ctree.c 143.6 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
C
Chris Mason 已提交
2
/*
C
Chris Mason 已提交
3
 * Copyright (C) 2007,2008 Oracle.  All rights reserved.
C
Chris Mason 已提交
4 5
 */

6
#include <linux/sched.h>
7
#include <linux/slab.h>
8
#include <linux/rbtree.h>
9
#include <linux/mm.h>
10 11
#include "ctree.h"
#include "disk-io.h"
12
#include "transaction.h"
13
#include "print-tree.h"
14
#include "locking.h"
15
#include "volumes.h"
16
#include "qgroup.h"
17

18 19
static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
		      *root, struct btrfs_path *path, int level);
20 21 22
static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root *root,
		      const struct btrfs_key *ins_key, struct btrfs_path *path,
		      int data_size, int extend);
23
static int push_node_left(struct btrfs_trans_handle *trans,
24
			  struct extent_buffer *dst,
25
			  struct extent_buffer *src, int empty);
26 27 28
static int balance_node_right(struct btrfs_trans_handle *trans,
			      struct extent_buffer *dst_buf,
			      struct extent_buffer *src_buf);
29 30
static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
		    int level, int slot);
31

32 33
static const struct btrfs_csums {
	u16		size;
34 35
	const char	name[10];
	const char	driver[12];
36 37
} btrfs_csums[] = {
	[BTRFS_CSUM_TYPE_CRC32] = { .size = 4, .name = "crc32c" },
38
	[BTRFS_CSUM_TYPE_XXHASH] = { .size = 8, .name = "xxhash64" },
39
	[BTRFS_CSUM_TYPE_SHA256] = { .size = 32, .name = "sha256" },
40 41
	[BTRFS_CSUM_TYPE_BLAKE2] = { .size = 32, .name = "blake2b",
				     .driver = "blake2b-256" },
42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58
};

int btrfs_super_csum_size(const struct btrfs_super_block *s)
{
	u16 t = btrfs_super_csum_type(s);
	/*
	 * csum type is validated at mount time
	 */
	return btrfs_csums[t].size;
}

const char *btrfs_super_csum_name(u16 csum_type)
{
	/* csum type is validated at mount time */
	return btrfs_csums[csum_type].name;
}

59 60 61 62 63 64 65
/*
 * Return driver name if defined, otherwise the name that's also a valid driver
 * name
 */
const char *btrfs_super_csum_driver(u16 csum_type)
{
	/* csum type is validated at mount time */
66 67
	return btrfs_csums[csum_type].driver[0] ?
		btrfs_csums[csum_type].driver :
68 69 70
		btrfs_csums[csum_type].name;
}

71
size_t __attribute_const__ btrfs_get_num_csums(void)
72 73 74 75
{
	return ARRAY_SIZE(btrfs_csums);
}

C
Chris Mason 已提交
76
struct btrfs_path *btrfs_alloc_path(void)
C
Chris Mason 已提交
77
{
78
	return kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS);
C
Chris Mason 已提交
79 80
}

C
Chris Mason 已提交
81
/* this also releases the path */
C
Chris Mason 已提交
82
void btrfs_free_path(struct btrfs_path *p)
83
{
84 85
	if (!p)
		return;
86
	btrfs_release_path(p);
C
Chris Mason 已提交
87
	kmem_cache_free(btrfs_path_cachep, p);
88 89
}

C
Chris Mason 已提交
90 91 92 93 94 95
/*
 * path release drops references on the extent buffers in the path
 * and it drops any locks held by this path
 *
 * It is safe to call this on paths that no locks or extent buffers held.
 */
96
noinline void btrfs_release_path(struct btrfs_path *p)
97 98
{
	int i;
99

C
Chris Mason 已提交
100
	for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
101
		p->slots[i] = 0;
102
		if (!p->nodes[i])
103 104
			continue;
		if (p->locks[i]) {
105
			btrfs_tree_unlock_rw(p->nodes[i], p->locks[i]);
106 107
			p->locks[i] = 0;
		}
108
		free_extent_buffer(p->nodes[i]);
109
		p->nodes[i] = NULL;
110 111 112
	}
}

C
Chris Mason 已提交
113 114 115 116 117 118 119 120 121 122
/*
 * safely gets a reference on the root node of a tree.  A lock
 * is not taken, so a concurrent writer may put a different node
 * at the root of the tree.  See btrfs_lock_root_node for the
 * looping required.
 *
 * The extent buffer returned by this has a reference taken, so
 * it won't disappear.  It may stop being the root of the tree
 * at any time because there are no locks held.
 */
123 124 125
struct extent_buffer *btrfs_root_node(struct btrfs_root *root)
{
	struct extent_buffer *eb;
126

127 128 129 130 131 132
	while (1) {
		rcu_read_lock();
		eb = rcu_dereference(root->node);

		/*
		 * RCU really hurts here, we could free up the root node because
133
		 * it was COWed but we may not get the new root node yet so do
134 135 136 137 138 139 140 141 142 143
		 * the inc_not_zero dance and if it doesn't work then
		 * synchronize_rcu and try again.
		 */
		if (atomic_inc_not_zero(&eb->refs)) {
			rcu_read_unlock();
			break;
		}
		rcu_read_unlock();
		synchronize_rcu();
	}
144 145 146
	return eb;
}

147 148 149 150
/*
 * Cowonly root (not-shareable trees, everything not subvolume or reloc roots),
 * just get put onto a simple dirty list.  Transaction walks this list to make
 * sure they get properly updated on disk.
C
Chris Mason 已提交
151
 */
152 153
static void add_root_to_dirty_list(struct btrfs_root *root)
{
154 155
	struct btrfs_fs_info *fs_info = root->fs_info;

156 157 158 159
	if (test_bit(BTRFS_ROOT_DIRTY, &root->state) ||
	    !test_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state))
		return;

160
	spin_lock(&fs_info->trans_lock);
161 162
	if (!test_and_set_bit(BTRFS_ROOT_DIRTY, &root->state)) {
		/* Want the extent tree to be the last on the list */
163
		if (root->root_key.objectid == BTRFS_EXTENT_TREE_OBJECTID)
164
			list_move_tail(&root->dirty_list,
165
				       &fs_info->dirty_cowonly_roots);
166 167
		else
			list_move(&root->dirty_list,
168
				  &fs_info->dirty_cowonly_roots);
169
	}
170
	spin_unlock(&fs_info->trans_lock);
171 172
}

C
Chris Mason 已提交
173 174 175 176 177
/*
 * used by snapshot creation to make a copy of a root for a tree with
 * a given objectid.  The buffer with the new root node is returned in
 * cow_ret, and this func returns zero on success or a negative error code.
 */
178 179 180 181 182
int btrfs_copy_root(struct btrfs_trans_handle *trans,
		      struct btrfs_root *root,
		      struct extent_buffer *buf,
		      struct extent_buffer **cow_ret, u64 new_root_objectid)
{
183
	struct btrfs_fs_info *fs_info = root->fs_info;
184 185 186
	struct extent_buffer *cow;
	int ret = 0;
	int level;
187
	struct btrfs_disk_key disk_key;
188

189
	WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
190
		trans->transid != fs_info->running_transaction->transid);
191
	WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
192
		trans->transid != root->last_trans);
193 194

	level = btrfs_header_level(buf);
195 196 197 198
	if (level == 0)
		btrfs_item_key(buf, &disk_key, 0);
	else
		btrfs_node_key(buf, &disk_key, 0);
Z
Zheng Yan 已提交
199

200
	cow = btrfs_alloc_tree_block(trans, root, 0, new_root_objectid,
201
			&disk_key, level, buf->start, 0, BTRFS_NESTING_NORMAL);
202
	if (IS_ERR(cow))
203 204
		return PTR_ERR(cow);

205
	copy_extent_buffer_full(cow, buf);
206 207
	btrfs_set_header_bytenr(cow, cow->start);
	btrfs_set_header_generation(cow, trans->transid);
208 209 210 211 212 213 214
	btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
	btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
				     BTRFS_HEADER_FLAG_RELOC);
	if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
		btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
	else
		btrfs_set_header_owner(cow, new_root_objectid);
215

216
	write_extent_buffer_fsid(cow, fs_info->fs_devices->metadata_uuid);
Y
Yan Zheng 已提交
217

218
	WARN_ON(btrfs_header_generation(buf) > trans->transid);
219
	if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
220
		ret = btrfs_inc_ref(trans, root, cow, 1);
221
	else
222
		ret = btrfs_inc_ref(trans, root, cow, 0);
223

224 225 226 227 228 229 230 231
	if (ret)
		return ret;

	btrfs_mark_buffer_dirty(cow);
	*cow_ret = cow;
	return 0;
}

232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248
enum mod_log_op {
	MOD_LOG_KEY_REPLACE,
	MOD_LOG_KEY_ADD,
	MOD_LOG_KEY_REMOVE,
	MOD_LOG_KEY_REMOVE_WHILE_FREEING,
	MOD_LOG_KEY_REMOVE_WHILE_MOVING,
	MOD_LOG_MOVE_KEYS,
	MOD_LOG_ROOT_REPLACE,
};

struct tree_mod_root {
	u64 logical;
	u8 level;
};

struct tree_mod_elem {
	struct rb_node node;
249
	u64 logical;
250
	u64 seq;
251 252 253 254 255 256 257 258 259 260 261 262 263
	enum mod_log_op op;

	/* this is used for MOD_LOG_KEY_* and MOD_LOG_MOVE_KEYS operations */
	int slot;

	/* this is used for MOD_LOG_KEY* and MOD_LOG_ROOT_REPLACE */
	u64 generation;

	/* those are used for op == MOD_LOG_KEY_{REPLACE,REMOVE} */
	struct btrfs_disk_key key;
	u64 blockptr;

	/* this is used for op == MOD_LOG_MOVE_KEYS */
264 265 266 267
	struct {
		int dst_slot;
		int nr_items;
	} move;
268 269 270 271 272

	/* this is used for op == MOD_LOG_ROOT_REPLACE */
	struct tree_mod_root old_root;
};

273
/*
J
Josef Bacik 已提交
274
 * Pull a new tree mod seq number for our operation.
275
 */
J
Josef Bacik 已提交
276
static inline u64 btrfs_inc_tree_mod_seq(struct btrfs_fs_info *fs_info)
277 278 279 280
{
	return atomic64_inc_return(&fs_info->tree_mod_seq);
}

281 282 283 284 285 286 287 288 289 290
/*
 * This adds a new blocker to the tree mod log's blocker list if the @elem
 * passed does not already have a sequence number set. So when a caller expects
 * to record tree modifications, it should ensure to set elem->seq to zero
 * before calling btrfs_get_tree_mod_seq.
 * Returns a fresh, unused tree log modification sequence number, even if no new
 * blocker was added.
 */
u64 btrfs_get_tree_mod_seq(struct btrfs_fs_info *fs_info,
			   struct seq_list *elem)
291
{
292
	write_lock(&fs_info->tree_mod_log_lock);
293
	if (!elem->seq) {
J
Josef Bacik 已提交
294
		elem->seq = btrfs_inc_tree_mod_seq(fs_info);
295 296
		list_add_tail(&elem->list, &fs_info->tree_mod_seq_list);
	}
297
	write_unlock(&fs_info->tree_mod_log_lock);
298

J
Josef Bacik 已提交
299
	return elem->seq;
300 301 302 303 304 305 306 307 308 309 310 311 312 313 314
}

void btrfs_put_tree_mod_seq(struct btrfs_fs_info *fs_info,
			    struct seq_list *elem)
{
	struct rb_root *tm_root;
	struct rb_node *node;
	struct rb_node *next;
	struct tree_mod_elem *tm;
	u64 min_seq = (u64)-1;
	u64 seq_putting = elem->seq;

	if (!seq_putting)
		return;

315
	write_lock(&fs_info->tree_mod_log_lock);
316
	list_del(&elem->list);
317
	elem->seq = 0;
318

319 320 321 322 323 324 325 326 327 328 329 330
	if (!list_empty(&fs_info->tree_mod_seq_list)) {
		struct seq_list *first;

		first = list_first_entry(&fs_info->tree_mod_seq_list,
					 struct seq_list, list);
		if (seq_putting > first->seq) {
			/*
			 * Blocker with lower sequence number exists, we
			 * cannot remove anything from the log.
			 */
			write_unlock(&fs_info->tree_mod_log_lock);
			return;
331
		}
332
		min_seq = first->seq;
333
	}
334

335 336 337 338 339 340 341
	/*
	 * anything that's lower than the lowest existing (read: blocked)
	 * sequence number can be removed from the tree.
	 */
	tm_root = &fs_info->tree_mod_log;
	for (node = rb_first(tm_root); node; node = next) {
		next = rb_next(node);
342
		tm = rb_entry(node, struct tree_mod_elem, node);
343
		if (tm->seq >= min_seq)
344 345 346 347
			continue;
		rb_erase(node, tm_root);
		kfree(tm);
	}
348
	write_unlock(&fs_info->tree_mod_log_lock);
349 350 351 352
}

/*
 * key order of the log:
353
 *       node/leaf start address -> sequence
354
 *
355 356 357
 * The 'start address' is the logical address of the *new* root node
 * for root replace operations, or the logical address of the affected
 * block for all other operations.
358 359 360 361 362 363 364 365
 */
static noinline int
__tree_mod_log_insert(struct btrfs_fs_info *fs_info, struct tree_mod_elem *tm)
{
	struct rb_root *tm_root;
	struct rb_node **new;
	struct rb_node *parent = NULL;
	struct tree_mod_elem *cur;
366

367 368
	lockdep_assert_held_write(&fs_info->tree_mod_log_lock);

J
Josef Bacik 已提交
369
	tm->seq = btrfs_inc_tree_mod_seq(fs_info);
370 371 372 373

	tm_root = &fs_info->tree_mod_log;
	new = &tm_root->rb_node;
	while (*new) {
374
		cur = rb_entry(*new, struct tree_mod_elem, node);
375
		parent = *new;
376
		if (cur->logical < tm->logical)
377
			new = &((*new)->rb_left);
378
		else if (cur->logical > tm->logical)
379
			new = &((*new)->rb_right);
380
		else if (cur->seq < tm->seq)
381
			new = &((*new)->rb_left);
382
		else if (cur->seq > tm->seq)
383
			new = &((*new)->rb_right);
384 385
		else
			return -EEXIST;
386 387 388 389
	}

	rb_link_node(&tm->node, parent, new);
	rb_insert_color(&tm->node, tm_root);
390
	return 0;
391 392
}

393 394 395 396
/*
 * Determines if logging can be omitted. Returns 1 if it can. Otherwise, it
 * returns zero with the tree_mod_log_lock acquired. The caller must hold
 * this until all tree mod log insertions are recorded in the rb tree and then
397
 * write unlock fs_info::tree_mod_log_lock.
398
 */
399 400 401 402 403
static inline int tree_mod_dont_log(struct btrfs_fs_info *fs_info,
				    struct extent_buffer *eb) {
	smp_mb();
	if (list_empty(&(fs_info)->tree_mod_seq_list))
		return 1;
404 405
	if (eb && btrfs_header_level(eb) == 0)
		return 1;
406

407
	write_lock(&fs_info->tree_mod_log_lock);
408
	if (list_empty(&(fs_info)->tree_mod_seq_list)) {
409
		write_unlock(&fs_info->tree_mod_log_lock);
410 411 412
		return 1;
	}

413 414 415
	return 0;
}

416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431
/* Similar to tree_mod_dont_log, but doesn't acquire any locks. */
static inline int tree_mod_need_log(const struct btrfs_fs_info *fs_info,
				    struct extent_buffer *eb)
{
	smp_mb();
	if (list_empty(&(fs_info)->tree_mod_seq_list))
		return 0;
	if (eb && btrfs_header_level(eb) == 0)
		return 0;

	return 1;
}

static struct tree_mod_elem *
alloc_tree_mod_elem(struct extent_buffer *eb, int slot,
		    enum mod_log_op op, gfp_t flags)
432
{
433
	struct tree_mod_elem *tm;
434

435 436
	tm = kzalloc(sizeof(*tm), flags);
	if (!tm)
437
		return NULL;
438

439
	tm->logical = eb->start;
440 441 442 443 444 445 446
	if (op != MOD_LOG_KEY_ADD) {
		btrfs_node_key(eb, &tm->key, slot);
		tm->blockptr = btrfs_node_blockptr(eb, slot);
	}
	tm->op = op;
	tm->slot = slot;
	tm->generation = btrfs_node_ptr_generation(eb, slot);
447
	RB_CLEAR_NODE(&tm->node);
448

449
	return tm;
450 451
}

452 453
static noinline int tree_mod_log_insert_key(struct extent_buffer *eb, int slot,
		enum mod_log_op op, gfp_t flags)
454
{
455 456 457
	struct tree_mod_elem *tm;
	int ret;

458
	if (!tree_mod_need_log(eb->fs_info, eb))
459 460 461 462 463 464
		return 0;

	tm = alloc_tree_mod_elem(eb, slot, op, flags);
	if (!tm)
		return -ENOMEM;

465
	if (tree_mod_dont_log(eb->fs_info, eb)) {
466
		kfree(tm);
467
		return 0;
468 469
	}

470
	ret = __tree_mod_log_insert(eb->fs_info, tm);
471
	write_unlock(&eb->fs_info->tree_mod_log_lock);
472 473
	if (ret)
		kfree(tm);
474

475
	return ret;
476 477
}

478 479
static noinline int tree_mod_log_insert_move(struct extent_buffer *eb,
		int dst_slot, int src_slot, int nr_items)
480
{
481 482 483
	struct tree_mod_elem *tm = NULL;
	struct tree_mod_elem **tm_list = NULL;
	int ret = 0;
484
	int i;
485
	int locked = 0;
486

487
	if (!tree_mod_need_log(eb->fs_info, eb))
J
Jan Schmidt 已提交
488
		return 0;
489

490
	tm_list = kcalloc(nr_items, sizeof(struct tree_mod_elem *), GFP_NOFS);
491 492 493
	if (!tm_list)
		return -ENOMEM;

494
	tm = kzalloc(sizeof(*tm), GFP_NOFS);
495 496 497 498 499
	if (!tm) {
		ret = -ENOMEM;
		goto free_tms;
	}

500
	tm->logical = eb->start;
501 502 503 504 505 506 507
	tm->slot = src_slot;
	tm->move.dst_slot = dst_slot;
	tm->move.nr_items = nr_items;
	tm->op = MOD_LOG_MOVE_KEYS;

	for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) {
		tm_list[i] = alloc_tree_mod_elem(eb, i + dst_slot,
508
		    MOD_LOG_KEY_REMOVE_WHILE_MOVING, GFP_NOFS);
509 510 511 512 513 514
		if (!tm_list[i]) {
			ret = -ENOMEM;
			goto free_tms;
		}
	}

515
	if (tree_mod_dont_log(eb->fs_info, eb))
516 517 518
		goto free_tms;
	locked = 1;

519 520 521 522 523
	/*
	 * When we override something during the move, we log these removals.
	 * This can only happen when we move towards the beginning of the
	 * buffer, i.e. dst_slot < src_slot.
	 */
524
	for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) {
525
		ret = __tree_mod_log_insert(eb->fs_info, tm_list[i]);
526 527
		if (ret)
			goto free_tms;
528 529
	}

530
	ret = __tree_mod_log_insert(eb->fs_info, tm);
531 532
	if (ret)
		goto free_tms;
533
	write_unlock(&eb->fs_info->tree_mod_log_lock);
534
	kfree(tm_list);
J
Jan Schmidt 已提交
535

536 537 538 539
	return 0;
free_tms:
	for (i = 0; i < nr_items; i++) {
		if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node))
540
			rb_erase(&tm_list[i]->node, &eb->fs_info->tree_mod_log);
541 542 543
		kfree(tm_list[i]);
	}
	if (locked)
544
		write_unlock(&eb->fs_info->tree_mod_log_lock);
545 546
	kfree(tm_list);
	kfree(tm);
547

548
	return ret;
549 550
}

551 552 553 554
static inline int
__tree_mod_log_free_eb(struct btrfs_fs_info *fs_info,
		       struct tree_mod_elem **tm_list,
		       int nritems)
555
{
556
	int i, j;
557 558 559
	int ret;

	for (i = nritems - 1; i >= 0; i--) {
560 561 562 563 564 565 566
		ret = __tree_mod_log_insert(fs_info, tm_list[i]);
		if (ret) {
			for (j = nritems - 1; j > i; j--)
				rb_erase(&tm_list[j]->node,
					 &fs_info->tree_mod_log);
			return ret;
		}
567
	}
568 569

	return 0;
570 571
}

572 573
static noinline int tree_mod_log_insert_root(struct extent_buffer *old_root,
			 struct extent_buffer *new_root, int log_removal)
574
{
575
	struct btrfs_fs_info *fs_info = old_root->fs_info;
576 577 578 579 580
	struct tree_mod_elem *tm = NULL;
	struct tree_mod_elem **tm_list = NULL;
	int nritems = 0;
	int ret = 0;
	int i;
581

582
	if (!tree_mod_need_log(fs_info, NULL))
583 584
		return 0;

585 586
	if (log_removal && btrfs_header_level(old_root) > 0) {
		nritems = btrfs_header_nritems(old_root);
587
		tm_list = kcalloc(nritems, sizeof(struct tree_mod_elem *),
588
				  GFP_NOFS);
589 590 591 592 593 594
		if (!tm_list) {
			ret = -ENOMEM;
			goto free_tms;
		}
		for (i = 0; i < nritems; i++) {
			tm_list[i] = alloc_tree_mod_elem(old_root, i,
595
			    MOD_LOG_KEY_REMOVE_WHILE_FREEING, GFP_NOFS);
596 597 598 599 600 601
			if (!tm_list[i]) {
				ret = -ENOMEM;
				goto free_tms;
			}
		}
	}
602

603
	tm = kzalloc(sizeof(*tm), GFP_NOFS);
604 605 606 607
	if (!tm) {
		ret = -ENOMEM;
		goto free_tms;
	}
608

609
	tm->logical = new_root->start;
610 611 612 613 614
	tm->old_root.logical = old_root->start;
	tm->old_root.level = btrfs_header_level(old_root);
	tm->generation = btrfs_header_generation(old_root);
	tm->op = MOD_LOG_ROOT_REPLACE;

615 616 617 618 619 620 621 622
	if (tree_mod_dont_log(fs_info, NULL))
		goto free_tms;

	if (tm_list)
		ret = __tree_mod_log_free_eb(fs_info, tm_list, nritems);
	if (!ret)
		ret = __tree_mod_log_insert(fs_info, tm);

623
	write_unlock(&fs_info->tree_mod_log_lock);
624 625 626 627 628 629 630 631 632 633 634 635 636 637 638
	if (ret)
		goto free_tms;
	kfree(tm_list);

	return ret;

free_tms:
	if (tm_list) {
		for (i = 0; i < nritems; i++)
			kfree(tm_list[i]);
		kfree(tm_list);
	}
	kfree(tm);

	return ret;
639 640 641 642 643 644 645 646 647 648 649
}

static struct tree_mod_elem *
__tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq,
		      int smallest)
{
	struct rb_root *tm_root;
	struct rb_node *node;
	struct tree_mod_elem *cur = NULL;
	struct tree_mod_elem *found = NULL;

650
	read_lock(&fs_info->tree_mod_log_lock);
651 652 653
	tm_root = &fs_info->tree_mod_log;
	node = tm_root->rb_node;
	while (node) {
654
		cur = rb_entry(node, struct tree_mod_elem, node);
655
		if (cur->logical < start) {
656
			node = node->rb_left;
657
		} else if (cur->logical > start) {
658
			node = node->rb_right;
659
		} else if (cur->seq < min_seq) {
660 661 662 663
			node = node->rb_left;
		} else if (!smallest) {
			/* we want the node with the highest seq */
			if (found)
664
				BUG_ON(found->seq > cur->seq);
665 666
			found = cur;
			node = node->rb_left;
667
		} else if (cur->seq > min_seq) {
668 669
			/* we want the node with the smallest seq */
			if (found)
670
				BUG_ON(found->seq < cur->seq);
671 672 673 674 675 676 677
			found = cur;
			node = node->rb_right;
		} else {
			found = cur;
			break;
		}
	}
678
	read_unlock(&fs_info->tree_mod_log_lock);
679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705

	return found;
}

/*
 * this returns the element from the log with the smallest time sequence
 * value that's in the log (the oldest log item). any element with a time
 * sequence lower than min_seq will be ignored.
 */
static struct tree_mod_elem *
tree_mod_log_search_oldest(struct btrfs_fs_info *fs_info, u64 start,
			   u64 min_seq)
{
	return __tree_mod_log_search(fs_info, start, min_seq, 1);
}

/*
 * this returns the element from the log with the largest time sequence
 * value that's in the log (the most recent log item). any element with
 * a time sequence lower than min_seq will be ignored.
 */
static struct tree_mod_elem *
tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq)
{
	return __tree_mod_log_search(fs_info, start, min_seq, 0);
}

706
static noinline int tree_mod_log_eb_copy(struct extent_buffer *dst,
707
		     struct extent_buffer *src, unsigned long dst_offset,
708
		     unsigned long src_offset, int nr_items)
709
{
710
	struct btrfs_fs_info *fs_info = dst->fs_info;
711 712 713
	int ret = 0;
	struct tree_mod_elem **tm_list = NULL;
	struct tree_mod_elem **tm_list_add, **tm_list_rem;
714
	int i;
715
	int locked = 0;
716

717 718
	if (!tree_mod_need_log(fs_info, NULL))
		return 0;
719

720
	if (btrfs_header_level(dst) == 0 && btrfs_header_level(src) == 0)
721 722
		return 0;

723
	tm_list = kcalloc(nr_items * 2, sizeof(struct tree_mod_elem *),
724 725 726
			  GFP_NOFS);
	if (!tm_list)
		return -ENOMEM;
727

728 729
	tm_list_add = tm_list;
	tm_list_rem = tm_list + nr_items;
730
	for (i = 0; i < nr_items; i++) {
731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756
		tm_list_rem[i] = alloc_tree_mod_elem(src, i + src_offset,
		    MOD_LOG_KEY_REMOVE, GFP_NOFS);
		if (!tm_list_rem[i]) {
			ret = -ENOMEM;
			goto free_tms;
		}

		tm_list_add[i] = alloc_tree_mod_elem(dst, i + dst_offset,
		    MOD_LOG_KEY_ADD, GFP_NOFS);
		if (!tm_list_add[i]) {
			ret = -ENOMEM;
			goto free_tms;
		}
	}

	if (tree_mod_dont_log(fs_info, NULL))
		goto free_tms;
	locked = 1;

	for (i = 0; i < nr_items; i++) {
		ret = __tree_mod_log_insert(fs_info, tm_list_rem[i]);
		if (ret)
			goto free_tms;
		ret = __tree_mod_log_insert(fs_info, tm_list_add[i]);
		if (ret)
			goto free_tms;
757
	}
758

759
	write_unlock(&fs_info->tree_mod_log_lock);
760 761 762 763 764 765 766 767 768 769 770
	kfree(tm_list);

	return 0;

free_tms:
	for (i = 0; i < nr_items * 2; i++) {
		if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node))
			rb_erase(&tm_list[i]->node, &fs_info->tree_mod_log);
		kfree(tm_list[i]);
	}
	if (locked)
771
		write_unlock(&fs_info->tree_mod_log_lock);
772 773 774
	kfree(tm_list);

	return ret;
775 776
}

777
static noinline int tree_mod_log_free_eb(struct extent_buffer *eb)
778
{
779 780 781 782 783 784 785 786
	struct tree_mod_elem **tm_list = NULL;
	int nritems = 0;
	int i;
	int ret = 0;

	if (btrfs_header_level(eb) == 0)
		return 0;

787
	if (!tree_mod_need_log(eb->fs_info, NULL))
788 789 790
		return 0;

	nritems = btrfs_header_nritems(eb);
791
	tm_list = kcalloc(nritems, sizeof(struct tree_mod_elem *), GFP_NOFS);
792 793 794 795 796 797 798 799 800 801 802 803
	if (!tm_list)
		return -ENOMEM;

	for (i = 0; i < nritems; i++) {
		tm_list[i] = alloc_tree_mod_elem(eb, i,
		    MOD_LOG_KEY_REMOVE_WHILE_FREEING, GFP_NOFS);
		if (!tm_list[i]) {
			ret = -ENOMEM;
			goto free_tms;
		}
	}

804
	if (tree_mod_dont_log(eb->fs_info, eb))
805 806
		goto free_tms;

807
	ret = __tree_mod_log_free_eb(eb->fs_info, tm_list, nritems);
808
	write_unlock(&eb->fs_info->tree_mod_log_lock);
809 810 811 812 813 814 815 816 817 818 819 820
	if (ret)
		goto free_tms;
	kfree(tm_list);

	return 0;

free_tms:
	for (i = 0; i < nritems; i++)
		kfree(tm_list[i]);
	kfree(tm_list);

	return ret;
821 822
}

823 824 825 826 827 828 829
/*
 * check if the tree block can be shared by multiple trees
 */
int btrfs_block_can_be_shared(struct btrfs_root *root,
			      struct extent_buffer *buf)
{
	/*
830 831 832
	 * Tree blocks not in shareable trees and tree roots are never shared.
	 * If a block was allocated after the last snapshot and the block was
	 * not allocated by tree relocation, we know the block is not shared.
833
	 */
834
	if (test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
835 836 837 838 839
	    buf != root->node && buf != root->commit_root &&
	    (btrfs_header_generation(buf) <=
	     btrfs_root_last_snapshot(&root->root_item) ||
	     btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)))
		return 1;
840

841 842 843 844 845 846
	return 0;
}

static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans,
				       struct btrfs_root *root,
				       struct extent_buffer *buf,
847 848
				       struct extent_buffer *cow,
				       int *last_ref)
849
{
850
	struct btrfs_fs_info *fs_info = root->fs_info;
851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874
	u64 refs;
	u64 owner;
	u64 flags;
	u64 new_flags = 0;
	int ret;

	/*
	 * Backrefs update rules:
	 *
	 * Always use full backrefs for extent pointers in tree block
	 * allocated by tree relocation.
	 *
	 * If a shared tree block is no longer referenced by its owner
	 * tree (btrfs_header_owner(buf) == root->root_key.objectid),
	 * use full backrefs for extent pointers in tree block.
	 *
	 * If a tree block is been relocating
	 * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID),
	 * use full backrefs for extent pointers in tree block.
	 * The reason for this is some operations (such as drop tree)
	 * are only allowed for blocks use full backrefs.
	 */

	if (btrfs_block_can_be_shared(root, buf)) {
875
		ret = btrfs_lookup_extent_info(trans, fs_info, buf->start,
876 877
					       btrfs_header_level(buf), 1,
					       &refs, &flags);
878 879
		if (ret)
			return ret;
880 881
		if (refs == 0) {
			ret = -EROFS;
882
			btrfs_handle_fs_error(fs_info, ret, NULL);
883 884
			return ret;
		}
885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901
	} else {
		refs = 1;
		if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
		    btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
			flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
		else
			flags = 0;
	}

	owner = btrfs_header_owner(buf);
	BUG_ON(owner == BTRFS_TREE_RELOC_OBJECTID &&
	       !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));

	if (refs > 1) {
		if ((owner == root->root_key.objectid ||
		     root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) &&
		    !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) {
902
			ret = btrfs_inc_ref(trans, root, buf, 1);
903 904
			if (ret)
				return ret;
905 906 907

			if (root->root_key.objectid ==
			    BTRFS_TREE_RELOC_OBJECTID) {
908
				ret = btrfs_dec_ref(trans, root, buf, 0);
909 910
				if (ret)
					return ret;
911
				ret = btrfs_inc_ref(trans, root, cow, 1);
912 913
				if (ret)
					return ret;
914 915 916 917 918 919
			}
			new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
		} else {

			if (root->root_key.objectid ==
			    BTRFS_TREE_RELOC_OBJECTID)
920
				ret = btrfs_inc_ref(trans, root, cow, 1);
921
			else
922
				ret = btrfs_inc_ref(trans, root, cow, 0);
923 924
			if (ret)
				return ret;
925 926
		}
		if (new_flags != 0) {
927 928
			int level = btrfs_header_level(buf);

929
			ret = btrfs_set_disk_extent_flags(trans, buf,
930
							  new_flags, level, 0);
931 932
			if (ret)
				return ret;
933 934 935 936 937
		}
	} else {
		if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
			if (root->root_key.objectid ==
			    BTRFS_TREE_RELOC_OBJECTID)
938
				ret = btrfs_inc_ref(trans, root, cow, 1);
939
			else
940
				ret = btrfs_inc_ref(trans, root, cow, 0);
941 942
			if (ret)
				return ret;
943
			ret = btrfs_dec_ref(trans, root, buf, 1);
944 945
			if (ret)
				return ret;
946
		}
947
		btrfs_clean_tree_block(buf);
948
		*last_ref = 1;
949 950 951 952
	}
	return 0;
}

953 954 955 956 957 958 959
static struct extent_buffer *alloc_tree_block_no_bg_flush(
					  struct btrfs_trans_handle *trans,
					  struct btrfs_root *root,
					  u64 parent_start,
					  const struct btrfs_disk_key *disk_key,
					  int level,
					  u64 hint,
960 961
					  u64 empty_size,
					  enum btrfs_lock_nesting nest)
962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989
{
	struct btrfs_fs_info *fs_info = root->fs_info;
	struct extent_buffer *ret;

	/*
	 * If we are COWing a node/leaf from the extent, chunk, device or free
	 * space trees, make sure that we do not finish block group creation of
	 * pending block groups. We do this to avoid a deadlock.
	 * COWing can result in allocation of a new chunk, and flushing pending
	 * block groups (btrfs_create_pending_block_groups()) can be triggered
	 * when finishing allocation of a new chunk. Creation of a pending block
	 * group modifies the extent, chunk, device and free space trees,
	 * therefore we could deadlock with ourselves since we are holding a
	 * lock on an extent buffer that btrfs_create_pending_block_groups() may
	 * try to COW later.
	 * For similar reasons, we also need to delay flushing pending block
	 * groups when splitting a leaf or node, from one of those trees, since
	 * we are holding a write lock on it and its parent or when inserting a
	 * new root node for one of those trees.
	 */
	if (root == fs_info->extent_root ||
	    root == fs_info->chunk_root ||
	    root == fs_info->dev_root ||
	    root == fs_info->free_space_root)
		trans->can_flush_pending_bgs = false;

	ret = btrfs_alloc_tree_block(trans, root, parent_start,
				     root->root_key.objectid, disk_key, level,
990
				     hint, empty_size, nest);
991 992 993 994 995
	trans->can_flush_pending_bgs = true;

	return ret;
}

C
Chris Mason 已提交
996
/*
C
Chris Mason 已提交
997 998 999 1000
 * does the dirty work in cow of a single block.  The parent block (if
 * supplied) is updated to point to the new cow copy.  The new buffer is marked
 * dirty and returned locked.  If you modify the block it needs to be marked
 * dirty again.
C
Chris Mason 已提交
1001 1002 1003
 *
 * search_start -- an allocation hint for the new block
 *
C
Chris Mason 已提交
1004 1005 1006
 * empty_size -- a hint that you plan on doing more cow.  This is the size in
 * bytes the allocator should try to find free next to the block it returns.
 * This is just a hint and may be ignored by the allocator.
C
Chris Mason 已提交
1007
 */
C
Chris Mason 已提交
1008
static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans,
1009 1010 1011 1012
			     struct btrfs_root *root,
			     struct extent_buffer *buf,
			     struct extent_buffer *parent, int parent_slot,
			     struct extent_buffer **cow_ret,
1013 1014
			     u64 search_start, u64 empty_size,
			     enum btrfs_lock_nesting nest)
C
Chris Mason 已提交
1015
{
1016
	struct btrfs_fs_info *fs_info = root->fs_info;
1017
	struct btrfs_disk_key disk_key;
1018
	struct extent_buffer *cow;
1019
	int level, ret;
1020
	int last_ref = 0;
1021
	int unlock_orig = 0;
1022
	u64 parent_start = 0;
1023

1024 1025 1026
	if (*cow_ret == buf)
		unlock_orig = 1;

1027
	btrfs_assert_tree_locked(buf);
1028

1029
	WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
1030
		trans->transid != fs_info->running_transaction->transid);
1031
	WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
1032
		trans->transid != root->last_trans);
1033

1034
	level = btrfs_header_level(buf);
Z
Zheng Yan 已提交
1035

1036 1037 1038 1039 1040
	if (level == 0)
		btrfs_item_key(buf, &disk_key, 0);
	else
		btrfs_node_key(buf, &disk_key, 0);

1041 1042
	if ((root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) && parent)
		parent_start = parent->start;
1043

1044
	cow = alloc_tree_block_no_bg_flush(trans, root, parent_start, &disk_key,
1045
					   level, search_start, empty_size, nest);
1046 1047
	if (IS_ERR(cow))
		return PTR_ERR(cow);
1048

1049 1050
	/* cow is set to blocking by btrfs_init_new_buffer */

1051
	copy_extent_buffer_full(cow, buf);
1052
	btrfs_set_header_bytenr(cow, cow->start);
1053
	btrfs_set_header_generation(cow, trans->transid);
1054 1055 1056 1057 1058 1059 1060
	btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
	btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
				     BTRFS_HEADER_FLAG_RELOC);
	if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
		btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
	else
		btrfs_set_header_owner(cow, root->root_key.objectid);
1061

1062
	write_extent_buffer_fsid(cow, fs_info->fs_devices->metadata_uuid);
Y
Yan Zheng 已提交
1063

1064
	ret = update_ref_for_cow(trans, root, buf, cow, &last_ref);
1065
	if (ret) {
1066
		btrfs_abort_transaction(trans, ret);
1067 1068
		return ret;
	}
Z
Zheng Yan 已提交
1069

1070
	if (test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) {
1071
		ret = btrfs_reloc_cow_block(trans, root, buf, cow);
1072
		if (ret) {
1073
			btrfs_abort_transaction(trans, ret);
1074
			return ret;
1075
		}
1076
	}
1077

C
Chris Mason 已提交
1078
	if (buf == root->node) {
1079
		WARN_ON(parent && parent != buf);
1080 1081 1082
		if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
		    btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
			parent_start = buf->start;
1083

D
David Sterba 已提交
1084
		atomic_inc(&cow->refs);
1085 1086
		ret = tree_mod_log_insert_root(root->node, cow, 1);
		BUG_ON(ret < 0);
1087
		rcu_assign_pointer(root->node, cow);
1088

1089
		btrfs_free_tree_block(trans, root, buf, parent_start,
1090
				      last_ref);
1091
		free_extent_buffer(buf);
1092
		add_root_to_dirty_list(root);
C
Chris Mason 已提交
1093
	} else {
1094
		WARN_ON(trans->transid != btrfs_header_generation(parent));
1095
		tree_mod_log_insert_key(parent, parent_slot,
1096
					MOD_LOG_KEY_REPLACE, GFP_NOFS);
1097
		btrfs_set_node_blockptr(parent, parent_slot,
1098
					cow->start);
1099 1100
		btrfs_set_node_ptr_generation(parent, parent_slot,
					      trans->transid);
C
Chris Mason 已提交
1101
		btrfs_mark_buffer_dirty(parent);
1102
		if (last_ref) {
1103
			ret = tree_mod_log_free_eb(buf);
1104
			if (ret) {
1105
				btrfs_abort_transaction(trans, ret);
1106 1107 1108
				return ret;
			}
		}
1109
		btrfs_free_tree_block(trans, root, buf, parent_start,
1110
				      last_ref);
C
Chris Mason 已提交
1111
	}
1112 1113
	if (unlock_orig)
		btrfs_tree_unlock(buf);
1114
	free_extent_buffer_stale(buf);
C
Chris Mason 已提交
1115
	btrfs_mark_buffer_dirty(cow);
C
Chris Mason 已提交
1116
	*cow_ret = cow;
C
Chris Mason 已提交
1117 1118 1119
	return 0;
}

J
Jan Schmidt 已提交
1120 1121 1122 1123
/*
 * returns the logical address of the oldest predecessor of the given root.
 * entries older than time_seq are ignored.
 */
1124 1125
static struct tree_mod_elem *__tree_mod_log_oldest_root(
		struct extent_buffer *eb_root, u64 time_seq)
J
Jan Schmidt 已提交
1126 1127 1128
{
	struct tree_mod_elem *tm;
	struct tree_mod_elem *found = NULL;
1129
	u64 root_logical = eb_root->start;
J
Jan Schmidt 已提交
1130 1131 1132
	int looped = 0;

	if (!time_seq)
1133
		return NULL;
J
Jan Schmidt 已提交
1134 1135

	/*
1136 1137 1138 1139
	 * the very last operation that's logged for a root is the
	 * replacement operation (if it is replaced at all). this has
	 * the logical address of the *new* root, making it the very
	 * first operation that's logged for this root.
J
Jan Schmidt 已提交
1140 1141
	 */
	while (1) {
1142
		tm = tree_mod_log_search_oldest(eb_root->fs_info, root_logical,
J
Jan Schmidt 已提交
1143 1144
						time_seq);
		if (!looped && !tm)
1145
			return NULL;
J
Jan Schmidt 已提交
1146
		/*
1147 1148 1149
		 * if there are no tree operation for the oldest root, we simply
		 * return it. this should only happen if that (old) root is at
		 * level 0.
J
Jan Schmidt 已提交
1150
		 */
1151 1152
		if (!tm)
			break;
J
Jan Schmidt 已提交
1153

1154 1155 1156 1157 1158
		/*
		 * if there's an operation that's not a root replacement, we
		 * found the oldest version of our root. normally, we'll find a
		 * MOD_LOG_KEY_REMOVE_WHILE_FREEING operation here.
		 */
J
Jan Schmidt 已提交
1159 1160 1161 1162 1163 1164 1165 1166
		if (tm->op != MOD_LOG_ROOT_REPLACE)
			break;

		found = tm;
		root_logical = tm->old_root.logical;
		looped = 1;
	}

1167 1168 1169 1170
	/* if there's no old root to return, return what we found instead */
	if (!found)
		found = tm;

J
Jan Schmidt 已提交
1171 1172 1173 1174 1175
	return found;
}

/*
 * tm is a pointer to the first operation to rewind within eb. then, all
1176
 * previous operations will be rewound (until we reach something older than
J
Jan Schmidt 已提交
1177 1178 1179
 * time_seq).
 */
static void
1180 1181
__tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct extent_buffer *eb,
		      u64 time_seq, struct tree_mod_elem *first_tm)
J
Jan Schmidt 已提交
1182 1183 1184 1185 1186 1187 1188 1189 1190
{
	u32 n;
	struct rb_node *next;
	struct tree_mod_elem *tm = first_tm;
	unsigned long o_dst;
	unsigned long o_src;
	unsigned long p_size = sizeof(struct btrfs_key_ptr);

	n = btrfs_header_nritems(eb);
1191
	read_lock(&fs_info->tree_mod_log_lock);
1192
	while (tm && tm->seq >= time_seq) {
J
Jan Schmidt 已提交
1193 1194 1195 1196 1197 1198 1199 1200
		/*
		 * all the operations are recorded with the operator used for
		 * the modification. as we're going backwards, we do the
		 * opposite of each operation here.
		 */
		switch (tm->op) {
		case MOD_LOG_KEY_REMOVE_WHILE_FREEING:
			BUG_ON(tm->slot < n);
1201
			fallthrough;
1202
		case MOD_LOG_KEY_REMOVE_WHILE_MOVING:
1203
		case MOD_LOG_KEY_REMOVE:
J
Jan Schmidt 已提交
1204 1205 1206 1207
			btrfs_set_node_key(eb, &tm->key, tm->slot);
			btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
			btrfs_set_node_ptr_generation(eb, tm->slot,
						      tm->generation);
1208
			n++;
J
Jan Schmidt 已提交
1209 1210 1211 1212 1213 1214 1215 1216 1217
			break;
		case MOD_LOG_KEY_REPLACE:
			BUG_ON(tm->slot >= n);
			btrfs_set_node_key(eb, &tm->key, tm->slot);
			btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
			btrfs_set_node_ptr_generation(eb, tm->slot,
						      tm->generation);
			break;
		case MOD_LOG_KEY_ADD:
1218
			/* if a move operation is needed it's in the log */
J
Jan Schmidt 已提交
1219 1220 1221
			n--;
			break;
		case MOD_LOG_MOVE_KEYS:
1222 1223 1224
			o_dst = btrfs_node_key_ptr_offset(tm->slot);
			o_src = btrfs_node_key_ptr_offset(tm->move.dst_slot);
			memmove_extent_buffer(eb, o_dst, o_src,
J
Jan Schmidt 已提交
1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241
					      tm->move.nr_items * p_size);
			break;
		case MOD_LOG_ROOT_REPLACE:
			/*
			 * this operation is special. for roots, this must be
			 * handled explicitly before rewinding.
			 * for non-roots, this operation may exist if the node
			 * was a root: root A -> child B; then A gets empty and
			 * B is promoted to the new root. in the mod log, we'll
			 * have a root-replace operation for B, a tree block
			 * that is no root. we simply ignore that operation.
			 */
			break;
		}
		next = rb_next(&tm->node);
		if (!next)
			break;
1242
		tm = rb_entry(next, struct tree_mod_elem, node);
1243
		if (tm->logical != first_tm->logical)
J
Jan Schmidt 已提交
1244 1245
			break;
	}
1246
	read_unlock(&fs_info->tree_mod_log_lock);
J
Jan Schmidt 已提交
1247 1248 1249
	btrfs_set_header_nritems(eb, n);
}

1250
/*
1251
 * Called with eb read locked. If the buffer cannot be rewound, the same buffer
1252 1253 1254 1255 1256
 * is returned. If rewind operations happen, a fresh buffer is returned. The
 * returned buffer is always read-locked. If the returned buffer is not the
 * input buffer, the lock on the input buffer is released and the input buffer
 * is freed (its refcount is decremented).
 */
J
Jan Schmidt 已提交
1257
static struct extent_buffer *
1258 1259
tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct btrfs_path *path,
		    struct extent_buffer *eb, u64 time_seq)
J
Jan Schmidt 已提交
1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273
{
	struct extent_buffer *eb_rewin;
	struct tree_mod_elem *tm;

	if (!time_seq)
		return eb;

	if (btrfs_header_level(eb) == 0)
		return eb;

	tm = tree_mod_log_search(fs_info, eb->start, time_seq);
	if (!tm)
		return eb;

1274
	btrfs_set_path_blocking(path);
1275
	btrfs_set_lock_blocking_read(eb);
1276

J
Jan Schmidt 已提交
1277 1278
	if (tm->op == MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
		BUG_ON(tm->slot != 0);
1279
		eb_rewin = alloc_dummy_extent_buffer(fs_info, eb->start);
1280
		if (!eb_rewin) {
1281
			btrfs_tree_read_unlock_blocking(eb);
1282 1283 1284
			free_extent_buffer(eb);
			return NULL;
		}
J
Jan Schmidt 已提交
1285 1286 1287 1288
		btrfs_set_header_bytenr(eb_rewin, eb->start);
		btrfs_set_header_backref_rev(eb_rewin,
					     btrfs_header_backref_rev(eb));
		btrfs_set_header_owner(eb_rewin, btrfs_header_owner(eb));
1289
		btrfs_set_header_level(eb_rewin, btrfs_header_level(eb));
J
Jan Schmidt 已提交
1290 1291
	} else {
		eb_rewin = btrfs_clone_extent_buffer(eb);
1292
		if (!eb_rewin) {
1293
			btrfs_tree_read_unlock_blocking(eb);
1294 1295 1296
			free_extent_buffer(eb);
			return NULL;
		}
J
Jan Schmidt 已提交
1297 1298
	}

1299
	btrfs_tree_read_unlock_blocking(eb);
J
Jan Schmidt 已提交
1300 1301
	free_extent_buffer(eb);

1302 1303
	btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb_rewin),
				       eb_rewin, btrfs_header_level(eb_rewin));
1304
	btrfs_tree_read_lock(eb_rewin);
1305
	__tree_mod_log_rewind(fs_info, eb_rewin, time_seq, tm);
1306
	WARN_ON(btrfs_header_nritems(eb_rewin) >
1307
		BTRFS_NODEPTRS_PER_BLOCK(fs_info));
J
Jan Schmidt 已提交
1308 1309 1310 1311

	return eb_rewin;
}

1312 1313 1314 1315 1316 1317 1318
/*
 * get_old_root() rewinds the state of @root's root node to the given @time_seq
 * value. If there are no changes, the current root->root_node is returned. If
 * anything changed in between, there's a fresh buffer allocated on which the
 * rewind operations are done. In any case, the returned buffer is read locked.
 * Returns NULL on error (with no locks held).
 */
J
Jan Schmidt 已提交
1319 1320 1321
static inline struct extent_buffer *
get_old_root(struct btrfs_root *root, u64 time_seq)
{
1322
	struct btrfs_fs_info *fs_info = root->fs_info;
J
Jan Schmidt 已提交
1323
	struct tree_mod_elem *tm;
1324 1325
	struct extent_buffer *eb = NULL;
	struct extent_buffer *eb_root;
1326
	u64 eb_root_owner = 0;
1327
	struct extent_buffer *old;
1328
	struct tree_mod_root *old_root = NULL;
1329
	u64 old_generation = 0;
1330
	u64 logical;
1331
	int level;
J
Jan Schmidt 已提交
1332

1333
	eb_root = btrfs_read_lock_root_node(root);
1334
	tm = __tree_mod_log_oldest_root(eb_root, time_seq);
J
Jan Schmidt 已提交
1335
	if (!tm)
1336
		return eb_root;
J
Jan Schmidt 已提交
1337

1338 1339 1340 1341
	if (tm->op == MOD_LOG_ROOT_REPLACE) {
		old_root = &tm->old_root;
		old_generation = tm->generation;
		logical = old_root->logical;
1342
		level = old_root->level;
1343
	} else {
1344
		logical = eb_root->start;
1345
		level = btrfs_header_level(eb_root);
1346
	}
J
Jan Schmidt 已提交
1347

1348
	tm = tree_mod_log_search(fs_info, logical, time_seq);
1349
	if (old_root && tm && tm->op != MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
1350 1351
		btrfs_tree_read_unlock(eb_root);
		free_extent_buffer(eb_root);
1352
		old = read_tree_block(fs_info, logical, 0, level, NULL);
1353 1354 1355
		if (WARN_ON(IS_ERR(old) || !extent_buffer_uptodate(old))) {
			if (!IS_ERR(old))
				free_extent_buffer(old);
1356 1357 1358
			btrfs_warn(fs_info,
				   "failed to read tree block %llu from get_old_root",
				   logical);
1359
		} else {
1360 1361
			eb = btrfs_clone_extent_buffer(old);
			free_extent_buffer(old);
1362 1363
		}
	} else if (old_root) {
1364
		eb_root_owner = btrfs_header_owner(eb_root);
1365 1366
		btrfs_tree_read_unlock(eb_root);
		free_extent_buffer(eb_root);
1367
		eb = alloc_dummy_extent_buffer(fs_info, logical);
1368
	} else {
1369
		btrfs_set_lock_blocking_read(eb_root);
1370
		eb = btrfs_clone_extent_buffer(eb_root);
1371
		btrfs_tree_read_unlock_blocking(eb_root);
1372
		free_extent_buffer(eb_root);
1373 1374
	}

1375 1376
	if (!eb)
		return NULL;
1377
	if (old_root) {
J
Jan Schmidt 已提交
1378 1379
		btrfs_set_header_bytenr(eb, eb->start);
		btrfs_set_header_backref_rev(eb, BTRFS_MIXED_BACKREF_REV);
1380
		btrfs_set_header_owner(eb, eb_root_owner);
1381 1382
		btrfs_set_header_level(eb, old_root->level);
		btrfs_set_header_generation(eb, old_generation);
J
Jan Schmidt 已提交
1383
	}
1384 1385 1386
	btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb), eb,
				       btrfs_header_level(eb));
	btrfs_tree_read_lock(eb);
1387
	if (tm)
1388
		__tree_mod_log_rewind(fs_info, eb, time_seq, tm);
1389 1390
	else
		WARN_ON(btrfs_header_level(eb) != 0);
1391
	WARN_ON(btrfs_header_nritems(eb) > BTRFS_NODEPTRS_PER_BLOCK(fs_info));
J
Jan Schmidt 已提交
1392 1393 1394 1395

	return eb;
}

J
Jan Schmidt 已提交
1396 1397 1398 1399
int btrfs_old_root_level(struct btrfs_root *root, u64 time_seq)
{
	struct tree_mod_elem *tm;
	int level;
1400
	struct extent_buffer *eb_root = btrfs_root_node(root);
J
Jan Schmidt 已提交
1401

1402
	tm = __tree_mod_log_oldest_root(eb_root, time_seq);
J
Jan Schmidt 已提交
1403 1404 1405
	if (tm && tm->op == MOD_LOG_ROOT_REPLACE) {
		level = tm->old_root.level;
	} else {
1406
		level = btrfs_header_level(eb_root);
J
Jan Schmidt 已提交
1407
	}
1408
	free_extent_buffer(eb_root);
J
Jan Schmidt 已提交
1409 1410 1411 1412

	return level;
}

1413 1414 1415 1416
static inline int should_cow_block(struct btrfs_trans_handle *trans,
				   struct btrfs_root *root,
				   struct extent_buffer *buf)
{
1417
	if (btrfs_is_testing(root->fs_info))
1418
		return 0;
1419

1420 1421
	/* Ensure we can see the FORCE_COW bit */
	smp_mb__before_atomic();
1422 1423 1424 1425 1426 1427 1428 1429

	/*
	 * We do not need to cow a block if
	 * 1) this block is not created or changed in this transaction;
	 * 2) this block does not belong to TREE_RELOC tree;
	 * 3) the root is not forced COW.
	 *
	 * What is forced COW:
1430
	 *    when we create snapshot during committing the transaction,
1431
	 *    after we've finished copying src root, we must COW the shared
1432 1433
	 *    block to ensure the metadata consistency.
	 */
1434 1435 1436
	if (btrfs_header_generation(buf) == trans->transid &&
	    !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) &&
	    !(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
1437
	      btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)) &&
1438
	    !test_bit(BTRFS_ROOT_FORCE_COW, &root->state))
1439 1440 1441 1442
		return 0;
	return 1;
}

C
Chris Mason 已提交
1443 1444
/*
 * cows a single block, see __btrfs_cow_block for the real work.
1445
 * This version of it has extra checks so that a block isn't COWed more than
C
Chris Mason 已提交
1446 1447
 * once per transaction, as long as it hasn't been written yet
 */
C
Chris Mason 已提交
1448
noinline int btrfs_cow_block(struct btrfs_trans_handle *trans,
1449 1450
		    struct btrfs_root *root, struct extent_buffer *buf,
		    struct extent_buffer *parent, int parent_slot,
1451 1452
		    struct extent_buffer **cow_ret,
		    enum btrfs_lock_nesting nest)
1453
{
1454
	struct btrfs_fs_info *fs_info = root->fs_info;
1455
	u64 search_start;
1456
	int ret;
C
Chris Mason 已提交
1457

1458 1459 1460 1461
	if (test_bit(BTRFS_ROOT_DELETING, &root->state))
		btrfs_err(fs_info,
			"COW'ing blocks on a fs root that's being dropped");

1462
	if (trans->transaction != fs_info->running_transaction)
J
Julia Lawall 已提交
1463
		WARN(1, KERN_CRIT "trans %llu running %llu\n",
1464
		       trans->transid,
1465
		       fs_info->running_transaction->transid);
J
Julia Lawall 已提交
1466

1467
	if (trans->transid != fs_info->generation)
J
Julia Lawall 已提交
1468
		WARN(1, KERN_CRIT "trans %llu running %llu\n",
1469
		       trans->transid, fs_info->generation);
C
Chris Mason 已提交
1470

1471
	if (!should_cow_block(trans, root, buf)) {
1472
		trans->dirty = true;
1473 1474 1475
		*cow_ret = buf;
		return 0;
	}
1476

1477
	search_start = buf->start & ~((u64)SZ_1G - 1);
1478 1479

	if (parent)
1480 1481
		btrfs_set_lock_blocking_write(parent);
	btrfs_set_lock_blocking_write(buf);
1482

1483 1484 1485 1486 1487 1488 1489
	/*
	 * Before CoWing this block for later modification, check if it's
	 * the subtree root and do the delayed subtree trace if needed.
	 *
	 * Also We don't care about the error, as it's handled internally.
	 */
	btrfs_qgroup_trace_subtree_after_cow(trans, root, buf);
1490
	ret = __btrfs_cow_block(trans, root, buf, parent,
1491
				 parent_slot, cow_ret, search_start, 0, nest);
1492 1493 1494

	trace_btrfs_cow_block(root, buf, *cow_ret);

1495
	return ret;
1496 1497
}

C
Chris Mason 已提交
1498 1499 1500 1501
/*
 * helper function for defrag to decide if two blocks pointed to by a
 * node are actually close by
 */
1502
static int close_blocks(u64 blocknr, u64 other, u32 blocksize)
1503
{
1504
	if (blocknr < other && other - (blocknr + blocksize) < 32768)
1505
		return 1;
1506
	if (blocknr > other && blocknr - (other + blocksize) < 32768)
1507 1508 1509 1510
		return 1;
	return 0;
}

1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526
#ifdef __LITTLE_ENDIAN

/*
 * Compare two keys, on little-endian the disk order is same as CPU order and
 * we can avoid the conversion.
 */
static int comp_keys(const struct btrfs_disk_key *disk_key,
		     const struct btrfs_key *k2)
{
	const struct btrfs_key *k1 = (const struct btrfs_key *)disk_key;

	return btrfs_comp_cpu_keys(k1, k2);
}

#else

1527 1528 1529
/*
 * compare two keys in a memcmp fashion
 */
1530 1531
static int comp_keys(const struct btrfs_disk_key *disk,
		     const struct btrfs_key *k2)
1532 1533 1534 1535 1536
{
	struct btrfs_key k1;

	btrfs_disk_key_to_cpu(&k1, disk);

1537
	return btrfs_comp_cpu_keys(&k1, k2);
1538
}
1539
#endif
1540

1541 1542 1543
/*
 * same as comp_keys only with two btrfs_key's
 */
1544
int __pure btrfs_comp_cpu_keys(const struct btrfs_key *k1, const struct btrfs_key *k2)
1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559
{
	if (k1->objectid > k2->objectid)
		return 1;
	if (k1->objectid < k2->objectid)
		return -1;
	if (k1->type > k2->type)
		return 1;
	if (k1->type < k2->type)
		return -1;
	if (k1->offset > k2->offset)
		return 1;
	if (k1->offset < k2->offset)
		return -1;
	return 0;
}
1560

C
Chris Mason 已提交
1561 1562 1563 1564 1565
/*
 * this is used by the defrag code to go through all the
 * leaves pointed to by a node and reallocate them so that
 * disk order is close to key order
 */
1566
int btrfs_realloc_node(struct btrfs_trans_handle *trans,
1567
		       struct btrfs_root *root, struct extent_buffer *parent,
1568
		       int start_slot, u64 *last_ret,
1569
		       struct btrfs_key *progress)
1570
{
1571
	struct btrfs_fs_info *fs_info = root->fs_info;
1572
	struct extent_buffer *cur;
1573
	u64 blocknr;
1574
	u64 gen;
1575 1576
	u64 search_start = *last_ret;
	u64 last_block = 0;
1577 1578 1579 1580 1581
	u64 other;
	u32 parent_nritems;
	int end_slot;
	int i;
	int err = 0;
1582
	int parent_level;
1583 1584
	int uptodate;
	u32 blocksize;
1585 1586
	int progress_passed = 0;
	struct btrfs_disk_key disk_key;
1587

1588 1589
	parent_level = btrfs_header_level(parent);

1590 1591
	WARN_ON(trans->transaction != fs_info->running_transaction);
	WARN_ON(trans->transid != fs_info->generation);
1592

1593
	parent_nritems = btrfs_header_nritems(parent);
1594
	blocksize = fs_info->nodesize;
1595
	end_slot = parent_nritems - 1;
1596

1597
	if (parent_nritems <= 1)
1598 1599
		return 0;

1600
	btrfs_set_lock_blocking_write(parent);
1601

1602
	for (i = start_slot; i <= end_slot; i++) {
1603
		struct btrfs_key first_key;
1604
		int close = 1;
1605

1606 1607 1608 1609 1610
		btrfs_node_key(parent, &disk_key, i);
		if (!progress_passed && comp_keys(&disk_key, progress) < 0)
			continue;

		progress_passed = 1;
1611
		blocknr = btrfs_node_blockptr(parent, i);
1612
		gen = btrfs_node_ptr_generation(parent, i);
1613
		btrfs_node_key_to_cpu(parent, &first_key, i);
1614 1615
		if (last_block == 0)
			last_block = blocknr;
1616

1617
		if (i > 0) {
1618 1619
			other = btrfs_node_blockptr(parent, i - 1);
			close = close_blocks(blocknr, other, blocksize);
1620
		}
1621
		if (!close && i < end_slot) {
1622 1623
			other = btrfs_node_blockptr(parent, i + 1);
			close = close_blocks(blocknr, other, blocksize);
1624
		}
1625 1626
		if (close) {
			last_block = blocknr;
1627
			continue;
1628
		}
1629

1630
		cur = find_extent_buffer(fs_info, blocknr);
1631
		if (cur)
1632
			uptodate = btrfs_buffer_uptodate(cur, gen, 0);
1633 1634
		else
			uptodate = 0;
1635
		if (!cur || !uptodate) {
1636
			if (!cur) {
1637 1638 1639
				cur = read_tree_block(fs_info, blocknr, gen,
						      parent_level - 1,
						      &first_key);
1640 1641 1642
				if (IS_ERR(cur)) {
					return PTR_ERR(cur);
				} else if (!extent_buffer_uptodate(cur)) {
1643
					free_extent_buffer(cur);
1644
					return -EIO;
1645
				}
1646
			} else if (!uptodate) {
1647 1648
				err = btrfs_read_buffer(cur, gen,
						parent_level - 1,&first_key);
1649 1650 1651 1652
				if (err) {
					free_extent_buffer(cur);
					return err;
				}
1653
			}
1654
		}
1655
		if (search_start == 0)
1656
			search_start = last_block;
1657

1658
		btrfs_tree_lock(cur);
1659
		btrfs_set_lock_blocking_write(cur);
1660
		err = __btrfs_cow_block(trans, root, cur, parent, i,
1661
					&cur, search_start,
1662
					min(16 * blocksize,
1663 1664
					    (end_slot - i) * blocksize),
					BTRFS_NESTING_COW);
Y
Yan 已提交
1665
		if (err) {
1666
			btrfs_tree_unlock(cur);
1667
			free_extent_buffer(cur);
1668
			break;
Y
Yan 已提交
1669
		}
1670 1671
		search_start = cur->start;
		last_block = cur->start;
1672
		*last_ret = search_start;
1673 1674
		btrfs_tree_unlock(cur);
		free_extent_buffer(cur);
1675 1676 1677 1678
	}
	return err;
}

C
Chris Mason 已提交
1679
/*
1680 1681 1682
 * search for key in the extent_buffer.  The items start at offset p,
 * and they are item_size apart.  There are 'max' items in p.
 *
C
Chris Mason 已提交
1683 1684 1685 1686 1687 1688
 * the slot in the array is returned via slot, and it points to
 * the place where you would insert key if it is not found in
 * the array.
 *
 * slot may point to max if the key is bigger than all of the keys
 */
1689
static noinline int generic_bin_search(struct extent_buffer *eb,
1690 1691
				       unsigned long p, int item_size,
				       const struct btrfs_key *key,
1692
				       int max, int *slot)
1693 1694 1695 1696
{
	int low = 0;
	int high = max;
	int ret;
1697
	const int key_size = sizeof(struct btrfs_disk_key);
1698

1699 1700 1701 1702 1703 1704 1705 1706
	if (low > high) {
		btrfs_err(eb->fs_info,
		 "%s: low (%d) > high (%d) eb %llu owner %llu level %d",
			  __func__, low, high, eb->start,
			  btrfs_header_owner(eb), btrfs_header_level(eb));
		return -EINVAL;
	}

C
Chris Mason 已提交
1707
	while (low < high) {
1708 1709 1710 1711 1712 1713
		unsigned long oip;
		unsigned long offset;
		struct btrfs_disk_key *tmp;
		struct btrfs_disk_key unaligned;
		int mid;

1714
		mid = (low + high) / 2;
1715
		offset = p + mid * item_size;
1716
		oip = offset_in_page(offset);
1717

1718 1719 1720
		if (oip + key_size <= PAGE_SIZE) {
			const unsigned long idx = offset >> PAGE_SHIFT;
			char *kaddr = page_address(eb->pages[idx]);
1721

1722
			tmp = (struct btrfs_disk_key *)(kaddr + oip);
1723
		} else {
1724 1725
			read_extent_buffer(eb, &unaligned, offset, key_size);
			tmp = &unaligned;
1726
		}
1727

1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742
		ret = comp_keys(tmp, key);

		if (ret < 0)
			low = mid + 1;
		else if (ret > 0)
			high = mid;
		else {
			*slot = mid;
			return 0;
		}
	}
	*slot = low;
	return 1;
}

C
Chris Mason 已提交
1743 1744 1745 1746
/*
 * simple bin_search frontend that does the right thing for
 * leaves vs nodes
 */
1747
int btrfs_bin_search(struct extent_buffer *eb, const struct btrfs_key *key,
1748
		     int *slot)
1749
{
1750
	if (btrfs_header_level(eb) == 0)
1751 1752
		return generic_bin_search(eb,
					  offsetof(struct btrfs_leaf, items),
C
Chris Mason 已提交
1753
					  sizeof(struct btrfs_item),
1754
					  key, btrfs_header_nritems(eb),
1755
					  slot);
1756
	else
1757 1758
		return generic_bin_search(eb,
					  offsetof(struct btrfs_node, ptrs),
C
Chris Mason 已提交
1759
					  sizeof(struct btrfs_key_ptr),
1760
					  key, btrfs_header_nritems(eb),
1761
					  slot);
1762 1763
}

1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779
static void root_add_used(struct btrfs_root *root, u32 size)
{
	spin_lock(&root->accounting_lock);
	btrfs_set_root_used(&root->root_item,
			    btrfs_root_used(&root->root_item) + size);
	spin_unlock(&root->accounting_lock);
}

static void root_sub_used(struct btrfs_root *root, u32 size)
{
	spin_lock(&root->accounting_lock);
	btrfs_set_root_used(&root->root_item,
			    btrfs_root_used(&root->root_item) - size);
	spin_unlock(&root->accounting_lock);
}

C
Chris Mason 已提交
1780 1781 1782
/* given a node and slot number, this reads the blocks it points to.  The
 * extent buffer is returned with a reference taken (but unlocked).
 */
1783 1784
struct extent_buffer *btrfs_read_node_slot(struct extent_buffer *parent,
					   int slot)
1785
{
1786
	int level = btrfs_header_level(parent);
1787
	struct extent_buffer *eb;
1788
	struct btrfs_key first_key;
1789

1790 1791
	if (slot < 0 || slot >= btrfs_header_nritems(parent))
		return ERR_PTR(-ENOENT);
1792 1793 1794

	BUG_ON(level == 0);

1795
	btrfs_node_key_to_cpu(parent, &first_key, slot);
1796
	eb = read_tree_block(parent->fs_info, btrfs_node_blockptr(parent, slot),
1797 1798
			     btrfs_node_ptr_generation(parent, slot),
			     level - 1, &first_key);
1799 1800 1801
	if (!IS_ERR(eb) && !extent_buffer_uptodate(eb)) {
		free_extent_buffer(eb);
		eb = ERR_PTR(-EIO);
1802 1803 1804
	}

	return eb;
1805 1806
}

C
Chris Mason 已提交
1807 1808 1809 1810 1811
/*
 * node level balancing, used to make sure nodes are in proper order for
 * item deletion.  We balance from the top down, so we have to make sure
 * that a deletion won't leave an node completely empty later on.
 */
1812
static noinline int balance_level(struct btrfs_trans_handle *trans,
1813 1814
			 struct btrfs_root *root,
			 struct btrfs_path *path, int level)
1815
{
1816
	struct btrfs_fs_info *fs_info = root->fs_info;
1817 1818 1819 1820
	struct extent_buffer *right = NULL;
	struct extent_buffer *mid;
	struct extent_buffer *left = NULL;
	struct extent_buffer *parent = NULL;
1821 1822 1823 1824
	int ret = 0;
	int wret;
	int pslot;
	int orig_slot = path->slots[level];
1825
	u64 orig_ptr;
1826

1827
	ASSERT(level > 0);
1828

1829
	mid = path->nodes[level];
1830

1831 1832
	WARN_ON(path->locks[level] != BTRFS_WRITE_LOCK &&
		path->locks[level] != BTRFS_WRITE_LOCK_BLOCKING);
1833 1834
	WARN_ON(btrfs_header_generation(mid) != trans->transid);

1835
	orig_ptr = btrfs_node_blockptr(mid, orig_slot);
1836

L
Li Zefan 已提交
1837
	if (level < BTRFS_MAX_LEVEL - 1) {
1838
		parent = path->nodes[level + 1];
L
Li Zefan 已提交
1839 1840
		pslot = path->slots[level + 1];
	}
1841

C
Chris Mason 已提交
1842 1843 1844 1845
	/*
	 * deal with the case where there is only one pointer in the root
	 * by promoting the node below to a root
	 */
1846 1847
	if (!parent) {
		struct extent_buffer *child;
1848

1849
		if (btrfs_header_nritems(mid) != 1)
1850 1851 1852
			return 0;

		/* promote the child to a root */
1853
		child = btrfs_read_node_slot(mid, 0);
1854 1855
		if (IS_ERR(child)) {
			ret = PTR_ERR(child);
1856
			btrfs_handle_fs_error(fs_info, ret, NULL);
1857 1858 1859
			goto enospc;
		}

1860
		btrfs_tree_lock(child);
1861
		btrfs_set_lock_blocking_write(child);
1862 1863
		ret = btrfs_cow_block(trans, root, child, mid, 0, &child,
				      BTRFS_NESTING_COW);
1864 1865 1866 1867 1868
		if (ret) {
			btrfs_tree_unlock(child);
			free_extent_buffer(child);
			goto enospc;
		}
1869

1870 1871
		ret = tree_mod_log_insert_root(root->node, child, 1);
		BUG_ON(ret < 0);
1872
		rcu_assign_pointer(root->node, child);
1873

1874
		add_root_to_dirty_list(root);
1875
		btrfs_tree_unlock(child);
1876

1877
		path->locks[level] = 0;
1878
		path->nodes[level] = NULL;
1879
		btrfs_clean_tree_block(mid);
1880
		btrfs_tree_unlock(mid);
1881
		/* once for the path */
1882
		free_extent_buffer(mid);
1883 1884

		root_sub_used(root, mid->len);
1885
		btrfs_free_tree_block(trans, root, mid, 0, 1);
1886
		/* once for the root ptr */
1887
		free_extent_buffer_stale(mid);
1888
		return 0;
1889
	}
1890
	if (btrfs_header_nritems(mid) >
1891
	    BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 4)
1892 1893
		return 0;

1894
	left = btrfs_read_node_slot(parent, pslot - 1);
1895 1896 1897
	if (IS_ERR(left))
		left = NULL;

1898
	if (left) {
1899
		btrfs_tree_lock(left);
1900
		btrfs_set_lock_blocking_write(left);
1901
		wret = btrfs_cow_block(trans, root, left,
1902 1903
				       parent, pslot - 1, &left,
				       BTRFS_NESTING_COW);
1904 1905 1906 1907
		if (wret) {
			ret = wret;
			goto enospc;
		}
1908
	}
1909

1910
	right = btrfs_read_node_slot(parent, pslot + 1);
1911 1912 1913
	if (IS_ERR(right))
		right = NULL;

1914
	if (right) {
1915
		btrfs_tree_lock(right);
1916
		btrfs_set_lock_blocking_write(right);
1917
		wret = btrfs_cow_block(trans, root, right,
1918 1919
				       parent, pslot + 1, &right,
				       BTRFS_NESTING_COW);
1920 1921 1922 1923 1924 1925 1926
		if (wret) {
			ret = wret;
			goto enospc;
		}
	}

	/* first, try to make some room in the middle buffer */
1927 1928
	if (left) {
		orig_slot += btrfs_header_nritems(left);
1929
		wret = push_node_left(trans, left, mid, 1);
1930 1931
		if (wret < 0)
			ret = wret;
1932
	}
1933 1934 1935 1936

	/*
	 * then try to empty the right most buffer into the middle
	 */
1937
	if (right) {
1938
		wret = push_node_left(trans, mid, right, 1);
1939
		if (wret < 0 && wret != -ENOSPC)
1940
			ret = wret;
1941
		if (btrfs_header_nritems(right) == 0) {
1942
			btrfs_clean_tree_block(right);
1943
			btrfs_tree_unlock(right);
1944
			del_ptr(root, path, level + 1, pslot + 1);
1945
			root_sub_used(root, right->len);
1946
			btrfs_free_tree_block(trans, root, right, 0, 1);
1947
			free_extent_buffer_stale(right);
1948
			right = NULL;
1949
		} else {
1950 1951
			struct btrfs_disk_key right_key;
			btrfs_node_key(right, &right_key, 0);
1952 1953 1954
			ret = tree_mod_log_insert_key(parent, pslot + 1,
					MOD_LOG_KEY_REPLACE, GFP_NOFS);
			BUG_ON(ret < 0);
1955 1956
			btrfs_set_node_key(parent, &right_key, pslot + 1);
			btrfs_mark_buffer_dirty(parent);
1957 1958
		}
	}
1959
	if (btrfs_header_nritems(mid) == 1) {
1960 1961 1962 1963 1964 1965 1966 1967 1968
		/*
		 * we're not allowed to leave a node with one item in the
		 * tree during a delete.  A deletion from lower in the tree
		 * could try to delete the only pointer in this node.
		 * So, pull some keys from the left.
		 * There has to be a left pointer at this point because
		 * otherwise we would have pulled some pointers from the
		 * right
		 */
1969 1970
		if (!left) {
			ret = -EROFS;
1971
			btrfs_handle_fs_error(fs_info, ret, NULL);
1972 1973
			goto enospc;
		}
1974
		wret = balance_node_right(trans, mid, left);
1975
		if (wret < 0) {
1976
			ret = wret;
1977 1978
			goto enospc;
		}
1979
		if (wret == 1) {
1980
			wret = push_node_left(trans, left, mid, 1);
1981 1982 1983
			if (wret < 0)
				ret = wret;
		}
1984 1985
		BUG_ON(wret == 1);
	}
1986
	if (btrfs_header_nritems(mid) == 0) {
1987
		btrfs_clean_tree_block(mid);
1988
		btrfs_tree_unlock(mid);
1989
		del_ptr(root, path, level + 1, pslot);
1990
		root_sub_used(root, mid->len);
1991
		btrfs_free_tree_block(trans, root, mid, 0, 1);
1992
		free_extent_buffer_stale(mid);
1993
		mid = NULL;
1994 1995
	} else {
		/* update the parent key to reflect our changes */
1996 1997
		struct btrfs_disk_key mid_key;
		btrfs_node_key(mid, &mid_key, 0);
1998 1999 2000
		ret = tree_mod_log_insert_key(parent, pslot,
				MOD_LOG_KEY_REPLACE, GFP_NOFS);
		BUG_ON(ret < 0);
2001 2002
		btrfs_set_node_key(parent, &mid_key, pslot);
		btrfs_mark_buffer_dirty(parent);
2003
	}
2004

2005
	/* update the path */
2006 2007
	if (left) {
		if (btrfs_header_nritems(left) > orig_slot) {
D
David Sterba 已提交
2008
			atomic_inc(&left->refs);
2009
			/* left was locked after cow */
2010
			path->nodes[level] = left;
2011 2012
			path->slots[level + 1] -= 1;
			path->slots[level] = orig_slot;
2013 2014
			if (mid) {
				btrfs_tree_unlock(mid);
2015
				free_extent_buffer(mid);
2016
			}
2017
		} else {
2018
			orig_slot -= btrfs_header_nritems(left);
2019 2020 2021
			path->slots[level] = orig_slot;
		}
	}
2022
	/* double check we haven't messed things up */
C
Chris Mason 已提交
2023
	if (orig_ptr !=
2024
	    btrfs_node_blockptr(path->nodes[level], path->slots[level]))
2025
		BUG();
2026
enospc:
2027 2028
	if (right) {
		btrfs_tree_unlock(right);
2029
		free_extent_buffer(right);
2030 2031 2032 2033
	}
	if (left) {
		if (path->nodes[level] != left)
			btrfs_tree_unlock(left);
2034
		free_extent_buffer(left);
2035
	}
2036 2037 2038
	return ret;
}

C
Chris Mason 已提交
2039 2040 2041 2042
/* Node balancing for insertion.  Here we only split or push nodes around
 * when they are completely full.  This is also done top down, so we
 * have to be pessimistic.
 */
C
Chris Mason 已提交
2043
static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans,
2044 2045
					  struct btrfs_root *root,
					  struct btrfs_path *path, int level)
2046
{
2047
	struct btrfs_fs_info *fs_info = root->fs_info;
2048 2049 2050 2051
	struct extent_buffer *right = NULL;
	struct extent_buffer *mid;
	struct extent_buffer *left = NULL;
	struct extent_buffer *parent = NULL;
2052 2053 2054 2055 2056 2057 2058 2059
	int ret = 0;
	int wret;
	int pslot;
	int orig_slot = path->slots[level];

	if (level == 0)
		return 1;

2060
	mid = path->nodes[level];
2061
	WARN_ON(btrfs_header_generation(mid) != trans->transid);
2062

L
Li Zefan 已提交
2063
	if (level < BTRFS_MAX_LEVEL - 1) {
2064
		parent = path->nodes[level + 1];
L
Li Zefan 已提交
2065 2066
		pslot = path->slots[level + 1];
	}
2067

2068
	if (!parent)
2069 2070
		return 1;

2071
	left = btrfs_read_node_slot(parent, pslot - 1);
2072 2073
	if (IS_ERR(left))
		left = NULL;
2074 2075

	/* first, try to make some room in the middle buffer */
2076
	if (left) {
2077
		u32 left_nr;
2078 2079

		btrfs_tree_lock(left);
2080
		btrfs_set_lock_blocking_write(left);
2081

2082
		left_nr = btrfs_header_nritems(left);
2083
		if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) {
C
Chris Mason 已提交
2084 2085
			wret = 1;
		} else {
2086
			ret = btrfs_cow_block(trans, root, left, parent,
2087 2088
					      pslot - 1, &left,
					      BTRFS_NESTING_COW);
2089 2090 2091
			if (ret)
				wret = 1;
			else {
2092
				wret = push_node_left(trans, left, mid, 0);
2093
			}
C
Chris Mason 已提交
2094
		}
2095 2096 2097
		if (wret < 0)
			ret = wret;
		if (wret == 0) {
2098
			struct btrfs_disk_key disk_key;
2099
			orig_slot += left_nr;
2100
			btrfs_node_key(mid, &disk_key, 0);
2101 2102 2103
			ret = tree_mod_log_insert_key(parent, pslot,
					MOD_LOG_KEY_REPLACE, GFP_NOFS);
			BUG_ON(ret < 0);
2104 2105 2106 2107
			btrfs_set_node_key(parent, &disk_key, pslot);
			btrfs_mark_buffer_dirty(parent);
			if (btrfs_header_nritems(left) > orig_slot) {
				path->nodes[level] = left;
2108 2109
				path->slots[level + 1] -= 1;
				path->slots[level] = orig_slot;
2110
				btrfs_tree_unlock(mid);
2111
				free_extent_buffer(mid);
2112 2113
			} else {
				orig_slot -=
2114
					btrfs_header_nritems(left);
2115
				path->slots[level] = orig_slot;
2116
				btrfs_tree_unlock(left);
2117
				free_extent_buffer(left);
2118 2119 2120
			}
			return 0;
		}
2121
		btrfs_tree_unlock(left);
2122
		free_extent_buffer(left);
2123
	}
2124
	right = btrfs_read_node_slot(parent, pslot + 1);
2125 2126
	if (IS_ERR(right))
		right = NULL;
2127 2128 2129 2130

	/*
	 * then try to empty the right most buffer into the middle
	 */
2131
	if (right) {
C
Chris Mason 已提交
2132
		u32 right_nr;
2133

2134
		btrfs_tree_lock(right);
2135
		btrfs_set_lock_blocking_write(right);
2136

2137
		right_nr = btrfs_header_nritems(right);
2138
		if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) {
C
Chris Mason 已提交
2139 2140
			wret = 1;
		} else {
2141 2142
			ret = btrfs_cow_block(trans, root, right,
					      parent, pslot + 1,
2143
					      &right, BTRFS_NESTING_COW);
2144 2145 2146
			if (ret)
				wret = 1;
			else {
2147
				wret = balance_node_right(trans, right, mid);
2148
			}
C
Chris Mason 已提交
2149
		}
2150 2151 2152
		if (wret < 0)
			ret = wret;
		if (wret == 0) {
2153 2154 2155
			struct btrfs_disk_key disk_key;

			btrfs_node_key(right, &disk_key, 0);
2156 2157 2158
			ret = tree_mod_log_insert_key(parent, pslot + 1,
					MOD_LOG_KEY_REPLACE, GFP_NOFS);
			BUG_ON(ret < 0);
2159 2160 2161 2162 2163
			btrfs_set_node_key(parent, &disk_key, pslot + 1);
			btrfs_mark_buffer_dirty(parent);

			if (btrfs_header_nritems(mid) <= orig_slot) {
				path->nodes[level] = right;
2164 2165
				path->slots[level + 1] += 1;
				path->slots[level] = orig_slot -
2166
					btrfs_header_nritems(mid);
2167
				btrfs_tree_unlock(mid);
2168
				free_extent_buffer(mid);
2169
			} else {
2170
				btrfs_tree_unlock(right);
2171
				free_extent_buffer(right);
2172 2173 2174
			}
			return 0;
		}
2175
		btrfs_tree_unlock(right);
2176
		free_extent_buffer(right);
2177 2178 2179 2180
	}
	return 1;
}

2181
/*
C
Chris Mason 已提交
2182 2183
 * readahead one full node of leaves, finding things that are close
 * to the block in 'slot', and triggering ra on them.
2184
 */
2185
static void reada_for_search(struct btrfs_fs_info *fs_info,
2186 2187
			     struct btrfs_path *path,
			     int level, int slot, u64 objectid)
2188
{
2189
	struct extent_buffer *node;
2190
	struct btrfs_disk_key disk_key;
2191 2192
	u32 nritems;
	u64 search;
2193
	u64 target;
2194
	u64 nread = 0;
2195
	struct extent_buffer *eb;
2196 2197 2198
	u32 nr;
	u32 blocksize;
	u32 nscan = 0;
2199

2200
	if (level != 1)
2201 2202 2203
		return;

	if (!path->nodes[level])
2204 2205
		return;

2206
	node = path->nodes[level];
2207

2208
	search = btrfs_node_blockptr(node, slot);
2209 2210
	blocksize = fs_info->nodesize;
	eb = find_extent_buffer(fs_info, search);
2211 2212
	if (eb) {
		free_extent_buffer(eb);
2213 2214 2215
		return;
	}

2216
	target = search;
2217

2218
	nritems = btrfs_header_nritems(node);
2219
	nr = slot;
2220

C
Chris Mason 已提交
2221
	while (1) {
2222
		if (path->reada == READA_BACK) {
2223 2224 2225
			if (nr == 0)
				break;
			nr--;
2226
		} else if (path->reada == READA_FORWARD) {
2227 2228 2229
			nr++;
			if (nr >= nritems)
				break;
2230
		}
2231
		if (path->reada == READA_BACK && objectid) {
2232 2233 2234 2235
			btrfs_node_key(node, &disk_key, nr);
			if (btrfs_disk_key_objectid(&disk_key) != objectid)
				break;
		}
2236
		search = btrfs_node_blockptr(node, nr);
2237 2238
		if ((search <= target && target - search <= 65536) ||
		    (search > target && search - target <= 65536)) {
2239
			readahead_tree_block(fs_info, search);
2240 2241 2242
			nread += blocksize;
		}
		nscan++;
2243
		if ((nread > 65536 || nscan > 32))
2244
			break;
2245 2246
	}
}
2247

2248
static noinline void reada_for_balance(struct btrfs_fs_info *fs_info,
J
Josef Bacik 已提交
2249
				       struct btrfs_path *path, int level)
2250 2251 2252 2253 2254 2255 2256 2257 2258
{
	int slot;
	int nritems;
	struct extent_buffer *parent;
	struct extent_buffer *eb;
	u64 gen;
	u64 block1 = 0;
	u64 block2 = 0;

2259
	parent = path->nodes[level + 1];
2260
	if (!parent)
J
Josef Bacik 已提交
2261
		return;
2262 2263

	nritems = btrfs_header_nritems(parent);
2264
	slot = path->slots[level + 1];
2265 2266 2267 2268

	if (slot > 0) {
		block1 = btrfs_node_blockptr(parent, slot - 1);
		gen = btrfs_node_ptr_generation(parent, slot - 1);
2269
		eb = find_extent_buffer(fs_info, block1);
2270 2271 2272 2273 2274 2275
		/*
		 * if we get -eagain from btrfs_buffer_uptodate, we
		 * don't want to return eagain here.  That will loop
		 * forever
		 */
		if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
2276 2277 2278
			block1 = 0;
		free_extent_buffer(eb);
	}
2279
	if (slot + 1 < nritems) {
2280 2281
		block2 = btrfs_node_blockptr(parent, slot + 1);
		gen = btrfs_node_ptr_generation(parent, slot + 1);
2282
		eb = find_extent_buffer(fs_info, block2);
2283
		if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
2284 2285 2286
			block2 = 0;
		free_extent_buffer(eb);
	}
2287

J
Josef Bacik 已提交
2288
	if (block1)
2289
		readahead_tree_block(fs_info, block1);
J
Josef Bacik 已提交
2290
	if (block2)
2291
		readahead_tree_block(fs_info, block2);
2292 2293 2294
}


C
Chris Mason 已提交
2295
/*
C
Chris Mason 已提交
2296 2297 2298 2299
 * when we walk down the tree, it is usually safe to unlock the higher layers
 * in the tree.  The exceptions are when our path goes through slot 0, because
 * operations on the tree might require changing key pointers higher up in the
 * tree.
C
Chris Mason 已提交
2300
 *
C
Chris Mason 已提交
2301 2302 2303
 * callers might also have set path->keep_locks, which tells this code to keep
 * the lock if the path points to the last slot in the block.  This is part of
 * walking through the tree, and selecting the next slot in the higher block.
C
Chris Mason 已提交
2304
 *
C
Chris Mason 已提交
2305 2306
 * lowest_unlock sets the lowest level in the tree we're allowed to unlock.  so
 * if lowest_unlock is 1, level 0 won't be unlocked
C
Chris Mason 已提交
2307
 */
2308
static noinline void unlock_up(struct btrfs_path *path, int level,
2309 2310
			       int lowest_unlock, int min_write_lock_level,
			       int *write_lock_level)
2311 2312 2313
{
	int i;
	int skip_level = level;
2314
	int no_skips = 0;
2315 2316 2317 2318 2319 2320 2321
	struct extent_buffer *t;

	for (i = level; i < BTRFS_MAX_LEVEL; i++) {
		if (!path->nodes[i])
			break;
		if (!path->locks[i])
			break;
2322
		if (!no_skips && path->slots[i] == 0) {
2323 2324 2325
			skip_level = i + 1;
			continue;
		}
2326
		if (!no_skips && path->keep_locks) {
2327 2328 2329
			u32 nritems;
			t = path->nodes[i];
			nritems = btrfs_header_nritems(t);
2330
			if (nritems < 1 || path->slots[i] >= nritems - 1) {
2331 2332 2333 2334
				skip_level = i + 1;
				continue;
			}
		}
2335 2336 2337
		if (skip_level < i && i >= lowest_unlock)
			no_skips = 1;

2338
		t = path->nodes[i];
2339
		if (i >= lowest_unlock && i > skip_level) {
2340
			btrfs_tree_unlock_rw(t, path->locks[i]);
2341
			path->locks[i] = 0;
2342 2343 2344 2345 2346
			if (write_lock_level &&
			    i > min_write_lock_level &&
			    i <= *write_lock_level) {
				*write_lock_level = i - 1;
			}
2347 2348 2349 2350
		}
	}
}

2351 2352 2353 2354 2355 2356 2357 2358 2359
/*
 * helper function for btrfs_search_slot.  The goal is to find a block
 * in cache without setting the path to blocking.  If we find the block
 * we return zero and the path is unchanged.
 *
 * If we can't find the block, we set the path blocking and do some
 * reada.  -EAGAIN is returned and the search must be repeated.
 */
static int
2360 2361
read_block_for_search(struct btrfs_root *root, struct btrfs_path *p,
		      struct extent_buffer **eb_ret, int level, int slot,
2362
		      const struct btrfs_key *key)
2363
{
2364
	struct btrfs_fs_info *fs_info = root->fs_info;
2365 2366 2367
	u64 blocknr;
	u64 gen;
	struct extent_buffer *tmp;
2368
	struct btrfs_key first_key;
2369
	int ret;
2370
	int parent_level;
2371

2372 2373 2374 2375
	blocknr = btrfs_node_blockptr(*eb_ret, slot);
	gen = btrfs_node_ptr_generation(*eb_ret, slot);
	parent_level = btrfs_header_level(*eb_ret);
	btrfs_node_key_to_cpu(*eb_ret, &first_key, slot);
2376

2377
	tmp = find_extent_buffer(fs_info, blocknr);
2378
	if (tmp) {
2379
		/* first we do an atomic uptodate check */
2380
		if (btrfs_buffer_uptodate(tmp, gen, 1) > 0) {
2381 2382 2383 2384 2385
			/*
			 * Do extra check for first_key, eb can be stale due to
			 * being cached, read from scrub, or have multiple
			 * parents (shared tree blocks).
			 */
2386
			if (btrfs_verify_level_key(tmp,
2387 2388 2389 2390
					parent_level - 1, &first_key, gen)) {
				free_extent_buffer(tmp);
				return -EUCLEAN;
			}
2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403
			*eb_ret = tmp;
			return 0;
		}

		/* the pages were up to date, but we failed
		 * the generation number check.  Do a full
		 * read for the generation number that is correct.
		 * We must do this without dropping locks so
		 * we can trust our generation number
		 */
		btrfs_set_path_blocking(p);

		/* now we're allowed to do a blocking uptodate check */
2404
		ret = btrfs_read_buffer(tmp, gen, parent_level - 1, &first_key);
2405 2406 2407
		if (!ret) {
			*eb_ret = tmp;
			return 0;
2408
		}
2409 2410 2411
		free_extent_buffer(tmp);
		btrfs_release_path(p);
		return -EIO;
2412 2413 2414 2415 2416
	}

	/*
	 * reduce lock contention at high levels
	 * of the btree by dropping locks before
2417 2418 2419
	 * we read.  Don't release the lock on the current
	 * level because we need to walk this node to figure
	 * out which blocks to read.
2420
	 */
2421 2422 2423
	btrfs_unlock_up_safe(p, level + 1);
	btrfs_set_path_blocking(p);

2424
	if (p->reada != READA_NONE)
2425
		reada_for_search(fs_info, p, level, slot, key->objectid);
2426

2427
	ret = -EAGAIN;
2428
	tmp = read_tree_block(fs_info, blocknr, gen, parent_level - 1,
2429
			      &first_key);
2430
	if (!IS_ERR(tmp)) {
2431 2432 2433 2434 2435 2436
		/*
		 * If the read above didn't mark this buffer up to date,
		 * it will never end up being up to date.  Set ret to EIO now
		 * and give up so that our caller doesn't loop forever
		 * on our EAGAINs.
		 */
2437
		if (!extent_buffer_uptodate(tmp))
2438
			ret = -EIO;
2439
		free_extent_buffer(tmp);
2440 2441
	} else {
		ret = PTR_ERR(tmp);
2442
	}
2443 2444

	btrfs_release_path(p);
2445
	return ret;
2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459
}

/*
 * helper function for btrfs_search_slot.  This does all of the checks
 * for node-level blocks and does any balancing required based on
 * the ins_len.
 *
 * If no extra work was required, zero is returned.  If we had to
 * drop the path, -EAGAIN is returned and btrfs_search_slot must
 * start over
 */
static int
setup_nodes_for_search(struct btrfs_trans_handle *trans,
		       struct btrfs_root *root, struct btrfs_path *p,
2460 2461
		       struct extent_buffer *b, int level, int ins_len,
		       int *write_lock_level)
2462
{
2463
	struct btrfs_fs_info *fs_info = root->fs_info;
2464
	int ret;
2465

2466
	if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >=
2467
	    BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3) {
2468 2469
		int sret;

2470 2471 2472 2473 2474 2475
		if (*write_lock_level < level + 1) {
			*write_lock_level = level + 1;
			btrfs_release_path(p);
			goto again;
		}

2476
		btrfs_set_path_blocking(p);
2477
		reada_for_balance(fs_info, p, level);
2478 2479 2480 2481 2482 2483 2484 2485 2486
		sret = split_node(trans, root, p, level);

		BUG_ON(sret > 0);
		if (sret) {
			ret = sret;
			goto done;
		}
		b = p->nodes[level];
	} else if (ins_len < 0 && btrfs_header_nritems(b) <
2487
		   BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 2) {
2488 2489
		int sret;

2490 2491 2492 2493 2494 2495
		if (*write_lock_level < level + 1) {
			*write_lock_level = level + 1;
			btrfs_release_path(p);
			goto again;
		}

2496
		btrfs_set_path_blocking(p);
2497
		reada_for_balance(fs_info, p, level);
2498 2499 2500 2501 2502 2503 2504 2505
		sret = balance_level(trans, root, p, level);

		if (sret) {
			ret = sret;
			goto done;
		}
		b = p->nodes[level];
		if (!b) {
2506
			btrfs_release_path(p);
2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518
			goto again;
		}
		BUG_ON(btrfs_header_nritems(b) == 1);
	}
	return 0;

again:
	ret = -EAGAIN;
done:
	return ret;
}

2519
int btrfs_find_item(struct btrfs_root *fs_root, struct btrfs_path *path,
2520 2521 2522 2523 2524 2525
		u64 iobjectid, u64 ioff, u8 key_type,
		struct btrfs_key *found_key)
{
	int ret;
	struct btrfs_key key;
	struct extent_buffer *eb;
2526 2527

	ASSERT(path);
2528
	ASSERT(found_key);
2529 2530 2531 2532 2533 2534

	key.type = key_type;
	key.objectid = iobjectid;
	key.offset = ioff;

	ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0);
2535
	if (ret < 0)
2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553
		return ret;

	eb = path->nodes[0];
	if (ret && path->slots[0] >= btrfs_header_nritems(eb)) {
		ret = btrfs_next_leaf(fs_root, path);
		if (ret)
			return ret;
		eb = path->nodes[0];
	}

	btrfs_item_key_to_cpu(eb, found_key, path->slots[0]);
	if (found_key->type != key.type ||
			found_key->objectid != key.objectid)
		return 1;

	return 0;
}

2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566
static struct extent_buffer *btrfs_search_slot_get_root(struct btrfs_root *root,
							struct btrfs_path *p,
							int write_lock_level)
{
	struct btrfs_fs_info *fs_info = root->fs_info;
	struct extent_buffer *b;
	int root_lock;
	int level = 0;

	/* We try very hard to do read locks on the root */
	root_lock = BTRFS_READ_LOCK;

	if (p->search_commit_root) {
2567 2568 2569 2570 2571 2572 2573 2574 2575 2576
		/*
		 * The commit roots are read only so we always do read locks,
		 * and we always must hold the commit_root_sem when doing
		 * searches on them, the only exception is send where we don't
		 * want to block transaction commits for a long time, so
		 * we need to clone the commit root in order to avoid races
		 * with transaction commits that create a snapshot of one of
		 * the roots used by a send operation.
		 */
		if (p->need_commit_sem) {
2577
			down_read(&fs_info->commit_root_sem);
2578
			b = btrfs_clone_extent_buffer(root->commit_root);
2579
			up_read(&fs_info->commit_root_sem);
2580 2581 2582 2583 2584
			if (!b)
				return ERR_PTR(-ENOMEM);

		} else {
			b = root->commit_root;
D
David Sterba 已提交
2585
			atomic_inc(&b->refs);
2586 2587
		}
		level = btrfs_header_level(b);
2588 2589 2590 2591 2592
		/*
		 * Ensure that all callers have set skip_locking when
		 * p->search_commit_root = 1.
		 */
		ASSERT(p->skip_locking == 1);
2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603

		goto out;
	}

	if (p->skip_locking) {
		b = btrfs_root_node(root);
		level = btrfs_header_level(b);
		goto out;
	}

	/*
2604 2605
	 * If the level is set to maximum, we can skip trying to get the read
	 * lock.
2606
	 */
2607 2608 2609 2610 2611
	if (write_lock_level < BTRFS_MAX_LEVEL) {
		/*
		 * We don't know the level of the root node until we actually
		 * have it read locked
		 */
J
Josef Bacik 已提交
2612
		b = __btrfs_read_lock_root_node(root, p->recurse);
2613 2614 2615 2616 2617 2618 2619 2620
		level = btrfs_header_level(b);
		if (level > write_lock_level)
			goto out;

		/* Whoops, must trade for write lock */
		btrfs_tree_read_unlock(b);
		free_extent_buffer(b);
	}
2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638

	b = btrfs_lock_root_node(root);
	root_lock = BTRFS_WRITE_LOCK;

	/* The level might have changed, check again */
	level = btrfs_header_level(b);

out:
	p->nodes[level] = b;
	if (!p->skip_locking)
		p->locks[level] = root_lock;
	/*
	 * Callers are responsible for dropping b's references.
	 */
	return b;
}


C
Chris Mason 已提交
2639
/*
2640 2641
 * btrfs_search_slot - look for a key in a tree and perform necessary
 * modifications to preserve tree invariants.
C
Chris Mason 已提交
2642
 *
2643 2644 2645 2646 2647 2648 2649 2650
 * @trans:	Handle of transaction, used when modifying the tree
 * @p:		Holds all btree nodes along the search path
 * @root:	The root node of the tree
 * @key:	The key we are looking for
 * @ins_len:	Indicates purpose of search, for inserts it is 1, for
 *		deletions it's -1. 0 for plain searches
 * @cow:	boolean should CoW operations be performed. Must always be 1
 *		when modifying the tree.
C
Chris Mason 已提交
2651
 *
2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662
 * If @ins_len > 0, nodes and leaves will be split as we walk down the tree.
 * If @ins_len < 0, nodes will be merged as we walk down the tree (if possible)
 *
 * If @key is found, 0 is returned and you can find the item in the leaf level
 * of the path (level 0)
 *
 * If @key isn't found, 1 is returned and the leaf level of the path (level 0)
 * points to the slot where it should be inserted
 *
 * If an error is encountered while searching the tree a negative error number
 * is returned
C
Chris Mason 已提交
2663
 */
2664 2665 2666
int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root *root,
		      const struct btrfs_key *key, struct btrfs_path *p,
		      int ins_len, int cow)
2667
{
2668
	struct extent_buffer *b;
2669 2670
	int slot;
	int ret;
2671
	int err;
2672
	int level;
2673
	int lowest_unlock = 1;
2674 2675
	/* everything at write_lock_level or lower must be write locked */
	int write_lock_level = 0;
2676
	u8 lowest_level = 0;
2677
	int min_write_lock_level;
2678
	int prev_cmp;
2679

2680
	lowest_level = p->lowest_level;
2681
	WARN_ON(lowest_level && ins_len > 0);
C
Chris Mason 已提交
2682
	WARN_ON(p->nodes[0] != NULL);
2683
	BUG_ON(!cow && ins_len);
2684

2685
	if (ins_len < 0) {
2686
		lowest_unlock = 2;
2687

2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703
		/* when we are removing items, we might have to go up to level
		 * two as we update tree pointers  Make sure we keep write
		 * for those levels as well
		 */
		write_lock_level = 2;
	} else if (ins_len > 0) {
		/*
		 * for inserting items, make sure we have a write lock on
		 * level 1 so we can update keys
		 */
		write_lock_level = 1;
	}

	if (!cow)
		write_lock_level = -1;

J
Josef Bacik 已提交
2704
	if (cow && (p->keep_locks || p->lowest_level))
2705 2706
		write_lock_level = BTRFS_MAX_LEVEL;

2707 2708
	min_write_lock_level = write_lock_level;

2709
again:
2710
	prev_cmp = -1;
2711
	b = btrfs_search_slot_get_root(root, p, write_lock_level);
2712 2713 2714 2715
	if (IS_ERR(b)) {
		ret = PTR_ERR(b);
		goto done;
	}
2716

2717
	while (b) {
2718 2719
		int dec = 0;

2720
		level = btrfs_header_level(b);
2721

C
Chris Mason 已提交
2722
		if (cow) {
2723 2724
			bool last_level = (level == (BTRFS_MAX_LEVEL - 1));

2725 2726 2727 2728 2729
			/*
			 * if we don't really need to cow this block
			 * then we don't want to set the path blocking,
			 * so we test it here
			 */
2730 2731
			if (!should_cow_block(trans, root, b)) {
				trans->dirty = true;
2732
				goto cow_done;
2733
			}
2734

2735 2736 2737 2738
			/*
			 * must have write locks on this node and the
			 * parent
			 */
2739 2740 2741 2742
			if (level > write_lock_level ||
			    (level + 1 > write_lock_level &&
			    level + 1 < BTRFS_MAX_LEVEL &&
			    p->nodes[level + 1])) {
2743 2744 2745 2746 2747
				write_lock_level = level + 1;
				btrfs_release_path(p);
				goto again;
			}

2748
			btrfs_set_path_blocking(p);
2749 2750
			if (last_level)
				err = btrfs_cow_block(trans, root, b, NULL, 0,
2751 2752
						      &b,
						      BTRFS_NESTING_COW);
2753 2754 2755
			else
				err = btrfs_cow_block(trans, root, b,
						      p->nodes[level + 1],
2756 2757
						      p->slots[level + 1], &b,
						      BTRFS_NESTING_COW);
2758 2759
			if (err) {
				ret = err;
2760
				goto done;
2761
			}
C
Chris Mason 已提交
2762
		}
2763
cow_done:
2764
		p->nodes[level] = b;
L
Liu Bo 已提交
2765 2766 2767 2768
		/*
		 * Leave path with blocking locks to avoid massive
		 * lock context switch, this is made on purpose.
		 */
2769 2770 2771 2772 2773 2774 2775

		/*
		 * we have a lock on b and as long as we aren't changing
		 * the tree, there is no way to for the items in b to change.
		 * It is safe to drop the lock on our parent before we
		 * go through the expensive btree search on b.
		 *
2776 2777 2778 2779
		 * If we're inserting or deleting (ins_len != 0), then we might
		 * be changing slot zero, which may require changing the parent.
		 * So, we can't drop the lock until after we know which slot
		 * we're operating on.
2780
		 */
2781 2782 2783 2784 2785 2786 2787 2788
		if (!ins_len && !p->keep_locks) {
			int u = level + 1;

			if (u < BTRFS_MAX_LEVEL && p->locks[u]) {
				btrfs_tree_unlock_rw(p->nodes[u], p->locks[u]);
				p->locks[u] = 0;
			}
		}
2789

N
Nikolay Borisov 已提交
2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806
		/*
		 * If btrfs_bin_search returns an exact match (prev_cmp == 0)
		 * we can safely assume the target key will always be in slot 0
		 * on lower levels due to the invariants BTRFS' btree provides,
		 * namely that a btrfs_key_ptr entry always points to the
		 * lowest key in the child node, thus we can skip searching
		 * lower levels
		 */
		if (prev_cmp == 0) {
			slot = 0;
			ret = 0;
		} else {
			ret = btrfs_bin_search(b, key, &slot);
			prev_cmp = ret;
			if (ret < 0)
				goto done;
		}
2807

2808
		if (level == 0) {
2809
			p->slots[level] = slot;
2810
			if (ins_len > 0 &&
2811
			    btrfs_leaf_free_space(b) < ins_len) {
2812 2813 2814 2815 2816 2817
				if (write_lock_level < 1) {
					write_lock_level = 1;
					btrfs_release_path(p);
					goto again;
				}

2818
				btrfs_set_path_blocking(p);
2819 2820
				err = split_leaf(trans, root, key,
						 p, ins_len, ret == 0);
2821

2822 2823 2824
				BUG_ON(err > 0);
				if (err) {
					ret = err;
2825 2826
					goto done;
				}
C
Chris Mason 已提交
2827
			}
2828
			if (!p->search_for_split)
2829
				unlock_up(p, level, lowest_unlock,
2830
					  min_write_lock_level, NULL);
2831
			goto done;
2832
		}
2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887
		if (ret && slot > 0) {
			dec = 1;
			slot--;
		}
		p->slots[level] = slot;
		err = setup_nodes_for_search(trans, root, p, b, level, ins_len,
					     &write_lock_level);
		if (err == -EAGAIN)
			goto again;
		if (err) {
			ret = err;
			goto done;
		}
		b = p->nodes[level];
		slot = p->slots[level];

		/*
		 * Slot 0 is special, if we change the key we have to update
		 * the parent pointer which means we must have a write lock on
		 * the parent
		 */
		if (slot == 0 && ins_len && write_lock_level < level + 1) {
			write_lock_level = level + 1;
			btrfs_release_path(p);
			goto again;
		}

		unlock_up(p, level, lowest_unlock, min_write_lock_level,
			  &write_lock_level);

		if (level == lowest_level) {
			if (dec)
				p->slots[level]++;
			goto done;
		}

		err = read_block_for_search(root, p, &b, level, slot, key);
		if (err == -EAGAIN)
			goto again;
		if (err) {
			ret = err;
			goto done;
		}

		if (!p->skip_locking) {
			level = btrfs_header_level(b);
			if (level <= write_lock_level) {
				if (!btrfs_try_tree_write_lock(b)) {
					btrfs_set_path_blocking(p);
					btrfs_tree_lock(b);
				}
				p->locks[level] = BTRFS_WRITE_LOCK;
			} else {
				if (!btrfs_tree_read_lock_atomic(b)) {
					btrfs_set_path_blocking(p);
2888 2889
					__btrfs_tree_read_lock(b, BTRFS_NESTING_NORMAL,
							       p->recurse);
2890 2891 2892 2893 2894
				}
				p->locks[level] = BTRFS_READ_LOCK;
			}
			p->nodes[level] = b;
		}
2895
	}
2896 2897
	ret = 1;
done:
2898 2899 2900 2901
	/*
	 * we don't really know what they plan on doing with the path
	 * from here on, so for now just mark it as blocking
	 */
2902 2903
	if (!p->leave_spinning)
		btrfs_set_path_blocking(p);
2904
	if (ret < 0 && !p->skip_release_on_error)
2905
		btrfs_release_path(p);
2906
	return ret;
2907 2908
}

J
Jan Schmidt 已提交
2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919
/*
 * Like btrfs_search_slot, this looks for a key in the given tree. It uses the
 * current state of the tree together with the operations recorded in the tree
 * modification log to search for the key in a previous version of this tree, as
 * denoted by the time_seq parameter.
 *
 * Naturally, there is no support for insert, delete or cow operations.
 *
 * The resulting path and return value will be set up as if we called
 * btrfs_search_slot at that point in time with ins_len and cow both set to 0.
 */
2920
int btrfs_search_old_slot(struct btrfs_root *root, const struct btrfs_key *key,
J
Jan Schmidt 已提交
2921 2922
			  struct btrfs_path *p, u64 time_seq)
{
2923
	struct btrfs_fs_info *fs_info = root->fs_info;
J
Jan Schmidt 已提交
2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941
	struct extent_buffer *b;
	int slot;
	int ret;
	int err;
	int level;
	int lowest_unlock = 1;
	u8 lowest_level = 0;

	lowest_level = p->lowest_level;
	WARN_ON(p->nodes[0] != NULL);

	if (p->search_commit_root) {
		BUG_ON(time_seq);
		return btrfs_search_slot(NULL, root, key, p, 0, 0);
	}

again:
	b = get_old_root(root, time_seq);
2942 2943 2944 2945
	if (!b) {
		ret = -EIO;
		goto done;
	}
J
Jan Schmidt 已提交
2946 2947 2948 2949
	level = btrfs_header_level(b);
	p->locks[level] = BTRFS_READ_LOCK;

	while (b) {
2950 2951
		int dec = 0;

J
Jan Schmidt 已提交
2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962
		level = btrfs_header_level(b);
		p->nodes[level] = b;

		/*
		 * we have a lock on b and as long as we aren't changing
		 * the tree, there is no way to for the items in b to change.
		 * It is safe to drop the lock on our parent before we
		 * go through the expensive btree search on b.
		 */
		btrfs_unlock_up_safe(p, level + 1);

N
Nikolay Borisov 已提交
2963
		ret = btrfs_bin_search(b, key, &slot);
2964 2965
		if (ret < 0)
			goto done;
J
Jan Schmidt 已提交
2966

2967
		if (level == 0) {
J
Jan Schmidt 已提交
2968 2969
			p->slots[level] = slot;
			unlock_up(p, level, lowest_unlock, 0, NULL);
2970 2971
			goto done;
		}
J
Jan Schmidt 已提交
2972

2973 2974 2975 2976 2977 2978
		if (ret && slot > 0) {
			dec = 1;
			slot--;
		}
		p->slots[level] = slot;
		unlock_up(p, level, lowest_unlock, 0, NULL);
J
Jan Schmidt 已提交
2979

2980 2981 2982 2983 2984
		if (level == lowest_level) {
			if (dec)
				p->slots[level]++;
			goto done;
		}
J
Jan Schmidt 已提交
2985

2986 2987 2988 2989 2990
		err = read_block_for_search(root, p, &b, level, slot, key);
		if (err == -EAGAIN)
			goto again;
		if (err) {
			ret = err;
J
Jan Schmidt 已提交
2991 2992
			goto done;
		}
2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005

		level = btrfs_header_level(b);
		if (!btrfs_tree_read_lock_atomic(b)) {
			btrfs_set_path_blocking(p);
			btrfs_tree_read_lock(b);
		}
		b = tree_mod_log_rewind(fs_info, p, b, time_seq);
		if (!b) {
			ret = -ENOMEM;
			goto done;
		}
		p->locks[level] = BTRFS_READ_LOCK;
		p->nodes[level] = b;
J
Jan Schmidt 已提交
3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016
	}
	ret = 1;
done:
	if (!p->leave_spinning)
		btrfs_set_path_blocking(p);
	if (ret < 0)
		btrfs_release_path(p);

	return ret;
}

3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029
/*
 * helper to use instead of search slot if no exact match is needed but
 * instead the next or previous item should be returned.
 * When find_higher is true, the next higher item is returned, the next lower
 * otherwise.
 * When return_any and find_higher are both true, and no higher item is found,
 * return the next lower instead.
 * When return_any is true and find_higher is false, and no lower item is found,
 * return the next higher instead.
 * It returns 0 if any item is found, 1 if none is found (tree empty), and
 * < 0 on error
 */
int btrfs_search_slot_for_read(struct btrfs_root *root,
3030 3031 3032
			       const struct btrfs_key *key,
			       struct btrfs_path *p, int find_higher,
			       int return_any)
3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066
{
	int ret;
	struct extent_buffer *leaf;

again:
	ret = btrfs_search_slot(NULL, root, key, p, 0, 0);
	if (ret <= 0)
		return ret;
	/*
	 * a return value of 1 means the path is at the position where the
	 * item should be inserted. Normally this is the next bigger item,
	 * but in case the previous item is the last in a leaf, path points
	 * to the first free slot in the previous leaf, i.e. at an invalid
	 * item.
	 */
	leaf = p->nodes[0];

	if (find_higher) {
		if (p->slots[0] >= btrfs_header_nritems(leaf)) {
			ret = btrfs_next_leaf(root, p);
			if (ret <= 0)
				return ret;
			if (!return_any)
				return 1;
			/*
			 * no higher item found, return the next
			 * lower instead
			 */
			return_any = 0;
			find_higher = 0;
			btrfs_release_path(p);
			goto again;
		}
	} else {
3067 3068 3069 3070 3071
		if (p->slots[0] == 0) {
			ret = btrfs_prev_leaf(root, p);
			if (ret < 0)
				return ret;
			if (!ret) {
3072 3073 3074
				leaf = p->nodes[0];
				if (p->slots[0] == btrfs_header_nritems(leaf))
					p->slots[0]--;
3075
				return 0;
3076
			}
3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087
			if (!return_any)
				return 1;
			/*
			 * no lower item found, return the next
			 * higher instead
			 */
			return_any = 0;
			find_higher = 1;
			btrfs_release_path(p);
			goto again;
		} else {
3088 3089 3090 3091 3092 3093
			--p->slots[0];
		}
	}
	return 0;
}

C
Chris Mason 已提交
3094 3095 3096 3097 3098 3099
/*
 * adjust the pointers going up the tree, starting at level
 * making sure the right key of each node is points to 'key'.
 * This is used after shifting pointers to the left, so it stops
 * fixing up pointers when a given leaf/node is not in slot 0 of the
 * higher levels
C
Chris Mason 已提交
3100
 *
C
Chris Mason 已提交
3101
 */
3102
static void fixup_low_keys(struct btrfs_path *path,
3103
			   struct btrfs_disk_key *key, int level)
3104 3105
{
	int i;
3106
	struct extent_buffer *t;
3107
	int ret;
3108

C
Chris Mason 已提交
3109
	for (i = level; i < BTRFS_MAX_LEVEL; i++) {
3110
		int tslot = path->slots[i];
3111

3112
		if (!path->nodes[i])
3113
			break;
3114
		t = path->nodes[i];
3115 3116 3117
		ret = tree_mod_log_insert_key(t, tslot, MOD_LOG_KEY_REPLACE,
				GFP_ATOMIC);
		BUG_ON(ret < 0);
3118
		btrfs_set_node_key(t, key, tslot);
C
Chris Mason 已提交
3119
		btrfs_mark_buffer_dirty(path->nodes[i]);
3120 3121 3122 3123 3124
		if (tslot != 0)
			break;
	}
}

Z
Zheng Yan 已提交
3125 3126 3127 3128 3129 3130
/*
 * update item key.
 *
 * This function isn't completely safe. It's the caller's responsibility
 * that the new key won't break the order
 */
3131 3132
void btrfs_set_item_key_safe(struct btrfs_fs_info *fs_info,
			     struct btrfs_path *path,
3133
			     const struct btrfs_key *new_key)
Z
Zheng Yan 已提交
3134 3135 3136 3137 3138 3139 3140 3141 3142
{
	struct btrfs_disk_key disk_key;
	struct extent_buffer *eb;
	int slot;

	eb = path->nodes[0];
	slot = path->slots[0];
	if (slot > 0) {
		btrfs_item_key(eb, &disk_key, slot - 1);
3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153
		if (unlikely(comp_keys(&disk_key, new_key) >= 0)) {
			btrfs_crit(fs_info,
		"slot %u key (%llu %u %llu) new key (%llu %u %llu)",
				   slot, btrfs_disk_key_objectid(&disk_key),
				   btrfs_disk_key_type(&disk_key),
				   btrfs_disk_key_offset(&disk_key),
				   new_key->objectid, new_key->type,
				   new_key->offset);
			btrfs_print_leaf(eb);
			BUG();
		}
Z
Zheng Yan 已提交
3154 3155 3156
	}
	if (slot < btrfs_header_nritems(eb) - 1) {
		btrfs_item_key(eb, &disk_key, slot + 1);
3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167
		if (unlikely(comp_keys(&disk_key, new_key) <= 0)) {
			btrfs_crit(fs_info,
		"slot %u key (%llu %u %llu) new key (%llu %u %llu)",
				   slot, btrfs_disk_key_objectid(&disk_key),
				   btrfs_disk_key_type(&disk_key),
				   btrfs_disk_key_offset(&disk_key),
				   new_key->objectid, new_key->type,
				   new_key->offset);
			btrfs_print_leaf(eb);
			BUG();
		}
Z
Zheng Yan 已提交
3168 3169 3170 3171 3172 3173
	}

	btrfs_cpu_key_to_disk(&disk_key, new_key);
	btrfs_set_item_key(eb, &disk_key, slot);
	btrfs_mark_buffer_dirty(eb);
	if (slot == 0)
3174
		fixup_low_keys(path, &disk_key, 1);
Z
Zheng Yan 已提交
3175 3176
}

3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228
/*
 * Check key order of two sibling extent buffers.
 *
 * Return true if something is wrong.
 * Return false if everything is fine.
 *
 * Tree-checker only works inside one tree block, thus the following
 * corruption can not be detected by tree-checker:
 *
 * Leaf @left			| Leaf @right
 * --------------------------------------------------------------
 * | 1 | 2 | 3 | 4 | 5 | f6 |   | 7 | 8 |
 *
 * Key f6 in leaf @left itself is valid, but not valid when the next
 * key in leaf @right is 7.
 * This can only be checked at tree block merge time.
 * And since tree checker has ensured all key order in each tree block
 * is correct, we only need to bother the last key of @left and the first
 * key of @right.
 */
static bool check_sibling_keys(struct extent_buffer *left,
			       struct extent_buffer *right)
{
	struct btrfs_key left_last;
	struct btrfs_key right_first;
	int level = btrfs_header_level(left);
	int nr_left = btrfs_header_nritems(left);
	int nr_right = btrfs_header_nritems(right);

	/* No key to check in one of the tree blocks */
	if (!nr_left || !nr_right)
		return false;

	if (level) {
		btrfs_node_key_to_cpu(left, &left_last, nr_left - 1);
		btrfs_node_key_to_cpu(right, &right_first, 0);
	} else {
		btrfs_item_key_to_cpu(left, &left_last, nr_left - 1);
		btrfs_item_key_to_cpu(right, &right_first, 0);
	}

	if (btrfs_comp_cpu_keys(&left_last, &right_first) >= 0) {
		btrfs_crit(left->fs_info,
"bad key order, sibling blocks, left last (%llu %u %llu) right first (%llu %u %llu)",
			   left_last.objectid, left_last.type,
			   left_last.offset, right_first.objectid,
			   right_first.type, right_first.offset);
		return true;
	}
	return false;
}

C
Chris Mason 已提交
3229 3230
/*
 * try to push data from one node into the next node left in the
3231
 * tree.
C
Chris Mason 已提交
3232 3233 3234
 *
 * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
 * error, and > 0 if there was no room in the left hand block.
C
Chris Mason 已提交
3235
 */
3236
static int push_node_left(struct btrfs_trans_handle *trans,
3237
			  struct extent_buffer *dst,
3238
			  struct extent_buffer *src, int empty)
3239
{
3240
	struct btrfs_fs_info *fs_info = trans->fs_info;
3241
	int push_items = 0;
3242 3243
	int src_nritems;
	int dst_nritems;
C
Chris Mason 已提交
3244
	int ret = 0;
3245

3246 3247
	src_nritems = btrfs_header_nritems(src);
	dst_nritems = btrfs_header_nritems(dst);
3248
	push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems;
3249 3250
	WARN_ON(btrfs_header_generation(src) != trans->transid);
	WARN_ON(btrfs_header_generation(dst) != trans->transid);
3251

3252
	if (!empty && src_nritems <= 8)
3253 3254
		return 1;

C
Chris Mason 已提交
3255
	if (push_items <= 0)
3256 3257
		return 1;

3258
	if (empty) {
3259
		push_items = min(src_nritems, push_items);
3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271
		if (push_items < src_nritems) {
			/* leave at least 8 pointers in the node if
			 * we aren't going to empty it
			 */
			if (src_nritems - push_items < 8) {
				if (push_items <= 8)
					return 1;
				push_items -= 8;
			}
		}
	} else
		push_items = min(src_nritems - 8, push_items);
3272

3273 3274 3275 3276 3277 3278
	/* dst is the left eb, src is the middle eb */
	if (check_sibling_keys(dst, src)) {
		ret = -EUCLEAN;
		btrfs_abort_transaction(trans, ret);
		return ret;
	}
3279
	ret = tree_mod_log_eb_copy(dst, src, dst_nritems, 0, push_items);
3280
	if (ret) {
3281
		btrfs_abort_transaction(trans, ret);
3282 3283
		return ret;
	}
3284 3285 3286
	copy_extent_buffer(dst, src,
			   btrfs_node_key_ptr_offset(dst_nritems),
			   btrfs_node_key_ptr_offset(0),
C
Chris Mason 已提交
3287
			   push_items * sizeof(struct btrfs_key_ptr));
3288

3289
	if (push_items < src_nritems) {
3290
		/*
3291 3292
		 * Don't call tree_mod_log_insert_move here, key removal was
		 * already fully logged by tree_mod_log_eb_copy above.
3293
		 */
3294 3295 3296 3297 3298 3299 3300 3301 3302
		memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0),
				      btrfs_node_key_ptr_offset(push_items),
				      (src_nritems - push_items) *
				      sizeof(struct btrfs_key_ptr));
	}
	btrfs_set_header_nritems(src, src_nritems - push_items);
	btrfs_set_header_nritems(dst, dst_nritems + push_items);
	btrfs_mark_buffer_dirty(src);
	btrfs_mark_buffer_dirty(dst);
Z
Zheng Yan 已提交
3303

3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315
	return ret;
}

/*
 * try to push data from one node into the next node right in the
 * tree.
 *
 * returns 0 if some ptrs were pushed, < 0 if there was some horrible
 * error, and > 0 if there was no room in the right hand block.
 *
 * this will  only push up to 1/2 the contents of the left node over
 */
3316 3317 3318
static int balance_node_right(struct btrfs_trans_handle *trans,
			      struct extent_buffer *dst,
			      struct extent_buffer *src)
3319
{
3320
	struct btrfs_fs_info *fs_info = trans->fs_info;
3321 3322 3323 3324 3325 3326
	int push_items = 0;
	int max_push;
	int src_nritems;
	int dst_nritems;
	int ret = 0;

3327 3328 3329
	WARN_ON(btrfs_header_generation(src) != trans->transid);
	WARN_ON(btrfs_header_generation(dst) != trans->transid);

3330 3331
	src_nritems = btrfs_header_nritems(src);
	dst_nritems = btrfs_header_nritems(dst);
3332
	push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems;
C
Chris Mason 已提交
3333
	if (push_items <= 0)
3334
		return 1;
3335

C
Chris Mason 已提交
3336
	if (src_nritems < 4)
3337
		return 1;
3338 3339 3340

	max_push = src_nritems / 2 + 1;
	/* don't try to empty the node */
C
Chris Mason 已提交
3341
	if (max_push >= src_nritems)
3342
		return 1;
Y
Yan 已提交
3343

3344 3345 3346
	if (max_push < push_items)
		push_items = max_push;

3347 3348 3349 3350 3351 3352
	/* dst is the right eb, src is the middle eb */
	if (check_sibling_keys(src, dst)) {
		ret = -EUCLEAN;
		btrfs_abort_transaction(trans, ret);
		return ret;
	}
3353 3354
	ret = tree_mod_log_insert_move(dst, push_items, 0, dst_nritems);
	BUG_ON(ret < 0);
3355 3356 3357 3358
	memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items),
				      btrfs_node_key_ptr_offset(0),
				      (dst_nritems) *
				      sizeof(struct btrfs_key_ptr));
C
Chris Mason 已提交
3359

3360 3361
	ret = tree_mod_log_eb_copy(dst, src, 0, src_nritems - push_items,
				   push_items);
3362
	if (ret) {
3363
		btrfs_abort_transaction(trans, ret);
3364 3365
		return ret;
	}
3366 3367 3368
	copy_extent_buffer(dst, src,
			   btrfs_node_key_ptr_offset(0),
			   btrfs_node_key_ptr_offset(src_nritems - push_items),
C
Chris Mason 已提交
3369
			   push_items * sizeof(struct btrfs_key_ptr));
3370

3371 3372
	btrfs_set_header_nritems(src, src_nritems - push_items);
	btrfs_set_header_nritems(dst, dst_nritems + push_items);
3373

3374 3375
	btrfs_mark_buffer_dirty(src);
	btrfs_mark_buffer_dirty(dst);
Z
Zheng Yan 已提交
3376

C
Chris Mason 已提交
3377
	return ret;
3378 3379
}

C
Chris Mason 已提交
3380 3381 3382 3383
/*
 * helper function to insert a new root level in the tree.
 * A new node is allocated, and a single item is inserted to
 * point to the existing root
C
Chris Mason 已提交
3384 3385
 *
 * returns zero on success or < 0 on failure.
C
Chris Mason 已提交
3386
 */
C
Chris Mason 已提交
3387
static noinline int insert_new_root(struct btrfs_trans_handle *trans,
3388
			   struct btrfs_root *root,
3389
			   struct btrfs_path *path, int level)
C
Chris Mason 已提交
3390
{
3391
	struct btrfs_fs_info *fs_info = root->fs_info;
3392
	u64 lower_gen;
3393 3394
	struct extent_buffer *lower;
	struct extent_buffer *c;
3395
	struct extent_buffer *old;
3396
	struct btrfs_disk_key lower_key;
3397
	int ret;
C
Chris Mason 已提交
3398 3399 3400 3401

	BUG_ON(path->nodes[level]);
	BUG_ON(path->nodes[level-1] != root->node);

3402 3403 3404 3405 3406 3407
	lower = path->nodes[level-1];
	if (level == 1)
		btrfs_item_key(lower, &lower_key, 0);
	else
		btrfs_node_key(lower, &lower_key, 0);

3408
	c = alloc_tree_block_no_bg_flush(trans, root, 0, &lower_key, level,
3409 3410
					 root->node->start, 0,
					 BTRFS_NESTING_NORMAL);
3411 3412
	if (IS_ERR(c))
		return PTR_ERR(c);
3413

3414
	root_add_used(root, fs_info->nodesize);
3415

3416 3417
	btrfs_set_header_nritems(c, 1);
	btrfs_set_node_key(c, &lower_key, 0);
3418
	btrfs_set_node_blockptr(c, 0, lower->start);
3419
	lower_gen = btrfs_header_generation(lower);
Z
Zheng Yan 已提交
3420
	WARN_ON(lower_gen != trans->transid);
3421 3422

	btrfs_set_node_ptr_generation(c, 0, lower_gen);
3423

3424
	btrfs_mark_buffer_dirty(c);
3425

3426
	old = root->node;
3427 3428
	ret = tree_mod_log_insert_root(root->node, c, 0);
	BUG_ON(ret < 0);
3429
	rcu_assign_pointer(root->node, c);
3430 3431 3432 3433

	/* the super has an extra ref to root->node */
	free_extent_buffer(old);

3434
	add_root_to_dirty_list(root);
D
David Sterba 已提交
3435
	atomic_inc(&c->refs);
3436
	path->nodes[level] = c;
3437
	path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
C
Chris Mason 已提交
3438 3439 3440 3441
	path->slots[level] = 0;
	return 0;
}

C
Chris Mason 已提交
3442 3443 3444
/*
 * worker function to insert a single pointer in a node.
 * the node should have enough room for the pointer already
C
Chris Mason 已提交
3445
 *
C
Chris Mason 已提交
3446 3447 3448
 * slot and level indicate where you want the key to go, and
 * blocknr is the block the key points to.
 */
3449
static void insert_ptr(struct btrfs_trans_handle *trans,
3450
		       struct btrfs_path *path,
3451
		       struct btrfs_disk_key *key, u64 bytenr,
3452
		       int slot, int level)
C
Chris Mason 已提交
3453
{
3454
	struct extent_buffer *lower;
C
Chris Mason 已提交
3455
	int nritems;
3456
	int ret;
C
Chris Mason 已提交
3457 3458

	BUG_ON(!path->nodes[level]);
3459
	btrfs_assert_tree_locked(path->nodes[level]);
3460 3461
	lower = path->nodes[level];
	nritems = btrfs_header_nritems(lower);
S
Stoyan Gaydarov 已提交
3462
	BUG_ON(slot > nritems);
3463
	BUG_ON(nritems == BTRFS_NODEPTRS_PER_BLOCK(trans->fs_info));
C
Chris Mason 已提交
3464
	if (slot != nritems) {
3465 3466
		if (level) {
			ret = tree_mod_log_insert_move(lower, slot + 1, slot,
3467
					nritems - slot);
3468 3469
			BUG_ON(ret < 0);
		}
3470 3471 3472
		memmove_extent_buffer(lower,
			      btrfs_node_key_ptr_offset(slot + 1),
			      btrfs_node_key_ptr_offset(slot),
C
Chris Mason 已提交
3473
			      (nritems - slot) * sizeof(struct btrfs_key_ptr));
C
Chris Mason 已提交
3474
	}
3475
	if (level) {
3476 3477
		ret = tree_mod_log_insert_key(lower, slot, MOD_LOG_KEY_ADD,
				GFP_NOFS);
3478 3479
		BUG_ON(ret < 0);
	}
3480
	btrfs_set_node_key(lower, key, slot);
3481
	btrfs_set_node_blockptr(lower, slot, bytenr);
3482 3483
	WARN_ON(trans->transid == 0);
	btrfs_set_node_ptr_generation(lower, slot, trans->transid);
3484 3485
	btrfs_set_header_nritems(lower, nritems + 1);
	btrfs_mark_buffer_dirty(lower);
C
Chris Mason 已提交
3486 3487
}

C
Chris Mason 已提交
3488 3489 3490 3491 3492 3493
/*
 * split the node at the specified level in path in two.
 * The path is corrected to point to the appropriate node after the split
 *
 * Before splitting this tries to make some room in the node by pushing
 * left and right, if either one works, it returns right away.
C
Chris Mason 已提交
3494 3495
 *
 * returns 0 on success and < 0 on failure
C
Chris Mason 已提交
3496
 */
3497 3498 3499
static noinline int split_node(struct btrfs_trans_handle *trans,
			       struct btrfs_root *root,
			       struct btrfs_path *path, int level)
3500
{
3501
	struct btrfs_fs_info *fs_info = root->fs_info;
3502 3503 3504
	struct extent_buffer *c;
	struct extent_buffer *split;
	struct btrfs_disk_key disk_key;
3505
	int mid;
C
Chris Mason 已提交
3506
	int ret;
3507
	u32 c_nritems;
3508

3509
	c = path->nodes[level];
3510
	WARN_ON(btrfs_header_generation(c) != trans->transid);
3511
	if (c == root->node) {
3512
		/*
3513 3514
		 * trying to split the root, lets make a new one
		 *
3515
		 * tree mod log: We don't log_removal old root in
3516 3517 3518 3519 3520
		 * insert_new_root, because that root buffer will be kept as a
		 * normal node. We are going to log removal of half of the
		 * elements below with tree_mod_log_eb_copy. We're holding a
		 * tree lock on the buffer, which is why we cannot race with
		 * other tree_mod_log users.
3521
		 */
3522
		ret = insert_new_root(trans, root, path, level + 1);
C
Chris Mason 已提交
3523 3524
		if (ret)
			return ret;
3525
	} else {
3526
		ret = push_nodes_for_insert(trans, root, path, level);
3527 3528
		c = path->nodes[level];
		if (!ret && btrfs_header_nritems(c) <
3529
		    BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3)
3530
			return 0;
3531 3532
		if (ret < 0)
			return ret;
3533
	}
3534

3535
	c_nritems = btrfs_header_nritems(c);
3536 3537
	mid = (c_nritems + 1) / 2;
	btrfs_node_key(c, &disk_key, mid);
3538

3539
	split = alloc_tree_block_no_bg_flush(trans, root, 0, &disk_key, level,
3540
					     c->start, 0, BTRFS_NESTING_NORMAL);
3541 3542 3543
	if (IS_ERR(split))
		return PTR_ERR(split);

3544
	root_add_used(root, fs_info->nodesize);
3545
	ASSERT(btrfs_header_level(c) == level);
3546

3547
	ret = tree_mod_log_eb_copy(split, c, 0, mid, c_nritems - mid);
3548
	if (ret) {
3549
		btrfs_abort_transaction(trans, ret);
3550 3551
		return ret;
	}
3552 3553 3554 3555 3556 3557
	copy_extent_buffer(split, c,
			   btrfs_node_key_ptr_offset(0),
			   btrfs_node_key_ptr_offset(mid),
			   (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
	btrfs_set_header_nritems(split, c_nritems - mid);
	btrfs_set_header_nritems(c, mid);
C
Chris Mason 已提交
3558 3559
	ret = 0;

3560 3561 3562
	btrfs_mark_buffer_dirty(c);
	btrfs_mark_buffer_dirty(split);

3563
	insert_ptr(trans, path, &disk_key, split->start,
3564
		   path->slots[level + 1] + 1, level + 1);
C
Chris Mason 已提交
3565

C
Chris Mason 已提交
3566
	if (path->slots[level] >= mid) {
C
Chris Mason 已提交
3567
		path->slots[level] -= mid;
3568
		btrfs_tree_unlock(c);
3569 3570
		free_extent_buffer(c);
		path->nodes[level] = split;
C
Chris Mason 已提交
3571 3572
		path->slots[level + 1] += 1;
	} else {
3573
		btrfs_tree_unlock(split);
3574
		free_extent_buffer(split);
3575
	}
C
Chris Mason 已提交
3576
	return ret;
3577 3578
}

C
Chris Mason 已提交
3579 3580 3581 3582 3583
/*
 * how many bytes are required to store the items in a leaf.  start
 * and nr indicate which items in the leaf to check.  This totals up the
 * space used both by the item structs and the item data
 */
3584
static int leaf_space_used(struct extent_buffer *l, int start, int nr)
3585
{
J
Josef Bacik 已提交
3586 3587
	struct btrfs_item *start_item;
	struct btrfs_item *end_item;
3588
	int data_len;
3589
	int nritems = btrfs_header_nritems(l);
3590
	int end = min(nritems, start + nr) - 1;
3591 3592 3593

	if (!nr)
		return 0;
3594 3595
	start_item = btrfs_item_nr(start);
	end_item = btrfs_item_nr(end);
3596 3597 3598
	data_len = btrfs_item_offset(l, start_item) +
		   btrfs_item_size(l, start_item);
	data_len = data_len - btrfs_item_offset(l, end_item);
C
Chris Mason 已提交
3599
	data_len += sizeof(struct btrfs_item) * nr;
3600
	WARN_ON(data_len < 0);
3601 3602 3603
	return data_len;
}

3604 3605 3606 3607 3608
/*
 * The space between the end of the leaf items and
 * the start of the leaf data.  IOW, how much room
 * the leaf has left for both items and data
 */
3609
noinline int btrfs_leaf_free_space(struct extent_buffer *leaf)
3610
{
3611
	struct btrfs_fs_info *fs_info = leaf->fs_info;
3612 3613
	int nritems = btrfs_header_nritems(leaf);
	int ret;
3614 3615

	ret = BTRFS_LEAF_DATA_SIZE(fs_info) - leaf_space_used(leaf, 0, nritems);
3616
	if (ret < 0) {
3617 3618 3619 3620 3621
		btrfs_crit(fs_info,
			   "leaf free space ret %d, leaf data size %lu, used %d nritems %d",
			   ret,
			   (unsigned long) BTRFS_LEAF_DATA_SIZE(fs_info),
			   leaf_space_used(leaf, 0, nritems), nritems);
3622 3623
	}
	return ret;
3624 3625
}

3626 3627 3628 3629
/*
 * min slot controls the lowest index we're willing to push to the
 * right.  We'll push up to and including min_slot, but no lower
 */
3630
static noinline int __push_leaf_right(struct btrfs_path *path,
3631 3632
				      int data_size, int empty,
				      struct extent_buffer *right,
3633 3634
				      int free_space, u32 left_nritems,
				      u32 min_slot)
C
Chris Mason 已提交
3635
{
3636
	struct btrfs_fs_info *fs_info = right->fs_info;
3637
	struct extent_buffer *left = path->nodes[0];
3638
	struct extent_buffer *upper = path->nodes[1];
3639
	struct btrfs_map_token token;
3640
	struct btrfs_disk_key disk_key;
C
Chris Mason 已提交
3641
	int slot;
3642
	u32 i;
C
Chris Mason 已提交
3643 3644
	int push_space = 0;
	int push_items = 0;
C
Chris Mason 已提交
3645
	struct btrfs_item *item;
3646
	u32 nr;
3647
	u32 right_nritems;
3648
	u32 data_end;
3649
	u32 this_item_size;
C
Chris Mason 已提交
3650

3651 3652 3653
	if (empty)
		nr = 0;
	else
3654
		nr = max_t(u32, 1, min_slot);
3655

Z
Zheng Yan 已提交
3656
	if (path->slots[0] >= left_nritems)
3657
		push_space += data_size;
Z
Zheng Yan 已提交
3658

3659
	slot = path->slots[1];
3660 3661
	i = left_nritems - 1;
	while (i >= nr) {
3662
		item = btrfs_item_nr(i);
3663

Z
Zheng Yan 已提交
3664 3665 3666 3667
		if (!empty && push_items > 0) {
			if (path->slots[0] > i)
				break;
			if (path->slots[0] == i) {
3668 3669
				int space = btrfs_leaf_free_space(left);

Z
Zheng Yan 已提交
3670 3671 3672 3673 3674
				if (space + push_space * 2 > free_space)
					break;
			}
		}

C
Chris Mason 已提交
3675
		if (path->slots[0] == i)
3676
			push_space += data_size;
3677 3678 3679

		this_item_size = btrfs_item_size(left, item);
		if (this_item_size + sizeof(*item) + push_space > free_space)
C
Chris Mason 已提交
3680
			break;
Z
Zheng Yan 已提交
3681

C
Chris Mason 已提交
3682
		push_items++;
3683
		push_space += this_item_size + sizeof(*item);
3684 3685 3686
		if (i == 0)
			break;
		i--;
3687
	}
3688

3689 3690
	if (push_items == 0)
		goto out_unlock;
3691

J
Julia Lawall 已提交
3692
	WARN_ON(!empty && push_items == left_nritems);
3693

C
Chris Mason 已提交
3694
	/* push left to right */
3695
	right_nritems = btrfs_header_nritems(right);
3696

3697
	push_space = btrfs_item_end_nr(left, left_nritems - push_items);
3698
	push_space -= leaf_data_end(left);
3699

C
Chris Mason 已提交
3700
	/* make room in the right data area */
3701
	data_end = leaf_data_end(right);
3702
	memmove_extent_buffer(right,
3703 3704
			      BTRFS_LEAF_DATA_OFFSET + data_end - push_space,
			      BTRFS_LEAF_DATA_OFFSET + data_end,
3705
			      BTRFS_LEAF_DATA_SIZE(fs_info) - data_end);
3706

C
Chris Mason 已提交
3707
	/* copy from the left data area */
3708
	copy_extent_buffer(right, left, BTRFS_LEAF_DATA_OFFSET +
3709
		     BTRFS_LEAF_DATA_SIZE(fs_info) - push_space,
3710
		     BTRFS_LEAF_DATA_OFFSET + leaf_data_end(left),
C
Chris Mason 已提交
3711
		     push_space);
3712 3713 3714 3715 3716

	memmove_extent_buffer(right, btrfs_item_nr_offset(push_items),
			      btrfs_item_nr_offset(0),
			      right_nritems * sizeof(struct btrfs_item));

C
Chris Mason 已提交
3717
	/* copy the items from left to right */
3718 3719 3720
	copy_extent_buffer(right, left, btrfs_item_nr_offset(0),
		   btrfs_item_nr_offset(left_nritems - push_items),
		   push_items * sizeof(struct btrfs_item));
C
Chris Mason 已提交
3721 3722

	/* update the item pointers */
3723
	btrfs_init_map_token(&token, right);
3724
	right_nritems += push_items;
3725
	btrfs_set_header_nritems(right, right_nritems);
3726
	push_space = BTRFS_LEAF_DATA_SIZE(fs_info);
3727
	for (i = 0; i < right_nritems; i++) {
3728
		item = btrfs_item_nr(i);
3729 3730
		push_space -= btrfs_token_item_size(&token, item);
		btrfs_set_token_item_offset(&token, item, push_space);
3731 3732
	}

3733
	left_nritems -= push_items;
3734
	btrfs_set_header_nritems(left, left_nritems);
C
Chris Mason 已提交
3735

3736 3737
	if (left_nritems)
		btrfs_mark_buffer_dirty(left);
3738
	else
3739
		btrfs_clean_tree_block(left);
3740

3741
	btrfs_mark_buffer_dirty(right);
3742

3743 3744
	btrfs_item_key(right, &disk_key, 0);
	btrfs_set_node_key(upper, &disk_key, slot + 1);
C
Chris Mason 已提交
3745
	btrfs_mark_buffer_dirty(upper);
C
Chris Mason 已提交
3746

C
Chris Mason 已提交
3747
	/* then fixup the leaf pointer in the path */
3748 3749
	if (path->slots[0] >= left_nritems) {
		path->slots[0] -= left_nritems;
3750
		if (btrfs_header_nritems(path->nodes[0]) == 0)
3751
			btrfs_clean_tree_block(path->nodes[0]);
3752
		btrfs_tree_unlock(path->nodes[0]);
3753 3754
		free_extent_buffer(path->nodes[0]);
		path->nodes[0] = right;
C
Chris Mason 已提交
3755 3756
		path->slots[1] += 1;
	} else {
3757
		btrfs_tree_unlock(right);
3758
		free_extent_buffer(right);
C
Chris Mason 已提交
3759 3760
	}
	return 0;
3761 3762 3763 3764 3765

out_unlock:
	btrfs_tree_unlock(right);
	free_extent_buffer(right);
	return 1;
C
Chris Mason 已提交
3766
}
3767

3768 3769 3770 3771 3772 3773
/*
 * push some data in the path leaf to the right, trying to free up at
 * least data_size bytes.  returns zero if the push worked, nonzero otherwise
 *
 * returns 1 if the push failed because the other node didn't have enough
 * room, 0 if everything worked out and < 0 if there were major errors.
3774 3775 3776
 *
 * this will push starting from min_slot to the end of the leaf.  It won't
 * push any slot lower than min_slot
3777 3778
 */
static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
3779 3780 3781
			   *root, struct btrfs_path *path,
			   int min_data_size, int data_size,
			   int empty, u32 min_slot)
3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800
{
	struct extent_buffer *left = path->nodes[0];
	struct extent_buffer *right;
	struct extent_buffer *upper;
	int slot;
	int free_space;
	u32 left_nritems;
	int ret;

	if (!path->nodes[1])
		return 1;

	slot = path->slots[1];
	upper = path->nodes[1];
	if (slot >= btrfs_header_nritems(upper) - 1)
		return 1;

	btrfs_assert_tree_locked(path->nodes[1]);

3801
	right = btrfs_read_node_slot(upper, slot + 1);
3802 3803 3804 3805 3806
	/*
	 * slot + 1 is not valid or we fail to read the right node,
	 * no big deal, just return.
	 */
	if (IS_ERR(right))
T
Tsutomu Itoh 已提交
3807 3808
		return 1;

3809
	btrfs_tree_lock(right);
3810
	btrfs_set_lock_blocking_write(right);
3811

3812
	free_space = btrfs_leaf_free_space(right);
3813 3814 3815 3816 3817
	if (free_space < data_size)
		goto out_unlock;

	/* cow and double check */
	ret = btrfs_cow_block(trans, root, right, upper,
3818
			      slot + 1, &right, BTRFS_NESTING_COW);
3819 3820 3821
	if (ret)
		goto out_unlock;

3822
	free_space = btrfs_leaf_free_space(right);
3823 3824 3825 3826 3827 3828 3829
	if (free_space < data_size)
		goto out_unlock;

	left_nritems = btrfs_header_nritems(left);
	if (left_nritems == 0)
		goto out_unlock;

3830 3831 3832 3833 3834 3835
	if (check_sibling_keys(left, right)) {
		ret = -EUCLEAN;
		btrfs_tree_unlock(right);
		free_extent_buffer(right);
		return ret;
	}
3836 3837 3838 3839
	if (path->slots[0] == left_nritems && !empty) {
		/* Key greater than all keys in the leaf, right neighbor has
		 * enough room for it and we're not emptying our leaf to delete
		 * it, therefore use right neighbor to insert the new item and
3840
		 * no need to touch/dirty our left leaf. */
3841 3842 3843 3844 3845 3846 3847 3848
		btrfs_tree_unlock(left);
		free_extent_buffer(left);
		path->nodes[0] = right;
		path->slots[0] = 0;
		path->slots[1]++;
		return 0;
	}

3849
	return __push_leaf_right(path, min_data_size, empty,
3850
				right, free_space, left_nritems, min_slot);
3851 3852 3853 3854 3855 3856
out_unlock:
	btrfs_tree_unlock(right);
	free_extent_buffer(right);
	return 1;
}

C
Chris Mason 已提交
3857 3858 3859
/*
 * push some data in the path leaf to the left, trying to free up at
 * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3860 3861 3862 3863
 *
 * max_slot can put a limit on how far into the leaf we'll push items.  The
 * item at 'max_slot' won't be touched.  Use (u32)-1 to make us do all the
 * items
C
Chris Mason 已提交
3864
 */
3865
static noinline int __push_leaf_left(struct btrfs_path *path, int data_size,
3866
				     int empty, struct extent_buffer *left,
3867 3868
				     int free_space, u32 right_nritems,
				     u32 max_slot)
3869
{
3870
	struct btrfs_fs_info *fs_info = left->fs_info;
3871 3872
	struct btrfs_disk_key disk_key;
	struct extent_buffer *right = path->nodes[0];
3873 3874 3875
	int i;
	int push_space = 0;
	int push_items = 0;
C
Chris Mason 已提交
3876
	struct btrfs_item *item;
3877
	u32 old_left_nritems;
3878
	u32 nr;
C
Chris Mason 已提交
3879
	int ret = 0;
3880 3881
	u32 this_item_size;
	u32 old_left_item_size;
3882 3883
	struct btrfs_map_token token;

3884
	if (empty)
3885
		nr = min(right_nritems, max_slot);
3886
	else
3887
		nr = min(right_nritems - 1, max_slot);
3888 3889

	for (i = 0; i < nr; i++) {
3890
		item = btrfs_item_nr(i);
3891

Z
Zheng Yan 已提交
3892 3893 3894 3895
		if (!empty && push_items > 0) {
			if (path->slots[0] < i)
				break;
			if (path->slots[0] == i) {
3896 3897
				int space = btrfs_leaf_free_space(right);

Z
Zheng Yan 已提交
3898 3899 3900 3901 3902
				if (space + push_space * 2 > free_space)
					break;
			}
		}

3903
		if (path->slots[0] == i)
3904
			push_space += data_size;
3905 3906 3907

		this_item_size = btrfs_item_size(right, item);
		if (this_item_size + sizeof(*item) + push_space > free_space)
3908
			break;
3909

3910
		push_items++;
3911 3912 3913
		push_space += this_item_size + sizeof(*item);
	}

3914
	if (push_items == 0) {
3915 3916
		ret = 1;
		goto out;
3917
	}
3918
	WARN_ON(!empty && push_items == btrfs_header_nritems(right));
3919

3920
	/* push data from right to left */
3921 3922 3923 3924 3925
	copy_extent_buffer(left, right,
			   btrfs_item_nr_offset(btrfs_header_nritems(left)),
			   btrfs_item_nr_offset(0),
			   push_items * sizeof(struct btrfs_item));

3926
	push_space = BTRFS_LEAF_DATA_SIZE(fs_info) -
C
Chris Mason 已提交
3927
		     btrfs_item_offset_nr(right, push_items - 1);
3928

3929
	copy_extent_buffer(left, right, BTRFS_LEAF_DATA_OFFSET +
3930
		     leaf_data_end(left) - push_space,
3931
		     BTRFS_LEAF_DATA_OFFSET +
3932
		     btrfs_item_offset_nr(right, push_items - 1),
C
Chris Mason 已提交
3933
		     push_space);
3934
	old_left_nritems = btrfs_header_nritems(left);
3935
	BUG_ON(old_left_nritems <= 0);
3936

3937
	btrfs_init_map_token(&token, left);
3938
	old_left_item_size = btrfs_item_offset_nr(left, old_left_nritems - 1);
C
Chris Mason 已提交
3939
	for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
3940
		u32 ioff;
3941

3942
		item = btrfs_item_nr(i);
3943

3944 3945 3946
		ioff = btrfs_token_item_offset(&token, item);
		btrfs_set_token_item_offset(&token, item,
		      ioff - (BTRFS_LEAF_DATA_SIZE(fs_info) - old_left_item_size));
3947
	}
3948
	btrfs_set_header_nritems(left, old_left_nritems + push_items);
3949 3950

	/* fixup right node */
J
Julia Lawall 已提交
3951 3952
	if (push_items > right_nritems)
		WARN(1, KERN_CRIT "push items %d nr %u\n", push_items,
C
Chris Mason 已提交
3953
		       right_nritems);
3954 3955 3956

	if (push_items < right_nritems) {
		push_space = btrfs_item_offset_nr(right, push_items - 1) -
3957
						  leaf_data_end(right);
3958
		memmove_extent_buffer(right, BTRFS_LEAF_DATA_OFFSET +
3959
				      BTRFS_LEAF_DATA_SIZE(fs_info) - push_space,
3960
				      BTRFS_LEAF_DATA_OFFSET +
3961
				      leaf_data_end(right), push_space);
3962 3963

		memmove_extent_buffer(right, btrfs_item_nr_offset(0),
3964 3965 3966
			      btrfs_item_nr_offset(push_items),
			     (btrfs_header_nritems(right) - push_items) *
			     sizeof(struct btrfs_item));
3967
	}
3968 3969

	btrfs_init_map_token(&token, right);
3970 3971
	right_nritems -= push_items;
	btrfs_set_header_nritems(right, right_nritems);
3972
	push_space = BTRFS_LEAF_DATA_SIZE(fs_info);
3973
	for (i = 0; i < right_nritems; i++) {
3974
		item = btrfs_item_nr(i);
3975

3976 3977
		push_space = push_space - btrfs_token_item_size(&token, item);
		btrfs_set_token_item_offset(&token, item, push_space);
3978
	}
3979

3980
	btrfs_mark_buffer_dirty(left);
3981 3982
	if (right_nritems)
		btrfs_mark_buffer_dirty(right);
3983
	else
3984
		btrfs_clean_tree_block(right);
3985

3986
	btrfs_item_key(right, &disk_key, 0);
3987
	fixup_low_keys(path, &disk_key, 1);
3988 3989 3990 3991

	/* then fixup the leaf pointer in the path */
	if (path->slots[0] < push_items) {
		path->slots[0] += old_left_nritems;
3992
		btrfs_tree_unlock(path->nodes[0]);
3993 3994
		free_extent_buffer(path->nodes[0]);
		path->nodes[0] = left;
3995 3996
		path->slots[1] -= 1;
	} else {
3997
		btrfs_tree_unlock(left);
3998
		free_extent_buffer(left);
3999 4000
		path->slots[0] -= push_items;
	}
4001
	BUG_ON(path->slots[0] < 0);
C
Chris Mason 已提交
4002
	return ret;
4003 4004 4005 4006
out:
	btrfs_tree_unlock(left);
	free_extent_buffer(left);
	return ret;
4007 4008
}

4009 4010 4011
/*
 * push some data in the path leaf to the left, trying to free up at
 * least data_size bytes.  returns zero if the push worked, nonzero otherwise
4012 4013 4014 4015
 *
 * max_slot can put a limit on how far into the leaf we'll push items.  The
 * item at 'max_slot' won't be touched.  Use (u32)-1 to make us push all the
 * items
4016 4017
 */
static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
4018 4019
			  *root, struct btrfs_path *path, int min_data_size,
			  int data_size, int empty, u32 max_slot)
4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039
{
	struct extent_buffer *right = path->nodes[0];
	struct extent_buffer *left;
	int slot;
	int free_space;
	u32 right_nritems;
	int ret = 0;

	slot = path->slots[1];
	if (slot == 0)
		return 1;
	if (!path->nodes[1])
		return 1;

	right_nritems = btrfs_header_nritems(right);
	if (right_nritems == 0)
		return 1;

	btrfs_assert_tree_locked(path->nodes[1]);

4040
	left = btrfs_read_node_slot(path->nodes[1], slot - 1);
4041 4042 4043 4044 4045
	/*
	 * slot - 1 is not valid or we fail to read the left node,
	 * no big deal, just return.
	 */
	if (IS_ERR(left))
T
Tsutomu Itoh 已提交
4046 4047
		return 1;

4048
	btrfs_tree_lock(left);
4049
	btrfs_set_lock_blocking_write(left);
4050

4051
	free_space = btrfs_leaf_free_space(left);
4052 4053 4054 4055 4056 4057 4058
	if (free_space < data_size) {
		ret = 1;
		goto out;
	}

	/* cow and double check */
	ret = btrfs_cow_block(trans, root, left,
4059 4060
			      path->nodes[1], slot - 1, &left,
			      BTRFS_NESTING_COW);
4061 4062
	if (ret) {
		/* we hit -ENOSPC, but it isn't fatal here */
4063 4064
		if (ret == -ENOSPC)
			ret = 1;
4065 4066 4067
		goto out;
	}

4068
	free_space = btrfs_leaf_free_space(left);
4069 4070 4071 4072 4073
	if (free_space < data_size) {
		ret = 1;
		goto out;
	}

4074 4075 4076 4077
	if (check_sibling_keys(left, right)) {
		ret = -EUCLEAN;
		goto out;
	}
4078
	return __push_leaf_left(path, min_data_size,
4079 4080
			       empty, left, free_space, right_nritems,
			       max_slot);
4081 4082 4083 4084 4085 4086 4087 4088 4089 4090
out:
	btrfs_tree_unlock(left);
	free_extent_buffer(left);
	return ret;
}

/*
 * split the path's leaf in two, making sure there is at least data_size
 * available for the resulting leaf level of the path.
 */
4091 4092 4093 4094 4095
static noinline void copy_for_split(struct btrfs_trans_handle *trans,
				    struct btrfs_path *path,
				    struct extent_buffer *l,
				    struct extent_buffer *right,
				    int slot, int mid, int nritems)
4096
{
4097
	struct btrfs_fs_info *fs_info = trans->fs_info;
4098 4099 4100 4101
	int data_copy_size;
	int rt_data_off;
	int i;
	struct btrfs_disk_key disk_key;
4102 4103
	struct btrfs_map_token token;

4104 4105
	nritems = nritems - mid;
	btrfs_set_header_nritems(right, nritems);
4106
	data_copy_size = btrfs_item_end_nr(l, mid) - leaf_data_end(l);
4107 4108 4109 4110 4111 4112

	copy_extent_buffer(right, l, btrfs_item_nr_offset(0),
			   btrfs_item_nr_offset(mid),
			   nritems * sizeof(struct btrfs_item));

	copy_extent_buffer(right, l,
4113 4114
		     BTRFS_LEAF_DATA_OFFSET + BTRFS_LEAF_DATA_SIZE(fs_info) -
		     data_copy_size, BTRFS_LEAF_DATA_OFFSET +
4115
		     leaf_data_end(l), data_copy_size);
4116

4117
	rt_data_off = BTRFS_LEAF_DATA_SIZE(fs_info) - btrfs_item_end_nr(l, mid);
4118

4119
	btrfs_init_map_token(&token, right);
4120
	for (i = 0; i < nritems; i++) {
4121
		struct btrfs_item *item = btrfs_item_nr(i);
4122 4123
		u32 ioff;

4124 4125
		ioff = btrfs_token_item_offset(&token, item);
		btrfs_set_token_item_offset(&token, item, ioff + rt_data_off);
4126 4127 4128 4129
	}

	btrfs_set_header_nritems(l, mid);
	btrfs_item_key(right, &disk_key, 0);
4130
	insert_ptr(trans, path, &disk_key, right->start, path->slots[1] + 1, 1);
4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149

	btrfs_mark_buffer_dirty(right);
	btrfs_mark_buffer_dirty(l);
	BUG_ON(path->slots[0] != slot);

	if (mid <= slot) {
		btrfs_tree_unlock(path->nodes[0]);
		free_extent_buffer(path->nodes[0]);
		path->nodes[0] = right;
		path->slots[0] -= mid;
		path->slots[1] += 1;
	} else {
		btrfs_tree_unlock(right);
		free_extent_buffer(right);
	}

	BUG_ON(path->slots[0] < 0);
}

4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168
/*
 * double splits happen when we need to insert a big item in the middle
 * of a leaf.  A double split can leave us with 3 mostly empty leaves:
 * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ]
 *          A                 B                 C
 *
 * We avoid this by trying to push the items on either side of our target
 * into the adjacent leaves.  If all goes well we can avoid the double split
 * completely.
 */
static noinline int push_for_double_split(struct btrfs_trans_handle *trans,
					  struct btrfs_root *root,
					  struct btrfs_path *path,
					  int data_size)
{
	int ret;
	int progress = 0;
	int slot;
	u32 nritems;
4169
	int space_needed = data_size;
4170 4171

	slot = path->slots[0];
4172
	if (slot < btrfs_header_nritems(path->nodes[0]))
4173
		space_needed -= btrfs_leaf_free_space(path->nodes[0]);
4174 4175 4176 4177 4178

	/*
	 * try to push all the items after our slot into the
	 * right leaf
	 */
4179
	ret = push_leaf_right(trans, root, path, 1, space_needed, 0, slot);
4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193
	if (ret < 0)
		return ret;

	if (ret == 0)
		progress++;

	nritems = btrfs_header_nritems(path->nodes[0]);
	/*
	 * our goal is to get our slot at the start or end of a leaf.  If
	 * we've done so we're done
	 */
	if (path->slots[0] == 0 || path->slots[0] == nritems)
		return 0;

4194
	if (btrfs_leaf_free_space(path->nodes[0]) >= data_size)
4195 4196 4197 4198
		return 0;

	/* try to push all the items before our slot into the next leaf */
	slot = path->slots[0];
4199 4200
	space_needed = data_size;
	if (slot > 0)
4201
		space_needed -= btrfs_leaf_free_space(path->nodes[0]);
4202
	ret = push_leaf_left(trans, root, path, 1, space_needed, 0, slot);
4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213
	if (ret < 0)
		return ret;

	if (ret == 0)
		progress++;

	if (progress)
		return 0;
	return 1;
}

C
Chris Mason 已提交
4214 4215 4216
/*
 * split the path's leaf in two, making sure there is at least data_size
 * available for the resulting leaf level of the path.
C
Chris Mason 已提交
4217 4218
 *
 * returns 0 if all went well and < 0 on failure.
C
Chris Mason 已提交
4219
 */
4220 4221
static noinline int split_leaf(struct btrfs_trans_handle *trans,
			       struct btrfs_root *root,
4222
			       const struct btrfs_key *ins_key,
4223 4224
			       struct btrfs_path *path, int data_size,
			       int extend)
4225
{
4226
	struct btrfs_disk_key disk_key;
4227
	struct extent_buffer *l;
4228
	u32 nritems;
4229 4230
	int mid;
	int slot;
4231
	struct extent_buffer *right;
4232
	struct btrfs_fs_info *fs_info = root->fs_info;
4233
	int ret = 0;
C
Chris Mason 已提交
4234
	int wret;
4235
	int split;
4236
	int num_doubles = 0;
4237
	int tried_avoid_double = 0;
C
Chris Mason 已提交
4238

4239 4240 4241
	l = path->nodes[0];
	slot = path->slots[0];
	if (extend && data_size + btrfs_item_size_nr(l, slot) +
4242
	    sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(fs_info))
4243 4244
		return -EOVERFLOW;

C
Chris Mason 已提交
4245
	/* first try to make some room by pushing left and right */
4246
	if (data_size && path->nodes[1]) {
4247 4248 4249
		int space_needed = data_size;

		if (slot < btrfs_header_nritems(l))
4250
			space_needed -= btrfs_leaf_free_space(l);
4251 4252 4253

		wret = push_leaf_right(trans, root, path, space_needed,
				       space_needed, 0, 0);
C
Chris Mason 已提交
4254
		if (wret < 0)
C
Chris Mason 已提交
4255
			return wret;
4256
		if (wret) {
4257 4258
			space_needed = data_size;
			if (slot > 0)
4259
				space_needed -= btrfs_leaf_free_space(l);
4260 4261
			wret = push_leaf_left(trans, root, path, space_needed,
					      space_needed, 0, (u32)-1);
4262 4263 4264 4265
			if (wret < 0)
				return wret;
		}
		l = path->nodes[0];
C
Chris Mason 已提交
4266

4267
		/* did the pushes work? */
4268
		if (btrfs_leaf_free_space(l) >= data_size)
4269
			return 0;
4270
	}
C
Chris Mason 已提交
4271

C
Chris Mason 已提交
4272
	if (!path->nodes[1]) {
4273
		ret = insert_new_root(trans, root, path, 1);
C
Chris Mason 已提交
4274 4275 4276
		if (ret)
			return ret;
	}
4277
again:
4278
	split = 1;
4279
	l = path->nodes[0];
4280
	slot = path->slots[0];
4281
	nritems = btrfs_header_nritems(l);
C
Chris Mason 已提交
4282
	mid = (nritems + 1) / 2;
4283

4284 4285 4286
	if (mid <= slot) {
		if (nritems == 1 ||
		    leaf_space_used(l, mid, nritems - mid) + data_size >
4287
			BTRFS_LEAF_DATA_SIZE(fs_info)) {
4288 4289 4290 4291 4292 4293
			if (slot >= nritems) {
				split = 0;
			} else {
				mid = slot;
				if (mid != nritems &&
				    leaf_space_used(l, mid, nritems - mid) +
4294
				    data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) {
4295 4296
					if (data_size && !tried_avoid_double)
						goto push_for_double;
4297 4298 4299 4300 4301 4302
					split = 2;
				}
			}
		}
	} else {
		if (leaf_space_used(l, 0, mid) + data_size >
4303
			BTRFS_LEAF_DATA_SIZE(fs_info)) {
4304 4305 4306 4307 4308 4309 4310 4311
			if (!extend && data_size && slot == 0) {
				split = 0;
			} else if ((extend || !data_size) && slot == 0) {
				mid = 1;
			} else {
				mid = slot;
				if (mid != nritems &&
				    leaf_space_used(l, mid, nritems - mid) +
4312
				    data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) {
4313 4314
					if (data_size && !tried_avoid_double)
						goto push_for_double;
4315
					split = 2;
4316 4317 4318 4319 4320 4321 4322 4323 4324 4325
				}
			}
		}
	}

	if (split == 0)
		btrfs_cpu_key_to_disk(&disk_key, ins_key);
	else
		btrfs_item_key(l, &disk_key, mid);

4326
	right = alloc_tree_block_no_bg_flush(trans, root, 0, &disk_key, 0,
4327
					     l->start, 0, BTRFS_NESTING_NORMAL);
4328
	if (IS_ERR(right))
4329
		return PTR_ERR(right);
4330

4331
	root_add_used(root, fs_info->nodesize);
4332

4333 4334 4335
	if (split == 0) {
		if (mid <= slot) {
			btrfs_set_header_nritems(right, 0);
4336
			insert_ptr(trans, path, &disk_key,
4337
				   right->start, path->slots[1] + 1, 1);
4338 4339 4340 4341 4342 4343 4344
			btrfs_tree_unlock(path->nodes[0]);
			free_extent_buffer(path->nodes[0]);
			path->nodes[0] = right;
			path->slots[0] = 0;
			path->slots[1] += 1;
		} else {
			btrfs_set_header_nritems(right, 0);
4345
			insert_ptr(trans, path, &disk_key,
4346
				   right->start, path->slots[1], 1);
4347 4348 4349 4350
			btrfs_tree_unlock(path->nodes[0]);
			free_extent_buffer(path->nodes[0]);
			path->nodes[0] = right;
			path->slots[0] = 0;
4351
			if (path->slots[1] == 0)
4352
				fixup_low_keys(path, &disk_key, 1);
4353
		}
4354 4355 4356 4357 4358
		/*
		 * We create a new leaf 'right' for the required ins_len and
		 * we'll do btrfs_mark_buffer_dirty() on this leaf after copying
		 * the content of ins_len to 'right'.
		 */
4359
		return ret;
4360
	}
C
Chris Mason 已提交
4361

4362
	copy_for_split(trans, path, l, right, slot, mid, nritems);
Z
Zheng Yan 已提交
4363

4364
	if (split == 2) {
4365 4366 4367
		BUG_ON(num_doubles != 0);
		num_doubles++;
		goto again;
4368
	}
4369

4370
	return 0;
4371 4372 4373 4374

push_for_double:
	push_for_double_split(trans, root, path, data_size);
	tried_avoid_double = 1;
4375
	if (btrfs_leaf_free_space(path->nodes[0]) >= data_size)
4376 4377
		return 0;
	goto again;
4378 4379
}

Y
Yan, Zheng 已提交
4380 4381 4382
static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans,
					 struct btrfs_root *root,
					 struct btrfs_path *path, int ins_len)
4383
{
Y
Yan, Zheng 已提交
4384
	struct btrfs_key key;
4385
	struct extent_buffer *leaf;
Y
Yan, Zheng 已提交
4386 4387 4388 4389
	struct btrfs_file_extent_item *fi;
	u64 extent_len = 0;
	u32 item_size;
	int ret;
4390 4391

	leaf = path->nodes[0];
Y
Yan, Zheng 已提交
4392 4393 4394 4395 4396
	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);

	BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY &&
	       key.type != BTRFS_EXTENT_CSUM_KEY);

4397
	if (btrfs_leaf_free_space(leaf) >= ins_len)
Y
Yan, Zheng 已提交
4398
		return 0;
4399 4400

	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
Y
Yan, Zheng 已提交
4401 4402 4403 4404 4405
	if (key.type == BTRFS_EXTENT_DATA_KEY) {
		fi = btrfs_item_ptr(leaf, path->slots[0],
				    struct btrfs_file_extent_item);
		extent_len = btrfs_file_extent_num_bytes(leaf, fi);
	}
4406
	btrfs_release_path(path);
4407 4408

	path->keep_locks = 1;
Y
Yan, Zheng 已提交
4409 4410
	path->search_for_split = 1;
	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
4411
	path->search_for_split = 0;
4412 4413
	if (ret > 0)
		ret = -EAGAIN;
Y
Yan, Zheng 已提交
4414 4415
	if (ret < 0)
		goto err;
4416

Y
Yan, Zheng 已提交
4417 4418
	ret = -EAGAIN;
	leaf = path->nodes[0];
4419 4420
	/* if our item isn't there, return now */
	if (item_size != btrfs_item_size_nr(leaf, path->slots[0]))
Y
Yan, Zheng 已提交
4421 4422
		goto err;

4423
	/* the leaf has  changed, it now has room.  return now */
4424
	if (btrfs_leaf_free_space(path->nodes[0]) >= ins_len)
4425 4426
		goto err;

Y
Yan, Zheng 已提交
4427 4428 4429 4430 4431
	if (key.type == BTRFS_EXTENT_DATA_KEY) {
		fi = btrfs_item_ptr(leaf, path->slots[0],
				    struct btrfs_file_extent_item);
		if (extent_len != btrfs_file_extent_num_bytes(leaf, fi))
			goto err;
4432 4433
	}

4434
	btrfs_set_path_blocking(path);
Y
Yan, Zheng 已提交
4435
	ret = split_leaf(trans, root, &key, path, ins_len, 1);
4436 4437
	if (ret)
		goto err;
4438

Y
Yan, Zheng 已提交
4439
	path->keep_locks = 0;
4440
	btrfs_unlock_up_safe(path, 1);
Y
Yan, Zheng 已提交
4441 4442 4443 4444 4445 4446
	return 0;
err:
	path->keep_locks = 0;
	return ret;
}

4447
static noinline int split_item(struct btrfs_path *path,
4448
			       const struct btrfs_key *new_key,
Y
Yan, Zheng 已提交
4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460
			       unsigned long split_offset)
{
	struct extent_buffer *leaf;
	struct btrfs_item *item;
	struct btrfs_item *new_item;
	int slot;
	char *buf;
	u32 nritems;
	u32 item_size;
	u32 orig_offset;
	struct btrfs_disk_key disk_key;

4461
	leaf = path->nodes[0];
4462
	BUG_ON(btrfs_leaf_free_space(leaf) < sizeof(struct btrfs_item));
4463

4464 4465
	btrfs_set_path_blocking(path);

4466
	item = btrfs_item_nr(path->slots[0]);
4467 4468 4469 4470
	orig_offset = btrfs_item_offset(leaf, item);
	item_size = btrfs_item_size(leaf, item);

	buf = kmalloc(item_size, GFP_NOFS);
Y
Yan, Zheng 已提交
4471 4472 4473
	if (!buf)
		return -ENOMEM;

4474 4475 4476
	read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf,
			    path->slots[0]), item_size);

Y
Yan, Zheng 已提交
4477
	slot = path->slots[0] + 1;
4478 4479 4480 4481
	nritems = btrfs_header_nritems(leaf);
	if (slot != nritems) {
		/* shift the items */
		memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1),
Y
Yan, Zheng 已提交
4482 4483
				btrfs_item_nr_offset(slot),
				(nritems - slot) * sizeof(struct btrfs_item));
4484 4485 4486 4487 4488
	}

	btrfs_cpu_key_to_disk(&disk_key, new_key);
	btrfs_set_item_key(leaf, &disk_key, slot);

4489
	new_item = btrfs_item_nr(slot);
4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510

	btrfs_set_item_offset(leaf, new_item, orig_offset);
	btrfs_set_item_size(leaf, new_item, item_size - split_offset);

	btrfs_set_item_offset(leaf, item,
			      orig_offset + item_size - split_offset);
	btrfs_set_item_size(leaf, item, split_offset);

	btrfs_set_header_nritems(leaf, nritems + 1);

	/* write the data for the start of the original item */
	write_extent_buffer(leaf, buf,
			    btrfs_item_ptr_offset(leaf, path->slots[0]),
			    split_offset);

	/* write the data for the new item */
	write_extent_buffer(leaf, buf + split_offset,
			    btrfs_item_ptr_offset(leaf, slot),
			    item_size - split_offset);
	btrfs_mark_buffer_dirty(leaf);

4511
	BUG_ON(btrfs_leaf_free_space(leaf) < 0);
4512
	kfree(buf);
Y
Yan, Zheng 已提交
4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533
	return 0;
}

/*
 * This function splits a single item into two items,
 * giving 'new_key' to the new item and splitting the
 * old one at split_offset (from the start of the item).
 *
 * The path may be released by this operation.  After
 * the split, the path is pointing to the old item.  The
 * new item is going to be in the same node as the old one.
 *
 * Note, the item being split must be smaller enough to live alone on
 * a tree block with room for one extra struct btrfs_item
 *
 * This allows us to split the item in place, keeping a lock on the
 * leaf the entire time.
 */
int btrfs_split_item(struct btrfs_trans_handle *trans,
		     struct btrfs_root *root,
		     struct btrfs_path *path,
4534
		     const struct btrfs_key *new_key,
Y
Yan, Zheng 已提交
4535 4536 4537 4538 4539 4540 4541 4542
		     unsigned long split_offset)
{
	int ret;
	ret = setup_leaf_for_split(trans, root, path,
				   sizeof(struct btrfs_item));
	if (ret)
		return ret;

4543
	ret = split_item(path, new_key, split_offset);
4544 4545 4546
	return ret;
}

Y
Yan, Zheng 已提交
4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557
/*
 * This function duplicate a item, giving 'new_key' to the new item.
 * It guarantees both items live in the same tree leaf and the new item
 * is contiguous with the original item.
 *
 * This allows us to split file extent in place, keeping a lock on the
 * leaf the entire time.
 */
int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
			 struct btrfs_root *root,
			 struct btrfs_path *path,
4558
			 const struct btrfs_key *new_key)
Y
Yan, Zheng 已提交
4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571
{
	struct extent_buffer *leaf;
	int ret;
	u32 item_size;

	leaf = path->nodes[0];
	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
	ret = setup_leaf_for_split(trans, root, path,
				   item_size + sizeof(struct btrfs_item));
	if (ret)
		return ret;

	path->slots[0]++;
4572
	setup_items_for_insert(root, path, new_key, &item_size,
4573 4574
			       item_size, item_size +
			       sizeof(struct btrfs_item), 1);
Y
Yan, Zheng 已提交
4575 4576 4577 4578 4579 4580 4581 4582
	leaf = path->nodes[0];
	memcpy_extent_buffer(leaf,
			     btrfs_item_ptr_offset(leaf, path->slots[0]),
			     btrfs_item_ptr_offset(leaf, path->slots[0] - 1),
			     item_size);
	return 0;
}

C
Chris Mason 已提交
4583 4584 4585 4586 4587 4588
/*
 * make the item pointed to by the path smaller.  new_size indicates
 * how small to make it, and from_end tells us if we just chop bytes
 * off the end of the item or if we shift the item to chop bytes off
 * the front.
 */
4589
void btrfs_truncate_item(struct btrfs_path *path, u32 new_size, int from_end)
C
Chris Mason 已提交
4590 4591
{
	int slot;
4592 4593
	struct extent_buffer *leaf;
	struct btrfs_item *item;
C
Chris Mason 已提交
4594 4595 4596 4597 4598 4599
	u32 nritems;
	unsigned int data_end;
	unsigned int old_data_start;
	unsigned int old_size;
	unsigned int size_diff;
	int i;
4600 4601
	struct btrfs_map_token token;

4602
	leaf = path->nodes[0];
4603 4604 4605 4606
	slot = path->slots[0];

	old_size = btrfs_item_size_nr(leaf, slot);
	if (old_size == new_size)
4607
		return;
C
Chris Mason 已提交
4608

4609
	nritems = btrfs_header_nritems(leaf);
4610
	data_end = leaf_data_end(leaf);
C
Chris Mason 已提交
4611

4612
	old_data_start = btrfs_item_offset_nr(leaf, slot);
4613

C
Chris Mason 已提交
4614 4615 4616 4617 4618 4619 4620 4621 4622
	size_diff = old_size - new_size;

	BUG_ON(slot < 0);
	BUG_ON(slot >= nritems);

	/*
	 * item0..itemN ... dataN.offset..dataN.size .. data0.size
	 */
	/* first correct the data pointers */
4623
	btrfs_init_map_token(&token, leaf);
C
Chris Mason 已提交
4624
	for (i = slot; i < nritems; i++) {
4625
		u32 ioff;
4626
		item = btrfs_item_nr(i);
4627

4628 4629
		ioff = btrfs_token_item_offset(&token, item);
		btrfs_set_token_item_offset(&token, item, ioff + size_diff);
C
Chris Mason 已提交
4630
	}
4631

C
Chris Mason 已提交
4632
	/* shift the data */
4633
	if (from_end) {
4634 4635
		memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
			      data_end + size_diff, BTRFS_LEAF_DATA_OFFSET +
4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655
			      data_end, old_data_start + new_size - data_end);
	} else {
		struct btrfs_disk_key disk_key;
		u64 offset;

		btrfs_item_key(leaf, &disk_key, slot);

		if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) {
			unsigned long ptr;
			struct btrfs_file_extent_item *fi;

			fi = btrfs_item_ptr(leaf, slot,
					    struct btrfs_file_extent_item);
			fi = (struct btrfs_file_extent_item *)(
			     (unsigned long)fi - size_diff);

			if (btrfs_file_extent_type(leaf, fi) ==
			    BTRFS_FILE_EXTENT_INLINE) {
				ptr = btrfs_item_ptr_offset(leaf, slot);
				memmove_extent_buffer(leaf, ptr,
C
Chris Mason 已提交
4656
				      (unsigned long)fi,
4657
				      BTRFS_FILE_EXTENT_INLINE_DATA_START);
4658 4659 4660
			}
		}

4661 4662
		memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
			      data_end + size_diff, BTRFS_LEAF_DATA_OFFSET +
4663 4664 4665 4666 4667 4668
			      data_end, old_data_start - data_end);

		offset = btrfs_disk_key_offset(&disk_key);
		btrfs_set_disk_key_offset(&disk_key, offset + size_diff);
		btrfs_set_item_key(leaf, &disk_key, slot);
		if (slot == 0)
4669
			fixup_low_keys(path, &disk_key, 1);
4670
	}
4671

4672
	item = btrfs_item_nr(slot);
4673 4674
	btrfs_set_item_size(leaf, item, new_size);
	btrfs_mark_buffer_dirty(leaf);
C
Chris Mason 已提交
4675

4676
	if (btrfs_leaf_free_space(leaf) < 0) {
4677
		btrfs_print_leaf(leaf);
C
Chris Mason 已提交
4678
		BUG();
4679
	}
C
Chris Mason 已提交
4680 4681
}

C
Chris Mason 已提交
4682
/*
S
Stefan Behrens 已提交
4683
 * make the item pointed to by the path bigger, data_size is the added size.
C
Chris Mason 已提交
4684
 */
4685
void btrfs_extend_item(struct btrfs_path *path, u32 data_size)
4686 4687
{
	int slot;
4688 4689
	struct extent_buffer *leaf;
	struct btrfs_item *item;
4690 4691 4692 4693 4694
	u32 nritems;
	unsigned int data_end;
	unsigned int old_data;
	unsigned int old_size;
	int i;
4695 4696
	struct btrfs_map_token token;

4697
	leaf = path->nodes[0];
4698

4699
	nritems = btrfs_header_nritems(leaf);
4700
	data_end = leaf_data_end(leaf);
4701

4702
	if (btrfs_leaf_free_space(leaf) < data_size) {
4703
		btrfs_print_leaf(leaf);
4704
		BUG();
4705
	}
4706
	slot = path->slots[0];
4707
	old_data = btrfs_item_end_nr(leaf, slot);
4708 4709

	BUG_ON(slot < 0);
4710
	if (slot >= nritems) {
4711
		btrfs_print_leaf(leaf);
4712
		btrfs_crit(leaf->fs_info, "slot %d too large, nritems %d",
4713
			   slot, nritems);
4714
		BUG();
4715
	}
4716 4717 4718 4719 4720

	/*
	 * item0..itemN ... dataN.offset..dataN.size .. data0.size
	 */
	/* first correct the data pointers */
4721
	btrfs_init_map_token(&token, leaf);
4722
	for (i = slot; i < nritems; i++) {
4723
		u32 ioff;
4724
		item = btrfs_item_nr(i);
4725

4726 4727
		ioff = btrfs_token_item_offset(&token, item);
		btrfs_set_token_item_offset(&token, item, ioff - data_size);
4728
	}
4729

4730
	/* shift the data */
4731 4732
	memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
		      data_end - data_size, BTRFS_LEAF_DATA_OFFSET +
4733
		      data_end, old_data - data_end);
4734

4735
	data_end = old_data;
4736
	old_size = btrfs_item_size_nr(leaf, slot);
4737
	item = btrfs_item_nr(slot);
4738 4739
	btrfs_set_item_size(leaf, item, old_size + data_size);
	btrfs_mark_buffer_dirty(leaf);
4740

4741
	if (btrfs_leaf_free_space(leaf) < 0) {
4742
		btrfs_print_leaf(leaf);
4743
		BUG();
4744
	}
4745 4746
}

C
Chris Mason 已提交
4747
/*
4748 4749 4750
 * this is a helper for btrfs_insert_empty_items, the main goal here is
 * to save stack depth by doing the bulk of the work in a function
 * that doesn't call btrfs_search_slot
C
Chris Mason 已提交
4751
 */
4752
void setup_items_for_insert(struct btrfs_root *root, struct btrfs_path *path,
4753
			    const struct btrfs_key *cpu_key, u32 *data_size,
4754
			    u32 total_data, u32 total_size, int nr)
4755
{
4756
	struct btrfs_fs_info *fs_info = root->fs_info;
4757
	struct btrfs_item *item;
4758
	int i;
4759
	u32 nritems;
4760
	unsigned int data_end;
C
Chris Mason 已提交
4761
	struct btrfs_disk_key disk_key;
4762 4763
	struct extent_buffer *leaf;
	int slot;
4764 4765
	struct btrfs_map_token token;

4766 4767
	if (path->slots[0] == 0) {
		btrfs_cpu_key_to_disk(&disk_key, cpu_key);
4768
		fixup_low_keys(path, &disk_key, 1);
4769 4770 4771
	}
	btrfs_unlock_up_safe(path, 1);

4772
	leaf = path->nodes[0];
4773
	slot = path->slots[0];
C
Chris Mason 已提交
4774

4775
	nritems = btrfs_header_nritems(leaf);
4776
	data_end = leaf_data_end(leaf);
4777

4778
	if (btrfs_leaf_free_space(leaf) < total_size) {
4779
		btrfs_print_leaf(leaf);
4780
		btrfs_crit(fs_info, "not enough freespace need %u have %d",
4781
			   total_size, btrfs_leaf_free_space(leaf));
4782
		BUG();
4783
	}
4784

4785
	btrfs_init_map_token(&token, leaf);
4786
	if (slot != nritems) {
4787
		unsigned int old_data = btrfs_item_end_nr(leaf, slot);
4788

4789
		if (old_data < data_end) {
4790
			btrfs_print_leaf(leaf);
4791
			btrfs_crit(fs_info, "slot %d old_data %d data_end %d",
J
Jeff Mahoney 已提交
4792
				   slot, old_data, data_end);
4793
			BUG();
4794
		}
4795 4796 4797 4798
		/*
		 * item0..itemN ... dataN.offset..dataN.size .. data0.size
		 */
		/* first correct the data pointers */
C
Chris Mason 已提交
4799
		for (i = slot; i < nritems; i++) {
4800
			u32 ioff;
4801

4802
			item = btrfs_item_nr(i);
4803 4804 4805
			ioff = btrfs_token_item_offset(&token, item);
			btrfs_set_token_item_offset(&token, item,
						    ioff - total_data);
C
Chris Mason 已提交
4806
		}
4807
		/* shift the items */
4808
		memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
4809
			      btrfs_item_nr_offset(slot),
C
Chris Mason 已提交
4810
			      (nritems - slot) * sizeof(struct btrfs_item));
4811 4812

		/* shift the data */
4813 4814
		memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
			      data_end - total_data, BTRFS_LEAF_DATA_OFFSET +
C
Chris Mason 已提交
4815
			      data_end, old_data - data_end);
4816 4817
		data_end = old_data;
	}
4818

4819
	/* setup the item for the new data */
4820 4821 4822
	for (i = 0; i < nr; i++) {
		btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
		btrfs_set_item_key(leaf, &disk_key, slot + i);
4823
		item = btrfs_item_nr(slot + i);
4824
		btrfs_set_token_item_offset(&token, item, data_end - data_size[i]);
4825
		data_end -= data_size[i];
4826
		btrfs_set_token_item_size(&token, item, data_size[i]);
4827
	}
4828

4829
	btrfs_set_header_nritems(leaf, nritems + nr);
4830
	btrfs_mark_buffer_dirty(leaf);
C
Chris Mason 已提交
4831

4832
	if (btrfs_leaf_free_space(leaf) < 0) {
4833
		btrfs_print_leaf(leaf);
4834
		BUG();
4835
	}
4836 4837 4838 4839 4840 4841 4842 4843 4844
}

/*
 * Given a key and some data, insert items into the tree.
 * This does all the path init required, making room in the tree if needed.
 */
int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
			    struct btrfs_root *root,
			    struct btrfs_path *path,
4845
			    const struct btrfs_key *cpu_key, u32 *data_size,
4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861
			    int nr)
{
	int ret = 0;
	int slot;
	int i;
	u32 total_size = 0;
	u32 total_data = 0;

	for (i = 0; i < nr; i++)
		total_data += data_size[i];

	total_size = total_data + (nr * sizeof(struct btrfs_item));
	ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
	if (ret == 0)
		return -EEXIST;
	if (ret < 0)
4862
		return ret;
4863 4864 4865 4866

	slot = path->slots[0];
	BUG_ON(slot < 0);

4867
	setup_items_for_insert(root, path, cpu_key, data_size,
4868
			       total_data, total_size, nr);
4869
	return 0;
4870 4871 4872 4873 4874 4875
}

/*
 * Given a key and some data, insert an item into the tree.
 * This does all the path init required, making room in the tree if needed.
 */
4876 4877 4878
int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root *root,
		      const struct btrfs_key *cpu_key, void *data,
		      u32 data_size)
4879 4880
{
	int ret = 0;
C
Chris Mason 已提交
4881
	struct btrfs_path *path;
4882 4883
	struct extent_buffer *leaf;
	unsigned long ptr;
4884

C
Chris Mason 已提交
4885
	path = btrfs_alloc_path();
T
Tsutomu Itoh 已提交
4886 4887
	if (!path)
		return -ENOMEM;
C
Chris Mason 已提交
4888
	ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
4889
	if (!ret) {
4890 4891 4892 4893
		leaf = path->nodes[0];
		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
		write_extent_buffer(leaf, data, ptr, data_size);
		btrfs_mark_buffer_dirty(leaf);
4894
	}
C
Chris Mason 已提交
4895
	btrfs_free_path(path);
C
Chris Mason 已提交
4896
	return ret;
4897 4898
}

C
Chris Mason 已提交
4899
/*
C
Chris Mason 已提交
4900
 * delete the pointer from a given node.
C
Chris Mason 已提交
4901
 *
C
Chris Mason 已提交
4902 4903
 * the tree should have been previously balanced so the deletion does not
 * empty a node.
C
Chris Mason 已提交
4904
 */
4905 4906
static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
		    int level, int slot)
4907
{
4908
	struct extent_buffer *parent = path->nodes[level];
4909
	u32 nritems;
4910
	int ret;
4911

4912
	nritems = btrfs_header_nritems(parent);
C
Chris Mason 已提交
4913
	if (slot != nritems - 1) {
4914 4915
		if (level) {
			ret = tree_mod_log_insert_move(parent, slot, slot + 1,
4916
					nritems - slot - 1);
4917 4918
			BUG_ON(ret < 0);
		}
4919 4920 4921
		memmove_extent_buffer(parent,
			      btrfs_node_key_ptr_offset(slot),
			      btrfs_node_key_ptr_offset(slot + 1),
C
Chris Mason 已提交
4922 4923
			      sizeof(struct btrfs_key_ptr) *
			      (nritems - slot - 1));
4924
	} else if (level) {
4925 4926
		ret = tree_mod_log_insert_key(parent, slot, MOD_LOG_KEY_REMOVE,
				GFP_NOFS);
4927
		BUG_ON(ret < 0);
4928
	}
4929

4930
	nritems--;
4931
	btrfs_set_header_nritems(parent, nritems);
4932
	if (nritems == 0 && parent == root->node) {
4933
		BUG_ON(btrfs_header_level(root->node) != 1);
4934
		/* just turn the root into a leaf and break */
4935
		btrfs_set_header_level(root->node, 0);
4936
	} else if (slot == 0) {
4937 4938 4939
		struct btrfs_disk_key disk_key;

		btrfs_node_key(parent, &disk_key, 0);
4940
		fixup_low_keys(path, &disk_key, level + 1);
4941
	}
C
Chris Mason 已提交
4942
	btrfs_mark_buffer_dirty(parent);
4943 4944
}

4945 4946
/*
 * a helper function to delete the leaf pointed to by path->slots[1] and
4947
 * path->nodes[1].
4948 4949 4950 4951 4952 4953 4954
 *
 * This deletes the pointer in path->nodes[1] and frees the leaf
 * block extent.  zero is returned if it all worked out, < 0 otherwise.
 *
 * The path must have already been setup for deleting the leaf, including
 * all the proper balancing.  path->nodes[1] must be locked.
 */
4955 4956 4957 4958
static noinline void btrfs_del_leaf(struct btrfs_trans_handle *trans,
				    struct btrfs_root *root,
				    struct btrfs_path *path,
				    struct extent_buffer *leaf)
4959
{
4960
	WARN_ON(btrfs_header_generation(leaf) != trans->transid);
4961
	del_ptr(root, path, 1, path->slots[1]);
4962

4963 4964 4965 4966 4967 4968
	/*
	 * btrfs_free_extent is expensive, we want to make sure we
	 * aren't holding any locks when we call it
	 */
	btrfs_unlock_up_safe(path, 0);

4969 4970
	root_sub_used(root, leaf->len);

D
David Sterba 已提交
4971
	atomic_inc(&leaf->refs);
4972
	btrfs_free_tree_block(trans, root, leaf, 0, 1);
4973
	free_extent_buffer_stale(leaf);
4974
}
C
Chris Mason 已提交
4975 4976 4977 4978
/*
 * delete the item at the leaf level in path.  If that empties
 * the leaf, remove it from the tree
 */
4979 4980
int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
		    struct btrfs_path *path, int slot, int nr)
4981
{
4982
	struct btrfs_fs_info *fs_info = root->fs_info;
4983 4984
	struct extent_buffer *leaf;
	struct btrfs_item *item;
4985 4986
	u32 last_off;
	u32 dsize = 0;
C
Chris Mason 已提交
4987 4988
	int ret = 0;
	int wret;
4989
	int i;
4990
	u32 nritems;
4991

4992
	leaf = path->nodes[0];
4993 4994 4995 4996 4997
	last_off = btrfs_item_offset_nr(leaf, slot + nr - 1);

	for (i = 0; i < nr; i++)
		dsize += btrfs_item_size_nr(leaf, slot + i);

4998
	nritems = btrfs_header_nritems(leaf);
4999

5000
	if (slot + nr != nritems) {
5001
		int data_end = leaf_data_end(leaf);
5002
		struct btrfs_map_token token;
5003

5004
		memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
C
Chris Mason 已提交
5005
			      data_end + dsize,
5006
			      BTRFS_LEAF_DATA_OFFSET + data_end,
5007
			      last_off - data_end);
5008

5009
		btrfs_init_map_token(&token, leaf);
5010
		for (i = slot + nr; i < nritems; i++) {
5011
			u32 ioff;
5012

5013
			item = btrfs_item_nr(i);
5014 5015
			ioff = btrfs_token_item_offset(&token, item);
			btrfs_set_token_item_offset(&token, item, ioff + dsize);
C
Chris Mason 已提交
5016
		}
5017

5018
		memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot),
5019
			      btrfs_item_nr_offset(slot + nr),
C
Chris Mason 已提交
5020
			      sizeof(struct btrfs_item) *
5021
			      (nritems - slot - nr));
5022
	}
5023 5024
	btrfs_set_header_nritems(leaf, nritems - nr);
	nritems -= nr;
5025

C
Chris Mason 已提交
5026
	/* delete the leaf if we've emptied it */
5027
	if (nritems == 0) {
5028 5029
		if (leaf == root->node) {
			btrfs_set_header_level(leaf, 0);
5030
		} else {
5031
			btrfs_set_path_blocking(path);
5032
			btrfs_clean_tree_block(leaf);
5033
			btrfs_del_leaf(trans, root, path, leaf);
5034
		}
5035
	} else {
5036
		int used = leaf_space_used(leaf, 0, nritems);
C
Chris Mason 已提交
5037
		if (slot == 0) {
5038 5039 5040
			struct btrfs_disk_key disk_key;

			btrfs_item_key(leaf, &disk_key, 0);
5041
			fixup_low_keys(path, &disk_key, 1);
C
Chris Mason 已提交
5042 5043
		}

C
Chris Mason 已提交
5044
		/* delete the leaf if it is mostly empty */
5045
		if (used < BTRFS_LEAF_DATA_SIZE(fs_info) / 3) {
5046 5047 5048 5049
			/* push_leaf_left fixes the path.
			 * make sure the path still points to our leaf
			 * for possible call to del_ptr below
			 */
5050
			slot = path->slots[1];
D
David Sterba 已提交
5051
			atomic_inc(&leaf->refs);
5052

5053
			btrfs_set_path_blocking(path);
5054 5055
			wret = push_leaf_left(trans, root, path, 1, 1,
					      1, (u32)-1);
5056
			if (wret < 0 && wret != -ENOSPC)
C
Chris Mason 已提交
5057
				ret = wret;
5058 5059 5060

			if (path->nodes[0] == leaf &&
			    btrfs_header_nritems(leaf)) {
5061 5062
				wret = push_leaf_right(trans, root, path, 1,
						       1, 1, 0);
5063
				if (wret < 0 && wret != -ENOSPC)
C
Chris Mason 已提交
5064 5065
					ret = wret;
			}
5066 5067

			if (btrfs_header_nritems(leaf) == 0) {
5068
				path->slots[1] = slot;
5069
				btrfs_del_leaf(trans, root, path, leaf);
5070
				free_extent_buffer(leaf);
5071
				ret = 0;
C
Chris Mason 已提交
5072
			} else {
5073 5074 5075 5076 5077 5078 5079
				/* if we're still in the path, make sure
				 * we're dirty.  Otherwise, one of the
				 * push_leaf functions must have already
				 * dirtied this buffer
				 */
				if (path->nodes[0] == leaf)
					btrfs_mark_buffer_dirty(leaf);
5080
				free_extent_buffer(leaf);
5081
			}
5082
		} else {
5083
			btrfs_mark_buffer_dirty(leaf);
5084 5085
		}
	}
C
Chris Mason 已提交
5086
	return ret;
5087 5088
}

5089
/*
5090
 * search the tree again to find a leaf with lesser keys
5091 5092
 * returns 0 if it found something or 1 if there are no lesser leaves.
 * returns < 0 on io errors.
C
Chris Mason 已提交
5093 5094 5095
 *
 * This may release the path, and so you may lose any locks held at the
 * time you call it.
5096
 */
5097
int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path)
5098
{
5099 5100 5101
	struct btrfs_key key;
	struct btrfs_disk_key found_key;
	int ret;
5102

5103
	btrfs_item_key_to_cpu(path->nodes[0], &key, 0);
5104

5105
	if (key.offset > 0) {
5106
		key.offset--;
5107
	} else if (key.type > 0) {
5108
		key.type--;
5109 5110
		key.offset = (u64)-1;
	} else if (key.objectid > 0) {
5111
		key.objectid--;
5112 5113 5114
		key.type = (u8)-1;
		key.offset = (u64)-1;
	} else {
5115
		return 1;
5116
	}
5117

5118
	btrfs_release_path(path);
5119 5120 5121 5122 5123
	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
	if (ret < 0)
		return ret;
	btrfs_item_key(path->nodes[0], &found_key, 0);
	ret = comp_keys(&found_key, &key);
5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134
	/*
	 * We might have had an item with the previous key in the tree right
	 * before we released our path. And after we released our path, that
	 * item might have been pushed to the first slot (0) of the leaf we
	 * were holding due to a tree balance. Alternatively, an item with the
	 * previous key can exist as the only element of a leaf (big fat item).
	 * Therefore account for these 2 cases, so that our callers (like
	 * btrfs_previous_item) don't miss an existing item with a key matching
	 * the previous key we computed above.
	 */
	if (ret <= 0)
5135 5136
		return 0;
	return 1;
5137 5138
}

5139 5140
/*
 * A helper function to walk down the tree starting at min_key, and looking
5141 5142
 * for nodes or leaves that are have a minimum transaction id.
 * This is used by the btree defrag code, and tree logging
5143 5144 5145 5146 5147 5148 5149 5150
 *
 * This does not cow, but it does stuff the starting key it finds back
 * into min_key, so you can call btrfs_search_slot with cow=1 on the
 * key and get a writable path.
 *
 * This honors path->lowest_level to prevent descent past a given level
 * of the tree.
 *
C
Chris Mason 已提交
5151 5152 5153 5154
 * min_trans indicates the oldest transaction that you are interested
 * in walking through.  Any nodes or leaves older than min_trans are
 * skipped over (without reading them).
 *
5155 5156 5157 5158
 * returns zero if something useful was found, < 0 on error and 1 if there
 * was nothing in the tree that matched the search criteria.
 */
int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
5159
			 struct btrfs_path *path,
5160 5161 5162 5163 5164
			 u64 min_trans)
{
	struct extent_buffer *cur;
	struct btrfs_key found_key;
	int slot;
5165
	int sret;
5166 5167 5168
	u32 nritems;
	int level;
	int ret = 1;
5169
	int keep_locks = path->keep_locks;
5170

5171
	path->keep_locks = 1;
5172
again:
5173
	cur = btrfs_read_lock_root_node(root);
5174
	level = btrfs_header_level(cur);
5175
	WARN_ON(path->nodes[level]);
5176
	path->nodes[level] = cur;
5177
	path->locks[level] = BTRFS_READ_LOCK;
5178 5179 5180 5181 5182

	if (btrfs_header_generation(cur) < min_trans) {
		ret = 1;
		goto out;
	}
C
Chris Mason 已提交
5183
	while (1) {
5184 5185
		nritems = btrfs_header_nritems(cur);
		level = btrfs_header_level(cur);
5186
		sret = btrfs_bin_search(cur, min_key, &slot);
5187 5188 5189 5190
		if (sret < 0) {
			ret = sret;
			goto out;
		}
5191

5192 5193
		/* at the lowest level, we're done, setup the path and exit */
		if (level == path->lowest_level) {
5194 5195
			if (slot >= nritems)
				goto find_next_key;
5196 5197 5198 5199 5200
			ret = 0;
			path->slots[level] = slot;
			btrfs_item_key_to_cpu(cur, &found_key, slot);
			goto out;
		}
5201 5202
		if (sret && slot > 0)
			slot--;
5203
		/*
5204
		 * check this node pointer against the min_trans parameters.
5205
		 * If it is too old, skip to the next one.
5206
		 */
C
Chris Mason 已提交
5207
		while (slot < nritems) {
5208
			u64 gen;
5209

5210 5211 5212 5213 5214
			gen = btrfs_node_ptr_generation(cur, slot);
			if (gen < min_trans) {
				slot++;
				continue;
			}
5215
			break;
5216
		}
5217
find_next_key:
5218 5219 5220 5221 5222
		/*
		 * we didn't find a candidate key in this node, walk forward
		 * and find another one
		 */
		if (slot >= nritems) {
5223
			path->slots[level] = slot;
5224
			btrfs_set_path_blocking(path);
5225
			sret = btrfs_find_next_key(root, path, min_key, level,
5226
						  min_trans);
5227
			if (sret == 0) {
5228
				btrfs_release_path(path);
5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240
				goto again;
			} else {
				goto out;
			}
		}
		/* save our key for returning back */
		btrfs_node_key_to_cpu(cur, &found_key, slot);
		path->slots[level] = slot;
		if (level == path->lowest_level) {
			ret = 0;
			goto out;
		}
5241
		btrfs_set_path_blocking(path);
5242
		cur = btrfs_read_node_slot(cur, slot);
5243 5244 5245 5246
		if (IS_ERR(cur)) {
			ret = PTR_ERR(cur);
			goto out;
		}
5247

5248
		btrfs_tree_read_lock(cur);
5249

5250
		path->locks[level - 1] = BTRFS_READ_LOCK;
5251
		path->nodes[level - 1] = cur;
5252
		unlock_up(path, level, 1, 0, NULL);
5253 5254
	}
out:
5255 5256 5257 5258
	path->keep_locks = keep_locks;
	if (ret == 0) {
		btrfs_unlock_up_safe(path, path->lowest_level + 1);
		btrfs_set_path_blocking(path);
5259
		memcpy(min_key, &found_key, sizeof(found_key));
5260
	}
5261 5262 5263 5264 5265 5266
	return ret;
}

/*
 * this is similar to btrfs_next_leaf, but does not try to preserve
 * and fixup the path.  It looks for and returns the next key in the
5267
 * tree based on the current path and the min_trans parameters.
5268 5269 5270 5271 5272 5273 5274
 *
 * 0 is returned if another key is found, < 0 if there are any errors
 * and 1 is returned if there are no higher keys in the tree
 *
 * path->keep_locks should be set to 1 on the search made before
 * calling this function.
 */
5275
int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
5276
			struct btrfs_key *key, int level, u64 min_trans)
5277 5278 5279 5280
{
	int slot;
	struct extent_buffer *c;

5281
	WARN_ON(!path->keep_locks && !path->skip_locking);
C
Chris Mason 已提交
5282
	while (level < BTRFS_MAX_LEVEL) {
5283 5284 5285 5286 5287
		if (!path->nodes[level])
			return 1;

		slot = path->slots[level] + 1;
		c = path->nodes[level];
5288
next:
5289
		if (slot >= btrfs_header_nritems(c)) {
5290 5291 5292 5293 5294
			int ret;
			int orig_lowest;
			struct btrfs_key cur_key;
			if (level + 1 >= BTRFS_MAX_LEVEL ||
			    !path->nodes[level + 1])
5295
				return 1;
5296

5297
			if (path->locks[level + 1] || path->skip_locking) {
5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308
				level++;
				continue;
			}

			slot = btrfs_header_nritems(c) - 1;
			if (level == 0)
				btrfs_item_key_to_cpu(c, &cur_key, slot);
			else
				btrfs_node_key_to_cpu(c, &cur_key, slot);

			orig_lowest = path->lowest_level;
5309
			btrfs_release_path(path);
5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321
			path->lowest_level = level;
			ret = btrfs_search_slot(NULL, root, &cur_key, path,
						0, 0);
			path->lowest_level = orig_lowest;
			if (ret < 0)
				return ret;

			c = path->nodes[level];
			slot = path->slots[level];
			if (ret == 0)
				slot++;
			goto next;
5322
		}
5323

5324 5325
		if (level == 0)
			btrfs_item_key_to_cpu(c, key, slot);
5326 5327 5328 5329 5330 5331 5332
		else {
			u64 gen = btrfs_node_ptr_generation(c, slot);

			if (gen < min_trans) {
				slot++;
				goto next;
			}
5333
			btrfs_node_key_to_cpu(c, key, slot);
5334
		}
5335 5336 5337 5338 5339
		return 0;
	}
	return 1;
}

C
Chris Mason 已提交
5340
/*
5341
 * search the tree again to find a leaf with greater keys
C
Chris Mason 已提交
5342 5343
 * returns 0 if it found something or 1 if there are no greater leaves.
 * returns < 0 on io errors.
C
Chris Mason 已提交
5344
 */
C
Chris Mason 已提交
5345
int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path)
J
Jan Schmidt 已提交
5346 5347 5348 5349 5350 5351
{
	return btrfs_next_old_leaf(root, path, 0);
}

int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path,
			u64 time_seq)
5352 5353
{
	int slot;
5354
	int level;
5355
	struct extent_buffer *c;
5356
	struct extent_buffer *next;
5357 5358 5359
	struct btrfs_key key;
	u32 nritems;
	int ret;
5360
	int old_spinning = path->leave_spinning;
5361
	int next_rw_lock = 0;
5362 5363

	nritems = btrfs_header_nritems(path->nodes[0]);
C
Chris Mason 已提交
5364
	if (nritems == 0)
5365 5366
		return 1;

5367 5368 5369 5370
	btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1);
again:
	level = 1;
	next = NULL;
5371
	next_rw_lock = 0;
5372
	btrfs_release_path(path);
5373

5374
	path->keep_locks = 1;
5375
	path->leave_spinning = 1;
5376

J
Jan Schmidt 已提交
5377 5378 5379 5380
	if (time_seq)
		ret = btrfs_search_old_slot(root, &key, path, time_seq);
	else
		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5381 5382 5383 5384 5385
	path->keep_locks = 0;

	if (ret < 0)
		return ret;

5386
	nritems = btrfs_header_nritems(path->nodes[0]);
5387 5388 5389 5390 5391 5392
	/*
	 * by releasing the path above we dropped all our locks.  A balance
	 * could have added more items next to the key that used to be
	 * at the very end of the block.  So, check again here and
	 * advance the path if there are now more items available.
	 */
5393
	if (nritems > 0 && path->slots[0] < nritems - 1) {
5394 5395
		if (ret == 0)
			path->slots[0]++;
5396
		ret = 0;
5397 5398
		goto done;
	}
5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416
	/*
	 * So the above check misses one case:
	 * - after releasing the path above, someone has removed the item that
	 *   used to be at the very end of the block, and balance between leafs
	 *   gets another one with bigger key.offset to replace it.
	 *
	 * This one should be returned as well, or we can get leaf corruption
	 * later(esp. in __btrfs_drop_extents()).
	 *
	 * And a bit more explanation about this check,
	 * with ret > 0, the key isn't found, the path points to the slot
	 * where it should be inserted, so the path->slots[0] item must be the
	 * bigger one.
	 */
	if (nritems > 0 && ret > 0 && path->slots[0] == nritems - 1) {
		ret = 0;
		goto done;
	}
5417

C
Chris Mason 已提交
5418
	while (level < BTRFS_MAX_LEVEL) {
5419 5420 5421 5422
		if (!path->nodes[level]) {
			ret = 1;
			goto done;
		}
5423

5424 5425
		slot = path->slots[level] + 1;
		c = path->nodes[level];
5426
		if (slot >= btrfs_header_nritems(c)) {
5427
			level++;
5428 5429 5430 5431
			if (level == BTRFS_MAX_LEVEL) {
				ret = 1;
				goto done;
			}
5432 5433
			continue;
		}
5434

5435
		if (next) {
5436
			btrfs_tree_unlock_rw(next, next_rw_lock);
5437
			free_extent_buffer(next);
5438
		}
5439

5440
		next = c;
5441
		next_rw_lock = path->locks[level];
5442
		ret = read_block_for_search(root, path, &next, level,
5443
					    slot, &key);
5444 5445
		if (ret == -EAGAIN)
			goto again;
5446

5447
		if (ret < 0) {
5448
			btrfs_release_path(path);
5449 5450 5451
			goto done;
		}

5452
		if (!path->skip_locking) {
5453
			ret = btrfs_try_tree_read_lock(next);
5454 5455 5456 5457 5458 5459 5460 5461
			if (!ret && time_seq) {
				/*
				 * If we don't get the lock, we may be racing
				 * with push_leaf_left, holding that lock while
				 * itself waiting for the leaf we've currently
				 * locked. To solve this situation, we give up
				 * on our lock and cycle.
				 */
5462
				free_extent_buffer(next);
5463 5464 5465 5466
				btrfs_release_path(path);
				cond_resched();
				goto again;
			}
5467 5468
			if (!ret) {
				btrfs_set_path_blocking(path);
5469 5470 5471
				__btrfs_tree_read_lock(next,
						       BTRFS_NESTING_NORMAL,
						       path->recurse);
5472
			}
5473
			next_rw_lock = BTRFS_READ_LOCK;
5474
		}
5475 5476 5477
		break;
	}
	path->slots[level] = slot;
C
Chris Mason 已提交
5478
	while (1) {
5479 5480
		level--;
		c = path->nodes[level];
5481
		if (path->locks[level])
5482
			btrfs_tree_unlock_rw(c, path->locks[level]);
5483

5484
		free_extent_buffer(c);
5485 5486
		path->nodes[level] = next;
		path->slots[level] = 0;
5487
		if (!path->skip_locking)
5488
			path->locks[level] = next_rw_lock;
5489 5490
		if (!level)
			break;
5491

5492
		ret = read_block_for_search(root, path, &next, level,
5493
					    0, &key);
5494 5495 5496
		if (ret == -EAGAIN)
			goto again;

5497
		if (ret < 0) {
5498
			btrfs_release_path(path);
5499 5500 5501
			goto done;
		}

5502
		if (!path->skip_locking) {
5503
			ret = btrfs_try_tree_read_lock(next);
5504 5505
			if (!ret) {
				btrfs_set_path_blocking(path);
5506 5507 5508
				__btrfs_tree_read_lock(next,
						       BTRFS_NESTING_NORMAL,
						       path->recurse);
5509
			}
5510
			next_rw_lock = BTRFS_READ_LOCK;
5511
		}
5512
	}
5513
	ret = 0;
5514
done:
5515
	unlock_up(path, 0, 1, 0, NULL);
5516 5517 5518 5519 5520
	path->leave_spinning = old_spinning;
	if (!old_spinning)
		btrfs_set_path_blocking(path);

	return ret;
5521
}
5522

5523 5524 5525 5526 5527 5528
/*
 * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps
 * searching until it gets past min_objectid or finds an item of 'type'
 *
 * returns 0 if something is found, 1 if nothing was found and < 0 on error
 */
5529 5530 5531 5532 5533 5534
int btrfs_previous_item(struct btrfs_root *root,
			struct btrfs_path *path, u64 min_objectid,
			int type)
{
	struct btrfs_key found_key;
	struct extent_buffer *leaf;
5535
	u32 nritems;
5536 5537
	int ret;

C
Chris Mason 已提交
5538
	while (1) {
5539
		if (path->slots[0] == 0) {
5540
			btrfs_set_path_blocking(path);
5541 5542 5543 5544 5545 5546 5547
			ret = btrfs_prev_leaf(root, path);
			if (ret != 0)
				return ret;
		} else {
			path->slots[0]--;
		}
		leaf = path->nodes[0];
5548 5549 5550 5551 5552 5553
		nritems = btrfs_header_nritems(leaf);
		if (nritems == 0)
			return 1;
		if (path->slots[0] == nritems)
			path->slots[0]--;

5554
		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5555 5556
		if (found_key.objectid < min_objectid)
			break;
5557 5558
		if (found_key.type == type)
			return 0;
5559 5560 5561
		if (found_key.objectid == min_objectid &&
		    found_key.type < type)
			break;
5562 5563 5564
	}
	return 1;
}
5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607

/*
 * search in extent tree to find a previous Metadata/Data extent item with
 * min objecitd.
 *
 * returns 0 if something is found, 1 if nothing was found and < 0 on error
 */
int btrfs_previous_extent_item(struct btrfs_root *root,
			struct btrfs_path *path, u64 min_objectid)
{
	struct btrfs_key found_key;
	struct extent_buffer *leaf;
	u32 nritems;
	int ret;

	while (1) {
		if (path->slots[0] == 0) {
			btrfs_set_path_blocking(path);
			ret = btrfs_prev_leaf(root, path);
			if (ret != 0)
				return ret;
		} else {
			path->slots[0]--;
		}
		leaf = path->nodes[0];
		nritems = btrfs_header_nritems(leaf);
		if (nritems == 0)
			return 1;
		if (path->slots[0] == nritems)
			path->slots[0]--;

		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
		if (found_key.objectid < min_objectid)
			break;
		if (found_key.type == BTRFS_EXTENT_ITEM_KEY ||
		    found_key.type == BTRFS_METADATA_ITEM_KEY)
			return 0;
		if (found_key.objectid == min_objectid &&
		    found_key.type < BTRFS_EXTENT_ITEM_KEY)
			break;
	}
	return 1;
}