ctree.c 151.4 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
C
Chris Mason 已提交
2
/*
C
Chris Mason 已提交
3
 * Copyright (C) 2007,2008 Oracle.  All rights reserved.
C
Chris Mason 已提交
4 5
 */

6
#include <linux/sched.h>
7
#include <linux/slab.h>
8
#include <linux/rbtree.h>
9
#include <linux/mm.h>
10 11
#include "ctree.h"
#include "disk-io.h"
12
#include "transaction.h"
13
#include "print-tree.h"
14
#include "locking.h"
15

16 17
static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
		      *root, struct btrfs_path *path, int level);
18 19 20
static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root *root,
		      const struct btrfs_key *ins_key, struct btrfs_path *path,
		      int data_size, int extend);
21
static int push_node_left(struct btrfs_trans_handle *trans,
22 23
			  struct btrfs_fs_info *fs_info,
			  struct extent_buffer *dst,
24
			  struct extent_buffer *src, int empty);
25
static int balance_node_right(struct btrfs_trans_handle *trans,
26
			      struct btrfs_fs_info *fs_info,
27 28
			      struct extent_buffer *dst_buf,
			      struct extent_buffer *src_buf);
29 30
static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
		    int level, int slot);
31

C
Chris Mason 已提交
32
struct btrfs_path *btrfs_alloc_path(void)
C
Chris Mason 已提交
33
{
34
	return kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS);
C
Chris Mason 已提交
35 36
}

37 38 39 40 41 42 43 44
/*
 * set all locked nodes in the path to blocking locks.  This should
 * be done before scheduling
 */
noinline void btrfs_set_path_blocking(struct btrfs_path *p)
{
	int i;
	for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
45 46 47 48 49 50 51
		if (!p->nodes[i] || !p->locks[i])
			continue;
		btrfs_set_lock_blocking_rw(p->nodes[i], p->locks[i]);
		if (p->locks[i] == BTRFS_READ_LOCK)
			p->locks[i] = BTRFS_READ_LOCK_BLOCKING;
		else if (p->locks[i] == BTRFS_WRITE_LOCK)
			p->locks[i] = BTRFS_WRITE_LOCK_BLOCKING;
52 53 54 55 56
	}
}

/*
 * reset all the locked nodes in the patch to spinning locks.
57 58 59 60 61
 *
 * held is used to keep lockdep happy, when lockdep is enabled
 * we set held to a blocking lock before we go around and
 * retake all the spinlocks in the path.  You can safely use NULL
 * for held
62
 */
63
noinline void btrfs_clear_path_blocking(struct btrfs_path *p,
64
					struct extent_buffer *held, int held_rw)
65 66
{
	int i;
67

68 69 70 71 72 73 74
	if (held) {
		btrfs_set_lock_blocking_rw(held, held_rw);
		if (held_rw == BTRFS_WRITE_LOCK)
			held_rw = BTRFS_WRITE_LOCK_BLOCKING;
		else if (held_rw == BTRFS_READ_LOCK)
			held_rw = BTRFS_READ_LOCK_BLOCKING;
	}
75 76 77
	btrfs_set_path_blocking(p);

	for (i = BTRFS_MAX_LEVEL - 1; i >= 0; i--) {
78 79 80 81 82 83 84
		if (p->nodes[i] && p->locks[i]) {
			btrfs_clear_lock_blocking_rw(p->nodes[i], p->locks[i]);
			if (p->locks[i] == BTRFS_WRITE_LOCK_BLOCKING)
				p->locks[i] = BTRFS_WRITE_LOCK;
			else if (p->locks[i] == BTRFS_READ_LOCK_BLOCKING)
				p->locks[i] = BTRFS_READ_LOCK;
		}
85
	}
86 87

	if (held)
88
		btrfs_clear_lock_blocking_rw(held, held_rw);
89 90
}

C
Chris Mason 已提交
91
/* this also releases the path */
C
Chris Mason 已提交
92
void btrfs_free_path(struct btrfs_path *p)
93
{
94 95
	if (!p)
		return;
96
	btrfs_release_path(p);
C
Chris Mason 已提交
97
	kmem_cache_free(btrfs_path_cachep, p);
98 99
}

C
Chris Mason 已提交
100 101 102 103 104 105
/*
 * path release drops references on the extent buffers in the path
 * and it drops any locks held by this path
 *
 * It is safe to call this on paths that no locks or extent buffers held.
 */
106
noinline void btrfs_release_path(struct btrfs_path *p)
107 108
{
	int i;
109

C
Chris Mason 已提交
110
	for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
111
		p->slots[i] = 0;
112
		if (!p->nodes[i])
113 114
			continue;
		if (p->locks[i]) {
115
			btrfs_tree_unlock_rw(p->nodes[i], p->locks[i]);
116 117
			p->locks[i] = 0;
		}
118
		free_extent_buffer(p->nodes[i]);
119
		p->nodes[i] = NULL;
120 121 122
	}
}

C
Chris Mason 已提交
123 124 125 126 127 128 129 130 131 132
/*
 * safely gets a reference on the root node of a tree.  A lock
 * is not taken, so a concurrent writer may put a different node
 * at the root of the tree.  See btrfs_lock_root_node for the
 * looping required.
 *
 * The extent buffer returned by this has a reference taken, so
 * it won't disappear.  It may stop being the root of the tree
 * at any time because there are no locks held.
 */
133 134 135
struct extent_buffer *btrfs_root_node(struct btrfs_root *root)
{
	struct extent_buffer *eb;
136

137 138 139 140 141 142
	while (1) {
		rcu_read_lock();
		eb = rcu_dereference(root->node);

		/*
		 * RCU really hurts here, we could free up the root node because
143
		 * it was COWed but we may not get the new root node yet so do
144 145 146 147 148 149 150 151 152 153
		 * the inc_not_zero dance and if it doesn't work then
		 * synchronize_rcu and try again.
		 */
		if (atomic_inc_not_zero(&eb->refs)) {
			rcu_read_unlock();
			break;
		}
		rcu_read_unlock();
		synchronize_rcu();
	}
154 155 156
	return eb;
}

C
Chris Mason 已提交
157 158 159 160
/* loop around taking references on and locking the root node of the
 * tree until you end up with a lock on the root.  A locked buffer
 * is returned, with a reference held.
 */
161 162 163 164
struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root)
{
	struct extent_buffer *eb;

C
Chris Mason 已提交
165
	while (1) {
166 167
		eb = btrfs_root_node(root);
		btrfs_tree_lock(eb);
168
		if (eb == root->node)
169 170 171 172 173 174 175
			break;
		btrfs_tree_unlock(eb);
		free_extent_buffer(eb);
	}
	return eb;
}

176 177 178 179
/* loop around taking references on and locking the root node of the
 * tree until you end up with a lock on the root.  A locked buffer
 * is returned, with a reference held.
 */
180
struct extent_buffer *btrfs_read_lock_root_node(struct btrfs_root *root)
181 182 183 184 185 186 187 188 189 190 191 192 193 194
{
	struct extent_buffer *eb;

	while (1) {
		eb = btrfs_root_node(root);
		btrfs_tree_read_lock(eb);
		if (eb == root->node)
			break;
		btrfs_tree_read_unlock(eb);
		free_extent_buffer(eb);
	}
	return eb;
}

C
Chris Mason 已提交
195 196 197 198
/* cowonly root (everything not a reference counted cow subvolume), just get
 * put onto a simple dirty list.  transaction.c walks this to make sure they
 * get properly updated on disk.
 */
199 200
static void add_root_to_dirty_list(struct btrfs_root *root)
{
201 202
	struct btrfs_fs_info *fs_info = root->fs_info;

203 204 205 206
	if (test_bit(BTRFS_ROOT_DIRTY, &root->state) ||
	    !test_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state))
		return;

207
	spin_lock(&fs_info->trans_lock);
208 209 210 211
	if (!test_and_set_bit(BTRFS_ROOT_DIRTY, &root->state)) {
		/* Want the extent tree to be the last on the list */
		if (root->objectid == BTRFS_EXTENT_TREE_OBJECTID)
			list_move_tail(&root->dirty_list,
212
				       &fs_info->dirty_cowonly_roots);
213 214
		else
			list_move(&root->dirty_list,
215
				  &fs_info->dirty_cowonly_roots);
216
	}
217
	spin_unlock(&fs_info->trans_lock);
218 219
}

C
Chris Mason 已提交
220 221 222 223 224
/*
 * used by snapshot creation to make a copy of a root for a tree with
 * a given objectid.  The buffer with the new root node is returned in
 * cow_ret, and this func returns zero on success or a negative error code.
 */
225 226 227 228 229
int btrfs_copy_root(struct btrfs_trans_handle *trans,
		      struct btrfs_root *root,
		      struct extent_buffer *buf,
		      struct extent_buffer **cow_ret, u64 new_root_objectid)
{
230
	struct btrfs_fs_info *fs_info = root->fs_info;
231 232 233
	struct extent_buffer *cow;
	int ret = 0;
	int level;
234
	struct btrfs_disk_key disk_key;
235

236
	WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
237
		trans->transid != fs_info->running_transaction->transid);
238 239
	WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
		trans->transid != root->last_trans);
240 241

	level = btrfs_header_level(buf);
242 243 244 245
	if (level == 0)
		btrfs_item_key(buf, &disk_key, 0);
	else
		btrfs_node_key(buf, &disk_key, 0);
Z
Zheng Yan 已提交
246

247 248
	cow = btrfs_alloc_tree_block(trans, root, 0, new_root_objectid,
			&disk_key, level, buf->start, 0);
249
	if (IS_ERR(cow))
250 251
		return PTR_ERR(cow);

252
	copy_extent_buffer_full(cow, buf);
253 254
	btrfs_set_header_bytenr(cow, cow->start);
	btrfs_set_header_generation(cow, trans->transid);
255 256 257 258 259 260 261
	btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
	btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
				     BTRFS_HEADER_FLAG_RELOC);
	if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
		btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
	else
		btrfs_set_header_owner(cow, new_root_objectid);
262

263
	write_extent_buffer_fsid(cow, fs_info->fsid);
Y
Yan Zheng 已提交
264

265
	WARN_ON(btrfs_header_generation(buf) > trans->transid);
266
	if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
267
		ret = btrfs_inc_ref(trans, root, cow, 1);
268
	else
269
		ret = btrfs_inc_ref(trans, root, cow, 0);
270

271 272 273 274 275 276 277 278
	if (ret)
		return ret;

	btrfs_mark_buffer_dirty(cow);
	*cow_ret = cow;
	return 0;
}

279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295
enum mod_log_op {
	MOD_LOG_KEY_REPLACE,
	MOD_LOG_KEY_ADD,
	MOD_LOG_KEY_REMOVE,
	MOD_LOG_KEY_REMOVE_WHILE_FREEING,
	MOD_LOG_KEY_REMOVE_WHILE_MOVING,
	MOD_LOG_MOVE_KEYS,
	MOD_LOG_ROOT_REPLACE,
};

struct tree_mod_root {
	u64 logical;
	u8 level;
};

struct tree_mod_elem {
	struct rb_node node;
296
	u64 logical;
297
	u64 seq;
298 299 300 301 302 303 304 305 306 307 308 309 310
	enum mod_log_op op;

	/* this is used for MOD_LOG_KEY_* and MOD_LOG_MOVE_KEYS operations */
	int slot;

	/* this is used for MOD_LOG_KEY* and MOD_LOG_ROOT_REPLACE */
	u64 generation;

	/* those are used for op == MOD_LOG_KEY_{REPLACE,REMOVE} */
	struct btrfs_disk_key key;
	u64 blockptr;

	/* this is used for op == MOD_LOG_MOVE_KEYS */
311 312 313 314
	struct {
		int dst_slot;
		int nr_items;
	} move;
315 316 317 318 319

	/* this is used for op == MOD_LOG_ROOT_REPLACE */
	struct tree_mod_root old_root;
};

320
/*
J
Josef Bacik 已提交
321
 * Pull a new tree mod seq number for our operation.
322
 */
J
Josef Bacik 已提交
323
static inline u64 btrfs_inc_tree_mod_seq(struct btrfs_fs_info *fs_info)
324 325 326 327
{
	return atomic64_inc_return(&fs_info->tree_mod_seq);
}

328 329 330 331 332 333 334 335 336 337
/*
 * This adds a new blocker to the tree mod log's blocker list if the @elem
 * passed does not already have a sequence number set. So when a caller expects
 * to record tree modifications, it should ensure to set elem->seq to zero
 * before calling btrfs_get_tree_mod_seq.
 * Returns a fresh, unused tree log modification sequence number, even if no new
 * blocker was added.
 */
u64 btrfs_get_tree_mod_seq(struct btrfs_fs_info *fs_info,
			   struct seq_list *elem)
338
{
339
	write_lock(&fs_info->tree_mod_log_lock);
340
	spin_lock(&fs_info->tree_mod_seq_lock);
341
	if (!elem->seq) {
J
Josef Bacik 已提交
342
		elem->seq = btrfs_inc_tree_mod_seq(fs_info);
343 344
		list_add_tail(&elem->list, &fs_info->tree_mod_seq_list);
	}
345
	spin_unlock(&fs_info->tree_mod_seq_lock);
346
	write_unlock(&fs_info->tree_mod_log_lock);
347

J
Josef Bacik 已提交
348
	return elem->seq;
349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366
}

void btrfs_put_tree_mod_seq(struct btrfs_fs_info *fs_info,
			    struct seq_list *elem)
{
	struct rb_root *tm_root;
	struct rb_node *node;
	struct rb_node *next;
	struct seq_list *cur_elem;
	struct tree_mod_elem *tm;
	u64 min_seq = (u64)-1;
	u64 seq_putting = elem->seq;

	if (!seq_putting)
		return;

	spin_lock(&fs_info->tree_mod_seq_lock);
	list_del(&elem->list);
367
	elem->seq = 0;
368 369

	list_for_each_entry(cur_elem, &fs_info->tree_mod_seq_list, list) {
370
		if (cur_elem->seq < min_seq) {
371 372 373 374 375
			if (seq_putting > cur_elem->seq) {
				/*
				 * blocker with lower sequence number exists, we
				 * cannot remove anything from the log
				 */
376 377
				spin_unlock(&fs_info->tree_mod_seq_lock);
				return;
378 379 380 381
			}
			min_seq = cur_elem->seq;
		}
	}
382 383
	spin_unlock(&fs_info->tree_mod_seq_lock);

384 385 386 387
	/*
	 * anything that's lower than the lowest existing (read: blocked)
	 * sequence number can be removed from the tree.
	 */
388
	write_lock(&fs_info->tree_mod_log_lock);
389 390 391
	tm_root = &fs_info->tree_mod_log;
	for (node = rb_first(tm_root); node; node = next) {
		next = rb_next(node);
392
		tm = rb_entry(node, struct tree_mod_elem, node);
393
		if (tm->seq > min_seq)
394 395 396 397
			continue;
		rb_erase(node, tm_root);
		kfree(tm);
	}
398
	write_unlock(&fs_info->tree_mod_log_lock);
399 400 401 402
}

/*
 * key order of the log:
403
 *       node/leaf start address -> sequence
404
 *
405 406 407
 * The 'start address' is the logical address of the *new* root node
 * for root replace operations, or the logical address of the affected
 * block for all other operations.
408
 *
409
 * Note: must be called with write lock for fs_info::tree_mod_log_lock.
410 411 412 413 414 415 416 417
 */
static noinline int
__tree_mod_log_insert(struct btrfs_fs_info *fs_info, struct tree_mod_elem *tm)
{
	struct rb_root *tm_root;
	struct rb_node **new;
	struct rb_node *parent = NULL;
	struct tree_mod_elem *cur;
418

J
Josef Bacik 已提交
419
	tm->seq = btrfs_inc_tree_mod_seq(fs_info);
420 421 422 423

	tm_root = &fs_info->tree_mod_log;
	new = &tm_root->rb_node;
	while (*new) {
424
		cur = rb_entry(*new, struct tree_mod_elem, node);
425
		parent = *new;
426
		if (cur->logical < tm->logical)
427
			new = &((*new)->rb_left);
428
		else if (cur->logical > tm->logical)
429
			new = &((*new)->rb_right);
430
		else if (cur->seq < tm->seq)
431
			new = &((*new)->rb_left);
432
		else if (cur->seq > tm->seq)
433
			new = &((*new)->rb_right);
434 435
		else
			return -EEXIST;
436 437 438 439
	}

	rb_link_node(&tm->node, parent, new);
	rb_insert_color(&tm->node, tm_root);
440
	return 0;
441 442
}

443 444 445 446
/*
 * Determines if logging can be omitted. Returns 1 if it can. Otherwise, it
 * returns zero with the tree_mod_log_lock acquired. The caller must hold
 * this until all tree mod log insertions are recorded in the rb tree and then
447
 * write unlock fs_info::tree_mod_log_lock.
448
 */
449 450 451 452 453
static inline int tree_mod_dont_log(struct btrfs_fs_info *fs_info,
				    struct extent_buffer *eb) {
	smp_mb();
	if (list_empty(&(fs_info)->tree_mod_seq_list))
		return 1;
454 455
	if (eb && btrfs_header_level(eb) == 0)
		return 1;
456

457
	write_lock(&fs_info->tree_mod_log_lock);
458
	if (list_empty(&(fs_info)->tree_mod_seq_list)) {
459
		write_unlock(&fs_info->tree_mod_log_lock);
460 461 462
		return 1;
	}

463 464 465
	return 0;
}

466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481
/* Similar to tree_mod_dont_log, but doesn't acquire any locks. */
static inline int tree_mod_need_log(const struct btrfs_fs_info *fs_info,
				    struct extent_buffer *eb)
{
	smp_mb();
	if (list_empty(&(fs_info)->tree_mod_seq_list))
		return 0;
	if (eb && btrfs_header_level(eb) == 0)
		return 0;

	return 1;
}

static struct tree_mod_elem *
alloc_tree_mod_elem(struct extent_buffer *eb, int slot,
		    enum mod_log_op op, gfp_t flags)
482
{
483
	struct tree_mod_elem *tm;
484

485 486
	tm = kzalloc(sizeof(*tm), flags);
	if (!tm)
487
		return NULL;
488

489
	tm->logical = eb->start;
490 491 492 493 494 495 496
	if (op != MOD_LOG_KEY_ADD) {
		btrfs_node_key(eb, &tm->key, slot);
		tm->blockptr = btrfs_node_blockptr(eb, slot);
	}
	tm->op = op;
	tm->slot = slot;
	tm->generation = btrfs_node_ptr_generation(eb, slot);
497
	RB_CLEAR_NODE(&tm->node);
498

499
	return tm;
500 501
}

502 503
static noinline int tree_mod_log_insert_key(struct extent_buffer *eb, int slot,
		enum mod_log_op op, gfp_t flags)
504
{
505 506 507
	struct tree_mod_elem *tm;
	int ret;

508
	if (!tree_mod_need_log(eb->fs_info, eb))
509 510 511 512 513 514
		return 0;

	tm = alloc_tree_mod_elem(eb, slot, op, flags);
	if (!tm)
		return -ENOMEM;

515
	if (tree_mod_dont_log(eb->fs_info, eb)) {
516
		kfree(tm);
517
		return 0;
518 519
	}

520
	ret = __tree_mod_log_insert(eb->fs_info, tm);
521
	write_unlock(&eb->fs_info->tree_mod_log_lock);
522 523
	if (ret)
		kfree(tm);
524

525
	return ret;
526 527
}

528 529
static noinline int tree_mod_log_insert_move(struct extent_buffer *eb,
		int dst_slot, int src_slot, int nr_items)
530
{
531 532 533
	struct tree_mod_elem *tm = NULL;
	struct tree_mod_elem **tm_list = NULL;
	int ret = 0;
534
	int i;
535
	int locked = 0;
536

537
	if (!tree_mod_need_log(eb->fs_info, eb))
J
Jan Schmidt 已提交
538
		return 0;
539

540
	tm_list = kcalloc(nr_items, sizeof(struct tree_mod_elem *), GFP_NOFS);
541 542 543
	if (!tm_list)
		return -ENOMEM;

544
	tm = kzalloc(sizeof(*tm), GFP_NOFS);
545 546 547 548 549
	if (!tm) {
		ret = -ENOMEM;
		goto free_tms;
	}

550
	tm->logical = eb->start;
551 552 553 554 555 556 557
	tm->slot = src_slot;
	tm->move.dst_slot = dst_slot;
	tm->move.nr_items = nr_items;
	tm->op = MOD_LOG_MOVE_KEYS;

	for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) {
		tm_list[i] = alloc_tree_mod_elem(eb, i + dst_slot,
558
		    MOD_LOG_KEY_REMOVE_WHILE_MOVING, GFP_NOFS);
559 560 561 562 563 564
		if (!tm_list[i]) {
			ret = -ENOMEM;
			goto free_tms;
		}
	}

565
	if (tree_mod_dont_log(eb->fs_info, eb))
566 567 568
		goto free_tms;
	locked = 1;

569 570 571 572 573
	/*
	 * When we override something during the move, we log these removals.
	 * This can only happen when we move towards the beginning of the
	 * buffer, i.e. dst_slot < src_slot.
	 */
574
	for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) {
575
		ret = __tree_mod_log_insert(eb->fs_info, tm_list[i]);
576 577
		if (ret)
			goto free_tms;
578 579
	}

580
	ret = __tree_mod_log_insert(eb->fs_info, tm);
581 582
	if (ret)
		goto free_tms;
583
	write_unlock(&eb->fs_info->tree_mod_log_lock);
584
	kfree(tm_list);
J
Jan Schmidt 已提交
585

586 587 588 589
	return 0;
free_tms:
	for (i = 0; i < nr_items; i++) {
		if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node))
590
			rb_erase(&tm_list[i]->node, &eb->fs_info->tree_mod_log);
591 592 593
		kfree(tm_list[i]);
	}
	if (locked)
594
		write_unlock(&eb->fs_info->tree_mod_log_lock);
595 596
	kfree(tm_list);
	kfree(tm);
597

598
	return ret;
599 600
}

601 602 603 604
static inline int
__tree_mod_log_free_eb(struct btrfs_fs_info *fs_info,
		       struct tree_mod_elem **tm_list,
		       int nritems)
605
{
606
	int i, j;
607 608 609
	int ret;

	for (i = nritems - 1; i >= 0; i--) {
610 611 612 613 614 615 616
		ret = __tree_mod_log_insert(fs_info, tm_list[i]);
		if (ret) {
			for (j = nritems - 1; j > i; j--)
				rb_erase(&tm_list[j]->node,
					 &fs_info->tree_mod_log);
			return ret;
		}
617
	}
618 619

	return 0;
620 621
}

622 623
static noinline int tree_mod_log_insert_root(struct extent_buffer *old_root,
			 struct extent_buffer *new_root, int log_removal)
624
{
625
	struct btrfs_fs_info *fs_info = old_root->fs_info;
626 627 628 629 630
	struct tree_mod_elem *tm = NULL;
	struct tree_mod_elem **tm_list = NULL;
	int nritems = 0;
	int ret = 0;
	int i;
631

632
	if (!tree_mod_need_log(fs_info, NULL))
633 634
		return 0;

635 636
	if (log_removal && btrfs_header_level(old_root) > 0) {
		nritems = btrfs_header_nritems(old_root);
637
		tm_list = kcalloc(nritems, sizeof(struct tree_mod_elem *),
638
				  GFP_NOFS);
639 640 641 642 643 644
		if (!tm_list) {
			ret = -ENOMEM;
			goto free_tms;
		}
		for (i = 0; i < nritems; i++) {
			tm_list[i] = alloc_tree_mod_elem(old_root, i,
645
			    MOD_LOG_KEY_REMOVE_WHILE_FREEING, GFP_NOFS);
646 647 648 649 650 651
			if (!tm_list[i]) {
				ret = -ENOMEM;
				goto free_tms;
			}
		}
	}
652

653
	tm = kzalloc(sizeof(*tm), GFP_NOFS);
654 655 656 657
	if (!tm) {
		ret = -ENOMEM;
		goto free_tms;
	}
658

659
	tm->logical = new_root->start;
660 661 662 663 664
	tm->old_root.logical = old_root->start;
	tm->old_root.level = btrfs_header_level(old_root);
	tm->generation = btrfs_header_generation(old_root);
	tm->op = MOD_LOG_ROOT_REPLACE;

665 666 667 668 669 670 671 672
	if (tree_mod_dont_log(fs_info, NULL))
		goto free_tms;

	if (tm_list)
		ret = __tree_mod_log_free_eb(fs_info, tm_list, nritems);
	if (!ret)
		ret = __tree_mod_log_insert(fs_info, tm);

673
	write_unlock(&fs_info->tree_mod_log_lock);
674 675 676 677 678 679 680 681 682 683 684 685 686 687 688
	if (ret)
		goto free_tms;
	kfree(tm_list);

	return ret;

free_tms:
	if (tm_list) {
		for (i = 0; i < nritems; i++)
			kfree(tm_list[i]);
		kfree(tm_list);
	}
	kfree(tm);

	return ret;
689 690 691 692 693 694 695 696 697 698 699
}

static struct tree_mod_elem *
__tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq,
		      int smallest)
{
	struct rb_root *tm_root;
	struct rb_node *node;
	struct tree_mod_elem *cur = NULL;
	struct tree_mod_elem *found = NULL;

700
	read_lock(&fs_info->tree_mod_log_lock);
701 702 703
	tm_root = &fs_info->tree_mod_log;
	node = tm_root->rb_node;
	while (node) {
704
		cur = rb_entry(node, struct tree_mod_elem, node);
705
		if (cur->logical < start) {
706
			node = node->rb_left;
707
		} else if (cur->logical > start) {
708
			node = node->rb_right;
709
		} else if (cur->seq < min_seq) {
710 711 712 713
			node = node->rb_left;
		} else if (!smallest) {
			/* we want the node with the highest seq */
			if (found)
714
				BUG_ON(found->seq > cur->seq);
715 716
			found = cur;
			node = node->rb_left;
717
		} else if (cur->seq > min_seq) {
718 719
			/* we want the node with the smallest seq */
			if (found)
720
				BUG_ON(found->seq < cur->seq);
721 722 723 724 725 726 727
			found = cur;
			node = node->rb_right;
		} else {
			found = cur;
			break;
		}
	}
728
	read_unlock(&fs_info->tree_mod_log_lock);
729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755

	return found;
}

/*
 * this returns the element from the log with the smallest time sequence
 * value that's in the log (the oldest log item). any element with a time
 * sequence lower than min_seq will be ignored.
 */
static struct tree_mod_elem *
tree_mod_log_search_oldest(struct btrfs_fs_info *fs_info, u64 start,
			   u64 min_seq)
{
	return __tree_mod_log_search(fs_info, start, min_seq, 1);
}

/*
 * this returns the element from the log with the largest time sequence
 * value that's in the log (the most recent log item). any element with
 * a time sequence lower than min_seq will be ignored.
 */
static struct tree_mod_elem *
tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq)
{
	return __tree_mod_log_search(fs_info, start, min_seq, 0);
}

756
static noinline int
757 758
tree_mod_log_eb_copy(struct btrfs_fs_info *fs_info, struct extent_buffer *dst,
		     struct extent_buffer *src, unsigned long dst_offset,
759
		     unsigned long src_offset, int nr_items)
760
{
761 762 763
	int ret = 0;
	struct tree_mod_elem **tm_list = NULL;
	struct tree_mod_elem **tm_list_add, **tm_list_rem;
764
	int i;
765
	int locked = 0;
766

767 768
	if (!tree_mod_need_log(fs_info, NULL))
		return 0;
769

770
	if (btrfs_header_level(dst) == 0 && btrfs_header_level(src) == 0)
771 772
		return 0;

773
	tm_list = kcalloc(nr_items * 2, sizeof(struct tree_mod_elem *),
774 775 776
			  GFP_NOFS);
	if (!tm_list)
		return -ENOMEM;
777

778 779
	tm_list_add = tm_list;
	tm_list_rem = tm_list + nr_items;
780
	for (i = 0; i < nr_items; i++) {
781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806
		tm_list_rem[i] = alloc_tree_mod_elem(src, i + src_offset,
		    MOD_LOG_KEY_REMOVE, GFP_NOFS);
		if (!tm_list_rem[i]) {
			ret = -ENOMEM;
			goto free_tms;
		}

		tm_list_add[i] = alloc_tree_mod_elem(dst, i + dst_offset,
		    MOD_LOG_KEY_ADD, GFP_NOFS);
		if (!tm_list_add[i]) {
			ret = -ENOMEM;
			goto free_tms;
		}
	}

	if (tree_mod_dont_log(fs_info, NULL))
		goto free_tms;
	locked = 1;

	for (i = 0; i < nr_items; i++) {
		ret = __tree_mod_log_insert(fs_info, tm_list_rem[i]);
		if (ret)
			goto free_tms;
		ret = __tree_mod_log_insert(fs_info, tm_list_add[i]);
		if (ret)
			goto free_tms;
807
	}
808

809
	write_unlock(&fs_info->tree_mod_log_lock);
810 811 812 813 814 815 816 817 818 819 820
	kfree(tm_list);

	return 0;

free_tms:
	for (i = 0; i < nr_items * 2; i++) {
		if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node))
			rb_erase(&tm_list[i]->node, &fs_info->tree_mod_log);
		kfree(tm_list[i]);
	}
	if (locked)
821
		write_unlock(&fs_info->tree_mod_log_lock);
822 823 824
	kfree(tm_list);

	return ret;
825 826
}

827
static noinline int tree_mod_log_free_eb(struct extent_buffer *eb)
828
{
829 830 831 832 833 834 835 836
	struct tree_mod_elem **tm_list = NULL;
	int nritems = 0;
	int i;
	int ret = 0;

	if (btrfs_header_level(eb) == 0)
		return 0;

837
	if (!tree_mod_need_log(eb->fs_info, NULL))
838 839 840
		return 0;

	nritems = btrfs_header_nritems(eb);
841
	tm_list = kcalloc(nritems, sizeof(struct tree_mod_elem *), GFP_NOFS);
842 843 844 845 846 847 848 849 850 851 852 853
	if (!tm_list)
		return -ENOMEM;

	for (i = 0; i < nritems; i++) {
		tm_list[i] = alloc_tree_mod_elem(eb, i,
		    MOD_LOG_KEY_REMOVE_WHILE_FREEING, GFP_NOFS);
		if (!tm_list[i]) {
			ret = -ENOMEM;
			goto free_tms;
		}
	}

854
	if (tree_mod_dont_log(eb->fs_info, eb))
855 856
		goto free_tms;

857
	ret = __tree_mod_log_free_eb(eb->fs_info, tm_list, nritems);
858
	write_unlock(&eb->fs_info->tree_mod_log_lock);
859 860 861 862 863 864 865 866 867 868 869 870
	if (ret)
		goto free_tms;
	kfree(tm_list);

	return 0;

free_tms:
	for (i = 0; i < nritems; i++)
		kfree(tm_list[i]);
	kfree(tm_list);

	return ret;
871 872
}

873 874 875 876 877 878 879
/*
 * check if the tree block can be shared by multiple trees
 */
int btrfs_block_can_be_shared(struct btrfs_root *root,
			      struct extent_buffer *buf)
{
	/*
880
	 * Tree blocks not in reference counted trees and tree roots
881 882 883 884
	 * are never shared. If a block was allocated after the last
	 * snapshot and the block was not allocated by tree relocation,
	 * we know the block is not shared.
	 */
885
	if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
886 887 888 889 890 891
	    buf != root->node && buf != root->commit_root &&
	    (btrfs_header_generation(buf) <=
	     btrfs_root_last_snapshot(&root->root_item) ||
	     btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)))
		return 1;
#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
892
	if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
893 894 895 896 897 898 899 900 901
	    btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
		return 1;
#endif
	return 0;
}

static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans,
				       struct btrfs_root *root,
				       struct extent_buffer *buf,
902 903
				       struct extent_buffer *cow,
				       int *last_ref)
904
{
905
	struct btrfs_fs_info *fs_info = root->fs_info;
906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929
	u64 refs;
	u64 owner;
	u64 flags;
	u64 new_flags = 0;
	int ret;

	/*
	 * Backrefs update rules:
	 *
	 * Always use full backrefs for extent pointers in tree block
	 * allocated by tree relocation.
	 *
	 * If a shared tree block is no longer referenced by its owner
	 * tree (btrfs_header_owner(buf) == root->root_key.objectid),
	 * use full backrefs for extent pointers in tree block.
	 *
	 * If a tree block is been relocating
	 * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID),
	 * use full backrefs for extent pointers in tree block.
	 * The reason for this is some operations (such as drop tree)
	 * are only allowed for blocks use full backrefs.
	 */

	if (btrfs_block_can_be_shared(root, buf)) {
930
		ret = btrfs_lookup_extent_info(trans, fs_info, buf->start,
931 932
					       btrfs_header_level(buf), 1,
					       &refs, &flags);
933 934
		if (ret)
			return ret;
935 936
		if (refs == 0) {
			ret = -EROFS;
937
			btrfs_handle_fs_error(fs_info, ret, NULL);
938 939
			return ret;
		}
940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956
	} else {
		refs = 1;
		if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
		    btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
			flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
		else
			flags = 0;
	}

	owner = btrfs_header_owner(buf);
	BUG_ON(owner == BTRFS_TREE_RELOC_OBJECTID &&
	       !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));

	if (refs > 1) {
		if ((owner == root->root_key.objectid ||
		     root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) &&
		    !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) {
957
			ret = btrfs_inc_ref(trans, root, buf, 1);
958 959
			if (ret)
				return ret;
960 961 962

			if (root->root_key.objectid ==
			    BTRFS_TREE_RELOC_OBJECTID) {
963
				ret = btrfs_dec_ref(trans, root, buf, 0);
964 965
				if (ret)
					return ret;
966
				ret = btrfs_inc_ref(trans, root, cow, 1);
967 968
				if (ret)
					return ret;
969 970 971 972 973 974
			}
			new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
		} else {

			if (root->root_key.objectid ==
			    BTRFS_TREE_RELOC_OBJECTID)
975
				ret = btrfs_inc_ref(trans, root, cow, 1);
976
			else
977
				ret = btrfs_inc_ref(trans, root, cow, 0);
978 979
			if (ret)
				return ret;
980 981
		}
		if (new_flags != 0) {
982 983
			int level = btrfs_header_level(buf);

984
			ret = btrfs_set_disk_extent_flags(trans, fs_info,
985 986
							  buf->start,
							  buf->len,
987
							  new_flags, level, 0);
988 989
			if (ret)
				return ret;
990 991 992 993 994
		}
	} else {
		if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
			if (root->root_key.objectid ==
			    BTRFS_TREE_RELOC_OBJECTID)
995
				ret = btrfs_inc_ref(trans, root, cow, 1);
996
			else
997
				ret = btrfs_inc_ref(trans, root, cow, 0);
998 999
			if (ret)
				return ret;
1000
			ret = btrfs_dec_ref(trans, root, buf, 1);
1001 1002
			if (ret)
				return ret;
1003
		}
1004
		clean_tree_block(fs_info, buf);
1005
		*last_ref = 1;
1006 1007 1008 1009
	}
	return 0;
}

C
Chris Mason 已提交
1010
/*
C
Chris Mason 已提交
1011 1012 1013 1014
 * does the dirty work in cow of a single block.  The parent block (if
 * supplied) is updated to point to the new cow copy.  The new buffer is marked
 * dirty and returned locked.  If you modify the block it needs to be marked
 * dirty again.
C
Chris Mason 已提交
1015 1016 1017
 *
 * search_start -- an allocation hint for the new block
 *
C
Chris Mason 已提交
1018 1019 1020
 * empty_size -- a hint that you plan on doing more cow.  This is the size in
 * bytes the allocator should try to find free next to the block it returns.
 * This is just a hint and may be ignored by the allocator.
C
Chris Mason 已提交
1021
 */
C
Chris Mason 已提交
1022
static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans,
1023 1024 1025 1026
			     struct btrfs_root *root,
			     struct extent_buffer *buf,
			     struct extent_buffer *parent, int parent_slot,
			     struct extent_buffer **cow_ret,
1027
			     u64 search_start, u64 empty_size)
C
Chris Mason 已提交
1028
{
1029
	struct btrfs_fs_info *fs_info = root->fs_info;
1030
	struct btrfs_disk_key disk_key;
1031
	struct extent_buffer *cow;
1032
	int level, ret;
1033
	int last_ref = 0;
1034
	int unlock_orig = 0;
1035
	u64 parent_start = 0;
1036

1037 1038 1039
	if (*cow_ret == buf)
		unlock_orig = 1;

1040
	btrfs_assert_tree_locked(buf);
1041

1042
	WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
1043
		trans->transid != fs_info->running_transaction->transid);
1044 1045
	WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
		trans->transid != root->last_trans);
1046

1047
	level = btrfs_header_level(buf);
Z
Zheng Yan 已提交
1048

1049 1050 1051 1052 1053
	if (level == 0)
		btrfs_item_key(buf, &disk_key, 0);
	else
		btrfs_node_key(buf, &disk_key, 0);

1054 1055
	if ((root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) && parent)
		parent_start = parent->start;
1056

1057 1058 1059
	cow = btrfs_alloc_tree_block(trans, root, parent_start,
			root->root_key.objectid, &disk_key, level,
			search_start, empty_size);
1060 1061
	if (IS_ERR(cow))
		return PTR_ERR(cow);
1062

1063 1064
	/* cow is set to blocking by btrfs_init_new_buffer */

1065
	copy_extent_buffer_full(cow, buf);
1066
	btrfs_set_header_bytenr(cow, cow->start);
1067
	btrfs_set_header_generation(cow, trans->transid);
1068 1069 1070 1071 1072 1073 1074
	btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
	btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
				     BTRFS_HEADER_FLAG_RELOC);
	if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
		btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
	else
		btrfs_set_header_owner(cow, root->root_key.objectid);
1075

1076
	write_extent_buffer_fsid(cow, fs_info->fsid);
Y
Yan Zheng 已提交
1077

1078
	ret = update_ref_for_cow(trans, root, buf, cow, &last_ref);
1079
	if (ret) {
1080
		btrfs_abort_transaction(trans, ret);
1081 1082
		return ret;
	}
Z
Zheng Yan 已提交
1083

1084
	if (test_bit(BTRFS_ROOT_REF_COWS, &root->state)) {
1085
		ret = btrfs_reloc_cow_block(trans, root, buf, cow);
1086
		if (ret) {
1087
			btrfs_abort_transaction(trans, ret);
1088
			return ret;
1089
		}
1090
	}
1091

C
Chris Mason 已提交
1092
	if (buf == root->node) {
1093
		WARN_ON(parent && parent != buf);
1094 1095 1096
		if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
		    btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
			parent_start = buf->start;
1097

1098
		extent_buffer_get(cow);
1099 1100
		ret = tree_mod_log_insert_root(root->node, cow, 1);
		BUG_ON(ret < 0);
1101
		rcu_assign_pointer(root->node, cow);
1102

1103
		btrfs_free_tree_block(trans, root, buf, parent_start,
1104
				      last_ref);
1105
		free_extent_buffer(buf);
1106
		add_root_to_dirty_list(root);
C
Chris Mason 已提交
1107
	} else {
1108
		WARN_ON(trans->transid != btrfs_header_generation(parent));
1109
		tree_mod_log_insert_key(parent, parent_slot,
1110
					MOD_LOG_KEY_REPLACE, GFP_NOFS);
1111
		btrfs_set_node_blockptr(parent, parent_slot,
1112
					cow->start);
1113 1114
		btrfs_set_node_ptr_generation(parent, parent_slot,
					      trans->transid);
C
Chris Mason 已提交
1115
		btrfs_mark_buffer_dirty(parent);
1116
		if (last_ref) {
1117
			ret = tree_mod_log_free_eb(buf);
1118
			if (ret) {
1119
				btrfs_abort_transaction(trans, ret);
1120 1121 1122
				return ret;
			}
		}
1123
		btrfs_free_tree_block(trans, root, buf, parent_start,
1124
				      last_ref);
C
Chris Mason 已提交
1125
	}
1126 1127
	if (unlock_orig)
		btrfs_tree_unlock(buf);
1128
	free_extent_buffer_stale(buf);
C
Chris Mason 已提交
1129
	btrfs_mark_buffer_dirty(cow);
C
Chris Mason 已提交
1130
	*cow_ret = cow;
C
Chris Mason 已提交
1131 1132 1133
	return 0;
}

J
Jan Schmidt 已提交
1134 1135 1136 1137
/*
 * returns the logical address of the oldest predecessor of the given root.
 * entries older than time_seq are ignored.
 */
1138 1139
static struct tree_mod_elem *__tree_mod_log_oldest_root(
		struct extent_buffer *eb_root, u64 time_seq)
J
Jan Schmidt 已提交
1140 1141 1142
{
	struct tree_mod_elem *tm;
	struct tree_mod_elem *found = NULL;
1143
	u64 root_logical = eb_root->start;
J
Jan Schmidt 已提交
1144 1145 1146
	int looped = 0;

	if (!time_seq)
1147
		return NULL;
J
Jan Schmidt 已提交
1148 1149

	/*
1150 1151 1152 1153
	 * the very last operation that's logged for a root is the
	 * replacement operation (if it is replaced at all). this has
	 * the logical address of the *new* root, making it the very
	 * first operation that's logged for this root.
J
Jan Schmidt 已提交
1154 1155
	 */
	while (1) {
1156
		tm = tree_mod_log_search_oldest(eb_root->fs_info, root_logical,
J
Jan Schmidt 已提交
1157 1158
						time_seq);
		if (!looped && !tm)
1159
			return NULL;
J
Jan Schmidt 已提交
1160
		/*
1161 1162 1163
		 * if there are no tree operation for the oldest root, we simply
		 * return it. this should only happen if that (old) root is at
		 * level 0.
J
Jan Schmidt 已提交
1164
		 */
1165 1166
		if (!tm)
			break;
J
Jan Schmidt 已提交
1167

1168 1169 1170 1171 1172
		/*
		 * if there's an operation that's not a root replacement, we
		 * found the oldest version of our root. normally, we'll find a
		 * MOD_LOG_KEY_REMOVE_WHILE_FREEING operation here.
		 */
J
Jan Schmidt 已提交
1173 1174 1175 1176 1177 1178 1179 1180
		if (tm->op != MOD_LOG_ROOT_REPLACE)
			break;

		found = tm;
		root_logical = tm->old_root.logical;
		looped = 1;
	}

1181 1182 1183 1184
	/* if there's no old root to return, return what we found instead */
	if (!found)
		found = tm;

J
Jan Schmidt 已提交
1185 1186 1187 1188 1189
	return found;
}

/*
 * tm is a pointer to the first operation to rewind within eb. then, all
1190
 * previous operations will be rewound (until we reach something older than
J
Jan Schmidt 已提交
1191 1192 1193
 * time_seq).
 */
static void
1194 1195
__tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct extent_buffer *eb,
		      u64 time_seq, struct tree_mod_elem *first_tm)
J
Jan Schmidt 已提交
1196 1197 1198 1199 1200 1201 1202 1203 1204
{
	u32 n;
	struct rb_node *next;
	struct tree_mod_elem *tm = first_tm;
	unsigned long o_dst;
	unsigned long o_src;
	unsigned long p_size = sizeof(struct btrfs_key_ptr);

	n = btrfs_header_nritems(eb);
1205
	read_lock(&fs_info->tree_mod_log_lock);
1206
	while (tm && tm->seq >= time_seq) {
J
Jan Schmidt 已提交
1207 1208 1209 1210 1211 1212 1213 1214
		/*
		 * all the operations are recorded with the operator used for
		 * the modification. as we're going backwards, we do the
		 * opposite of each operation here.
		 */
		switch (tm->op) {
		case MOD_LOG_KEY_REMOVE_WHILE_FREEING:
			BUG_ON(tm->slot < n);
1215
			/* Fallthrough */
1216
		case MOD_LOG_KEY_REMOVE_WHILE_MOVING:
1217
		case MOD_LOG_KEY_REMOVE:
J
Jan Schmidt 已提交
1218 1219 1220 1221
			btrfs_set_node_key(eb, &tm->key, tm->slot);
			btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
			btrfs_set_node_ptr_generation(eb, tm->slot,
						      tm->generation);
1222
			n++;
J
Jan Schmidt 已提交
1223 1224 1225 1226 1227 1228 1229 1230 1231
			break;
		case MOD_LOG_KEY_REPLACE:
			BUG_ON(tm->slot >= n);
			btrfs_set_node_key(eb, &tm->key, tm->slot);
			btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
			btrfs_set_node_ptr_generation(eb, tm->slot,
						      tm->generation);
			break;
		case MOD_LOG_KEY_ADD:
1232
			/* if a move operation is needed it's in the log */
J
Jan Schmidt 已提交
1233 1234 1235
			n--;
			break;
		case MOD_LOG_MOVE_KEYS:
1236 1237 1238
			o_dst = btrfs_node_key_ptr_offset(tm->slot);
			o_src = btrfs_node_key_ptr_offset(tm->move.dst_slot);
			memmove_extent_buffer(eb, o_dst, o_src,
J
Jan Schmidt 已提交
1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255
					      tm->move.nr_items * p_size);
			break;
		case MOD_LOG_ROOT_REPLACE:
			/*
			 * this operation is special. for roots, this must be
			 * handled explicitly before rewinding.
			 * for non-roots, this operation may exist if the node
			 * was a root: root A -> child B; then A gets empty and
			 * B is promoted to the new root. in the mod log, we'll
			 * have a root-replace operation for B, a tree block
			 * that is no root. we simply ignore that operation.
			 */
			break;
		}
		next = rb_next(&tm->node);
		if (!next)
			break;
1256
		tm = rb_entry(next, struct tree_mod_elem, node);
1257
		if (tm->logical != first_tm->logical)
J
Jan Schmidt 已提交
1258 1259
			break;
	}
1260
	read_unlock(&fs_info->tree_mod_log_lock);
J
Jan Schmidt 已提交
1261 1262 1263
	btrfs_set_header_nritems(eb, n);
}

1264
/*
1265
 * Called with eb read locked. If the buffer cannot be rewound, the same buffer
1266 1267 1268 1269 1270
 * is returned. If rewind operations happen, a fresh buffer is returned. The
 * returned buffer is always read-locked. If the returned buffer is not the
 * input buffer, the lock on the input buffer is released and the input buffer
 * is freed (its refcount is decremented).
 */
J
Jan Schmidt 已提交
1271
static struct extent_buffer *
1272 1273
tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct btrfs_path *path,
		    struct extent_buffer *eb, u64 time_seq)
J
Jan Schmidt 已提交
1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287
{
	struct extent_buffer *eb_rewin;
	struct tree_mod_elem *tm;

	if (!time_seq)
		return eb;

	if (btrfs_header_level(eb) == 0)
		return eb;

	tm = tree_mod_log_search(fs_info, eb->start, time_seq);
	if (!tm)
		return eb;

1288 1289 1290
	btrfs_set_path_blocking(path);
	btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);

J
Jan Schmidt 已提交
1291 1292
	if (tm->op == MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
		BUG_ON(tm->slot != 0);
1293
		eb_rewin = alloc_dummy_extent_buffer(fs_info, eb->start);
1294
		if (!eb_rewin) {
1295
			btrfs_tree_read_unlock_blocking(eb);
1296 1297 1298
			free_extent_buffer(eb);
			return NULL;
		}
J
Jan Schmidt 已提交
1299 1300 1301 1302
		btrfs_set_header_bytenr(eb_rewin, eb->start);
		btrfs_set_header_backref_rev(eb_rewin,
					     btrfs_header_backref_rev(eb));
		btrfs_set_header_owner(eb_rewin, btrfs_header_owner(eb));
1303
		btrfs_set_header_level(eb_rewin, btrfs_header_level(eb));
J
Jan Schmidt 已提交
1304 1305
	} else {
		eb_rewin = btrfs_clone_extent_buffer(eb);
1306
		if (!eb_rewin) {
1307
			btrfs_tree_read_unlock_blocking(eb);
1308 1309 1310
			free_extent_buffer(eb);
			return NULL;
		}
J
Jan Schmidt 已提交
1311 1312
	}

1313 1314
	btrfs_clear_path_blocking(path, NULL, BTRFS_READ_LOCK);
	btrfs_tree_read_unlock_blocking(eb);
J
Jan Schmidt 已提交
1315 1316
	free_extent_buffer(eb);

1317 1318
	extent_buffer_get(eb_rewin);
	btrfs_tree_read_lock(eb_rewin);
1319
	__tree_mod_log_rewind(fs_info, eb_rewin, time_seq, tm);
1320
	WARN_ON(btrfs_header_nritems(eb_rewin) >
1321
		BTRFS_NODEPTRS_PER_BLOCK(fs_info));
J
Jan Schmidt 已提交
1322 1323 1324 1325

	return eb_rewin;
}

1326 1327 1328 1329 1330 1331 1332
/*
 * get_old_root() rewinds the state of @root's root node to the given @time_seq
 * value. If there are no changes, the current root->root_node is returned. If
 * anything changed in between, there's a fresh buffer allocated on which the
 * rewind operations are done. In any case, the returned buffer is read locked.
 * Returns NULL on error (with no locks held).
 */
J
Jan Schmidt 已提交
1333 1334 1335
static inline struct extent_buffer *
get_old_root(struct btrfs_root *root, u64 time_seq)
{
1336
	struct btrfs_fs_info *fs_info = root->fs_info;
J
Jan Schmidt 已提交
1337
	struct tree_mod_elem *tm;
1338 1339
	struct extent_buffer *eb = NULL;
	struct extent_buffer *eb_root;
1340
	struct extent_buffer *old;
1341
	struct tree_mod_root *old_root = NULL;
1342
	u64 old_generation = 0;
1343
	u64 logical;
1344
	int level;
J
Jan Schmidt 已提交
1345

1346
	eb_root = btrfs_read_lock_root_node(root);
1347
	tm = __tree_mod_log_oldest_root(eb_root, time_seq);
J
Jan Schmidt 已提交
1348
	if (!tm)
1349
		return eb_root;
J
Jan Schmidt 已提交
1350

1351 1352 1353 1354
	if (tm->op == MOD_LOG_ROOT_REPLACE) {
		old_root = &tm->old_root;
		old_generation = tm->generation;
		logical = old_root->logical;
1355
		level = old_root->level;
1356
	} else {
1357
		logical = eb_root->start;
1358
		level = btrfs_header_level(eb_root);
1359
	}
J
Jan Schmidt 已提交
1360

1361
	tm = tree_mod_log_search(fs_info, logical, time_seq);
1362
	if (old_root && tm && tm->op != MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
1363 1364
		btrfs_tree_read_unlock(eb_root);
		free_extent_buffer(eb_root);
1365
		old = read_tree_block(fs_info, logical, 0, level, NULL);
1366 1367 1368
		if (WARN_ON(IS_ERR(old) || !extent_buffer_uptodate(old))) {
			if (!IS_ERR(old))
				free_extent_buffer(old);
1369 1370 1371
			btrfs_warn(fs_info,
				   "failed to read tree block %llu from get_old_root",
				   logical);
1372
		} else {
1373 1374
			eb = btrfs_clone_extent_buffer(old);
			free_extent_buffer(old);
1375 1376
		}
	} else if (old_root) {
1377 1378
		btrfs_tree_read_unlock(eb_root);
		free_extent_buffer(eb_root);
1379
		eb = alloc_dummy_extent_buffer(fs_info, logical);
1380
	} else {
1381
		btrfs_set_lock_blocking_rw(eb_root, BTRFS_READ_LOCK);
1382
		eb = btrfs_clone_extent_buffer(eb_root);
1383
		btrfs_tree_read_unlock_blocking(eb_root);
1384
		free_extent_buffer(eb_root);
1385 1386
	}

1387 1388
	if (!eb)
		return NULL;
1389
	extent_buffer_get(eb);
1390
	btrfs_tree_read_lock(eb);
1391
	if (old_root) {
J
Jan Schmidt 已提交
1392 1393
		btrfs_set_header_bytenr(eb, eb->start);
		btrfs_set_header_backref_rev(eb, BTRFS_MIXED_BACKREF_REV);
1394
		btrfs_set_header_owner(eb, btrfs_header_owner(eb_root));
1395 1396
		btrfs_set_header_level(eb, old_root->level);
		btrfs_set_header_generation(eb, old_generation);
J
Jan Schmidt 已提交
1397
	}
1398
	if (tm)
1399
		__tree_mod_log_rewind(fs_info, eb, time_seq, tm);
1400 1401
	else
		WARN_ON(btrfs_header_level(eb) != 0);
1402
	WARN_ON(btrfs_header_nritems(eb) > BTRFS_NODEPTRS_PER_BLOCK(fs_info));
J
Jan Schmidt 已提交
1403 1404 1405 1406

	return eb;
}

J
Jan Schmidt 已提交
1407 1408 1409 1410
int btrfs_old_root_level(struct btrfs_root *root, u64 time_seq)
{
	struct tree_mod_elem *tm;
	int level;
1411
	struct extent_buffer *eb_root = btrfs_root_node(root);
J
Jan Schmidt 已提交
1412

1413
	tm = __tree_mod_log_oldest_root(eb_root, time_seq);
J
Jan Schmidt 已提交
1414 1415 1416
	if (tm && tm->op == MOD_LOG_ROOT_REPLACE) {
		level = tm->old_root.level;
	} else {
1417
		level = btrfs_header_level(eb_root);
J
Jan Schmidt 已提交
1418
	}
1419
	free_extent_buffer(eb_root);
J
Jan Schmidt 已提交
1420 1421 1422 1423

	return level;
}

1424 1425 1426 1427
static inline int should_cow_block(struct btrfs_trans_handle *trans,
				   struct btrfs_root *root,
				   struct extent_buffer *buf)
{
1428
	if (btrfs_is_testing(root->fs_info))
1429
		return 0;
1430

1431 1432
	/* Ensure we can see the FORCE_COW bit */
	smp_mb__before_atomic();
1433 1434 1435 1436 1437 1438 1439 1440

	/*
	 * We do not need to cow a block if
	 * 1) this block is not created or changed in this transaction;
	 * 2) this block does not belong to TREE_RELOC tree;
	 * 3) the root is not forced COW.
	 *
	 * What is forced COW:
1441
	 *    when we create snapshot during committing the transaction,
1442 1443 1444
	 *    after we've finished coping src root, we must COW the shared
	 *    block to ensure the metadata consistency.
	 */
1445 1446 1447
	if (btrfs_header_generation(buf) == trans->transid &&
	    !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) &&
	    !(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
1448
	      btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)) &&
1449
	    !test_bit(BTRFS_ROOT_FORCE_COW, &root->state))
1450 1451 1452 1453
		return 0;
	return 1;
}

C
Chris Mason 已提交
1454 1455
/*
 * cows a single block, see __btrfs_cow_block for the real work.
1456
 * This version of it has extra checks so that a block isn't COWed more than
C
Chris Mason 已提交
1457 1458
 * once per transaction, as long as it hasn't been written yet
 */
C
Chris Mason 已提交
1459
noinline int btrfs_cow_block(struct btrfs_trans_handle *trans,
1460 1461
		    struct btrfs_root *root, struct extent_buffer *buf,
		    struct extent_buffer *parent, int parent_slot,
1462
		    struct extent_buffer **cow_ret)
1463
{
1464
	struct btrfs_fs_info *fs_info = root->fs_info;
1465
	u64 search_start;
1466
	int ret;
C
Chris Mason 已提交
1467

1468
	if (trans->transaction != fs_info->running_transaction)
J
Julia Lawall 已提交
1469
		WARN(1, KERN_CRIT "trans %llu running %llu\n",
1470
		       trans->transid,
1471
		       fs_info->running_transaction->transid);
J
Julia Lawall 已提交
1472

1473
	if (trans->transid != fs_info->generation)
J
Julia Lawall 已提交
1474
		WARN(1, KERN_CRIT "trans %llu running %llu\n",
1475
		       trans->transid, fs_info->generation);
C
Chris Mason 已提交
1476

1477
	if (!should_cow_block(trans, root, buf)) {
1478
		trans->dirty = true;
1479 1480 1481
		*cow_ret = buf;
		return 0;
	}
1482

1483
	search_start = buf->start & ~((u64)SZ_1G - 1);
1484 1485 1486 1487 1488

	if (parent)
		btrfs_set_lock_blocking(parent);
	btrfs_set_lock_blocking(buf);

1489
	ret = __btrfs_cow_block(trans, root, buf, parent,
1490
				 parent_slot, cow_ret, search_start, 0);
1491 1492 1493

	trace_btrfs_cow_block(root, buf, *cow_ret);

1494
	return ret;
1495 1496
}

C
Chris Mason 已提交
1497 1498 1499 1500
/*
 * helper function for defrag to decide if two blocks pointed to by a
 * node are actually close by
 */
1501
static int close_blocks(u64 blocknr, u64 other, u32 blocksize)
1502
{
1503
	if (blocknr < other && other - (blocknr + blocksize) < 32768)
1504
		return 1;
1505
	if (blocknr > other && blocknr - (other + blocksize) < 32768)
1506 1507 1508 1509
		return 1;
	return 0;
}

1510 1511 1512
/*
 * compare two keys in a memcmp fashion
 */
1513 1514
static int comp_keys(const struct btrfs_disk_key *disk,
		     const struct btrfs_key *k2)
1515 1516 1517 1518 1519
{
	struct btrfs_key k1;

	btrfs_disk_key_to_cpu(&k1, disk);

1520
	return btrfs_comp_cpu_keys(&k1, k2);
1521 1522
}

1523 1524 1525
/*
 * same as comp_keys only with two btrfs_key's
 */
1526
int btrfs_comp_cpu_keys(const struct btrfs_key *k1, const struct btrfs_key *k2)
1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541
{
	if (k1->objectid > k2->objectid)
		return 1;
	if (k1->objectid < k2->objectid)
		return -1;
	if (k1->type > k2->type)
		return 1;
	if (k1->type < k2->type)
		return -1;
	if (k1->offset > k2->offset)
		return 1;
	if (k1->offset < k2->offset)
		return -1;
	return 0;
}
1542

C
Chris Mason 已提交
1543 1544 1545 1546 1547
/*
 * this is used by the defrag code to go through all the
 * leaves pointed to by a node and reallocate them so that
 * disk order is close to key order
 */
1548
int btrfs_realloc_node(struct btrfs_trans_handle *trans,
1549
		       struct btrfs_root *root, struct extent_buffer *parent,
1550
		       int start_slot, u64 *last_ret,
1551
		       struct btrfs_key *progress)
1552
{
1553
	struct btrfs_fs_info *fs_info = root->fs_info;
1554
	struct extent_buffer *cur;
1555
	u64 blocknr;
1556
	u64 gen;
1557 1558
	u64 search_start = *last_ret;
	u64 last_block = 0;
1559 1560 1561 1562 1563
	u64 other;
	u32 parent_nritems;
	int end_slot;
	int i;
	int err = 0;
1564
	int parent_level;
1565 1566
	int uptodate;
	u32 blocksize;
1567 1568
	int progress_passed = 0;
	struct btrfs_disk_key disk_key;
1569

1570 1571
	parent_level = btrfs_header_level(parent);

1572 1573
	WARN_ON(trans->transaction != fs_info->running_transaction);
	WARN_ON(trans->transid != fs_info->generation);
1574

1575
	parent_nritems = btrfs_header_nritems(parent);
1576
	blocksize = fs_info->nodesize;
1577
	end_slot = parent_nritems - 1;
1578

1579
	if (parent_nritems <= 1)
1580 1581
		return 0;

1582 1583
	btrfs_set_lock_blocking(parent);

1584
	for (i = start_slot; i <= end_slot; i++) {
1585
		struct btrfs_key first_key;
1586
		int close = 1;
1587

1588 1589 1590 1591 1592
		btrfs_node_key(parent, &disk_key, i);
		if (!progress_passed && comp_keys(&disk_key, progress) < 0)
			continue;

		progress_passed = 1;
1593
		blocknr = btrfs_node_blockptr(parent, i);
1594
		gen = btrfs_node_ptr_generation(parent, i);
1595
		btrfs_node_key_to_cpu(parent, &first_key, i);
1596 1597
		if (last_block == 0)
			last_block = blocknr;
1598

1599
		if (i > 0) {
1600 1601
			other = btrfs_node_blockptr(parent, i - 1);
			close = close_blocks(blocknr, other, blocksize);
1602
		}
1603
		if (!close && i < end_slot) {
1604 1605
			other = btrfs_node_blockptr(parent, i + 1);
			close = close_blocks(blocknr, other, blocksize);
1606
		}
1607 1608
		if (close) {
			last_block = blocknr;
1609
			continue;
1610
		}
1611

1612
		cur = find_extent_buffer(fs_info, blocknr);
1613
		if (cur)
1614
			uptodate = btrfs_buffer_uptodate(cur, gen, 0);
1615 1616
		else
			uptodate = 0;
1617
		if (!cur || !uptodate) {
1618
			if (!cur) {
1619 1620 1621
				cur = read_tree_block(fs_info, blocknr, gen,
						      parent_level - 1,
						      &first_key);
1622 1623 1624
				if (IS_ERR(cur)) {
					return PTR_ERR(cur);
				} else if (!extent_buffer_uptodate(cur)) {
1625
					free_extent_buffer(cur);
1626
					return -EIO;
1627
				}
1628
			} else if (!uptodate) {
1629 1630
				err = btrfs_read_buffer(cur, gen,
						parent_level - 1,&first_key);
1631 1632 1633 1634
				if (err) {
					free_extent_buffer(cur);
					return err;
				}
1635
			}
1636
		}
1637
		if (search_start == 0)
1638
			search_start = last_block;
1639

1640
		btrfs_tree_lock(cur);
1641
		btrfs_set_lock_blocking(cur);
1642
		err = __btrfs_cow_block(trans, root, cur, parent, i,
1643
					&cur, search_start,
1644
					min(16 * blocksize,
1645
					    (end_slot - i) * blocksize));
Y
Yan 已提交
1646
		if (err) {
1647
			btrfs_tree_unlock(cur);
1648
			free_extent_buffer(cur);
1649
			break;
Y
Yan 已提交
1650
		}
1651 1652
		search_start = cur->start;
		last_block = cur->start;
1653
		*last_ret = search_start;
1654 1655
		btrfs_tree_unlock(cur);
		free_extent_buffer(cur);
1656 1657 1658 1659
	}
	return err;
}

C
Chris Mason 已提交
1660
/*
1661 1662 1663
 * search for key in the extent_buffer.  The items start at offset p,
 * and they are item_size apart.  There are 'max' items in p.
 *
C
Chris Mason 已提交
1664 1665 1666 1667 1668 1669
 * the slot in the array is returned via slot, and it points to
 * the place where you would insert key if it is not found in
 * the array.
 *
 * slot may point to max if the key is bigger than all of the keys
 */
1670
static noinline int generic_bin_search(struct extent_buffer *eb,
1671 1672
				       unsigned long p, int item_size,
				       const struct btrfs_key *key,
1673
				       int max, int *slot)
1674 1675 1676 1677 1678
{
	int low = 0;
	int high = max;
	int mid;
	int ret;
1679
	struct btrfs_disk_key *tmp = NULL;
1680 1681 1682 1683 1684
	struct btrfs_disk_key unaligned;
	unsigned long offset;
	char *kaddr = NULL;
	unsigned long map_start = 0;
	unsigned long map_len = 0;
1685
	int err;
1686

1687 1688 1689 1690 1691 1692 1693 1694
	if (low > high) {
		btrfs_err(eb->fs_info,
		 "%s: low (%d) > high (%d) eb %llu owner %llu level %d",
			  __func__, low, high, eb->start,
			  btrfs_header_owner(eb), btrfs_header_level(eb));
		return -EINVAL;
	}

C
Chris Mason 已提交
1695
	while (low < high) {
1696
		mid = (low + high) / 2;
1697 1698
		offset = p + mid * item_size;

1699
		if (!kaddr || offset < map_start ||
1700 1701
		    (offset + sizeof(struct btrfs_disk_key)) >
		    map_start + map_len) {
1702 1703

			err = map_private_extent_buffer(eb, offset,
1704
						sizeof(struct btrfs_disk_key),
1705
						&kaddr, &map_start, &map_len);
1706 1707 1708 1709

			if (!err) {
				tmp = (struct btrfs_disk_key *)(kaddr + offset -
							map_start);
1710
			} else if (err == 1) {
1711 1712 1713
				read_extent_buffer(eb, &unaligned,
						   offset, sizeof(unaligned));
				tmp = &unaligned;
1714 1715
			} else {
				return err;
1716
			}
1717 1718 1719 1720 1721

		} else {
			tmp = (struct btrfs_disk_key *)(kaddr + offset -
							map_start);
		}
1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736
		ret = comp_keys(tmp, key);

		if (ret < 0)
			low = mid + 1;
		else if (ret > 0)
			high = mid;
		else {
			*slot = mid;
			return 0;
		}
	}
	*slot = low;
	return 1;
}

C
Chris Mason 已提交
1737 1738 1739 1740
/*
 * simple bin_search frontend that does the right thing for
 * leaves vs nodes
 */
1741 1742
int btrfs_bin_search(struct extent_buffer *eb, const struct btrfs_key *key,
		     int level, int *slot)
1743
{
1744
	if (level == 0)
1745 1746
		return generic_bin_search(eb,
					  offsetof(struct btrfs_leaf, items),
C
Chris Mason 已提交
1747
					  sizeof(struct btrfs_item),
1748
					  key, btrfs_header_nritems(eb),
1749
					  slot);
1750
	else
1751 1752
		return generic_bin_search(eb,
					  offsetof(struct btrfs_node, ptrs),
C
Chris Mason 已提交
1753
					  sizeof(struct btrfs_key_ptr),
1754
					  key, btrfs_header_nritems(eb),
1755
					  slot);
1756 1757
}

1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773
static void root_add_used(struct btrfs_root *root, u32 size)
{
	spin_lock(&root->accounting_lock);
	btrfs_set_root_used(&root->root_item,
			    btrfs_root_used(&root->root_item) + size);
	spin_unlock(&root->accounting_lock);
}

static void root_sub_used(struct btrfs_root *root, u32 size)
{
	spin_lock(&root->accounting_lock);
	btrfs_set_root_used(&root->root_item,
			    btrfs_root_used(&root->root_item) - size);
	spin_unlock(&root->accounting_lock);
}

C
Chris Mason 已提交
1774 1775 1776
/* given a node and slot number, this reads the blocks it points to.  The
 * extent buffer is returned with a reference taken (but unlocked).
 */
1777 1778 1779
static noinline struct extent_buffer *
read_node_slot(struct btrfs_fs_info *fs_info, struct extent_buffer *parent,
	       int slot)
1780
{
1781
	int level = btrfs_header_level(parent);
1782
	struct extent_buffer *eb;
1783
	struct btrfs_key first_key;
1784

1785 1786
	if (slot < 0 || slot >= btrfs_header_nritems(parent))
		return ERR_PTR(-ENOENT);
1787 1788 1789

	BUG_ON(level == 0);

1790
	btrfs_node_key_to_cpu(parent, &first_key, slot);
1791
	eb = read_tree_block(fs_info, btrfs_node_blockptr(parent, slot),
1792 1793
			     btrfs_node_ptr_generation(parent, slot),
			     level - 1, &first_key);
1794 1795 1796
	if (!IS_ERR(eb) && !extent_buffer_uptodate(eb)) {
		free_extent_buffer(eb);
		eb = ERR_PTR(-EIO);
1797 1798 1799
	}

	return eb;
1800 1801
}

C
Chris Mason 已提交
1802 1803 1804 1805 1806
/*
 * node level balancing, used to make sure nodes are in proper order for
 * item deletion.  We balance from the top down, so we have to make sure
 * that a deletion won't leave an node completely empty later on.
 */
1807
static noinline int balance_level(struct btrfs_trans_handle *trans,
1808 1809
			 struct btrfs_root *root,
			 struct btrfs_path *path, int level)
1810
{
1811
	struct btrfs_fs_info *fs_info = root->fs_info;
1812 1813 1814 1815
	struct extent_buffer *right = NULL;
	struct extent_buffer *mid;
	struct extent_buffer *left = NULL;
	struct extent_buffer *parent = NULL;
1816 1817 1818 1819
	int ret = 0;
	int wret;
	int pslot;
	int orig_slot = path->slots[level];
1820
	u64 orig_ptr;
1821 1822 1823 1824

	if (level == 0)
		return 0;

1825
	mid = path->nodes[level];
1826

1827 1828
	WARN_ON(path->locks[level] != BTRFS_WRITE_LOCK &&
		path->locks[level] != BTRFS_WRITE_LOCK_BLOCKING);
1829 1830
	WARN_ON(btrfs_header_generation(mid) != trans->transid);

1831
	orig_ptr = btrfs_node_blockptr(mid, orig_slot);
1832

L
Li Zefan 已提交
1833
	if (level < BTRFS_MAX_LEVEL - 1) {
1834
		parent = path->nodes[level + 1];
L
Li Zefan 已提交
1835 1836
		pslot = path->slots[level + 1];
	}
1837

C
Chris Mason 已提交
1838 1839 1840 1841
	/*
	 * deal with the case where there is only one pointer in the root
	 * by promoting the node below to a root
	 */
1842 1843
	if (!parent) {
		struct extent_buffer *child;
1844

1845
		if (btrfs_header_nritems(mid) != 1)
1846 1847 1848
			return 0;

		/* promote the child to a root */
1849
		child = read_node_slot(fs_info, mid, 0);
1850 1851
		if (IS_ERR(child)) {
			ret = PTR_ERR(child);
1852
			btrfs_handle_fs_error(fs_info, ret, NULL);
1853 1854 1855
			goto enospc;
		}

1856
		btrfs_tree_lock(child);
1857
		btrfs_set_lock_blocking(child);
1858
		ret = btrfs_cow_block(trans, root, child, mid, 0, &child);
1859 1860 1861 1862 1863
		if (ret) {
			btrfs_tree_unlock(child);
			free_extent_buffer(child);
			goto enospc;
		}
1864

1865 1866
		ret = tree_mod_log_insert_root(root->node, child, 1);
		BUG_ON(ret < 0);
1867
		rcu_assign_pointer(root->node, child);
1868

1869
		add_root_to_dirty_list(root);
1870
		btrfs_tree_unlock(child);
1871

1872
		path->locks[level] = 0;
1873
		path->nodes[level] = NULL;
1874
		clean_tree_block(fs_info, mid);
1875
		btrfs_tree_unlock(mid);
1876
		/* once for the path */
1877
		free_extent_buffer(mid);
1878 1879

		root_sub_used(root, mid->len);
1880
		btrfs_free_tree_block(trans, root, mid, 0, 1);
1881
		/* once for the root ptr */
1882
		free_extent_buffer_stale(mid);
1883
		return 0;
1884
	}
1885
	if (btrfs_header_nritems(mid) >
1886
	    BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 4)
1887 1888
		return 0;

1889
	left = read_node_slot(fs_info, parent, pslot - 1);
1890 1891 1892
	if (IS_ERR(left))
		left = NULL;

1893
	if (left) {
1894
		btrfs_tree_lock(left);
1895
		btrfs_set_lock_blocking(left);
1896
		wret = btrfs_cow_block(trans, root, left,
1897
				       parent, pslot - 1, &left);
1898 1899 1900 1901
		if (wret) {
			ret = wret;
			goto enospc;
		}
1902
	}
1903

1904
	right = read_node_slot(fs_info, parent, pslot + 1);
1905 1906 1907
	if (IS_ERR(right))
		right = NULL;

1908
	if (right) {
1909
		btrfs_tree_lock(right);
1910
		btrfs_set_lock_blocking(right);
1911
		wret = btrfs_cow_block(trans, root, right,
1912
				       parent, pslot + 1, &right);
1913 1914 1915 1916 1917 1918 1919
		if (wret) {
			ret = wret;
			goto enospc;
		}
	}

	/* first, try to make some room in the middle buffer */
1920 1921
	if (left) {
		orig_slot += btrfs_header_nritems(left);
1922
		wret = push_node_left(trans, fs_info, left, mid, 1);
1923 1924
		if (wret < 0)
			ret = wret;
1925
	}
1926 1927 1928 1929

	/*
	 * then try to empty the right most buffer into the middle
	 */
1930
	if (right) {
1931
		wret = push_node_left(trans, fs_info, mid, right, 1);
1932
		if (wret < 0 && wret != -ENOSPC)
1933
			ret = wret;
1934
		if (btrfs_header_nritems(right) == 0) {
1935
			clean_tree_block(fs_info, right);
1936
			btrfs_tree_unlock(right);
1937
			del_ptr(root, path, level + 1, pslot + 1);
1938
			root_sub_used(root, right->len);
1939
			btrfs_free_tree_block(trans, root, right, 0, 1);
1940
			free_extent_buffer_stale(right);
1941
			right = NULL;
1942
		} else {
1943 1944
			struct btrfs_disk_key right_key;
			btrfs_node_key(right, &right_key, 0);
1945 1946 1947
			ret = tree_mod_log_insert_key(parent, pslot + 1,
					MOD_LOG_KEY_REPLACE, GFP_NOFS);
			BUG_ON(ret < 0);
1948 1949
			btrfs_set_node_key(parent, &right_key, pslot + 1);
			btrfs_mark_buffer_dirty(parent);
1950 1951
		}
	}
1952
	if (btrfs_header_nritems(mid) == 1) {
1953 1954 1955 1956 1957 1958 1959 1960 1961
		/*
		 * we're not allowed to leave a node with one item in the
		 * tree during a delete.  A deletion from lower in the tree
		 * could try to delete the only pointer in this node.
		 * So, pull some keys from the left.
		 * There has to be a left pointer at this point because
		 * otherwise we would have pulled some pointers from the
		 * right
		 */
1962 1963
		if (!left) {
			ret = -EROFS;
1964
			btrfs_handle_fs_error(fs_info, ret, NULL);
1965 1966
			goto enospc;
		}
1967
		wret = balance_node_right(trans, fs_info, mid, left);
1968
		if (wret < 0) {
1969
			ret = wret;
1970 1971
			goto enospc;
		}
1972
		if (wret == 1) {
1973
			wret = push_node_left(trans, fs_info, left, mid, 1);
1974 1975 1976
			if (wret < 0)
				ret = wret;
		}
1977 1978
		BUG_ON(wret == 1);
	}
1979
	if (btrfs_header_nritems(mid) == 0) {
1980
		clean_tree_block(fs_info, mid);
1981
		btrfs_tree_unlock(mid);
1982
		del_ptr(root, path, level + 1, pslot);
1983
		root_sub_used(root, mid->len);
1984
		btrfs_free_tree_block(trans, root, mid, 0, 1);
1985
		free_extent_buffer_stale(mid);
1986
		mid = NULL;
1987 1988
	} else {
		/* update the parent key to reflect our changes */
1989 1990
		struct btrfs_disk_key mid_key;
		btrfs_node_key(mid, &mid_key, 0);
1991 1992 1993
		ret = tree_mod_log_insert_key(parent, pslot,
				MOD_LOG_KEY_REPLACE, GFP_NOFS);
		BUG_ON(ret < 0);
1994 1995
		btrfs_set_node_key(parent, &mid_key, pslot);
		btrfs_mark_buffer_dirty(parent);
1996
	}
1997

1998
	/* update the path */
1999 2000 2001
	if (left) {
		if (btrfs_header_nritems(left) > orig_slot) {
			extent_buffer_get(left);
2002
			/* left was locked after cow */
2003
			path->nodes[level] = left;
2004 2005
			path->slots[level + 1] -= 1;
			path->slots[level] = orig_slot;
2006 2007
			if (mid) {
				btrfs_tree_unlock(mid);
2008
				free_extent_buffer(mid);
2009
			}
2010
		} else {
2011
			orig_slot -= btrfs_header_nritems(left);
2012 2013 2014
			path->slots[level] = orig_slot;
		}
	}
2015
	/* double check we haven't messed things up */
C
Chris Mason 已提交
2016
	if (orig_ptr !=
2017
	    btrfs_node_blockptr(path->nodes[level], path->slots[level]))
2018
		BUG();
2019
enospc:
2020 2021
	if (right) {
		btrfs_tree_unlock(right);
2022
		free_extent_buffer(right);
2023 2024 2025 2026
	}
	if (left) {
		if (path->nodes[level] != left)
			btrfs_tree_unlock(left);
2027
		free_extent_buffer(left);
2028
	}
2029 2030 2031
	return ret;
}

C
Chris Mason 已提交
2032 2033 2034 2035
/* Node balancing for insertion.  Here we only split or push nodes around
 * when they are completely full.  This is also done top down, so we
 * have to be pessimistic.
 */
C
Chris Mason 已提交
2036
static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans,
2037 2038
					  struct btrfs_root *root,
					  struct btrfs_path *path, int level)
2039
{
2040
	struct btrfs_fs_info *fs_info = root->fs_info;
2041 2042 2043 2044
	struct extent_buffer *right = NULL;
	struct extent_buffer *mid;
	struct extent_buffer *left = NULL;
	struct extent_buffer *parent = NULL;
2045 2046 2047 2048 2049 2050 2051 2052
	int ret = 0;
	int wret;
	int pslot;
	int orig_slot = path->slots[level];

	if (level == 0)
		return 1;

2053
	mid = path->nodes[level];
2054
	WARN_ON(btrfs_header_generation(mid) != trans->transid);
2055

L
Li Zefan 已提交
2056
	if (level < BTRFS_MAX_LEVEL - 1) {
2057
		parent = path->nodes[level + 1];
L
Li Zefan 已提交
2058 2059
		pslot = path->slots[level + 1];
	}
2060

2061
	if (!parent)
2062 2063
		return 1;

2064
	left = read_node_slot(fs_info, parent, pslot - 1);
2065 2066
	if (IS_ERR(left))
		left = NULL;
2067 2068

	/* first, try to make some room in the middle buffer */
2069
	if (left) {
2070
		u32 left_nr;
2071 2072

		btrfs_tree_lock(left);
2073 2074
		btrfs_set_lock_blocking(left);

2075
		left_nr = btrfs_header_nritems(left);
2076
		if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) {
C
Chris Mason 已提交
2077 2078
			wret = 1;
		} else {
2079
			ret = btrfs_cow_block(trans, root, left, parent,
2080
					      pslot - 1, &left);
2081 2082 2083
			if (ret)
				wret = 1;
			else {
2084
				wret = push_node_left(trans, fs_info,
2085
						      left, mid, 0);
2086
			}
C
Chris Mason 已提交
2087
		}
2088 2089 2090
		if (wret < 0)
			ret = wret;
		if (wret == 0) {
2091
			struct btrfs_disk_key disk_key;
2092
			orig_slot += left_nr;
2093
			btrfs_node_key(mid, &disk_key, 0);
2094 2095 2096
			ret = tree_mod_log_insert_key(parent, pslot,
					MOD_LOG_KEY_REPLACE, GFP_NOFS);
			BUG_ON(ret < 0);
2097 2098 2099 2100
			btrfs_set_node_key(parent, &disk_key, pslot);
			btrfs_mark_buffer_dirty(parent);
			if (btrfs_header_nritems(left) > orig_slot) {
				path->nodes[level] = left;
2101 2102
				path->slots[level + 1] -= 1;
				path->slots[level] = orig_slot;
2103
				btrfs_tree_unlock(mid);
2104
				free_extent_buffer(mid);
2105 2106
			} else {
				orig_slot -=
2107
					btrfs_header_nritems(left);
2108
				path->slots[level] = orig_slot;
2109
				btrfs_tree_unlock(left);
2110
				free_extent_buffer(left);
2111 2112 2113
			}
			return 0;
		}
2114
		btrfs_tree_unlock(left);
2115
		free_extent_buffer(left);
2116
	}
2117
	right = read_node_slot(fs_info, parent, pslot + 1);
2118 2119
	if (IS_ERR(right))
		right = NULL;
2120 2121 2122 2123

	/*
	 * then try to empty the right most buffer into the middle
	 */
2124
	if (right) {
C
Chris Mason 已提交
2125
		u32 right_nr;
2126

2127
		btrfs_tree_lock(right);
2128 2129
		btrfs_set_lock_blocking(right);

2130
		right_nr = btrfs_header_nritems(right);
2131
		if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) {
C
Chris Mason 已提交
2132 2133
			wret = 1;
		} else {
2134 2135
			ret = btrfs_cow_block(trans, root, right,
					      parent, pslot + 1,
2136
					      &right);
2137 2138 2139
			if (ret)
				wret = 1;
			else {
2140
				wret = balance_node_right(trans, fs_info,
2141
							  right, mid);
2142
			}
C
Chris Mason 已提交
2143
		}
2144 2145 2146
		if (wret < 0)
			ret = wret;
		if (wret == 0) {
2147 2148 2149
			struct btrfs_disk_key disk_key;

			btrfs_node_key(right, &disk_key, 0);
2150 2151 2152
			ret = tree_mod_log_insert_key(parent, pslot + 1,
					MOD_LOG_KEY_REPLACE, GFP_NOFS);
			BUG_ON(ret < 0);
2153 2154 2155 2156 2157
			btrfs_set_node_key(parent, &disk_key, pslot + 1);
			btrfs_mark_buffer_dirty(parent);

			if (btrfs_header_nritems(mid) <= orig_slot) {
				path->nodes[level] = right;
2158 2159
				path->slots[level + 1] += 1;
				path->slots[level] = orig_slot -
2160
					btrfs_header_nritems(mid);
2161
				btrfs_tree_unlock(mid);
2162
				free_extent_buffer(mid);
2163
			} else {
2164
				btrfs_tree_unlock(right);
2165
				free_extent_buffer(right);
2166 2167 2168
			}
			return 0;
		}
2169
		btrfs_tree_unlock(right);
2170
		free_extent_buffer(right);
2171 2172 2173 2174
	}
	return 1;
}

2175
/*
C
Chris Mason 已提交
2176 2177
 * readahead one full node of leaves, finding things that are close
 * to the block in 'slot', and triggering ra on them.
2178
 */
2179
static void reada_for_search(struct btrfs_fs_info *fs_info,
2180 2181
			     struct btrfs_path *path,
			     int level, int slot, u64 objectid)
2182
{
2183
	struct extent_buffer *node;
2184
	struct btrfs_disk_key disk_key;
2185 2186
	u32 nritems;
	u64 search;
2187
	u64 target;
2188
	u64 nread = 0;
2189
	struct extent_buffer *eb;
2190 2191 2192
	u32 nr;
	u32 blocksize;
	u32 nscan = 0;
2193

2194
	if (level != 1)
2195 2196 2197
		return;

	if (!path->nodes[level])
2198 2199
		return;

2200
	node = path->nodes[level];
2201

2202
	search = btrfs_node_blockptr(node, slot);
2203 2204
	blocksize = fs_info->nodesize;
	eb = find_extent_buffer(fs_info, search);
2205 2206
	if (eb) {
		free_extent_buffer(eb);
2207 2208 2209
		return;
	}

2210
	target = search;
2211

2212
	nritems = btrfs_header_nritems(node);
2213
	nr = slot;
2214

C
Chris Mason 已提交
2215
	while (1) {
2216
		if (path->reada == READA_BACK) {
2217 2218 2219
			if (nr == 0)
				break;
			nr--;
2220
		} else if (path->reada == READA_FORWARD) {
2221 2222 2223
			nr++;
			if (nr >= nritems)
				break;
2224
		}
2225
		if (path->reada == READA_BACK && objectid) {
2226 2227 2228 2229
			btrfs_node_key(node, &disk_key, nr);
			if (btrfs_disk_key_objectid(&disk_key) != objectid)
				break;
		}
2230
		search = btrfs_node_blockptr(node, nr);
2231 2232
		if ((search <= target && target - search <= 65536) ||
		    (search > target && search - target <= 65536)) {
2233
			readahead_tree_block(fs_info, search);
2234 2235 2236
			nread += blocksize;
		}
		nscan++;
2237
		if ((nread > 65536 || nscan > 32))
2238
			break;
2239 2240
	}
}
2241

2242
static noinline void reada_for_balance(struct btrfs_fs_info *fs_info,
J
Josef Bacik 已提交
2243
				       struct btrfs_path *path, int level)
2244 2245 2246 2247 2248 2249 2250 2251 2252
{
	int slot;
	int nritems;
	struct extent_buffer *parent;
	struct extent_buffer *eb;
	u64 gen;
	u64 block1 = 0;
	u64 block2 = 0;

2253
	parent = path->nodes[level + 1];
2254
	if (!parent)
J
Josef Bacik 已提交
2255
		return;
2256 2257

	nritems = btrfs_header_nritems(parent);
2258
	slot = path->slots[level + 1];
2259 2260 2261 2262

	if (slot > 0) {
		block1 = btrfs_node_blockptr(parent, slot - 1);
		gen = btrfs_node_ptr_generation(parent, slot - 1);
2263
		eb = find_extent_buffer(fs_info, block1);
2264 2265 2266 2267 2268 2269
		/*
		 * if we get -eagain from btrfs_buffer_uptodate, we
		 * don't want to return eagain here.  That will loop
		 * forever
		 */
		if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
2270 2271 2272
			block1 = 0;
		free_extent_buffer(eb);
	}
2273
	if (slot + 1 < nritems) {
2274 2275
		block2 = btrfs_node_blockptr(parent, slot + 1);
		gen = btrfs_node_ptr_generation(parent, slot + 1);
2276
		eb = find_extent_buffer(fs_info, block2);
2277
		if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
2278 2279 2280
			block2 = 0;
		free_extent_buffer(eb);
	}
2281

J
Josef Bacik 已提交
2282
	if (block1)
2283
		readahead_tree_block(fs_info, block1);
J
Josef Bacik 已提交
2284
	if (block2)
2285
		readahead_tree_block(fs_info, block2);
2286 2287 2288
}


C
Chris Mason 已提交
2289
/*
C
Chris Mason 已提交
2290 2291 2292 2293
 * when we walk down the tree, it is usually safe to unlock the higher layers
 * in the tree.  The exceptions are when our path goes through slot 0, because
 * operations on the tree might require changing key pointers higher up in the
 * tree.
C
Chris Mason 已提交
2294
 *
C
Chris Mason 已提交
2295 2296 2297
 * callers might also have set path->keep_locks, which tells this code to keep
 * the lock if the path points to the last slot in the block.  This is part of
 * walking through the tree, and selecting the next slot in the higher block.
C
Chris Mason 已提交
2298
 *
C
Chris Mason 已提交
2299 2300
 * lowest_unlock sets the lowest level in the tree we're allowed to unlock.  so
 * if lowest_unlock is 1, level 0 won't be unlocked
C
Chris Mason 已提交
2301
 */
2302
static noinline void unlock_up(struct btrfs_path *path, int level,
2303 2304
			       int lowest_unlock, int min_write_lock_level,
			       int *write_lock_level)
2305 2306 2307
{
	int i;
	int skip_level = level;
2308
	int no_skips = 0;
2309 2310 2311 2312 2313 2314 2315
	struct extent_buffer *t;

	for (i = level; i < BTRFS_MAX_LEVEL; i++) {
		if (!path->nodes[i])
			break;
		if (!path->locks[i])
			break;
2316
		if (!no_skips && path->slots[i] == 0) {
2317 2318 2319
			skip_level = i + 1;
			continue;
		}
2320
		if (!no_skips && path->keep_locks) {
2321 2322 2323
			u32 nritems;
			t = path->nodes[i];
			nritems = btrfs_header_nritems(t);
2324
			if (nritems < 1 || path->slots[i] >= nritems - 1) {
2325 2326 2327 2328
				skip_level = i + 1;
				continue;
			}
		}
2329 2330 2331
		if (skip_level < i && i >= lowest_unlock)
			no_skips = 1;

2332
		t = path->nodes[i];
2333
		if (i >= lowest_unlock && i > skip_level) {
2334
			btrfs_tree_unlock_rw(t, path->locks[i]);
2335
			path->locks[i] = 0;
2336 2337 2338 2339 2340
			if (write_lock_level &&
			    i > min_write_lock_level &&
			    i <= *write_lock_level) {
				*write_lock_level = i - 1;
			}
2341 2342 2343 2344
		}
	}
}

2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357
/*
 * This releases any locks held in the path starting at level and
 * going all the way up to the root.
 *
 * btrfs_search_slot will keep the lock held on higher nodes in a few
 * corner cases, such as COW of the block at slot zero in the node.  This
 * ignores those rules, and it should only be called when there are no
 * more updates to be done higher up in the tree.
 */
noinline void btrfs_unlock_up_safe(struct btrfs_path *path, int level)
{
	int i;

J
Josef Bacik 已提交
2358
	if (path->keep_locks)
2359 2360 2361 2362
		return;

	for (i = level; i < BTRFS_MAX_LEVEL; i++) {
		if (!path->nodes[i])
2363
			continue;
2364
		if (!path->locks[i])
2365
			continue;
2366
		btrfs_tree_unlock_rw(path->nodes[i], path->locks[i]);
2367 2368 2369 2370
		path->locks[i] = 0;
	}
}

2371 2372 2373 2374 2375 2376 2377 2378 2379
/*
 * helper function for btrfs_search_slot.  The goal is to find a block
 * in cache without setting the path to blocking.  If we find the block
 * we return zero and the path is unchanged.
 *
 * If we can't find the block, we set the path blocking and do some
 * reada.  -EAGAIN is returned and the search must be repeated.
 */
static int
2380 2381
read_block_for_search(struct btrfs_root *root, struct btrfs_path *p,
		      struct extent_buffer **eb_ret, int level, int slot,
2382
		      const struct btrfs_key *key)
2383
{
2384
	struct btrfs_fs_info *fs_info = root->fs_info;
2385 2386 2387 2388
	u64 blocknr;
	u64 gen;
	struct extent_buffer *b = *eb_ret;
	struct extent_buffer *tmp;
2389
	struct btrfs_key first_key;
2390
	int ret;
2391
	int parent_level;
2392 2393 2394

	blocknr = btrfs_node_blockptr(b, slot);
	gen = btrfs_node_ptr_generation(b, slot);
2395 2396
	parent_level = btrfs_header_level(b);
	btrfs_node_key_to_cpu(b, &first_key, slot);
2397

2398
	tmp = find_extent_buffer(fs_info, blocknr);
2399
	if (tmp) {
2400
		/* first we do an atomic uptodate check */
2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414
		if (btrfs_buffer_uptodate(tmp, gen, 1) > 0) {
			*eb_ret = tmp;
			return 0;
		}

		/* the pages were up to date, but we failed
		 * the generation number check.  Do a full
		 * read for the generation number that is correct.
		 * We must do this without dropping locks so
		 * we can trust our generation number
		 */
		btrfs_set_path_blocking(p);

		/* now we're allowed to do a blocking uptodate check */
2415
		ret = btrfs_read_buffer(tmp, gen, parent_level - 1, &first_key);
2416 2417 2418
		if (!ret) {
			*eb_ret = tmp;
			return 0;
2419
		}
2420 2421 2422
		free_extent_buffer(tmp);
		btrfs_release_path(p);
		return -EIO;
2423 2424 2425 2426 2427
	}

	/*
	 * reduce lock contention at high levels
	 * of the btree by dropping locks before
2428 2429 2430
	 * we read.  Don't release the lock on the current
	 * level because we need to walk this node to figure
	 * out which blocks to read.
2431
	 */
2432 2433 2434
	btrfs_unlock_up_safe(p, level + 1);
	btrfs_set_path_blocking(p);

2435
	if (p->reada != READA_NONE)
2436
		reada_for_search(fs_info, p, level, slot, key->objectid);
2437

2438
	ret = -EAGAIN;
2439
	tmp = read_tree_block(fs_info, blocknr, gen, parent_level - 1,
2440
			      &first_key);
2441
	if (!IS_ERR(tmp)) {
2442 2443 2444 2445 2446 2447
		/*
		 * If the read above didn't mark this buffer up to date,
		 * it will never end up being up to date.  Set ret to EIO now
		 * and give up so that our caller doesn't loop forever
		 * on our EAGAINs.
		 */
2448
		if (!extent_buffer_uptodate(tmp))
2449
			ret = -EIO;
2450
		free_extent_buffer(tmp);
2451 2452
	} else {
		ret = PTR_ERR(tmp);
2453
	}
2454 2455

	btrfs_release_path(p);
2456
	return ret;
2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470
}

/*
 * helper function for btrfs_search_slot.  This does all of the checks
 * for node-level blocks and does any balancing required based on
 * the ins_len.
 *
 * If no extra work was required, zero is returned.  If we had to
 * drop the path, -EAGAIN is returned and btrfs_search_slot must
 * start over
 */
static int
setup_nodes_for_search(struct btrfs_trans_handle *trans,
		       struct btrfs_root *root, struct btrfs_path *p,
2471 2472
		       struct extent_buffer *b, int level, int ins_len,
		       int *write_lock_level)
2473
{
2474
	struct btrfs_fs_info *fs_info = root->fs_info;
2475
	int ret;
2476

2477
	if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >=
2478
	    BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3) {
2479 2480
		int sret;

2481 2482 2483 2484 2485 2486
		if (*write_lock_level < level + 1) {
			*write_lock_level = level + 1;
			btrfs_release_path(p);
			goto again;
		}

2487
		btrfs_set_path_blocking(p);
2488
		reada_for_balance(fs_info, p, level);
2489
		sret = split_node(trans, root, p, level);
2490
		btrfs_clear_path_blocking(p, NULL, 0);
2491 2492 2493 2494 2495 2496 2497 2498

		BUG_ON(sret > 0);
		if (sret) {
			ret = sret;
			goto done;
		}
		b = p->nodes[level];
	} else if (ins_len < 0 && btrfs_header_nritems(b) <
2499
		   BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 2) {
2500 2501
		int sret;

2502 2503 2504 2505 2506 2507
		if (*write_lock_level < level + 1) {
			*write_lock_level = level + 1;
			btrfs_release_path(p);
			goto again;
		}

2508
		btrfs_set_path_blocking(p);
2509
		reada_for_balance(fs_info, p, level);
2510
		sret = balance_level(trans, root, p, level);
2511
		btrfs_clear_path_blocking(p, NULL, 0);
2512 2513 2514 2515 2516 2517 2518

		if (sret) {
			ret = sret;
			goto done;
		}
		b = p->nodes[level];
		if (!b) {
2519
			btrfs_release_path(p);
2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531
			goto again;
		}
		BUG_ON(btrfs_header_nritems(b) == 1);
	}
	return 0;

again:
	ret = -EAGAIN;
done:
	return ret;
}

2532
static void key_search_validate(struct extent_buffer *b,
2533
				const struct btrfs_key *key,
2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551
				int level)
{
#ifdef CONFIG_BTRFS_ASSERT
	struct btrfs_disk_key disk_key;

	btrfs_cpu_key_to_disk(&disk_key, key);

	if (level == 0)
		ASSERT(!memcmp_extent_buffer(b, &disk_key,
		    offsetof(struct btrfs_leaf, items[0].key),
		    sizeof(disk_key)));
	else
		ASSERT(!memcmp_extent_buffer(b, &disk_key,
		    offsetof(struct btrfs_node, ptrs[0].key),
		    sizeof(disk_key)));
#endif
}

2552
static int key_search(struct extent_buffer *b, const struct btrfs_key *key,
2553 2554 2555
		      int level, int *prev_cmp, int *slot)
{
	if (*prev_cmp != 0) {
2556
		*prev_cmp = btrfs_bin_search(b, key, level, slot);
2557 2558 2559 2560 2561 2562 2563 2564 2565
		return *prev_cmp;
	}

	key_search_validate(b, key, level);
	*slot = 0;

	return 0;
}

2566
int btrfs_find_item(struct btrfs_root *fs_root, struct btrfs_path *path,
2567 2568 2569 2570 2571 2572
		u64 iobjectid, u64 ioff, u8 key_type,
		struct btrfs_key *found_key)
{
	int ret;
	struct btrfs_key key;
	struct extent_buffer *eb;
2573 2574

	ASSERT(path);
2575
	ASSERT(found_key);
2576 2577 2578 2579 2580 2581

	key.type = key_type;
	key.objectid = iobjectid;
	key.offset = ioff;

	ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0);
2582
	if (ret < 0)
2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600
		return ret;

	eb = path->nodes[0];
	if (ret && path->slots[0] >= btrfs_header_nritems(eb)) {
		ret = btrfs_next_leaf(fs_root, path);
		if (ret)
			return ret;
		eb = path->nodes[0];
	}

	btrfs_item_key_to_cpu(eb, found_key, path->slots[0]);
	if (found_key->type != key.type ||
			found_key->objectid != key.objectid)
		return 1;

	return 0;
}

2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621
static struct extent_buffer *btrfs_search_slot_get_root(struct btrfs_root *root,
							struct btrfs_path *p,
							int write_lock_level)
{
	struct btrfs_fs_info *fs_info = root->fs_info;
	struct extent_buffer *b;
	int root_lock;
	int level = 0;

	/* We try very hard to do read locks on the root */
	root_lock = BTRFS_READ_LOCK;

	if (p->search_commit_root) {
		/* The commit roots are read only so we always do read locks */
		if (p->need_commit_sem)
			down_read(&fs_info->commit_root_sem);
		b = root->commit_root;
		extent_buffer_get(b);
		level = btrfs_header_level(b);
		if (p->need_commit_sem)
			up_read(&fs_info->commit_root_sem);
2622 2623 2624 2625 2626
		/*
		 * Ensure that all callers have set skip_locking when
		 * p->search_commit_root = 1.
		 */
		ASSERT(p->skip_locking == 1);
2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637

		goto out;
	}

	if (p->skip_locking) {
		b = btrfs_root_node(root);
		level = btrfs_header_level(b);
		goto out;
	}

	/*
2638 2639
	 * If the level is set to maximum, we can skip trying to get the read
	 * lock.
2640
	 */
2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654
	if (write_lock_level < BTRFS_MAX_LEVEL) {
		/*
		 * We don't know the level of the root node until we actually
		 * have it read locked
		 */
		b = btrfs_read_lock_root_node(root);
		level = btrfs_header_level(b);
		if (level > write_lock_level)
			goto out;

		/* Whoops, must trade for write lock */
		btrfs_tree_read_unlock(b);
		free_extent_buffer(b);
	}
2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672

	b = btrfs_lock_root_node(root);
	root_lock = BTRFS_WRITE_LOCK;

	/* The level might have changed, check again */
	level = btrfs_header_level(b);

out:
	p->nodes[level] = b;
	if (!p->skip_locking)
		p->locks[level] = root_lock;
	/*
	 * Callers are responsible for dropping b's references.
	 */
	return b;
}


C
Chris Mason 已提交
2673
/*
2674 2675
 * btrfs_search_slot - look for a key in a tree and perform necessary
 * modifications to preserve tree invariants.
C
Chris Mason 已提交
2676
 *
2677 2678 2679 2680 2681 2682 2683 2684
 * @trans:	Handle of transaction, used when modifying the tree
 * @p:		Holds all btree nodes along the search path
 * @root:	The root node of the tree
 * @key:	The key we are looking for
 * @ins_len:	Indicates purpose of search, for inserts it is 1, for
 *		deletions it's -1. 0 for plain searches
 * @cow:	boolean should CoW operations be performed. Must always be 1
 *		when modifying the tree.
C
Chris Mason 已提交
2685
 *
2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696
 * If @ins_len > 0, nodes and leaves will be split as we walk down the tree.
 * If @ins_len < 0, nodes will be merged as we walk down the tree (if possible)
 *
 * If @key is found, 0 is returned and you can find the item in the leaf level
 * of the path (level 0)
 *
 * If @key isn't found, 1 is returned and the leaf level of the path (level 0)
 * points to the slot where it should be inserted
 *
 * If an error is encountered while searching the tree a negative error number
 * is returned
C
Chris Mason 已提交
2697
 */
2698 2699 2700
int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root *root,
		      const struct btrfs_key *key, struct btrfs_path *p,
		      int ins_len, int cow)
2701
{
2702
	struct btrfs_fs_info *fs_info = root->fs_info;
2703
	struct extent_buffer *b;
2704 2705
	int slot;
	int ret;
2706
	int err;
2707
	int level;
2708
	int lowest_unlock = 1;
2709 2710
	/* everything at write_lock_level or lower must be write locked */
	int write_lock_level = 0;
2711
	u8 lowest_level = 0;
2712
	int min_write_lock_level;
2713
	int prev_cmp;
2714

2715
	lowest_level = p->lowest_level;
2716
	WARN_ON(lowest_level && ins_len > 0);
C
Chris Mason 已提交
2717
	WARN_ON(p->nodes[0] != NULL);
2718
	BUG_ON(!cow && ins_len);
2719

2720
	if (ins_len < 0) {
2721
		lowest_unlock = 2;
2722

2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738
		/* when we are removing items, we might have to go up to level
		 * two as we update tree pointers  Make sure we keep write
		 * for those levels as well
		 */
		write_lock_level = 2;
	} else if (ins_len > 0) {
		/*
		 * for inserting items, make sure we have a write lock on
		 * level 1 so we can update keys
		 */
		write_lock_level = 1;
	}

	if (!cow)
		write_lock_level = -1;

J
Josef Bacik 已提交
2739
	if (cow && (p->keep_locks || p->lowest_level))
2740 2741
		write_lock_level = BTRFS_MAX_LEVEL;

2742 2743
	min_write_lock_level = write_lock_level;

2744
again:
2745
	prev_cmp = -1;
2746
	b = btrfs_search_slot_get_root(root, p, write_lock_level);
2747

2748
	while (b) {
2749
		level = btrfs_header_level(b);
2750 2751 2752 2753 2754

		/*
		 * setup the path here so we can release it under lock
		 * contention with the cow code
		 */
C
Chris Mason 已提交
2755
		if (cow) {
2756 2757
			bool last_level = (level == (BTRFS_MAX_LEVEL - 1));

2758 2759 2760 2761 2762
			/*
			 * if we don't really need to cow this block
			 * then we don't want to set the path blocking,
			 * so we test it here
			 */
2763 2764
			if (!should_cow_block(trans, root, b)) {
				trans->dirty = true;
2765
				goto cow_done;
2766
			}
2767

2768 2769 2770 2771
			/*
			 * must have write locks on this node and the
			 * parent
			 */
2772 2773 2774 2775
			if (level > write_lock_level ||
			    (level + 1 > write_lock_level &&
			    level + 1 < BTRFS_MAX_LEVEL &&
			    p->nodes[level + 1])) {
2776 2777 2778 2779 2780
				write_lock_level = level + 1;
				btrfs_release_path(p);
				goto again;
			}

2781
			btrfs_set_path_blocking(p);
2782 2783 2784 2785 2786 2787 2788
			if (last_level)
				err = btrfs_cow_block(trans, root, b, NULL, 0,
						      &b);
			else
				err = btrfs_cow_block(trans, root, b,
						      p->nodes[level + 1],
						      p->slots[level + 1], &b);
2789 2790
			if (err) {
				ret = err;
2791
				goto done;
2792
			}
C
Chris Mason 已提交
2793
		}
2794
cow_done:
2795
		p->nodes[level] = b;
2796
		btrfs_clear_path_blocking(p, NULL, 0);
2797 2798 2799 2800 2801 2802 2803

		/*
		 * we have a lock on b and as long as we aren't changing
		 * the tree, there is no way to for the items in b to change.
		 * It is safe to drop the lock on our parent before we
		 * go through the expensive btree search on b.
		 *
2804 2805 2806 2807
		 * If we're inserting or deleting (ins_len != 0), then we might
		 * be changing slot zero, which may require changing the parent.
		 * So, we can't drop the lock until after we know which slot
		 * we're operating on.
2808
		 */
2809 2810 2811 2812 2813 2814 2815 2816
		if (!ins_len && !p->keep_locks) {
			int u = level + 1;

			if (u < BTRFS_MAX_LEVEL && p->locks[u]) {
				btrfs_tree_unlock_rw(p->nodes[u], p->locks[u]);
				p->locks[u] = 0;
			}
		}
2817

2818
		ret = key_search(b, key, level, &prev_cmp, &slot);
2819 2820
		if (ret < 0)
			goto done;
2821

2822
		if (level != 0) {
2823 2824 2825
			int dec = 0;
			if (ret && slot > 0) {
				dec = 1;
2826
				slot -= 1;
2827
			}
2828
			p->slots[level] = slot;
2829
			err = setup_nodes_for_search(trans, root, p, b, level,
2830
					     ins_len, &write_lock_level);
2831
			if (err == -EAGAIN)
2832
				goto again;
2833 2834
			if (err) {
				ret = err;
2835
				goto done;
2836
			}
2837 2838
			b = p->nodes[level];
			slot = p->slots[level];
2839

2840 2841 2842 2843 2844 2845
			/*
			 * slot 0 is special, if we change the key
			 * we have to update the parent pointer
			 * which means we must have a write lock
			 * on the parent
			 */
2846
			if (slot == 0 && ins_len &&
2847 2848 2849 2850 2851 2852
			    write_lock_level < level + 1) {
				write_lock_level = level + 1;
				btrfs_release_path(p);
				goto again;
			}

2853 2854
			unlock_up(p, level, lowest_unlock,
				  min_write_lock_level, &write_lock_level);
2855

2856
			if (level == lowest_level) {
2857 2858
				if (dec)
					p->slots[level]++;
2859
				goto done;
2860
			}
2861

2862
			err = read_block_for_search(root, p, &b, level,
2863
						    slot, key);
2864
			if (err == -EAGAIN)
2865
				goto again;
2866 2867
			if (err) {
				ret = err;
2868
				goto done;
2869
			}
2870

2871
			if (!p->skip_locking) {
2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882
				level = btrfs_header_level(b);
				if (level <= write_lock_level) {
					err = btrfs_try_tree_write_lock(b);
					if (!err) {
						btrfs_set_path_blocking(p);
						btrfs_tree_lock(b);
						btrfs_clear_path_blocking(p, b,
								  BTRFS_WRITE_LOCK);
					}
					p->locks[level] = BTRFS_WRITE_LOCK;
				} else {
2883
					err = btrfs_tree_read_lock_atomic(b);
2884 2885 2886 2887 2888 2889 2890
					if (!err) {
						btrfs_set_path_blocking(p);
						btrfs_tree_read_lock(b);
						btrfs_clear_path_blocking(p, b,
								  BTRFS_READ_LOCK);
					}
					p->locks[level] = BTRFS_READ_LOCK;
2891
				}
2892
				p->nodes[level] = b;
2893
			}
2894 2895
		} else {
			p->slots[level] = slot;
2896
			if (ins_len > 0 &&
2897
			    btrfs_leaf_free_space(fs_info, b) < ins_len) {
2898 2899 2900 2901 2902 2903
				if (write_lock_level < 1) {
					write_lock_level = 1;
					btrfs_release_path(p);
					goto again;
				}

2904
				btrfs_set_path_blocking(p);
2905 2906
				err = split_leaf(trans, root, key,
						 p, ins_len, ret == 0);
2907
				btrfs_clear_path_blocking(p, NULL, 0);
2908

2909 2910 2911
				BUG_ON(err > 0);
				if (err) {
					ret = err;
2912 2913
					goto done;
				}
C
Chris Mason 已提交
2914
			}
2915
			if (!p->search_for_split)
2916 2917
				unlock_up(p, level, lowest_unlock,
					  min_write_lock_level, &write_lock_level);
2918
			goto done;
2919 2920
		}
	}
2921 2922
	ret = 1;
done:
2923 2924 2925 2926
	/*
	 * we don't really know what they plan on doing with the path
	 * from here on, so for now just mark it as blocking
	 */
2927 2928
	if (!p->leave_spinning)
		btrfs_set_path_blocking(p);
2929
	if (ret < 0 && !p->skip_release_on_error)
2930
		btrfs_release_path(p);
2931
	return ret;
2932 2933
}

J
Jan Schmidt 已提交
2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944
/*
 * Like btrfs_search_slot, this looks for a key in the given tree. It uses the
 * current state of the tree together with the operations recorded in the tree
 * modification log to search for the key in a previous version of this tree, as
 * denoted by the time_seq parameter.
 *
 * Naturally, there is no support for insert, delete or cow operations.
 *
 * The resulting path and return value will be set up as if we called
 * btrfs_search_slot at that point in time with ins_len and cow both set to 0.
 */
2945
int btrfs_search_old_slot(struct btrfs_root *root, const struct btrfs_key *key,
J
Jan Schmidt 已提交
2946 2947
			  struct btrfs_path *p, u64 time_seq)
{
2948
	struct btrfs_fs_info *fs_info = root->fs_info;
J
Jan Schmidt 已提交
2949 2950 2951 2952 2953 2954 2955
	struct extent_buffer *b;
	int slot;
	int ret;
	int err;
	int level;
	int lowest_unlock = 1;
	u8 lowest_level = 0;
2956
	int prev_cmp = -1;
J
Jan Schmidt 已提交
2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983

	lowest_level = p->lowest_level;
	WARN_ON(p->nodes[0] != NULL);

	if (p->search_commit_root) {
		BUG_ON(time_seq);
		return btrfs_search_slot(NULL, root, key, p, 0, 0);
	}

again:
	b = get_old_root(root, time_seq);
	level = btrfs_header_level(b);
	p->locks[level] = BTRFS_READ_LOCK;

	while (b) {
		level = btrfs_header_level(b);
		p->nodes[level] = b;
		btrfs_clear_path_blocking(p, NULL, 0);

		/*
		 * we have a lock on b and as long as we aren't changing
		 * the tree, there is no way to for the items in b to change.
		 * It is safe to drop the lock on our parent before we
		 * go through the expensive btree search on b.
		 */
		btrfs_unlock_up_safe(p, level + 1);

2984
		/*
2985
		 * Since we can unwind ebs we want to do a real search every
2986 2987 2988
		 * time.
		 */
		prev_cmp = -1;
2989
		ret = key_search(b, key, level, &prev_cmp, &slot);
J
Jan Schmidt 已提交
2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005

		if (level != 0) {
			int dec = 0;
			if (ret && slot > 0) {
				dec = 1;
				slot -= 1;
			}
			p->slots[level] = slot;
			unlock_up(p, level, lowest_unlock, 0, NULL);

			if (level == lowest_level) {
				if (dec)
					p->slots[level]++;
				goto done;
			}

3006
			err = read_block_for_search(root, p, &b, level,
3007
						    slot, key);
J
Jan Schmidt 已提交
3008 3009 3010 3011 3012 3013 3014 3015
			if (err == -EAGAIN)
				goto again;
			if (err) {
				ret = err;
				goto done;
			}

			level = btrfs_header_level(b);
3016
			err = btrfs_tree_read_lock_atomic(b);
J
Jan Schmidt 已提交
3017 3018 3019 3020 3021 3022
			if (!err) {
				btrfs_set_path_blocking(p);
				btrfs_tree_read_lock(b);
				btrfs_clear_path_blocking(p, b,
							  BTRFS_READ_LOCK);
			}
3023
			b = tree_mod_log_rewind(fs_info, p, b, time_seq);
3024 3025 3026 3027
			if (!b) {
				ret = -ENOMEM;
				goto done;
			}
J
Jan Schmidt 已提交
3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045
			p->locks[level] = BTRFS_READ_LOCK;
			p->nodes[level] = b;
		} else {
			p->slots[level] = slot;
			unlock_up(p, level, lowest_unlock, 0, NULL);
			goto done;
		}
	}
	ret = 1;
done:
	if (!p->leave_spinning)
		btrfs_set_path_blocking(p);
	if (ret < 0)
		btrfs_release_path(p);

	return ret;
}

3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058
/*
 * helper to use instead of search slot if no exact match is needed but
 * instead the next or previous item should be returned.
 * When find_higher is true, the next higher item is returned, the next lower
 * otherwise.
 * When return_any and find_higher are both true, and no higher item is found,
 * return the next lower instead.
 * When return_any is true and find_higher is false, and no lower item is found,
 * return the next higher instead.
 * It returns 0 if any item is found, 1 if none is found (tree empty), and
 * < 0 on error
 */
int btrfs_search_slot_for_read(struct btrfs_root *root,
3059 3060 3061
			       const struct btrfs_key *key,
			       struct btrfs_path *p, int find_higher,
			       int return_any)
3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095
{
	int ret;
	struct extent_buffer *leaf;

again:
	ret = btrfs_search_slot(NULL, root, key, p, 0, 0);
	if (ret <= 0)
		return ret;
	/*
	 * a return value of 1 means the path is at the position where the
	 * item should be inserted. Normally this is the next bigger item,
	 * but in case the previous item is the last in a leaf, path points
	 * to the first free slot in the previous leaf, i.e. at an invalid
	 * item.
	 */
	leaf = p->nodes[0];

	if (find_higher) {
		if (p->slots[0] >= btrfs_header_nritems(leaf)) {
			ret = btrfs_next_leaf(root, p);
			if (ret <= 0)
				return ret;
			if (!return_any)
				return 1;
			/*
			 * no higher item found, return the next
			 * lower instead
			 */
			return_any = 0;
			find_higher = 0;
			btrfs_release_path(p);
			goto again;
		}
	} else {
3096 3097 3098 3099 3100
		if (p->slots[0] == 0) {
			ret = btrfs_prev_leaf(root, p);
			if (ret < 0)
				return ret;
			if (!ret) {
3101 3102 3103
				leaf = p->nodes[0];
				if (p->slots[0] == btrfs_header_nritems(leaf))
					p->slots[0]--;
3104
				return 0;
3105
			}
3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116
			if (!return_any)
				return 1;
			/*
			 * no lower item found, return the next
			 * higher instead
			 */
			return_any = 0;
			find_higher = 1;
			btrfs_release_path(p);
			goto again;
		} else {
3117 3118 3119 3120 3121 3122
			--p->slots[0];
		}
	}
	return 0;
}

C
Chris Mason 已提交
3123 3124 3125 3126 3127 3128
/*
 * adjust the pointers going up the tree, starting at level
 * making sure the right key of each node is points to 'key'.
 * This is used after shifting pointers to the left, so it stops
 * fixing up pointers when a given leaf/node is not in slot 0 of the
 * higher levels
C
Chris Mason 已提交
3129
 *
C
Chris Mason 已提交
3130
 */
3131
static void fixup_low_keys(struct btrfs_path *path,
3132
			   struct btrfs_disk_key *key, int level)
3133 3134
{
	int i;
3135
	struct extent_buffer *t;
3136
	int ret;
3137

C
Chris Mason 已提交
3138
	for (i = level; i < BTRFS_MAX_LEVEL; i++) {
3139
		int tslot = path->slots[i];
3140

3141
		if (!path->nodes[i])
3142
			break;
3143
		t = path->nodes[i];
3144 3145 3146
		ret = tree_mod_log_insert_key(t, tslot, MOD_LOG_KEY_REPLACE,
				GFP_ATOMIC);
		BUG_ON(ret < 0);
3147
		btrfs_set_node_key(t, key, tslot);
C
Chris Mason 已提交
3148
		btrfs_mark_buffer_dirty(path->nodes[i]);
3149 3150 3151 3152 3153
		if (tslot != 0)
			break;
	}
}

Z
Zheng Yan 已提交
3154 3155 3156 3157 3158 3159
/*
 * update item key.
 *
 * This function isn't completely safe. It's the caller's responsibility
 * that the new key won't break the order
 */
3160 3161
void btrfs_set_item_key_safe(struct btrfs_fs_info *fs_info,
			     struct btrfs_path *path,
3162
			     const struct btrfs_key *new_key)
Z
Zheng Yan 已提交
3163 3164 3165 3166 3167 3168 3169 3170 3171
{
	struct btrfs_disk_key disk_key;
	struct extent_buffer *eb;
	int slot;

	eb = path->nodes[0];
	slot = path->slots[0];
	if (slot > 0) {
		btrfs_item_key(eb, &disk_key, slot - 1);
3172
		BUG_ON(comp_keys(&disk_key, new_key) >= 0);
Z
Zheng Yan 已提交
3173 3174 3175
	}
	if (slot < btrfs_header_nritems(eb) - 1) {
		btrfs_item_key(eb, &disk_key, slot + 1);
3176
		BUG_ON(comp_keys(&disk_key, new_key) <= 0);
Z
Zheng Yan 已提交
3177 3178 3179 3180 3181 3182
	}

	btrfs_cpu_key_to_disk(&disk_key, new_key);
	btrfs_set_item_key(eb, &disk_key, slot);
	btrfs_mark_buffer_dirty(eb);
	if (slot == 0)
3183
		fixup_low_keys(path, &disk_key, 1);
Z
Zheng Yan 已提交
3184 3185
}

C
Chris Mason 已提交
3186 3187
/*
 * try to push data from one node into the next node left in the
3188
 * tree.
C
Chris Mason 已提交
3189 3190 3191
 *
 * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
 * error, and > 0 if there was no room in the left hand block.
C
Chris Mason 已提交
3192
 */
3193
static int push_node_left(struct btrfs_trans_handle *trans,
3194 3195
			  struct btrfs_fs_info *fs_info,
			  struct extent_buffer *dst,
3196
			  struct extent_buffer *src, int empty)
3197 3198
{
	int push_items = 0;
3199 3200
	int src_nritems;
	int dst_nritems;
C
Chris Mason 已提交
3201
	int ret = 0;
3202

3203 3204
	src_nritems = btrfs_header_nritems(src);
	dst_nritems = btrfs_header_nritems(dst);
3205
	push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems;
3206 3207
	WARN_ON(btrfs_header_generation(src) != trans->transid);
	WARN_ON(btrfs_header_generation(dst) != trans->transid);
3208

3209
	if (!empty && src_nritems <= 8)
3210 3211
		return 1;

C
Chris Mason 已提交
3212
	if (push_items <= 0)
3213 3214
		return 1;

3215
	if (empty) {
3216
		push_items = min(src_nritems, push_items);
3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228
		if (push_items < src_nritems) {
			/* leave at least 8 pointers in the node if
			 * we aren't going to empty it
			 */
			if (src_nritems - push_items < 8) {
				if (push_items <= 8)
					return 1;
				push_items -= 8;
			}
		}
	} else
		push_items = min(src_nritems - 8, push_items);
3229

3230
	ret = tree_mod_log_eb_copy(fs_info, dst, src, dst_nritems, 0,
3231 3232
				   push_items);
	if (ret) {
3233
		btrfs_abort_transaction(trans, ret);
3234 3235
		return ret;
	}
3236 3237 3238
	copy_extent_buffer(dst, src,
			   btrfs_node_key_ptr_offset(dst_nritems),
			   btrfs_node_key_ptr_offset(0),
C
Chris Mason 已提交
3239
			   push_items * sizeof(struct btrfs_key_ptr));
3240

3241
	if (push_items < src_nritems) {
3242
		/*
3243 3244
		 * Don't call tree_mod_log_insert_move here, key removal was
		 * already fully logged by tree_mod_log_eb_copy above.
3245
		 */
3246 3247 3248 3249 3250 3251 3252 3253 3254
		memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0),
				      btrfs_node_key_ptr_offset(push_items),
				      (src_nritems - push_items) *
				      sizeof(struct btrfs_key_ptr));
	}
	btrfs_set_header_nritems(src, src_nritems - push_items);
	btrfs_set_header_nritems(dst, dst_nritems + push_items);
	btrfs_mark_buffer_dirty(src);
	btrfs_mark_buffer_dirty(dst);
Z
Zheng Yan 已提交
3255

3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267
	return ret;
}

/*
 * try to push data from one node into the next node right in the
 * tree.
 *
 * returns 0 if some ptrs were pushed, < 0 if there was some horrible
 * error, and > 0 if there was no room in the right hand block.
 *
 * this will  only push up to 1/2 the contents of the left node over
 */
3268
static int balance_node_right(struct btrfs_trans_handle *trans,
3269
			      struct btrfs_fs_info *fs_info,
3270 3271
			      struct extent_buffer *dst,
			      struct extent_buffer *src)
3272 3273 3274 3275 3276 3277 3278
{
	int push_items = 0;
	int max_push;
	int src_nritems;
	int dst_nritems;
	int ret = 0;

3279 3280 3281
	WARN_ON(btrfs_header_generation(src) != trans->transid);
	WARN_ON(btrfs_header_generation(dst) != trans->transid);

3282 3283
	src_nritems = btrfs_header_nritems(src);
	dst_nritems = btrfs_header_nritems(dst);
3284
	push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems;
C
Chris Mason 已提交
3285
	if (push_items <= 0)
3286
		return 1;
3287

C
Chris Mason 已提交
3288
	if (src_nritems < 4)
3289
		return 1;
3290 3291 3292

	max_push = src_nritems / 2 + 1;
	/* don't try to empty the node */
C
Chris Mason 已提交
3293
	if (max_push >= src_nritems)
3294
		return 1;
Y
Yan 已提交
3295

3296 3297 3298
	if (max_push < push_items)
		push_items = max_push;

3299 3300
	ret = tree_mod_log_insert_move(dst, push_items, 0, dst_nritems);
	BUG_ON(ret < 0);
3301 3302 3303 3304
	memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items),
				      btrfs_node_key_ptr_offset(0),
				      (dst_nritems) *
				      sizeof(struct btrfs_key_ptr));
C
Chris Mason 已提交
3305

3306
	ret = tree_mod_log_eb_copy(fs_info, dst, src, 0,
3307 3308
				   src_nritems - push_items, push_items);
	if (ret) {
3309
		btrfs_abort_transaction(trans, ret);
3310 3311
		return ret;
	}
3312 3313 3314
	copy_extent_buffer(dst, src,
			   btrfs_node_key_ptr_offset(0),
			   btrfs_node_key_ptr_offset(src_nritems - push_items),
C
Chris Mason 已提交
3315
			   push_items * sizeof(struct btrfs_key_ptr));
3316

3317 3318
	btrfs_set_header_nritems(src, src_nritems - push_items);
	btrfs_set_header_nritems(dst, dst_nritems + push_items);
3319

3320 3321
	btrfs_mark_buffer_dirty(src);
	btrfs_mark_buffer_dirty(dst);
Z
Zheng Yan 已提交
3322

C
Chris Mason 已提交
3323
	return ret;
3324 3325
}

C
Chris Mason 已提交
3326 3327 3328 3329
/*
 * helper function to insert a new root level in the tree.
 * A new node is allocated, and a single item is inserted to
 * point to the existing root
C
Chris Mason 已提交
3330 3331
 *
 * returns zero on success or < 0 on failure.
C
Chris Mason 已提交
3332
 */
C
Chris Mason 已提交
3333
static noinline int insert_new_root(struct btrfs_trans_handle *trans,
3334
			   struct btrfs_root *root,
3335
			   struct btrfs_path *path, int level)
C
Chris Mason 已提交
3336
{
3337
	struct btrfs_fs_info *fs_info = root->fs_info;
3338
	u64 lower_gen;
3339 3340
	struct extent_buffer *lower;
	struct extent_buffer *c;
3341
	struct extent_buffer *old;
3342
	struct btrfs_disk_key lower_key;
3343
	int ret;
C
Chris Mason 已提交
3344 3345 3346 3347

	BUG_ON(path->nodes[level]);
	BUG_ON(path->nodes[level-1] != root->node);

3348 3349 3350 3351 3352 3353
	lower = path->nodes[level-1];
	if (level == 1)
		btrfs_item_key(lower, &lower_key, 0);
	else
		btrfs_node_key(lower, &lower_key, 0);

3354 3355
	c = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
				   &lower_key, level, root->node->start, 0);
3356 3357
	if (IS_ERR(c))
		return PTR_ERR(c);
3358

3359
	root_add_used(root, fs_info->nodesize);
3360

3361 3362
	btrfs_set_header_nritems(c, 1);
	btrfs_set_node_key(c, &lower_key, 0);
3363
	btrfs_set_node_blockptr(c, 0, lower->start);
3364
	lower_gen = btrfs_header_generation(lower);
Z
Zheng Yan 已提交
3365
	WARN_ON(lower_gen != trans->transid);
3366 3367

	btrfs_set_node_ptr_generation(c, 0, lower_gen);
3368

3369
	btrfs_mark_buffer_dirty(c);
3370

3371
	old = root->node;
3372 3373
	ret = tree_mod_log_insert_root(root->node, c, 0);
	BUG_ON(ret < 0);
3374
	rcu_assign_pointer(root->node, c);
3375 3376 3377 3378

	/* the super has an extra ref to root->node */
	free_extent_buffer(old);

3379
	add_root_to_dirty_list(root);
3380 3381
	extent_buffer_get(c);
	path->nodes[level] = c;
3382
	path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
C
Chris Mason 已提交
3383 3384 3385 3386
	path->slots[level] = 0;
	return 0;
}

C
Chris Mason 已提交
3387 3388 3389
/*
 * worker function to insert a single pointer in a node.
 * the node should have enough room for the pointer already
C
Chris Mason 已提交
3390
 *
C
Chris Mason 已提交
3391 3392 3393
 * slot and level indicate where you want the key to go, and
 * blocknr is the block the key points to.
 */
3394
static void insert_ptr(struct btrfs_trans_handle *trans,
3395
		       struct btrfs_fs_info *fs_info, struct btrfs_path *path,
3396
		       struct btrfs_disk_key *key, u64 bytenr,
3397
		       int slot, int level)
C
Chris Mason 已提交
3398
{
3399
	struct extent_buffer *lower;
C
Chris Mason 已提交
3400
	int nritems;
3401
	int ret;
C
Chris Mason 已提交
3402 3403

	BUG_ON(!path->nodes[level]);
3404
	btrfs_assert_tree_locked(path->nodes[level]);
3405 3406
	lower = path->nodes[level];
	nritems = btrfs_header_nritems(lower);
S
Stoyan Gaydarov 已提交
3407
	BUG_ON(slot > nritems);
3408
	BUG_ON(nritems == BTRFS_NODEPTRS_PER_BLOCK(fs_info));
C
Chris Mason 已提交
3409
	if (slot != nritems) {
3410 3411
		if (level) {
			ret = tree_mod_log_insert_move(lower, slot + 1, slot,
3412
					nritems - slot);
3413 3414
			BUG_ON(ret < 0);
		}
3415 3416 3417
		memmove_extent_buffer(lower,
			      btrfs_node_key_ptr_offset(slot + 1),
			      btrfs_node_key_ptr_offset(slot),
C
Chris Mason 已提交
3418
			      (nritems - slot) * sizeof(struct btrfs_key_ptr));
C
Chris Mason 已提交
3419
	}
3420
	if (level) {
3421 3422
		ret = tree_mod_log_insert_key(lower, slot, MOD_LOG_KEY_ADD,
				GFP_NOFS);
3423 3424
		BUG_ON(ret < 0);
	}
3425
	btrfs_set_node_key(lower, key, slot);
3426
	btrfs_set_node_blockptr(lower, slot, bytenr);
3427 3428
	WARN_ON(trans->transid == 0);
	btrfs_set_node_ptr_generation(lower, slot, trans->transid);
3429 3430
	btrfs_set_header_nritems(lower, nritems + 1);
	btrfs_mark_buffer_dirty(lower);
C
Chris Mason 已提交
3431 3432
}

C
Chris Mason 已提交
3433 3434 3435 3436 3437 3438
/*
 * split the node at the specified level in path in two.
 * The path is corrected to point to the appropriate node after the split
 *
 * Before splitting this tries to make some room in the node by pushing
 * left and right, if either one works, it returns right away.
C
Chris Mason 已提交
3439 3440
 *
 * returns 0 on success and < 0 on failure
C
Chris Mason 已提交
3441
 */
3442 3443 3444
static noinline int split_node(struct btrfs_trans_handle *trans,
			       struct btrfs_root *root,
			       struct btrfs_path *path, int level)
3445
{
3446
	struct btrfs_fs_info *fs_info = root->fs_info;
3447 3448 3449
	struct extent_buffer *c;
	struct extent_buffer *split;
	struct btrfs_disk_key disk_key;
3450
	int mid;
C
Chris Mason 已提交
3451
	int ret;
3452
	u32 c_nritems;
3453

3454
	c = path->nodes[level];
3455
	WARN_ON(btrfs_header_generation(c) != trans->transid);
3456
	if (c == root->node) {
3457
		/*
3458 3459
		 * trying to split the root, lets make a new one
		 *
3460
		 * tree mod log: We don't log_removal old root in
3461 3462 3463 3464 3465
		 * insert_new_root, because that root buffer will be kept as a
		 * normal node. We are going to log removal of half of the
		 * elements below with tree_mod_log_eb_copy. We're holding a
		 * tree lock on the buffer, which is why we cannot race with
		 * other tree_mod_log users.
3466
		 */
3467
		ret = insert_new_root(trans, root, path, level + 1);
C
Chris Mason 已提交
3468 3469
		if (ret)
			return ret;
3470
	} else {
3471
		ret = push_nodes_for_insert(trans, root, path, level);
3472 3473
		c = path->nodes[level];
		if (!ret && btrfs_header_nritems(c) <
3474
		    BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3)
3475
			return 0;
3476 3477
		if (ret < 0)
			return ret;
3478
	}
3479

3480
	c_nritems = btrfs_header_nritems(c);
3481 3482
	mid = (c_nritems + 1) / 2;
	btrfs_node_key(c, &disk_key, mid);
3483

3484 3485
	split = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
			&disk_key, level, c->start, 0);
3486 3487 3488
	if (IS_ERR(split))
		return PTR_ERR(split);

3489
	root_add_used(root, fs_info->nodesize);
3490
	ASSERT(btrfs_header_level(c) == level);
3491

3492
	ret = tree_mod_log_eb_copy(fs_info, split, c, 0, mid, c_nritems - mid);
3493
	if (ret) {
3494
		btrfs_abort_transaction(trans, ret);
3495 3496
		return ret;
	}
3497 3498 3499 3500 3501 3502
	copy_extent_buffer(split, c,
			   btrfs_node_key_ptr_offset(0),
			   btrfs_node_key_ptr_offset(mid),
			   (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
	btrfs_set_header_nritems(split, c_nritems - mid);
	btrfs_set_header_nritems(c, mid);
C
Chris Mason 已提交
3503 3504
	ret = 0;

3505 3506 3507
	btrfs_mark_buffer_dirty(c);
	btrfs_mark_buffer_dirty(split);

3508
	insert_ptr(trans, fs_info, path, &disk_key, split->start,
3509
		   path->slots[level + 1] + 1, level + 1);
C
Chris Mason 已提交
3510

C
Chris Mason 已提交
3511
	if (path->slots[level] >= mid) {
C
Chris Mason 已提交
3512
		path->slots[level] -= mid;
3513
		btrfs_tree_unlock(c);
3514 3515
		free_extent_buffer(c);
		path->nodes[level] = split;
C
Chris Mason 已提交
3516 3517
		path->slots[level + 1] += 1;
	} else {
3518
		btrfs_tree_unlock(split);
3519
		free_extent_buffer(split);
3520
	}
C
Chris Mason 已提交
3521
	return ret;
3522 3523
}

C
Chris Mason 已提交
3524 3525 3526 3527 3528
/*
 * how many bytes are required to store the items in a leaf.  start
 * and nr indicate which items in the leaf to check.  This totals up the
 * space used both by the item structs and the item data
 */
3529
static int leaf_space_used(struct extent_buffer *l, int start, int nr)
3530
{
J
Josef Bacik 已提交
3531 3532 3533
	struct btrfs_item *start_item;
	struct btrfs_item *end_item;
	struct btrfs_map_token token;
3534
	int data_len;
3535
	int nritems = btrfs_header_nritems(l);
3536
	int end = min(nritems, start + nr) - 1;
3537 3538 3539

	if (!nr)
		return 0;
J
Josef Bacik 已提交
3540
	btrfs_init_map_token(&token);
3541 3542
	start_item = btrfs_item_nr(start);
	end_item = btrfs_item_nr(end);
J
Josef Bacik 已提交
3543 3544 3545
	data_len = btrfs_token_item_offset(l, start_item, &token) +
		btrfs_token_item_size(l, start_item, &token);
	data_len = data_len - btrfs_token_item_offset(l, end_item, &token);
C
Chris Mason 已提交
3546
	data_len += sizeof(struct btrfs_item) * nr;
3547
	WARN_ON(data_len < 0);
3548 3549 3550
	return data_len;
}

3551 3552 3553 3554 3555
/*
 * The space between the end of the leaf items and
 * the start of the leaf data.  IOW, how much room
 * the leaf has left for both items and data
 */
3556
noinline int btrfs_leaf_free_space(struct btrfs_fs_info *fs_info,
3557
				   struct extent_buffer *leaf)
3558
{
3559 3560
	int nritems = btrfs_header_nritems(leaf);
	int ret;
3561 3562

	ret = BTRFS_LEAF_DATA_SIZE(fs_info) - leaf_space_used(leaf, 0, nritems);
3563
	if (ret < 0) {
3564 3565 3566 3567 3568
		btrfs_crit(fs_info,
			   "leaf free space ret %d, leaf data size %lu, used %d nritems %d",
			   ret,
			   (unsigned long) BTRFS_LEAF_DATA_SIZE(fs_info),
			   leaf_space_used(leaf, 0, nritems), nritems);
3569 3570
	}
	return ret;
3571 3572
}

3573 3574 3575 3576
/*
 * min slot controls the lowest index we're willing to push to the
 * right.  We'll push up to and including min_slot, but no lower
 */
3577
static noinline int __push_leaf_right(struct btrfs_fs_info *fs_info,
3578 3579 3580
				      struct btrfs_path *path,
				      int data_size, int empty,
				      struct extent_buffer *right,
3581 3582
				      int free_space, u32 left_nritems,
				      u32 min_slot)
C
Chris Mason 已提交
3583
{
3584
	struct extent_buffer *left = path->nodes[0];
3585
	struct extent_buffer *upper = path->nodes[1];
3586
	struct btrfs_map_token token;
3587
	struct btrfs_disk_key disk_key;
C
Chris Mason 已提交
3588
	int slot;
3589
	u32 i;
C
Chris Mason 已提交
3590 3591
	int push_space = 0;
	int push_items = 0;
C
Chris Mason 已提交
3592
	struct btrfs_item *item;
3593
	u32 nr;
3594
	u32 right_nritems;
3595
	u32 data_end;
3596
	u32 this_item_size;
C
Chris Mason 已提交
3597

3598 3599
	btrfs_init_map_token(&token);

3600 3601 3602
	if (empty)
		nr = 0;
	else
3603
		nr = max_t(u32, 1, min_slot);
3604

Z
Zheng Yan 已提交
3605
	if (path->slots[0] >= left_nritems)
3606
		push_space += data_size;
Z
Zheng Yan 已提交
3607

3608
	slot = path->slots[1];
3609 3610
	i = left_nritems - 1;
	while (i >= nr) {
3611
		item = btrfs_item_nr(i);
3612

Z
Zheng Yan 已提交
3613 3614 3615 3616
		if (!empty && push_items > 0) {
			if (path->slots[0] > i)
				break;
			if (path->slots[0] == i) {
3617
				int space = btrfs_leaf_free_space(fs_info, left);
Z
Zheng Yan 已提交
3618 3619 3620 3621 3622
				if (space + push_space * 2 > free_space)
					break;
			}
		}

C
Chris Mason 已提交
3623
		if (path->slots[0] == i)
3624
			push_space += data_size;
3625 3626 3627

		this_item_size = btrfs_item_size(left, item);
		if (this_item_size + sizeof(*item) + push_space > free_space)
C
Chris Mason 已提交
3628
			break;
Z
Zheng Yan 已提交
3629

C
Chris Mason 已提交
3630
		push_items++;
3631
		push_space += this_item_size + sizeof(*item);
3632 3633 3634
		if (i == 0)
			break;
		i--;
3635
	}
3636

3637 3638
	if (push_items == 0)
		goto out_unlock;
3639

J
Julia Lawall 已提交
3640
	WARN_ON(!empty && push_items == left_nritems);
3641

C
Chris Mason 已提交
3642
	/* push left to right */
3643
	right_nritems = btrfs_header_nritems(right);
3644

3645
	push_space = btrfs_item_end_nr(left, left_nritems - push_items);
3646
	push_space -= leaf_data_end(fs_info, left);
3647

C
Chris Mason 已提交
3648
	/* make room in the right data area */
3649
	data_end = leaf_data_end(fs_info, right);
3650
	memmove_extent_buffer(right,
3651 3652
			      BTRFS_LEAF_DATA_OFFSET + data_end - push_space,
			      BTRFS_LEAF_DATA_OFFSET + data_end,
3653
			      BTRFS_LEAF_DATA_SIZE(fs_info) - data_end);
3654

C
Chris Mason 已提交
3655
	/* copy from the left data area */
3656
	copy_extent_buffer(right, left, BTRFS_LEAF_DATA_OFFSET +
3657
		     BTRFS_LEAF_DATA_SIZE(fs_info) - push_space,
3658
		     BTRFS_LEAF_DATA_OFFSET + leaf_data_end(fs_info, left),
C
Chris Mason 已提交
3659
		     push_space);
3660 3661 3662 3663 3664

	memmove_extent_buffer(right, btrfs_item_nr_offset(push_items),
			      btrfs_item_nr_offset(0),
			      right_nritems * sizeof(struct btrfs_item));

C
Chris Mason 已提交
3665
	/* copy the items from left to right */
3666 3667 3668
	copy_extent_buffer(right, left, btrfs_item_nr_offset(0),
		   btrfs_item_nr_offset(left_nritems - push_items),
		   push_items * sizeof(struct btrfs_item));
C
Chris Mason 已提交
3669 3670

	/* update the item pointers */
3671
	right_nritems += push_items;
3672
	btrfs_set_header_nritems(right, right_nritems);
3673
	push_space = BTRFS_LEAF_DATA_SIZE(fs_info);
3674
	for (i = 0; i < right_nritems; i++) {
3675
		item = btrfs_item_nr(i);
3676 3677
		push_space -= btrfs_token_item_size(right, item, &token);
		btrfs_set_token_item_offset(right, item, push_space, &token);
3678 3679
	}

3680
	left_nritems -= push_items;
3681
	btrfs_set_header_nritems(left, left_nritems);
C
Chris Mason 已提交
3682

3683 3684
	if (left_nritems)
		btrfs_mark_buffer_dirty(left);
3685
	else
3686
		clean_tree_block(fs_info, left);
3687

3688
	btrfs_mark_buffer_dirty(right);
3689

3690 3691
	btrfs_item_key(right, &disk_key, 0);
	btrfs_set_node_key(upper, &disk_key, slot + 1);
C
Chris Mason 已提交
3692
	btrfs_mark_buffer_dirty(upper);
C
Chris Mason 已提交
3693

C
Chris Mason 已提交
3694
	/* then fixup the leaf pointer in the path */
3695 3696
	if (path->slots[0] >= left_nritems) {
		path->slots[0] -= left_nritems;
3697
		if (btrfs_header_nritems(path->nodes[0]) == 0)
3698
			clean_tree_block(fs_info, path->nodes[0]);
3699
		btrfs_tree_unlock(path->nodes[0]);
3700 3701
		free_extent_buffer(path->nodes[0]);
		path->nodes[0] = right;
C
Chris Mason 已提交
3702 3703
		path->slots[1] += 1;
	} else {
3704
		btrfs_tree_unlock(right);
3705
		free_extent_buffer(right);
C
Chris Mason 已提交
3706 3707
	}
	return 0;
3708 3709 3710 3711 3712

out_unlock:
	btrfs_tree_unlock(right);
	free_extent_buffer(right);
	return 1;
C
Chris Mason 已提交
3713
}
3714

3715 3716 3717 3718 3719 3720
/*
 * push some data in the path leaf to the right, trying to free up at
 * least data_size bytes.  returns zero if the push worked, nonzero otherwise
 *
 * returns 1 if the push failed because the other node didn't have enough
 * room, 0 if everything worked out and < 0 if there were major errors.
3721 3722 3723
 *
 * this will push starting from min_slot to the end of the leaf.  It won't
 * push any slot lower than min_slot
3724 3725
 */
static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
3726 3727 3728
			   *root, struct btrfs_path *path,
			   int min_data_size, int data_size,
			   int empty, u32 min_slot)
3729
{
3730
	struct btrfs_fs_info *fs_info = root->fs_info;
3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748
	struct extent_buffer *left = path->nodes[0];
	struct extent_buffer *right;
	struct extent_buffer *upper;
	int slot;
	int free_space;
	u32 left_nritems;
	int ret;

	if (!path->nodes[1])
		return 1;

	slot = path->slots[1];
	upper = path->nodes[1];
	if (slot >= btrfs_header_nritems(upper) - 1)
		return 1;

	btrfs_assert_tree_locked(path->nodes[1]);

3749
	right = read_node_slot(fs_info, upper, slot + 1);
3750 3751 3752 3753 3754
	/*
	 * slot + 1 is not valid or we fail to read the right node,
	 * no big deal, just return.
	 */
	if (IS_ERR(right))
T
Tsutomu Itoh 已提交
3755 3756
		return 1;

3757 3758 3759
	btrfs_tree_lock(right);
	btrfs_set_lock_blocking(right);

3760
	free_space = btrfs_leaf_free_space(fs_info, right);
3761 3762 3763 3764 3765 3766 3767 3768 3769
	if (free_space < data_size)
		goto out_unlock;

	/* cow and double check */
	ret = btrfs_cow_block(trans, root, right, upper,
			      slot + 1, &right);
	if (ret)
		goto out_unlock;

3770
	free_space = btrfs_leaf_free_space(fs_info, right);
3771 3772 3773 3774 3775 3776 3777
	if (free_space < data_size)
		goto out_unlock;

	left_nritems = btrfs_header_nritems(left);
	if (left_nritems == 0)
		goto out_unlock;

3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790
	if (path->slots[0] == left_nritems && !empty) {
		/* Key greater than all keys in the leaf, right neighbor has
		 * enough room for it and we're not emptying our leaf to delete
		 * it, therefore use right neighbor to insert the new item and
		 * no need to touch/dirty our left leaft. */
		btrfs_tree_unlock(left);
		free_extent_buffer(left);
		path->nodes[0] = right;
		path->slots[0] = 0;
		path->slots[1]++;
		return 0;
	}

3791
	return __push_leaf_right(fs_info, path, min_data_size, empty,
3792
				right, free_space, left_nritems, min_slot);
3793 3794 3795 3796 3797 3798
out_unlock:
	btrfs_tree_unlock(right);
	free_extent_buffer(right);
	return 1;
}

C
Chris Mason 已提交
3799 3800 3801
/*
 * push some data in the path leaf to the left, trying to free up at
 * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3802 3803 3804 3805
 *
 * max_slot can put a limit on how far into the leaf we'll push items.  The
 * item at 'max_slot' won't be touched.  Use (u32)-1 to make us do all the
 * items
C
Chris Mason 已提交
3806
 */
3807
static noinline int __push_leaf_left(struct btrfs_fs_info *fs_info,
3808 3809
				     struct btrfs_path *path, int data_size,
				     int empty, struct extent_buffer *left,
3810 3811
				     int free_space, u32 right_nritems,
				     u32 max_slot)
3812
{
3813 3814
	struct btrfs_disk_key disk_key;
	struct extent_buffer *right = path->nodes[0];
3815 3816 3817
	int i;
	int push_space = 0;
	int push_items = 0;
C
Chris Mason 已提交
3818
	struct btrfs_item *item;
3819
	u32 old_left_nritems;
3820
	u32 nr;
C
Chris Mason 已提交
3821
	int ret = 0;
3822 3823
	u32 this_item_size;
	u32 old_left_item_size;
3824 3825 3826
	struct btrfs_map_token token;

	btrfs_init_map_token(&token);
3827

3828
	if (empty)
3829
		nr = min(right_nritems, max_slot);
3830
	else
3831
		nr = min(right_nritems - 1, max_slot);
3832 3833

	for (i = 0; i < nr; i++) {
3834
		item = btrfs_item_nr(i);
3835

Z
Zheng Yan 已提交
3836 3837 3838 3839
		if (!empty && push_items > 0) {
			if (path->slots[0] < i)
				break;
			if (path->slots[0] == i) {
3840
				int space = btrfs_leaf_free_space(fs_info, right);
Z
Zheng Yan 已提交
3841 3842 3843 3844 3845
				if (space + push_space * 2 > free_space)
					break;
			}
		}

3846
		if (path->slots[0] == i)
3847
			push_space += data_size;
3848 3849 3850

		this_item_size = btrfs_item_size(right, item);
		if (this_item_size + sizeof(*item) + push_space > free_space)
3851
			break;
3852

3853
		push_items++;
3854 3855 3856
		push_space += this_item_size + sizeof(*item);
	}

3857
	if (push_items == 0) {
3858 3859
		ret = 1;
		goto out;
3860
	}
3861
	WARN_ON(!empty && push_items == btrfs_header_nritems(right));
3862

3863
	/* push data from right to left */
3864 3865 3866 3867 3868
	copy_extent_buffer(left, right,
			   btrfs_item_nr_offset(btrfs_header_nritems(left)),
			   btrfs_item_nr_offset(0),
			   push_items * sizeof(struct btrfs_item));

3869
	push_space = BTRFS_LEAF_DATA_SIZE(fs_info) -
C
Chris Mason 已提交
3870
		     btrfs_item_offset_nr(right, push_items - 1);
3871

3872
	copy_extent_buffer(left, right, BTRFS_LEAF_DATA_OFFSET +
3873
		     leaf_data_end(fs_info, left) - push_space,
3874
		     BTRFS_LEAF_DATA_OFFSET +
3875
		     btrfs_item_offset_nr(right, push_items - 1),
C
Chris Mason 已提交
3876
		     push_space);
3877
	old_left_nritems = btrfs_header_nritems(left);
3878
	BUG_ON(old_left_nritems <= 0);
3879

3880
	old_left_item_size = btrfs_item_offset_nr(left, old_left_nritems - 1);
C
Chris Mason 已提交
3881
	for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
3882
		u32 ioff;
3883

3884
		item = btrfs_item_nr(i);
3885

3886 3887
		ioff = btrfs_token_item_offset(left, item, &token);
		btrfs_set_token_item_offset(left, item,
3888
		      ioff - (BTRFS_LEAF_DATA_SIZE(fs_info) - old_left_item_size),
3889
		      &token);
3890
	}
3891
	btrfs_set_header_nritems(left, old_left_nritems + push_items);
3892 3893

	/* fixup right node */
J
Julia Lawall 已提交
3894 3895
	if (push_items > right_nritems)
		WARN(1, KERN_CRIT "push items %d nr %u\n", push_items,
C
Chris Mason 已提交
3896
		       right_nritems);
3897 3898 3899

	if (push_items < right_nritems) {
		push_space = btrfs_item_offset_nr(right, push_items - 1) -
3900
						  leaf_data_end(fs_info, right);
3901
		memmove_extent_buffer(right, BTRFS_LEAF_DATA_OFFSET +
3902
				      BTRFS_LEAF_DATA_SIZE(fs_info) - push_space,
3903
				      BTRFS_LEAF_DATA_OFFSET +
3904
				      leaf_data_end(fs_info, right), push_space);
3905 3906

		memmove_extent_buffer(right, btrfs_item_nr_offset(0),
3907 3908 3909
			      btrfs_item_nr_offset(push_items),
			     (btrfs_header_nritems(right) - push_items) *
			     sizeof(struct btrfs_item));
3910
	}
3911 3912
	right_nritems -= push_items;
	btrfs_set_header_nritems(right, right_nritems);
3913
	push_space = BTRFS_LEAF_DATA_SIZE(fs_info);
3914
	for (i = 0; i < right_nritems; i++) {
3915
		item = btrfs_item_nr(i);
3916

3917 3918 3919
		push_space = push_space - btrfs_token_item_size(right,
								item, &token);
		btrfs_set_token_item_offset(right, item, push_space, &token);
3920
	}
3921

3922
	btrfs_mark_buffer_dirty(left);
3923 3924
	if (right_nritems)
		btrfs_mark_buffer_dirty(right);
3925
	else
3926
		clean_tree_block(fs_info, right);
3927

3928
	btrfs_item_key(right, &disk_key, 0);
3929
	fixup_low_keys(path, &disk_key, 1);
3930 3931 3932 3933

	/* then fixup the leaf pointer in the path */
	if (path->slots[0] < push_items) {
		path->slots[0] += old_left_nritems;
3934
		btrfs_tree_unlock(path->nodes[0]);
3935 3936
		free_extent_buffer(path->nodes[0]);
		path->nodes[0] = left;
3937 3938
		path->slots[1] -= 1;
	} else {
3939
		btrfs_tree_unlock(left);
3940
		free_extent_buffer(left);
3941 3942
		path->slots[0] -= push_items;
	}
3943
	BUG_ON(path->slots[0] < 0);
C
Chris Mason 已提交
3944
	return ret;
3945 3946 3947 3948
out:
	btrfs_tree_unlock(left);
	free_extent_buffer(left);
	return ret;
3949 3950
}

3951 3952 3953
/*
 * push some data in the path leaf to the left, trying to free up at
 * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3954 3955 3956 3957
 *
 * max_slot can put a limit on how far into the leaf we'll push items.  The
 * item at 'max_slot' won't be touched.  Use (u32)-1 to make us push all the
 * items
3958 3959
 */
static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
3960 3961
			  *root, struct btrfs_path *path, int min_data_size,
			  int data_size, int empty, u32 max_slot)
3962
{
3963
	struct btrfs_fs_info *fs_info = root->fs_info;
3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982
	struct extent_buffer *right = path->nodes[0];
	struct extent_buffer *left;
	int slot;
	int free_space;
	u32 right_nritems;
	int ret = 0;

	slot = path->slots[1];
	if (slot == 0)
		return 1;
	if (!path->nodes[1])
		return 1;

	right_nritems = btrfs_header_nritems(right);
	if (right_nritems == 0)
		return 1;

	btrfs_assert_tree_locked(path->nodes[1]);

3983
	left = read_node_slot(fs_info, path->nodes[1], slot - 1);
3984 3985 3986 3987 3988
	/*
	 * slot - 1 is not valid or we fail to read the left node,
	 * no big deal, just return.
	 */
	if (IS_ERR(left))
T
Tsutomu Itoh 已提交
3989 3990
		return 1;

3991 3992 3993
	btrfs_tree_lock(left);
	btrfs_set_lock_blocking(left);

3994
	free_space = btrfs_leaf_free_space(fs_info, left);
3995 3996 3997 3998 3999 4000 4001 4002 4003 4004
	if (free_space < data_size) {
		ret = 1;
		goto out;
	}

	/* cow and double check */
	ret = btrfs_cow_block(trans, root, left,
			      path->nodes[1], slot - 1, &left);
	if (ret) {
		/* we hit -ENOSPC, but it isn't fatal here */
4005 4006
		if (ret == -ENOSPC)
			ret = 1;
4007 4008 4009
		goto out;
	}

4010
	free_space = btrfs_leaf_free_space(fs_info, left);
4011 4012 4013 4014 4015
	if (free_space < data_size) {
		ret = 1;
		goto out;
	}

4016
	return __push_leaf_left(fs_info, path, min_data_size,
4017 4018
			       empty, left, free_space, right_nritems,
			       max_slot);
4019 4020 4021 4022 4023 4024 4025 4026 4027 4028
out:
	btrfs_tree_unlock(left);
	free_extent_buffer(left);
	return ret;
}

/*
 * split the path's leaf in two, making sure there is at least data_size
 * available for the resulting leaf level of the path.
 */
4029
static noinline void copy_for_split(struct btrfs_trans_handle *trans,
4030
				    struct btrfs_fs_info *fs_info,
4031 4032 4033 4034
				    struct btrfs_path *path,
				    struct extent_buffer *l,
				    struct extent_buffer *right,
				    int slot, int mid, int nritems)
4035 4036 4037 4038 4039
{
	int data_copy_size;
	int rt_data_off;
	int i;
	struct btrfs_disk_key disk_key;
4040 4041 4042
	struct btrfs_map_token token;

	btrfs_init_map_token(&token);
4043 4044 4045

	nritems = nritems - mid;
	btrfs_set_header_nritems(right, nritems);
4046
	data_copy_size = btrfs_item_end_nr(l, mid) - leaf_data_end(fs_info, l);
4047 4048 4049 4050 4051 4052

	copy_extent_buffer(right, l, btrfs_item_nr_offset(0),
			   btrfs_item_nr_offset(mid),
			   nritems * sizeof(struct btrfs_item));

	copy_extent_buffer(right, l,
4053 4054
		     BTRFS_LEAF_DATA_OFFSET + BTRFS_LEAF_DATA_SIZE(fs_info) -
		     data_copy_size, BTRFS_LEAF_DATA_OFFSET +
4055
		     leaf_data_end(fs_info, l), data_copy_size);
4056

4057
	rt_data_off = BTRFS_LEAF_DATA_SIZE(fs_info) - btrfs_item_end_nr(l, mid);
4058 4059

	for (i = 0; i < nritems; i++) {
4060
		struct btrfs_item *item = btrfs_item_nr(i);
4061 4062
		u32 ioff;

4063 4064 4065
		ioff = btrfs_token_item_offset(right, item, &token);
		btrfs_set_token_item_offset(right, item,
					    ioff + rt_data_off, &token);
4066 4067 4068 4069
	}

	btrfs_set_header_nritems(l, mid);
	btrfs_item_key(right, &disk_key, 0);
4070
	insert_ptr(trans, fs_info, path, &disk_key, right->start,
4071
		   path->slots[1] + 1, 1);
4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090

	btrfs_mark_buffer_dirty(right);
	btrfs_mark_buffer_dirty(l);
	BUG_ON(path->slots[0] != slot);

	if (mid <= slot) {
		btrfs_tree_unlock(path->nodes[0]);
		free_extent_buffer(path->nodes[0]);
		path->nodes[0] = right;
		path->slots[0] -= mid;
		path->slots[1] += 1;
	} else {
		btrfs_tree_unlock(right);
		free_extent_buffer(right);
	}

	BUG_ON(path->slots[0] < 0);
}

4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105
/*
 * double splits happen when we need to insert a big item in the middle
 * of a leaf.  A double split can leave us with 3 mostly empty leaves:
 * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ]
 *          A                 B                 C
 *
 * We avoid this by trying to push the items on either side of our target
 * into the adjacent leaves.  If all goes well we can avoid the double split
 * completely.
 */
static noinline int push_for_double_split(struct btrfs_trans_handle *trans,
					  struct btrfs_root *root,
					  struct btrfs_path *path,
					  int data_size)
{
4106
	struct btrfs_fs_info *fs_info = root->fs_info;
4107 4108 4109 4110
	int ret;
	int progress = 0;
	int slot;
	u32 nritems;
4111
	int space_needed = data_size;
4112 4113

	slot = path->slots[0];
4114
	if (slot < btrfs_header_nritems(path->nodes[0]))
4115
		space_needed -= btrfs_leaf_free_space(fs_info, path->nodes[0]);
4116 4117 4118 4119 4120

	/*
	 * try to push all the items after our slot into the
	 * right leaf
	 */
4121
	ret = push_leaf_right(trans, root, path, 1, space_needed, 0, slot);
4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135
	if (ret < 0)
		return ret;

	if (ret == 0)
		progress++;

	nritems = btrfs_header_nritems(path->nodes[0]);
	/*
	 * our goal is to get our slot at the start or end of a leaf.  If
	 * we've done so we're done
	 */
	if (path->slots[0] == 0 || path->slots[0] == nritems)
		return 0;

4136
	if (btrfs_leaf_free_space(fs_info, path->nodes[0]) >= data_size)
4137 4138 4139 4140
		return 0;

	/* try to push all the items before our slot into the next leaf */
	slot = path->slots[0];
4141 4142 4143
	space_needed = data_size;
	if (slot > 0)
		space_needed -= btrfs_leaf_free_space(fs_info, path->nodes[0]);
4144
	ret = push_leaf_left(trans, root, path, 1, space_needed, 0, slot);
4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155
	if (ret < 0)
		return ret;

	if (ret == 0)
		progress++;

	if (progress)
		return 0;
	return 1;
}

C
Chris Mason 已提交
4156 4157 4158
/*
 * split the path's leaf in two, making sure there is at least data_size
 * available for the resulting leaf level of the path.
C
Chris Mason 已提交
4159 4160
 *
 * returns 0 if all went well and < 0 on failure.
C
Chris Mason 已提交
4161
 */
4162 4163
static noinline int split_leaf(struct btrfs_trans_handle *trans,
			       struct btrfs_root *root,
4164
			       const struct btrfs_key *ins_key,
4165 4166
			       struct btrfs_path *path, int data_size,
			       int extend)
4167
{
4168
	struct btrfs_disk_key disk_key;
4169
	struct extent_buffer *l;
4170
	u32 nritems;
4171 4172
	int mid;
	int slot;
4173
	struct extent_buffer *right;
4174
	struct btrfs_fs_info *fs_info = root->fs_info;
4175
	int ret = 0;
C
Chris Mason 已提交
4176
	int wret;
4177
	int split;
4178
	int num_doubles = 0;
4179
	int tried_avoid_double = 0;
C
Chris Mason 已提交
4180

4181 4182 4183
	l = path->nodes[0];
	slot = path->slots[0];
	if (extend && data_size + btrfs_item_size_nr(l, slot) +
4184
	    sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(fs_info))
4185 4186
		return -EOVERFLOW;

C
Chris Mason 已提交
4187
	/* first try to make some room by pushing left and right */
4188
	if (data_size && path->nodes[1]) {
4189 4190 4191
		int space_needed = data_size;

		if (slot < btrfs_header_nritems(l))
4192
			space_needed -= btrfs_leaf_free_space(fs_info, l);
4193 4194 4195

		wret = push_leaf_right(trans, root, path, space_needed,
				       space_needed, 0, 0);
C
Chris Mason 已提交
4196
		if (wret < 0)
C
Chris Mason 已提交
4197
			return wret;
4198
		if (wret) {
4199 4200 4201 4202
			space_needed = data_size;
			if (slot > 0)
				space_needed -= btrfs_leaf_free_space(fs_info,
								      l);
4203 4204
			wret = push_leaf_left(trans, root, path, space_needed,
					      space_needed, 0, (u32)-1);
4205 4206 4207 4208
			if (wret < 0)
				return wret;
		}
		l = path->nodes[0];
C
Chris Mason 已提交
4209

4210
		/* did the pushes work? */
4211
		if (btrfs_leaf_free_space(fs_info, l) >= data_size)
4212
			return 0;
4213
	}
C
Chris Mason 已提交
4214

C
Chris Mason 已提交
4215
	if (!path->nodes[1]) {
4216
		ret = insert_new_root(trans, root, path, 1);
C
Chris Mason 已提交
4217 4218 4219
		if (ret)
			return ret;
	}
4220
again:
4221
	split = 1;
4222
	l = path->nodes[0];
4223
	slot = path->slots[0];
4224
	nritems = btrfs_header_nritems(l);
C
Chris Mason 已提交
4225
	mid = (nritems + 1) / 2;
4226

4227 4228 4229
	if (mid <= slot) {
		if (nritems == 1 ||
		    leaf_space_used(l, mid, nritems - mid) + data_size >
4230
			BTRFS_LEAF_DATA_SIZE(fs_info)) {
4231 4232 4233 4234 4235 4236
			if (slot >= nritems) {
				split = 0;
			} else {
				mid = slot;
				if (mid != nritems &&
				    leaf_space_used(l, mid, nritems - mid) +
4237
				    data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) {
4238 4239
					if (data_size && !tried_avoid_double)
						goto push_for_double;
4240 4241 4242 4243 4244 4245
					split = 2;
				}
			}
		}
	} else {
		if (leaf_space_used(l, 0, mid) + data_size >
4246
			BTRFS_LEAF_DATA_SIZE(fs_info)) {
4247 4248 4249 4250 4251 4252 4253 4254
			if (!extend && data_size && slot == 0) {
				split = 0;
			} else if ((extend || !data_size) && slot == 0) {
				mid = 1;
			} else {
				mid = slot;
				if (mid != nritems &&
				    leaf_space_used(l, mid, nritems - mid) +
4255
				    data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) {
4256 4257
					if (data_size && !tried_avoid_double)
						goto push_for_double;
4258
					split = 2;
4259 4260 4261 4262 4263 4264 4265 4266 4267 4268
				}
			}
		}
	}

	if (split == 0)
		btrfs_cpu_key_to_disk(&disk_key, ins_key);
	else
		btrfs_item_key(l, &disk_key, mid);

4269 4270
	right = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
			&disk_key, 0, l->start, 0);
4271
	if (IS_ERR(right))
4272
		return PTR_ERR(right);
4273

4274
	root_add_used(root, fs_info->nodesize);
4275

4276 4277 4278
	if (split == 0) {
		if (mid <= slot) {
			btrfs_set_header_nritems(right, 0);
4279 4280
			insert_ptr(trans, fs_info, path, &disk_key,
				   right->start, path->slots[1] + 1, 1);
4281 4282 4283 4284 4285 4286 4287
			btrfs_tree_unlock(path->nodes[0]);
			free_extent_buffer(path->nodes[0]);
			path->nodes[0] = right;
			path->slots[0] = 0;
			path->slots[1] += 1;
		} else {
			btrfs_set_header_nritems(right, 0);
4288 4289
			insert_ptr(trans, fs_info, path, &disk_key,
				   right->start, path->slots[1], 1);
4290 4291 4292 4293
			btrfs_tree_unlock(path->nodes[0]);
			free_extent_buffer(path->nodes[0]);
			path->nodes[0] = right;
			path->slots[0] = 0;
4294
			if (path->slots[1] == 0)
4295
				fixup_low_keys(path, &disk_key, 1);
4296
		}
4297 4298 4299 4300 4301
		/*
		 * We create a new leaf 'right' for the required ins_len and
		 * we'll do btrfs_mark_buffer_dirty() on this leaf after copying
		 * the content of ins_len to 'right'.
		 */
4302
		return ret;
4303
	}
C
Chris Mason 已提交
4304

4305
	copy_for_split(trans, fs_info, path, l, right, slot, mid, nritems);
Z
Zheng Yan 已提交
4306

4307
	if (split == 2) {
4308 4309 4310
		BUG_ON(num_doubles != 0);
		num_doubles++;
		goto again;
4311
	}
4312

4313
	return 0;
4314 4315 4316 4317

push_for_double:
	push_for_double_split(trans, root, path, data_size);
	tried_avoid_double = 1;
4318
	if (btrfs_leaf_free_space(fs_info, path->nodes[0]) >= data_size)
4319 4320
		return 0;
	goto again;
4321 4322
}

Y
Yan, Zheng 已提交
4323 4324 4325
static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans,
					 struct btrfs_root *root,
					 struct btrfs_path *path, int ins_len)
4326
{
4327
	struct btrfs_fs_info *fs_info = root->fs_info;
Y
Yan, Zheng 已提交
4328
	struct btrfs_key key;
4329
	struct extent_buffer *leaf;
Y
Yan, Zheng 已提交
4330 4331 4332 4333
	struct btrfs_file_extent_item *fi;
	u64 extent_len = 0;
	u32 item_size;
	int ret;
4334 4335

	leaf = path->nodes[0];
Y
Yan, Zheng 已提交
4336 4337 4338 4339 4340
	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);

	BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY &&
	       key.type != BTRFS_EXTENT_CSUM_KEY);

4341
	if (btrfs_leaf_free_space(fs_info, leaf) >= ins_len)
Y
Yan, Zheng 已提交
4342
		return 0;
4343 4344

	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
Y
Yan, Zheng 已提交
4345 4346 4347 4348 4349
	if (key.type == BTRFS_EXTENT_DATA_KEY) {
		fi = btrfs_item_ptr(leaf, path->slots[0],
				    struct btrfs_file_extent_item);
		extent_len = btrfs_file_extent_num_bytes(leaf, fi);
	}
4350
	btrfs_release_path(path);
4351 4352

	path->keep_locks = 1;
Y
Yan, Zheng 已提交
4353 4354
	path->search_for_split = 1;
	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
4355
	path->search_for_split = 0;
4356 4357
	if (ret > 0)
		ret = -EAGAIN;
Y
Yan, Zheng 已提交
4358 4359
	if (ret < 0)
		goto err;
4360

Y
Yan, Zheng 已提交
4361 4362
	ret = -EAGAIN;
	leaf = path->nodes[0];
4363 4364
	/* if our item isn't there, return now */
	if (item_size != btrfs_item_size_nr(leaf, path->slots[0]))
Y
Yan, Zheng 已提交
4365 4366
		goto err;

4367
	/* the leaf has  changed, it now has room.  return now */
4368
	if (btrfs_leaf_free_space(fs_info, path->nodes[0]) >= ins_len)
4369 4370
		goto err;

Y
Yan, Zheng 已提交
4371 4372 4373 4374 4375
	if (key.type == BTRFS_EXTENT_DATA_KEY) {
		fi = btrfs_item_ptr(leaf, path->slots[0],
				    struct btrfs_file_extent_item);
		if (extent_len != btrfs_file_extent_num_bytes(leaf, fi))
			goto err;
4376 4377
	}

4378
	btrfs_set_path_blocking(path);
Y
Yan, Zheng 已提交
4379
	ret = split_leaf(trans, root, &key, path, ins_len, 1);
4380 4381
	if (ret)
		goto err;
4382

Y
Yan, Zheng 已提交
4383
	path->keep_locks = 0;
4384
	btrfs_unlock_up_safe(path, 1);
Y
Yan, Zheng 已提交
4385 4386 4387 4388 4389 4390
	return 0;
err:
	path->keep_locks = 0;
	return ret;
}

4391
static noinline int split_item(struct btrfs_fs_info *fs_info,
Y
Yan, Zheng 已提交
4392
			       struct btrfs_path *path,
4393
			       const struct btrfs_key *new_key,
Y
Yan, Zheng 已提交
4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405
			       unsigned long split_offset)
{
	struct extent_buffer *leaf;
	struct btrfs_item *item;
	struct btrfs_item *new_item;
	int slot;
	char *buf;
	u32 nritems;
	u32 item_size;
	u32 orig_offset;
	struct btrfs_disk_key disk_key;

4406
	leaf = path->nodes[0];
4407
	BUG_ON(btrfs_leaf_free_space(fs_info, leaf) < sizeof(struct btrfs_item));
4408

4409 4410
	btrfs_set_path_blocking(path);

4411
	item = btrfs_item_nr(path->slots[0]);
4412 4413 4414 4415
	orig_offset = btrfs_item_offset(leaf, item);
	item_size = btrfs_item_size(leaf, item);

	buf = kmalloc(item_size, GFP_NOFS);
Y
Yan, Zheng 已提交
4416 4417 4418
	if (!buf)
		return -ENOMEM;

4419 4420 4421
	read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf,
			    path->slots[0]), item_size);

Y
Yan, Zheng 已提交
4422
	slot = path->slots[0] + 1;
4423 4424 4425 4426
	nritems = btrfs_header_nritems(leaf);
	if (slot != nritems) {
		/* shift the items */
		memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1),
Y
Yan, Zheng 已提交
4427 4428
				btrfs_item_nr_offset(slot),
				(nritems - slot) * sizeof(struct btrfs_item));
4429 4430 4431 4432 4433
	}

	btrfs_cpu_key_to_disk(&disk_key, new_key);
	btrfs_set_item_key(leaf, &disk_key, slot);

4434
	new_item = btrfs_item_nr(slot);
4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455

	btrfs_set_item_offset(leaf, new_item, orig_offset);
	btrfs_set_item_size(leaf, new_item, item_size - split_offset);

	btrfs_set_item_offset(leaf, item,
			      orig_offset + item_size - split_offset);
	btrfs_set_item_size(leaf, item, split_offset);

	btrfs_set_header_nritems(leaf, nritems + 1);

	/* write the data for the start of the original item */
	write_extent_buffer(leaf, buf,
			    btrfs_item_ptr_offset(leaf, path->slots[0]),
			    split_offset);

	/* write the data for the new item */
	write_extent_buffer(leaf, buf + split_offset,
			    btrfs_item_ptr_offset(leaf, slot),
			    item_size - split_offset);
	btrfs_mark_buffer_dirty(leaf);

4456
	BUG_ON(btrfs_leaf_free_space(fs_info, leaf) < 0);
4457
	kfree(buf);
Y
Yan, Zheng 已提交
4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478
	return 0;
}

/*
 * This function splits a single item into two items,
 * giving 'new_key' to the new item and splitting the
 * old one at split_offset (from the start of the item).
 *
 * The path may be released by this operation.  After
 * the split, the path is pointing to the old item.  The
 * new item is going to be in the same node as the old one.
 *
 * Note, the item being split must be smaller enough to live alone on
 * a tree block with room for one extra struct btrfs_item
 *
 * This allows us to split the item in place, keeping a lock on the
 * leaf the entire time.
 */
int btrfs_split_item(struct btrfs_trans_handle *trans,
		     struct btrfs_root *root,
		     struct btrfs_path *path,
4479
		     const struct btrfs_key *new_key,
Y
Yan, Zheng 已提交
4480 4481 4482 4483 4484 4485 4486 4487
		     unsigned long split_offset)
{
	int ret;
	ret = setup_leaf_for_split(trans, root, path,
				   sizeof(struct btrfs_item));
	if (ret)
		return ret;

4488
	ret = split_item(root->fs_info, path, new_key, split_offset);
4489 4490 4491
	return ret;
}

Y
Yan, Zheng 已提交
4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502
/*
 * This function duplicate a item, giving 'new_key' to the new item.
 * It guarantees both items live in the same tree leaf and the new item
 * is contiguous with the original item.
 *
 * This allows us to split file extent in place, keeping a lock on the
 * leaf the entire time.
 */
int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
			 struct btrfs_root *root,
			 struct btrfs_path *path,
4503
			 const struct btrfs_key *new_key)
Y
Yan, Zheng 已提交
4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516
{
	struct extent_buffer *leaf;
	int ret;
	u32 item_size;

	leaf = path->nodes[0];
	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
	ret = setup_leaf_for_split(trans, root, path,
				   item_size + sizeof(struct btrfs_item));
	if (ret)
		return ret;

	path->slots[0]++;
4517
	setup_items_for_insert(root, path, new_key, &item_size,
4518 4519
			       item_size, item_size +
			       sizeof(struct btrfs_item), 1);
Y
Yan, Zheng 已提交
4520 4521 4522 4523 4524 4525 4526 4527
	leaf = path->nodes[0];
	memcpy_extent_buffer(leaf,
			     btrfs_item_ptr_offset(leaf, path->slots[0]),
			     btrfs_item_ptr_offset(leaf, path->slots[0] - 1),
			     item_size);
	return 0;
}

C
Chris Mason 已提交
4528 4529 4530 4531 4532 4533
/*
 * make the item pointed to by the path smaller.  new_size indicates
 * how small to make it, and from_end tells us if we just chop bytes
 * off the end of the item or if we shift the item to chop bytes off
 * the front.
 */
4534 4535
void btrfs_truncate_item(struct btrfs_fs_info *fs_info,
			 struct btrfs_path *path, u32 new_size, int from_end)
C
Chris Mason 已提交
4536 4537
{
	int slot;
4538 4539
	struct extent_buffer *leaf;
	struct btrfs_item *item;
C
Chris Mason 已提交
4540 4541 4542 4543 4544 4545
	u32 nritems;
	unsigned int data_end;
	unsigned int old_data_start;
	unsigned int old_size;
	unsigned int size_diff;
	int i;
4546 4547 4548
	struct btrfs_map_token token;

	btrfs_init_map_token(&token);
C
Chris Mason 已提交
4549

4550
	leaf = path->nodes[0];
4551 4552 4553 4554
	slot = path->slots[0];

	old_size = btrfs_item_size_nr(leaf, slot);
	if (old_size == new_size)
4555
		return;
C
Chris Mason 已提交
4556

4557
	nritems = btrfs_header_nritems(leaf);
4558
	data_end = leaf_data_end(fs_info, leaf);
C
Chris Mason 已提交
4559

4560
	old_data_start = btrfs_item_offset_nr(leaf, slot);
4561

C
Chris Mason 已提交
4562 4563 4564 4565 4566 4567 4568 4569 4570 4571
	size_diff = old_size - new_size;

	BUG_ON(slot < 0);
	BUG_ON(slot >= nritems);

	/*
	 * item0..itemN ... dataN.offset..dataN.size .. data0.size
	 */
	/* first correct the data pointers */
	for (i = slot; i < nritems; i++) {
4572
		u32 ioff;
4573
		item = btrfs_item_nr(i);
4574

4575 4576 4577
		ioff = btrfs_token_item_offset(leaf, item, &token);
		btrfs_set_token_item_offset(leaf, item,
					    ioff + size_diff, &token);
C
Chris Mason 已提交
4578
	}
4579

C
Chris Mason 已提交
4580
	/* shift the data */
4581
	if (from_end) {
4582 4583
		memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
			      data_end + size_diff, BTRFS_LEAF_DATA_OFFSET +
4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603
			      data_end, old_data_start + new_size - data_end);
	} else {
		struct btrfs_disk_key disk_key;
		u64 offset;

		btrfs_item_key(leaf, &disk_key, slot);

		if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) {
			unsigned long ptr;
			struct btrfs_file_extent_item *fi;

			fi = btrfs_item_ptr(leaf, slot,
					    struct btrfs_file_extent_item);
			fi = (struct btrfs_file_extent_item *)(
			     (unsigned long)fi - size_diff);

			if (btrfs_file_extent_type(leaf, fi) ==
			    BTRFS_FILE_EXTENT_INLINE) {
				ptr = btrfs_item_ptr_offset(leaf, slot);
				memmove_extent_buffer(leaf, ptr,
C
Chris Mason 已提交
4604
				      (unsigned long)fi,
4605
				      BTRFS_FILE_EXTENT_INLINE_DATA_START);
4606 4607 4608
			}
		}

4609 4610
		memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
			      data_end + size_diff, BTRFS_LEAF_DATA_OFFSET +
4611 4612 4613 4614 4615 4616
			      data_end, old_data_start - data_end);

		offset = btrfs_disk_key_offset(&disk_key);
		btrfs_set_disk_key_offset(&disk_key, offset + size_diff);
		btrfs_set_item_key(leaf, &disk_key, slot);
		if (slot == 0)
4617
			fixup_low_keys(path, &disk_key, 1);
4618
	}
4619

4620
	item = btrfs_item_nr(slot);
4621 4622
	btrfs_set_item_size(leaf, item, new_size);
	btrfs_mark_buffer_dirty(leaf);
C
Chris Mason 已提交
4623

4624
	if (btrfs_leaf_free_space(fs_info, leaf) < 0) {
4625
		btrfs_print_leaf(leaf);
C
Chris Mason 已提交
4626
		BUG();
4627
	}
C
Chris Mason 已提交
4628 4629
}

C
Chris Mason 已提交
4630
/*
S
Stefan Behrens 已提交
4631
 * make the item pointed to by the path bigger, data_size is the added size.
C
Chris Mason 已提交
4632
 */
4633
void btrfs_extend_item(struct btrfs_fs_info *fs_info, struct btrfs_path *path,
4634
		       u32 data_size)
4635 4636
{
	int slot;
4637 4638
	struct extent_buffer *leaf;
	struct btrfs_item *item;
4639 4640 4641 4642 4643
	u32 nritems;
	unsigned int data_end;
	unsigned int old_data;
	unsigned int old_size;
	int i;
4644 4645 4646
	struct btrfs_map_token token;

	btrfs_init_map_token(&token);
4647

4648
	leaf = path->nodes[0];
4649

4650
	nritems = btrfs_header_nritems(leaf);
4651
	data_end = leaf_data_end(fs_info, leaf);
4652

4653
	if (btrfs_leaf_free_space(fs_info, leaf) < data_size) {
4654
		btrfs_print_leaf(leaf);
4655
		BUG();
4656
	}
4657
	slot = path->slots[0];
4658
	old_data = btrfs_item_end_nr(leaf, slot);
4659 4660

	BUG_ON(slot < 0);
4661
	if (slot >= nritems) {
4662
		btrfs_print_leaf(leaf);
4663 4664
		btrfs_crit(fs_info, "slot %d too large, nritems %d",
			   slot, nritems);
4665 4666
		BUG_ON(1);
	}
4667 4668 4669 4670 4671 4672

	/*
	 * item0..itemN ... dataN.offset..dataN.size .. data0.size
	 */
	/* first correct the data pointers */
	for (i = slot; i < nritems; i++) {
4673
		u32 ioff;
4674
		item = btrfs_item_nr(i);
4675

4676 4677 4678
		ioff = btrfs_token_item_offset(leaf, item, &token);
		btrfs_set_token_item_offset(leaf, item,
					    ioff - data_size, &token);
4679
	}
4680

4681
	/* shift the data */
4682 4683
	memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
		      data_end - data_size, BTRFS_LEAF_DATA_OFFSET +
4684
		      data_end, old_data - data_end);
4685

4686
	data_end = old_data;
4687
	old_size = btrfs_item_size_nr(leaf, slot);
4688
	item = btrfs_item_nr(slot);
4689 4690
	btrfs_set_item_size(leaf, item, old_size + data_size);
	btrfs_mark_buffer_dirty(leaf);
4691

4692
	if (btrfs_leaf_free_space(fs_info, leaf) < 0) {
4693
		btrfs_print_leaf(leaf);
4694
		BUG();
4695
	}
4696 4697
}

C
Chris Mason 已提交
4698
/*
4699 4700 4701
 * this is a helper for btrfs_insert_empty_items, the main goal here is
 * to save stack depth by doing the bulk of the work in a function
 * that doesn't call btrfs_search_slot
C
Chris Mason 已提交
4702
 */
4703
void setup_items_for_insert(struct btrfs_root *root, struct btrfs_path *path,
4704
			    const struct btrfs_key *cpu_key, u32 *data_size,
4705
			    u32 total_data, u32 total_size, int nr)
4706
{
4707
	struct btrfs_fs_info *fs_info = root->fs_info;
4708
	struct btrfs_item *item;
4709
	int i;
4710
	u32 nritems;
4711
	unsigned int data_end;
C
Chris Mason 已提交
4712
	struct btrfs_disk_key disk_key;
4713 4714
	struct extent_buffer *leaf;
	int slot;
4715 4716
	struct btrfs_map_token token;

4717 4718
	if (path->slots[0] == 0) {
		btrfs_cpu_key_to_disk(&disk_key, cpu_key);
4719
		fixup_low_keys(path, &disk_key, 1);
4720 4721 4722
	}
	btrfs_unlock_up_safe(path, 1);

4723
	btrfs_init_map_token(&token);
C
Chris Mason 已提交
4724

4725
	leaf = path->nodes[0];
4726
	slot = path->slots[0];
C
Chris Mason 已提交
4727

4728
	nritems = btrfs_header_nritems(leaf);
4729
	data_end = leaf_data_end(fs_info, leaf);
4730

4731
	if (btrfs_leaf_free_space(fs_info, leaf) < total_size) {
4732
		btrfs_print_leaf(leaf);
4733
		btrfs_crit(fs_info, "not enough freespace need %u have %d",
4734
			   total_size, btrfs_leaf_free_space(fs_info, leaf));
4735
		BUG();
4736
	}
4737

4738
	if (slot != nritems) {
4739
		unsigned int old_data = btrfs_item_end_nr(leaf, slot);
4740

4741
		if (old_data < data_end) {
4742
			btrfs_print_leaf(leaf);
4743
			btrfs_crit(fs_info, "slot %d old_data %d data_end %d",
J
Jeff Mahoney 已提交
4744
				   slot, old_data, data_end);
4745 4746
			BUG_ON(1);
		}
4747 4748 4749 4750
		/*
		 * item0..itemN ... dataN.offset..dataN.size .. data0.size
		 */
		/* first correct the data pointers */
C
Chris Mason 已提交
4751
		for (i = slot; i < nritems; i++) {
4752
			u32 ioff;
4753

4754
			item = btrfs_item_nr(i);
4755 4756 4757
			ioff = btrfs_token_item_offset(leaf, item, &token);
			btrfs_set_token_item_offset(leaf, item,
						    ioff - total_data, &token);
C
Chris Mason 已提交
4758
		}
4759
		/* shift the items */
4760
		memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
4761
			      btrfs_item_nr_offset(slot),
C
Chris Mason 已提交
4762
			      (nritems - slot) * sizeof(struct btrfs_item));
4763 4764

		/* shift the data */
4765 4766
		memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
			      data_end - total_data, BTRFS_LEAF_DATA_OFFSET +
C
Chris Mason 已提交
4767
			      data_end, old_data - data_end);
4768 4769
		data_end = old_data;
	}
4770

4771
	/* setup the item for the new data */
4772 4773 4774
	for (i = 0; i < nr; i++) {
		btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
		btrfs_set_item_key(leaf, &disk_key, slot + i);
4775
		item = btrfs_item_nr(slot + i);
4776 4777
		btrfs_set_token_item_offset(leaf, item,
					    data_end - data_size[i], &token);
4778
		data_end -= data_size[i];
4779
		btrfs_set_token_item_size(leaf, item, data_size[i], &token);
4780
	}
4781

4782
	btrfs_set_header_nritems(leaf, nritems + nr);
4783
	btrfs_mark_buffer_dirty(leaf);
C
Chris Mason 已提交
4784

4785
	if (btrfs_leaf_free_space(fs_info, leaf) < 0) {
4786
		btrfs_print_leaf(leaf);
4787
		BUG();
4788
	}
4789 4790 4791 4792 4793 4794 4795 4796 4797
}

/*
 * Given a key and some data, insert items into the tree.
 * This does all the path init required, making room in the tree if needed.
 */
int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
			    struct btrfs_root *root,
			    struct btrfs_path *path,
4798
			    const struct btrfs_key *cpu_key, u32 *data_size,
4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814
			    int nr)
{
	int ret = 0;
	int slot;
	int i;
	u32 total_size = 0;
	u32 total_data = 0;

	for (i = 0; i < nr; i++)
		total_data += data_size[i];

	total_size = total_data + (nr * sizeof(struct btrfs_item));
	ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
	if (ret == 0)
		return -EEXIST;
	if (ret < 0)
4815
		return ret;
4816 4817 4818 4819

	slot = path->slots[0];
	BUG_ON(slot < 0);

4820
	setup_items_for_insert(root, path, cpu_key, data_size,
4821
			       total_data, total_size, nr);
4822
	return 0;
4823 4824 4825 4826 4827 4828
}

/*
 * Given a key and some data, insert an item into the tree.
 * This does all the path init required, making room in the tree if needed.
 */
4829 4830 4831
int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root *root,
		      const struct btrfs_key *cpu_key, void *data,
		      u32 data_size)
4832 4833
{
	int ret = 0;
C
Chris Mason 已提交
4834
	struct btrfs_path *path;
4835 4836
	struct extent_buffer *leaf;
	unsigned long ptr;
4837

C
Chris Mason 已提交
4838
	path = btrfs_alloc_path();
T
Tsutomu Itoh 已提交
4839 4840
	if (!path)
		return -ENOMEM;
C
Chris Mason 已提交
4841
	ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
4842
	if (!ret) {
4843 4844 4845 4846
		leaf = path->nodes[0];
		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
		write_extent_buffer(leaf, data, ptr, data_size);
		btrfs_mark_buffer_dirty(leaf);
4847
	}
C
Chris Mason 已提交
4848
	btrfs_free_path(path);
C
Chris Mason 已提交
4849
	return ret;
4850 4851
}

C
Chris Mason 已提交
4852
/*
C
Chris Mason 已提交
4853
 * delete the pointer from a given node.
C
Chris Mason 已提交
4854
 *
C
Chris Mason 已提交
4855 4856
 * the tree should have been previously balanced so the deletion does not
 * empty a node.
C
Chris Mason 已提交
4857
 */
4858 4859
static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
		    int level, int slot)
4860
{
4861
	struct extent_buffer *parent = path->nodes[level];
4862
	u32 nritems;
4863
	int ret;
4864

4865
	nritems = btrfs_header_nritems(parent);
C
Chris Mason 已提交
4866
	if (slot != nritems - 1) {
4867 4868
		if (level) {
			ret = tree_mod_log_insert_move(parent, slot, slot + 1,
4869
					nritems - slot - 1);
4870 4871
			BUG_ON(ret < 0);
		}
4872 4873 4874
		memmove_extent_buffer(parent,
			      btrfs_node_key_ptr_offset(slot),
			      btrfs_node_key_ptr_offset(slot + 1),
C
Chris Mason 已提交
4875 4876
			      sizeof(struct btrfs_key_ptr) *
			      (nritems - slot - 1));
4877
	} else if (level) {
4878 4879
		ret = tree_mod_log_insert_key(parent, slot, MOD_LOG_KEY_REMOVE,
				GFP_NOFS);
4880
		BUG_ON(ret < 0);
4881
	}
4882

4883
	nritems--;
4884
	btrfs_set_header_nritems(parent, nritems);
4885
	if (nritems == 0 && parent == root->node) {
4886
		BUG_ON(btrfs_header_level(root->node) != 1);
4887
		/* just turn the root into a leaf and break */
4888
		btrfs_set_header_level(root->node, 0);
4889
	} else if (slot == 0) {
4890 4891 4892
		struct btrfs_disk_key disk_key;

		btrfs_node_key(parent, &disk_key, 0);
4893
		fixup_low_keys(path, &disk_key, level + 1);
4894
	}
C
Chris Mason 已提交
4895
	btrfs_mark_buffer_dirty(parent);
4896 4897
}

4898 4899
/*
 * a helper function to delete the leaf pointed to by path->slots[1] and
4900
 * path->nodes[1].
4901 4902 4903 4904 4905 4906 4907
 *
 * This deletes the pointer in path->nodes[1] and frees the leaf
 * block extent.  zero is returned if it all worked out, < 0 otherwise.
 *
 * The path must have already been setup for deleting the leaf, including
 * all the proper balancing.  path->nodes[1] must be locked.
 */
4908 4909 4910 4911
static noinline void btrfs_del_leaf(struct btrfs_trans_handle *trans,
				    struct btrfs_root *root,
				    struct btrfs_path *path,
				    struct extent_buffer *leaf)
4912
{
4913
	WARN_ON(btrfs_header_generation(leaf) != trans->transid);
4914
	del_ptr(root, path, 1, path->slots[1]);
4915

4916 4917 4918 4919 4920 4921
	/*
	 * btrfs_free_extent is expensive, we want to make sure we
	 * aren't holding any locks when we call it
	 */
	btrfs_unlock_up_safe(path, 0);

4922 4923
	root_sub_used(root, leaf->len);

4924
	extent_buffer_get(leaf);
4925
	btrfs_free_tree_block(trans, root, leaf, 0, 1);
4926
	free_extent_buffer_stale(leaf);
4927
}
C
Chris Mason 已提交
4928 4929 4930 4931
/*
 * delete the item at the leaf level in path.  If that empties
 * the leaf, remove it from the tree
 */
4932 4933
int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
		    struct btrfs_path *path, int slot, int nr)
4934
{
4935
	struct btrfs_fs_info *fs_info = root->fs_info;
4936 4937
	struct extent_buffer *leaf;
	struct btrfs_item *item;
4938 4939
	u32 last_off;
	u32 dsize = 0;
C
Chris Mason 已提交
4940 4941
	int ret = 0;
	int wret;
4942
	int i;
4943
	u32 nritems;
4944 4945 4946
	struct btrfs_map_token token;

	btrfs_init_map_token(&token);
4947

4948
	leaf = path->nodes[0];
4949 4950 4951 4952 4953
	last_off = btrfs_item_offset_nr(leaf, slot + nr - 1);

	for (i = 0; i < nr; i++)
		dsize += btrfs_item_size_nr(leaf, slot + i);

4954
	nritems = btrfs_header_nritems(leaf);
4955

4956
	if (slot + nr != nritems) {
4957
		int data_end = leaf_data_end(fs_info, leaf);
4958

4959
		memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
C
Chris Mason 已提交
4960
			      data_end + dsize,
4961
			      BTRFS_LEAF_DATA_OFFSET + data_end,
4962
			      last_off - data_end);
4963

4964
		for (i = slot + nr; i < nritems; i++) {
4965
			u32 ioff;
4966

4967
			item = btrfs_item_nr(i);
4968 4969 4970
			ioff = btrfs_token_item_offset(leaf, item, &token);
			btrfs_set_token_item_offset(leaf, item,
						    ioff + dsize, &token);
C
Chris Mason 已提交
4971
		}
4972

4973
		memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot),
4974
			      btrfs_item_nr_offset(slot + nr),
C
Chris Mason 已提交
4975
			      sizeof(struct btrfs_item) *
4976
			      (nritems - slot - nr));
4977
	}
4978 4979
	btrfs_set_header_nritems(leaf, nritems - nr);
	nritems -= nr;
4980

C
Chris Mason 已提交
4981
	/* delete the leaf if we've emptied it */
4982
	if (nritems == 0) {
4983 4984
		if (leaf == root->node) {
			btrfs_set_header_level(leaf, 0);
4985
		} else {
4986
			btrfs_set_path_blocking(path);
4987
			clean_tree_block(fs_info, leaf);
4988
			btrfs_del_leaf(trans, root, path, leaf);
4989
		}
4990
	} else {
4991
		int used = leaf_space_used(leaf, 0, nritems);
C
Chris Mason 已提交
4992
		if (slot == 0) {
4993 4994 4995
			struct btrfs_disk_key disk_key;

			btrfs_item_key(leaf, &disk_key, 0);
4996
			fixup_low_keys(path, &disk_key, 1);
C
Chris Mason 已提交
4997 4998
		}

C
Chris Mason 已提交
4999
		/* delete the leaf if it is mostly empty */
5000
		if (used < BTRFS_LEAF_DATA_SIZE(fs_info) / 3) {
5001 5002 5003 5004
			/* push_leaf_left fixes the path.
			 * make sure the path still points to our leaf
			 * for possible call to del_ptr below
			 */
5005
			slot = path->slots[1];
5006 5007
			extent_buffer_get(leaf);

5008
			btrfs_set_path_blocking(path);
5009 5010
			wret = push_leaf_left(trans, root, path, 1, 1,
					      1, (u32)-1);
5011
			if (wret < 0 && wret != -ENOSPC)
C
Chris Mason 已提交
5012
				ret = wret;
5013 5014 5015

			if (path->nodes[0] == leaf &&
			    btrfs_header_nritems(leaf)) {
5016 5017
				wret = push_leaf_right(trans, root, path, 1,
						       1, 1, 0);
5018
				if (wret < 0 && wret != -ENOSPC)
C
Chris Mason 已提交
5019 5020
					ret = wret;
			}
5021 5022

			if (btrfs_header_nritems(leaf) == 0) {
5023
				path->slots[1] = slot;
5024
				btrfs_del_leaf(trans, root, path, leaf);
5025
				free_extent_buffer(leaf);
5026
				ret = 0;
C
Chris Mason 已提交
5027
			} else {
5028 5029 5030 5031 5032 5033 5034
				/* if we're still in the path, make sure
				 * we're dirty.  Otherwise, one of the
				 * push_leaf functions must have already
				 * dirtied this buffer
				 */
				if (path->nodes[0] == leaf)
					btrfs_mark_buffer_dirty(leaf);
5035
				free_extent_buffer(leaf);
5036
			}
5037
		} else {
5038
			btrfs_mark_buffer_dirty(leaf);
5039 5040
		}
	}
C
Chris Mason 已提交
5041
	return ret;
5042 5043
}

5044
/*
5045
 * search the tree again to find a leaf with lesser keys
5046 5047
 * returns 0 if it found something or 1 if there are no lesser leaves.
 * returns < 0 on io errors.
C
Chris Mason 已提交
5048 5049 5050
 *
 * This may release the path, and so you may lose any locks held at the
 * time you call it.
5051
 */
5052
int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path)
5053
{
5054 5055 5056
	struct btrfs_key key;
	struct btrfs_disk_key found_key;
	int ret;
5057

5058
	btrfs_item_key_to_cpu(path->nodes[0], &key, 0);
5059

5060
	if (key.offset > 0) {
5061
		key.offset--;
5062
	} else if (key.type > 0) {
5063
		key.type--;
5064 5065
		key.offset = (u64)-1;
	} else if (key.objectid > 0) {
5066
		key.objectid--;
5067 5068 5069
		key.type = (u8)-1;
		key.offset = (u64)-1;
	} else {
5070
		return 1;
5071
	}
5072

5073
	btrfs_release_path(path);
5074 5075 5076 5077 5078
	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
	if (ret < 0)
		return ret;
	btrfs_item_key(path->nodes[0], &found_key, 0);
	ret = comp_keys(&found_key, &key);
5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089
	/*
	 * We might have had an item with the previous key in the tree right
	 * before we released our path. And after we released our path, that
	 * item might have been pushed to the first slot (0) of the leaf we
	 * were holding due to a tree balance. Alternatively, an item with the
	 * previous key can exist as the only element of a leaf (big fat item).
	 * Therefore account for these 2 cases, so that our callers (like
	 * btrfs_previous_item) don't miss an existing item with a key matching
	 * the previous key we computed above.
	 */
	if (ret <= 0)
5090 5091
		return 0;
	return 1;
5092 5093
}

5094 5095
/*
 * A helper function to walk down the tree starting at min_key, and looking
5096 5097
 * for nodes or leaves that are have a minimum transaction id.
 * This is used by the btree defrag code, and tree logging
5098 5099 5100 5101 5102 5103 5104 5105
 *
 * This does not cow, but it does stuff the starting key it finds back
 * into min_key, so you can call btrfs_search_slot with cow=1 on the
 * key and get a writable path.
 *
 * This honors path->lowest_level to prevent descent past a given level
 * of the tree.
 *
C
Chris Mason 已提交
5106 5107 5108 5109
 * min_trans indicates the oldest transaction that you are interested
 * in walking through.  Any nodes or leaves older than min_trans are
 * skipped over (without reading them).
 *
5110 5111 5112 5113
 * returns zero if something useful was found, < 0 on error and 1 if there
 * was nothing in the tree that matched the search criteria.
 */
int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
5114
			 struct btrfs_path *path,
5115 5116
			 u64 min_trans)
{
5117
	struct btrfs_fs_info *fs_info = root->fs_info;
5118 5119 5120
	struct extent_buffer *cur;
	struct btrfs_key found_key;
	int slot;
5121
	int sret;
5122 5123 5124
	u32 nritems;
	int level;
	int ret = 1;
5125
	int keep_locks = path->keep_locks;
5126

5127
	path->keep_locks = 1;
5128
again:
5129
	cur = btrfs_read_lock_root_node(root);
5130
	level = btrfs_header_level(cur);
5131
	WARN_ON(path->nodes[level]);
5132
	path->nodes[level] = cur;
5133
	path->locks[level] = BTRFS_READ_LOCK;
5134 5135 5136 5137 5138

	if (btrfs_header_generation(cur) < min_trans) {
		ret = 1;
		goto out;
	}
C
Chris Mason 已提交
5139
	while (1) {
5140 5141
		nritems = btrfs_header_nritems(cur);
		level = btrfs_header_level(cur);
5142
		sret = btrfs_bin_search(cur, min_key, level, &slot);
5143

5144 5145
		/* at the lowest level, we're done, setup the path and exit */
		if (level == path->lowest_level) {
5146 5147
			if (slot >= nritems)
				goto find_next_key;
5148 5149 5150 5151 5152
			ret = 0;
			path->slots[level] = slot;
			btrfs_item_key_to_cpu(cur, &found_key, slot);
			goto out;
		}
5153 5154
		if (sret && slot > 0)
			slot--;
5155
		/*
5156 5157
		 * check this node pointer against the min_trans parameters.
		 * If it is too old, old, skip to the next one.
5158
		 */
C
Chris Mason 已提交
5159
		while (slot < nritems) {
5160
			u64 gen;
5161

5162 5163 5164 5165 5166
			gen = btrfs_node_ptr_generation(cur, slot);
			if (gen < min_trans) {
				slot++;
				continue;
			}
5167
			break;
5168
		}
5169
find_next_key:
5170 5171 5172 5173 5174
		/*
		 * we didn't find a candidate key in this node, walk forward
		 * and find another one
		 */
		if (slot >= nritems) {
5175
			path->slots[level] = slot;
5176
			btrfs_set_path_blocking(path);
5177
			sret = btrfs_find_next_key(root, path, min_key, level,
5178
						  min_trans);
5179
			if (sret == 0) {
5180
				btrfs_release_path(path);
5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192
				goto again;
			} else {
				goto out;
			}
		}
		/* save our key for returning back */
		btrfs_node_key_to_cpu(cur, &found_key, slot);
		path->slots[level] = slot;
		if (level == path->lowest_level) {
			ret = 0;
			goto out;
		}
5193
		btrfs_set_path_blocking(path);
5194
		cur = read_node_slot(fs_info, cur, slot);
5195 5196 5197 5198
		if (IS_ERR(cur)) {
			ret = PTR_ERR(cur);
			goto out;
		}
5199

5200
		btrfs_tree_read_lock(cur);
5201

5202
		path->locks[level - 1] = BTRFS_READ_LOCK;
5203
		path->nodes[level - 1] = cur;
5204
		unlock_up(path, level, 1, 0, NULL);
5205
		btrfs_clear_path_blocking(path, NULL, 0);
5206 5207
	}
out:
5208 5209 5210 5211
	path->keep_locks = keep_locks;
	if (ret == 0) {
		btrfs_unlock_up_safe(path, path->lowest_level + 1);
		btrfs_set_path_blocking(path);
5212
		memcpy(min_key, &found_key, sizeof(found_key));
5213
	}
5214 5215 5216
	return ret;
}

5217
static int tree_move_down(struct btrfs_fs_info *fs_info,
5218
			   struct btrfs_path *path,
5219
			   int *level)
5220
{
5221 5222
	struct extent_buffer *eb;

5223
	BUG_ON(*level == 0);
5224
	eb = read_node_slot(fs_info, path->nodes[*level], path->slots[*level]);
5225 5226 5227 5228
	if (IS_ERR(eb))
		return PTR_ERR(eb);

	path->nodes[*level - 1] = eb;
5229 5230
	path->slots[*level - 1] = 0;
	(*level)--;
5231
	return 0;
5232 5233
}

5234
static int tree_move_next_or_upnext(struct btrfs_path *path,
5235 5236 5237 5238 5239 5240 5241 5242
				    int *level, int root_level)
{
	int ret = 0;
	int nritems;
	nritems = btrfs_header_nritems(path->nodes[*level]);

	path->slots[*level]++;

5243
	while (path->slots[*level] >= nritems) {
5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263
		if (*level == root_level)
			return -1;

		/* move upnext */
		path->slots[*level] = 0;
		free_extent_buffer(path->nodes[*level]);
		path->nodes[*level] = NULL;
		(*level)++;
		path->slots[*level]++;

		nritems = btrfs_header_nritems(path->nodes[*level]);
		ret = 1;
	}
	return ret;
}

/*
 * Returns 1 if it had to move up and next. 0 is returned if it moved only next
 * or down.
 */
5264
static int tree_advance(struct btrfs_fs_info *fs_info,
5265 5266 5267 5268 5269 5270 5271 5272
			struct btrfs_path *path,
			int *level, int root_level,
			int allow_down,
			struct btrfs_key *key)
{
	int ret;

	if (*level == 0 || !allow_down) {
5273
		ret = tree_move_next_or_upnext(path, level, root_level);
5274
	} else {
5275
		ret = tree_move_down(fs_info, path, level);
5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287
	}
	if (ret >= 0) {
		if (*level == 0)
			btrfs_item_key_to_cpu(path->nodes[*level], key,
					path->slots[*level]);
		else
			btrfs_node_key_to_cpu(path->nodes[*level], key,
					path->slots[*level]);
	}
	return ret;
}

5288
static int tree_compare_item(struct btrfs_path *left_path,
5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332
			     struct btrfs_path *right_path,
			     char *tmp_buf)
{
	int cmp;
	int len1, len2;
	unsigned long off1, off2;

	len1 = btrfs_item_size_nr(left_path->nodes[0], left_path->slots[0]);
	len2 = btrfs_item_size_nr(right_path->nodes[0], right_path->slots[0]);
	if (len1 != len2)
		return 1;

	off1 = btrfs_item_ptr_offset(left_path->nodes[0], left_path->slots[0]);
	off2 = btrfs_item_ptr_offset(right_path->nodes[0],
				right_path->slots[0]);

	read_extent_buffer(left_path->nodes[0], tmp_buf, off1, len1);

	cmp = memcmp_extent_buffer(right_path->nodes[0], tmp_buf, off2, len1);
	if (cmp)
		return 1;
	return 0;
}

#define ADVANCE 1
#define ADVANCE_ONLY_NEXT -1

/*
 * This function compares two trees and calls the provided callback for
 * every changed/new/deleted item it finds.
 * If shared tree blocks are encountered, whole subtrees are skipped, making
 * the compare pretty fast on snapshotted subvolumes.
 *
 * This currently works on commit roots only. As commit roots are read only,
 * we don't do any locking. The commit roots are protected with transactions.
 * Transactions are ended and rejoined when a commit is tried in between.
 *
 * This function checks for modifications done to the trees while comparing.
 * If it detects a change, it aborts immediately.
 */
int btrfs_compare_trees(struct btrfs_root *left_root,
			struct btrfs_root *right_root,
			btrfs_changed_cb_t changed_cb, void *ctx)
{
5333
	struct btrfs_fs_info *fs_info = left_root->fs_info;
5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350
	int ret;
	int cmp;
	struct btrfs_path *left_path = NULL;
	struct btrfs_path *right_path = NULL;
	struct btrfs_key left_key;
	struct btrfs_key right_key;
	char *tmp_buf = NULL;
	int left_root_level;
	int right_root_level;
	int left_level;
	int right_level;
	int left_end_reached;
	int right_end_reached;
	int advance_left;
	int advance_right;
	u64 left_blockptr;
	u64 right_blockptr;
5351 5352
	u64 left_gen;
	u64 right_gen;
5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364

	left_path = btrfs_alloc_path();
	if (!left_path) {
		ret = -ENOMEM;
		goto out;
	}
	right_path = btrfs_alloc_path();
	if (!right_path) {
		ret = -ENOMEM;
		goto out;
	}

5365
	tmp_buf = kvmalloc(fs_info->nodesize, GFP_KERNEL);
5366
	if (!tmp_buf) {
5367 5368
		ret = -ENOMEM;
		goto out;
5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411
	}

	left_path->search_commit_root = 1;
	left_path->skip_locking = 1;
	right_path->search_commit_root = 1;
	right_path->skip_locking = 1;

	/*
	 * Strategy: Go to the first items of both trees. Then do
	 *
	 * If both trees are at level 0
	 *   Compare keys of current items
	 *     If left < right treat left item as new, advance left tree
	 *       and repeat
	 *     If left > right treat right item as deleted, advance right tree
	 *       and repeat
	 *     If left == right do deep compare of items, treat as changed if
	 *       needed, advance both trees and repeat
	 * If both trees are at the same level but not at level 0
	 *   Compare keys of current nodes/leafs
	 *     If left < right advance left tree and repeat
	 *     If left > right advance right tree and repeat
	 *     If left == right compare blockptrs of the next nodes/leafs
	 *       If they match advance both trees but stay at the same level
	 *         and repeat
	 *       If they don't match advance both trees while allowing to go
	 *         deeper and repeat
	 * If tree levels are different
	 *   Advance the tree that needs it and repeat
	 *
	 * Advancing a tree means:
	 *   If we are at level 0, try to go to the next slot. If that's not
	 *   possible, go one level up and repeat. Stop when we found a level
	 *   where we could go to the next slot. We may at this point be on a
	 *   node or a leaf.
	 *
	 *   If we are not at level 0 and not on shared tree blocks, go one
	 *   level deeper.
	 *
	 *   If we are not at level 0 and on shared tree blocks, go one slot to
	 *   the right if possible or go up and right.
	 */

5412
	down_read(&fs_info->commit_root_sem);
5413 5414
	left_level = btrfs_header_level(left_root->commit_root);
	left_root_level = left_level;
5415 5416 5417 5418 5419 5420 5421
	left_path->nodes[left_level] =
			btrfs_clone_extent_buffer(left_root->commit_root);
	if (!left_path->nodes[left_level]) {
		up_read(&fs_info->commit_root_sem);
		ret = -ENOMEM;
		goto out;
	}
5422 5423 5424 5425
	extent_buffer_get(left_path->nodes[left_level]);

	right_level = btrfs_header_level(right_root->commit_root);
	right_root_level = right_level;
5426 5427 5428 5429 5430 5431 5432
	right_path->nodes[right_level] =
			btrfs_clone_extent_buffer(right_root->commit_root);
	if (!right_path->nodes[right_level]) {
		up_read(&fs_info->commit_root_sem);
		ret = -ENOMEM;
		goto out;
	}
5433
	extent_buffer_get(right_path->nodes[right_level]);
5434
	up_read(&fs_info->commit_root_sem);
5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453

	if (left_level == 0)
		btrfs_item_key_to_cpu(left_path->nodes[left_level],
				&left_key, left_path->slots[left_level]);
	else
		btrfs_node_key_to_cpu(left_path->nodes[left_level],
				&left_key, left_path->slots[left_level]);
	if (right_level == 0)
		btrfs_item_key_to_cpu(right_path->nodes[right_level],
				&right_key, right_path->slots[right_level]);
	else
		btrfs_node_key_to_cpu(right_path->nodes[right_level],
				&right_key, right_path->slots[right_level]);

	left_end_reached = right_end_reached = 0;
	advance_left = advance_right = 0;

	while (1) {
		if (advance_left && !left_end_reached) {
5454
			ret = tree_advance(fs_info, left_path, &left_level,
5455 5456 5457
					left_root_level,
					advance_left != ADVANCE_ONLY_NEXT,
					&left_key);
5458
			if (ret == -1)
5459
				left_end_reached = ADVANCE;
5460 5461
			else if (ret < 0)
				goto out;
5462 5463 5464
			advance_left = 0;
		}
		if (advance_right && !right_end_reached) {
5465
			ret = tree_advance(fs_info, right_path, &right_level,
5466 5467 5468
					right_root_level,
					advance_right != ADVANCE_ONLY_NEXT,
					&right_key);
5469
			if (ret == -1)
5470
				right_end_reached = ADVANCE;
5471 5472
			else if (ret < 0)
				goto out;
5473 5474 5475 5476 5477 5478 5479 5480
			advance_right = 0;
		}

		if (left_end_reached && right_end_reached) {
			ret = 0;
			goto out;
		} else if (left_end_reached) {
			if (right_level == 0) {
5481
				ret = changed_cb(left_path, right_path,
5482 5483 5484 5485 5486 5487 5488 5489 5490 5491
						&right_key,
						BTRFS_COMPARE_TREE_DELETED,
						ctx);
				if (ret < 0)
					goto out;
			}
			advance_right = ADVANCE;
			continue;
		} else if (right_end_reached) {
			if (left_level == 0) {
5492
				ret = changed_cb(left_path, right_path,
5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505
						&left_key,
						BTRFS_COMPARE_TREE_NEW,
						ctx);
				if (ret < 0)
					goto out;
			}
			advance_left = ADVANCE;
			continue;
		}

		if (left_level == 0 && right_level == 0) {
			cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
			if (cmp < 0) {
5506
				ret = changed_cb(left_path, right_path,
5507 5508 5509 5510 5511 5512 5513
						&left_key,
						BTRFS_COMPARE_TREE_NEW,
						ctx);
				if (ret < 0)
					goto out;
				advance_left = ADVANCE;
			} else if (cmp > 0) {
5514
				ret = changed_cb(left_path, right_path,
5515 5516 5517 5518 5519 5520 5521
						&right_key,
						BTRFS_COMPARE_TREE_DELETED,
						ctx);
				if (ret < 0)
					goto out;
				advance_right = ADVANCE;
			} else {
5522
				enum btrfs_compare_tree_result result;
5523

5524
				WARN_ON(!extent_buffer_uptodate(left_path->nodes[0]));
5525 5526
				ret = tree_compare_item(left_path, right_path,
							tmp_buf);
5527
				if (ret)
5528
					result = BTRFS_COMPARE_TREE_CHANGED;
5529
				else
5530
					result = BTRFS_COMPARE_TREE_SAME;
5531
				ret = changed_cb(left_path, right_path,
5532
						 &left_key, result, ctx);
5533 5534
				if (ret < 0)
					goto out;
5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550
				advance_left = ADVANCE;
				advance_right = ADVANCE;
			}
		} else if (left_level == right_level) {
			cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
			if (cmp < 0) {
				advance_left = ADVANCE;
			} else if (cmp > 0) {
				advance_right = ADVANCE;
			} else {
				left_blockptr = btrfs_node_blockptr(
						left_path->nodes[left_level],
						left_path->slots[left_level]);
				right_blockptr = btrfs_node_blockptr(
						right_path->nodes[right_level],
						right_path->slots[right_level]);
5551 5552 5553 5554 5555 5556 5557 5558
				left_gen = btrfs_node_ptr_generation(
						left_path->nodes[left_level],
						left_path->slots[left_level]);
				right_gen = btrfs_node_ptr_generation(
						right_path->nodes[right_level],
						right_path->slots[right_level]);
				if (left_blockptr == right_blockptr &&
				    left_gen == right_gen) {
5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579
					/*
					 * As we're on a shared block, don't
					 * allow to go deeper.
					 */
					advance_left = ADVANCE_ONLY_NEXT;
					advance_right = ADVANCE_ONLY_NEXT;
				} else {
					advance_left = ADVANCE;
					advance_right = ADVANCE;
				}
			}
		} else if (left_level < right_level) {
			advance_right = ADVANCE;
		} else {
			advance_left = ADVANCE;
		}
	}

out:
	btrfs_free_path(left_path);
	btrfs_free_path(right_path);
5580
	kvfree(tmp_buf);
5581 5582 5583
	return ret;
}

5584 5585 5586
/*
 * this is similar to btrfs_next_leaf, but does not try to preserve
 * and fixup the path.  It looks for and returns the next key in the
5587
 * tree based on the current path and the min_trans parameters.
5588 5589 5590 5591 5592 5593 5594
 *
 * 0 is returned if another key is found, < 0 if there are any errors
 * and 1 is returned if there are no higher keys in the tree
 *
 * path->keep_locks should be set to 1 on the search made before
 * calling this function.
 */
5595
int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
5596
			struct btrfs_key *key, int level, u64 min_trans)
5597 5598 5599 5600
{
	int slot;
	struct extent_buffer *c;

5601
	WARN_ON(!path->keep_locks);
C
Chris Mason 已提交
5602
	while (level < BTRFS_MAX_LEVEL) {
5603 5604 5605 5606 5607
		if (!path->nodes[level])
			return 1;

		slot = path->slots[level] + 1;
		c = path->nodes[level];
5608
next:
5609
		if (slot >= btrfs_header_nritems(c)) {
5610 5611 5612 5613 5614
			int ret;
			int orig_lowest;
			struct btrfs_key cur_key;
			if (level + 1 >= BTRFS_MAX_LEVEL ||
			    !path->nodes[level + 1])
5615
				return 1;
5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628

			if (path->locks[level + 1]) {
				level++;
				continue;
			}

			slot = btrfs_header_nritems(c) - 1;
			if (level == 0)
				btrfs_item_key_to_cpu(c, &cur_key, slot);
			else
				btrfs_node_key_to_cpu(c, &cur_key, slot);

			orig_lowest = path->lowest_level;
5629
			btrfs_release_path(path);
5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641
			path->lowest_level = level;
			ret = btrfs_search_slot(NULL, root, &cur_key, path,
						0, 0);
			path->lowest_level = orig_lowest;
			if (ret < 0)
				return ret;

			c = path->nodes[level];
			slot = path->slots[level];
			if (ret == 0)
				slot++;
			goto next;
5642
		}
5643

5644 5645
		if (level == 0)
			btrfs_item_key_to_cpu(c, key, slot);
5646 5647 5648 5649 5650 5651 5652
		else {
			u64 gen = btrfs_node_ptr_generation(c, slot);

			if (gen < min_trans) {
				slot++;
				goto next;
			}
5653
			btrfs_node_key_to_cpu(c, key, slot);
5654
		}
5655 5656 5657 5658 5659
		return 0;
	}
	return 1;
}

C
Chris Mason 已提交
5660
/*
5661
 * search the tree again to find a leaf with greater keys
C
Chris Mason 已提交
5662 5663
 * returns 0 if it found something or 1 if there are no greater leaves.
 * returns < 0 on io errors.
C
Chris Mason 已提交
5664
 */
C
Chris Mason 已提交
5665
int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path)
J
Jan Schmidt 已提交
5666 5667 5668 5669 5670 5671
{
	return btrfs_next_old_leaf(root, path, 0);
}

int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path,
			u64 time_seq)
5672 5673
{
	int slot;
5674
	int level;
5675
	struct extent_buffer *c;
5676
	struct extent_buffer *next;
5677 5678 5679
	struct btrfs_key key;
	u32 nritems;
	int ret;
5680
	int old_spinning = path->leave_spinning;
5681
	int next_rw_lock = 0;
5682 5683

	nritems = btrfs_header_nritems(path->nodes[0]);
C
Chris Mason 已提交
5684
	if (nritems == 0)
5685 5686
		return 1;

5687 5688 5689 5690
	btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1);
again:
	level = 1;
	next = NULL;
5691
	next_rw_lock = 0;
5692
	btrfs_release_path(path);
5693

5694
	path->keep_locks = 1;
5695
	path->leave_spinning = 1;
5696

J
Jan Schmidt 已提交
5697 5698 5699 5700
	if (time_seq)
		ret = btrfs_search_old_slot(root, &key, path, time_seq);
	else
		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5701 5702 5703 5704 5705
	path->keep_locks = 0;

	if (ret < 0)
		return ret;

5706
	nritems = btrfs_header_nritems(path->nodes[0]);
5707 5708 5709 5710 5711 5712
	/*
	 * by releasing the path above we dropped all our locks.  A balance
	 * could have added more items next to the key that used to be
	 * at the very end of the block.  So, check again here and
	 * advance the path if there are now more items available.
	 */
5713
	if (nritems > 0 && path->slots[0] < nritems - 1) {
5714 5715
		if (ret == 0)
			path->slots[0]++;
5716
		ret = 0;
5717 5718
		goto done;
	}
5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736
	/*
	 * So the above check misses one case:
	 * - after releasing the path above, someone has removed the item that
	 *   used to be at the very end of the block, and balance between leafs
	 *   gets another one with bigger key.offset to replace it.
	 *
	 * This one should be returned as well, or we can get leaf corruption
	 * later(esp. in __btrfs_drop_extents()).
	 *
	 * And a bit more explanation about this check,
	 * with ret > 0, the key isn't found, the path points to the slot
	 * where it should be inserted, so the path->slots[0] item must be the
	 * bigger one.
	 */
	if (nritems > 0 && ret > 0 && path->slots[0] == nritems - 1) {
		ret = 0;
		goto done;
	}
5737

C
Chris Mason 已提交
5738
	while (level < BTRFS_MAX_LEVEL) {
5739 5740 5741 5742
		if (!path->nodes[level]) {
			ret = 1;
			goto done;
		}
5743

5744 5745
		slot = path->slots[level] + 1;
		c = path->nodes[level];
5746
		if (slot >= btrfs_header_nritems(c)) {
5747
			level++;
5748 5749 5750 5751
			if (level == BTRFS_MAX_LEVEL) {
				ret = 1;
				goto done;
			}
5752 5753
			continue;
		}
5754

5755
		if (next) {
5756
			btrfs_tree_unlock_rw(next, next_rw_lock);
5757
			free_extent_buffer(next);
5758
		}
5759

5760
		next = c;
5761
		next_rw_lock = path->locks[level];
5762
		ret = read_block_for_search(root, path, &next, level,
5763
					    slot, &key);
5764 5765
		if (ret == -EAGAIN)
			goto again;
5766

5767
		if (ret < 0) {
5768
			btrfs_release_path(path);
5769 5770 5771
			goto done;
		}

5772
		if (!path->skip_locking) {
5773
			ret = btrfs_try_tree_read_lock(next);
5774 5775 5776 5777 5778 5779 5780 5781
			if (!ret && time_seq) {
				/*
				 * If we don't get the lock, we may be racing
				 * with push_leaf_left, holding that lock while
				 * itself waiting for the leaf we've currently
				 * locked. To solve this situation, we give up
				 * on our lock and cycle.
				 */
5782
				free_extent_buffer(next);
5783 5784 5785 5786
				btrfs_release_path(path);
				cond_resched();
				goto again;
			}
5787 5788
			if (!ret) {
				btrfs_set_path_blocking(path);
5789
				btrfs_tree_read_lock(next);
5790
				btrfs_clear_path_blocking(path, next,
5791
							  BTRFS_READ_LOCK);
5792
			}
5793
			next_rw_lock = BTRFS_READ_LOCK;
5794
		}
5795 5796 5797
		break;
	}
	path->slots[level] = slot;
C
Chris Mason 已提交
5798
	while (1) {
5799 5800
		level--;
		c = path->nodes[level];
5801
		if (path->locks[level])
5802
			btrfs_tree_unlock_rw(c, path->locks[level]);
5803

5804
		free_extent_buffer(c);
5805 5806
		path->nodes[level] = next;
		path->slots[level] = 0;
5807
		if (!path->skip_locking)
5808
			path->locks[level] = next_rw_lock;
5809 5810
		if (!level)
			break;
5811

5812
		ret = read_block_for_search(root, path, &next, level,
5813
					    0, &key);
5814 5815 5816
		if (ret == -EAGAIN)
			goto again;

5817
		if (ret < 0) {
5818
			btrfs_release_path(path);
5819 5820 5821
			goto done;
		}

5822
		if (!path->skip_locking) {
5823
			ret = btrfs_try_tree_read_lock(next);
5824 5825
			if (!ret) {
				btrfs_set_path_blocking(path);
5826
				btrfs_tree_read_lock(next);
5827
				btrfs_clear_path_blocking(path, next,
5828 5829
							  BTRFS_READ_LOCK);
			}
5830
			next_rw_lock = BTRFS_READ_LOCK;
5831
		}
5832
	}
5833
	ret = 0;
5834
done:
5835
	unlock_up(path, 0, 1, 0, NULL);
5836 5837 5838 5839 5840
	path->leave_spinning = old_spinning;
	if (!old_spinning)
		btrfs_set_path_blocking(path);

	return ret;
5841
}
5842

5843 5844 5845 5846 5847 5848
/*
 * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps
 * searching until it gets past min_objectid or finds an item of 'type'
 *
 * returns 0 if something is found, 1 if nothing was found and < 0 on error
 */
5849 5850 5851 5852 5853 5854
int btrfs_previous_item(struct btrfs_root *root,
			struct btrfs_path *path, u64 min_objectid,
			int type)
{
	struct btrfs_key found_key;
	struct extent_buffer *leaf;
5855
	u32 nritems;
5856 5857
	int ret;

C
Chris Mason 已提交
5858
	while (1) {
5859
		if (path->slots[0] == 0) {
5860
			btrfs_set_path_blocking(path);
5861 5862 5863 5864 5865 5866 5867
			ret = btrfs_prev_leaf(root, path);
			if (ret != 0)
				return ret;
		} else {
			path->slots[0]--;
		}
		leaf = path->nodes[0];
5868 5869 5870 5871 5872 5873
		nritems = btrfs_header_nritems(leaf);
		if (nritems == 0)
			return 1;
		if (path->slots[0] == nritems)
			path->slots[0]--;

5874
		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5875 5876
		if (found_key.objectid < min_objectid)
			break;
5877 5878
		if (found_key.type == type)
			return 0;
5879 5880 5881
		if (found_key.objectid == min_objectid &&
		    found_key.type < type)
			break;
5882 5883 5884
	}
	return 1;
}
5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927

/*
 * search in extent tree to find a previous Metadata/Data extent item with
 * min objecitd.
 *
 * returns 0 if something is found, 1 if nothing was found and < 0 on error
 */
int btrfs_previous_extent_item(struct btrfs_root *root,
			struct btrfs_path *path, u64 min_objectid)
{
	struct btrfs_key found_key;
	struct extent_buffer *leaf;
	u32 nritems;
	int ret;

	while (1) {
		if (path->slots[0] == 0) {
			btrfs_set_path_blocking(path);
			ret = btrfs_prev_leaf(root, path);
			if (ret != 0)
				return ret;
		} else {
			path->slots[0]--;
		}
		leaf = path->nodes[0];
		nritems = btrfs_header_nritems(leaf);
		if (nritems == 0)
			return 1;
		if (path->slots[0] == nritems)
			path->slots[0]--;

		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
		if (found_key.objectid < min_objectid)
			break;
		if (found_key.type == BTRFS_EXTENT_ITEM_KEY ||
		    found_key.type == BTRFS_METADATA_ITEM_KEY)
			return 0;
		if (found_key.objectid == min_objectid &&
		    found_key.type < BTRFS_EXTENT_ITEM_KEY)
			break;
	}
	return 1;
}