ctree.c 142.7 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
C
Chris Mason 已提交
2
/*
C
Chris Mason 已提交
3
 * Copyright (C) 2007,2008 Oracle.  All rights reserved.
C
Chris Mason 已提交
4 5
 */

6
#include <linux/sched.h>
7
#include <linux/slab.h>
8
#include <linux/rbtree.h>
9
#include <linux/mm.h>
10 11
#include "ctree.h"
#include "disk-io.h"
12
#include "transaction.h"
13
#include "print-tree.h"
14
#include "locking.h"
15
#include "volumes.h"
16
#include "qgroup.h"
17

18 19
static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
		      *root, struct btrfs_path *path, int level);
20 21 22
static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root *root,
		      const struct btrfs_key *ins_key, struct btrfs_path *path,
		      int data_size, int extend);
23
static int push_node_left(struct btrfs_trans_handle *trans,
24
			  struct extent_buffer *dst,
25
			  struct extent_buffer *src, int empty);
26 27 28
static int balance_node_right(struct btrfs_trans_handle *trans,
			      struct extent_buffer *dst_buf,
			      struct extent_buffer *src_buf);
29 30
static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
		    int level, int slot);
31

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53
static const struct btrfs_csums {
	u16		size;
	const char	*name;
} btrfs_csums[] = {
	[BTRFS_CSUM_TYPE_CRC32] = { .size = 4, .name = "crc32c" },
};

int btrfs_super_csum_size(const struct btrfs_super_block *s)
{
	u16 t = btrfs_super_csum_type(s);
	/*
	 * csum type is validated at mount time
	 */
	return btrfs_csums[t].size;
}

const char *btrfs_super_csum_name(u16 csum_type)
{
	/* csum type is validated at mount time */
	return btrfs_csums[csum_type].name;
}

C
Chris Mason 已提交
54
struct btrfs_path *btrfs_alloc_path(void)
C
Chris Mason 已提交
55
{
56
	return kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS);
C
Chris Mason 已提交
57 58
}

59 60 61 62 63 64 65 66
/*
 * set all locked nodes in the path to blocking locks.  This should
 * be done before scheduling
 */
noinline void btrfs_set_path_blocking(struct btrfs_path *p)
{
	int i;
	for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
67 68
		if (!p->nodes[i] || !p->locks[i])
			continue;
69 70 71 72 73 74 75
		/*
		 * If we currently have a spinning reader or writer lock this
		 * will bump the count of blocking holders and drop the
		 * spinlock.
		 */
		if (p->locks[i] == BTRFS_READ_LOCK) {
			btrfs_set_lock_blocking_read(p->nodes[i]);
76
			p->locks[i] = BTRFS_READ_LOCK_BLOCKING;
77 78
		} else if (p->locks[i] == BTRFS_WRITE_LOCK) {
			btrfs_set_lock_blocking_write(p->nodes[i]);
79
			p->locks[i] = BTRFS_WRITE_LOCK_BLOCKING;
80
		}
81 82 83
	}
}

C
Chris Mason 已提交
84
/* this also releases the path */
C
Chris Mason 已提交
85
void btrfs_free_path(struct btrfs_path *p)
86
{
87 88
	if (!p)
		return;
89
	btrfs_release_path(p);
C
Chris Mason 已提交
90
	kmem_cache_free(btrfs_path_cachep, p);
91 92
}

C
Chris Mason 已提交
93 94 95 96 97 98
/*
 * path release drops references on the extent buffers in the path
 * and it drops any locks held by this path
 *
 * It is safe to call this on paths that no locks or extent buffers held.
 */
99
noinline void btrfs_release_path(struct btrfs_path *p)
100 101
{
	int i;
102

C
Chris Mason 已提交
103
	for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
104
		p->slots[i] = 0;
105
		if (!p->nodes[i])
106 107
			continue;
		if (p->locks[i]) {
108
			btrfs_tree_unlock_rw(p->nodes[i], p->locks[i]);
109 110
			p->locks[i] = 0;
		}
111
		free_extent_buffer(p->nodes[i]);
112
		p->nodes[i] = NULL;
113 114 115
	}
}

C
Chris Mason 已提交
116 117 118 119 120 121 122 123 124 125
/*
 * safely gets a reference on the root node of a tree.  A lock
 * is not taken, so a concurrent writer may put a different node
 * at the root of the tree.  See btrfs_lock_root_node for the
 * looping required.
 *
 * The extent buffer returned by this has a reference taken, so
 * it won't disappear.  It may stop being the root of the tree
 * at any time because there are no locks held.
 */
126 127 128
struct extent_buffer *btrfs_root_node(struct btrfs_root *root)
{
	struct extent_buffer *eb;
129

130 131 132 133 134 135
	while (1) {
		rcu_read_lock();
		eb = rcu_dereference(root->node);

		/*
		 * RCU really hurts here, we could free up the root node because
136
		 * it was COWed but we may not get the new root node yet so do
137 138 139 140 141 142 143 144 145 146
		 * the inc_not_zero dance and if it doesn't work then
		 * synchronize_rcu and try again.
		 */
		if (atomic_inc_not_zero(&eb->refs)) {
			rcu_read_unlock();
			break;
		}
		rcu_read_unlock();
		synchronize_rcu();
	}
147 148 149
	return eb;
}

C
Chris Mason 已提交
150 151 152 153
/* loop around taking references on and locking the root node of the
 * tree until you end up with a lock on the root.  A locked buffer
 * is returned, with a reference held.
 */
154 155 156 157
struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root)
{
	struct extent_buffer *eb;

C
Chris Mason 已提交
158
	while (1) {
159 160
		eb = btrfs_root_node(root);
		btrfs_tree_lock(eb);
161
		if (eb == root->node)
162 163 164 165 166 167 168
			break;
		btrfs_tree_unlock(eb);
		free_extent_buffer(eb);
	}
	return eb;
}

169 170 171 172
/* loop around taking references on and locking the root node of the
 * tree until you end up with a lock on the root.  A locked buffer
 * is returned, with a reference held.
 */
173
struct extent_buffer *btrfs_read_lock_root_node(struct btrfs_root *root)
174 175 176 177 178 179 180 181 182 183 184 185 186 187
{
	struct extent_buffer *eb;

	while (1) {
		eb = btrfs_root_node(root);
		btrfs_tree_read_lock(eb);
		if (eb == root->node)
			break;
		btrfs_tree_read_unlock(eb);
		free_extent_buffer(eb);
	}
	return eb;
}

C
Chris Mason 已提交
188 189 190 191
/* cowonly root (everything not a reference counted cow subvolume), just get
 * put onto a simple dirty list.  transaction.c walks this to make sure they
 * get properly updated on disk.
 */
192 193
static void add_root_to_dirty_list(struct btrfs_root *root)
{
194 195
	struct btrfs_fs_info *fs_info = root->fs_info;

196 197 198 199
	if (test_bit(BTRFS_ROOT_DIRTY, &root->state) ||
	    !test_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state))
		return;

200
	spin_lock(&fs_info->trans_lock);
201 202
	if (!test_and_set_bit(BTRFS_ROOT_DIRTY, &root->state)) {
		/* Want the extent tree to be the last on the list */
203
		if (root->root_key.objectid == BTRFS_EXTENT_TREE_OBJECTID)
204
			list_move_tail(&root->dirty_list,
205
				       &fs_info->dirty_cowonly_roots);
206 207
		else
			list_move(&root->dirty_list,
208
				  &fs_info->dirty_cowonly_roots);
209
	}
210
	spin_unlock(&fs_info->trans_lock);
211 212
}

C
Chris Mason 已提交
213 214 215 216 217
/*
 * used by snapshot creation to make a copy of a root for a tree with
 * a given objectid.  The buffer with the new root node is returned in
 * cow_ret, and this func returns zero on success or a negative error code.
 */
218 219 220 221 222
int btrfs_copy_root(struct btrfs_trans_handle *trans,
		      struct btrfs_root *root,
		      struct extent_buffer *buf,
		      struct extent_buffer **cow_ret, u64 new_root_objectid)
{
223
	struct btrfs_fs_info *fs_info = root->fs_info;
224 225 226
	struct extent_buffer *cow;
	int ret = 0;
	int level;
227
	struct btrfs_disk_key disk_key;
228

229
	WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
230
		trans->transid != fs_info->running_transaction->transid);
231 232
	WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
		trans->transid != root->last_trans);
233 234

	level = btrfs_header_level(buf);
235 236 237 238
	if (level == 0)
		btrfs_item_key(buf, &disk_key, 0);
	else
		btrfs_node_key(buf, &disk_key, 0);
Z
Zheng Yan 已提交
239

240 241
	cow = btrfs_alloc_tree_block(trans, root, 0, new_root_objectid,
			&disk_key, level, buf->start, 0);
242
	if (IS_ERR(cow))
243 244
		return PTR_ERR(cow);

245
	copy_extent_buffer_full(cow, buf);
246 247
	btrfs_set_header_bytenr(cow, cow->start);
	btrfs_set_header_generation(cow, trans->transid);
248 249 250 251 252 253 254
	btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
	btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
				     BTRFS_HEADER_FLAG_RELOC);
	if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
		btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
	else
		btrfs_set_header_owner(cow, new_root_objectid);
255

256
	write_extent_buffer_fsid(cow, fs_info->fs_devices->metadata_uuid);
Y
Yan Zheng 已提交
257

258
	WARN_ON(btrfs_header_generation(buf) > trans->transid);
259
	if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
260
		ret = btrfs_inc_ref(trans, root, cow, 1);
261
	else
262
		ret = btrfs_inc_ref(trans, root, cow, 0);
263

264 265 266 267 268 269 270 271
	if (ret)
		return ret;

	btrfs_mark_buffer_dirty(cow);
	*cow_ret = cow;
	return 0;
}

272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288
enum mod_log_op {
	MOD_LOG_KEY_REPLACE,
	MOD_LOG_KEY_ADD,
	MOD_LOG_KEY_REMOVE,
	MOD_LOG_KEY_REMOVE_WHILE_FREEING,
	MOD_LOG_KEY_REMOVE_WHILE_MOVING,
	MOD_LOG_MOVE_KEYS,
	MOD_LOG_ROOT_REPLACE,
};

struct tree_mod_root {
	u64 logical;
	u8 level;
};

struct tree_mod_elem {
	struct rb_node node;
289
	u64 logical;
290
	u64 seq;
291 292 293 294 295 296 297 298 299 300 301 302 303
	enum mod_log_op op;

	/* this is used for MOD_LOG_KEY_* and MOD_LOG_MOVE_KEYS operations */
	int slot;

	/* this is used for MOD_LOG_KEY* and MOD_LOG_ROOT_REPLACE */
	u64 generation;

	/* those are used for op == MOD_LOG_KEY_{REPLACE,REMOVE} */
	struct btrfs_disk_key key;
	u64 blockptr;

	/* this is used for op == MOD_LOG_MOVE_KEYS */
304 305 306 307
	struct {
		int dst_slot;
		int nr_items;
	} move;
308 309 310 311 312

	/* this is used for op == MOD_LOG_ROOT_REPLACE */
	struct tree_mod_root old_root;
};

313
/*
J
Josef Bacik 已提交
314
 * Pull a new tree mod seq number for our operation.
315
 */
J
Josef Bacik 已提交
316
static inline u64 btrfs_inc_tree_mod_seq(struct btrfs_fs_info *fs_info)
317 318 319 320
{
	return atomic64_inc_return(&fs_info->tree_mod_seq);
}

321 322 323 324 325 326 327 328 329 330
/*
 * This adds a new blocker to the tree mod log's blocker list if the @elem
 * passed does not already have a sequence number set. So when a caller expects
 * to record tree modifications, it should ensure to set elem->seq to zero
 * before calling btrfs_get_tree_mod_seq.
 * Returns a fresh, unused tree log modification sequence number, even if no new
 * blocker was added.
 */
u64 btrfs_get_tree_mod_seq(struct btrfs_fs_info *fs_info,
			   struct seq_list *elem)
331
{
332
	write_lock(&fs_info->tree_mod_log_lock);
333
	spin_lock(&fs_info->tree_mod_seq_lock);
334
	if (!elem->seq) {
J
Josef Bacik 已提交
335
		elem->seq = btrfs_inc_tree_mod_seq(fs_info);
336 337
		list_add_tail(&elem->list, &fs_info->tree_mod_seq_list);
	}
338
	spin_unlock(&fs_info->tree_mod_seq_lock);
339
	write_unlock(&fs_info->tree_mod_log_lock);
340

J
Josef Bacik 已提交
341
	return elem->seq;
342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359
}

void btrfs_put_tree_mod_seq(struct btrfs_fs_info *fs_info,
			    struct seq_list *elem)
{
	struct rb_root *tm_root;
	struct rb_node *node;
	struct rb_node *next;
	struct seq_list *cur_elem;
	struct tree_mod_elem *tm;
	u64 min_seq = (u64)-1;
	u64 seq_putting = elem->seq;

	if (!seq_putting)
		return;

	spin_lock(&fs_info->tree_mod_seq_lock);
	list_del(&elem->list);
360
	elem->seq = 0;
361 362

	list_for_each_entry(cur_elem, &fs_info->tree_mod_seq_list, list) {
363
		if (cur_elem->seq < min_seq) {
364 365 366 367 368
			if (seq_putting > cur_elem->seq) {
				/*
				 * blocker with lower sequence number exists, we
				 * cannot remove anything from the log
				 */
369 370
				spin_unlock(&fs_info->tree_mod_seq_lock);
				return;
371 372 373 374
			}
			min_seq = cur_elem->seq;
		}
	}
375 376
	spin_unlock(&fs_info->tree_mod_seq_lock);

377 378 379 380
	/*
	 * anything that's lower than the lowest existing (read: blocked)
	 * sequence number can be removed from the tree.
	 */
381
	write_lock(&fs_info->tree_mod_log_lock);
382 383 384
	tm_root = &fs_info->tree_mod_log;
	for (node = rb_first(tm_root); node; node = next) {
		next = rb_next(node);
385
		tm = rb_entry(node, struct tree_mod_elem, node);
386
		if (tm->seq > min_seq)
387 388 389 390
			continue;
		rb_erase(node, tm_root);
		kfree(tm);
	}
391
	write_unlock(&fs_info->tree_mod_log_lock);
392 393 394 395
}

/*
 * key order of the log:
396
 *       node/leaf start address -> sequence
397
 *
398 399 400
 * The 'start address' is the logical address of the *new* root node
 * for root replace operations, or the logical address of the affected
 * block for all other operations.
401 402 403 404 405 406 407 408
 */
static noinline int
__tree_mod_log_insert(struct btrfs_fs_info *fs_info, struct tree_mod_elem *tm)
{
	struct rb_root *tm_root;
	struct rb_node **new;
	struct rb_node *parent = NULL;
	struct tree_mod_elem *cur;
409

410 411
	lockdep_assert_held_write(&fs_info->tree_mod_log_lock);

J
Josef Bacik 已提交
412
	tm->seq = btrfs_inc_tree_mod_seq(fs_info);
413 414 415 416

	tm_root = &fs_info->tree_mod_log;
	new = &tm_root->rb_node;
	while (*new) {
417
		cur = rb_entry(*new, struct tree_mod_elem, node);
418
		parent = *new;
419
		if (cur->logical < tm->logical)
420
			new = &((*new)->rb_left);
421
		else if (cur->logical > tm->logical)
422
			new = &((*new)->rb_right);
423
		else if (cur->seq < tm->seq)
424
			new = &((*new)->rb_left);
425
		else if (cur->seq > tm->seq)
426
			new = &((*new)->rb_right);
427 428
		else
			return -EEXIST;
429 430 431 432
	}

	rb_link_node(&tm->node, parent, new);
	rb_insert_color(&tm->node, tm_root);
433
	return 0;
434 435
}

436 437 438 439
/*
 * Determines if logging can be omitted. Returns 1 if it can. Otherwise, it
 * returns zero with the tree_mod_log_lock acquired. The caller must hold
 * this until all tree mod log insertions are recorded in the rb tree and then
440
 * write unlock fs_info::tree_mod_log_lock.
441
 */
442 443 444 445 446
static inline int tree_mod_dont_log(struct btrfs_fs_info *fs_info,
				    struct extent_buffer *eb) {
	smp_mb();
	if (list_empty(&(fs_info)->tree_mod_seq_list))
		return 1;
447 448
	if (eb && btrfs_header_level(eb) == 0)
		return 1;
449

450
	write_lock(&fs_info->tree_mod_log_lock);
451
	if (list_empty(&(fs_info)->tree_mod_seq_list)) {
452
		write_unlock(&fs_info->tree_mod_log_lock);
453 454 455
		return 1;
	}

456 457 458
	return 0;
}

459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474
/* Similar to tree_mod_dont_log, but doesn't acquire any locks. */
static inline int tree_mod_need_log(const struct btrfs_fs_info *fs_info,
				    struct extent_buffer *eb)
{
	smp_mb();
	if (list_empty(&(fs_info)->tree_mod_seq_list))
		return 0;
	if (eb && btrfs_header_level(eb) == 0)
		return 0;

	return 1;
}

static struct tree_mod_elem *
alloc_tree_mod_elem(struct extent_buffer *eb, int slot,
		    enum mod_log_op op, gfp_t flags)
475
{
476
	struct tree_mod_elem *tm;
477

478 479
	tm = kzalloc(sizeof(*tm), flags);
	if (!tm)
480
		return NULL;
481

482
	tm->logical = eb->start;
483 484 485 486 487 488 489
	if (op != MOD_LOG_KEY_ADD) {
		btrfs_node_key(eb, &tm->key, slot);
		tm->blockptr = btrfs_node_blockptr(eb, slot);
	}
	tm->op = op;
	tm->slot = slot;
	tm->generation = btrfs_node_ptr_generation(eb, slot);
490
	RB_CLEAR_NODE(&tm->node);
491

492
	return tm;
493 494
}

495 496
static noinline int tree_mod_log_insert_key(struct extent_buffer *eb, int slot,
		enum mod_log_op op, gfp_t flags)
497
{
498 499 500
	struct tree_mod_elem *tm;
	int ret;

501
	if (!tree_mod_need_log(eb->fs_info, eb))
502 503 504 505 506 507
		return 0;

	tm = alloc_tree_mod_elem(eb, slot, op, flags);
	if (!tm)
		return -ENOMEM;

508
	if (tree_mod_dont_log(eb->fs_info, eb)) {
509
		kfree(tm);
510
		return 0;
511 512
	}

513
	ret = __tree_mod_log_insert(eb->fs_info, tm);
514
	write_unlock(&eb->fs_info->tree_mod_log_lock);
515 516
	if (ret)
		kfree(tm);
517

518
	return ret;
519 520
}

521 522
static noinline int tree_mod_log_insert_move(struct extent_buffer *eb,
		int dst_slot, int src_slot, int nr_items)
523
{
524 525 526
	struct tree_mod_elem *tm = NULL;
	struct tree_mod_elem **tm_list = NULL;
	int ret = 0;
527
	int i;
528
	int locked = 0;
529

530
	if (!tree_mod_need_log(eb->fs_info, eb))
J
Jan Schmidt 已提交
531
		return 0;
532

533
	tm_list = kcalloc(nr_items, sizeof(struct tree_mod_elem *), GFP_NOFS);
534 535 536
	if (!tm_list)
		return -ENOMEM;

537
	tm = kzalloc(sizeof(*tm), GFP_NOFS);
538 539 540 541 542
	if (!tm) {
		ret = -ENOMEM;
		goto free_tms;
	}

543
	tm->logical = eb->start;
544 545 546 547 548 549 550
	tm->slot = src_slot;
	tm->move.dst_slot = dst_slot;
	tm->move.nr_items = nr_items;
	tm->op = MOD_LOG_MOVE_KEYS;

	for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) {
		tm_list[i] = alloc_tree_mod_elem(eb, i + dst_slot,
551
		    MOD_LOG_KEY_REMOVE_WHILE_MOVING, GFP_NOFS);
552 553 554 555 556 557
		if (!tm_list[i]) {
			ret = -ENOMEM;
			goto free_tms;
		}
	}

558
	if (tree_mod_dont_log(eb->fs_info, eb))
559 560 561
		goto free_tms;
	locked = 1;

562 563 564 565 566
	/*
	 * When we override something during the move, we log these removals.
	 * This can only happen when we move towards the beginning of the
	 * buffer, i.e. dst_slot < src_slot.
	 */
567
	for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) {
568
		ret = __tree_mod_log_insert(eb->fs_info, tm_list[i]);
569 570
		if (ret)
			goto free_tms;
571 572
	}

573
	ret = __tree_mod_log_insert(eb->fs_info, tm);
574 575
	if (ret)
		goto free_tms;
576
	write_unlock(&eb->fs_info->tree_mod_log_lock);
577
	kfree(tm_list);
J
Jan Schmidt 已提交
578

579 580 581 582
	return 0;
free_tms:
	for (i = 0; i < nr_items; i++) {
		if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node))
583
			rb_erase(&tm_list[i]->node, &eb->fs_info->tree_mod_log);
584 585 586
		kfree(tm_list[i]);
	}
	if (locked)
587
		write_unlock(&eb->fs_info->tree_mod_log_lock);
588 589
	kfree(tm_list);
	kfree(tm);
590

591
	return ret;
592 593
}

594 595 596 597
static inline int
__tree_mod_log_free_eb(struct btrfs_fs_info *fs_info,
		       struct tree_mod_elem **tm_list,
		       int nritems)
598
{
599
	int i, j;
600 601 602
	int ret;

	for (i = nritems - 1; i >= 0; i--) {
603 604 605 606 607 608 609
		ret = __tree_mod_log_insert(fs_info, tm_list[i]);
		if (ret) {
			for (j = nritems - 1; j > i; j--)
				rb_erase(&tm_list[j]->node,
					 &fs_info->tree_mod_log);
			return ret;
		}
610
	}
611 612

	return 0;
613 614
}

615 616
static noinline int tree_mod_log_insert_root(struct extent_buffer *old_root,
			 struct extent_buffer *new_root, int log_removal)
617
{
618
	struct btrfs_fs_info *fs_info = old_root->fs_info;
619 620 621 622 623
	struct tree_mod_elem *tm = NULL;
	struct tree_mod_elem **tm_list = NULL;
	int nritems = 0;
	int ret = 0;
	int i;
624

625
	if (!tree_mod_need_log(fs_info, NULL))
626 627
		return 0;

628 629
	if (log_removal && btrfs_header_level(old_root) > 0) {
		nritems = btrfs_header_nritems(old_root);
630
		tm_list = kcalloc(nritems, sizeof(struct tree_mod_elem *),
631
				  GFP_NOFS);
632 633 634 635 636 637
		if (!tm_list) {
			ret = -ENOMEM;
			goto free_tms;
		}
		for (i = 0; i < nritems; i++) {
			tm_list[i] = alloc_tree_mod_elem(old_root, i,
638
			    MOD_LOG_KEY_REMOVE_WHILE_FREEING, GFP_NOFS);
639 640 641 642 643 644
			if (!tm_list[i]) {
				ret = -ENOMEM;
				goto free_tms;
			}
		}
	}
645

646
	tm = kzalloc(sizeof(*tm), GFP_NOFS);
647 648 649 650
	if (!tm) {
		ret = -ENOMEM;
		goto free_tms;
	}
651

652
	tm->logical = new_root->start;
653 654 655 656 657
	tm->old_root.logical = old_root->start;
	tm->old_root.level = btrfs_header_level(old_root);
	tm->generation = btrfs_header_generation(old_root);
	tm->op = MOD_LOG_ROOT_REPLACE;

658 659 660 661 662 663 664 665
	if (tree_mod_dont_log(fs_info, NULL))
		goto free_tms;

	if (tm_list)
		ret = __tree_mod_log_free_eb(fs_info, tm_list, nritems);
	if (!ret)
		ret = __tree_mod_log_insert(fs_info, tm);

666
	write_unlock(&fs_info->tree_mod_log_lock);
667 668 669 670 671 672 673 674 675 676 677 678 679 680 681
	if (ret)
		goto free_tms;
	kfree(tm_list);

	return ret;

free_tms:
	if (tm_list) {
		for (i = 0; i < nritems; i++)
			kfree(tm_list[i]);
		kfree(tm_list);
	}
	kfree(tm);

	return ret;
682 683 684 685 686 687 688 689 690 691 692
}

static struct tree_mod_elem *
__tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq,
		      int smallest)
{
	struct rb_root *tm_root;
	struct rb_node *node;
	struct tree_mod_elem *cur = NULL;
	struct tree_mod_elem *found = NULL;

693
	read_lock(&fs_info->tree_mod_log_lock);
694 695 696
	tm_root = &fs_info->tree_mod_log;
	node = tm_root->rb_node;
	while (node) {
697
		cur = rb_entry(node, struct tree_mod_elem, node);
698
		if (cur->logical < start) {
699
			node = node->rb_left;
700
		} else if (cur->logical > start) {
701
			node = node->rb_right;
702
		} else if (cur->seq < min_seq) {
703 704 705 706
			node = node->rb_left;
		} else if (!smallest) {
			/* we want the node with the highest seq */
			if (found)
707
				BUG_ON(found->seq > cur->seq);
708 709
			found = cur;
			node = node->rb_left;
710
		} else if (cur->seq > min_seq) {
711 712
			/* we want the node with the smallest seq */
			if (found)
713
				BUG_ON(found->seq < cur->seq);
714 715 716 717 718 719 720
			found = cur;
			node = node->rb_right;
		} else {
			found = cur;
			break;
		}
	}
721
	read_unlock(&fs_info->tree_mod_log_lock);
722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748

	return found;
}

/*
 * this returns the element from the log with the smallest time sequence
 * value that's in the log (the oldest log item). any element with a time
 * sequence lower than min_seq will be ignored.
 */
static struct tree_mod_elem *
tree_mod_log_search_oldest(struct btrfs_fs_info *fs_info, u64 start,
			   u64 min_seq)
{
	return __tree_mod_log_search(fs_info, start, min_seq, 1);
}

/*
 * this returns the element from the log with the largest time sequence
 * value that's in the log (the most recent log item). any element with
 * a time sequence lower than min_seq will be ignored.
 */
static struct tree_mod_elem *
tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq)
{
	return __tree_mod_log_search(fs_info, start, min_seq, 0);
}

749
static noinline int tree_mod_log_eb_copy(struct extent_buffer *dst,
750
		     struct extent_buffer *src, unsigned long dst_offset,
751
		     unsigned long src_offset, int nr_items)
752
{
753
	struct btrfs_fs_info *fs_info = dst->fs_info;
754 755 756
	int ret = 0;
	struct tree_mod_elem **tm_list = NULL;
	struct tree_mod_elem **tm_list_add, **tm_list_rem;
757
	int i;
758
	int locked = 0;
759

760 761
	if (!tree_mod_need_log(fs_info, NULL))
		return 0;
762

763
	if (btrfs_header_level(dst) == 0 && btrfs_header_level(src) == 0)
764 765
		return 0;

766
	tm_list = kcalloc(nr_items * 2, sizeof(struct tree_mod_elem *),
767 768 769
			  GFP_NOFS);
	if (!tm_list)
		return -ENOMEM;
770

771 772
	tm_list_add = tm_list;
	tm_list_rem = tm_list + nr_items;
773
	for (i = 0; i < nr_items; i++) {
774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799
		tm_list_rem[i] = alloc_tree_mod_elem(src, i + src_offset,
		    MOD_LOG_KEY_REMOVE, GFP_NOFS);
		if (!tm_list_rem[i]) {
			ret = -ENOMEM;
			goto free_tms;
		}

		tm_list_add[i] = alloc_tree_mod_elem(dst, i + dst_offset,
		    MOD_LOG_KEY_ADD, GFP_NOFS);
		if (!tm_list_add[i]) {
			ret = -ENOMEM;
			goto free_tms;
		}
	}

	if (tree_mod_dont_log(fs_info, NULL))
		goto free_tms;
	locked = 1;

	for (i = 0; i < nr_items; i++) {
		ret = __tree_mod_log_insert(fs_info, tm_list_rem[i]);
		if (ret)
			goto free_tms;
		ret = __tree_mod_log_insert(fs_info, tm_list_add[i]);
		if (ret)
			goto free_tms;
800
	}
801

802
	write_unlock(&fs_info->tree_mod_log_lock);
803 804 805 806 807 808 809 810 811 812 813
	kfree(tm_list);

	return 0;

free_tms:
	for (i = 0; i < nr_items * 2; i++) {
		if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node))
			rb_erase(&tm_list[i]->node, &fs_info->tree_mod_log);
		kfree(tm_list[i]);
	}
	if (locked)
814
		write_unlock(&fs_info->tree_mod_log_lock);
815 816 817
	kfree(tm_list);

	return ret;
818 819
}

820
static noinline int tree_mod_log_free_eb(struct extent_buffer *eb)
821
{
822 823 824 825 826 827 828 829
	struct tree_mod_elem **tm_list = NULL;
	int nritems = 0;
	int i;
	int ret = 0;

	if (btrfs_header_level(eb) == 0)
		return 0;

830
	if (!tree_mod_need_log(eb->fs_info, NULL))
831 832 833
		return 0;

	nritems = btrfs_header_nritems(eb);
834
	tm_list = kcalloc(nritems, sizeof(struct tree_mod_elem *), GFP_NOFS);
835 836 837 838 839 840 841 842 843 844 845 846
	if (!tm_list)
		return -ENOMEM;

	for (i = 0; i < nritems; i++) {
		tm_list[i] = alloc_tree_mod_elem(eb, i,
		    MOD_LOG_KEY_REMOVE_WHILE_FREEING, GFP_NOFS);
		if (!tm_list[i]) {
			ret = -ENOMEM;
			goto free_tms;
		}
	}

847
	if (tree_mod_dont_log(eb->fs_info, eb))
848 849
		goto free_tms;

850
	ret = __tree_mod_log_free_eb(eb->fs_info, tm_list, nritems);
851
	write_unlock(&eb->fs_info->tree_mod_log_lock);
852 853 854 855 856 857 858 859 860 861 862 863
	if (ret)
		goto free_tms;
	kfree(tm_list);

	return 0;

free_tms:
	for (i = 0; i < nritems; i++)
		kfree(tm_list[i]);
	kfree(tm_list);

	return ret;
864 865
}

866 867 868 869 870 871 872
/*
 * check if the tree block can be shared by multiple trees
 */
int btrfs_block_can_be_shared(struct btrfs_root *root,
			      struct extent_buffer *buf)
{
	/*
873
	 * Tree blocks not in reference counted trees and tree roots
874 875 876 877
	 * are never shared. If a block was allocated after the last
	 * snapshot and the block was not allocated by tree relocation,
	 * we know the block is not shared.
	 */
878
	if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
879 880 881 882 883
	    buf != root->node && buf != root->commit_root &&
	    (btrfs_header_generation(buf) <=
	     btrfs_root_last_snapshot(&root->root_item) ||
	     btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)))
		return 1;
884

885 886 887 888 889 890
	return 0;
}

static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans,
				       struct btrfs_root *root,
				       struct extent_buffer *buf,
891 892
				       struct extent_buffer *cow,
				       int *last_ref)
893
{
894
	struct btrfs_fs_info *fs_info = root->fs_info;
895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918
	u64 refs;
	u64 owner;
	u64 flags;
	u64 new_flags = 0;
	int ret;

	/*
	 * Backrefs update rules:
	 *
	 * Always use full backrefs for extent pointers in tree block
	 * allocated by tree relocation.
	 *
	 * If a shared tree block is no longer referenced by its owner
	 * tree (btrfs_header_owner(buf) == root->root_key.objectid),
	 * use full backrefs for extent pointers in tree block.
	 *
	 * If a tree block is been relocating
	 * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID),
	 * use full backrefs for extent pointers in tree block.
	 * The reason for this is some operations (such as drop tree)
	 * are only allowed for blocks use full backrefs.
	 */

	if (btrfs_block_can_be_shared(root, buf)) {
919
		ret = btrfs_lookup_extent_info(trans, fs_info, buf->start,
920 921
					       btrfs_header_level(buf), 1,
					       &refs, &flags);
922 923
		if (ret)
			return ret;
924 925
		if (refs == 0) {
			ret = -EROFS;
926
			btrfs_handle_fs_error(fs_info, ret, NULL);
927 928
			return ret;
		}
929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945
	} else {
		refs = 1;
		if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
		    btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
			flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
		else
			flags = 0;
	}

	owner = btrfs_header_owner(buf);
	BUG_ON(owner == BTRFS_TREE_RELOC_OBJECTID &&
	       !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));

	if (refs > 1) {
		if ((owner == root->root_key.objectid ||
		     root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) &&
		    !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) {
946
			ret = btrfs_inc_ref(trans, root, buf, 1);
947 948
			if (ret)
				return ret;
949 950 951

			if (root->root_key.objectid ==
			    BTRFS_TREE_RELOC_OBJECTID) {
952
				ret = btrfs_dec_ref(trans, root, buf, 0);
953 954
				if (ret)
					return ret;
955
				ret = btrfs_inc_ref(trans, root, cow, 1);
956 957
				if (ret)
					return ret;
958 959 960 961 962 963
			}
			new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
		} else {

			if (root->root_key.objectid ==
			    BTRFS_TREE_RELOC_OBJECTID)
964
				ret = btrfs_inc_ref(trans, root, cow, 1);
965
			else
966
				ret = btrfs_inc_ref(trans, root, cow, 0);
967 968
			if (ret)
				return ret;
969 970
		}
		if (new_flags != 0) {
971 972
			int level = btrfs_header_level(buf);

973
			ret = btrfs_set_disk_extent_flags(trans,
974 975
							  buf->start,
							  buf->len,
976
							  new_flags, level, 0);
977 978
			if (ret)
				return ret;
979 980 981 982 983
		}
	} else {
		if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
			if (root->root_key.objectid ==
			    BTRFS_TREE_RELOC_OBJECTID)
984
				ret = btrfs_inc_ref(trans, root, cow, 1);
985
			else
986
				ret = btrfs_inc_ref(trans, root, cow, 0);
987 988
			if (ret)
				return ret;
989
			ret = btrfs_dec_ref(trans, root, buf, 1);
990 991
			if (ret)
				return ret;
992
		}
993
		btrfs_clean_tree_block(buf);
994
		*last_ref = 1;
995 996 997 998
	}
	return 0;
}

999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040
static struct extent_buffer *alloc_tree_block_no_bg_flush(
					  struct btrfs_trans_handle *trans,
					  struct btrfs_root *root,
					  u64 parent_start,
					  const struct btrfs_disk_key *disk_key,
					  int level,
					  u64 hint,
					  u64 empty_size)
{
	struct btrfs_fs_info *fs_info = root->fs_info;
	struct extent_buffer *ret;

	/*
	 * If we are COWing a node/leaf from the extent, chunk, device or free
	 * space trees, make sure that we do not finish block group creation of
	 * pending block groups. We do this to avoid a deadlock.
	 * COWing can result in allocation of a new chunk, and flushing pending
	 * block groups (btrfs_create_pending_block_groups()) can be triggered
	 * when finishing allocation of a new chunk. Creation of a pending block
	 * group modifies the extent, chunk, device and free space trees,
	 * therefore we could deadlock with ourselves since we are holding a
	 * lock on an extent buffer that btrfs_create_pending_block_groups() may
	 * try to COW later.
	 * For similar reasons, we also need to delay flushing pending block
	 * groups when splitting a leaf or node, from one of those trees, since
	 * we are holding a write lock on it and its parent or when inserting a
	 * new root node for one of those trees.
	 */
	if (root == fs_info->extent_root ||
	    root == fs_info->chunk_root ||
	    root == fs_info->dev_root ||
	    root == fs_info->free_space_root)
		trans->can_flush_pending_bgs = false;

	ret = btrfs_alloc_tree_block(trans, root, parent_start,
				     root->root_key.objectid, disk_key, level,
				     hint, empty_size);
	trans->can_flush_pending_bgs = true;

	return ret;
}

C
Chris Mason 已提交
1041
/*
C
Chris Mason 已提交
1042 1043 1044 1045
 * does the dirty work in cow of a single block.  The parent block (if
 * supplied) is updated to point to the new cow copy.  The new buffer is marked
 * dirty and returned locked.  If you modify the block it needs to be marked
 * dirty again.
C
Chris Mason 已提交
1046 1047 1048
 *
 * search_start -- an allocation hint for the new block
 *
C
Chris Mason 已提交
1049 1050 1051
 * empty_size -- a hint that you plan on doing more cow.  This is the size in
 * bytes the allocator should try to find free next to the block it returns.
 * This is just a hint and may be ignored by the allocator.
C
Chris Mason 已提交
1052
 */
C
Chris Mason 已提交
1053
static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans,
1054 1055 1056 1057
			     struct btrfs_root *root,
			     struct extent_buffer *buf,
			     struct extent_buffer *parent, int parent_slot,
			     struct extent_buffer **cow_ret,
1058
			     u64 search_start, u64 empty_size)
C
Chris Mason 已提交
1059
{
1060
	struct btrfs_fs_info *fs_info = root->fs_info;
1061
	struct btrfs_disk_key disk_key;
1062
	struct extent_buffer *cow;
1063
	int level, ret;
1064
	int last_ref = 0;
1065
	int unlock_orig = 0;
1066
	u64 parent_start = 0;
1067

1068 1069 1070
	if (*cow_ret == buf)
		unlock_orig = 1;

1071
	btrfs_assert_tree_locked(buf);
1072

1073
	WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
1074
		trans->transid != fs_info->running_transaction->transid);
1075 1076
	WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
		trans->transid != root->last_trans);
1077

1078
	level = btrfs_header_level(buf);
Z
Zheng Yan 已提交
1079

1080 1081 1082 1083 1084
	if (level == 0)
		btrfs_item_key(buf, &disk_key, 0);
	else
		btrfs_node_key(buf, &disk_key, 0);

1085 1086
	if ((root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) && parent)
		parent_start = parent->start;
1087

1088 1089
	cow = alloc_tree_block_no_bg_flush(trans, root, parent_start, &disk_key,
					   level, search_start, empty_size);
1090 1091
	if (IS_ERR(cow))
		return PTR_ERR(cow);
1092

1093 1094
	/* cow is set to blocking by btrfs_init_new_buffer */

1095
	copy_extent_buffer_full(cow, buf);
1096
	btrfs_set_header_bytenr(cow, cow->start);
1097
	btrfs_set_header_generation(cow, trans->transid);
1098 1099 1100 1101 1102 1103 1104
	btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
	btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
				     BTRFS_HEADER_FLAG_RELOC);
	if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
		btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
	else
		btrfs_set_header_owner(cow, root->root_key.objectid);
1105

1106
	write_extent_buffer_fsid(cow, fs_info->fs_devices->metadata_uuid);
Y
Yan Zheng 已提交
1107

1108
	ret = update_ref_for_cow(trans, root, buf, cow, &last_ref);
1109
	if (ret) {
1110
		btrfs_abort_transaction(trans, ret);
1111 1112
		return ret;
	}
Z
Zheng Yan 已提交
1113

1114
	if (test_bit(BTRFS_ROOT_REF_COWS, &root->state)) {
1115
		ret = btrfs_reloc_cow_block(trans, root, buf, cow);
1116
		if (ret) {
1117
			btrfs_abort_transaction(trans, ret);
1118
			return ret;
1119
		}
1120
	}
1121

C
Chris Mason 已提交
1122
	if (buf == root->node) {
1123
		WARN_ON(parent && parent != buf);
1124 1125 1126
		if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
		    btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
			parent_start = buf->start;
1127

1128
		extent_buffer_get(cow);
1129 1130
		ret = tree_mod_log_insert_root(root->node, cow, 1);
		BUG_ON(ret < 0);
1131
		rcu_assign_pointer(root->node, cow);
1132

1133
		btrfs_free_tree_block(trans, root, buf, parent_start,
1134
				      last_ref);
1135
		free_extent_buffer(buf);
1136
		add_root_to_dirty_list(root);
C
Chris Mason 已提交
1137
	} else {
1138
		WARN_ON(trans->transid != btrfs_header_generation(parent));
1139
		tree_mod_log_insert_key(parent, parent_slot,
1140
					MOD_LOG_KEY_REPLACE, GFP_NOFS);
1141
		btrfs_set_node_blockptr(parent, parent_slot,
1142
					cow->start);
1143 1144
		btrfs_set_node_ptr_generation(parent, parent_slot,
					      trans->transid);
C
Chris Mason 已提交
1145
		btrfs_mark_buffer_dirty(parent);
1146
		if (last_ref) {
1147
			ret = tree_mod_log_free_eb(buf);
1148
			if (ret) {
1149
				btrfs_abort_transaction(trans, ret);
1150 1151 1152
				return ret;
			}
		}
1153
		btrfs_free_tree_block(trans, root, buf, parent_start,
1154
				      last_ref);
C
Chris Mason 已提交
1155
	}
1156 1157
	if (unlock_orig)
		btrfs_tree_unlock(buf);
1158
	free_extent_buffer_stale(buf);
C
Chris Mason 已提交
1159
	btrfs_mark_buffer_dirty(cow);
C
Chris Mason 已提交
1160
	*cow_ret = cow;
C
Chris Mason 已提交
1161 1162 1163
	return 0;
}

J
Jan Schmidt 已提交
1164 1165 1166 1167
/*
 * returns the logical address of the oldest predecessor of the given root.
 * entries older than time_seq are ignored.
 */
1168 1169
static struct tree_mod_elem *__tree_mod_log_oldest_root(
		struct extent_buffer *eb_root, u64 time_seq)
J
Jan Schmidt 已提交
1170 1171 1172
{
	struct tree_mod_elem *tm;
	struct tree_mod_elem *found = NULL;
1173
	u64 root_logical = eb_root->start;
J
Jan Schmidt 已提交
1174 1175 1176
	int looped = 0;

	if (!time_seq)
1177
		return NULL;
J
Jan Schmidt 已提交
1178 1179

	/*
1180 1181 1182 1183
	 * the very last operation that's logged for a root is the
	 * replacement operation (if it is replaced at all). this has
	 * the logical address of the *new* root, making it the very
	 * first operation that's logged for this root.
J
Jan Schmidt 已提交
1184 1185
	 */
	while (1) {
1186
		tm = tree_mod_log_search_oldest(eb_root->fs_info, root_logical,
J
Jan Schmidt 已提交
1187 1188
						time_seq);
		if (!looped && !tm)
1189
			return NULL;
J
Jan Schmidt 已提交
1190
		/*
1191 1192 1193
		 * if there are no tree operation for the oldest root, we simply
		 * return it. this should only happen if that (old) root is at
		 * level 0.
J
Jan Schmidt 已提交
1194
		 */
1195 1196
		if (!tm)
			break;
J
Jan Schmidt 已提交
1197

1198 1199 1200 1201 1202
		/*
		 * if there's an operation that's not a root replacement, we
		 * found the oldest version of our root. normally, we'll find a
		 * MOD_LOG_KEY_REMOVE_WHILE_FREEING operation here.
		 */
J
Jan Schmidt 已提交
1203 1204 1205 1206 1207 1208 1209 1210
		if (tm->op != MOD_LOG_ROOT_REPLACE)
			break;

		found = tm;
		root_logical = tm->old_root.logical;
		looped = 1;
	}

1211 1212 1213 1214
	/* if there's no old root to return, return what we found instead */
	if (!found)
		found = tm;

J
Jan Schmidt 已提交
1215 1216 1217 1218 1219
	return found;
}

/*
 * tm is a pointer to the first operation to rewind within eb. then, all
1220
 * previous operations will be rewound (until we reach something older than
J
Jan Schmidt 已提交
1221 1222 1223
 * time_seq).
 */
static void
1224 1225
__tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct extent_buffer *eb,
		      u64 time_seq, struct tree_mod_elem *first_tm)
J
Jan Schmidt 已提交
1226 1227 1228 1229 1230 1231 1232 1233 1234
{
	u32 n;
	struct rb_node *next;
	struct tree_mod_elem *tm = first_tm;
	unsigned long o_dst;
	unsigned long o_src;
	unsigned long p_size = sizeof(struct btrfs_key_ptr);

	n = btrfs_header_nritems(eb);
1235
	read_lock(&fs_info->tree_mod_log_lock);
1236
	while (tm && tm->seq >= time_seq) {
J
Jan Schmidt 已提交
1237 1238 1239 1240 1241 1242 1243 1244
		/*
		 * all the operations are recorded with the operator used for
		 * the modification. as we're going backwards, we do the
		 * opposite of each operation here.
		 */
		switch (tm->op) {
		case MOD_LOG_KEY_REMOVE_WHILE_FREEING:
			BUG_ON(tm->slot < n);
1245
			/* Fallthrough */
1246
		case MOD_LOG_KEY_REMOVE_WHILE_MOVING:
1247
		case MOD_LOG_KEY_REMOVE:
J
Jan Schmidt 已提交
1248 1249 1250 1251
			btrfs_set_node_key(eb, &tm->key, tm->slot);
			btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
			btrfs_set_node_ptr_generation(eb, tm->slot,
						      tm->generation);
1252
			n++;
J
Jan Schmidt 已提交
1253 1254 1255 1256 1257 1258 1259 1260 1261
			break;
		case MOD_LOG_KEY_REPLACE:
			BUG_ON(tm->slot >= n);
			btrfs_set_node_key(eb, &tm->key, tm->slot);
			btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
			btrfs_set_node_ptr_generation(eb, tm->slot,
						      tm->generation);
			break;
		case MOD_LOG_KEY_ADD:
1262
			/* if a move operation is needed it's in the log */
J
Jan Schmidt 已提交
1263 1264 1265
			n--;
			break;
		case MOD_LOG_MOVE_KEYS:
1266 1267 1268
			o_dst = btrfs_node_key_ptr_offset(tm->slot);
			o_src = btrfs_node_key_ptr_offset(tm->move.dst_slot);
			memmove_extent_buffer(eb, o_dst, o_src,
J
Jan Schmidt 已提交
1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285
					      tm->move.nr_items * p_size);
			break;
		case MOD_LOG_ROOT_REPLACE:
			/*
			 * this operation is special. for roots, this must be
			 * handled explicitly before rewinding.
			 * for non-roots, this operation may exist if the node
			 * was a root: root A -> child B; then A gets empty and
			 * B is promoted to the new root. in the mod log, we'll
			 * have a root-replace operation for B, a tree block
			 * that is no root. we simply ignore that operation.
			 */
			break;
		}
		next = rb_next(&tm->node);
		if (!next)
			break;
1286
		tm = rb_entry(next, struct tree_mod_elem, node);
1287
		if (tm->logical != first_tm->logical)
J
Jan Schmidt 已提交
1288 1289
			break;
	}
1290
	read_unlock(&fs_info->tree_mod_log_lock);
J
Jan Schmidt 已提交
1291 1292 1293
	btrfs_set_header_nritems(eb, n);
}

1294
/*
1295
 * Called with eb read locked. If the buffer cannot be rewound, the same buffer
1296 1297 1298 1299 1300
 * is returned. If rewind operations happen, a fresh buffer is returned. The
 * returned buffer is always read-locked. If the returned buffer is not the
 * input buffer, the lock on the input buffer is released and the input buffer
 * is freed (its refcount is decremented).
 */
J
Jan Schmidt 已提交
1301
static struct extent_buffer *
1302 1303
tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct btrfs_path *path,
		    struct extent_buffer *eb, u64 time_seq)
J
Jan Schmidt 已提交
1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317
{
	struct extent_buffer *eb_rewin;
	struct tree_mod_elem *tm;

	if (!time_seq)
		return eb;

	if (btrfs_header_level(eb) == 0)
		return eb;

	tm = tree_mod_log_search(fs_info, eb->start, time_seq);
	if (!tm)
		return eb;

1318
	btrfs_set_path_blocking(path);
1319
	btrfs_set_lock_blocking_read(eb);
1320

J
Jan Schmidt 已提交
1321 1322
	if (tm->op == MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
		BUG_ON(tm->slot != 0);
1323
		eb_rewin = alloc_dummy_extent_buffer(fs_info, eb->start);
1324
		if (!eb_rewin) {
1325
			btrfs_tree_read_unlock_blocking(eb);
1326 1327 1328
			free_extent_buffer(eb);
			return NULL;
		}
J
Jan Schmidt 已提交
1329 1330 1331 1332
		btrfs_set_header_bytenr(eb_rewin, eb->start);
		btrfs_set_header_backref_rev(eb_rewin,
					     btrfs_header_backref_rev(eb));
		btrfs_set_header_owner(eb_rewin, btrfs_header_owner(eb));
1333
		btrfs_set_header_level(eb_rewin, btrfs_header_level(eb));
J
Jan Schmidt 已提交
1334 1335
	} else {
		eb_rewin = btrfs_clone_extent_buffer(eb);
1336
		if (!eb_rewin) {
1337
			btrfs_tree_read_unlock_blocking(eb);
1338 1339 1340
			free_extent_buffer(eb);
			return NULL;
		}
J
Jan Schmidt 已提交
1341 1342
	}

1343
	btrfs_tree_read_unlock_blocking(eb);
J
Jan Schmidt 已提交
1344 1345
	free_extent_buffer(eb);

1346
	btrfs_tree_read_lock(eb_rewin);
1347
	__tree_mod_log_rewind(fs_info, eb_rewin, time_seq, tm);
1348
	WARN_ON(btrfs_header_nritems(eb_rewin) >
1349
		BTRFS_NODEPTRS_PER_BLOCK(fs_info));
J
Jan Schmidt 已提交
1350 1351 1352 1353

	return eb_rewin;
}

1354 1355 1356 1357 1358 1359 1360
/*
 * get_old_root() rewinds the state of @root's root node to the given @time_seq
 * value. If there are no changes, the current root->root_node is returned. If
 * anything changed in between, there's a fresh buffer allocated on which the
 * rewind operations are done. In any case, the returned buffer is read locked.
 * Returns NULL on error (with no locks held).
 */
J
Jan Schmidt 已提交
1361 1362 1363
static inline struct extent_buffer *
get_old_root(struct btrfs_root *root, u64 time_seq)
{
1364
	struct btrfs_fs_info *fs_info = root->fs_info;
J
Jan Schmidt 已提交
1365
	struct tree_mod_elem *tm;
1366 1367
	struct extent_buffer *eb = NULL;
	struct extent_buffer *eb_root;
1368
	u64 eb_root_owner = 0;
1369
	struct extent_buffer *old;
1370
	struct tree_mod_root *old_root = NULL;
1371
	u64 old_generation = 0;
1372
	u64 logical;
1373
	int level;
J
Jan Schmidt 已提交
1374

1375
	eb_root = btrfs_read_lock_root_node(root);
1376
	tm = __tree_mod_log_oldest_root(eb_root, time_seq);
J
Jan Schmidt 已提交
1377
	if (!tm)
1378
		return eb_root;
J
Jan Schmidt 已提交
1379

1380 1381 1382 1383
	if (tm->op == MOD_LOG_ROOT_REPLACE) {
		old_root = &tm->old_root;
		old_generation = tm->generation;
		logical = old_root->logical;
1384
		level = old_root->level;
1385
	} else {
1386
		logical = eb_root->start;
1387
		level = btrfs_header_level(eb_root);
1388
	}
J
Jan Schmidt 已提交
1389

1390
	tm = tree_mod_log_search(fs_info, logical, time_seq);
1391
	if (old_root && tm && tm->op != MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
1392 1393
		btrfs_tree_read_unlock(eb_root);
		free_extent_buffer(eb_root);
1394
		old = read_tree_block(fs_info, logical, 0, level, NULL);
1395 1396 1397
		if (WARN_ON(IS_ERR(old) || !extent_buffer_uptodate(old))) {
			if (!IS_ERR(old))
				free_extent_buffer(old);
1398 1399 1400
			btrfs_warn(fs_info,
				   "failed to read tree block %llu from get_old_root",
				   logical);
1401
		} else {
1402 1403
			eb = btrfs_clone_extent_buffer(old);
			free_extent_buffer(old);
1404 1405
		}
	} else if (old_root) {
1406
		eb_root_owner = btrfs_header_owner(eb_root);
1407 1408
		btrfs_tree_read_unlock(eb_root);
		free_extent_buffer(eb_root);
1409
		eb = alloc_dummy_extent_buffer(fs_info, logical);
1410
	} else {
1411
		btrfs_set_lock_blocking_read(eb_root);
1412
		eb = btrfs_clone_extent_buffer(eb_root);
1413
		btrfs_tree_read_unlock_blocking(eb_root);
1414
		free_extent_buffer(eb_root);
1415 1416
	}

1417 1418 1419
	if (!eb)
		return NULL;
	btrfs_tree_read_lock(eb);
1420
	if (old_root) {
J
Jan Schmidt 已提交
1421 1422
		btrfs_set_header_bytenr(eb, eb->start);
		btrfs_set_header_backref_rev(eb, BTRFS_MIXED_BACKREF_REV);
1423
		btrfs_set_header_owner(eb, eb_root_owner);
1424 1425
		btrfs_set_header_level(eb, old_root->level);
		btrfs_set_header_generation(eb, old_generation);
J
Jan Schmidt 已提交
1426
	}
1427
	if (tm)
1428
		__tree_mod_log_rewind(fs_info, eb, time_seq, tm);
1429 1430
	else
		WARN_ON(btrfs_header_level(eb) != 0);
1431
	WARN_ON(btrfs_header_nritems(eb) > BTRFS_NODEPTRS_PER_BLOCK(fs_info));
J
Jan Schmidt 已提交
1432 1433 1434 1435

	return eb;
}

J
Jan Schmidt 已提交
1436 1437 1438 1439
int btrfs_old_root_level(struct btrfs_root *root, u64 time_seq)
{
	struct tree_mod_elem *tm;
	int level;
1440
	struct extent_buffer *eb_root = btrfs_root_node(root);
J
Jan Schmidt 已提交
1441

1442
	tm = __tree_mod_log_oldest_root(eb_root, time_seq);
J
Jan Schmidt 已提交
1443 1444 1445
	if (tm && tm->op == MOD_LOG_ROOT_REPLACE) {
		level = tm->old_root.level;
	} else {
1446
		level = btrfs_header_level(eb_root);
J
Jan Schmidt 已提交
1447
	}
1448
	free_extent_buffer(eb_root);
J
Jan Schmidt 已提交
1449 1450 1451 1452

	return level;
}

1453 1454 1455 1456
static inline int should_cow_block(struct btrfs_trans_handle *trans,
				   struct btrfs_root *root,
				   struct extent_buffer *buf)
{
1457
	if (btrfs_is_testing(root->fs_info))
1458
		return 0;
1459

1460 1461
	/* Ensure we can see the FORCE_COW bit */
	smp_mb__before_atomic();
1462 1463 1464 1465 1466 1467 1468 1469

	/*
	 * We do not need to cow a block if
	 * 1) this block is not created or changed in this transaction;
	 * 2) this block does not belong to TREE_RELOC tree;
	 * 3) the root is not forced COW.
	 *
	 * What is forced COW:
1470
	 *    when we create snapshot during committing the transaction,
1471
	 *    after we've finished copying src root, we must COW the shared
1472 1473
	 *    block to ensure the metadata consistency.
	 */
1474 1475 1476
	if (btrfs_header_generation(buf) == trans->transid &&
	    !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) &&
	    !(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
1477
	      btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)) &&
1478
	    !test_bit(BTRFS_ROOT_FORCE_COW, &root->state))
1479 1480 1481 1482
		return 0;
	return 1;
}

C
Chris Mason 已提交
1483 1484
/*
 * cows a single block, see __btrfs_cow_block for the real work.
1485
 * This version of it has extra checks so that a block isn't COWed more than
C
Chris Mason 已提交
1486 1487
 * once per transaction, as long as it hasn't been written yet
 */
C
Chris Mason 已提交
1488
noinline int btrfs_cow_block(struct btrfs_trans_handle *trans,
1489 1490
		    struct btrfs_root *root, struct extent_buffer *buf,
		    struct extent_buffer *parent, int parent_slot,
1491
		    struct extent_buffer **cow_ret)
1492
{
1493
	struct btrfs_fs_info *fs_info = root->fs_info;
1494
	u64 search_start;
1495
	int ret;
C
Chris Mason 已提交
1496

1497 1498 1499 1500
	if (test_bit(BTRFS_ROOT_DELETING, &root->state))
		btrfs_err(fs_info,
			"COW'ing blocks on a fs root that's being dropped");

1501
	if (trans->transaction != fs_info->running_transaction)
J
Julia Lawall 已提交
1502
		WARN(1, KERN_CRIT "trans %llu running %llu\n",
1503
		       trans->transid,
1504
		       fs_info->running_transaction->transid);
J
Julia Lawall 已提交
1505

1506
	if (trans->transid != fs_info->generation)
J
Julia Lawall 已提交
1507
		WARN(1, KERN_CRIT "trans %llu running %llu\n",
1508
		       trans->transid, fs_info->generation);
C
Chris Mason 已提交
1509

1510
	if (!should_cow_block(trans, root, buf)) {
1511
		trans->dirty = true;
1512 1513 1514
		*cow_ret = buf;
		return 0;
	}
1515

1516
	search_start = buf->start & ~((u64)SZ_1G - 1);
1517 1518

	if (parent)
1519 1520
		btrfs_set_lock_blocking_write(parent);
	btrfs_set_lock_blocking_write(buf);
1521

1522 1523 1524 1525 1526 1527 1528
	/*
	 * Before CoWing this block for later modification, check if it's
	 * the subtree root and do the delayed subtree trace if needed.
	 *
	 * Also We don't care about the error, as it's handled internally.
	 */
	btrfs_qgroup_trace_subtree_after_cow(trans, root, buf);
1529
	ret = __btrfs_cow_block(trans, root, buf, parent,
1530
				 parent_slot, cow_ret, search_start, 0);
1531 1532 1533

	trace_btrfs_cow_block(root, buf, *cow_ret);

1534
	return ret;
1535 1536
}

C
Chris Mason 已提交
1537 1538 1539 1540
/*
 * helper function for defrag to decide if two blocks pointed to by a
 * node are actually close by
 */
1541
static int close_blocks(u64 blocknr, u64 other, u32 blocksize)
1542
{
1543
	if (blocknr < other && other - (blocknr + blocksize) < 32768)
1544
		return 1;
1545
	if (blocknr > other && blocknr - (other + blocksize) < 32768)
1546 1547 1548 1549
		return 1;
	return 0;
}

1550 1551 1552
/*
 * compare two keys in a memcmp fashion
 */
1553 1554
static int comp_keys(const struct btrfs_disk_key *disk,
		     const struct btrfs_key *k2)
1555 1556 1557 1558 1559
{
	struct btrfs_key k1;

	btrfs_disk_key_to_cpu(&k1, disk);

1560
	return btrfs_comp_cpu_keys(&k1, k2);
1561 1562
}

1563 1564 1565
/*
 * same as comp_keys only with two btrfs_key's
 */
1566
int btrfs_comp_cpu_keys(const struct btrfs_key *k1, const struct btrfs_key *k2)
1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581
{
	if (k1->objectid > k2->objectid)
		return 1;
	if (k1->objectid < k2->objectid)
		return -1;
	if (k1->type > k2->type)
		return 1;
	if (k1->type < k2->type)
		return -1;
	if (k1->offset > k2->offset)
		return 1;
	if (k1->offset < k2->offset)
		return -1;
	return 0;
}
1582

C
Chris Mason 已提交
1583 1584 1585 1586 1587
/*
 * this is used by the defrag code to go through all the
 * leaves pointed to by a node and reallocate them so that
 * disk order is close to key order
 */
1588
int btrfs_realloc_node(struct btrfs_trans_handle *trans,
1589
		       struct btrfs_root *root, struct extent_buffer *parent,
1590
		       int start_slot, u64 *last_ret,
1591
		       struct btrfs_key *progress)
1592
{
1593
	struct btrfs_fs_info *fs_info = root->fs_info;
1594
	struct extent_buffer *cur;
1595
	u64 blocknr;
1596
	u64 gen;
1597 1598
	u64 search_start = *last_ret;
	u64 last_block = 0;
1599 1600 1601 1602 1603
	u64 other;
	u32 parent_nritems;
	int end_slot;
	int i;
	int err = 0;
1604
	int parent_level;
1605 1606
	int uptodate;
	u32 blocksize;
1607 1608
	int progress_passed = 0;
	struct btrfs_disk_key disk_key;
1609

1610 1611
	parent_level = btrfs_header_level(parent);

1612 1613
	WARN_ON(trans->transaction != fs_info->running_transaction);
	WARN_ON(trans->transid != fs_info->generation);
1614

1615
	parent_nritems = btrfs_header_nritems(parent);
1616
	blocksize = fs_info->nodesize;
1617
	end_slot = parent_nritems - 1;
1618

1619
	if (parent_nritems <= 1)
1620 1621
		return 0;

1622
	btrfs_set_lock_blocking_write(parent);
1623

1624
	for (i = start_slot; i <= end_slot; i++) {
1625
		struct btrfs_key first_key;
1626
		int close = 1;
1627

1628 1629 1630 1631 1632
		btrfs_node_key(parent, &disk_key, i);
		if (!progress_passed && comp_keys(&disk_key, progress) < 0)
			continue;

		progress_passed = 1;
1633
		blocknr = btrfs_node_blockptr(parent, i);
1634
		gen = btrfs_node_ptr_generation(parent, i);
1635
		btrfs_node_key_to_cpu(parent, &first_key, i);
1636 1637
		if (last_block == 0)
			last_block = blocknr;
1638

1639
		if (i > 0) {
1640 1641
			other = btrfs_node_blockptr(parent, i - 1);
			close = close_blocks(blocknr, other, blocksize);
1642
		}
1643
		if (!close && i < end_slot) {
1644 1645
			other = btrfs_node_blockptr(parent, i + 1);
			close = close_blocks(blocknr, other, blocksize);
1646
		}
1647 1648
		if (close) {
			last_block = blocknr;
1649
			continue;
1650
		}
1651

1652
		cur = find_extent_buffer(fs_info, blocknr);
1653
		if (cur)
1654
			uptodate = btrfs_buffer_uptodate(cur, gen, 0);
1655 1656
		else
			uptodate = 0;
1657
		if (!cur || !uptodate) {
1658
			if (!cur) {
1659 1660 1661
				cur = read_tree_block(fs_info, blocknr, gen,
						      parent_level - 1,
						      &first_key);
1662 1663 1664
				if (IS_ERR(cur)) {
					return PTR_ERR(cur);
				} else if (!extent_buffer_uptodate(cur)) {
1665
					free_extent_buffer(cur);
1666
					return -EIO;
1667
				}
1668
			} else if (!uptodate) {
1669 1670
				err = btrfs_read_buffer(cur, gen,
						parent_level - 1,&first_key);
1671 1672 1673 1674
				if (err) {
					free_extent_buffer(cur);
					return err;
				}
1675
			}
1676
		}
1677
		if (search_start == 0)
1678
			search_start = last_block;
1679

1680
		btrfs_tree_lock(cur);
1681
		btrfs_set_lock_blocking_write(cur);
1682
		err = __btrfs_cow_block(trans, root, cur, parent, i,
1683
					&cur, search_start,
1684
					min(16 * blocksize,
1685
					    (end_slot - i) * blocksize));
Y
Yan 已提交
1686
		if (err) {
1687
			btrfs_tree_unlock(cur);
1688
			free_extent_buffer(cur);
1689
			break;
Y
Yan 已提交
1690
		}
1691 1692
		search_start = cur->start;
		last_block = cur->start;
1693
		*last_ret = search_start;
1694 1695
		btrfs_tree_unlock(cur);
		free_extent_buffer(cur);
1696 1697 1698 1699
	}
	return err;
}

C
Chris Mason 已提交
1700
/*
1701 1702 1703
 * search for key in the extent_buffer.  The items start at offset p,
 * and they are item_size apart.  There are 'max' items in p.
 *
C
Chris Mason 已提交
1704 1705 1706 1707 1708 1709
 * the slot in the array is returned via slot, and it points to
 * the place where you would insert key if it is not found in
 * the array.
 *
 * slot may point to max if the key is bigger than all of the keys
 */
1710
static noinline int generic_bin_search(struct extent_buffer *eb,
1711 1712
				       unsigned long p, int item_size,
				       const struct btrfs_key *key,
1713
				       int max, int *slot)
1714 1715 1716 1717 1718
{
	int low = 0;
	int high = max;
	int mid;
	int ret;
1719
	struct btrfs_disk_key *tmp = NULL;
1720 1721 1722 1723 1724
	struct btrfs_disk_key unaligned;
	unsigned long offset;
	char *kaddr = NULL;
	unsigned long map_start = 0;
	unsigned long map_len = 0;
1725
	int err;
1726

1727 1728 1729 1730 1731 1732 1733 1734
	if (low > high) {
		btrfs_err(eb->fs_info,
		 "%s: low (%d) > high (%d) eb %llu owner %llu level %d",
			  __func__, low, high, eb->start,
			  btrfs_header_owner(eb), btrfs_header_level(eb));
		return -EINVAL;
	}

C
Chris Mason 已提交
1735
	while (low < high) {
1736
		mid = (low + high) / 2;
1737 1738
		offset = p + mid * item_size;

1739
		if (!kaddr || offset < map_start ||
1740 1741
		    (offset + sizeof(struct btrfs_disk_key)) >
		    map_start + map_len) {
1742 1743

			err = map_private_extent_buffer(eb, offset,
1744
						sizeof(struct btrfs_disk_key),
1745
						&kaddr, &map_start, &map_len);
1746 1747 1748 1749

			if (!err) {
				tmp = (struct btrfs_disk_key *)(kaddr + offset -
							map_start);
1750
			} else if (err == 1) {
1751 1752 1753
				read_extent_buffer(eb, &unaligned,
						   offset, sizeof(unaligned));
				tmp = &unaligned;
1754 1755
			} else {
				return err;
1756
			}
1757 1758 1759 1760 1761

		} else {
			tmp = (struct btrfs_disk_key *)(kaddr + offset -
							map_start);
		}
1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776
		ret = comp_keys(tmp, key);

		if (ret < 0)
			low = mid + 1;
		else if (ret > 0)
			high = mid;
		else {
			*slot = mid;
			return 0;
		}
	}
	*slot = low;
	return 1;
}

C
Chris Mason 已提交
1777 1778 1779 1780
/*
 * simple bin_search frontend that does the right thing for
 * leaves vs nodes
 */
1781 1782
int btrfs_bin_search(struct extent_buffer *eb, const struct btrfs_key *key,
		     int level, int *slot)
1783
{
1784
	if (level == 0)
1785 1786
		return generic_bin_search(eb,
					  offsetof(struct btrfs_leaf, items),
C
Chris Mason 已提交
1787
					  sizeof(struct btrfs_item),
1788
					  key, btrfs_header_nritems(eb),
1789
					  slot);
1790
	else
1791 1792
		return generic_bin_search(eb,
					  offsetof(struct btrfs_node, ptrs),
C
Chris Mason 已提交
1793
					  sizeof(struct btrfs_key_ptr),
1794
					  key, btrfs_header_nritems(eb),
1795
					  slot);
1796 1797
}

1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813
static void root_add_used(struct btrfs_root *root, u32 size)
{
	spin_lock(&root->accounting_lock);
	btrfs_set_root_used(&root->root_item,
			    btrfs_root_used(&root->root_item) + size);
	spin_unlock(&root->accounting_lock);
}

static void root_sub_used(struct btrfs_root *root, u32 size)
{
	spin_lock(&root->accounting_lock);
	btrfs_set_root_used(&root->root_item,
			    btrfs_root_used(&root->root_item) - size);
	spin_unlock(&root->accounting_lock);
}

C
Chris Mason 已提交
1814 1815 1816
/* given a node and slot number, this reads the blocks it points to.  The
 * extent buffer is returned with a reference taken (but unlocked).
 */
1817 1818
struct extent_buffer *btrfs_read_node_slot(struct extent_buffer *parent,
					   int slot)
1819
{
1820
	int level = btrfs_header_level(parent);
1821
	struct extent_buffer *eb;
1822
	struct btrfs_key first_key;
1823

1824 1825
	if (slot < 0 || slot >= btrfs_header_nritems(parent))
		return ERR_PTR(-ENOENT);
1826 1827 1828

	BUG_ON(level == 0);

1829
	btrfs_node_key_to_cpu(parent, &first_key, slot);
1830
	eb = read_tree_block(parent->fs_info, btrfs_node_blockptr(parent, slot),
1831 1832
			     btrfs_node_ptr_generation(parent, slot),
			     level - 1, &first_key);
1833 1834 1835
	if (!IS_ERR(eb) && !extent_buffer_uptodate(eb)) {
		free_extent_buffer(eb);
		eb = ERR_PTR(-EIO);
1836 1837 1838
	}

	return eb;
1839 1840
}

C
Chris Mason 已提交
1841 1842 1843 1844 1845
/*
 * node level balancing, used to make sure nodes are in proper order for
 * item deletion.  We balance from the top down, so we have to make sure
 * that a deletion won't leave an node completely empty later on.
 */
1846
static noinline int balance_level(struct btrfs_trans_handle *trans,
1847 1848
			 struct btrfs_root *root,
			 struct btrfs_path *path, int level)
1849
{
1850
	struct btrfs_fs_info *fs_info = root->fs_info;
1851 1852 1853 1854
	struct extent_buffer *right = NULL;
	struct extent_buffer *mid;
	struct extent_buffer *left = NULL;
	struct extent_buffer *parent = NULL;
1855 1856 1857 1858
	int ret = 0;
	int wret;
	int pslot;
	int orig_slot = path->slots[level];
1859
	u64 orig_ptr;
1860

1861
	ASSERT(level > 0);
1862

1863
	mid = path->nodes[level];
1864

1865 1866
	WARN_ON(path->locks[level] != BTRFS_WRITE_LOCK &&
		path->locks[level] != BTRFS_WRITE_LOCK_BLOCKING);
1867 1868
	WARN_ON(btrfs_header_generation(mid) != trans->transid);

1869
	orig_ptr = btrfs_node_blockptr(mid, orig_slot);
1870

L
Li Zefan 已提交
1871
	if (level < BTRFS_MAX_LEVEL - 1) {
1872
		parent = path->nodes[level + 1];
L
Li Zefan 已提交
1873 1874
		pslot = path->slots[level + 1];
	}
1875

C
Chris Mason 已提交
1876 1877 1878 1879
	/*
	 * deal with the case where there is only one pointer in the root
	 * by promoting the node below to a root
	 */
1880 1881
	if (!parent) {
		struct extent_buffer *child;
1882

1883
		if (btrfs_header_nritems(mid) != 1)
1884 1885 1886
			return 0;

		/* promote the child to a root */
1887
		child = btrfs_read_node_slot(mid, 0);
1888 1889
		if (IS_ERR(child)) {
			ret = PTR_ERR(child);
1890
			btrfs_handle_fs_error(fs_info, ret, NULL);
1891 1892 1893
			goto enospc;
		}

1894
		btrfs_tree_lock(child);
1895
		btrfs_set_lock_blocking_write(child);
1896
		ret = btrfs_cow_block(trans, root, child, mid, 0, &child);
1897 1898 1899 1900 1901
		if (ret) {
			btrfs_tree_unlock(child);
			free_extent_buffer(child);
			goto enospc;
		}
1902

1903 1904
		ret = tree_mod_log_insert_root(root->node, child, 1);
		BUG_ON(ret < 0);
1905
		rcu_assign_pointer(root->node, child);
1906

1907
		add_root_to_dirty_list(root);
1908
		btrfs_tree_unlock(child);
1909

1910
		path->locks[level] = 0;
1911
		path->nodes[level] = NULL;
1912
		btrfs_clean_tree_block(mid);
1913
		btrfs_tree_unlock(mid);
1914
		/* once for the path */
1915
		free_extent_buffer(mid);
1916 1917

		root_sub_used(root, mid->len);
1918
		btrfs_free_tree_block(trans, root, mid, 0, 1);
1919
		/* once for the root ptr */
1920
		free_extent_buffer_stale(mid);
1921
		return 0;
1922
	}
1923
	if (btrfs_header_nritems(mid) >
1924
	    BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 4)
1925 1926
		return 0;

1927
	left = btrfs_read_node_slot(parent, pslot - 1);
1928 1929 1930
	if (IS_ERR(left))
		left = NULL;

1931
	if (left) {
1932
		btrfs_tree_lock(left);
1933
		btrfs_set_lock_blocking_write(left);
1934
		wret = btrfs_cow_block(trans, root, left,
1935
				       parent, pslot - 1, &left);
1936 1937 1938 1939
		if (wret) {
			ret = wret;
			goto enospc;
		}
1940
	}
1941

1942
	right = btrfs_read_node_slot(parent, pslot + 1);
1943 1944 1945
	if (IS_ERR(right))
		right = NULL;

1946
	if (right) {
1947
		btrfs_tree_lock(right);
1948
		btrfs_set_lock_blocking_write(right);
1949
		wret = btrfs_cow_block(trans, root, right,
1950
				       parent, pslot + 1, &right);
1951 1952 1953 1954 1955 1956 1957
		if (wret) {
			ret = wret;
			goto enospc;
		}
	}

	/* first, try to make some room in the middle buffer */
1958 1959
	if (left) {
		orig_slot += btrfs_header_nritems(left);
1960
		wret = push_node_left(trans, left, mid, 1);
1961 1962
		if (wret < 0)
			ret = wret;
1963
	}
1964 1965 1966 1967

	/*
	 * then try to empty the right most buffer into the middle
	 */
1968
	if (right) {
1969
		wret = push_node_left(trans, mid, right, 1);
1970
		if (wret < 0 && wret != -ENOSPC)
1971
			ret = wret;
1972
		if (btrfs_header_nritems(right) == 0) {
1973
			btrfs_clean_tree_block(right);
1974
			btrfs_tree_unlock(right);
1975
			del_ptr(root, path, level + 1, pslot + 1);
1976
			root_sub_used(root, right->len);
1977
			btrfs_free_tree_block(trans, root, right, 0, 1);
1978
			free_extent_buffer_stale(right);
1979
			right = NULL;
1980
		} else {
1981 1982
			struct btrfs_disk_key right_key;
			btrfs_node_key(right, &right_key, 0);
1983 1984 1985
			ret = tree_mod_log_insert_key(parent, pslot + 1,
					MOD_LOG_KEY_REPLACE, GFP_NOFS);
			BUG_ON(ret < 0);
1986 1987
			btrfs_set_node_key(parent, &right_key, pslot + 1);
			btrfs_mark_buffer_dirty(parent);
1988 1989
		}
	}
1990
	if (btrfs_header_nritems(mid) == 1) {
1991 1992 1993 1994 1995 1996 1997 1998 1999
		/*
		 * we're not allowed to leave a node with one item in the
		 * tree during a delete.  A deletion from lower in the tree
		 * could try to delete the only pointer in this node.
		 * So, pull some keys from the left.
		 * There has to be a left pointer at this point because
		 * otherwise we would have pulled some pointers from the
		 * right
		 */
2000 2001
		if (!left) {
			ret = -EROFS;
2002
			btrfs_handle_fs_error(fs_info, ret, NULL);
2003 2004
			goto enospc;
		}
2005
		wret = balance_node_right(trans, mid, left);
2006
		if (wret < 0) {
2007
			ret = wret;
2008 2009
			goto enospc;
		}
2010
		if (wret == 1) {
2011
			wret = push_node_left(trans, left, mid, 1);
2012 2013 2014
			if (wret < 0)
				ret = wret;
		}
2015 2016
		BUG_ON(wret == 1);
	}
2017
	if (btrfs_header_nritems(mid) == 0) {
2018
		btrfs_clean_tree_block(mid);
2019
		btrfs_tree_unlock(mid);
2020
		del_ptr(root, path, level + 1, pslot);
2021
		root_sub_used(root, mid->len);
2022
		btrfs_free_tree_block(trans, root, mid, 0, 1);
2023
		free_extent_buffer_stale(mid);
2024
		mid = NULL;
2025 2026
	} else {
		/* update the parent key to reflect our changes */
2027 2028
		struct btrfs_disk_key mid_key;
		btrfs_node_key(mid, &mid_key, 0);
2029 2030 2031
		ret = tree_mod_log_insert_key(parent, pslot,
				MOD_LOG_KEY_REPLACE, GFP_NOFS);
		BUG_ON(ret < 0);
2032 2033
		btrfs_set_node_key(parent, &mid_key, pslot);
		btrfs_mark_buffer_dirty(parent);
2034
	}
2035

2036
	/* update the path */
2037 2038 2039
	if (left) {
		if (btrfs_header_nritems(left) > orig_slot) {
			extent_buffer_get(left);
2040
			/* left was locked after cow */
2041
			path->nodes[level] = left;
2042 2043
			path->slots[level + 1] -= 1;
			path->slots[level] = orig_slot;
2044 2045
			if (mid) {
				btrfs_tree_unlock(mid);
2046
				free_extent_buffer(mid);
2047
			}
2048
		} else {
2049
			orig_slot -= btrfs_header_nritems(left);
2050 2051 2052
			path->slots[level] = orig_slot;
		}
	}
2053
	/* double check we haven't messed things up */
C
Chris Mason 已提交
2054
	if (orig_ptr !=
2055
	    btrfs_node_blockptr(path->nodes[level], path->slots[level]))
2056
		BUG();
2057
enospc:
2058 2059
	if (right) {
		btrfs_tree_unlock(right);
2060
		free_extent_buffer(right);
2061 2062 2063 2064
	}
	if (left) {
		if (path->nodes[level] != left)
			btrfs_tree_unlock(left);
2065
		free_extent_buffer(left);
2066
	}
2067 2068 2069
	return ret;
}

C
Chris Mason 已提交
2070 2071 2072 2073
/* Node balancing for insertion.  Here we only split or push nodes around
 * when they are completely full.  This is also done top down, so we
 * have to be pessimistic.
 */
C
Chris Mason 已提交
2074
static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans,
2075 2076
					  struct btrfs_root *root,
					  struct btrfs_path *path, int level)
2077
{
2078
	struct btrfs_fs_info *fs_info = root->fs_info;
2079 2080 2081 2082
	struct extent_buffer *right = NULL;
	struct extent_buffer *mid;
	struct extent_buffer *left = NULL;
	struct extent_buffer *parent = NULL;
2083 2084 2085 2086 2087 2088 2089 2090
	int ret = 0;
	int wret;
	int pslot;
	int orig_slot = path->slots[level];

	if (level == 0)
		return 1;

2091
	mid = path->nodes[level];
2092
	WARN_ON(btrfs_header_generation(mid) != trans->transid);
2093

L
Li Zefan 已提交
2094
	if (level < BTRFS_MAX_LEVEL - 1) {
2095
		parent = path->nodes[level + 1];
L
Li Zefan 已提交
2096 2097
		pslot = path->slots[level + 1];
	}
2098

2099
	if (!parent)
2100 2101
		return 1;

2102
	left = btrfs_read_node_slot(parent, pslot - 1);
2103 2104
	if (IS_ERR(left))
		left = NULL;
2105 2106

	/* first, try to make some room in the middle buffer */
2107
	if (left) {
2108
		u32 left_nr;
2109 2110

		btrfs_tree_lock(left);
2111
		btrfs_set_lock_blocking_write(left);
2112

2113
		left_nr = btrfs_header_nritems(left);
2114
		if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) {
C
Chris Mason 已提交
2115 2116
			wret = 1;
		} else {
2117
			ret = btrfs_cow_block(trans, root, left, parent,
2118
					      pslot - 1, &left);
2119 2120 2121
			if (ret)
				wret = 1;
			else {
2122
				wret = push_node_left(trans, left, mid, 0);
2123
			}
C
Chris Mason 已提交
2124
		}
2125 2126 2127
		if (wret < 0)
			ret = wret;
		if (wret == 0) {
2128
			struct btrfs_disk_key disk_key;
2129
			orig_slot += left_nr;
2130
			btrfs_node_key(mid, &disk_key, 0);
2131 2132 2133
			ret = tree_mod_log_insert_key(parent, pslot,
					MOD_LOG_KEY_REPLACE, GFP_NOFS);
			BUG_ON(ret < 0);
2134 2135 2136 2137
			btrfs_set_node_key(parent, &disk_key, pslot);
			btrfs_mark_buffer_dirty(parent);
			if (btrfs_header_nritems(left) > orig_slot) {
				path->nodes[level] = left;
2138 2139
				path->slots[level + 1] -= 1;
				path->slots[level] = orig_slot;
2140
				btrfs_tree_unlock(mid);
2141
				free_extent_buffer(mid);
2142 2143
			} else {
				orig_slot -=
2144
					btrfs_header_nritems(left);
2145
				path->slots[level] = orig_slot;
2146
				btrfs_tree_unlock(left);
2147
				free_extent_buffer(left);
2148 2149 2150
			}
			return 0;
		}
2151
		btrfs_tree_unlock(left);
2152
		free_extent_buffer(left);
2153
	}
2154
	right = btrfs_read_node_slot(parent, pslot + 1);
2155 2156
	if (IS_ERR(right))
		right = NULL;
2157 2158 2159 2160

	/*
	 * then try to empty the right most buffer into the middle
	 */
2161
	if (right) {
C
Chris Mason 已提交
2162
		u32 right_nr;
2163

2164
		btrfs_tree_lock(right);
2165
		btrfs_set_lock_blocking_write(right);
2166

2167
		right_nr = btrfs_header_nritems(right);
2168
		if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) {
C
Chris Mason 已提交
2169 2170
			wret = 1;
		} else {
2171 2172
			ret = btrfs_cow_block(trans, root, right,
					      parent, pslot + 1,
2173
					      &right);
2174 2175 2176
			if (ret)
				wret = 1;
			else {
2177
				wret = balance_node_right(trans, right, mid);
2178
			}
C
Chris Mason 已提交
2179
		}
2180 2181 2182
		if (wret < 0)
			ret = wret;
		if (wret == 0) {
2183 2184 2185
			struct btrfs_disk_key disk_key;

			btrfs_node_key(right, &disk_key, 0);
2186 2187 2188
			ret = tree_mod_log_insert_key(parent, pslot + 1,
					MOD_LOG_KEY_REPLACE, GFP_NOFS);
			BUG_ON(ret < 0);
2189 2190 2191 2192 2193
			btrfs_set_node_key(parent, &disk_key, pslot + 1);
			btrfs_mark_buffer_dirty(parent);

			if (btrfs_header_nritems(mid) <= orig_slot) {
				path->nodes[level] = right;
2194 2195
				path->slots[level + 1] += 1;
				path->slots[level] = orig_slot -
2196
					btrfs_header_nritems(mid);
2197
				btrfs_tree_unlock(mid);
2198
				free_extent_buffer(mid);
2199
			} else {
2200
				btrfs_tree_unlock(right);
2201
				free_extent_buffer(right);
2202 2203 2204
			}
			return 0;
		}
2205
		btrfs_tree_unlock(right);
2206
		free_extent_buffer(right);
2207 2208 2209 2210
	}
	return 1;
}

2211
/*
C
Chris Mason 已提交
2212 2213
 * readahead one full node of leaves, finding things that are close
 * to the block in 'slot', and triggering ra on them.
2214
 */
2215
static void reada_for_search(struct btrfs_fs_info *fs_info,
2216 2217
			     struct btrfs_path *path,
			     int level, int slot, u64 objectid)
2218
{
2219
	struct extent_buffer *node;
2220
	struct btrfs_disk_key disk_key;
2221 2222
	u32 nritems;
	u64 search;
2223
	u64 target;
2224
	u64 nread = 0;
2225
	struct extent_buffer *eb;
2226 2227 2228
	u32 nr;
	u32 blocksize;
	u32 nscan = 0;
2229

2230
	if (level != 1)
2231 2232 2233
		return;

	if (!path->nodes[level])
2234 2235
		return;

2236
	node = path->nodes[level];
2237

2238
	search = btrfs_node_blockptr(node, slot);
2239 2240
	blocksize = fs_info->nodesize;
	eb = find_extent_buffer(fs_info, search);
2241 2242
	if (eb) {
		free_extent_buffer(eb);
2243 2244 2245
		return;
	}

2246
	target = search;
2247

2248
	nritems = btrfs_header_nritems(node);
2249
	nr = slot;
2250

C
Chris Mason 已提交
2251
	while (1) {
2252
		if (path->reada == READA_BACK) {
2253 2254 2255
			if (nr == 0)
				break;
			nr--;
2256
		} else if (path->reada == READA_FORWARD) {
2257 2258 2259
			nr++;
			if (nr >= nritems)
				break;
2260
		}
2261
		if (path->reada == READA_BACK && objectid) {
2262 2263 2264 2265
			btrfs_node_key(node, &disk_key, nr);
			if (btrfs_disk_key_objectid(&disk_key) != objectid)
				break;
		}
2266
		search = btrfs_node_blockptr(node, nr);
2267 2268
		if ((search <= target && target - search <= 65536) ||
		    (search > target && search - target <= 65536)) {
2269
			readahead_tree_block(fs_info, search);
2270 2271 2272
			nread += blocksize;
		}
		nscan++;
2273
		if ((nread > 65536 || nscan > 32))
2274
			break;
2275 2276
	}
}
2277

2278
static noinline void reada_for_balance(struct btrfs_fs_info *fs_info,
J
Josef Bacik 已提交
2279
				       struct btrfs_path *path, int level)
2280 2281 2282 2283 2284 2285 2286 2287 2288
{
	int slot;
	int nritems;
	struct extent_buffer *parent;
	struct extent_buffer *eb;
	u64 gen;
	u64 block1 = 0;
	u64 block2 = 0;

2289
	parent = path->nodes[level + 1];
2290
	if (!parent)
J
Josef Bacik 已提交
2291
		return;
2292 2293

	nritems = btrfs_header_nritems(parent);
2294
	slot = path->slots[level + 1];
2295 2296 2297 2298

	if (slot > 0) {
		block1 = btrfs_node_blockptr(parent, slot - 1);
		gen = btrfs_node_ptr_generation(parent, slot - 1);
2299
		eb = find_extent_buffer(fs_info, block1);
2300 2301 2302 2303 2304 2305
		/*
		 * if we get -eagain from btrfs_buffer_uptodate, we
		 * don't want to return eagain here.  That will loop
		 * forever
		 */
		if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
2306 2307 2308
			block1 = 0;
		free_extent_buffer(eb);
	}
2309
	if (slot + 1 < nritems) {
2310 2311
		block2 = btrfs_node_blockptr(parent, slot + 1);
		gen = btrfs_node_ptr_generation(parent, slot + 1);
2312
		eb = find_extent_buffer(fs_info, block2);
2313
		if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
2314 2315 2316
			block2 = 0;
		free_extent_buffer(eb);
	}
2317

J
Josef Bacik 已提交
2318
	if (block1)
2319
		readahead_tree_block(fs_info, block1);
J
Josef Bacik 已提交
2320
	if (block2)
2321
		readahead_tree_block(fs_info, block2);
2322 2323 2324
}


C
Chris Mason 已提交
2325
/*
C
Chris Mason 已提交
2326 2327 2328 2329
 * when we walk down the tree, it is usually safe to unlock the higher layers
 * in the tree.  The exceptions are when our path goes through slot 0, because
 * operations on the tree might require changing key pointers higher up in the
 * tree.
C
Chris Mason 已提交
2330
 *
C
Chris Mason 已提交
2331 2332 2333
 * callers might also have set path->keep_locks, which tells this code to keep
 * the lock if the path points to the last slot in the block.  This is part of
 * walking through the tree, and selecting the next slot in the higher block.
C
Chris Mason 已提交
2334
 *
C
Chris Mason 已提交
2335 2336
 * lowest_unlock sets the lowest level in the tree we're allowed to unlock.  so
 * if lowest_unlock is 1, level 0 won't be unlocked
C
Chris Mason 已提交
2337
 */
2338
static noinline void unlock_up(struct btrfs_path *path, int level,
2339 2340
			       int lowest_unlock, int min_write_lock_level,
			       int *write_lock_level)
2341 2342 2343
{
	int i;
	int skip_level = level;
2344
	int no_skips = 0;
2345 2346 2347 2348 2349 2350 2351
	struct extent_buffer *t;

	for (i = level; i < BTRFS_MAX_LEVEL; i++) {
		if (!path->nodes[i])
			break;
		if (!path->locks[i])
			break;
2352
		if (!no_skips && path->slots[i] == 0) {
2353 2354 2355
			skip_level = i + 1;
			continue;
		}
2356
		if (!no_skips && path->keep_locks) {
2357 2358 2359
			u32 nritems;
			t = path->nodes[i];
			nritems = btrfs_header_nritems(t);
2360
			if (nritems < 1 || path->slots[i] >= nritems - 1) {
2361 2362 2363 2364
				skip_level = i + 1;
				continue;
			}
		}
2365 2366 2367
		if (skip_level < i && i >= lowest_unlock)
			no_skips = 1;

2368
		t = path->nodes[i];
2369
		if (i >= lowest_unlock && i > skip_level) {
2370
			btrfs_tree_unlock_rw(t, path->locks[i]);
2371
			path->locks[i] = 0;
2372 2373 2374 2375 2376
			if (write_lock_level &&
			    i > min_write_lock_level &&
			    i <= *write_lock_level) {
				*write_lock_level = i - 1;
			}
2377 2378 2379 2380
		}
	}
}

2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393
/*
 * This releases any locks held in the path starting at level and
 * going all the way up to the root.
 *
 * btrfs_search_slot will keep the lock held on higher nodes in a few
 * corner cases, such as COW of the block at slot zero in the node.  This
 * ignores those rules, and it should only be called when there are no
 * more updates to be done higher up in the tree.
 */
noinline void btrfs_unlock_up_safe(struct btrfs_path *path, int level)
{
	int i;

J
Josef Bacik 已提交
2394
	if (path->keep_locks)
2395 2396 2397 2398
		return;

	for (i = level; i < BTRFS_MAX_LEVEL; i++) {
		if (!path->nodes[i])
2399
			continue;
2400
		if (!path->locks[i])
2401
			continue;
2402
		btrfs_tree_unlock_rw(path->nodes[i], path->locks[i]);
2403 2404 2405 2406
		path->locks[i] = 0;
	}
}

2407 2408 2409 2410 2411 2412 2413 2414 2415
/*
 * helper function for btrfs_search_slot.  The goal is to find a block
 * in cache without setting the path to blocking.  If we find the block
 * we return zero and the path is unchanged.
 *
 * If we can't find the block, we set the path blocking and do some
 * reada.  -EAGAIN is returned and the search must be repeated.
 */
static int
2416 2417
read_block_for_search(struct btrfs_root *root, struct btrfs_path *p,
		      struct extent_buffer **eb_ret, int level, int slot,
2418
		      const struct btrfs_key *key)
2419
{
2420
	struct btrfs_fs_info *fs_info = root->fs_info;
2421 2422 2423 2424
	u64 blocknr;
	u64 gen;
	struct extent_buffer *b = *eb_ret;
	struct extent_buffer *tmp;
2425
	struct btrfs_key first_key;
2426
	int ret;
2427
	int parent_level;
2428 2429 2430

	blocknr = btrfs_node_blockptr(b, slot);
	gen = btrfs_node_ptr_generation(b, slot);
2431 2432
	parent_level = btrfs_header_level(b);
	btrfs_node_key_to_cpu(b, &first_key, slot);
2433

2434
	tmp = find_extent_buffer(fs_info, blocknr);
2435
	if (tmp) {
2436
		/* first we do an atomic uptodate check */
2437
		if (btrfs_buffer_uptodate(tmp, gen, 1) > 0) {
2438 2439 2440 2441 2442
			/*
			 * Do extra check for first_key, eb can be stale due to
			 * being cached, read from scrub, or have multiple
			 * parents (shared tree blocks).
			 */
2443
			if (btrfs_verify_level_key(tmp,
2444 2445 2446 2447
					parent_level - 1, &first_key, gen)) {
				free_extent_buffer(tmp);
				return -EUCLEAN;
			}
2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460
			*eb_ret = tmp;
			return 0;
		}

		/* the pages were up to date, but we failed
		 * the generation number check.  Do a full
		 * read for the generation number that is correct.
		 * We must do this without dropping locks so
		 * we can trust our generation number
		 */
		btrfs_set_path_blocking(p);

		/* now we're allowed to do a blocking uptodate check */
2461
		ret = btrfs_read_buffer(tmp, gen, parent_level - 1, &first_key);
2462 2463 2464
		if (!ret) {
			*eb_ret = tmp;
			return 0;
2465
		}
2466 2467 2468
		free_extent_buffer(tmp);
		btrfs_release_path(p);
		return -EIO;
2469 2470 2471 2472 2473
	}

	/*
	 * reduce lock contention at high levels
	 * of the btree by dropping locks before
2474 2475 2476
	 * we read.  Don't release the lock on the current
	 * level because we need to walk this node to figure
	 * out which blocks to read.
2477
	 */
2478 2479 2480
	btrfs_unlock_up_safe(p, level + 1);
	btrfs_set_path_blocking(p);

2481
	if (p->reada != READA_NONE)
2482
		reada_for_search(fs_info, p, level, slot, key->objectid);
2483

2484
	ret = -EAGAIN;
2485
	tmp = read_tree_block(fs_info, blocknr, gen, parent_level - 1,
2486
			      &first_key);
2487
	if (!IS_ERR(tmp)) {
2488 2489 2490 2491 2492 2493
		/*
		 * If the read above didn't mark this buffer up to date,
		 * it will never end up being up to date.  Set ret to EIO now
		 * and give up so that our caller doesn't loop forever
		 * on our EAGAINs.
		 */
2494
		if (!extent_buffer_uptodate(tmp))
2495
			ret = -EIO;
2496
		free_extent_buffer(tmp);
2497 2498
	} else {
		ret = PTR_ERR(tmp);
2499
	}
2500 2501

	btrfs_release_path(p);
2502
	return ret;
2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516
}

/*
 * helper function for btrfs_search_slot.  This does all of the checks
 * for node-level blocks and does any balancing required based on
 * the ins_len.
 *
 * If no extra work was required, zero is returned.  If we had to
 * drop the path, -EAGAIN is returned and btrfs_search_slot must
 * start over
 */
static int
setup_nodes_for_search(struct btrfs_trans_handle *trans,
		       struct btrfs_root *root, struct btrfs_path *p,
2517 2518
		       struct extent_buffer *b, int level, int ins_len,
		       int *write_lock_level)
2519
{
2520
	struct btrfs_fs_info *fs_info = root->fs_info;
2521
	int ret;
2522

2523
	if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >=
2524
	    BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3) {
2525 2526
		int sret;

2527 2528 2529 2530 2531 2532
		if (*write_lock_level < level + 1) {
			*write_lock_level = level + 1;
			btrfs_release_path(p);
			goto again;
		}

2533
		btrfs_set_path_blocking(p);
2534
		reada_for_balance(fs_info, p, level);
2535 2536 2537 2538 2539 2540 2541 2542 2543
		sret = split_node(trans, root, p, level);

		BUG_ON(sret > 0);
		if (sret) {
			ret = sret;
			goto done;
		}
		b = p->nodes[level];
	} else if (ins_len < 0 && btrfs_header_nritems(b) <
2544
		   BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 2) {
2545 2546
		int sret;

2547 2548 2549 2550 2551 2552
		if (*write_lock_level < level + 1) {
			*write_lock_level = level + 1;
			btrfs_release_path(p);
			goto again;
		}

2553
		btrfs_set_path_blocking(p);
2554
		reada_for_balance(fs_info, p, level);
2555 2556 2557 2558 2559 2560 2561 2562
		sret = balance_level(trans, root, p, level);

		if (sret) {
			ret = sret;
			goto done;
		}
		b = p->nodes[level];
		if (!b) {
2563
			btrfs_release_path(p);
2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575
			goto again;
		}
		BUG_ON(btrfs_header_nritems(b) == 1);
	}
	return 0;

again:
	ret = -EAGAIN;
done:
	return ret;
}

2576
static int key_search(struct extent_buffer *b, const struct btrfs_key *key,
2577 2578 2579
		      int level, int *prev_cmp, int *slot)
{
	if (*prev_cmp != 0) {
2580
		*prev_cmp = btrfs_bin_search(b, key, level, slot);
2581 2582 2583 2584 2585 2586 2587 2588
		return *prev_cmp;
	}

	*slot = 0;

	return 0;
}

2589
int btrfs_find_item(struct btrfs_root *fs_root, struct btrfs_path *path,
2590 2591 2592 2593 2594 2595
		u64 iobjectid, u64 ioff, u8 key_type,
		struct btrfs_key *found_key)
{
	int ret;
	struct btrfs_key key;
	struct extent_buffer *eb;
2596 2597

	ASSERT(path);
2598
	ASSERT(found_key);
2599 2600 2601 2602 2603 2604

	key.type = key_type;
	key.objectid = iobjectid;
	key.offset = ioff;

	ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0);
2605
	if (ret < 0)
2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623
		return ret;

	eb = path->nodes[0];
	if (ret && path->slots[0] >= btrfs_header_nritems(eb)) {
		ret = btrfs_next_leaf(fs_root, path);
		if (ret)
			return ret;
		eb = path->nodes[0];
	}

	btrfs_item_key_to_cpu(eb, found_key, path->slots[0]);
	if (found_key->type != key.type ||
			found_key->objectid != key.objectid)
		return 1;

	return 0;
}

2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636
static struct extent_buffer *btrfs_search_slot_get_root(struct btrfs_root *root,
							struct btrfs_path *p,
							int write_lock_level)
{
	struct btrfs_fs_info *fs_info = root->fs_info;
	struct extent_buffer *b;
	int root_lock;
	int level = 0;

	/* We try very hard to do read locks on the root */
	root_lock = BTRFS_READ_LOCK;

	if (p->search_commit_root) {
2637 2638 2639 2640 2641 2642 2643 2644 2645 2646
		/*
		 * The commit roots are read only so we always do read locks,
		 * and we always must hold the commit_root_sem when doing
		 * searches on them, the only exception is send where we don't
		 * want to block transaction commits for a long time, so
		 * we need to clone the commit root in order to avoid races
		 * with transaction commits that create a snapshot of one of
		 * the roots used by a send operation.
		 */
		if (p->need_commit_sem) {
2647
			down_read(&fs_info->commit_root_sem);
2648
			b = btrfs_clone_extent_buffer(root->commit_root);
2649
			up_read(&fs_info->commit_root_sem);
2650 2651 2652 2653 2654 2655 2656 2657
			if (!b)
				return ERR_PTR(-ENOMEM);

		} else {
			b = root->commit_root;
			extent_buffer_get(b);
		}
		level = btrfs_header_level(b);
2658 2659 2660 2661 2662
		/*
		 * Ensure that all callers have set skip_locking when
		 * p->search_commit_root = 1.
		 */
		ASSERT(p->skip_locking == 1);
2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673

		goto out;
	}

	if (p->skip_locking) {
		b = btrfs_root_node(root);
		level = btrfs_header_level(b);
		goto out;
	}

	/*
2674 2675
	 * If the level is set to maximum, we can skip trying to get the read
	 * lock.
2676
	 */
2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690
	if (write_lock_level < BTRFS_MAX_LEVEL) {
		/*
		 * We don't know the level of the root node until we actually
		 * have it read locked
		 */
		b = btrfs_read_lock_root_node(root);
		level = btrfs_header_level(b);
		if (level > write_lock_level)
			goto out;

		/* Whoops, must trade for write lock */
		btrfs_tree_read_unlock(b);
		free_extent_buffer(b);
	}
2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708

	b = btrfs_lock_root_node(root);
	root_lock = BTRFS_WRITE_LOCK;

	/* The level might have changed, check again */
	level = btrfs_header_level(b);

out:
	p->nodes[level] = b;
	if (!p->skip_locking)
		p->locks[level] = root_lock;
	/*
	 * Callers are responsible for dropping b's references.
	 */
	return b;
}


C
Chris Mason 已提交
2709
/*
2710 2711
 * btrfs_search_slot - look for a key in a tree and perform necessary
 * modifications to preserve tree invariants.
C
Chris Mason 已提交
2712
 *
2713 2714 2715 2716 2717 2718 2719 2720
 * @trans:	Handle of transaction, used when modifying the tree
 * @p:		Holds all btree nodes along the search path
 * @root:	The root node of the tree
 * @key:	The key we are looking for
 * @ins_len:	Indicates purpose of search, for inserts it is 1, for
 *		deletions it's -1. 0 for plain searches
 * @cow:	boolean should CoW operations be performed. Must always be 1
 *		when modifying the tree.
C
Chris Mason 已提交
2721
 *
2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732
 * If @ins_len > 0, nodes and leaves will be split as we walk down the tree.
 * If @ins_len < 0, nodes will be merged as we walk down the tree (if possible)
 *
 * If @key is found, 0 is returned and you can find the item in the leaf level
 * of the path (level 0)
 *
 * If @key isn't found, 1 is returned and the leaf level of the path (level 0)
 * points to the slot where it should be inserted
 *
 * If an error is encountered while searching the tree a negative error number
 * is returned
C
Chris Mason 已提交
2733
 */
2734 2735 2736
int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root *root,
		      const struct btrfs_key *key, struct btrfs_path *p,
		      int ins_len, int cow)
2737
{
2738
	struct extent_buffer *b;
2739 2740
	int slot;
	int ret;
2741
	int err;
2742
	int level;
2743
	int lowest_unlock = 1;
2744 2745
	/* everything at write_lock_level or lower must be write locked */
	int write_lock_level = 0;
2746
	u8 lowest_level = 0;
2747
	int min_write_lock_level;
2748
	int prev_cmp;
2749

2750
	lowest_level = p->lowest_level;
2751
	WARN_ON(lowest_level && ins_len > 0);
C
Chris Mason 已提交
2752
	WARN_ON(p->nodes[0] != NULL);
2753
	BUG_ON(!cow && ins_len);
2754

2755
	if (ins_len < 0) {
2756
		lowest_unlock = 2;
2757

2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773
		/* when we are removing items, we might have to go up to level
		 * two as we update tree pointers  Make sure we keep write
		 * for those levels as well
		 */
		write_lock_level = 2;
	} else if (ins_len > 0) {
		/*
		 * for inserting items, make sure we have a write lock on
		 * level 1 so we can update keys
		 */
		write_lock_level = 1;
	}

	if (!cow)
		write_lock_level = -1;

J
Josef Bacik 已提交
2774
	if (cow && (p->keep_locks || p->lowest_level))
2775 2776
		write_lock_level = BTRFS_MAX_LEVEL;

2777 2778
	min_write_lock_level = write_lock_level;

2779
again:
2780
	prev_cmp = -1;
2781
	b = btrfs_search_slot_get_root(root, p, write_lock_level);
2782 2783 2784 2785
	if (IS_ERR(b)) {
		ret = PTR_ERR(b);
		goto done;
	}
2786

2787
	while (b) {
2788
		level = btrfs_header_level(b);
2789 2790 2791 2792 2793

		/*
		 * setup the path here so we can release it under lock
		 * contention with the cow code
		 */
C
Chris Mason 已提交
2794
		if (cow) {
2795 2796
			bool last_level = (level == (BTRFS_MAX_LEVEL - 1));

2797 2798 2799 2800 2801
			/*
			 * if we don't really need to cow this block
			 * then we don't want to set the path blocking,
			 * so we test it here
			 */
2802 2803
			if (!should_cow_block(trans, root, b)) {
				trans->dirty = true;
2804
				goto cow_done;
2805
			}
2806

2807 2808 2809 2810
			/*
			 * must have write locks on this node and the
			 * parent
			 */
2811 2812 2813 2814
			if (level > write_lock_level ||
			    (level + 1 > write_lock_level &&
			    level + 1 < BTRFS_MAX_LEVEL &&
			    p->nodes[level + 1])) {
2815 2816 2817 2818 2819
				write_lock_level = level + 1;
				btrfs_release_path(p);
				goto again;
			}

2820
			btrfs_set_path_blocking(p);
2821 2822 2823 2824 2825 2826 2827
			if (last_level)
				err = btrfs_cow_block(trans, root, b, NULL, 0,
						      &b);
			else
				err = btrfs_cow_block(trans, root, b,
						      p->nodes[level + 1],
						      p->slots[level + 1], &b);
2828 2829
			if (err) {
				ret = err;
2830
				goto done;
2831
			}
C
Chris Mason 已提交
2832
		}
2833
cow_done:
2834
		p->nodes[level] = b;
L
Liu Bo 已提交
2835 2836 2837 2838
		/*
		 * Leave path with blocking locks to avoid massive
		 * lock context switch, this is made on purpose.
		 */
2839 2840 2841 2842 2843 2844 2845

		/*
		 * we have a lock on b and as long as we aren't changing
		 * the tree, there is no way to for the items in b to change.
		 * It is safe to drop the lock on our parent before we
		 * go through the expensive btree search on b.
		 *
2846 2847 2848 2849
		 * If we're inserting or deleting (ins_len != 0), then we might
		 * be changing slot zero, which may require changing the parent.
		 * So, we can't drop the lock until after we know which slot
		 * we're operating on.
2850
		 */
2851 2852 2853 2854 2855 2856 2857 2858
		if (!ins_len && !p->keep_locks) {
			int u = level + 1;

			if (u < BTRFS_MAX_LEVEL && p->locks[u]) {
				btrfs_tree_unlock_rw(p->nodes[u], p->locks[u]);
				p->locks[u] = 0;
			}
		}
2859

2860
		ret = key_search(b, key, level, &prev_cmp, &slot);
2861 2862
		if (ret < 0)
			goto done;
2863

2864
		if (level != 0) {
2865 2866 2867
			int dec = 0;
			if (ret && slot > 0) {
				dec = 1;
2868
				slot -= 1;
2869
			}
2870
			p->slots[level] = slot;
2871
			err = setup_nodes_for_search(trans, root, p, b, level,
2872
					     ins_len, &write_lock_level);
2873
			if (err == -EAGAIN)
2874
				goto again;
2875 2876
			if (err) {
				ret = err;
2877
				goto done;
2878
			}
2879 2880
			b = p->nodes[level];
			slot = p->slots[level];
2881

2882 2883 2884 2885 2886 2887
			/*
			 * slot 0 is special, if we change the key
			 * we have to update the parent pointer
			 * which means we must have a write lock
			 * on the parent
			 */
2888
			if (slot == 0 && ins_len &&
2889 2890 2891 2892 2893 2894
			    write_lock_level < level + 1) {
				write_lock_level = level + 1;
				btrfs_release_path(p);
				goto again;
			}

2895 2896
			unlock_up(p, level, lowest_unlock,
				  min_write_lock_level, &write_lock_level);
2897

2898
			if (level == lowest_level) {
2899 2900
				if (dec)
					p->slots[level]++;
2901
				goto done;
2902
			}
2903

2904
			err = read_block_for_search(root, p, &b, level,
2905
						    slot, key);
2906
			if (err == -EAGAIN)
2907
				goto again;
2908 2909
			if (err) {
				ret = err;
2910
				goto done;
2911
			}
2912

2913
			if (!p->skip_locking) {
2914 2915
				level = btrfs_header_level(b);
				if (level <= write_lock_level) {
2916
					if (!btrfs_try_tree_write_lock(b)) {
2917 2918 2919 2920 2921
						btrfs_set_path_blocking(p);
						btrfs_tree_lock(b);
					}
					p->locks[level] = BTRFS_WRITE_LOCK;
				} else {
2922
					if (!btrfs_tree_read_lock_atomic(b)) {
2923 2924 2925 2926
						btrfs_set_path_blocking(p);
						btrfs_tree_read_lock(b);
					}
					p->locks[level] = BTRFS_READ_LOCK;
2927
				}
2928
				p->nodes[level] = b;
2929
			}
2930 2931
		} else {
			p->slots[level] = slot;
2932
			if (ins_len > 0 &&
2933
			    btrfs_leaf_free_space(b) < ins_len) {
2934 2935 2936 2937 2938 2939
				if (write_lock_level < 1) {
					write_lock_level = 1;
					btrfs_release_path(p);
					goto again;
				}

2940
				btrfs_set_path_blocking(p);
2941 2942
				err = split_leaf(trans, root, key,
						 p, ins_len, ret == 0);
2943

2944 2945 2946
				BUG_ON(err > 0);
				if (err) {
					ret = err;
2947 2948
					goto done;
				}
C
Chris Mason 已提交
2949
			}
2950
			if (!p->search_for_split)
2951
				unlock_up(p, level, lowest_unlock,
2952
					  min_write_lock_level, NULL);
2953
			goto done;
2954 2955
		}
	}
2956 2957
	ret = 1;
done:
2958 2959 2960 2961
	/*
	 * we don't really know what they plan on doing with the path
	 * from here on, so for now just mark it as blocking
	 */
2962 2963
	if (!p->leave_spinning)
		btrfs_set_path_blocking(p);
2964
	if (ret < 0 && !p->skip_release_on_error)
2965
		btrfs_release_path(p);
2966
	return ret;
2967 2968
}

J
Jan Schmidt 已提交
2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979
/*
 * Like btrfs_search_slot, this looks for a key in the given tree. It uses the
 * current state of the tree together with the operations recorded in the tree
 * modification log to search for the key in a previous version of this tree, as
 * denoted by the time_seq parameter.
 *
 * Naturally, there is no support for insert, delete or cow operations.
 *
 * The resulting path and return value will be set up as if we called
 * btrfs_search_slot at that point in time with ins_len and cow both set to 0.
 */
2980
int btrfs_search_old_slot(struct btrfs_root *root, const struct btrfs_key *key,
J
Jan Schmidt 已提交
2981 2982
			  struct btrfs_path *p, u64 time_seq)
{
2983
	struct btrfs_fs_info *fs_info = root->fs_info;
J
Jan Schmidt 已提交
2984 2985 2986 2987 2988 2989 2990
	struct extent_buffer *b;
	int slot;
	int ret;
	int err;
	int level;
	int lowest_unlock = 1;
	u8 lowest_level = 0;
2991
	int prev_cmp = -1;
J
Jan Schmidt 已提交
2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002

	lowest_level = p->lowest_level;
	WARN_ON(p->nodes[0] != NULL);

	if (p->search_commit_root) {
		BUG_ON(time_seq);
		return btrfs_search_slot(NULL, root, key, p, 0, 0);
	}

again:
	b = get_old_root(root, time_seq);
3003 3004 3005 3006
	if (!b) {
		ret = -EIO;
		goto done;
	}
J
Jan Schmidt 已提交
3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021
	level = btrfs_header_level(b);
	p->locks[level] = BTRFS_READ_LOCK;

	while (b) {
		level = btrfs_header_level(b);
		p->nodes[level] = b;

		/*
		 * we have a lock on b and as long as we aren't changing
		 * the tree, there is no way to for the items in b to change.
		 * It is safe to drop the lock on our parent before we
		 * go through the expensive btree search on b.
		 */
		btrfs_unlock_up_safe(p, level + 1);

3022
		/*
3023
		 * Since we can unwind ebs we want to do a real search every
3024 3025 3026
		 * time.
		 */
		prev_cmp = -1;
3027
		ret = key_search(b, key, level, &prev_cmp, &slot);
3028 3029
		if (ret < 0)
			goto done;
J
Jan Schmidt 已提交
3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045

		if (level != 0) {
			int dec = 0;
			if (ret && slot > 0) {
				dec = 1;
				slot -= 1;
			}
			p->slots[level] = slot;
			unlock_up(p, level, lowest_unlock, 0, NULL);

			if (level == lowest_level) {
				if (dec)
					p->slots[level]++;
				goto done;
			}

3046
			err = read_block_for_search(root, p, &b, level,
3047
						    slot, key);
J
Jan Schmidt 已提交
3048 3049 3050 3051 3052 3053 3054 3055
			if (err == -EAGAIN)
				goto again;
			if (err) {
				ret = err;
				goto done;
			}

			level = btrfs_header_level(b);
3056
			if (!btrfs_tree_read_lock_atomic(b)) {
J
Jan Schmidt 已提交
3057 3058 3059
				btrfs_set_path_blocking(p);
				btrfs_tree_read_lock(b);
			}
3060
			b = tree_mod_log_rewind(fs_info, p, b, time_seq);
3061 3062 3063 3064
			if (!b) {
				ret = -ENOMEM;
				goto done;
			}
J
Jan Schmidt 已提交
3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082
			p->locks[level] = BTRFS_READ_LOCK;
			p->nodes[level] = b;
		} else {
			p->slots[level] = slot;
			unlock_up(p, level, lowest_unlock, 0, NULL);
			goto done;
		}
	}
	ret = 1;
done:
	if (!p->leave_spinning)
		btrfs_set_path_blocking(p);
	if (ret < 0)
		btrfs_release_path(p);

	return ret;
}

3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095
/*
 * helper to use instead of search slot if no exact match is needed but
 * instead the next or previous item should be returned.
 * When find_higher is true, the next higher item is returned, the next lower
 * otherwise.
 * When return_any and find_higher are both true, and no higher item is found,
 * return the next lower instead.
 * When return_any is true and find_higher is false, and no lower item is found,
 * return the next higher instead.
 * It returns 0 if any item is found, 1 if none is found (tree empty), and
 * < 0 on error
 */
int btrfs_search_slot_for_read(struct btrfs_root *root,
3096 3097 3098
			       const struct btrfs_key *key,
			       struct btrfs_path *p, int find_higher,
			       int return_any)
3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132
{
	int ret;
	struct extent_buffer *leaf;

again:
	ret = btrfs_search_slot(NULL, root, key, p, 0, 0);
	if (ret <= 0)
		return ret;
	/*
	 * a return value of 1 means the path is at the position where the
	 * item should be inserted. Normally this is the next bigger item,
	 * but in case the previous item is the last in a leaf, path points
	 * to the first free slot in the previous leaf, i.e. at an invalid
	 * item.
	 */
	leaf = p->nodes[0];

	if (find_higher) {
		if (p->slots[0] >= btrfs_header_nritems(leaf)) {
			ret = btrfs_next_leaf(root, p);
			if (ret <= 0)
				return ret;
			if (!return_any)
				return 1;
			/*
			 * no higher item found, return the next
			 * lower instead
			 */
			return_any = 0;
			find_higher = 0;
			btrfs_release_path(p);
			goto again;
		}
	} else {
3133 3134 3135 3136 3137
		if (p->slots[0] == 0) {
			ret = btrfs_prev_leaf(root, p);
			if (ret < 0)
				return ret;
			if (!ret) {
3138 3139 3140
				leaf = p->nodes[0];
				if (p->slots[0] == btrfs_header_nritems(leaf))
					p->slots[0]--;
3141
				return 0;
3142
			}
3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153
			if (!return_any)
				return 1;
			/*
			 * no lower item found, return the next
			 * higher instead
			 */
			return_any = 0;
			find_higher = 1;
			btrfs_release_path(p);
			goto again;
		} else {
3154 3155 3156 3157 3158 3159
			--p->slots[0];
		}
	}
	return 0;
}

C
Chris Mason 已提交
3160 3161 3162 3163 3164 3165
/*
 * adjust the pointers going up the tree, starting at level
 * making sure the right key of each node is points to 'key'.
 * This is used after shifting pointers to the left, so it stops
 * fixing up pointers when a given leaf/node is not in slot 0 of the
 * higher levels
C
Chris Mason 已提交
3166
 *
C
Chris Mason 已提交
3167
 */
3168
static void fixup_low_keys(struct btrfs_path *path,
3169
			   struct btrfs_disk_key *key, int level)
3170 3171
{
	int i;
3172
	struct extent_buffer *t;
3173
	int ret;
3174

C
Chris Mason 已提交
3175
	for (i = level; i < BTRFS_MAX_LEVEL; i++) {
3176
		int tslot = path->slots[i];
3177

3178
		if (!path->nodes[i])
3179
			break;
3180
		t = path->nodes[i];
3181 3182 3183
		ret = tree_mod_log_insert_key(t, tslot, MOD_LOG_KEY_REPLACE,
				GFP_ATOMIC);
		BUG_ON(ret < 0);
3184
		btrfs_set_node_key(t, key, tslot);
C
Chris Mason 已提交
3185
		btrfs_mark_buffer_dirty(path->nodes[i]);
3186 3187 3188 3189 3190
		if (tslot != 0)
			break;
	}
}

Z
Zheng Yan 已提交
3191 3192 3193 3194 3195 3196
/*
 * update item key.
 *
 * This function isn't completely safe. It's the caller's responsibility
 * that the new key won't break the order
 */
3197 3198
void btrfs_set_item_key_safe(struct btrfs_fs_info *fs_info,
			     struct btrfs_path *path,
3199
			     const struct btrfs_key *new_key)
Z
Zheng Yan 已提交
3200 3201 3202 3203 3204 3205 3206 3207 3208
{
	struct btrfs_disk_key disk_key;
	struct extent_buffer *eb;
	int slot;

	eb = path->nodes[0];
	slot = path->slots[0];
	if (slot > 0) {
		btrfs_item_key(eb, &disk_key, slot - 1);
3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219
		if (unlikely(comp_keys(&disk_key, new_key) >= 0)) {
			btrfs_crit(fs_info,
		"slot %u key (%llu %u %llu) new key (%llu %u %llu)",
				   slot, btrfs_disk_key_objectid(&disk_key),
				   btrfs_disk_key_type(&disk_key),
				   btrfs_disk_key_offset(&disk_key),
				   new_key->objectid, new_key->type,
				   new_key->offset);
			btrfs_print_leaf(eb);
			BUG();
		}
Z
Zheng Yan 已提交
3220 3221 3222
	}
	if (slot < btrfs_header_nritems(eb) - 1) {
		btrfs_item_key(eb, &disk_key, slot + 1);
3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233
		if (unlikely(comp_keys(&disk_key, new_key) <= 0)) {
			btrfs_crit(fs_info,
		"slot %u key (%llu %u %llu) new key (%llu %u %llu)",
				   slot, btrfs_disk_key_objectid(&disk_key),
				   btrfs_disk_key_type(&disk_key),
				   btrfs_disk_key_offset(&disk_key),
				   new_key->objectid, new_key->type,
				   new_key->offset);
			btrfs_print_leaf(eb);
			BUG();
		}
Z
Zheng Yan 已提交
3234 3235 3236 3237 3238 3239
	}

	btrfs_cpu_key_to_disk(&disk_key, new_key);
	btrfs_set_item_key(eb, &disk_key, slot);
	btrfs_mark_buffer_dirty(eb);
	if (slot == 0)
3240
		fixup_low_keys(path, &disk_key, 1);
Z
Zheng Yan 已提交
3241 3242
}

C
Chris Mason 已提交
3243 3244
/*
 * try to push data from one node into the next node left in the
3245
 * tree.
C
Chris Mason 已提交
3246 3247 3248
 *
 * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
 * error, and > 0 if there was no room in the left hand block.
C
Chris Mason 已提交
3249
 */
3250
static int push_node_left(struct btrfs_trans_handle *trans,
3251
			  struct extent_buffer *dst,
3252
			  struct extent_buffer *src, int empty)
3253
{
3254
	struct btrfs_fs_info *fs_info = trans->fs_info;
3255
	int push_items = 0;
3256 3257
	int src_nritems;
	int dst_nritems;
C
Chris Mason 已提交
3258
	int ret = 0;
3259

3260 3261
	src_nritems = btrfs_header_nritems(src);
	dst_nritems = btrfs_header_nritems(dst);
3262
	push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems;
3263 3264
	WARN_ON(btrfs_header_generation(src) != trans->transid);
	WARN_ON(btrfs_header_generation(dst) != trans->transid);
3265

3266
	if (!empty && src_nritems <= 8)
3267 3268
		return 1;

C
Chris Mason 已提交
3269
	if (push_items <= 0)
3270 3271
		return 1;

3272
	if (empty) {
3273
		push_items = min(src_nritems, push_items);
3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285
		if (push_items < src_nritems) {
			/* leave at least 8 pointers in the node if
			 * we aren't going to empty it
			 */
			if (src_nritems - push_items < 8) {
				if (push_items <= 8)
					return 1;
				push_items -= 8;
			}
		}
	} else
		push_items = min(src_nritems - 8, push_items);
3286

3287
	ret = tree_mod_log_eb_copy(dst, src, dst_nritems, 0, push_items);
3288
	if (ret) {
3289
		btrfs_abort_transaction(trans, ret);
3290 3291
		return ret;
	}
3292 3293 3294
	copy_extent_buffer(dst, src,
			   btrfs_node_key_ptr_offset(dst_nritems),
			   btrfs_node_key_ptr_offset(0),
C
Chris Mason 已提交
3295
			   push_items * sizeof(struct btrfs_key_ptr));
3296

3297
	if (push_items < src_nritems) {
3298
		/*
3299 3300
		 * Don't call tree_mod_log_insert_move here, key removal was
		 * already fully logged by tree_mod_log_eb_copy above.
3301
		 */
3302 3303 3304 3305 3306 3307 3308 3309 3310
		memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0),
				      btrfs_node_key_ptr_offset(push_items),
				      (src_nritems - push_items) *
				      sizeof(struct btrfs_key_ptr));
	}
	btrfs_set_header_nritems(src, src_nritems - push_items);
	btrfs_set_header_nritems(dst, dst_nritems + push_items);
	btrfs_mark_buffer_dirty(src);
	btrfs_mark_buffer_dirty(dst);
Z
Zheng Yan 已提交
3311

3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323
	return ret;
}

/*
 * try to push data from one node into the next node right in the
 * tree.
 *
 * returns 0 if some ptrs were pushed, < 0 if there was some horrible
 * error, and > 0 if there was no room in the right hand block.
 *
 * this will  only push up to 1/2 the contents of the left node over
 */
3324 3325 3326
static int balance_node_right(struct btrfs_trans_handle *trans,
			      struct extent_buffer *dst,
			      struct extent_buffer *src)
3327
{
3328
	struct btrfs_fs_info *fs_info = trans->fs_info;
3329 3330 3331 3332 3333 3334
	int push_items = 0;
	int max_push;
	int src_nritems;
	int dst_nritems;
	int ret = 0;

3335 3336 3337
	WARN_ON(btrfs_header_generation(src) != trans->transid);
	WARN_ON(btrfs_header_generation(dst) != trans->transid);

3338 3339
	src_nritems = btrfs_header_nritems(src);
	dst_nritems = btrfs_header_nritems(dst);
3340
	push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems;
C
Chris Mason 已提交
3341
	if (push_items <= 0)
3342
		return 1;
3343

C
Chris Mason 已提交
3344
	if (src_nritems < 4)
3345
		return 1;
3346 3347 3348

	max_push = src_nritems / 2 + 1;
	/* don't try to empty the node */
C
Chris Mason 已提交
3349
	if (max_push >= src_nritems)
3350
		return 1;
Y
Yan 已提交
3351

3352 3353 3354
	if (max_push < push_items)
		push_items = max_push;

3355 3356
	ret = tree_mod_log_insert_move(dst, push_items, 0, dst_nritems);
	BUG_ON(ret < 0);
3357 3358 3359 3360
	memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items),
				      btrfs_node_key_ptr_offset(0),
				      (dst_nritems) *
				      sizeof(struct btrfs_key_ptr));
C
Chris Mason 已提交
3361

3362 3363
	ret = tree_mod_log_eb_copy(dst, src, 0, src_nritems - push_items,
				   push_items);
3364
	if (ret) {
3365
		btrfs_abort_transaction(trans, ret);
3366 3367
		return ret;
	}
3368 3369 3370
	copy_extent_buffer(dst, src,
			   btrfs_node_key_ptr_offset(0),
			   btrfs_node_key_ptr_offset(src_nritems - push_items),
C
Chris Mason 已提交
3371
			   push_items * sizeof(struct btrfs_key_ptr));
3372

3373 3374
	btrfs_set_header_nritems(src, src_nritems - push_items);
	btrfs_set_header_nritems(dst, dst_nritems + push_items);
3375

3376 3377
	btrfs_mark_buffer_dirty(src);
	btrfs_mark_buffer_dirty(dst);
Z
Zheng Yan 已提交
3378

C
Chris Mason 已提交
3379
	return ret;
3380 3381
}

C
Chris Mason 已提交
3382 3383 3384 3385
/*
 * helper function to insert a new root level in the tree.
 * A new node is allocated, and a single item is inserted to
 * point to the existing root
C
Chris Mason 已提交
3386 3387
 *
 * returns zero on success or < 0 on failure.
C
Chris Mason 已提交
3388
 */
C
Chris Mason 已提交
3389
static noinline int insert_new_root(struct btrfs_trans_handle *trans,
3390
			   struct btrfs_root *root,
3391
			   struct btrfs_path *path, int level)
C
Chris Mason 已提交
3392
{
3393
	struct btrfs_fs_info *fs_info = root->fs_info;
3394
	u64 lower_gen;
3395 3396
	struct extent_buffer *lower;
	struct extent_buffer *c;
3397
	struct extent_buffer *old;
3398
	struct btrfs_disk_key lower_key;
3399
	int ret;
C
Chris Mason 已提交
3400 3401 3402 3403

	BUG_ON(path->nodes[level]);
	BUG_ON(path->nodes[level-1] != root->node);

3404 3405 3406 3407 3408 3409
	lower = path->nodes[level-1];
	if (level == 1)
		btrfs_item_key(lower, &lower_key, 0);
	else
		btrfs_node_key(lower, &lower_key, 0);

3410 3411
	c = alloc_tree_block_no_bg_flush(trans, root, 0, &lower_key, level,
					 root->node->start, 0);
3412 3413
	if (IS_ERR(c))
		return PTR_ERR(c);
3414

3415
	root_add_used(root, fs_info->nodesize);
3416

3417 3418
	btrfs_set_header_nritems(c, 1);
	btrfs_set_node_key(c, &lower_key, 0);
3419
	btrfs_set_node_blockptr(c, 0, lower->start);
3420
	lower_gen = btrfs_header_generation(lower);
Z
Zheng Yan 已提交
3421
	WARN_ON(lower_gen != trans->transid);
3422 3423

	btrfs_set_node_ptr_generation(c, 0, lower_gen);
3424

3425
	btrfs_mark_buffer_dirty(c);
3426

3427
	old = root->node;
3428 3429
	ret = tree_mod_log_insert_root(root->node, c, 0);
	BUG_ON(ret < 0);
3430
	rcu_assign_pointer(root->node, c);
3431 3432 3433 3434

	/* the super has an extra ref to root->node */
	free_extent_buffer(old);

3435
	add_root_to_dirty_list(root);
3436 3437
	extent_buffer_get(c);
	path->nodes[level] = c;
3438
	path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
C
Chris Mason 已提交
3439 3440 3441 3442
	path->slots[level] = 0;
	return 0;
}

C
Chris Mason 已提交
3443 3444 3445
/*
 * worker function to insert a single pointer in a node.
 * the node should have enough room for the pointer already
C
Chris Mason 已提交
3446
 *
C
Chris Mason 已提交
3447 3448 3449
 * slot and level indicate where you want the key to go, and
 * blocknr is the block the key points to.
 */
3450
static void insert_ptr(struct btrfs_trans_handle *trans,
3451
		       struct btrfs_path *path,
3452
		       struct btrfs_disk_key *key, u64 bytenr,
3453
		       int slot, int level)
C
Chris Mason 已提交
3454
{
3455
	struct extent_buffer *lower;
C
Chris Mason 已提交
3456
	int nritems;
3457
	int ret;
C
Chris Mason 已提交
3458 3459

	BUG_ON(!path->nodes[level]);
3460
	btrfs_assert_tree_locked(path->nodes[level]);
3461 3462
	lower = path->nodes[level];
	nritems = btrfs_header_nritems(lower);
S
Stoyan Gaydarov 已提交
3463
	BUG_ON(slot > nritems);
3464
	BUG_ON(nritems == BTRFS_NODEPTRS_PER_BLOCK(trans->fs_info));
C
Chris Mason 已提交
3465
	if (slot != nritems) {
3466 3467
		if (level) {
			ret = tree_mod_log_insert_move(lower, slot + 1, slot,
3468
					nritems - slot);
3469 3470
			BUG_ON(ret < 0);
		}
3471 3472 3473
		memmove_extent_buffer(lower,
			      btrfs_node_key_ptr_offset(slot + 1),
			      btrfs_node_key_ptr_offset(slot),
C
Chris Mason 已提交
3474
			      (nritems - slot) * sizeof(struct btrfs_key_ptr));
C
Chris Mason 已提交
3475
	}
3476
	if (level) {
3477 3478
		ret = tree_mod_log_insert_key(lower, slot, MOD_LOG_KEY_ADD,
				GFP_NOFS);
3479 3480
		BUG_ON(ret < 0);
	}
3481
	btrfs_set_node_key(lower, key, slot);
3482
	btrfs_set_node_blockptr(lower, slot, bytenr);
3483 3484
	WARN_ON(trans->transid == 0);
	btrfs_set_node_ptr_generation(lower, slot, trans->transid);
3485 3486
	btrfs_set_header_nritems(lower, nritems + 1);
	btrfs_mark_buffer_dirty(lower);
C
Chris Mason 已提交
3487 3488
}

C
Chris Mason 已提交
3489 3490 3491 3492 3493 3494
/*
 * split the node at the specified level in path in two.
 * The path is corrected to point to the appropriate node after the split
 *
 * Before splitting this tries to make some room in the node by pushing
 * left and right, if either one works, it returns right away.
C
Chris Mason 已提交
3495 3496
 *
 * returns 0 on success and < 0 on failure
C
Chris Mason 已提交
3497
 */
3498 3499 3500
static noinline int split_node(struct btrfs_trans_handle *trans,
			       struct btrfs_root *root,
			       struct btrfs_path *path, int level)
3501
{
3502
	struct btrfs_fs_info *fs_info = root->fs_info;
3503 3504 3505
	struct extent_buffer *c;
	struct extent_buffer *split;
	struct btrfs_disk_key disk_key;
3506
	int mid;
C
Chris Mason 已提交
3507
	int ret;
3508
	u32 c_nritems;
3509

3510
	c = path->nodes[level];
3511
	WARN_ON(btrfs_header_generation(c) != trans->transid);
3512
	if (c == root->node) {
3513
		/*
3514 3515
		 * trying to split the root, lets make a new one
		 *
3516
		 * tree mod log: We don't log_removal old root in
3517 3518 3519 3520 3521
		 * insert_new_root, because that root buffer will be kept as a
		 * normal node. We are going to log removal of half of the
		 * elements below with tree_mod_log_eb_copy. We're holding a
		 * tree lock on the buffer, which is why we cannot race with
		 * other tree_mod_log users.
3522
		 */
3523
		ret = insert_new_root(trans, root, path, level + 1);
C
Chris Mason 已提交
3524 3525
		if (ret)
			return ret;
3526
	} else {
3527
		ret = push_nodes_for_insert(trans, root, path, level);
3528 3529
		c = path->nodes[level];
		if (!ret && btrfs_header_nritems(c) <
3530
		    BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3)
3531
			return 0;
3532 3533
		if (ret < 0)
			return ret;
3534
	}
3535

3536
	c_nritems = btrfs_header_nritems(c);
3537 3538
	mid = (c_nritems + 1) / 2;
	btrfs_node_key(c, &disk_key, mid);
3539

3540 3541
	split = alloc_tree_block_no_bg_flush(trans, root, 0, &disk_key, level,
					     c->start, 0);
3542 3543 3544
	if (IS_ERR(split))
		return PTR_ERR(split);

3545
	root_add_used(root, fs_info->nodesize);
3546
	ASSERT(btrfs_header_level(c) == level);
3547

3548
	ret = tree_mod_log_eb_copy(split, c, 0, mid, c_nritems - mid);
3549
	if (ret) {
3550
		btrfs_abort_transaction(trans, ret);
3551 3552
		return ret;
	}
3553 3554 3555 3556 3557 3558
	copy_extent_buffer(split, c,
			   btrfs_node_key_ptr_offset(0),
			   btrfs_node_key_ptr_offset(mid),
			   (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
	btrfs_set_header_nritems(split, c_nritems - mid);
	btrfs_set_header_nritems(c, mid);
C
Chris Mason 已提交
3559 3560
	ret = 0;

3561 3562 3563
	btrfs_mark_buffer_dirty(c);
	btrfs_mark_buffer_dirty(split);

3564
	insert_ptr(trans, path, &disk_key, split->start,
3565
		   path->slots[level + 1] + 1, level + 1);
C
Chris Mason 已提交
3566

C
Chris Mason 已提交
3567
	if (path->slots[level] >= mid) {
C
Chris Mason 已提交
3568
		path->slots[level] -= mid;
3569
		btrfs_tree_unlock(c);
3570 3571
		free_extent_buffer(c);
		path->nodes[level] = split;
C
Chris Mason 已提交
3572 3573
		path->slots[level + 1] += 1;
	} else {
3574
		btrfs_tree_unlock(split);
3575
		free_extent_buffer(split);
3576
	}
C
Chris Mason 已提交
3577
	return ret;
3578 3579
}

C
Chris Mason 已提交
3580 3581 3582 3583 3584
/*
 * how many bytes are required to store the items in a leaf.  start
 * and nr indicate which items in the leaf to check.  This totals up the
 * space used both by the item structs and the item data
 */
3585
static int leaf_space_used(struct extent_buffer *l, int start, int nr)
3586
{
J
Josef Bacik 已提交
3587 3588 3589
	struct btrfs_item *start_item;
	struct btrfs_item *end_item;
	struct btrfs_map_token token;
3590
	int data_len;
3591
	int nritems = btrfs_header_nritems(l);
3592
	int end = min(nritems, start + nr) - 1;
3593 3594 3595

	if (!nr)
		return 0;
3596
	btrfs_init_map_token(&token, l);
3597 3598
	start_item = btrfs_item_nr(start);
	end_item = btrfs_item_nr(end);
J
Josef Bacik 已提交
3599 3600 3601
	data_len = btrfs_token_item_offset(l, start_item, &token) +
		btrfs_token_item_size(l, start_item, &token);
	data_len = data_len - btrfs_token_item_offset(l, end_item, &token);
C
Chris Mason 已提交
3602
	data_len += sizeof(struct btrfs_item) * nr;
3603
	WARN_ON(data_len < 0);
3604 3605 3606
	return data_len;
}

3607 3608 3609 3610 3611
/*
 * The space between the end of the leaf items and
 * the start of the leaf data.  IOW, how much room
 * the leaf has left for both items and data
 */
3612
noinline int btrfs_leaf_free_space(struct extent_buffer *leaf)
3613
{
3614
	struct btrfs_fs_info *fs_info = leaf->fs_info;
3615 3616
	int nritems = btrfs_header_nritems(leaf);
	int ret;
3617 3618

	ret = BTRFS_LEAF_DATA_SIZE(fs_info) - leaf_space_used(leaf, 0, nritems);
3619
	if (ret < 0) {
3620 3621 3622 3623 3624
		btrfs_crit(fs_info,
			   "leaf free space ret %d, leaf data size %lu, used %d nritems %d",
			   ret,
			   (unsigned long) BTRFS_LEAF_DATA_SIZE(fs_info),
			   leaf_space_used(leaf, 0, nritems), nritems);
3625 3626
	}
	return ret;
3627 3628
}

3629 3630 3631 3632
/*
 * min slot controls the lowest index we're willing to push to the
 * right.  We'll push up to and including min_slot, but no lower
 */
3633
static noinline int __push_leaf_right(struct btrfs_path *path,
3634 3635
				      int data_size, int empty,
				      struct extent_buffer *right,
3636 3637
				      int free_space, u32 left_nritems,
				      u32 min_slot)
C
Chris Mason 已提交
3638
{
3639
	struct btrfs_fs_info *fs_info = right->fs_info;
3640
	struct extent_buffer *left = path->nodes[0];
3641
	struct extent_buffer *upper = path->nodes[1];
3642
	struct btrfs_map_token token;
3643
	struct btrfs_disk_key disk_key;
C
Chris Mason 已提交
3644
	int slot;
3645
	u32 i;
C
Chris Mason 已提交
3646 3647
	int push_space = 0;
	int push_items = 0;
C
Chris Mason 已提交
3648
	struct btrfs_item *item;
3649
	u32 nr;
3650
	u32 right_nritems;
3651
	u32 data_end;
3652
	u32 this_item_size;
C
Chris Mason 已提交
3653

3654 3655 3656
	if (empty)
		nr = 0;
	else
3657
		nr = max_t(u32, 1, min_slot);
3658

Z
Zheng Yan 已提交
3659
	if (path->slots[0] >= left_nritems)
3660
		push_space += data_size;
Z
Zheng Yan 已提交
3661

3662
	slot = path->slots[1];
3663 3664
	i = left_nritems - 1;
	while (i >= nr) {
3665
		item = btrfs_item_nr(i);
3666

Z
Zheng Yan 已提交
3667 3668 3669 3670
		if (!empty && push_items > 0) {
			if (path->slots[0] > i)
				break;
			if (path->slots[0] == i) {
3671 3672
				int space = btrfs_leaf_free_space(left);

Z
Zheng Yan 已提交
3673 3674 3675 3676 3677
				if (space + push_space * 2 > free_space)
					break;
			}
		}

C
Chris Mason 已提交
3678
		if (path->slots[0] == i)
3679
			push_space += data_size;
3680 3681 3682

		this_item_size = btrfs_item_size(left, item);
		if (this_item_size + sizeof(*item) + push_space > free_space)
C
Chris Mason 已提交
3683
			break;
Z
Zheng Yan 已提交
3684

C
Chris Mason 已提交
3685
		push_items++;
3686
		push_space += this_item_size + sizeof(*item);
3687 3688 3689
		if (i == 0)
			break;
		i--;
3690
	}
3691

3692 3693
	if (push_items == 0)
		goto out_unlock;
3694

J
Julia Lawall 已提交
3695
	WARN_ON(!empty && push_items == left_nritems);
3696

C
Chris Mason 已提交
3697
	/* push left to right */
3698
	right_nritems = btrfs_header_nritems(right);
3699

3700
	push_space = btrfs_item_end_nr(left, left_nritems - push_items);
3701
	push_space -= leaf_data_end(left);
3702

C
Chris Mason 已提交
3703
	/* make room in the right data area */
3704
	data_end = leaf_data_end(right);
3705
	memmove_extent_buffer(right,
3706 3707
			      BTRFS_LEAF_DATA_OFFSET + data_end - push_space,
			      BTRFS_LEAF_DATA_OFFSET + data_end,
3708
			      BTRFS_LEAF_DATA_SIZE(fs_info) - data_end);
3709

C
Chris Mason 已提交
3710
	/* copy from the left data area */
3711
	copy_extent_buffer(right, left, BTRFS_LEAF_DATA_OFFSET +
3712
		     BTRFS_LEAF_DATA_SIZE(fs_info) - push_space,
3713
		     BTRFS_LEAF_DATA_OFFSET + leaf_data_end(left),
C
Chris Mason 已提交
3714
		     push_space);
3715 3716 3717 3718 3719

	memmove_extent_buffer(right, btrfs_item_nr_offset(push_items),
			      btrfs_item_nr_offset(0),
			      right_nritems * sizeof(struct btrfs_item));

C
Chris Mason 已提交
3720
	/* copy the items from left to right */
3721 3722 3723
	copy_extent_buffer(right, left, btrfs_item_nr_offset(0),
		   btrfs_item_nr_offset(left_nritems - push_items),
		   push_items * sizeof(struct btrfs_item));
C
Chris Mason 已提交
3724 3725

	/* update the item pointers */
3726
	btrfs_init_map_token(&token, right);
3727
	right_nritems += push_items;
3728
	btrfs_set_header_nritems(right, right_nritems);
3729
	push_space = BTRFS_LEAF_DATA_SIZE(fs_info);
3730
	for (i = 0; i < right_nritems; i++) {
3731
		item = btrfs_item_nr(i);
3732 3733
		push_space -= btrfs_token_item_size(right, item, &token);
		btrfs_set_token_item_offset(right, item, push_space, &token);
3734 3735
	}

3736
	left_nritems -= push_items;
3737
	btrfs_set_header_nritems(left, left_nritems);
C
Chris Mason 已提交
3738

3739 3740
	if (left_nritems)
		btrfs_mark_buffer_dirty(left);
3741
	else
3742
		btrfs_clean_tree_block(left);
3743

3744
	btrfs_mark_buffer_dirty(right);
3745

3746 3747
	btrfs_item_key(right, &disk_key, 0);
	btrfs_set_node_key(upper, &disk_key, slot + 1);
C
Chris Mason 已提交
3748
	btrfs_mark_buffer_dirty(upper);
C
Chris Mason 已提交
3749

C
Chris Mason 已提交
3750
	/* then fixup the leaf pointer in the path */
3751 3752
	if (path->slots[0] >= left_nritems) {
		path->slots[0] -= left_nritems;
3753
		if (btrfs_header_nritems(path->nodes[0]) == 0)
3754
			btrfs_clean_tree_block(path->nodes[0]);
3755
		btrfs_tree_unlock(path->nodes[0]);
3756 3757
		free_extent_buffer(path->nodes[0]);
		path->nodes[0] = right;
C
Chris Mason 已提交
3758 3759
		path->slots[1] += 1;
	} else {
3760
		btrfs_tree_unlock(right);
3761
		free_extent_buffer(right);
C
Chris Mason 已提交
3762 3763
	}
	return 0;
3764 3765 3766 3767 3768

out_unlock:
	btrfs_tree_unlock(right);
	free_extent_buffer(right);
	return 1;
C
Chris Mason 已提交
3769
}
3770

3771 3772 3773 3774 3775 3776
/*
 * push some data in the path leaf to the right, trying to free up at
 * least data_size bytes.  returns zero if the push worked, nonzero otherwise
 *
 * returns 1 if the push failed because the other node didn't have enough
 * room, 0 if everything worked out and < 0 if there were major errors.
3777 3778 3779
 *
 * this will push starting from min_slot to the end of the leaf.  It won't
 * push any slot lower than min_slot
3780 3781
 */
static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
3782 3783 3784
			   *root, struct btrfs_path *path,
			   int min_data_size, int data_size,
			   int empty, u32 min_slot)
3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803
{
	struct extent_buffer *left = path->nodes[0];
	struct extent_buffer *right;
	struct extent_buffer *upper;
	int slot;
	int free_space;
	u32 left_nritems;
	int ret;

	if (!path->nodes[1])
		return 1;

	slot = path->slots[1];
	upper = path->nodes[1];
	if (slot >= btrfs_header_nritems(upper) - 1)
		return 1;

	btrfs_assert_tree_locked(path->nodes[1]);

3804
	right = btrfs_read_node_slot(upper, slot + 1);
3805 3806 3807 3808 3809
	/*
	 * slot + 1 is not valid or we fail to read the right node,
	 * no big deal, just return.
	 */
	if (IS_ERR(right))
T
Tsutomu Itoh 已提交
3810 3811
		return 1;

3812
	btrfs_tree_lock(right);
3813
	btrfs_set_lock_blocking_write(right);
3814

3815
	free_space = btrfs_leaf_free_space(right);
3816 3817 3818 3819 3820 3821 3822 3823 3824
	if (free_space < data_size)
		goto out_unlock;

	/* cow and double check */
	ret = btrfs_cow_block(trans, root, right, upper,
			      slot + 1, &right);
	if (ret)
		goto out_unlock;

3825
	free_space = btrfs_leaf_free_space(right);
3826 3827 3828 3829 3830 3831 3832
	if (free_space < data_size)
		goto out_unlock;

	left_nritems = btrfs_header_nritems(left);
	if (left_nritems == 0)
		goto out_unlock;

3833 3834 3835 3836
	if (path->slots[0] == left_nritems && !empty) {
		/* Key greater than all keys in the leaf, right neighbor has
		 * enough room for it and we're not emptying our leaf to delete
		 * it, therefore use right neighbor to insert the new item and
3837
		 * no need to touch/dirty our left leaf. */
3838 3839 3840 3841 3842 3843 3844 3845
		btrfs_tree_unlock(left);
		free_extent_buffer(left);
		path->nodes[0] = right;
		path->slots[0] = 0;
		path->slots[1]++;
		return 0;
	}

3846
	return __push_leaf_right(path, min_data_size, empty,
3847
				right, free_space, left_nritems, min_slot);
3848 3849 3850 3851 3852 3853
out_unlock:
	btrfs_tree_unlock(right);
	free_extent_buffer(right);
	return 1;
}

C
Chris Mason 已提交
3854 3855 3856
/*
 * push some data in the path leaf to the left, trying to free up at
 * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3857 3858 3859 3860
 *
 * max_slot can put a limit on how far into the leaf we'll push items.  The
 * item at 'max_slot' won't be touched.  Use (u32)-1 to make us do all the
 * items
C
Chris Mason 已提交
3861
 */
3862
static noinline int __push_leaf_left(struct btrfs_path *path, int data_size,
3863
				     int empty, struct extent_buffer *left,
3864 3865
				     int free_space, u32 right_nritems,
				     u32 max_slot)
3866
{
3867
	struct btrfs_fs_info *fs_info = left->fs_info;
3868 3869
	struct btrfs_disk_key disk_key;
	struct extent_buffer *right = path->nodes[0];
3870 3871 3872
	int i;
	int push_space = 0;
	int push_items = 0;
C
Chris Mason 已提交
3873
	struct btrfs_item *item;
3874
	u32 old_left_nritems;
3875
	u32 nr;
C
Chris Mason 已提交
3876
	int ret = 0;
3877 3878
	u32 this_item_size;
	u32 old_left_item_size;
3879 3880
	struct btrfs_map_token token;

3881
	if (empty)
3882
		nr = min(right_nritems, max_slot);
3883
	else
3884
		nr = min(right_nritems - 1, max_slot);
3885 3886

	for (i = 0; i < nr; i++) {
3887
		item = btrfs_item_nr(i);
3888

Z
Zheng Yan 已提交
3889 3890 3891 3892
		if (!empty && push_items > 0) {
			if (path->slots[0] < i)
				break;
			if (path->slots[0] == i) {
3893 3894
				int space = btrfs_leaf_free_space(right);

Z
Zheng Yan 已提交
3895 3896 3897 3898 3899
				if (space + push_space * 2 > free_space)
					break;
			}
		}

3900
		if (path->slots[0] == i)
3901
			push_space += data_size;
3902 3903 3904

		this_item_size = btrfs_item_size(right, item);
		if (this_item_size + sizeof(*item) + push_space > free_space)
3905
			break;
3906

3907
		push_items++;
3908 3909 3910
		push_space += this_item_size + sizeof(*item);
	}

3911
	if (push_items == 0) {
3912 3913
		ret = 1;
		goto out;
3914
	}
3915
	WARN_ON(!empty && push_items == btrfs_header_nritems(right));
3916

3917
	/* push data from right to left */
3918 3919 3920 3921 3922
	copy_extent_buffer(left, right,
			   btrfs_item_nr_offset(btrfs_header_nritems(left)),
			   btrfs_item_nr_offset(0),
			   push_items * sizeof(struct btrfs_item));

3923
	push_space = BTRFS_LEAF_DATA_SIZE(fs_info) -
C
Chris Mason 已提交
3924
		     btrfs_item_offset_nr(right, push_items - 1);
3925

3926
	copy_extent_buffer(left, right, BTRFS_LEAF_DATA_OFFSET +
3927
		     leaf_data_end(left) - push_space,
3928
		     BTRFS_LEAF_DATA_OFFSET +
3929
		     btrfs_item_offset_nr(right, push_items - 1),
C
Chris Mason 已提交
3930
		     push_space);
3931
	old_left_nritems = btrfs_header_nritems(left);
3932
	BUG_ON(old_left_nritems <= 0);
3933

3934
	btrfs_init_map_token(&token, left);
3935
	old_left_item_size = btrfs_item_offset_nr(left, old_left_nritems - 1);
C
Chris Mason 已提交
3936
	for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
3937
		u32 ioff;
3938

3939
		item = btrfs_item_nr(i);
3940

3941 3942
		ioff = btrfs_token_item_offset(left, item, &token);
		btrfs_set_token_item_offset(left, item,
3943
		      ioff - (BTRFS_LEAF_DATA_SIZE(fs_info) - old_left_item_size),
3944
		      &token);
3945
	}
3946
	btrfs_set_header_nritems(left, old_left_nritems + push_items);
3947 3948

	/* fixup right node */
J
Julia Lawall 已提交
3949 3950
	if (push_items > right_nritems)
		WARN(1, KERN_CRIT "push items %d nr %u\n", push_items,
C
Chris Mason 已提交
3951
		       right_nritems);
3952 3953 3954

	if (push_items < right_nritems) {
		push_space = btrfs_item_offset_nr(right, push_items - 1) -
3955
						  leaf_data_end(right);
3956
		memmove_extent_buffer(right, BTRFS_LEAF_DATA_OFFSET +
3957
				      BTRFS_LEAF_DATA_SIZE(fs_info) - push_space,
3958
				      BTRFS_LEAF_DATA_OFFSET +
3959
				      leaf_data_end(right), push_space);
3960 3961

		memmove_extent_buffer(right, btrfs_item_nr_offset(0),
3962 3963 3964
			      btrfs_item_nr_offset(push_items),
			     (btrfs_header_nritems(right) - push_items) *
			     sizeof(struct btrfs_item));
3965
	}
3966 3967

	btrfs_init_map_token(&token, right);
3968 3969
	right_nritems -= push_items;
	btrfs_set_header_nritems(right, right_nritems);
3970
	push_space = BTRFS_LEAF_DATA_SIZE(fs_info);
3971
	for (i = 0; i < right_nritems; i++) {
3972
		item = btrfs_item_nr(i);
3973

3974 3975 3976
		push_space = push_space - btrfs_token_item_size(right,
								item, &token);
		btrfs_set_token_item_offset(right, item, push_space, &token);
3977
	}
3978

3979
	btrfs_mark_buffer_dirty(left);
3980 3981
	if (right_nritems)
		btrfs_mark_buffer_dirty(right);
3982
	else
3983
		btrfs_clean_tree_block(right);
3984

3985
	btrfs_item_key(right, &disk_key, 0);
3986
	fixup_low_keys(path, &disk_key, 1);
3987 3988 3989 3990

	/* then fixup the leaf pointer in the path */
	if (path->slots[0] < push_items) {
		path->slots[0] += old_left_nritems;
3991
		btrfs_tree_unlock(path->nodes[0]);
3992 3993
		free_extent_buffer(path->nodes[0]);
		path->nodes[0] = left;
3994 3995
		path->slots[1] -= 1;
	} else {
3996
		btrfs_tree_unlock(left);
3997
		free_extent_buffer(left);
3998 3999
		path->slots[0] -= push_items;
	}
4000
	BUG_ON(path->slots[0] < 0);
C
Chris Mason 已提交
4001
	return ret;
4002 4003 4004 4005
out:
	btrfs_tree_unlock(left);
	free_extent_buffer(left);
	return ret;
4006 4007
}

4008 4009 4010
/*
 * push some data in the path leaf to the left, trying to free up at
 * least data_size bytes.  returns zero if the push worked, nonzero otherwise
4011 4012 4013 4014
 *
 * max_slot can put a limit on how far into the leaf we'll push items.  The
 * item at 'max_slot' won't be touched.  Use (u32)-1 to make us push all the
 * items
4015 4016
 */
static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
4017 4018
			  *root, struct btrfs_path *path, int min_data_size,
			  int data_size, int empty, u32 max_slot)
4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038
{
	struct extent_buffer *right = path->nodes[0];
	struct extent_buffer *left;
	int slot;
	int free_space;
	u32 right_nritems;
	int ret = 0;

	slot = path->slots[1];
	if (slot == 0)
		return 1;
	if (!path->nodes[1])
		return 1;

	right_nritems = btrfs_header_nritems(right);
	if (right_nritems == 0)
		return 1;

	btrfs_assert_tree_locked(path->nodes[1]);

4039
	left = btrfs_read_node_slot(path->nodes[1], slot - 1);
4040 4041 4042 4043 4044
	/*
	 * slot - 1 is not valid or we fail to read the left node,
	 * no big deal, just return.
	 */
	if (IS_ERR(left))
T
Tsutomu Itoh 已提交
4045 4046
		return 1;

4047
	btrfs_tree_lock(left);
4048
	btrfs_set_lock_blocking_write(left);
4049

4050
	free_space = btrfs_leaf_free_space(left);
4051 4052 4053 4054 4055 4056 4057 4058 4059 4060
	if (free_space < data_size) {
		ret = 1;
		goto out;
	}

	/* cow and double check */
	ret = btrfs_cow_block(trans, root, left,
			      path->nodes[1], slot - 1, &left);
	if (ret) {
		/* we hit -ENOSPC, but it isn't fatal here */
4061 4062
		if (ret == -ENOSPC)
			ret = 1;
4063 4064 4065
		goto out;
	}

4066
	free_space = btrfs_leaf_free_space(left);
4067 4068 4069 4070 4071
	if (free_space < data_size) {
		ret = 1;
		goto out;
	}

4072
	return __push_leaf_left(path, min_data_size,
4073 4074
			       empty, left, free_space, right_nritems,
			       max_slot);
4075 4076 4077 4078 4079 4080 4081 4082 4083 4084
out:
	btrfs_tree_unlock(left);
	free_extent_buffer(left);
	return ret;
}

/*
 * split the path's leaf in two, making sure there is at least data_size
 * available for the resulting leaf level of the path.
 */
4085 4086 4087 4088 4089
static noinline void copy_for_split(struct btrfs_trans_handle *trans,
				    struct btrfs_path *path,
				    struct extent_buffer *l,
				    struct extent_buffer *right,
				    int slot, int mid, int nritems)
4090
{
4091
	struct btrfs_fs_info *fs_info = trans->fs_info;
4092 4093 4094 4095
	int data_copy_size;
	int rt_data_off;
	int i;
	struct btrfs_disk_key disk_key;
4096 4097
	struct btrfs_map_token token;

4098 4099
	nritems = nritems - mid;
	btrfs_set_header_nritems(right, nritems);
4100
	data_copy_size = btrfs_item_end_nr(l, mid) - leaf_data_end(l);
4101 4102 4103 4104 4105 4106

	copy_extent_buffer(right, l, btrfs_item_nr_offset(0),
			   btrfs_item_nr_offset(mid),
			   nritems * sizeof(struct btrfs_item));

	copy_extent_buffer(right, l,
4107 4108
		     BTRFS_LEAF_DATA_OFFSET + BTRFS_LEAF_DATA_SIZE(fs_info) -
		     data_copy_size, BTRFS_LEAF_DATA_OFFSET +
4109
		     leaf_data_end(l), data_copy_size);
4110

4111
	rt_data_off = BTRFS_LEAF_DATA_SIZE(fs_info) - btrfs_item_end_nr(l, mid);
4112

4113
	btrfs_init_map_token(&token, right);
4114
	for (i = 0; i < nritems; i++) {
4115
		struct btrfs_item *item = btrfs_item_nr(i);
4116 4117
		u32 ioff;

4118 4119 4120
		ioff = btrfs_token_item_offset(right, item, &token);
		btrfs_set_token_item_offset(right, item,
					    ioff + rt_data_off, &token);
4121 4122 4123 4124
	}

	btrfs_set_header_nritems(l, mid);
	btrfs_item_key(right, &disk_key, 0);
4125
	insert_ptr(trans, path, &disk_key, right->start, path->slots[1] + 1, 1);
4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144

	btrfs_mark_buffer_dirty(right);
	btrfs_mark_buffer_dirty(l);
	BUG_ON(path->slots[0] != slot);

	if (mid <= slot) {
		btrfs_tree_unlock(path->nodes[0]);
		free_extent_buffer(path->nodes[0]);
		path->nodes[0] = right;
		path->slots[0] -= mid;
		path->slots[1] += 1;
	} else {
		btrfs_tree_unlock(right);
		free_extent_buffer(right);
	}

	BUG_ON(path->slots[0] < 0);
}

4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163
/*
 * double splits happen when we need to insert a big item in the middle
 * of a leaf.  A double split can leave us with 3 mostly empty leaves:
 * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ]
 *          A                 B                 C
 *
 * We avoid this by trying to push the items on either side of our target
 * into the adjacent leaves.  If all goes well we can avoid the double split
 * completely.
 */
static noinline int push_for_double_split(struct btrfs_trans_handle *trans,
					  struct btrfs_root *root,
					  struct btrfs_path *path,
					  int data_size)
{
	int ret;
	int progress = 0;
	int slot;
	u32 nritems;
4164
	int space_needed = data_size;
4165 4166

	slot = path->slots[0];
4167
	if (slot < btrfs_header_nritems(path->nodes[0]))
4168
		space_needed -= btrfs_leaf_free_space(path->nodes[0]);
4169 4170 4171 4172 4173

	/*
	 * try to push all the items after our slot into the
	 * right leaf
	 */
4174
	ret = push_leaf_right(trans, root, path, 1, space_needed, 0, slot);
4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188
	if (ret < 0)
		return ret;

	if (ret == 0)
		progress++;

	nritems = btrfs_header_nritems(path->nodes[0]);
	/*
	 * our goal is to get our slot at the start or end of a leaf.  If
	 * we've done so we're done
	 */
	if (path->slots[0] == 0 || path->slots[0] == nritems)
		return 0;

4189
	if (btrfs_leaf_free_space(path->nodes[0]) >= data_size)
4190 4191 4192 4193
		return 0;

	/* try to push all the items before our slot into the next leaf */
	slot = path->slots[0];
4194 4195
	space_needed = data_size;
	if (slot > 0)
4196
		space_needed -= btrfs_leaf_free_space(path->nodes[0]);
4197
	ret = push_leaf_left(trans, root, path, 1, space_needed, 0, slot);
4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208
	if (ret < 0)
		return ret;

	if (ret == 0)
		progress++;

	if (progress)
		return 0;
	return 1;
}

C
Chris Mason 已提交
4209 4210 4211
/*
 * split the path's leaf in two, making sure there is at least data_size
 * available for the resulting leaf level of the path.
C
Chris Mason 已提交
4212 4213
 *
 * returns 0 if all went well and < 0 on failure.
C
Chris Mason 已提交
4214
 */
4215 4216
static noinline int split_leaf(struct btrfs_trans_handle *trans,
			       struct btrfs_root *root,
4217
			       const struct btrfs_key *ins_key,
4218 4219
			       struct btrfs_path *path, int data_size,
			       int extend)
4220
{
4221
	struct btrfs_disk_key disk_key;
4222
	struct extent_buffer *l;
4223
	u32 nritems;
4224 4225
	int mid;
	int slot;
4226
	struct extent_buffer *right;
4227
	struct btrfs_fs_info *fs_info = root->fs_info;
4228
	int ret = 0;
C
Chris Mason 已提交
4229
	int wret;
4230
	int split;
4231
	int num_doubles = 0;
4232
	int tried_avoid_double = 0;
C
Chris Mason 已提交
4233

4234 4235 4236
	l = path->nodes[0];
	slot = path->slots[0];
	if (extend && data_size + btrfs_item_size_nr(l, slot) +
4237
	    sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(fs_info))
4238 4239
		return -EOVERFLOW;

C
Chris Mason 已提交
4240
	/* first try to make some room by pushing left and right */
4241
	if (data_size && path->nodes[1]) {
4242 4243 4244
		int space_needed = data_size;

		if (slot < btrfs_header_nritems(l))
4245
			space_needed -= btrfs_leaf_free_space(l);
4246 4247 4248

		wret = push_leaf_right(trans, root, path, space_needed,
				       space_needed, 0, 0);
C
Chris Mason 已提交
4249
		if (wret < 0)
C
Chris Mason 已提交
4250
			return wret;
4251
		if (wret) {
4252 4253
			space_needed = data_size;
			if (slot > 0)
4254
				space_needed -= btrfs_leaf_free_space(l);
4255 4256
			wret = push_leaf_left(trans, root, path, space_needed,
					      space_needed, 0, (u32)-1);
4257 4258 4259 4260
			if (wret < 0)
				return wret;
		}
		l = path->nodes[0];
C
Chris Mason 已提交
4261

4262
		/* did the pushes work? */
4263
		if (btrfs_leaf_free_space(l) >= data_size)
4264
			return 0;
4265
	}
C
Chris Mason 已提交
4266

C
Chris Mason 已提交
4267
	if (!path->nodes[1]) {
4268
		ret = insert_new_root(trans, root, path, 1);
C
Chris Mason 已提交
4269 4270 4271
		if (ret)
			return ret;
	}
4272
again:
4273
	split = 1;
4274
	l = path->nodes[0];
4275
	slot = path->slots[0];
4276
	nritems = btrfs_header_nritems(l);
C
Chris Mason 已提交
4277
	mid = (nritems + 1) / 2;
4278

4279 4280 4281
	if (mid <= slot) {
		if (nritems == 1 ||
		    leaf_space_used(l, mid, nritems - mid) + data_size >
4282
			BTRFS_LEAF_DATA_SIZE(fs_info)) {
4283 4284 4285 4286 4287 4288
			if (slot >= nritems) {
				split = 0;
			} else {
				mid = slot;
				if (mid != nritems &&
				    leaf_space_used(l, mid, nritems - mid) +
4289
				    data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) {
4290 4291
					if (data_size && !tried_avoid_double)
						goto push_for_double;
4292 4293 4294 4295 4296 4297
					split = 2;
				}
			}
		}
	} else {
		if (leaf_space_used(l, 0, mid) + data_size >
4298
			BTRFS_LEAF_DATA_SIZE(fs_info)) {
4299 4300 4301 4302 4303 4304 4305 4306
			if (!extend && data_size && slot == 0) {
				split = 0;
			} else if ((extend || !data_size) && slot == 0) {
				mid = 1;
			} else {
				mid = slot;
				if (mid != nritems &&
				    leaf_space_used(l, mid, nritems - mid) +
4307
				    data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) {
4308 4309
					if (data_size && !tried_avoid_double)
						goto push_for_double;
4310
					split = 2;
4311 4312 4313 4314 4315 4316 4317 4318 4319 4320
				}
			}
		}
	}

	if (split == 0)
		btrfs_cpu_key_to_disk(&disk_key, ins_key);
	else
		btrfs_item_key(l, &disk_key, mid);

4321 4322
	right = alloc_tree_block_no_bg_flush(trans, root, 0, &disk_key, 0,
					     l->start, 0);
4323
	if (IS_ERR(right))
4324
		return PTR_ERR(right);
4325

4326
	root_add_used(root, fs_info->nodesize);
4327

4328 4329 4330
	if (split == 0) {
		if (mid <= slot) {
			btrfs_set_header_nritems(right, 0);
4331
			insert_ptr(trans, path, &disk_key,
4332
				   right->start, path->slots[1] + 1, 1);
4333 4334 4335 4336 4337 4338 4339
			btrfs_tree_unlock(path->nodes[0]);
			free_extent_buffer(path->nodes[0]);
			path->nodes[0] = right;
			path->slots[0] = 0;
			path->slots[1] += 1;
		} else {
			btrfs_set_header_nritems(right, 0);
4340
			insert_ptr(trans, path, &disk_key,
4341
				   right->start, path->slots[1], 1);
4342 4343 4344 4345
			btrfs_tree_unlock(path->nodes[0]);
			free_extent_buffer(path->nodes[0]);
			path->nodes[0] = right;
			path->slots[0] = 0;
4346
			if (path->slots[1] == 0)
4347
				fixup_low_keys(path, &disk_key, 1);
4348
		}
4349 4350 4351 4352 4353
		/*
		 * We create a new leaf 'right' for the required ins_len and
		 * we'll do btrfs_mark_buffer_dirty() on this leaf after copying
		 * the content of ins_len to 'right'.
		 */
4354
		return ret;
4355
	}
C
Chris Mason 已提交
4356

4357
	copy_for_split(trans, path, l, right, slot, mid, nritems);
Z
Zheng Yan 已提交
4358

4359
	if (split == 2) {
4360 4361 4362
		BUG_ON(num_doubles != 0);
		num_doubles++;
		goto again;
4363
	}
4364

4365
	return 0;
4366 4367 4368 4369

push_for_double:
	push_for_double_split(trans, root, path, data_size);
	tried_avoid_double = 1;
4370
	if (btrfs_leaf_free_space(path->nodes[0]) >= data_size)
4371 4372
		return 0;
	goto again;
4373 4374
}

Y
Yan, Zheng 已提交
4375 4376 4377
static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans,
					 struct btrfs_root *root,
					 struct btrfs_path *path, int ins_len)
4378
{
Y
Yan, Zheng 已提交
4379
	struct btrfs_key key;
4380
	struct extent_buffer *leaf;
Y
Yan, Zheng 已提交
4381 4382 4383 4384
	struct btrfs_file_extent_item *fi;
	u64 extent_len = 0;
	u32 item_size;
	int ret;
4385 4386

	leaf = path->nodes[0];
Y
Yan, Zheng 已提交
4387 4388 4389 4390 4391
	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);

	BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY &&
	       key.type != BTRFS_EXTENT_CSUM_KEY);

4392
	if (btrfs_leaf_free_space(leaf) >= ins_len)
Y
Yan, Zheng 已提交
4393
		return 0;
4394 4395

	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
Y
Yan, Zheng 已提交
4396 4397 4398 4399 4400
	if (key.type == BTRFS_EXTENT_DATA_KEY) {
		fi = btrfs_item_ptr(leaf, path->slots[0],
				    struct btrfs_file_extent_item);
		extent_len = btrfs_file_extent_num_bytes(leaf, fi);
	}
4401
	btrfs_release_path(path);
4402 4403

	path->keep_locks = 1;
Y
Yan, Zheng 已提交
4404 4405
	path->search_for_split = 1;
	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
4406
	path->search_for_split = 0;
4407 4408
	if (ret > 0)
		ret = -EAGAIN;
Y
Yan, Zheng 已提交
4409 4410
	if (ret < 0)
		goto err;
4411

Y
Yan, Zheng 已提交
4412 4413
	ret = -EAGAIN;
	leaf = path->nodes[0];
4414 4415
	/* if our item isn't there, return now */
	if (item_size != btrfs_item_size_nr(leaf, path->slots[0]))
Y
Yan, Zheng 已提交
4416 4417
		goto err;

4418
	/* the leaf has  changed, it now has room.  return now */
4419
	if (btrfs_leaf_free_space(path->nodes[0]) >= ins_len)
4420 4421
		goto err;

Y
Yan, Zheng 已提交
4422 4423 4424 4425 4426
	if (key.type == BTRFS_EXTENT_DATA_KEY) {
		fi = btrfs_item_ptr(leaf, path->slots[0],
				    struct btrfs_file_extent_item);
		if (extent_len != btrfs_file_extent_num_bytes(leaf, fi))
			goto err;
4427 4428
	}

4429
	btrfs_set_path_blocking(path);
Y
Yan, Zheng 已提交
4430
	ret = split_leaf(trans, root, &key, path, ins_len, 1);
4431 4432
	if (ret)
		goto err;
4433

Y
Yan, Zheng 已提交
4434
	path->keep_locks = 0;
4435
	btrfs_unlock_up_safe(path, 1);
Y
Yan, Zheng 已提交
4436 4437 4438 4439 4440 4441
	return 0;
err:
	path->keep_locks = 0;
	return ret;
}

4442
static noinline int split_item(struct btrfs_path *path,
4443
			       const struct btrfs_key *new_key,
Y
Yan, Zheng 已提交
4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455
			       unsigned long split_offset)
{
	struct extent_buffer *leaf;
	struct btrfs_item *item;
	struct btrfs_item *new_item;
	int slot;
	char *buf;
	u32 nritems;
	u32 item_size;
	u32 orig_offset;
	struct btrfs_disk_key disk_key;

4456
	leaf = path->nodes[0];
4457
	BUG_ON(btrfs_leaf_free_space(leaf) < sizeof(struct btrfs_item));
4458

4459 4460
	btrfs_set_path_blocking(path);

4461
	item = btrfs_item_nr(path->slots[0]);
4462 4463 4464 4465
	orig_offset = btrfs_item_offset(leaf, item);
	item_size = btrfs_item_size(leaf, item);

	buf = kmalloc(item_size, GFP_NOFS);
Y
Yan, Zheng 已提交
4466 4467 4468
	if (!buf)
		return -ENOMEM;

4469 4470 4471
	read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf,
			    path->slots[0]), item_size);

Y
Yan, Zheng 已提交
4472
	slot = path->slots[0] + 1;
4473 4474 4475 4476
	nritems = btrfs_header_nritems(leaf);
	if (slot != nritems) {
		/* shift the items */
		memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1),
Y
Yan, Zheng 已提交
4477 4478
				btrfs_item_nr_offset(slot),
				(nritems - slot) * sizeof(struct btrfs_item));
4479 4480 4481 4482 4483
	}

	btrfs_cpu_key_to_disk(&disk_key, new_key);
	btrfs_set_item_key(leaf, &disk_key, slot);

4484
	new_item = btrfs_item_nr(slot);
4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505

	btrfs_set_item_offset(leaf, new_item, orig_offset);
	btrfs_set_item_size(leaf, new_item, item_size - split_offset);

	btrfs_set_item_offset(leaf, item,
			      orig_offset + item_size - split_offset);
	btrfs_set_item_size(leaf, item, split_offset);

	btrfs_set_header_nritems(leaf, nritems + 1);

	/* write the data for the start of the original item */
	write_extent_buffer(leaf, buf,
			    btrfs_item_ptr_offset(leaf, path->slots[0]),
			    split_offset);

	/* write the data for the new item */
	write_extent_buffer(leaf, buf + split_offset,
			    btrfs_item_ptr_offset(leaf, slot),
			    item_size - split_offset);
	btrfs_mark_buffer_dirty(leaf);

4506
	BUG_ON(btrfs_leaf_free_space(leaf) < 0);
4507
	kfree(buf);
Y
Yan, Zheng 已提交
4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528
	return 0;
}

/*
 * This function splits a single item into two items,
 * giving 'new_key' to the new item and splitting the
 * old one at split_offset (from the start of the item).
 *
 * The path may be released by this operation.  After
 * the split, the path is pointing to the old item.  The
 * new item is going to be in the same node as the old one.
 *
 * Note, the item being split must be smaller enough to live alone on
 * a tree block with room for one extra struct btrfs_item
 *
 * This allows us to split the item in place, keeping a lock on the
 * leaf the entire time.
 */
int btrfs_split_item(struct btrfs_trans_handle *trans,
		     struct btrfs_root *root,
		     struct btrfs_path *path,
4529
		     const struct btrfs_key *new_key,
Y
Yan, Zheng 已提交
4530 4531 4532 4533 4534 4535 4536 4537
		     unsigned long split_offset)
{
	int ret;
	ret = setup_leaf_for_split(trans, root, path,
				   sizeof(struct btrfs_item));
	if (ret)
		return ret;

4538
	ret = split_item(path, new_key, split_offset);
4539 4540 4541
	return ret;
}

Y
Yan, Zheng 已提交
4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552
/*
 * This function duplicate a item, giving 'new_key' to the new item.
 * It guarantees both items live in the same tree leaf and the new item
 * is contiguous with the original item.
 *
 * This allows us to split file extent in place, keeping a lock on the
 * leaf the entire time.
 */
int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
			 struct btrfs_root *root,
			 struct btrfs_path *path,
4553
			 const struct btrfs_key *new_key)
Y
Yan, Zheng 已提交
4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566
{
	struct extent_buffer *leaf;
	int ret;
	u32 item_size;

	leaf = path->nodes[0];
	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
	ret = setup_leaf_for_split(trans, root, path,
				   item_size + sizeof(struct btrfs_item));
	if (ret)
		return ret;

	path->slots[0]++;
4567
	setup_items_for_insert(root, path, new_key, &item_size,
4568 4569
			       item_size, item_size +
			       sizeof(struct btrfs_item), 1);
Y
Yan, Zheng 已提交
4570 4571 4572 4573 4574 4575 4576 4577
	leaf = path->nodes[0];
	memcpy_extent_buffer(leaf,
			     btrfs_item_ptr_offset(leaf, path->slots[0]),
			     btrfs_item_ptr_offset(leaf, path->slots[0] - 1),
			     item_size);
	return 0;
}

C
Chris Mason 已提交
4578 4579 4580 4581 4582 4583
/*
 * make the item pointed to by the path smaller.  new_size indicates
 * how small to make it, and from_end tells us if we just chop bytes
 * off the end of the item or if we shift the item to chop bytes off
 * the front.
 */
4584
void btrfs_truncate_item(struct btrfs_path *path, u32 new_size, int from_end)
C
Chris Mason 已提交
4585 4586
{
	int slot;
4587 4588
	struct extent_buffer *leaf;
	struct btrfs_item *item;
C
Chris Mason 已提交
4589 4590 4591 4592 4593 4594
	u32 nritems;
	unsigned int data_end;
	unsigned int old_data_start;
	unsigned int old_size;
	unsigned int size_diff;
	int i;
4595 4596
	struct btrfs_map_token token;

4597
	leaf = path->nodes[0];
4598 4599 4600 4601
	slot = path->slots[0];

	old_size = btrfs_item_size_nr(leaf, slot);
	if (old_size == new_size)
4602
		return;
C
Chris Mason 已提交
4603

4604
	nritems = btrfs_header_nritems(leaf);
4605
	data_end = leaf_data_end(leaf);
C
Chris Mason 已提交
4606

4607
	old_data_start = btrfs_item_offset_nr(leaf, slot);
4608

C
Chris Mason 已提交
4609 4610 4611 4612 4613 4614 4615 4616 4617
	size_diff = old_size - new_size;

	BUG_ON(slot < 0);
	BUG_ON(slot >= nritems);

	/*
	 * item0..itemN ... dataN.offset..dataN.size .. data0.size
	 */
	/* first correct the data pointers */
4618
	btrfs_init_map_token(&token, leaf);
C
Chris Mason 已提交
4619
	for (i = slot; i < nritems; i++) {
4620
		u32 ioff;
4621
		item = btrfs_item_nr(i);
4622

4623 4624 4625
		ioff = btrfs_token_item_offset(leaf, item, &token);
		btrfs_set_token_item_offset(leaf, item,
					    ioff + size_diff, &token);
C
Chris Mason 已提交
4626
	}
4627

C
Chris Mason 已提交
4628
	/* shift the data */
4629
	if (from_end) {
4630 4631
		memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
			      data_end + size_diff, BTRFS_LEAF_DATA_OFFSET +
4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651
			      data_end, old_data_start + new_size - data_end);
	} else {
		struct btrfs_disk_key disk_key;
		u64 offset;

		btrfs_item_key(leaf, &disk_key, slot);

		if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) {
			unsigned long ptr;
			struct btrfs_file_extent_item *fi;

			fi = btrfs_item_ptr(leaf, slot,
					    struct btrfs_file_extent_item);
			fi = (struct btrfs_file_extent_item *)(
			     (unsigned long)fi - size_diff);

			if (btrfs_file_extent_type(leaf, fi) ==
			    BTRFS_FILE_EXTENT_INLINE) {
				ptr = btrfs_item_ptr_offset(leaf, slot);
				memmove_extent_buffer(leaf, ptr,
C
Chris Mason 已提交
4652
				      (unsigned long)fi,
4653
				      BTRFS_FILE_EXTENT_INLINE_DATA_START);
4654 4655 4656
			}
		}

4657 4658
		memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
			      data_end + size_diff, BTRFS_LEAF_DATA_OFFSET +
4659 4660 4661 4662 4663 4664
			      data_end, old_data_start - data_end);

		offset = btrfs_disk_key_offset(&disk_key);
		btrfs_set_disk_key_offset(&disk_key, offset + size_diff);
		btrfs_set_item_key(leaf, &disk_key, slot);
		if (slot == 0)
4665
			fixup_low_keys(path, &disk_key, 1);
4666
	}
4667

4668
	item = btrfs_item_nr(slot);
4669 4670
	btrfs_set_item_size(leaf, item, new_size);
	btrfs_mark_buffer_dirty(leaf);
C
Chris Mason 已提交
4671

4672
	if (btrfs_leaf_free_space(leaf) < 0) {
4673
		btrfs_print_leaf(leaf);
C
Chris Mason 已提交
4674
		BUG();
4675
	}
C
Chris Mason 已提交
4676 4677
}

C
Chris Mason 已提交
4678
/*
S
Stefan Behrens 已提交
4679
 * make the item pointed to by the path bigger, data_size is the added size.
C
Chris Mason 已提交
4680
 */
4681
void btrfs_extend_item(struct btrfs_path *path, u32 data_size)
4682 4683
{
	int slot;
4684 4685
	struct extent_buffer *leaf;
	struct btrfs_item *item;
4686 4687 4688 4689 4690
	u32 nritems;
	unsigned int data_end;
	unsigned int old_data;
	unsigned int old_size;
	int i;
4691 4692
	struct btrfs_map_token token;

4693
	leaf = path->nodes[0];
4694

4695
	nritems = btrfs_header_nritems(leaf);
4696
	data_end = leaf_data_end(leaf);
4697

4698
	if (btrfs_leaf_free_space(leaf) < data_size) {
4699
		btrfs_print_leaf(leaf);
4700
		BUG();
4701
	}
4702
	slot = path->slots[0];
4703
	old_data = btrfs_item_end_nr(leaf, slot);
4704 4705

	BUG_ON(slot < 0);
4706
	if (slot >= nritems) {
4707
		btrfs_print_leaf(leaf);
4708
		btrfs_crit(leaf->fs_info, "slot %d too large, nritems %d",
4709
			   slot, nritems);
4710
		BUG();
4711
	}
4712 4713 4714 4715 4716

	/*
	 * item0..itemN ... dataN.offset..dataN.size .. data0.size
	 */
	/* first correct the data pointers */
4717
	btrfs_init_map_token(&token, leaf);
4718
	for (i = slot; i < nritems; i++) {
4719
		u32 ioff;
4720
		item = btrfs_item_nr(i);
4721

4722 4723 4724
		ioff = btrfs_token_item_offset(leaf, item, &token);
		btrfs_set_token_item_offset(leaf, item,
					    ioff - data_size, &token);
4725
	}
4726

4727
	/* shift the data */
4728 4729
	memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
		      data_end - data_size, BTRFS_LEAF_DATA_OFFSET +
4730
		      data_end, old_data - data_end);
4731

4732
	data_end = old_data;
4733
	old_size = btrfs_item_size_nr(leaf, slot);
4734
	item = btrfs_item_nr(slot);
4735 4736
	btrfs_set_item_size(leaf, item, old_size + data_size);
	btrfs_mark_buffer_dirty(leaf);
4737

4738
	if (btrfs_leaf_free_space(leaf) < 0) {
4739
		btrfs_print_leaf(leaf);
4740
		BUG();
4741
	}
4742 4743
}

C
Chris Mason 已提交
4744
/*
4745 4746 4747
 * this is a helper for btrfs_insert_empty_items, the main goal here is
 * to save stack depth by doing the bulk of the work in a function
 * that doesn't call btrfs_search_slot
C
Chris Mason 已提交
4748
 */
4749
void setup_items_for_insert(struct btrfs_root *root, struct btrfs_path *path,
4750
			    const struct btrfs_key *cpu_key, u32 *data_size,
4751
			    u32 total_data, u32 total_size, int nr)
4752
{
4753
	struct btrfs_fs_info *fs_info = root->fs_info;
4754
	struct btrfs_item *item;
4755
	int i;
4756
	u32 nritems;
4757
	unsigned int data_end;
C
Chris Mason 已提交
4758
	struct btrfs_disk_key disk_key;
4759 4760
	struct extent_buffer *leaf;
	int slot;
4761 4762
	struct btrfs_map_token token;

4763 4764
	if (path->slots[0] == 0) {
		btrfs_cpu_key_to_disk(&disk_key, cpu_key);
4765
		fixup_low_keys(path, &disk_key, 1);
4766 4767 4768
	}
	btrfs_unlock_up_safe(path, 1);

4769
	leaf = path->nodes[0];
4770
	slot = path->slots[0];
C
Chris Mason 已提交
4771

4772
	nritems = btrfs_header_nritems(leaf);
4773
	data_end = leaf_data_end(leaf);
4774

4775
	if (btrfs_leaf_free_space(leaf) < total_size) {
4776
		btrfs_print_leaf(leaf);
4777
		btrfs_crit(fs_info, "not enough freespace need %u have %d",
4778
			   total_size, btrfs_leaf_free_space(leaf));
4779
		BUG();
4780
	}
4781

4782
	btrfs_init_map_token(&token, leaf);
4783
	if (slot != nritems) {
4784
		unsigned int old_data = btrfs_item_end_nr(leaf, slot);
4785

4786
		if (old_data < data_end) {
4787
			btrfs_print_leaf(leaf);
4788
			btrfs_crit(fs_info, "slot %d old_data %d data_end %d",
J
Jeff Mahoney 已提交
4789
				   slot, old_data, data_end);
4790
			BUG();
4791
		}
4792 4793 4794 4795
		/*
		 * item0..itemN ... dataN.offset..dataN.size .. data0.size
		 */
		/* first correct the data pointers */
C
Chris Mason 已提交
4796
		for (i = slot; i < nritems; i++) {
4797
			u32 ioff;
4798

4799
			item = btrfs_item_nr(i);
4800 4801 4802
			ioff = btrfs_token_item_offset(leaf, item, &token);
			btrfs_set_token_item_offset(leaf, item,
						    ioff - total_data, &token);
C
Chris Mason 已提交
4803
		}
4804
		/* shift the items */
4805
		memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
4806
			      btrfs_item_nr_offset(slot),
C
Chris Mason 已提交
4807
			      (nritems - slot) * sizeof(struct btrfs_item));
4808 4809

		/* shift the data */
4810 4811
		memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
			      data_end - total_data, BTRFS_LEAF_DATA_OFFSET +
C
Chris Mason 已提交
4812
			      data_end, old_data - data_end);
4813 4814
		data_end = old_data;
	}
4815

4816
	/* setup the item for the new data */
4817 4818 4819
	for (i = 0; i < nr; i++) {
		btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
		btrfs_set_item_key(leaf, &disk_key, slot + i);
4820
		item = btrfs_item_nr(slot + i);
4821 4822
		btrfs_set_token_item_offset(leaf, item,
					    data_end - data_size[i], &token);
4823
		data_end -= data_size[i];
4824
		btrfs_set_token_item_size(leaf, item, data_size[i], &token);
4825
	}
4826

4827
	btrfs_set_header_nritems(leaf, nritems + nr);
4828
	btrfs_mark_buffer_dirty(leaf);
C
Chris Mason 已提交
4829

4830
	if (btrfs_leaf_free_space(leaf) < 0) {
4831
		btrfs_print_leaf(leaf);
4832
		BUG();
4833
	}
4834 4835 4836 4837 4838 4839 4840 4841 4842
}

/*
 * Given a key and some data, insert items into the tree.
 * This does all the path init required, making room in the tree if needed.
 */
int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
			    struct btrfs_root *root,
			    struct btrfs_path *path,
4843
			    const struct btrfs_key *cpu_key, u32 *data_size,
4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859
			    int nr)
{
	int ret = 0;
	int slot;
	int i;
	u32 total_size = 0;
	u32 total_data = 0;

	for (i = 0; i < nr; i++)
		total_data += data_size[i];

	total_size = total_data + (nr * sizeof(struct btrfs_item));
	ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
	if (ret == 0)
		return -EEXIST;
	if (ret < 0)
4860
		return ret;
4861 4862 4863 4864

	slot = path->slots[0];
	BUG_ON(slot < 0);

4865
	setup_items_for_insert(root, path, cpu_key, data_size,
4866
			       total_data, total_size, nr);
4867
	return 0;
4868 4869 4870 4871 4872 4873
}

/*
 * Given a key and some data, insert an item into the tree.
 * This does all the path init required, making room in the tree if needed.
 */
4874 4875 4876
int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root *root,
		      const struct btrfs_key *cpu_key, void *data,
		      u32 data_size)
4877 4878
{
	int ret = 0;
C
Chris Mason 已提交
4879
	struct btrfs_path *path;
4880 4881
	struct extent_buffer *leaf;
	unsigned long ptr;
4882

C
Chris Mason 已提交
4883
	path = btrfs_alloc_path();
T
Tsutomu Itoh 已提交
4884 4885
	if (!path)
		return -ENOMEM;
C
Chris Mason 已提交
4886
	ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
4887
	if (!ret) {
4888 4889 4890 4891
		leaf = path->nodes[0];
		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
		write_extent_buffer(leaf, data, ptr, data_size);
		btrfs_mark_buffer_dirty(leaf);
4892
	}
C
Chris Mason 已提交
4893
	btrfs_free_path(path);
C
Chris Mason 已提交
4894
	return ret;
4895 4896
}

C
Chris Mason 已提交
4897
/*
C
Chris Mason 已提交
4898
 * delete the pointer from a given node.
C
Chris Mason 已提交
4899
 *
C
Chris Mason 已提交
4900 4901
 * the tree should have been previously balanced so the deletion does not
 * empty a node.
C
Chris Mason 已提交
4902
 */
4903 4904
static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
		    int level, int slot)
4905
{
4906
	struct extent_buffer *parent = path->nodes[level];
4907
	u32 nritems;
4908
	int ret;
4909

4910
	nritems = btrfs_header_nritems(parent);
C
Chris Mason 已提交
4911
	if (slot != nritems - 1) {
4912 4913
		if (level) {
			ret = tree_mod_log_insert_move(parent, slot, slot + 1,
4914
					nritems - slot - 1);
4915 4916
			BUG_ON(ret < 0);
		}
4917 4918 4919
		memmove_extent_buffer(parent,
			      btrfs_node_key_ptr_offset(slot),
			      btrfs_node_key_ptr_offset(slot + 1),
C
Chris Mason 已提交
4920 4921
			      sizeof(struct btrfs_key_ptr) *
			      (nritems - slot - 1));
4922
	} else if (level) {
4923 4924
		ret = tree_mod_log_insert_key(parent, slot, MOD_LOG_KEY_REMOVE,
				GFP_NOFS);
4925
		BUG_ON(ret < 0);
4926
	}
4927

4928
	nritems--;
4929
	btrfs_set_header_nritems(parent, nritems);
4930
	if (nritems == 0 && parent == root->node) {
4931
		BUG_ON(btrfs_header_level(root->node) != 1);
4932
		/* just turn the root into a leaf and break */
4933
		btrfs_set_header_level(root->node, 0);
4934
	} else if (slot == 0) {
4935 4936 4937
		struct btrfs_disk_key disk_key;

		btrfs_node_key(parent, &disk_key, 0);
4938
		fixup_low_keys(path, &disk_key, level + 1);
4939
	}
C
Chris Mason 已提交
4940
	btrfs_mark_buffer_dirty(parent);
4941 4942
}

4943 4944
/*
 * a helper function to delete the leaf pointed to by path->slots[1] and
4945
 * path->nodes[1].
4946 4947 4948 4949 4950 4951 4952
 *
 * This deletes the pointer in path->nodes[1] and frees the leaf
 * block extent.  zero is returned if it all worked out, < 0 otherwise.
 *
 * The path must have already been setup for deleting the leaf, including
 * all the proper balancing.  path->nodes[1] must be locked.
 */
4953 4954 4955 4956
static noinline void btrfs_del_leaf(struct btrfs_trans_handle *trans,
				    struct btrfs_root *root,
				    struct btrfs_path *path,
				    struct extent_buffer *leaf)
4957
{
4958
	WARN_ON(btrfs_header_generation(leaf) != trans->transid);
4959
	del_ptr(root, path, 1, path->slots[1]);
4960

4961 4962 4963 4964 4965 4966
	/*
	 * btrfs_free_extent is expensive, we want to make sure we
	 * aren't holding any locks when we call it
	 */
	btrfs_unlock_up_safe(path, 0);

4967 4968
	root_sub_used(root, leaf->len);

4969
	extent_buffer_get(leaf);
4970
	btrfs_free_tree_block(trans, root, leaf, 0, 1);
4971
	free_extent_buffer_stale(leaf);
4972
}
C
Chris Mason 已提交
4973 4974 4975 4976
/*
 * delete the item at the leaf level in path.  If that empties
 * the leaf, remove it from the tree
 */
4977 4978
int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
		    struct btrfs_path *path, int slot, int nr)
4979
{
4980
	struct btrfs_fs_info *fs_info = root->fs_info;
4981 4982
	struct extent_buffer *leaf;
	struct btrfs_item *item;
4983 4984
	u32 last_off;
	u32 dsize = 0;
C
Chris Mason 已提交
4985 4986
	int ret = 0;
	int wret;
4987
	int i;
4988
	u32 nritems;
4989

4990
	leaf = path->nodes[0];
4991 4992 4993 4994 4995
	last_off = btrfs_item_offset_nr(leaf, slot + nr - 1);

	for (i = 0; i < nr; i++)
		dsize += btrfs_item_size_nr(leaf, slot + i);

4996
	nritems = btrfs_header_nritems(leaf);
4997

4998
	if (slot + nr != nritems) {
4999
		int data_end = leaf_data_end(leaf);
5000
		struct btrfs_map_token token;
5001

5002
		memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
C
Chris Mason 已提交
5003
			      data_end + dsize,
5004
			      BTRFS_LEAF_DATA_OFFSET + data_end,
5005
			      last_off - data_end);
5006

5007
		btrfs_init_map_token(&token, leaf);
5008
		for (i = slot + nr; i < nritems; i++) {
5009
			u32 ioff;
5010

5011
			item = btrfs_item_nr(i);
5012 5013 5014
			ioff = btrfs_token_item_offset(leaf, item, &token);
			btrfs_set_token_item_offset(leaf, item,
						    ioff + dsize, &token);
C
Chris Mason 已提交
5015
		}
5016

5017
		memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot),
5018
			      btrfs_item_nr_offset(slot + nr),
C
Chris Mason 已提交
5019
			      sizeof(struct btrfs_item) *
5020
			      (nritems - slot - nr));
5021
	}
5022 5023
	btrfs_set_header_nritems(leaf, nritems - nr);
	nritems -= nr;
5024

C
Chris Mason 已提交
5025
	/* delete the leaf if we've emptied it */
5026
	if (nritems == 0) {
5027 5028
		if (leaf == root->node) {
			btrfs_set_header_level(leaf, 0);
5029
		} else {
5030
			btrfs_set_path_blocking(path);
5031
			btrfs_clean_tree_block(leaf);
5032
			btrfs_del_leaf(trans, root, path, leaf);
5033
		}
5034
	} else {
5035
		int used = leaf_space_used(leaf, 0, nritems);
C
Chris Mason 已提交
5036
		if (slot == 0) {
5037 5038 5039
			struct btrfs_disk_key disk_key;

			btrfs_item_key(leaf, &disk_key, 0);
5040
			fixup_low_keys(path, &disk_key, 1);
C
Chris Mason 已提交
5041 5042
		}

C
Chris Mason 已提交
5043
		/* delete the leaf if it is mostly empty */
5044
		if (used < BTRFS_LEAF_DATA_SIZE(fs_info) / 3) {
5045 5046 5047 5048
			/* push_leaf_left fixes the path.
			 * make sure the path still points to our leaf
			 * for possible call to del_ptr below
			 */
5049
			slot = path->slots[1];
5050 5051
			extent_buffer_get(leaf);

5052
			btrfs_set_path_blocking(path);
5053 5054
			wret = push_leaf_left(trans, root, path, 1, 1,
					      1, (u32)-1);
5055
			if (wret < 0 && wret != -ENOSPC)
C
Chris Mason 已提交
5056
				ret = wret;
5057 5058 5059

			if (path->nodes[0] == leaf &&
			    btrfs_header_nritems(leaf)) {
5060 5061
				wret = push_leaf_right(trans, root, path, 1,
						       1, 1, 0);
5062
				if (wret < 0 && wret != -ENOSPC)
C
Chris Mason 已提交
5063 5064
					ret = wret;
			}
5065 5066

			if (btrfs_header_nritems(leaf) == 0) {
5067
				path->slots[1] = slot;
5068
				btrfs_del_leaf(trans, root, path, leaf);
5069
				free_extent_buffer(leaf);
5070
				ret = 0;
C
Chris Mason 已提交
5071
			} else {
5072 5073 5074 5075 5076 5077 5078
				/* if we're still in the path, make sure
				 * we're dirty.  Otherwise, one of the
				 * push_leaf functions must have already
				 * dirtied this buffer
				 */
				if (path->nodes[0] == leaf)
					btrfs_mark_buffer_dirty(leaf);
5079
				free_extent_buffer(leaf);
5080
			}
5081
		} else {
5082
			btrfs_mark_buffer_dirty(leaf);
5083 5084
		}
	}
C
Chris Mason 已提交
5085
	return ret;
5086 5087
}

5088
/*
5089
 * search the tree again to find a leaf with lesser keys
5090 5091
 * returns 0 if it found something or 1 if there are no lesser leaves.
 * returns < 0 on io errors.
C
Chris Mason 已提交
5092 5093 5094
 *
 * This may release the path, and so you may lose any locks held at the
 * time you call it.
5095
 */
5096
int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path)
5097
{
5098 5099 5100
	struct btrfs_key key;
	struct btrfs_disk_key found_key;
	int ret;
5101

5102
	btrfs_item_key_to_cpu(path->nodes[0], &key, 0);
5103

5104
	if (key.offset > 0) {
5105
		key.offset--;
5106
	} else if (key.type > 0) {
5107
		key.type--;
5108 5109
		key.offset = (u64)-1;
	} else if (key.objectid > 0) {
5110
		key.objectid--;
5111 5112 5113
		key.type = (u8)-1;
		key.offset = (u64)-1;
	} else {
5114
		return 1;
5115
	}
5116

5117
	btrfs_release_path(path);
5118 5119 5120 5121 5122
	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
	if (ret < 0)
		return ret;
	btrfs_item_key(path->nodes[0], &found_key, 0);
	ret = comp_keys(&found_key, &key);
5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133
	/*
	 * We might have had an item with the previous key in the tree right
	 * before we released our path. And after we released our path, that
	 * item might have been pushed to the first slot (0) of the leaf we
	 * were holding due to a tree balance. Alternatively, an item with the
	 * previous key can exist as the only element of a leaf (big fat item).
	 * Therefore account for these 2 cases, so that our callers (like
	 * btrfs_previous_item) don't miss an existing item with a key matching
	 * the previous key we computed above.
	 */
	if (ret <= 0)
5134 5135
		return 0;
	return 1;
5136 5137
}

5138 5139
/*
 * A helper function to walk down the tree starting at min_key, and looking
5140 5141
 * for nodes or leaves that are have a minimum transaction id.
 * This is used by the btree defrag code, and tree logging
5142 5143 5144 5145 5146 5147 5148 5149
 *
 * This does not cow, but it does stuff the starting key it finds back
 * into min_key, so you can call btrfs_search_slot with cow=1 on the
 * key and get a writable path.
 *
 * This honors path->lowest_level to prevent descent past a given level
 * of the tree.
 *
C
Chris Mason 已提交
5150 5151 5152 5153
 * min_trans indicates the oldest transaction that you are interested
 * in walking through.  Any nodes or leaves older than min_trans are
 * skipped over (without reading them).
 *
5154 5155 5156 5157
 * returns zero if something useful was found, < 0 on error and 1 if there
 * was nothing in the tree that matched the search criteria.
 */
int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
5158
			 struct btrfs_path *path,
5159 5160 5161 5162 5163
			 u64 min_trans)
{
	struct extent_buffer *cur;
	struct btrfs_key found_key;
	int slot;
5164
	int sret;
5165 5166 5167
	u32 nritems;
	int level;
	int ret = 1;
5168
	int keep_locks = path->keep_locks;
5169

5170
	path->keep_locks = 1;
5171
again:
5172
	cur = btrfs_read_lock_root_node(root);
5173
	level = btrfs_header_level(cur);
5174
	WARN_ON(path->nodes[level]);
5175
	path->nodes[level] = cur;
5176
	path->locks[level] = BTRFS_READ_LOCK;
5177 5178 5179 5180 5181

	if (btrfs_header_generation(cur) < min_trans) {
		ret = 1;
		goto out;
	}
C
Chris Mason 已提交
5182
	while (1) {
5183 5184
		nritems = btrfs_header_nritems(cur);
		level = btrfs_header_level(cur);
5185
		sret = btrfs_bin_search(cur, min_key, level, &slot);
5186 5187 5188 5189
		if (sret < 0) {
			ret = sret;
			goto out;
		}
5190

5191 5192
		/* at the lowest level, we're done, setup the path and exit */
		if (level == path->lowest_level) {
5193 5194
			if (slot >= nritems)
				goto find_next_key;
5195 5196 5197 5198 5199
			ret = 0;
			path->slots[level] = slot;
			btrfs_item_key_to_cpu(cur, &found_key, slot);
			goto out;
		}
5200 5201
		if (sret && slot > 0)
			slot--;
5202
		/*
5203 5204
		 * check this node pointer against the min_trans parameters.
		 * If it is too old, old, skip to the next one.
5205
		 */
C
Chris Mason 已提交
5206
		while (slot < nritems) {
5207
			u64 gen;
5208

5209 5210 5211 5212 5213
			gen = btrfs_node_ptr_generation(cur, slot);
			if (gen < min_trans) {
				slot++;
				continue;
			}
5214
			break;
5215
		}
5216
find_next_key:
5217 5218 5219 5220 5221
		/*
		 * we didn't find a candidate key in this node, walk forward
		 * and find another one
		 */
		if (slot >= nritems) {
5222
			path->slots[level] = slot;
5223
			btrfs_set_path_blocking(path);
5224
			sret = btrfs_find_next_key(root, path, min_key, level,
5225
						  min_trans);
5226
			if (sret == 0) {
5227
				btrfs_release_path(path);
5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239
				goto again;
			} else {
				goto out;
			}
		}
		/* save our key for returning back */
		btrfs_node_key_to_cpu(cur, &found_key, slot);
		path->slots[level] = slot;
		if (level == path->lowest_level) {
			ret = 0;
			goto out;
		}
5240
		btrfs_set_path_blocking(path);
5241
		cur = btrfs_read_node_slot(cur, slot);
5242 5243 5244 5245
		if (IS_ERR(cur)) {
			ret = PTR_ERR(cur);
			goto out;
		}
5246

5247
		btrfs_tree_read_lock(cur);
5248

5249
		path->locks[level - 1] = BTRFS_READ_LOCK;
5250
		path->nodes[level - 1] = cur;
5251
		unlock_up(path, level, 1, 0, NULL);
5252 5253
	}
out:
5254 5255 5256 5257
	path->keep_locks = keep_locks;
	if (ret == 0) {
		btrfs_unlock_up_safe(path, path->lowest_level + 1);
		btrfs_set_path_blocking(path);
5258
		memcpy(min_key, &found_key, sizeof(found_key));
5259
	}
5260 5261 5262 5263 5264 5265
	return ret;
}

/*
 * this is similar to btrfs_next_leaf, but does not try to preserve
 * and fixup the path.  It looks for and returns the next key in the
5266
 * tree based on the current path and the min_trans parameters.
5267 5268 5269 5270 5271 5272 5273
 *
 * 0 is returned if another key is found, < 0 if there are any errors
 * and 1 is returned if there are no higher keys in the tree
 *
 * path->keep_locks should be set to 1 on the search made before
 * calling this function.
 */
5274
int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
5275
			struct btrfs_key *key, int level, u64 min_trans)
5276 5277 5278 5279
{
	int slot;
	struct extent_buffer *c;

5280
	WARN_ON(!path->keep_locks && !path->skip_locking);
C
Chris Mason 已提交
5281
	while (level < BTRFS_MAX_LEVEL) {
5282 5283 5284 5285 5286
		if (!path->nodes[level])
			return 1;

		slot = path->slots[level] + 1;
		c = path->nodes[level];
5287
next:
5288
		if (slot >= btrfs_header_nritems(c)) {
5289 5290 5291 5292 5293
			int ret;
			int orig_lowest;
			struct btrfs_key cur_key;
			if (level + 1 >= BTRFS_MAX_LEVEL ||
			    !path->nodes[level + 1])
5294
				return 1;
5295

5296
			if (path->locks[level + 1] || path->skip_locking) {
5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307
				level++;
				continue;
			}

			slot = btrfs_header_nritems(c) - 1;
			if (level == 0)
				btrfs_item_key_to_cpu(c, &cur_key, slot);
			else
				btrfs_node_key_to_cpu(c, &cur_key, slot);

			orig_lowest = path->lowest_level;
5308
			btrfs_release_path(path);
5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320
			path->lowest_level = level;
			ret = btrfs_search_slot(NULL, root, &cur_key, path,
						0, 0);
			path->lowest_level = orig_lowest;
			if (ret < 0)
				return ret;

			c = path->nodes[level];
			slot = path->slots[level];
			if (ret == 0)
				slot++;
			goto next;
5321
		}
5322

5323 5324
		if (level == 0)
			btrfs_item_key_to_cpu(c, key, slot);
5325 5326 5327 5328 5329 5330 5331
		else {
			u64 gen = btrfs_node_ptr_generation(c, slot);

			if (gen < min_trans) {
				slot++;
				goto next;
			}
5332
			btrfs_node_key_to_cpu(c, key, slot);
5333
		}
5334 5335 5336 5337 5338
		return 0;
	}
	return 1;
}

C
Chris Mason 已提交
5339
/*
5340
 * search the tree again to find a leaf with greater keys
C
Chris Mason 已提交
5341 5342
 * returns 0 if it found something or 1 if there are no greater leaves.
 * returns < 0 on io errors.
C
Chris Mason 已提交
5343
 */
C
Chris Mason 已提交
5344
int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path)
J
Jan Schmidt 已提交
5345 5346 5347 5348 5349 5350
{
	return btrfs_next_old_leaf(root, path, 0);
}

int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path,
			u64 time_seq)
5351 5352
{
	int slot;
5353
	int level;
5354
	struct extent_buffer *c;
5355
	struct extent_buffer *next;
5356 5357 5358
	struct btrfs_key key;
	u32 nritems;
	int ret;
5359
	int old_spinning = path->leave_spinning;
5360
	int next_rw_lock = 0;
5361 5362

	nritems = btrfs_header_nritems(path->nodes[0]);
C
Chris Mason 已提交
5363
	if (nritems == 0)
5364 5365
		return 1;

5366 5367 5368 5369
	btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1);
again:
	level = 1;
	next = NULL;
5370
	next_rw_lock = 0;
5371
	btrfs_release_path(path);
5372

5373
	path->keep_locks = 1;
5374
	path->leave_spinning = 1;
5375

J
Jan Schmidt 已提交
5376 5377 5378 5379
	if (time_seq)
		ret = btrfs_search_old_slot(root, &key, path, time_seq);
	else
		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5380 5381 5382 5383 5384
	path->keep_locks = 0;

	if (ret < 0)
		return ret;

5385
	nritems = btrfs_header_nritems(path->nodes[0]);
5386 5387 5388 5389 5390 5391
	/*
	 * by releasing the path above we dropped all our locks.  A balance
	 * could have added more items next to the key that used to be
	 * at the very end of the block.  So, check again here and
	 * advance the path if there are now more items available.
	 */
5392
	if (nritems > 0 && path->slots[0] < nritems - 1) {
5393 5394
		if (ret == 0)
			path->slots[0]++;
5395
		ret = 0;
5396 5397
		goto done;
	}
5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415
	/*
	 * So the above check misses one case:
	 * - after releasing the path above, someone has removed the item that
	 *   used to be at the very end of the block, and balance between leafs
	 *   gets another one with bigger key.offset to replace it.
	 *
	 * This one should be returned as well, or we can get leaf corruption
	 * later(esp. in __btrfs_drop_extents()).
	 *
	 * And a bit more explanation about this check,
	 * with ret > 0, the key isn't found, the path points to the slot
	 * where it should be inserted, so the path->slots[0] item must be the
	 * bigger one.
	 */
	if (nritems > 0 && ret > 0 && path->slots[0] == nritems - 1) {
		ret = 0;
		goto done;
	}
5416

C
Chris Mason 已提交
5417
	while (level < BTRFS_MAX_LEVEL) {
5418 5419 5420 5421
		if (!path->nodes[level]) {
			ret = 1;
			goto done;
		}
5422

5423 5424
		slot = path->slots[level] + 1;
		c = path->nodes[level];
5425
		if (slot >= btrfs_header_nritems(c)) {
5426
			level++;
5427 5428 5429 5430
			if (level == BTRFS_MAX_LEVEL) {
				ret = 1;
				goto done;
			}
5431 5432
			continue;
		}
5433

5434
		if (next) {
5435
			btrfs_tree_unlock_rw(next, next_rw_lock);
5436
			free_extent_buffer(next);
5437
		}
5438

5439
		next = c;
5440
		next_rw_lock = path->locks[level];
5441
		ret = read_block_for_search(root, path, &next, level,
5442
					    slot, &key);
5443 5444
		if (ret == -EAGAIN)
			goto again;
5445

5446
		if (ret < 0) {
5447
			btrfs_release_path(path);
5448 5449 5450
			goto done;
		}

5451
		if (!path->skip_locking) {
5452
			ret = btrfs_try_tree_read_lock(next);
5453 5454 5455 5456 5457 5458 5459 5460
			if (!ret && time_seq) {
				/*
				 * If we don't get the lock, we may be racing
				 * with push_leaf_left, holding that lock while
				 * itself waiting for the leaf we've currently
				 * locked. To solve this situation, we give up
				 * on our lock and cycle.
				 */
5461
				free_extent_buffer(next);
5462 5463 5464 5465
				btrfs_release_path(path);
				cond_resched();
				goto again;
			}
5466 5467
			if (!ret) {
				btrfs_set_path_blocking(path);
5468
				btrfs_tree_read_lock(next);
5469
			}
5470
			next_rw_lock = BTRFS_READ_LOCK;
5471
		}
5472 5473 5474
		break;
	}
	path->slots[level] = slot;
C
Chris Mason 已提交
5475
	while (1) {
5476 5477
		level--;
		c = path->nodes[level];
5478
		if (path->locks[level])
5479
			btrfs_tree_unlock_rw(c, path->locks[level]);
5480

5481
		free_extent_buffer(c);
5482 5483
		path->nodes[level] = next;
		path->slots[level] = 0;
5484
		if (!path->skip_locking)
5485
			path->locks[level] = next_rw_lock;
5486 5487
		if (!level)
			break;
5488

5489
		ret = read_block_for_search(root, path, &next, level,
5490
					    0, &key);
5491 5492 5493
		if (ret == -EAGAIN)
			goto again;

5494
		if (ret < 0) {
5495
			btrfs_release_path(path);
5496 5497 5498
			goto done;
		}

5499
		if (!path->skip_locking) {
5500
			ret = btrfs_try_tree_read_lock(next);
5501 5502
			if (!ret) {
				btrfs_set_path_blocking(path);
5503 5504
				btrfs_tree_read_lock(next);
			}
5505
			next_rw_lock = BTRFS_READ_LOCK;
5506
		}
5507
	}
5508
	ret = 0;
5509
done:
5510
	unlock_up(path, 0, 1, 0, NULL);
5511 5512 5513 5514 5515
	path->leave_spinning = old_spinning;
	if (!old_spinning)
		btrfs_set_path_blocking(path);

	return ret;
5516
}
5517

5518 5519 5520 5521 5522 5523
/*
 * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps
 * searching until it gets past min_objectid or finds an item of 'type'
 *
 * returns 0 if something is found, 1 if nothing was found and < 0 on error
 */
5524 5525 5526 5527 5528 5529
int btrfs_previous_item(struct btrfs_root *root,
			struct btrfs_path *path, u64 min_objectid,
			int type)
{
	struct btrfs_key found_key;
	struct extent_buffer *leaf;
5530
	u32 nritems;
5531 5532
	int ret;

C
Chris Mason 已提交
5533
	while (1) {
5534
		if (path->slots[0] == 0) {
5535
			btrfs_set_path_blocking(path);
5536 5537 5538 5539 5540 5541 5542
			ret = btrfs_prev_leaf(root, path);
			if (ret != 0)
				return ret;
		} else {
			path->slots[0]--;
		}
		leaf = path->nodes[0];
5543 5544 5545 5546 5547 5548
		nritems = btrfs_header_nritems(leaf);
		if (nritems == 0)
			return 1;
		if (path->slots[0] == nritems)
			path->slots[0]--;

5549
		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5550 5551
		if (found_key.objectid < min_objectid)
			break;
5552 5553
		if (found_key.type == type)
			return 0;
5554 5555 5556
		if (found_key.objectid == min_objectid &&
		    found_key.type < type)
			break;
5557 5558 5559
	}
	return 1;
}
5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602

/*
 * search in extent tree to find a previous Metadata/Data extent item with
 * min objecitd.
 *
 * returns 0 if something is found, 1 if nothing was found and < 0 on error
 */
int btrfs_previous_extent_item(struct btrfs_root *root,
			struct btrfs_path *path, u64 min_objectid)
{
	struct btrfs_key found_key;
	struct extent_buffer *leaf;
	u32 nritems;
	int ret;

	while (1) {
		if (path->slots[0] == 0) {
			btrfs_set_path_blocking(path);
			ret = btrfs_prev_leaf(root, path);
			if (ret != 0)
				return ret;
		} else {
			path->slots[0]--;
		}
		leaf = path->nodes[0];
		nritems = btrfs_header_nritems(leaf);
		if (nritems == 0)
			return 1;
		if (path->slots[0] == nritems)
			path->slots[0]--;

		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
		if (found_key.objectid < min_objectid)
			break;
		if (found_key.type == BTRFS_EXTENT_ITEM_KEY ||
		    found_key.type == BTRFS_METADATA_ITEM_KEY)
			return 0;
		if (found_key.objectid == min_objectid &&
		    found_key.type < BTRFS_EXTENT_ITEM_KEY)
			break;
	}
	return 1;
}