * If we don't get the lock, we may be racing
				 * with push_leaf_left, holding that lock while
				 * itself waiting for the leaf we've currently
				 * locked. To solve this situation, we give up
				 * on our lock and cycle.
				 */
5432
				free_extent_buffer(next);
5433 5434 5435 5436
				btrfs_release_path(path);
				cond_resched();
				goto again;
			}
5437
			if (!ret) {
5438
				__btrfs_tree_read_lock(next,
5439
						       BTRFS_NESTING_RIGHT,
5440
						       path->recurse);
5441
			}
5442
			next_rw_lock = BTRFS_READ_LOCK;
5443
		}
5444 5445 5446
		break;
	}
	path->slots[level] = slot;
C
Chris Mason 已提交
5447
	while (1) {
5448 5449
		level--;
		c = path->nodes[level];
5450
		if (path->locks[level])
5451
			btrfs_tree_unlock_rw(c, path->locks[level]);
5452

5453
		free_extent_buffer(c);
5454 5455
		path->nodes[level] = next;
		path->slots[level] = 0;
5456
		if (!path->skip_locking)
5457
			path->locks[level] = next_rw_lock;
5458 5459
		if (!level)
			break;
5460

5461
		ret = read_block_for_search(root, path, &next, level,
5462
					    0, &key);
5463 5464 5465
		if (ret == -EAGAIN)
			goto again;

5466
		if (ret < 0) {
5467
			btrfs_release_path(path);
5468 5469 5470
			goto done;
		}

5471
		if (!path->skip_locking) {
5472 5473
			__btrfs_tree_read_lock(next, BTRFS_NESTING_RIGHT,
					       path->recurse);
5474
			next_rw_lock = BTRFS_READ_LOCK;
5475
		}
5476
	}
5477
	ret = 0;
5478
done:
5479
	unlock_up(path, 0, 1, 0, NULL);
5480 5481 5482
	path->leave_spinning = old_spinning;

	return ret;
5483
}
5484

5485 5486 5487 5488 5489 5490
/*
 * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps
 * searching until it gets past min_objectid or finds an item of 'type'
 *
 * returns 0 if something is found, 1 if nothing was found and < 0 on error
 */
5491 5492 5493 5494 5495 5496
int btrfs_previous_item(struct btrfs_root *root,
			struct btrfs_path *path, u64 min_objectid,
			int type)
{
	struct btrfs_key found_key;
	struct extent_buffer *leaf;
5497
	u32 nritems;
5498 5499
	int ret;

C
Chris Mason 已提交
5500
	while (1) {
5501 5502 5503 5504 5505 5506 5507 5508
		if (path->slots[0] == 0) {
			ret = btrfs_prev_leaf(root, path);
			if (ret != 0)
				return ret;
		} else {
			path->slots[0]--;
		}
		leaf = path->nodes[0];
5509 5510 5511 5512 5513 5514
		nritems = btrfs_header_nritems(leaf);
		if (nritems == 0)
			return 1;
		if (path->slots[0] == nritems)
			path->slots[0]--;

5515
		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5516 5517
		if (found_key.objectid < min_objectid)
			break;
5518 5519
		if (found_key.type == type)
			return 0;
5520 5521 5522
		if (found_key.objectid == min_objectid &&
		    found_key.type < type)
			break;
5523 5524 5525
	}
	return 1;
}
5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567

/*
 * search in extent tree to find a previous Metadata/Data extent item with
 * min objecitd.
 *
 * returns 0 if something is found, 1 if nothing was found and < 0 on error
 */
int btrfs_previous_extent_item(struct btrfs_root *root,
			struct btrfs_path *path, u64 min_objectid)
{
	struct btrfs_key found_key;
	struct extent_buffer *leaf;
	u32 nritems;
	int ret;

	while (1) {
		if (path->slots[0] == 0) {
			ret = btrfs_prev_leaf(root, path);
			if (ret != 0)
				return ret;
		} else {
			path->slots[0]--;
		}
		leaf = path->nodes[0];
		nritems = btrfs_header_nritems(leaf);
		if (nritems == 0)
			return 1;
		if (path->slots[0] == nritems)
			path->slots[0]--;

		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
		if (found_key.objectid < min_objectid)
			break;
		if (found_key.type == BTRFS_EXTENT_ITEM_KEY ||
		    found_key.type == BTRFS_METADATA_ITEM_KEY)
			return 0;
		if (found_key.objectid == min_objectid &&
		    found_key.type < BTRFS_EXTENT_ITEM_KEY)
			break;
	}
	return 1;
}