ctree.c 152.2 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
C
Chris Mason 已提交
2
/*
C
Chris Mason 已提交
3
 * Copyright (C) 2007,2008 Oracle.  All rights reserved.
C
Chris Mason 已提交
4 5
 */

6
#include <linux/sched.h>
7
#include <linux/slab.h>
8
#include <linux/rbtree.h>
9
#include <linux/mm.h>
10 11
#include "ctree.h"
#include "disk-io.h"
12
#include "transaction.h"
13
#include "print-tree.h"
14
#include "locking.h"
15
#include "volumes.h"
16
#include "qgroup.h"
17

18 19
static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
		      *root, struct btrfs_path *path, int level);
20 21 22
static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root *root,
		      const struct btrfs_key *ins_key, struct btrfs_path *path,
		      int data_size, int extend);
23
static int push_node_left(struct btrfs_trans_handle *trans,
24 25
			  struct btrfs_fs_info *fs_info,
			  struct extent_buffer *dst,
26
			  struct extent_buffer *src, int empty);
27
static int balance_node_right(struct btrfs_trans_handle *trans,
28
			      struct btrfs_fs_info *fs_info,
29 30
			      struct extent_buffer *dst_buf,
			      struct extent_buffer *src_buf);
31 32
static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
		    int level, int slot);
33

C
Chris Mason 已提交
34
struct btrfs_path *btrfs_alloc_path(void)
C
Chris Mason 已提交
35
{
36
	return kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS);
C
Chris Mason 已提交
37 38
}

39 40 41 42 43 44 45 46
/*
 * set all locked nodes in the path to blocking locks.  This should
 * be done before scheduling
 */
noinline void btrfs_set_path_blocking(struct btrfs_path *p)
{
	int i;
	for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
47 48
		if (!p->nodes[i] || !p->locks[i])
			continue;
49 50 51 52 53 54 55
		/*
		 * If we currently have a spinning reader or writer lock this
		 * will bump the count of blocking holders and drop the
		 * spinlock.
		 */
		if (p->locks[i] == BTRFS_READ_LOCK) {
			btrfs_set_lock_blocking_read(p->nodes[i]);
56
			p->locks[i] = BTRFS_READ_LOCK_BLOCKING;
57 58
		} else if (p->locks[i] == BTRFS_WRITE_LOCK) {
			btrfs_set_lock_blocking_write(p->nodes[i]);
59
			p->locks[i] = BTRFS_WRITE_LOCK_BLOCKING;
60
		}
61 62 63
	}
}

C
Chris Mason 已提交
64
/* this also releases the path */
C
Chris Mason 已提交
65
void btrfs_free_path(struct btrfs_path *p)
66
{
67 68
	if (!p)
		return;
69
	btrfs_release_path(p);
C
Chris Mason 已提交
70
	kmem_cache_free(btrfs_path_cachep, p);
71 72
}

C
Chris Mason 已提交
73 74 75 76 77 78
/*
 * path release drops references on the extent buffers in the path
 * and it drops any locks held by this path
 *
 * It is safe to call this on paths that no locks or extent buffers held.
 */
79
noinline void btrfs_release_path(struct btrfs_path *p)
80 81
{
	int i;
82

C
Chris Mason 已提交
83
	for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
84
		p->slots[i] = 0;
85
		if (!p->nodes[i])
86 87
			continue;
		if (p->locks[i]) {
88
			btrfs_tree_unlock_rw(p->nodes[i], p->locks[i]);
89 90
			p->locks[i] = 0;
		}
91
		free_extent_buffer(p->nodes[i]);
92
		p->nodes[i] = NULL;
93 94 95
	}
}

C
Chris Mason 已提交
96 97 98 99 100 101 102 103 104 105
/*
 * safely gets a reference on the root node of a tree.  A lock
 * is not taken, so a concurrent writer may put a different node
 * at the root of the tree.  See btrfs_lock_root_node for the
 * looping required.
 *
 * The extent buffer returned by this has a reference taken, so
 * it won't disappear.  It may stop being the root of the tree
 * at any time because there are no locks held.
 */
106 107 108
struct extent_buffer *btrfs_root_node(struct btrfs_root *root)
{
	struct extent_buffer *eb;
109

110 111 112 113 114 115
	while (1) {
		rcu_read_lock();
		eb = rcu_dereference(root->node);

		/*
		 * RCU really hurts here, we could free up the root node because
116
		 * it was COWed but we may not get the new root node yet so do
117 118 119 120 121 122 123 124 125 126
		 * the inc_not_zero dance and if it doesn't work then
		 * synchronize_rcu and try again.
		 */
		if (atomic_inc_not_zero(&eb->refs)) {
			rcu_read_unlock();
			break;
		}
		rcu_read_unlock();
		synchronize_rcu();
	}
127 128 129
	return eb;
}

C
Chris Mason 已提交
130 131 132 133
/* loop around taking references on and locking the root node of the
 * tree until you end up with a lock on the root.  A locked buffer
 * is returned, with a reference held.
 */
134 135 136 137
struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root)
{
	struct extent_buffer *eb;

C
Chris Mason 已提交
138
	while (1) {
139 140
		eb = btrfs_root_node(root);
		btrfs_tree_lock(eb);
141
		if (eb == root->node)
142 143 144 145 146 147 148
			break;
		btrfs_tree_unlock(eb);
		free_extent_buffer(eb);
	}
	return eb;
}

149 150 151 152
/* loop around taking references on and locking the root node of the
 * tree until you end up with a lock on the root.  A locked buffer
 * is returned, with a reference held.
 */
153
struct extent_buffer *btrfs_read_lock_root_node(struct btrfs_root *root)
154 155 156 157 158 159 160 161 162 163 164 165 166 167
{
	struct extent_buffer *eb;

	while (1) {
		eb = btrfs_root_node(root);
		btrfs_tree_read_lock(eb);
		if (eb == root->node)
			break;
		btrfs_tree_read_unlock(eb);
		free_extent_buffer(eb);
	}
	return eb;
}

C
Chris Mason 已提交
168 169 170 171
/* cowonly root (everything not a reference counted cow subvolume), just get
 * put onto a simple dirty list.  transaction.c walks this to make sure they
 * get properly updated on disk.
 */
172 173
static void add_root_to_dirty_list(struct btrfs_root *root)
{
174 175
	struct btrfs_fs_info *fs_info = root->fs_info;

176 177 178 179
	if (test_bit(BTRFS_ROOT_DIRTY, &root->state) ||
	    !test_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state))
		return;

180
	spin_lock(&fs_info->trans_lock);
181 182
	if (!test_and_set_bit(BTRFS_ROOT_DIRTY, &root->state)) {
		/* Want the extent tree to be the last on the list */
183
		if (root->root_key.objectid == BTRFS_EXTENT_TREE_OBJECTID)
184
			list_move_tail(&root->dirty_list,
185
				       &fs_info->dirty_cowonly_roots);
186 187
		else
			list_move(&root->dirty_list,
188
				  &fs_info->dirty_cowonly_roots);
189
	}
190
	spin_unlock(&fs_info->trans_lock);
191 192
}

C
Chris Mason 已提交
193 194 195 196 197
/*
 * used by snapshot creation to make a copy of a root for a tree with
 * a given objectid.  The buffer with the new root node is returned in
 * cow_ret, and this func returns zero on success or a negative error code.
 */
198 199 200 201 202
int btrfs_copy_root(struct btrfs_trans_handle *trans,
		      struct btrfs_root *root,
		      struct extent_buffer *buf,
		      struct extent_buffer **cow_ret, u64 new_root_objectid)
{
203
	struct btrfs_fs_info *fs_info = root->fs_info;
204 205 206
	struct extent_buffer *cow;
	int ret = 0;
	int level;
207
	struct btrfs_disk_key disk_key;
208

209
	WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
210
		trans->transid != fs_info->running_transaction->transid);
211 212
	WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
		trans->transid != root->last_trans);
213 214

	level = btrfs_header_level(buf);
215 216 217 218
	if (level == 0)
		btrfs_item_key(buf, &disk_key, 0);
	else
		btrfs_node_key(buf, &disk_key, 0);
Z
Zheng Yan 已提交
219

220 221
	cow = btrfs_alloc_tree_block(trans, root, 0, new_root_objectid,
			&disk_key, level, buf->start, 0);
222
	if (IS_ERR(cow))
223 224
		return PTR_ERR(cow);

225
	copy_extent_buffer_full(cow, buf);
226 227
	btrfs_set_header_bytenr(cow, cow->start);
	btrfs_set_header_generation(cow, trans->transid);
228 229 230 231 232 233 234
	btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
	btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
				     BTRFS_HEADER_FLAG_RELOC);
	if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
		btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
	else
		btrfs_set_header_owner(cow, new_root_objectid);
235

236
	write_extent_buffer_fsid(cow, fs_info->fs_devices->metadata_uuid);
Y
Yan Zheng 已提交
237

238
	WARN_ON(btrfs_header_generation(buf) > trans->transid);
239
	if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
240
		ret = btrfs_inc_ref(trans, root, cow, 1);
241
	else
242
		ret = btrfs_inc_ref(trans, root, cow, 0);
243

244 245 246 247 248 249 250 251
	if (ret)
		return ret;

	btrfs_mark_buffer_dirty(cow);
	*cow_ret = cow;
	return 0;
}

252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268
enum mod_log_op {
	MOD_LOG_KEY_REPLACE,
	MOD_LOG_KEY_ADD,
	MOD_LOG_KEY_REMOVE,
	MOD_LOG_KEY_REMOVE_WHILE_FREEING,
	MOD_LOG_KEY_REMOVE_WHILE_MOVING,
	MOD_LOG_MOVE_KEYS,
	MOD_LOG_ROOT_REPLACE,
};

struct tree_mod_root {
	u64 logical;
	u8 level;
};

struct tree_mod_elem {
	struct rb_node node;
269
	u64 logical;
270
	u64 seq;
271 272 273 274 275 276 277 278 279 280 281 282 283
	enum mod_log_op op;

	/* this is used for MOD_LOG_KEY_* and MOD_LOG_MOVE_KEYS operations */
	int slot;

	/* this is used for MOD_LOG_KEY* and MOD_LOG_ROOT_REPLACE */
	u64 generation;

	/* those are used for op == MOD_LOG_KEY_{REPLACE,REMOVE} */
	struct btrfs_disk_key key;
	u64 blockptr;

	/* this is used for op == MOD_LOG_MOVE_KEYS */
284 285 286 287
	struct {
		int dst_slot;
		int nr_items;
	} move;
288 289 290 291 292

	/* this is used for op == MOD_LOG_ROOT_REPLACE */
	struct tree_mod_root old_root;
};

293
/*
J
Josef Bacik 已提交
294
 * Pull a new tree mod seq number for our operation.
295
 */
J
Josef Bacik 已提交
296
static inline u64 btrfs_inc_tree_mod_seq(struct btrfs_fs_info *fs_info)
297 298 299 300
{
	return atomic64_inc_return(&fs_info->tree_mod_seq);
}

301 302 303 304 305 306 307 308 309 310
/*
 * This adds a new blocker to the tree mod log's blocker list if the @elem
 * passed does not already have a sequence number set. So when a caller expects
 * to record tree modifications, it should ensure to set elem->seq to zero
 * before calling btrfs_get_tree_mod_seq.
 * Returns a fresh, unused tree log modification sequence number, even if no new
 * blocker was added.
 */
u64 btrfs_get_tree_mod_seq(struct btrfs_fs_info *fs_info,
			   struct seq_list *elem)
311
{
312
	write_lock(&fs_info->tree_mod_log_lock);
313
	spin_lock(&fs_info->tree_mod_seq_lock);
314
	if (!elem->seq) {
J
Josef Bacik 已提交
315
		elem->seq = btrfs_inc_tree_mod_seq(fs_info);
316 317
		list_add_tail(&elem->list, &fs_info->tree_mod_seq_list);
	}
318
	spin_unlock(&fs_info->tree_mod_seq_lock);
319
	write_unlock(&fs_info->tree_mod_log_lock);
320

J
Josef Bacik 已提交
321
	return elem->seq;
322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339
}

void btrfs_put_tree_mod_seq(struct btrfs_fs_info *fs_info,
			    struct seq_list *elem)
{
	struct rb_root *tm_root;
	struct rb_node *node;
	struct rb_node *next;
	struct seq_list *cur_elem;
	struct tree_mod_elem *tm;
	u64 min_seq = (u64)-1;
	u64 seq_putting = elem->seq;

	if (!seq_putting)
		return;

	spin_lock(&fs_info->tree_mod_seq_lock);
	list_del(&elem->list);
340
	elem->seq = 0;
341 342

	list_for_each_entry(cur_elem, &fs_info->tree_mod_seq_list, list) {
343
		if (cur_elem->seq < min_seq) {
344 345 346 347 348
			if (seq_putting > cur_elem->seq) {
				/*
				 * blocker with lower sequence number exists, we
				 * cannot remove anything from the log
				 */
349 350
				spin_unlock(&fs_info->tree_mod_seq_lock);
				return;
351 352 353 354
			}
			min_seq = cur_elem->seq;
		}
	}
355 356
	spin_unlock(&fs_info->tree_mod_seq_lock);

357 358 359 360
	/*
	 * anything that's lower than the lowest existing (read: blocked)
	 * sequence number can be removed from the tree.
	 */
361
	write_lock(&fs_info->tree_mod_log_lock);
362 363 364
	tm_root = &fs_info->tree_mod_log;
	for (node = rb_first(tm_root); node; node = next) {
		next = rb_next(node);
365
		tm = rb_entry(node, struct tree_mod_elem, node);
366
		if (tm->seq > min_seq)
367 368 369 370
			continue;
		rb_erase(node, tm_root);
		kfree(tm);
	}
371
	write_unlock(&fs_info->tree_mod_log_lock);
372 373 374 375
}

/*
 * key order of the log:
376
 *       node/leaf start address -> sequence
377
 *
378 379 380
 * The 'start address' is the logical address of the *new* root node
 * for root replace operations, or the logical address of the affected
 * block for all other operations.
381
 *
382
 * Note: must be called with write lock for fs_info::tree_mod_log_lock.
383 384 385 386 387 388 389 390
 */
static noinline int
__tree_mod_log_insert(struct btrfs_fs_info *fs_info, struct tree_mod_elem *tm)
{
	struct rb_root *tm_root;
	struct rb_node **new;
	struct rb_node *parent = NULL;
	struct tree_mod_elem *cur;
391

J
Josef Bacik 已提交
392
	tm->seq = btrfs_inc_tree_mod_seq(fs_info);
393 394 395 396

	tm_root = &fs_info->tree_mod_log;
	new = &tm_root->rb_node;
	while (*new) {
397
		cur = rb_entry(*new, struct tree_mod_elem, node);
398
		parent = *new;
399
		if (cur->logical < tm->logical)
400
			new = &((*new)->rb_left);
401
		else if (cur->logical > tm->logical)
402
			new = &((*new)->rb_right);
403
		else if (cur->seq < tm->seq)
404
			new = &((*new)->rb_left);
405
		else if (cur->seq > tm->seq)
406
			new = &((*new)->rb_right);
407 408
		else
			return -EEXIST;
409 410 411 412
	}

	rb_link_node(&tm->node, parent, new);
	rb_insert_color(&tm->node, tm_root);
413
	return 0;
414 415
}

416 417 418 419
/*
 * Determines if logging can be omitted. Returns 1 if it can. Otherwise, it
 * returns zero with the tree_mod_log_lock acquired. The caller must hold
 * this until all tree mod log insertions are recorded in the rb tree and then
420
 * write unlock fs_info::tree_mod_log_lock.
421
 */
422 423 424 425 426
static inline int tree_mod_dont_log(struct btrfs_fs_info *fs_info,
				    struct extent_buffer *eb) {
	smp_mb();
	if (list_empty(&(fs_info)->tree_mod_seq_list))
		return 1;
427 428
	if (eb && btrfs_header_level(eb) == 0)
		return 1;
429

430
	write_lock(&fs_info->tree_mod_log_lock);
431
	if (list_empty(&(fs_info)->tree_mod_seq_list)) {
432
		write_unlock(&fs_info->tree_mod_log_lock);
433 434 435
		return 1;
	}

436 437 438
	return 0;
}

439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454
/* Similar to tree_mod_dont_log, but doesn't acquire any locks. */
static inline int tree_mod_need_log(const struct btrfs_fs_info *fs_info,
				    struct extent_buffer *eb)
{
	smp_mb();
	if (list_empty(&(fs_info)->tree_mod_seq_list))
		return 0;
	if (eb && btrfs_header_level(eb) == 0)
		return 0;

	return 1;
}

static struct tree_mod_elem *
alloc_tree_mod_elem(struct extent_buffer *eb, int slot,
		    enum mod_log_op op, gfp_t flags)
455
{
456
	struct tree_mod_elem *tm;
457

458 459
	tm = kzalloc(sizeof(*tm), flags);
	if (!tm)
460
		return NULL;
461

462
	tm->logical = eb->start;
463 464 465 466 467 468 469
	if (op != MOD_LOG_KEY_ADD) {
		btrfs_node_key(eb, &tm->key, slot);
		tm->blockptr = btrfs_node_blockptr(eb, slot);
	}
	tm->op = op;
	tm->slot = slot;
	tm->generation = btrfs_node_ptr_generation(eb, slot);
470
	RB_CLEAR_NODE(&tm->node);
471

472
	return tm;
473 474
}

475 476
static noinline int tree_mod_log_insert_key(struct extent_buffer *eb, int slot,
		enum mod_log_op op, gfp_t flags)
477
{
478 479 480
	struct tree_mod_elem *tm;
	int ret;

481
	if (!tree_mod_need_log(eb->fs_info, eb))
482 483 484 485 486 487
		return 0;

	tm = alloc_tree_mod_elem(eb, slot, op, flags);
	if (!tm)
		return -ENOMEM;

488
	if (tree_mod_dont_log(eb->fs_info, eb)) {
489
		kfree(tm);
490
		return 0;
491 492
	}

493
	ret = __tree_mod_log_insert(eb->fs_info, tm);
494
	write_unlock(&eb->fs_info->tree_mod_log_lock);
495 496
	if (ret)
		kfree(tm);
497

498
	return ret;
499 500
}

501 502
static noinline int tree_mod_log_insert_move(struct extent_buffer *eb,
		int dst_slot, int src_slot, int nr_items)
503
{
504 505 506
	struct tree_mod_elem *tm = NULL;
	struct tree_mod_elem **tm_list = NULL;
	int ret = 0;
507
	int i;
508
	int locked = 0;
509

510
	if (!tree_mod_need_log(eb->fs_info, eb))
J
Jan Schmidt 已提交
511
		return 0;
512

513
	tm_list = kcalloc(nr_items, sizeof(struct tree_mod_elem *), GFP_NOFS);
514 515 516
	if (!tm_list)
		return -ENOMEM;

517
	tm = kzalloc(sizeof(*tm), GFP_NOFS);
518 519 520 521 522
	if (!tm) {
		ret = -ENOMEM;
		goto free_tms;
	}

523
	tm->logical = eb->start;
524 525 526 527 528 529 530
	tm->slot = src_slot;
	tm->move.dst_slot = dst_slot;
	tm->move.nr_items = nr_items;
	tm->op = MOD_LOG_MOVE_KEYS;

	for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) {
		tm_list[i] = alloc_tree_mod_elem(eb, i + dst_slot,
531
		    MOD_LOG_KEY_REMOVE_WHILE_MOVING, GFP_NOFS);
532 533 534 535 536 537
		if (!tm_list[i]) {
			ret = -ENOMEM;
			goto free_tms;
		}
	}

538
	if (tree_mod_dont_log(eb->fs_info, eb))
539 540 541
		goto free_tms;
	locked = 1;

542 543 544 545 546
	/*
	 * When we override something during the move, we log these removals.
	 * This can only happen when we move towards the beginning of the
	 * buffer, i.e. dst_slot < src_slot.
	 */
547
	for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) {
548
		ret = __tree_mod_log_insert(eb->fs_info, tm_list[i]);
549 550
		if (ret)
			goto free_tms;
551 552
	}

553
	ret = __tree_mod_log_insert(eb->fs_info, tm);
554 555
	if (ret)
		goto free_tms;
556
	write_unlock(&eb->fs_info->tree_mod_log_lock);
557
	kfree(tm_list);
J
Jan Schmidt 已提交
558

559 560 561 562
	return 0;
free_tms:
	for (i = 0; i < nr_items; i++) {
		if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node))
563
			rb_erase(&tm_list[i]->node, &eb->fs_info->tree_mod_log);
564 565 566
		kfree(tm_list[i]);
	}
	if (locked)
567
		write_unlock(&eb->fs_info->tree_mod_log_lock);
568 569
	kfree(tm_list);
	kfree(tm);
570

571
	return ret;
572 573
}

574 575 576 577
static inline int
__tree_mod_log_free_eb(struct btrfs_fs_info *fs_info,
		       struct tree_mod_elem **tm_list,
		       int nritems)
578
{
579
	int i, j;
580 581 582
	int ret;

	for (i = nritems - 1; i >= 0; i--) {
583 584 585 586 587 588 589
		ret = __tree_mod_log_insert(fs_info, tm_list[i]);
		if (ret) {
			for (j = nritems - 1; j > i; j--)
				rb_erase(&tm_list[j]->node,
					 &fs_info->tree_mod_log);
			return ret;
		}
590
	}
591 592

	return 0;
593 594
}

595 596
static noinline int tree_mod_log_insert_root(struct extent_buffer *old_root,
			 struct extent_buffer *new_root, int log_removal)
597
{
598
	struct btrfs_fs_info *fs_info = old_root->fs_info;
599 600 601 602 603
	struct tree_mod_elem *tm = NULL;
	struct tree_mod_elem **tm_list = NULL;
	int nritems = 0;
	int ret = 0;
	int i;
604

605
	if (!tree_mod_need_log(fs_info, NULL))
606 607
		return 0;

608 609
	if (log_removal && btrfs_header_level(old_root) > 0) {
		nritems = btrfs_header_nritems(old_root);
610
		tm_list = kcalloc(nritems, sizeof(struct tree_mod_elem *),
611
				  GFP_NOFS);
612 613 614 615 616 617
		if (!tm_list) {
			ret = -ENOMEM;
			goto free_tms;
		}
		for (i = 0; i < nritems; i++) {
			tm_list[i] = alloc_tree_mod_elem(old_root, i,
618
			    MOD_LOG_KEY_REMOVE_WHILE_FREEING, GFP_NOFS);
619 620 621 622 623 624
			if (!tm_list[i]) {
				ret = -ENOMEM;
				goto free_tms;
			}
		}
	}
625

626
	tm = kzalloc(sizeof(*tm), GFP_NOFS);
627 628 629 630
	if (!tm) {
		ret = -ENOMEM;
		goto free_tms;
	}
631

632
	tm->logical = new_root->start;
633 634 635 636 637
	tm->old_root.logical = old_root->start;
	tm->old_root.level = btrfs_header_level(old_root);
	tm->generation = btrfs_header_generation(old_root);
	tm->op = MOD_LOG_ROOT_REPLACE;

638 639 640 641 642 643 644 645
	if (tree_mod_dont_log(fs_info, NULL))
		goto free_tms;

	if (tm_list)
		ret = __tree_mod_log_free_eb(fs_info, tm_list, nritems);
	if (!ret)
		ret = __tree_mod_log_insert(fs_info, tm);

646
	write_unlock(&fs_info->tree_mod_log_lock);
647 648 649 650 651 652 653 654 655 656 657 658 659 660 661
	if (ret)
		goto free_tms;
	kfree(tm_list);

	return ret;

free_tms:
	if (tm_list) {
		for (i = 0; i < nritems; i++)
			kfree(tm_list[i]);
		kfree(tm_list);
	}
	kfree(tm);

	return ret;
662 663 664 665 666 667 668 669 670 671 672
}

static struct tree_mod_elem *
__tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq,
		      int smallest)
{
	struct rb_root *tm_root;
	struct rb_node *node;
	struct tree_mod_elem *cur = NULL;
	struct tree_mod_elem *found = NULL;

673
	read_lock(&fs_info->tree_mod_log_lock);
674 675 676
	tm_root = &fs_info->tree_mod_log;
	node = tm_root->rb_node;
	while (node) {
677
		cur = rb_entry(node, struct tree_mod_elem, node);
678
		if (cur->logical < start) {
679
			node = node->rb_left;
680
		} else if (cur->logical > start) {
681
			node = node->rb_right;
682
		} else if (cur->seq < min_seq) {
683 684 685 686
			node = node->rb_left;
		} else if (!smallest) {
			/* we want the node with the highest seq */
			if (found)
687
				BUG_ON(found->seq > cur->seq);
688 689
			found = cur;
			node = node->rb_left;
690
		} else if (cur->seq > min_seq) {
691 692
			/* we want the node with the smallest seq */
			if (found)
693
				BUG_ON(found->seq < cur->seq);
694 695 696 697 698 699 700
			found = cur;
			node = node->rb_right;
		} else {
			found = cur;
			break;
		}
	}
701
	read_unlock(&fs_info->tree_mod_log_lock);
702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728

	return found;
}

/*
 * this returns the element from the log with the smallest time sequence
 * value that's in the log (the oldest log item). any element with a time
 * sequence lower than min_seq will be ignored.
 */
static struct tree_mod_elem *
tree_mod_log_search_oldest(struct btrfs_fs_info *fs_info, u64 start,
			   u64 min_seq)
{
	return __tree_mod_log_search(fs_info, start, min_seq, 1);
}

/*
 * this returns the element from the log with the largest time sequence
 * value that's in the log (the most recent log item). any element with
 * a time sequence lower than min_seq will be ignored.
 */
static struct tree_mod_elem *
tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq)
{
	return __tree_mod_log_search(fs_info, start, min_seq, 0);
}

729
static noinline int
730 731
tree_mod_log_eb_copy(struct btrfs_fs_info *fs_info, struct extent_buffer *dst,
		     struct extent_buffer *src, unsigned long dst_offset,
732
		     unsigned long src_offset, int nr_items)
733
{
734 735 736
	int ret = 0;
	struct tree_mod_elem **tm_list = NULL;
	struct tree_mod_elem **tm_list_add, **tm_list_rem;
737
	int i;
738
	int locked = 0;
739

740 741
	if (!tree_mod_need_log(fs_info, NULL))
		return 0;
742

743
	if (btrfs_header_level(dst) == 0 && btrfs_header_level(src) == 0)
744 745
		return 0;

746
	tm_list = kcalloc(nr_items * 2, sizeof(struct tree_mod_elem *),
747 748 749
			  GFP_NOFS);
	if (!tm_list)
		return -ENOMEM;
750

751 752
	tm_list_add = tm_list;
	tm_list_rem = tm_list + nr_items;
753
	for (i = 0; i < nr_items; i++) {
754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779
		tm_list_rem[i] = alloc_tree_mod_elem(src, i + src_offset,
		    MOD_LOG_KEY_REMOVE, GFP_NOFS);
		if (!tm_list_rem[i]) {
			ret = -ENOMEM;
			goto free_tms;
		}

		tm_list_add[i] = alloc_tree_mod_elem(dst, i + dst_offset,
		    MOD_LOG_KEY_ADD, GFP_NOFS);
		if (!tm_list_add[i]) {
			ret = -ENOMEM;
			goto free_tms;
		}
	}

	if (tree_mod_dont_log(fs_info, NULL))
		goto free_tms;
	locked = 1;

	for (i = 0; i < nr_items; i++) {
		ret = __tree_mod_log_insert(fs_info, tm_list_rem[i]);
		if (ret)
			goto free_tms;
		ret = __tree_mod_log_insert(fs_info, tm_list_add[i]);
		if (ret)
			goto free_tms;
780
	}
781

782
	write_unlock(&fs_info->tree_mod_log_lock);
783 784 785 786 787 788 789 790 791 792 793
	kfree(tm_list);

	return 0;

free_tms:
	for (i = 0; i < nr_items * 2; i++) {
		if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node))
			rb_erase(&tm_list[i]->node, &fs_info->tree_mod_log);
		kfree(tm_list[i]);
	}
	if (locked)
794
		write_unlock(&fs_info->tree_mod_log_lock);
795 796 797
	kfree(tm_list);

	return ret;
798 799
}

800
static noinline int tree_mod_log_free_eb(struct extent_buffer *eb)
801
{
802 803 804 805 806 807 808 809
	struct tree_mod_elem **tm_list = NULL;
	int nritems = 0;
	int i;
	int ret = 0;

	if (btrfs_header_level(eb) == 0)
		return 0;

810
	if (!tree_mod_need_log(eb->fs_info, NULL))
811 812 813
		return 0;

	nritems = btrfs_header_nritems(eb);
814
	tm_list = kcalloc(nritems, sizeof(struct tree_mod_elem *), GFP_NOFS);
815 816 817 818 819 820 821 822 823 824 825 826
	if (!tm_list)
		return -ENOMEM;

	for (i = 0; i < nritems; i++) {
		tm_list[i] = alloc_tree_mod_elem(eb, i,
		    MOD_LOG_KEY_REMOVE_WHILE_FREEING, GFP_NOFS);
		if (!tm_list[i]) {
			ret = -ENOMEM;
			goto free_tms;
		}
	}

827
	if (tree_mod_dont_log(eb->fs_info, eb))
828 829
		goto free_tms;

830
	ret = __tree_mod_log_free_eb(eb->fs_info, tm_list, nritems);
831
	write_unlock(&eb->fs_info->tree_mod_log_lock);
832 833 834 835 836 837 838 839 840 841 842 843
	if (ret)
		goto free_tms;
	kfree(tm_list);

	return 0;

free_tms:
	for (i = 0; i < nritems; i++)
		kfree(tm_list[i]);
	kfree(tm_list);

	return ret;
844 845
}

846 847 848 849 850 851 852
/*
 * check if the tree block can be shared by multiple trees
 */
int btrfs_block_can_be_shared(struct btrfs_root *root,
			      struct extent_buffer *buf)
{
	/*
853
	 * Tree blocks not in reference counted trees and tree roots
854 855 856 857
	 * are never shared. If a block was allocated after the last
	 * snapshot and the block was not allocated by tree relocation,
	 * we know the block is not shared.
	 */
858
	if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
859 860 861 862 863
	    buf != root->node && buf != root->commit_root &&
	    (btrfs_header_generation(buf) <=
	     btrfs_root_last_snapshot(&root->root_item) ||
	     btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)))
		return 1;
864

865 866 867 868 869 870
	return 0;
}

static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans,
				       struct btrfs_root *root,
				       struct extent_buffer *buf,
871 872
				       struct extent_buffer *cow,
				       int *last_ref)
873
{
874
	struct btrfs_fs_info *fs_info = root->fs_info;
875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898
	u64 refs;
	u64 owner;
	u64 flags;
	u64 new_flags = 0;
	int ret;

	/*
	 * Backrefs update rules:
	 *
	 * Always use full backrefs for extent pointers in tree block
	 * allocated by tree relocation.
	 *
	 * If a shared tree block is no longer referenced by its owner
	 * tree (btrfs_header_owner(buf) == root->root_key.objectid),
	 * use full backrefs for extent pointers in tree block.
	 *
	 * If a tree block is been relocating
	 * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID),
	 * use full backrefs for extent pointers in tree block.
	 * The reason for this is some operations (such as drop tree)
	 * are only allowed for blocks use full backrefs.
	 */

	if (btrfs_block_can_be_shared(root, buf)) {
899
		ret = btrfs_lookup_extent_info(trans, fs_info, buf->start,
900 901
					       btrfs_header_level(buf), 1,
					       &refs, &flags);
902 903
		if (ret)
			return ret;
904 905
		if (refs == 0) {
			ret = -EROFS;
906
			btrfs_handle_fs_error(fs_info, ret, NULL);
907 908
			return ret;
		}
909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925
	} else {
		refs = 1;
		if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
		    btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
			flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
		else
			flags = 0;
	}

	owner = btrfs_header_owner(buf);
	BUG_ON(owner == BTRFS_TREE_RELOC_OBJECTID &&
	       !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));

	if (refs > 1) {
		if ((owner == root->root_key.objectid ||
		     root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) &&
		    !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) {
926
			ret = btrfs_inc_ref(trans, root, buf, 1);
927 928
			if (ret)
				return ret;
929 930 931

			if (root->root_key.objectid ==
			    BTRFS_TREE_RELOC_OBJECTID) {
932
				ret = btrfs_dec_ref(trans, root, buf, 0);
933 934
				if (ret)
					return ret;
935
				ret = btrfs_inc_ref(trans, root, cow, 1);
936 937
				if (ret)
					return ret;
938 939 940 941 942 943
			}
			new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
		} else {

			if (root->root_key.objectid ==
			    BTRFS_TREE_RELOC_OBJECTID)
944
				ret = btrfs_inc_ref(trans, root, cow, 1);
945
			else
946
				ret = btrfs_inc_ref(trans, root, cow, 0);
947 948
			if (ret)
				return ret;
949 950
		}
		if (new_flags != 0) {
951 952
			int level = btrfs_header_level(buf);

953
			ret = btrfs_set_disk_extent_flags(trans, fs_info,
954 955
							  buf->start,
							  buf->len,
956
							  new_flags, level, 0);
957 958
			if (ret)
				return ret;
959 960 961 962 963
		}
	} else {
		if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
			if (root->root_key.objectid ==
			    BTRFS_TREE_RELOC_OBJECTID)
964
				ret = btrfs_inc_ref(trans, root, cow, 1);
965
			else
966
				ret = btrfs_inc_ref(trans, root, cow, 0);
967 968
			if (ret)
				return ret;
969
			ret = btrfs_dec_ref(trans, root, buf, 1);
970 971
			if (ret)
				return ret;
972
		}
973
		clean_tree_block(fs_info, buf);
974
		*last_ref = 1;
975 976 977 978
	}
	return 0;
}

979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020
static struct extent_buffer *alloc_tree_block_no_bg_flush(
					  struct btrfs_trans_handle *trans,
					  struct btrfs_root *root,
					  u64 parent_start,
					  const struct btrfs_disk_key *disk_key,
					  int level,
					  u64 hint,
					  u64 empty_size)
{
	struct btrfs_fs_info *fs_info = root->fs_info;
	struct extent_buffer *ret;

	/*
	 * If we are COWing a node/leaf from the extent, chunk, device or free
	 * space trees, make sure that we do not finish block group creation of
	 * pending block groups. We do this to avoid a deadlock.
	 * COWing can result in allocation of a new chunk, and flushing pending
	 * block groups (btrfs_create_pending_block_groups()) can be triggered
	 * when finishing allocation of a new chunk. Creation of a pending block
	 * group modifies the extent, chunk, device and free space trees,
	 * therefore we could deadlock with ourselves since we are holding a
	 * lock on an extent buffer that btrfs_create_pending_block_groups() may
	 * try to COW later.
	 * For similar reasons, we also need to delay flushing pending block
	 * groups when splitting a leaf or node, from one of those trees, since
	 * we are holding a write lock on it and its parent or when inserting a
	 * new root node for one of those trees.
	 */
	if (root == fs_info->extent_root ||
	    root == fs_info->chunk_root ||
	    root == fs_info->dev_root ||
	    root == fs_info->free_space_root)
		trans->can_flush_pending_bgs = false;

	ret = btrfs_alloc_tree_block(trans, root, parent_start,
				     root->root_key.objectid, disk_key, level,
				     hint, empty_size);
	trans->can_flush_pending_bgs = true;

	return ret;
}

C
Chris Mason 已提交
1021
/*
C
Chris Mason 已提交
1022 1023 1024 1025
 * does the dirty work in cow of a single block.  The parent block (if
 * supplied) is updated to point to the new cow copy.  The new buffer is marked
 * dirty and returned locked.  If you modify the block it needs to be marked
 * dirty again.
C
Chris Mason 已提交
1026 1027 1028
 *
 * search_start -- an allocation hint for the new block
 *
C
Chris Mason 已提交
1029 1030 1031
 * empty_size -- a hint that you plan on doing more cow.  This is the size in
 * bytes the allocator should try to find free next to the block it returns.
 * This is just a hint and may be ignored by the allocator.
C
Chris Mason 已提交
1032
 */
C
Chris Mason 已提交
1033
static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans,
1034 1035 1036 1037
			     struct btrfs_root *root,
			     struct extent_buffer *buf,
			     struct extent_buffer *parent, int parent_slot,
			     struct extent_buffer **cow_ret,
1038
			     u64 search_start, u64 empty_size)
C
Chris Mason 已提交
1039
{
1040
	struct btrfs_fs_info *fs_info = root->fs_info;
1041
	struct btrfs_disk_key disk_key;
1042
	struct extent_buffer *cow;
1043
	int level, ret;
1044
	int last_ref = 0;
1045
	int unlock_orig = 0;
1046
	u64 parent_start = 0;
1047

1048 1049 1050
	if (*cow_ret == buf)
		unlock_orig = 1;

1051
	btrfs_assert_tree_locked(buf);
1052

1053
	WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
1054
		trans->transid != fs_info->running_transaction->transid);
1055 1056
	WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
		trans->transid != root->last_trans);
1057

1058
	level = btrfs_header_level(buf);
Z
Zheng Yan 已提交
1059

1060 1061 1062 1063 1064
	if (level == 0)
		btrfs_item_key(buf, &disk_key, 0);
	else
		btrfs_node_key(buf, &disk_key, 0);

1065 1066
	if ((root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) && parent)
		parent_start = parent->start;
1067

1068 1069
	cow = alloc_tree_block_no_bg_flush(trans, root, parent_start, &disk_key,
					   level, search_start, empty_size);
1070 1071
	if (IS_ERR(cow))
		return PTR_ERR(cow);
1072

1073 1074
	/* cow is set to blocking by btrfs_init_new_buffer */

1075
	copy_extent_buffer_full(cow, buf);
1076
	btrfs_set_header_bytenr(cow, cow->start);
1077
	btrfs_set_header_generation(cow, trans->transid);
1078 1079 1080 1081 1082 1083 1084
	btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
	btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
				     BTRFS_HEADER_FLAG_RELOC);
	if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
		btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
	else
		btrfs_set_header_owner(cow, root->root_key.objectid);
1085

1086
	write_extent_buffer_fsid(cow, fs_info->fs_devices->metadata_uuid);
Y
Yan Zheng 已提交
1087

1088
	ret = update_ref_for_cow(trans, root, buf, cow, &last_ref);
1089
	if (ret) {
1090
		btrfs_abort_transaction(trans, ret);
1091 1092
		return ret;
	}
Z
Zheng Yan 已提交
1093

1094
	if (test_bit(BTRFS_ROOT_REF_COWS, &root->state)) {
1095
		ret = btrfs_reloc_cow_block(trans, root, buf, cow);
1096
		if (ret) {
1097
			btrfs_abort_transaction(trans, ret);
1098
			return ret;
1099
		}
1100
	}
1101

C
Chris Mason 已提交
1102
	if (buf == root->node) {
1103
		WARN_ON(parent && parent != buf);
1104 1105 1106
		if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
		    btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
			parent_start = buf->start;
1107

1108
		extent_buffer_get(cow);
1109 1110
		ret = tree_mod_log_insert_root(root->node, cow, 1);
		BUG_ON(ret < 0);
1111
		rcu_assign_pointer(root->node, cow);
1112

1113
		btrfs_free_tree_block(trans, root, buf, parent_start,
1114
				      last_ref);
1115
		free_extent_buffer(buf);
1116
		add_root_to_dirty_list(root);
C
Chris Mason 已提交
1117
	} else {
1118
		WARN_ON(trans->transid != btrfs_header_generation(parent));
1119
		tree_mod_log_insert_key(parent, parent_slot,
1120
					MOD_LOG_KEY_REPLACE, GFP_NOFS);
1121
		btrfs_set_node_blockptr(parent, parent_slot,
1122
					cow->start);
1123 1124
		btrfs_set_node_ptr_generation(parent, parent_slot,
					      trans->transid);
C
Chris Mason 已提交
1125
		btrfs_mark_buffer_dirty(parent);
1126
		if (last_ref) {
1127
			ret = tree_mod_log_free_eb(buf);
1128
			if (ret) {
1129
				btrfs_abort_transaction(trans, ret);
1130 1131 1132
				return ret;
			}
		}
1133
		btrfs_free_tree_block(trans, root, buf, parent_start,
1134
				      last_ref);
C
Chris Mason 已提交
1135
	}
1136 1137
	if (unlock_orig)
		btrfs_tree_unlock(buf);
1138
	free_extent_buffer_stale(buf);
C
Chris Mason 已提交
1139
	btrfs_mark_buffer_dirty(cow);
C
Chris Mason 已提交
1140
	*cow_ret = cow;
C
Chris Mason 已提交
1141 1142 1143
	return 0;
}

J
Jan Schmidt 已提交
1144 1145 1146 1147
/*
 * returns the logical address of the oldest predecessor of the given root.
 * entries older than time_seq are ignored.
 */
1148 1149
static struct tree_mod_elem *__tree_mod_log_oldest_root(
		struct extent_buffer *eb_root, u64 time_seq)
J
Jan Schmidt 已提交
1150 1151 1152
{
	struct tree_mod_elem *tm;
	struct tree_mod_elem *found = NULL;
1153
	u64 root_logical = eb_root->start;
J
Jan Schmidt 已提交
1154 1155 1156
	int looped = 0;

	if (!time_seq)
1157
		return NULL;
J
Jan Schmidt 已提交
1158 1159

	/*
1160 1161 1162 1163
	 * the very last operation that's logged for a root is the
	 * replacement operation (if it is replaced at all). this has
	 * the logical address of the *new* root, making it the very
	 * first operation that's logged for this root.
J
Jan Schmidt 已提交
1164 1165
	 */
	while (1) {
1166
		tm = tree_mod_log_search_oldest(eb_root->fs_info, root_logical,
J
Jan Schmidt 已提交
1167 1168
						time_seq);
		if (!looped && !tm)
1169
			return NULL;
J
Jan Schmidt 已提交
1170
		/*
1171 1172 1173
		 * if there are no tree operation for the oldest root, we simply
		 * return it. this should only happen if that (old) root is at
		 * level 0.
J
Jan Schmidt 已提交
1174
		 */
1175 1176
		if (!tm)
			break;
J
Jan Schmidt 已提交
1177

1178 1179 1180 1181 1182
		/*
		 * if there's an operation that's not a root replacement, we
		 * found the oldest version of our root. normally, we'll find a
		 * MOD_LOG_KEY_REMOVE_WHILE_FREEING operation here.
		 */
J
Jan Schmidt 已提交
1183 1184 1185 1186 1187 1188 1189 1190
		if (tm->op != MOD_LOG_ROOT_REPLACE)
			break;

		found = tm;
		root_logical = tm->old_root.logical;
		looped = 1;
	}

1191 1192 1193 1194
	/* if there's no old root to return, return what we found instead */
	if (!found)
		found = tm;

J
Jan Schmidt 已提交
1195 1196 1197 1198 1199
	return found;
}

/*
 * tm is a pointer to the first operation to rewind within eb. then, all
1200
 * previous operations will be rewound (until we reach something older than
J
Jan Schmidt 已提交
1201 1202 1203
 * time_seq).
 */
static void
1204 1205
__tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct extent_buffer *eb,
		      u64 time_seq, struct tree_mod_elem *first_tm)
J
Jan Schmidt 已提交
1206 1207 1208 1209 1210 1211 1212 1213 1214
{
	u32 n;
	struct rb_node *next;
	struct tree_mod_elem *tm = first_tm;
	unsigned long o_dst;
	unsigned long o_src;
	unsigned long p_size = sizeof(struct btrfs_key_ptr);

	n = btrfs_header_nritems(eb);
1215
	read_lock(&fs_info->tree_mod_log_lock);
1216
	while (tm && tm->seq >= time_seq) {
J
Jan Schmidt 已提交
1217 1218 1219 1220 1221 1222 1223 1224
		/*
		 * all the operations are recorded with the operator used for
		 * the modification. as we're going backwards, we do the
		 * opposite of each operation here.
		 */
		switch (tm->op) {
		case MOD_LOG_KEY_REMOVE_WHILE_FREEING:
			BUG_ON(tm->slot < n);
1225
			/* Fallthrough */
1226
		case MOD_LOG_KEY_REMOVE_WHILE_MOVING:
1227
		case MOD_LOG_KEY_REMOVE:
J
Jan Schmidt 已提交
1228 1229 1230 1231
			btrfs_set_node_key(eb, &tm->key, tm->slot);
			btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
			btrfs_set_node_ptr_generation(eb, tm->slot,
						      tm->generation);
1232
			n++;
J
Jan Schmidt 已提交
1233 1234 1235 1236 1237 1238 1239 1240 1241
			break;
		case MOD_LOG_KEY_REPLACE:
			BUG_ON(tm->slot >= n);
			btrfs_set_node_key(eb, &tm->key, tm->slot);
			btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
			btrfs_set_node_ptr_generation(eb, tm->slot,
						      tm->generation);
			break;
		case MOD_LOG_KEY_ADD:
1242
			/* if a move operation is needed it's in the log */
J
Jan Schmidt 已提交
1243 1244 1245
			n--;
			break;
		case MOD_LOG_MOVE_KEYS:
1246 1247 1248
			o_dst = btrfs_node_key_ptr_offset(tm->slot);
			o_src = btrfs_node_key_ptr_offset(tm->move.dst_slot);
			memmove_extent_buffer(eb, o_dst, o_src,
J
Jan Schmidt 已提交
1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265
					      tm->move.nr_items * p_size);
			break;
		case MOD_LOG_ROOT_REPLACE:
			/*
			 * this operation is special. for roots, this must be
			 * handled explicitly before rewinding.
			 * for non-roots, this operation may exist if the node
			 * was a root: root A -> child B; then A gets empty and
			 * B is promoted to the new root. in the mod log, we'll
			 * have a root-replace operation for B, a tree block
			 * that is no root. we simply ignore that operation.
			 */
			break;
		}
		next = rb_next(&tm->node);
		if (!next)
			break;
1266
		tm = rb_entry(next, struct tree_mod_elem, node);
1267
		if (tm->logical != first_tm->logical)
J
Jan Schmidt 已提交
1268 1269
			break;
	}
1270
	read_unlock(&fs_info->tree_mod_log_lock);
J
Jan Schmidt 已提交
1271 1272 1273
	btrfs_set_header_nritems(eb, n);
}

1274
/*
1275
 * Called with eb read locked. If the buffer cannot be rewound, the same buffer
1276 1277 1278 1279 1280
 * is returned. If rewind operations happen, a fresh buffer is returned. The
 * returned buffer is always read-locked. If the returned buffer is not the
 * input buffer, the lock on the input buffer is released and the input buffer
 * is freed (its refcount is decremented).
 */
J
Jan Schmidt 已提交
1281
static struct extent_buffer *
1282 1283
tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct btrfs_path *path,
		    struct extent_buffer *eb, u64 time_seq)
J
Jan Schmidt 已提交
1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297
{
	struct extent_buffer *eb_rewin;
	struct tree_mod_elem *tm;

	if (!time_seq)
		return eb;

	if (btrfs_header_level(eb) == 0)
		return eb;

	tm = tree_mod_log_search(fs_info, eb->start, time_seq);
	if (!tm)
		return eb;

1298
	btrfs_set_path_blocking(path);
1299
	btrfs_set_lock_blocking_read(eb);
1300

J
Jan Schmidt 已提交
1301 1302
	if (tm->op == MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
		BUG_ON(tm->slot != 0);
1303
		eb_rewin = alloc_dummy_extent_buffer(fs_info, eb->start);
1304
		if (!eb_rewin) {
1305
			btrfs_tree_read_unlock_blocking(eb);
1306 1307 1308
			free_extent_buffer(eb);
			return NULL;
		}
J
Jan Schmidt 已提交
1309 1310 1311 1312
		btrfs_set_header_bytenr(eb_rewin, eb->start);
		btrfs_set_header_backref_rev(eb_rewin,
					     btrfs_header_backref_rev(eb));
		btrfs_set_header_owner(eb_rewin, btrfs_header_owner(eb));
1313
		btrfs_set_header_level(eb_rewin, btrfs_header_level(eb));
J
Jan Schmidt 已提交
1314 1315
	} else {
		eb_rewin = btrfs_clone_extent_buffer(eb);
1316
		if (!eb_rewin) {
1317
			btrfs_tree_read_unlock_blocking(eb);
1318 1319 1320
			free_extent_buffer(eb);
			return NULL;
		}
J
Jan Schmidt 已提交
1321 1322
	}

1323
	btrfs_tree_read_unlock_blocking(eb);
J
Jan Schmidt 已提交
1324 1325
	free_extent_buffer(eb);

1326
	btrfs_tree_read_lock(eb_rewin);
1327
	__tree_mod_log_rewind(fs_info, eb_rewin, time_seq, tm);
1328
	WARN_ON(btrfs_header_nritems(eb_rewin) >
1329
		BTRFS_NODEPTRS_PER_BLOCK(fs_info));
J
Jan Schmidt 已提交
1330 1331 1332 1333

	return eb_rewin;
}

1334 1335 1336 1337 1338 1339 1340
/*
 * get_old_root() rewinds the state of @root's root node to the given @time_seq
 * value. If there are no changes, the current root->root_node is returned. If
 * anything changed in between, there's a fresh buffer allocated on which the
 * rewind operations are done. In any case, the returned buffer is read locked.
 * Returns NULL on error (with no locks held).
 */
J
Jan Schmidt 已提交
1341 1342 1343
static inline struct extent_buffer *
get_old_root(struct btrfs_root *root, u64 time_seq)
{
1344
	struct btrfs_fs_info *fs_info = root->fs_info;
J
Jan Schmidt 已提交
1345
	struct tree_mod_elem *tm;
1346 1347
	struct extent_buffer *eb = NULL;
	struct extent_buffer *eb_root;
1348
	struct extent_buffer *old;
1349
	struct tree_mod_root *old_root = NULL;
1350
	u64 old_generation = 0;
1351
	u64 logical;
1352
	int level;
J
Jan Schmidt 已提交
1353

1354
	eb_root = btrfs_read_lock_root_node(root);
1355
	tm = __tree_mod_log_oldest_root(eb_root, time_seq);
J
Jan Schmidt 已提交
1356
	if (!tm)
1357
		return eb_root;
J
Jan Schmidt 已提交
1358

1359 1360 1361 1362
	if (tm->op == MOD_LOG_ROOT_REPLACE) {
		old_root = &tm->old_root;
		old_generation = tm->generation;
		logical = old_root->logical;
1363
		level = old_root->level;
1364
	} else {
1365
		logical = eb_root->start;
1366
		level = btrfs_header_level(eb_root);
1367
	}
J
Jan Schmidt 已提交
1368

1369
	tm = tree_mod_log_search(fs_info, logical, time_seq);
1370
	if (old_root && tm && tm->op != MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
1371 1372
		btrfs_tree_read_unlock(eb_root);
		free_extent_buffer(eb_root);
1373
		old = read_tree_block(fs_info, logical, 0, level, NULL);
1374 1375 1376
		if (WARN_ON(IS_ERR(old) || !extent_buffer_uptodate(old))) {
			if (!IS_ERR(old))
				free_extent_buffer(old);
1377 1378 1379
			btrfs_warn(fs_info,
				   "failed to read tree block %llu from get_old_root",
				   logical);
1380
		} else {
1381 1382
			eb = btrfs_clone_extent_buffer(old);
			free_extent_buffer(old);
1383 1384
		}
	} else if (old_root) {
1385 1386
		btrfs_tree_read_unlock(eb_root);
		free_extent_buffer(eb_root);
1387
		eb = alloc_dummy_extent_buffer(fs_info, logical);
1388
	} else {
1389
		btrfs_set_lock_blocking_read(eb_root);
1390
		eb = btrfs_clone_extent_buffer(eb_root);
1391
		btrfs_tree_read_unlock_blocking(eb_root);
1392
		free_extent_buffer(eb_root);
1393 1394
	}

1395 1396 1397
	if (!eb)
		return NULL;
	btrfs_tree_read_lock(eb);
1398
	if (old_root) {
J
Jan Schmidt 已提交
1399 1400
		btrfs_set_header_bytenr(eb, eb->start);
		btrfs_set_header_backref_rev(eb, BTRFS_MIXED_BACKREF_REV);
1401
		btrfs_set_header_owner(eb, btrfs_header_owner(eb_root));
1402 1403
		btrfs_set_header_level(eb, old_root->level);
		btrfs_set_header_generation(eb, old_generation);
J
Jan Schmidt 已提交
1404
	}
1405
	if (tm)
1406
		__tree_mod_log_rewind(fs_info, eb, time_seq, tm);
1407 1408
	else
		WARN_ON(btrfs_header_level(eb) != 0);
1409
	WARN_ON(btrfs_header_nritems(eb) > BTRFS_NODEPTRS_PER_BLOCK(fs_info));
J
Jan Schmidt 已提交
1410 1411 1412 1413

	return eb;
}

J
Jan Schmidt 已提交
1414 1415 1416 1417
int btrfs_old_root_level(struct btrfs_root *root, u64 time_seq)
{
	struct tree_mod_elem *tm;
	int level;
1418
	struct extent_buffer *eb_root = btrfs_root_node(root);
J
Jan Schmidt 已提交
1419

1420
	tm = __tree_mod_log_oldest_root(eb_root, time_seq);
J
Jan Schmidt 已提交
1421 1422 1423
	if (tm && tm->op == MOD_LOG_ROOT_REPLACE) {
		level = tm->old_root.level;
	} else {
1424
		level = btrfs_header_level(eb_root);
J
Jan Schmidt 已提交
1425
	}
1426
	free_extent_buffer(eb_root);
J
Jan Schmidt 已提交
1427 1428 1429 1430

	return level;
}

1431 1432 1433 1434
static inline int should_cow_block(struct btrfs_trans_handle *trans,
				   struct btrfs_root *root,
				   struct extent_buffer *buf)
{
1435
	if (btrfs_is_testing(root->fs_info))
1436
		return 0;
1437

1438 1439
	/* Ensure we can see the FORCE_COW bit */
	smp_mb__before_atomic();
1440 1441 1442 1443 1444 1445 1446 1447

	/*
	 * We do not need to cow a block if
	 * 1) this block is not created or changed in this transaction;
	 * 2) this block does not belong to TREE_RELOC tree;
	 * 3) the root is not forced COW.
	 *
	 * What is forced COW:
1448
	 *    when we create snapshot during committing the transaction,
1449
	 *    after we've finished copying src root, we must COW the shared
1450 1451
	 *    block to ensure the metadata consistency.
	 */
1452 1453 1454
	if (btrfs_header_generation(buf) == trans->transid &&
	    !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) &&
	    !(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
1455
	      btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)) &&
1456
	    !test_bit(BTRFS_ROOT_FORCE_COW, &root->state))
1457 1458 1459 1460
		return 0;
	return 1;
}

C
Chris Mason 已提交
1461 1462
/*
 * cows a single block, see __btrfs_cow_block for the real work.
1463
 * This version of it has extra checks so that a block isn't COWed more than
C
Chris Mason 已提交
1464 1465
 * once per transaction, as long as it hasn't been written yet
 */
C
Chris Mason 已提交
1466
noinline int btrfs_cow_block(struct btrfs_trans_handle *trans,
1467 1468
		    struct btrfs_root *root, struct extent_buffer *buf,
		    struct extent_buffer *parent, int parent_slot,
1469
		    struct extent_buffer **cow_ret)
1470
{
1471
	struct btrfs_fs_info *fs_info = root->fs_info;
1472
	u64 search_start;
1473
	int ret;
C
Chris Mason 已提交
1474

1475 1476 1477 1478
	if (test_bit(BTRFS_ROOT_DELETING, &root->state))
		btrfs_err(fs_info,
			"COW'ing blocks on a fs root that's being dropped");

1479
	if (trans->transaction != fs_info->running_transaction)
J
Julia Lawall 已提交
1480
		WARN(1, KERN_CRIT "trans %llu running %llu\n",
1481
		       trans->transid,
1482
		       fs_info->running_transaction->transid);
J
Julia Lawall 已提交
1483

1484
	if (trans->transid != fs_info->generation)
J
Julia Lawall 已提交
1485
		WARN(1, KERN_CRIT "trans %llu running %llu\n",
1486
		       trans->transid, fs_info->generation);
C
Chris Mason 已提交
1487

1488
	if (!should_cow_block(trans, root, buf)) {
1489
		trans->dirty = true;
1490 1491 1492
		*cow_ret = buf;
		return 0;
	}
1493

1494
	search_start = buf->start & ~((u64)SZ_1G - 1);
1495 1496

	if (parent)
1497 1498
		btrfs_set_lock_blocking_write(parent);
	btrfs_set_lock_blocking_write(buf);
1499

1500 1501 1502 1503 1504 1505 1506
	/*
	 * Before CoWing this block for later modification, check if it's
	 * the subtree root and do the delayed subtree trace if needed.
	 *
	 * Also We don't care about the error, as it's handled internally.
	 */
	btrfs_qgroup_trace_subtree_after_cow(trans, root, buf);
1507
	ret = __btrfs_cow_block(trans, root, buf, parent,
1508
				 parent_slot, cow_ret, search_start, 0);
1509 1510 1511

	trace_btrfs_cow_block(root, buf, *cow_ret);

1512
	return ret;
1513 1514
}

C
Chris Mason 已提交
1515 1516 1517 1518
/*
 * helper function for defrag to decide if two blocks pointed to by a
 * node are actually close by
 */
1519
static int close_blocks(u64 blocknr, u64 other, u32 blocksize)
1520
{
1521
	if (blocknr < other && other - (blocknr + blocksize) < 32768)
1522
		return 1;
1523
	if (blocknr > other && blocknr - (other + blocksize) < 32768)
1524 1525 1526 1527
		return 1;
	return 0;
}

1528 1529 1530
/*
 * compare two keys in a memcmp fashion
 */
1531 1532
static int comp_keys(const struct btrfs_disk_key *disk,
		     const struct btrfs_key *k2)
1533 1534 1535 1536 1537
{
	struct btrfs_key k1;

	btrfs_disk_key_to_cpu(&k1, disk);

1538
	return btrfs_comp_cpu_keys(&k1, k2);
1539 1540
}

1541 1542 1543
/*
 * same as comp_keys only with two btrfs_key's
 */
1544
int btrfs_comp_cpu_keys(const struct btrfs_key *k1, const struct btrfs_key *k2)
1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559
{
	if (k1->objectid > k2->objectid)
		return 1;
	if (k1->objectid < k2->objectid)
		return -1;
	if (k1->type > k2->type)
		return 1;
	if (k1->type < k2->type)
		return -1;
	if (k1->offset > k2->offset)
		return 1;
	if (k1->offset < k2->offset)
		return -1;
	return 0;
}
1560

C
Chris Mason 已提交
1561 1562 1563 1564 1565
/*
 * this is used by the defrag code to go through all the
 * leaves pointed to by a node and reallocate them so that
 * disk order is close to key order
 */
1566
int btrfs_realloc_node(struct btrfs_trans_handle *trans,
1567
		       struct btrfs_root *root, struct extent_buffer *parent,
1568
		       int start_slot, u64 *last_ret,
1569
		       struct btrfs_key *progress)
1570
{
1571
	struct btrfs_fs_info *fs_info = root->fs_info;
1572
	struct extent_buffer *cur;
1573
	u64 blocknr;
1574
	u64 gen;
1575 1576
	u64 search_start = *last_ret;
	u64 last_block = 0;
1577 1578 1579 1580 1581
	u64 other;
	u32 parent_nritems;
	int end_slot;
	int i;
	int err = 0;
1582
	int parent_level;
1583 1584
	int uptodate;
	u32 blocksize;
1585 1586
	int progress_passed = 0;
	struct btrfs_disk_key disk_key;
1587

1588 1589
	parent_level = btrfs_header_level(parent);

1590 1591
	WARN_ON(trans->transaction != fs_info->running_transaction);
	WARN_ON(trans->transid != fs_info->generation);
1592

1593
	parent_nritems = btrfs_header_nritems(parent);
1594
	blocksize = fs_info->nodesize;
1595
	end_slot = parent_nritems - 1;
1596

1597
	if (parent_nritems <= 1)
1598 1599
		return 0;

1600
	btrfs_set_lock_blocking_write(parent);
1601

1602
	for (i = start_slot; i <= end_slot; i++) {
1603
		struct btrfs_key first_key;
1604
		int close = 1;
1605

1606 1607 1608 1609 1610
		btrfs_node_key(parent, &disk_key, i);
		if (!progress_passed && comp_keys(&disk_key, progress) < 0)
			continue;

		progress_passed = 1;
1611
		blocknr = btrfs_node_blockptr(parent, i);
1612
		gen = btrfs_node_ptr_generation(parent, i);
1613
		btrfs_node_key_to_cpu(parent, &first_key, i);
1614 1615
		if (last_block == 0)
			last_block = blocknr;
1616

1617
		if (i > 0) {
1618 1619
			other = btrfs_node_blockptr(parent, i - 1);
			close = close_blocks(blocknr, other, blocksize);
1620
		}
1621
		if (!close && i < end_slot) {
1622 1623
			other = btrfs_node_blockptr(parent, i + 1);
			close = close_blocks(blocknr, other, blocksize);
1624
		}
1625 1626
		if (close) {
			last_block = blocknr;
1627
			continue;
1628
		}
1629

1630
		cur = find_extent_buffer(fs_info, blocknr);
1631
		if (cur)
1632
			uptodate = btrfs_buffer_uptodate(cur, gen, 0);
1633 1634
		else
			uptodate = 0;
1635
		if (!cur || !uptodate) {
1636
			if (!cur) {
1637 1638 1639
				cur = read_tree_block(fs_info, blocknr, gen,
						      parent_level - 1,
						      &first_key);
1640 1641 1642
				if (IS_ERR(cur)) {
					return PTR_ERR(cur);
				} else if (!extent_buffer_uptodate(cur)) {
1643
					free_extent_buffer(cur);
1644
					return -EIO;
1645
				}
1646
			} else if (!uptodate) {
1647 1648
				err = btrfs_read_buffer(cur, gen,
						parent_level - 1,&first_key);
1649 1650 1651 1652
				if (err) {
					free_extent_buffer(cur);
					return err;
				}
1653
			}
1654
		}
1655
		if (search_start == 0)
1656
			search_start = last_block;
1657

1658
		btrfs_tree_lock(cur);
1659
		btrfs_set_lock_blocking_write(cur);
1660
		err = __btrfs_cow_block(trans, root, cur, parent, i,
1661
					&cur, search_start,
1662
					min(16 * blocksize,
1663
					    (end_slot - i) * blocksize));
Y
Yan 已提交
1664
		if (err) {
1665
			btrfs_tree_unlock(cur);
1666
			free_extent_buffer(cur);
1667
			break;
Y
Yan 已提交
1668
		}
1669 1670
		search_start = cur->start;
		last_block = cur->start;
1671
		*last_ret = search_start;
1672 1673
		btrfs_tree_unlock(cur);
		free_extent_buffer(cur);
1674 1675 1676 1677
	}
	return err;
}

C
Chris Mason 已提交
1678
/*
1679 1680 1681
 * search for key in the extent_buffer.  The items start at offset p,
 * and they are item_size apart.  There are 'max' items in p.
 *
C
Chris Mason 已提交
1682 1683 1684 1685 1686 1687
 * the slot in the array is returned via slot, and it points to
 * the place where you would insert key if it is not found in
 * the array.
 *
 * slot may point to max if the key is bigger than all of the keys
 */
1688
static noinline int generic_bin_search(struct extent_buffer *eb,
1689 1690
				       unsigned long p, int item_size,
				       const struct btrfs_key *key,
1691
				       int max, int *slot)
1692 1693 1694 1695 1696
{
	int low = 0;
	int high = max;
	int mid;
	int ret;
1697
	struct btrfs_disk_key *tmp = NULL;
1698 1699 1700 1701 1702
	struct btrfs_disk_key unaligned;
	unsigned long offset;
	char *kaddr = NULL;
	unsigned long map_start = 0;
	unsigned long map_len = 0;
1703
	int err;
1704

1705 1706 1707 1708 1709 1710 1711 1712
	if (low > high) {
		btrfs_err(eb->fs_info,
		 "%s: low (%d) > high (%d) eb %llu owner %llu level %d",
			  __func__, low, high, eb->start,
			  btrfs_header_owner(eb), btrfs_header_level(eb));
		return -EINVAL;
	}

C
Chris Mason 已提交
1713
	while (low < high) {
1714
		mid = (low + high) / 2;
1715 1716
		offset = p + mid * item_size;

1717
		if (!kaddr || offset < map_start ||
1718 1719
		    (offset + sizeof(struct btrfs_disk_key)) >
		    map_start + map_len) {
1720 1721

			err = map_private_extent_buffer(eb, offset,
1722
						sizeof(struct btrfs_disk_key),
1723
						&kaddr, &map_start, &map_len);
1724 1725 1726 1727

			if (!err) {
				tmp = (struct btrfs_disk_key *)(kaddr + offset -
							map_start);
1728
			} else if (err == 1) {
1729 1730 1731
				read_extent_buffer(eb, &unaligned,
						   offset, sizeof(unaligned));
				tmp = &unaligned;
1732 1733
			} else {
				return err;
1734
			}
1735 1736 1737 1738 1739

		} else {
			tmp = (struct btrfs_disk_key *)(kaddr + offset -
							map_start);
		}
1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754
		ret = comp_keys(tmp, key);

		if (ret < 0)
			low = mid + 1;
		else if (ret > 0)
			high = mid;
		else {
			*slot = mid;
			return 0;
		}
	}
	*slot = low;
	return 1;
}

C
Chris Mason 已提交
1755 1756 1757 1758
/*
 * simple bin_search frontend that does the right thing for
 * leaves vs nodes
 */
1759 1760
int btrfs_bin_search(struct extent_buffer *eb, const struct btrfs_key *key,
		     int level, int *slot)
1761
{
1762
	if (level == 0)
1763 1764
		return generic_bin_search(eb,
					  offsetof(struct btrfs_leaf, items),
C
Chris Mason 已提交
1765
					  sizeof(struct btrfs_item),
1766
					  key, btrfs_header_nritems(eb),
1767
					  slot);
1768
	else
1769 1770
		return generic_bin_search(eb,
					  offsetof(struct btrfs_node, ptrs),
C
Chris Mason 已提交
1771
					  sizeof(struct btrfs_key_ptr),
1772
					  key, btrfs_header_nritems(eb),
1773
					  slot);
1774 1775
}

1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791
static void root_add_used(struct btrfs_root *root, u32 size)
{
	spin_lock(&root->accounting_lock);
	btrfs_set_root_used(&root->root_item,
			    btrfs_root_used(&root->root_item) + size);
	spin_unlock(&root->accounting_lock);
}

static void root_sub_used(struct btrfs_root *root, u32 size)
{
	spin_lock(&root->accounting_lock);
	btrfs_set_root_used(&root->root_item,
			    btrfs_root_used(&root->root_item) - size);
	spin_unlock(&root->accounting_lock);
}

C
Chris Mason 已提交
1792 1793 1794
/* given a node and slot number, this reads the blocks it points to.  The
 * extent buffer is returned with a reference taken (but unlocked).
 */
1795 1796 1797
static noinline struct extent_buffer *
read_node_slot(struct btrfs_fs_info *fs_info, struct extent_buffer *parent,
	       int slot)
1798
{
1799
	int level = btrfs_header_level(parent);
1800
	struct extent_buffer *eb;
1801
	struct btrfs_key first_key;
1802

1803 1804
	if (slot < 0 || slot >= btrfs_header_nritems(parent))
		return ERR_PTR(-ENOENT);
1805 1806 1807

	BUG_ON(level == 0);

1808
	btrfs_node_key_to_cpu(parent, &first_key, slot);
1809
	eb = read_tree_block(fs_info, btrfs_node_blockptr(parent, slot),
1810 1811
			     btrfs_node_ptr_generation(parent, slot),
			     level - 1, &first_key);
1812 1813 1814
	if (!IS_ERR(eb) && !extent_buffer_uptodate(eb)) {
		free_extent_buffer(eb);
		eb = ERR_PTR(-EIO);
1815 1816 1817
	}

	return eb;
1818 1819
}

C
Chris Mason 已提交
1820 1821 1822 1823 1824
/*
 * node level balancing, used to make sure nodes are in proper order for
 * item deletion.  We balance from the top down, so we have to make sure
 * that a deletion won't leave an node completely empty later on.
 */
1825
static noinline int balance_level(struct btrfs_trans_handle *trans,
1826 1827
			 struct btrfs_root *root,
			 struct btrfs_path *path, int level)
1828
{
1829
	struct btrfs_fs_info *fs_info = root->fs_info;
1830 1831 1832 1833
	struct extent_buffer *right = NULL;
	struct extent_buffer *mid;
	struct extent_buffer *left = NULL;
	struct extent_buffer *parent = NULL;
1834 1835 1836 1837
	int ret = 0;
	int wret;
	int pslot;
	int orig_slot = path->slots[level];
1838
	u64 orig_ptr;
1839

1840
	ASSERT(level > 0);
1841

1842
	mid = path->nodes[level];
1843

1844 1845
	WARN_ON(path->locks[level] != BTRFS_WRITE_LOCK &&
		path->locks[level] != BTRFS_WRITE_LOCK_BLOCKING);
1846 1847
	WARN_ON(btrfs_header_generation(mid) != trans->transid);

1848
	orig_ptr = btrfs_node_blockptr(mid, orig_slot);
1849

L
Li Zefan 已提交
1850
	if (level < BTRFS_MAX_LEVEL - 1) {
1851
		parent = path->nodes[level + 1];
L
Li Zefan 已提交
1852 1853
		pslot = path->slots[level + 1];
	}
1854

C
Chris Mason 已提交
1855 1856 1857 1858
	/*
	 * deal with the case where there is only one pointer in the root
	 * by promoting the node below to a root
	 */
1859 1860
	if (!parent) {
		struct extent_buffer *child;
1861

1862
		if (btrfs_header_nritems(mid) != 1)
1863 1864 1865
			return 0;

		/* promote the child to a root */
1866
		child = read_node_slot(fs_info, mid, 0);
1867 1868
		if (IS_ERR(child)) {
			ret = PTR_ERR(child);
1869
			btrfs_handle_fs_error(fs_info, ret, NULL);
1870 1871 1872
			goto enospc;
		}

1873
		btrfs_tree_lock(child);
1874
		btrfs_set_lock_blocking_write(child);
1875
		ret = btrfs_cow_block(trans, root, child, mid, 0, &child);
1876 1877 1878 1879 1880
		if (ret) {
			btrfs_tree_unlock(child);
			free_extent_buffer(child);
			goto enospc;
		}
1881

1882 1883
		ret = tree_mod_log_insert_root(root->node, child, 1);
		BUG_ON(ret < 0);
1884
		rcu_assign_pointer(root->node, child);
1885

1886
		add_root_to_dirty_list(root);
1887
		btrfs_tree_unlock(child);
1888

1889
		path->locks[level] = 0;
1890
		path->nodes[level] = NULL;
1891
		clean_tree_block(fs_info, mid);
1892
		btrfs_tree_unlock(mid);
1893
		/* once for the path */
1894
		free_extent_buffer(mid);
1895 1896

		root_sub_used(root, mid->len);
1897
		btrfs_free_tree_block(trans, root, mid, 0, 1);
1898
		/* once for the root ptr */
1899
		free_extent_buffer_stale(mid);
1900
		return 0;
1901
	}
1902
	if (btrfs_header_nritems(mid) >
1903
	    BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 4)
1904 1905
		return 0;

1906
	left = read_node_slot(fs_info, parent, pslot - 1);
1907 1908 1909
	if (IS_ERR(left))
		left = NULL;

1910
	if (left) {
1911
		btrfs_tree_lock(left);
1912
		btrfs_set_lock_blocking_write(left);
1913
		wret = btrfs_cow_block(trans, root, left,
1914
				       parent, pslot - 1, &left);
1915 1916 1917 1918
		if (wret) {
			ret = wret;
			goto enospc;
		}
1919
	}
1920

1921
	right = read_node_slot(fs_info, parent, pslot + 1);
1922 1923 1924
	if (IS_ERR(right))
		right = NULL;

1925
	if (right) {
1926
		btrfs_tree_lock(right);
1927
		btrfs_set_lock_blocking_write(right);
1928
		wret = btrfs_cow_block(trans, root, right,
1929
				       parent, pslot + 1, &right);
1930 1931 1932 1933 1934 1935 1936
		if (wret) {
			ret = wret;
			goto enospc;
		}
	}

	/* first, try to make some room in the middle buffer */
1937 1938
	if (left) {
		orig_slot += btrfs_header_nritems(left);
1939
		wret = push_node_left(trans, fs_info, left, mid, 1);
1940 1941
		if (wret < 0)
			ret = wret;
1942
	}
1943 1944 1945 1946

	/*
	 * then try to empty the right most buffer into the middle
	 */
1947
	if (right) {
1948
		wret = push_node_left(trans, fs_info, mid, right, 1);
1949
		if (wret < 0 && wret != -ENOSPC)
1950
			ret = wret;
1951
		if (btrfs_header_nritems(right) == 0) {
1952
			clean_tree_block(fs_info, right);
1953
			btrfs_tree_unlock(right);
1954
			del_ptr(root, path, level + 1, pslot + 1);
1955
			root_sub_used(root, right->len);
1956
			btrfs_free_tree_block(trans, root, right, 0, 1);
1957
			free_extent_buffer_stale(right);
1958
			right = NULL;
1959
		} else {
1960 1961
			struct btrfs_disk_key right_key;
			btrfs_node_key(right, &right_key, 0);
1962 1963 1964
			ret = tree_mod_log_insert_key(parent, pslot + 1,
					MOD_LOG_KEY_REPLACE, GFP_NOFS);
			BUG_ON(ret < 0);
1965 1966
			btrfs_set_node_key(parent, &right_key, pslot + 1);
			btrfs_mark_buffer_dirty(parent);
1967 1968
		}
	}
1969
	if (btrfs_header_nritems(mid) == 1) {
1970 1971 1972 1973 1974 1975 1976 1977 1978
		/*
		 * we're not allowed to leave a node with one item in the
		 * tree during a delete.  A deletion from lower in the tree
		 * could try to delete the only pointer in this node.
		 * So, pull some keys from the left.
		 * There has to be a left pointer at this point because
		 * otherwise we would have pulled some pointers from the
		 * right
		 */
1979 1980
		if (!left) {
			ret = -EROFS;
1981
			btrfs_handle_fs_error(fs_info, ret, NULL);
1982 1983
			goto enospc;
		}
1984
		wret = balance_node_right(trans, fs_info, mid, left);
1985
		if (wret < 0) {
1986
			ret = wret;
1987 1988
			goto enospc;
		}
1989
		if (wret == 1) {
1990
			wret = push_node_left(trans, fs_info, left, mid, 1);
1991 1992 1993
			if (wret < 0)
				ret = wret;
		}
1994 1995
		BUG_ON(wret == 1);
	}
1996
	if (btrfs_header_nritems(mid) == 0) {
1997
		clean_tree_block(fs_info, mid);
1998
		btrfs_tree_unlock(mid);
1999
		del_ptr(root, path, level + 1, pslot);
2000
		root_sub_used(root, mid->len);
2001
		btrfs_free_tree_block(trans, root, mid, 0, 1);
2002
		free_extent_buffer_stale(mid);
2003
		mid = NULL;
2004 2005
	} else {
		/* update the parent key to reflect our changes */
2006 2007
		struct btrfs_disk_key mid_key;
		btrfs_node_key(mid, &mid_key, 0);
2008 2009 2010
		ret = tree_mod_log_insert_key(parent, pslot,
				MOD_LOG_KEY_REPLACE, GFP_NOFS);
		BUG_ON(ret < 0);
2011 2012
		btrfs_set_node_key(parent, &mid_key, pslot);
		btrfs_mark_buffer_dirty(parent);
2013
	}
2014

2015
	/* update the path */
2016 2017 2018
	if (left) {
		if (btrfs_header_nritems(left) > orig_slot) {
			extent_buffer_get(left);
2019
			/* left was locked after cow */
2020
			path->nodes[level] = left;
2021 2022
			path->slots[level + 1] -= 1;
			path->slots[level] = orig_slot;
2023 2024
			if (mid) {
				btrfs_tree_unlock(mid);
2025
				free_extent_buffer(mid);
2026
			}
2027
		} else {
2028
			orig_slot -= btrfs_header_nritems(left);
2029 2030 2031
			path->slots[level] = orig_slot;
		}
	}
2032
	/* double check we haven't messed things up */
C
Chris Mason 已提交
2033
	if (orig_ptr !=
2034
	    btrfs_node_blockptr(path->nodes[level], path->slots[level]))
2035
		BUG();
2036
enospc:
2037 2038
	if (right) {
		btrfs_tree_unlock(right);
2039
		free_extent_buffer(right);
2040 2041 2042 2043
	}
	if (left) {
		if (path->nodes[level] != left)
			btrfs_tree_unlock(left);
2044
		free_extent_buffer(left);
2045
	}
2046 2047 2048
	return ret;
}

C
Chris Mason 已提交
2049 2050 2051 2052
/* Node balancing for insertion.  Here we only split or push nodes around
 * when they are completely full.  This is also done top down, so we
 * have to be pessimistic.
 */
C
Chris Mason 已提交
2053
static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans,
2054 2055
					  struct btrfs_root *root,
					  struct btrfs_path *path, int level)
2056
{
2057
	struct btrfs_fs_info *fs_info = root->fs_info;
2058 2059 2060 2061
	struct extent_buffer *right = NULL;
	struct extent_buffer *mid;
	struct extent_buffer *left = NULL;
	struct extent_buffer *parent = NULL;
2062 2063 2064 2065 2066 2067 2068 2069
	int ret = 0;
	int wret;
	int pslot;
	int orig_slot = path->slots[level];

	if (level == 0)
		return 1;

2070
	mid = path->nodes[level];
2071
	WARN_ON(btrfs_header_generation(mid) != trans->transid);
2072

L
Li Zefan 已提交
2073
	if (level < BTRFS_MAX_LEVEL - 1) {
2074
		parent = path->nodes[level + 1];
L
Li Zefan 已提交
2075 2076
		pslot = path->slots[level + 1];
	}
2077

2078
	if (!parent)
2079 2080
		return 1;

2081
	left = read_node_slot(fs_info, parent, pslot - 1);
2082 2083
	if (IS_ERR(left))
		left = NULL;
2084 2085

	/* first, try to make some room in the middle buffer */
2086
	if (left) {
2087
		u32 left_nr;
2088 2089

		btrfs_tree_lock(left);
2090
		btrfs_set_lock_blocking_write(left);
2091

2092
		left_nr = btrfs_header_nritems(left);
2093
		if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) {
C
Chris Mason 已提交
2094 2095
			wret = 1;
		} else {
2096
			ret = btrfs_cow_block(trans, root, left, parent,
2097
					      pslot - 1, &left);
2098 2099 2100
			if (ret)
				wret = 1;
			else {
2101
				wret = push_node_left(trans, fs_info,
2102
						      left, mid, 0);
2103
			}
C
Chris Mason 已提交
2104
		}
2105 2106 2107
		if (wret < 0)
			ret = wret;
		if (wret == 0) {
2108
			struct btrfs_disk_key disk_key;
2109
			orig_slot += left_nr;
2110
			btrfs_node_key(mid, &disk_key, 0);
2111 2112 2113
			ret = tree_mod_log_insert_key(parent, pslot,
					MOD_LOG_KEY_REPLACE, GFP_NOFS);
			BUG_ON(ret < 0);
2114 2115 2116 2117
			btrfs_set_node_key(parent, &disk_key, pslot);
			btrfs_mark_buffer_dirty(parent);
			if (btrfs_header_nritems(left) > orig_slot) {
				path->nodes[level] = left;
2118 2119
				path->slots[level + 1] -= 1;
				path->slots[level] = orig_slot;
2120
				btrfs_tree_unlock(mid);
2121
				free_extent_buffer(mid);
2122 2123
			} else {
				orig_slot -=
2124
					btrfs_header_nritems(left);
2125
				path->slots[level] = orig_slot;
2126
				btrfs_tree_unlock(left);
2127
				free_extent_buffer(left);
2128 2129 2130
			}
			return 0;
		}
2131
		btrfs_tree_unlock(left);
2132
		free_extent_buffer(left);
2133
	}
2134
	right = read_node_slot(fs_info, parent, pslot + 1);
2135 2136
	if (IS_ERR(right))
		right = NULL;
2137 2138 2139 2140

	/*
	 * then try to empty the right most buffer into the middle
	 */
2141
	if (right) {
C
Chris Mason 已提交
2142
		u32 right_nr;
2143

2144
		btrfs_tree_lock(right);
2145
		btrfs_set_lock_blocking_write(right);
2146

2147
		right_nr = btrfs_header_nritems(right);
2148
		if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) {
C
Chris Mason 已提交
2149 2150
			wret = 1;
		} else {
2151 2152
			ret = btrfs_cow_block(trans, root, right,
					      parent, pslot + 1,
2153
					      &right);
2154 2155 2156
			if (ret)
				wret = 1;
			else {
2157
				wret = balance_node_right(trans, fs_info,
2158
							  right, mid);
2159
			}
C
Chris Mason 已提交
2160
		}
2161 2162 2163
		if (wret < 0)
			ret = wret;
		if (wret == 0) {
2164 2165 2166
			struct btrfs_disk_key disk_key;

			btrfs_node_key(right, &disk_key, 0);
2167 2168 2169
			ret = tree_mod_log_insert_key(parent, pslot + 1,
					MOD_LOG_KEY_REPLACE, GFP_NOFS);
			BUG_ON(ret < 0);
2170 2171 2172 2173 2174
			btrfs_set_node_key(parent, &disk_key, pslot + 1);
			btrfs_mark_buffer_dirty(parent);

			if (btrfs_header_nritems(mid) <= orig_slot) {
				path->nodes[level] = right;
2175 2176
				path->slots[level + 1] += 1;
				path->slots[level] = orig_slot -
2177
					btrfs_header_nritems(mid);
2178
				btrfs_tree_unlock(mid);
2179
				free_extent_buffer(mid);
2180
			} else {
2181
				btrfs_tree_unlock(right);
2182
				free_extent_buffer(right);
2183 2184 2185
			}
			return 0;
		}
2186
		btrfs_tree_unlock(right);
2187
		free_extent_buffer(right);
2188 2189 2190 2191
	}
	return 1;
}

2192
/*
C
Chris Mason 已提交
2193 2194
 * readahead one full node of leaves, finding things that are close
 * to the block in 'slot', and triggering ra on them.
2195
 */
2196
static void reada_for_search(struct btrfs_fs_info *fs_info,
2197 2198
			     struct btrfs_path *path,
			     int level, int slot, u64 objectid)
2199
{
2200
	struct extent_buffer *node;
2201
	struct btrfs_disk_key disk_key;
2202 2203
	u32 nritems;
	u64 search;
2204
	u64 target;
2205
	u64 nread = 0;
2206
	struct extent_buffer *eb;
2207 2208 2209
	u32 nr;
	u32 blocksize;
	u32 nscan = 0;
2210

2211
	if (level != 1)
2212 2213 2214
		return;

	if (!path->nodes[level])
2215 2216
		return;

2217
	node = path->nodes[level];
2218

2219
	search = btrfs_node_blockptr(node, slot);
2220 2221
	blocksize = fs_info->nodesize;
	eb = find_extent_buffer(fs_info, search);
2222 2223
	if (eb) {
		free_extent_buffer(eb);
2224 2225 2226
		return;
	}

2227
	target = search;
2228

2229
	nritems = btrfs_header_nritems(node);
2230
	nr = slot;
2231

C
Chris Mason 已提交
2232
	while (1) {
2233
		if (path->reada == READA_BACK) {
2234 2235 2236
			if (nr == 0)
				break;
			nr--;
2237
		} else if (path->reada == READA_FORWARD) {
2238 2239 2240
			nr++;
			if (nr >= nritems)
				break;
2241
		}
2242
		if (path->reada == READA_BACK && objectid) {
2243 2244 2245 2246
			btrfs_node_key(node, &disk_key, nr);
			if (btrfs_disk_key_objectid(&disk_key) != objectid)
				break;
		}
2247
		search = btrfs_node_blockptr(node, nr);
2248 2249
		if ((search <= target && target - search <= 65536) ||
		    (search > target && search - target <= 65536)) {
2250
			readahead_tree_block(fs_info, search);
2251 2252 2253
			nread += blocksize;
		}
		nscan++;
2254
		if ((nread > 65536 || nscan > 32))
2255
			break;
2256 2257
	}
}
2258

2259
static noinline void reada_for_balance(struct btrfs_fs_info *fs_info,
J
Josef Bacik 已提交
2260
				       struct btrfs_path *path, int level)
2261 2262 2263 2264 2265 2266 2267 2268 2269
{
	int slot;
	int nritems;
	struct extent_buffer *parent;
	struct extent_buffer *eb;
	u64 gen;
	u64 block1 = 0;
	u64 block2 = 0;

2270
	parent = path->nodes[level + 1];
2271
	if (!parent)
J
Josef Bacik 已提交
2272
		return;
2273 2274

	nritems = btrfs_header_nritems(parent);
2275
	slot = path->slots[level + 1];
2276 2277 2278 2279

	if (slot > 0) {
		block1 = btrfs_node_blockptr(parent, slot - 1);
		gen = btrfs_node_ptr_generation(parent, slot - 1);
2280
		eb = find_extent_buffer(fs_info, block1);
2281 2282 2283 2284 2285 2286
		/*
		 * if we get -eagain from btrfs_buffer_uptodate, we
		 * don't want to return eagain here.  That will loop
		 * forever
		 */
		if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
2287 2288 2289
			block1 = 0;
		free_extent_buffer(eb);
	}
2290
	if (slot + 1 < nritems) {
2291 2292
		block2 = btrfs_node_blockptr(parent, slot + 1);
		gen = btrfs_node_ptr_generation(parent, slot + 1);
2293
		eb = find_extent_buffer(fs_info, block2);
2294
		if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
2295 2296 2297
			block2 = 0;
		free_extent_buffer(eb);
	}
2298

J
Josef Bacik 已提交
2299
	if (block1)
2300
		readahead_tree_block(fs_info, block1);
J
Josef Bacik 已提交
2301
	if (block2)
2302
		readahead_tree_block(fs_info, block2);
2303 2304 2305
}


C
Chris Mason 已提交
2306
/*
C
Chris Mason 已提交
2307 2308 2309 2310
 * when we walk down the tree, it is usually safe to unlock the higher layers
 * in the tree.  The exceptions are when our path goes through slot 0, because
 * operations on the tree might require changing key pointers higher up in the
 * tree.
C
Chris Mason 已提交
2311
 *
C
Chris Mason 已提交
2312 2313 2314
 * callers might also have set path->keep_locks, which tells this code to keep
 * the lock if the path points to the last slot in the block.  This is part of
 * walking through the tree, and selecting the next slot in the higher block.
C
Chris Mason 已提交
2315
 *
C
Chris Mason 已提交
2316 2317
 * lowest_unlock sets the lowest level in the tree we're allowed to unlock.  so
 * if lowest_unlock is 1, level 0 won't be unlocked
C
Chris Mason 已提交
2318
 */
2319
static noinline void unlock_up(struct btrfs_path *path, int level,
2320 2321
			       int lowest_unlock, int min_write_lock_level,
			       int *write_lock_level)
2322 2323 2324
{
	int i;
	int skip_level = level;
2325
	int no_skips = 0;
2326 2327 2328 2329 2330 2331 2332
	struct extent_buffer *t;

	for (i = level; i < BTRFS_MAX_LEVEL; i++) {
		if (!path->nodes[i])
			break;
		if (!path->locks[i])
			break;
2333
		if (!no_skips && path->slots[i] == 0) {
2334 2335 2336
			skip_level = i + 1;
			continue;
		}
2337
		if (!no_skips && path->keep_locks) {
2338 2339 2340
			u32 nritems;
			t = path->nodes[i];
			nritems = btrfs_header_nritems(t);
2341
			if (nritems < 1 || path->slots[i] >= nritems - 1) {
2342 2343 2344 2345
				skip_level = i + 1;
				continue;
			}
		}
2346 2347 2348
		if (skip_level < i && i >= lowest_unlock)
			no_skips = 1;

2349
		t = path->nodes[i];
2350
		if (i >= lowest_unlock && i > skip_level) {
2351
			btrfs_tree_unlock_rw(t, path->locks[i]);
2352
			path->locks[i] = 0;
2353 2354 2355 2356 2357
			if (write_lock_level &&
			    i > min_write_lock_level &&
			    i <= *write_lock_level) {
				*write_lock_level = i - 1;
			}
2358 2359 2360 2361
		}
	}
}

2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374
/*
 * This releases any locks held in the path starting at level and
 * going all the way up to the root.
 *
 * btrfs_search_slot will keep the lock held on higher nodes in a few
 * corner cases, such as COW of the block at slot zero in the node.  This
 * ignores those rules, and it should only be called when there are no
 * more updates to be done higher up in the tree.
 */
noinline void btrfs_unlock_up_safe(struct btrfs_path *path, int level)
{
	int i;

J
Josef Bacik 已提交
2375
	if (path->keep_locks)
2376 2377 2378 2379
		return;

	for (i = level; i < BTRFS_MAX_LEVEL; i++) {
		if (!path->nodes[i])
2380
			continue;
2381
		if (!path->locks[i])
2382
			continue;
2383
		btrfs_tree_unlock_rw(path->nodes[i], path->locks[i]);
2384 2385 2386 2387
		path->locks[i] = 0;
	}
}

2388 2389 2390 2391 2392 2393 2394 2395 2396
/*
 * helper function for btrfs_search_slot.  The goal is to find a block
 * in cache without setting the path to blocking.  If we find the block
 * we return zero and the path is unchanged.
 *
 * If we can't find the block, we set the path blocking and do some
 * reada.  -EAGAIN is returned and the search must be repeated.
 */
static int
2397 2398
read_block_for_search(struct btrfs_root *root, struct btrfs_path *p,
		      struct extent_buffer **eb_ret, int level, int slot,
2399
		      const struct btrfs_key *key)
2400
{
2401
	struct btrfs_fs_info *fs_info = root->fs_info;
2402 2403 2404 2405
	u64 blocknr;
	u64 gen;
	struct extent_buffer *b = *eb_ret;
	struct extent_buffer *tmp;
2406
	struct btrfs_key first_key;
2407
	int ret;
2408
	int parent_level;
2409 2410 2411

	blocknr = btrfs_node_blockptr(b, slot);
	gen = btrfs_node_ptr_generation(b, slot);
2412 2413
	parent_level = btrfs_header_level(b);
	btrfs_node_key_to_cpu(b, &first_key, slot);
2414

2415
	tmp = find_extent_buffer(fs_info, blocknr);
2416
	if (tmp) {
2417
		/* first we do an atomic uptodate check */
2418
		if (btrfs_buffer_uptodate(tmp, gen, 1) > 0) {
2419 2420 2421 2422 2423 2424 2425 2426 2427 2428
			/*
			 * Do extra check for first_key, eb can be stale due to
			 * being cached, read from scrub, or have multiple
			 * parents (shared tree blocks).
			 */
			if (btrfs_verify_level_key(fs_info, tmp,
					parent_level - 1, &first_key, gen)) {
				free_extent_buffer(tmp);
				return -EUCLEAN;
			}
2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441
			*eb_ret = tmp;
			return 0;
		}

		/* the pages were up to date, but we failed
		 * the generation number check.  Do a full
		 * read for the generation number that is correct.
		 * We must do this without dropping locks so
		 * we can trust our generation number
		 */
		btrfs_set_path_blocking(p);

		/* now we're allowed to do a blocking uptodate check */
2442
		ret = btrfs_read_buffer(tmp, gen, parent_level - 1, &first_key);
2443 2444 2445
		if (!ret) {
			*eb_ret = tmp;
			return 0;
2446
		}
2447 2448 2449
		free_extent_buffer(tmp);
		btrfs_release_path(p);
		return -EIO;
2450 2451 2452 2453 2454
	}

	/*
	 * reduce lock contention at high levels
	 * of the btree by dropping locks before
2455 2456 2457
	 * we read.  Don't release the lock on the current
	 * level because we need to walk this node to figure
	 * out which blocks to read.
2458
	 */
2459 2460 2461
	btrfs_unlock_up_safe(p, level + 1);
	btrfs_set_path_blocking(p);

2462
	if (p->reada != READA_NONE)
2463
		reada_for_search(fs_info, p, level, slot, key->objectid);
2464

2465
	ret = -EAGAIN;
2466
	tmp = read_tree_block(fs_info, blocknr, gen, parent_level - 1,
2467
			      &first_key);
2468
	if (!IS_ERR(tmp)) {
2469 2470 2471 2472 2473 2474
		/*
		 * If the read above didn't mark this buffer up to date,
		 * it will never end up being up to date.  Set ret to EIO now
		 * and give up so that our caller doesn't loop forever
		 * on our EAGAINs.
		 */
2475
		if (!extent_buffer_uptodate(tmp))
2476
			ret = -EIO;
2477
		free_extent_buffer(tmp);
2478 2479
	} else {
		ret = PTR_ERR(tmp);
2480
	}
2481 2482

	btrfs_release_path(p);
2483
	return ret;
2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497
}

/*
 * helper function for btrfs_search_slot.  This does all of the checks
 * for node-level blocks and does any balancing required based on
 * the ins_len.
 *
 * If no extra work was required, zero is returned.  If we had to
 * drop the path, -EAGAIN is returned and btrfs_search_slot must
 * start over
 */
static int
setup_nodes_for_search(struct btrfs_trans_handle *trans,
		       struct btrfs_root *root, struct btrfs_path *p,
2498 2499
		       struct extent_buffer *b, int level, int ins_len,
		       int *write_lock_level)
2500
{
2501
	struct btrfs_fs_info *fs_info = root->fs_info;
2502
	int ret;
2503

2504
	if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >=
2505
	    BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3) {
2506 2507
		int sret;

2508 2509 2510 2511 2512 2513
		if (*write_lock_level < level + 1) {
			*write_lock_level = level + 1;
			btrfs_release_path(p);
			goto again;
		}

2514
		btrfs_set_path_blocking(p);
2515
		reada_for_balance(fs_info, p, level);
2516 2517 2518 2519 2520 2521 2522 2523 2524
		sret = split_node(trans, root, p, level);

		BUG_ON(sret > 0);
		if (sret) {
			ret = sret;
			goto done;
		}
		b = p->nodes[level];
	} else if (ins_len < 0 && btrfs_header_nritems(b) <
2525
		   BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 2) {
2526 2527
		int sret;

2528 2529 2530 2531 2532 2533
		if (*write_lock_level < level + 1) {
			*write_lock_level = level + 1;
			btrfs_release_path(p);
			goto again;
		}

2534
		btrfs_set_path_blocking(p);
2535
		reada_for_balance(fs_info, p, level);
2536 2537 2538 2539 2540 2541 2542 2543
		sret = balance_level(trans, root, p, level);

		if (sret) {
			ret = sret;
			goto done;
		}
		b = p->nodes[level];
		if (!b) {
2544
			btrfs_release_path(p);
2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556
			goto again;
		}
		BUG_ON(btrfs_header_nritems(b) == 1);
	}
	return 0;

again:
	ret = -EAGAIN;
done:
	return ret;
}

2557
static int key_search(struct extent_buffer *b, const struct btrfs_key *key,
2558 2559 2560
		      int level, int *prev_cmp, int *slot)
{
	if (*prev_cmp != 0) {
2561
		*prev_cmp = btrfs_bin_search(b, key, level, slot);
2562 2563 2564 2565 2566 2567 2568 2569
		return *prev_cmp;
	}

	*slot = 0;

	return 0;
}

2570
int btrfs_find_item(struct btrfs_root *fs_root, struct btrfs_path *path,
2571 2572 2573 2574 2575 2576
		u64 iobjectid, u64 ioff, u8 key_type,
		struct btrfs_key *found_key)
{
	int ret;
	struct btrfs_key key;
	struct extent_buffer *eb;
2577 2578

	ASSERT(path);
2579
	ASSERT(found_key);
2580 2581 2582 2583 2584 2585

	key.type = key_type;
	key.objectid = iobjectid;
	key.offset = ioff;

	ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0);
2586
	if (ret < 0)
2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604
		return ret;

	eb = path->nodes[0];
	if (ret && path->slots[0] >= btrfs_header_nritems(eb)) {
		ret = btrfs_next_leaf(fs_root, path);
		if (ret)
			return ret;
		eb = path->nodes[0];
	}

	btrfs_item_key_to_cpu(eb, found_key, path->slots[0]);
	if (found_key->type != key.type ||
			found_key->objectid != key.objectid)
		return 1;

	return 0;
}

2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617
static struct extent_buffer *btrfs_search_slot_get_root(struct btrfs_root *root,
							struct btrfs_path *p,
							int write_lock_level)
{
	struct btrfs_fs_info *fs_info = root->fs_info;
	struct extent_buffer *b;
	int root_lock;
	int level = 0;

	/* We try very hard to do read locks on the root */
	root_lock = BTRFS_READ_LOCK;

	if (p->search_commit_root) {
2618 2619 2620 2621 2622 2623 2624 2625 2626 2627
		/*
		 * The commit roots are read only so we always do read locks,
		 * and we always must hold the commit_root_sem when doing
		 * searches on them, the only exception is send where we don't
		 * want to block transaction commits for a long time, so
		 * we need to clone the commit root in order to avoid races
		 * with transaction commits that create a snapshot of one of
		 * the roots used by a send operation.
		 */
		if (p->need_commit_sem) {
2628
			down_read(&fs_info->commit_root_sem);
2629
			b = btrfs_clone_extent_buffer(root->commit_root);
2630
			up_read(&fs_info->commit_root_sem);
2631 2632 2633 2634 2635 2636 2637 2638
			if (!b)
				return ERR_PTR(-ENOMEM);

		} else {
			b = root->commit_root;
			extent_buffer_get(b);
		}
		level = btrfs_header_level(b);
2639 2640 2641 2642 2643
		/*
		 * Ensure that all callers have set skip_locking when
		 * p->search_commit_root = 1.
		 */
		ASSERT(p->skip_locking == 1);
2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654

		goto out;
	}

	if (p->skip_locking) {
		b = btrfs_root_node(root);
		level = btrfs_header_level(b);
		goto out;
	}

	/*
2655 2656
	 * If the level is set to maximum, we can skip trying to get the read
	 * lock.
2657
	 */
2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671
	if (write_lock_level < BTRFS_MAX_LEVEL) {
		/*
		 * We don't know the level of the root node until we actually
		 * have it read locked
		 */
		b = btrfs_read_lock_root_node(root);
		level = btrfs_header_level(b);
		if (level > write_lock_level)
			goto out;

		/* Whoops, must trade for write lock */
		btrfs_tree_read_unlock(b);
		free_extent_buffer(b);
	}
2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689

	b = btrfs_lock_root_node(root);
	root_lock = BTRFS_WRITE_LOCK;

	/* The level might have changed, check again */
	level = btrfs_header_level(b);

out:
	p->nodes[level] = b;
	if (!p->skip_locking)
		p->locks[level] = root_lock;
	/*
	 * Callers are responsible for dropping b's references.
	 */
	return b;
}


C
Chris Mason 已提交
2690
/*
2691 2692
 * btrfs_search_slot - look for a key in a tree and perform necessary
 * modifications to preserve tree invariants.
C
Chris Mason 已提交
2693
 *
2694 2695 2696 2697 2698 2699 2700 2701
 * @trans:	Handle of transaction, used when modifying the tree
 * @p:		Holds all btree nodes along the search path
 * @root:	The root node of the tree
 * @key:	The key we are looking for
 * @ins_len:	Indicates purpose of search, for inserts it is 1, for
 *		deletions it's -1. 0 for plain searches
 * @cow:	boolean should CoW operations be performed. Must always be 1
 *		when modifying the tree.
C
Chris Mason 已提交
2702
 *
2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713
 * If @ins_len > 0, nodes and leaves will be split as we walk down the tree.
 * If @ins_len < 0, nodes will be merged as we walk down the tree (if possible)
 *
 * If @key is found, 0 is returned and you can find the item in the leaf level
 * of the path (level 0)
 *
 * If @key isn't found, 1 is returned and the leaf level of the path (level 0)
 * points to the slot where it should be inserted
 *
 * If an error is encountered while searching the tree a negative error number
 * is returned
C
Chris Mason 已提交
2714
 */
2715 2716 2717
int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root *root,
		      const struct btrfs_key *key, struct btrfs_path *p,
		      int ins_len, int cow)
2718
{
2719
	struct btrfs_fs_info *fs_info = root->fs_info;
2720
	struct extent_buffer *b;
2721 2722
	int slot;
	int ret;
2723
	int err;
2724
	int level;
2725
	int lowest_unlock = 1;
2726 2727
	/* everything at write_lock_level or lower must be write locked */
	int write_lock_level = 0;
2728
	u8 lowest_level = 0;
2729
	int min_write_lock_level;
2730
	int prev_cmp;
2731

2732
	lowest_level = p->lowest_level;
2733
	WARN_ON(lowest_level && ins_len > 0);
C
Chris Mason 已提交
2734
	WARN_ON(p->nodes[0] != NULL);
2735
	BUG_ON(!cow && ins_len);
2736

2737
	if (ins_len < 0) {
2738
		lowest_unlock = 2;
2739

2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755
		/* when we are removing items, we might have to go up to level
		 * two as we update tree pointers  Make sure we keep write
		 * for those levels as well
		 */
		write_lock_level = 2;
	} else if (ins_len > 0) {
		/*
		 * for inserting items, make sure we have a write lock on
		 * level 1 so we can update keys
		 */
		write_lock_level = 1;
	}

	if (!cow)
		write_lock_level = -1;

J
Josef Bacik 已提交
2756
	if (cow && (p->keep_locks || p->lowest_level))
2757 2758
		write_lock_level = BTRFS_MAX_LEVEL;

2759 2760
	min_write_lock_level = write_lock_level;

2761
again:
2762
	prev_cmp = -1;
2763
	b = btrfs_search_slot_get_root(root, p, write_lock_level);
2764 2765 2766 2767
	if (IS_ERR(b)) {
		ret = PTR_ERR(b);
		goto done;
	}
2768

2769
	while (b) {
2770
		level = btrfs_header_level(b);
2771 2772 2773 2774 2775

		/*
		 * setup the path here so we can release it under lock
		 * contention with the cow code
		 */
C
Chris Mason 已提交
2776
		if (cow) {
2777 2778
			bool last_level = (level == (BTRFS_MAX_LEVEL - 1));

2779 2780 2781 2782 2783
			/*
			 * if we don't really need to cow this block
			 * then we don't want to set the path blocking,
			 * so we test it here
			 */
2784 2785
			if (!should_cow_block(trans, root, b)) {
				trans->dirty = true;
2786
				goto cow_done;
2787
			}
2788

2789 2790 2791 2792
			/*
			 * must have write locks on this node and the
			 * parent
			 */
2793 2794 2795 2796
			if (level > write_lock_level ||
			    (level + 1 > write_lock_level &&
			    level + 1 < BTRFS_MAX_LEVEL &&
			    p->nodes[level + 1])) {
2797 2798 2799 2800 2801
				write_lock_level = level + 1;
				btrfs_release_path(p);
				goto again;
			}

2802
			btrfs_set_path_blocking(p);
2803 2804 2805 2806 2807 2808 2809
			if (last_level)
				err = btrfs_cow_block(trans, root, b, NULL, 0,
						      &b);
			else
				err = btrfs_cow_block(trans, root, b,
						      p->nodes[level + 1],
						      p->slots[level + 1], &b);
2810 2811
			if (err) {
				ret = err;
2812
				goto done;
2813
			}
C
Chris Mason 已提交
2814
		}
2815
cow_done:
2816
		p->nodes[level] = b;
L
Liu Bo 已提交
2817 2818 2819 2820
		/*
		 * Leave path with blocking locks to avoid massive
		 * lock context switch, this is made on purpose.
		 */
2821 2822 2823 2824 2825 2826 2827

		/*
		 * we have a lock on b and as long as we aren't changing
		 * the tree, there is no way to for the items in b to change.
		 * It is safe to drop the lock on our parent before we
		 * go through the expensive btree search on b.
		 *
2828 2829 2830 2831
		 * If we're inserting or deleting (ins_len != 0), then we might
		 * be changing slot zero, which may require changing the parent.
		 * So, we can't drop the lock until after we know which slot
		 * we're operating on.
2832
		 */
2833 2834 2835 2836 2837 2838 2839 2840
		if (!ins_len && !p->keep_locks) {
			int u = level + 1;

			if (u < BTRFS_MAX_LEVEL && p->locks[u]) {
				btrfs_tree_unlock_rw(p->nodes[u], p->locks[u]);
				p->locks[u] = 0;
			}
		}
2841

2842
		ret = key_search(b, key, level, &prev_cmp, &slot);
2843 2844
		if (ret < 0)
			goto done;
2845

2846
		if (level != 0) {
2847 2848 2849
			int dec = 0;
			if (ret && slot > 0) {
				dec = 1;
2850
				slot -= 1;
2851
			}
2852
			p->slots[level] = slot;
2853
			err = setup_nodes_for_search(trans, root, p, b, level,
2854
					     ins_len, &write_lock_level);
2855
			if (err == -EAGAIN)
2856
				goto again;
2857 2858
			if (err) {
				ret = err;
2859
				goto done;
2860
			}
2861 2862
			b = p->nodes[level];
			slot = p->slots[level];
2863

2864 2865 2866 2867 2868 2869
			/*
			 * slot 0 is special, if we change the key
			 * we have to update the parent pointer
			 * which means we must have a write lock
			 * on the parent
			 */
2870
			if (slot == 0 && ins_len &&
2871 2872 2873 2874 2875 2876
			    write_lock_level < level + 1) {
				write_lock_level = level + 1;
				btrfs_release_path(p);
				goto again;
			}

2877 2878
			unlock_up(p, level, lowest_unlock,
				  min_write_lock_level, &write_lock_level);
2879

2880
			if (level == lowest_level) {
2881 2882
				if (dec)
					p->slots[level]++;
2883
				goto done;
2884
			}
2885

2886
			err = read_block_for_search(root, p, &b, level,
2887
						    slot, key);
2888
			if (err == -EAGAIN)
2889
				goto again;
2890 2891
			if (err) {
				ret = err;
2892
				goto done;
2893
			}
2894

2895
			if (!p->skip_locking) {
2896 2897 2898 2899 2900 2901 2902 2903 2904
				level = btrfs_header_level(b);
				if (level <= write_lock_level) {
					err = btrfs_try_tree_write_lock(b);
					if (!err) {
						btrfs_set_path_blocking(p);
						btrfs_tree_lock(b);
					}
					p->locks[level] = BTRFS_WRITE_LOCK;
				} else {
2905
					err = btrfs_tree_read_lock_atomic(b);
2906 2907 2908 2909 2910
					if (!err) {
						btrfs_set_path_blocking(p);
						btrfs_tree_read_lock(b);
					}
					p->locks[level] = BTRFS_READ_LOCK;
2911
				}
2912
				p->nodes[level] = b;
2913
			}
2914 2915
		} else {
			p->slots[level] = slot;
2916
			if (ins_len > 0 &&
2917
			    btrfs_leaf_free_space(fs_info, b) < ins_len) {
2918 2919 2920 2921 2922 2923
				if (write_lock_level < 1) {
					write_lock_level = 1;
					btrfs_release_path(p);
					goto again;
				}

2924
				btrfs_set_path_blocking(p);
2925 2926
				err = split_leaf(trans, root, key,
						 p, ins_len, ret == 0);
2927

2928 2929 2930
				BUG_ON(err > 0);
				if (err) {
					ret = err;
2931 2932
					goto done;
				}
C
Chris Mason 已提交
2933
			}
2934
			if (!p->search_for_split)
2935
				unlock_up(p, level, lowest_unlock,
2936
					  min_write_lock_level, NULL);
2937
			goto done;
2938 2939
		}
	}
2940 2941
	ret = 1;
done:
2942 2943 2944 2945
	/*
	 * we don't really know what they plan on doing with the path
	 * from here on, so for now just mark it as blocking
	 */
2946 2947
	if (!p->leave_spinning)
		btrfs_set_path_blocking(p);
2948
	if (ret < 0 && !p->skip_release_on_error)
2949
		btrfs_release_path(p);
2950
	return ret;
2951 2952
}

J
Jan Schmidt 已提交
2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963
/*
 * Like btrfs_search_slot, this looks for a key in the given tree. It uses the
 * current state of the tree together with the operations recorded in the tree
 * modification log to search for the key in a previous version of this tree, as
 * denoted by the time_seq parameter.
 *
 * Naturally, there is no support for insert, delete or cow operations.
 *
 * The resulting path and return value will be set up as if we called
 * btrfs_search_slot at that point in time with ins_len and cow both set to 0.
 */
2964
int btrfs_search_old_slot(struct btrfs_root *root, const struct btrfs_key *key,
J
Jan Schmidt 已提交
2965 2966
			  struct btrfs_path *p, u64 time_seq)
{
2967
	struct btrfs_fs_info *fs_info = root->fs_info;
J
Jan Schmidt 已提交
2968 2969 2970 2971 2972 2973 2974
	struct extent_buffer *b;
	int slot;
	int ret;
	int err;
	int level;
	int lowest_unlock = 1;
	u8 lowest_level = 0;
2975
	int prev_cmp = -1;
J
Jan Schmidt 已提交
2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986

	lowest_level = p->lowest_level;
	WARN_ON(p->nodes[0] != NULL);

	if (p->search_commit_root) {
		BUG_ON(time_seq);
		return btrfs_search_slot(NULL, root, key, p, 0, 0);
	}

again:
	b = get_old_root(root, time_seq);
2987 2988 2989 2990
	if (!b) {
		ret = -EIO;
		goto done;
	}
J
Jan Schmidt 已提交
2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005
	level = btrfs_header_level(b);
	p->locks[level] = BTRFS_READ_LOCK;

	while (b) {
		level = btrfs_header_level(b);
		p->nodes[level] = b;

		/*
		 * we have a lock on b and as long as we aren't changing
		 * the tree, there is no way to for the items in b to change.
		 * It is safe to drop the lock on our parent before we
		 * go through the expensive btree search on b.
		 */
		btrfs_unlock_up_safe(p, level + 1);

3006
		/*
3007
		 * Since we can unwind ebs we want to do a real search every
3008 3009 3010
		 * time.
		 */
		prev_cmp = -1;
3011
		ret = key_search(b, key, level, &prev_cmp, &slot);
3012 3013
		if (ret < 0)
			goto done;
J
Jan Schmidt 已提交
3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029

		if (level != 0) {
			int dec = 0;
			if (ret && slot > 0) {
				dec = 1;
				slot -= 1;
			}
			p->slots[level] = slot;
			unlock_up(p, level, lowest_unlock, 0, NULL);

			if (level == lowest_level) {
				if (dec)
					p->slots[level]++;
				goto done;
			}

3030
			err = read_block_for_search(root, p, &b, level,
3031
						    slot, key);
J
Jan Schmidt 已提交
3032 3033 3034 3035 3036 3037 3038 3039
			if (err == -EAGAIN)
				goto again;
			if (err) {
				ret = err;
				goto done;
			}

			level = btrfs_header_level(b);
3040
			err = btrfs_tree_read_lock_atomic(b);
J
Jan Schmidt 已提交
3041 3042 3043 3044
			if (!err) {
				btrfs_set_path_blocking(p);
				btrfs_tree_read_lock(b);
			}
3045
			b = tree_mod_log_rewind(fs_info, p, b, time_seq);
3046 3047 3048 3049
			if (!b) {
				ret = -ENOMEM;
				goto done;
			}
J
Jan Schmidt 已提交
3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067
			p->locks[level] = BTRFS_READ_LOCK;
			p->nodes[level] = b;
		} else {
			p->slots[level] = slot;
			unlock_up(p, level, lowest_unlock, 0, NULL);
			goto done;
		}
	}
	ret = 1;
done:
	if (!p->leave_spinning)
		btrfs_set_path_blocking(p);
	if (ret < 0)
		btrfs_release_path(p);

	return ret;
}

3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080
/*
 * helper to use instead of search slot if no exact match is needed but
 * instead the next or previous item should be returned.
 * When find_higher is true, the next higher item is returned, the next lower
 * otherwise.
 * When return_any and find_higher are both true, and no higher item is found,
 * return the next lower instead.
 * When return_any is true and find_higher is false, and no lower item is found,
 * return the next higher instead.
 * It returns 0 if any item is found, 1 if none is found (tree empty), and
 * < 0 on error
 */
int btrfs_search_slot_for_read(struct btrfs_root *root,
3081 3082 3083
			       const struct btrfs_key *key,
			       struct btrfs_path *p, int find_higher,
			       int return_any)
3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117
{
	int ret;
	struct extent_buffer *leaf;

again:
	ret = btrfs_search_slot(NULL, root, key, p, 0, 0);
	if (ret <= 0)
		return ret;
	/*
	 * a return value of 1 means the path is at the position where the
	 * item should be inserted. Normally this is the next bigger item,
	 * but in case the previous item is the last in a leaf, path points
	 * to the first free slot in the previous leaf, i.e. at an invalid
	 * item.
	 */
	leaf = p->nodes[0];

	if (find_higher) {
		if (p->slots[0] >= btrfs_header_nritems(leaf)) {
			ret = btrfs_next_leaf(root, p);
			if (ret <= 0)
				return ret;
			if (!return_any)
				return 1;
			/*
			 * no higher item found, return the next
			 * lower instead
			 */
			return_any = 0;
			find_higher = 0;
			btrfs_release_path(p);
			goto again;
		}
	} else {
3118 3119 3120 3121 3122
		if (p->slots[0] == 0) {
			ret = btrfs_prev_leaf(root, p);
			if (ret < 0)
				return ret;
			if (!ret) {
3123 3124 3125
				leaf = p->nodes[0];
				if (p->slots[0] == btrfs_header_nritems(leaf))
					p->slots[0]--;
3126
				return 0;
3127
			}
3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138
			if (!return_any)
				return 1;
			/*
			 * no lower item found, return the next
			 * higher instead
			 */
			return_any = 0;
			find_higher = 1;
			btrfs_release_path(p);
			goto again;
		} else {
3139 3140 3141 3142 3143 3144
			--p->slots[0];
		}
	}
	return 0;
}

C
Chris Mason 已提交
3145 3146 3147 3148 3149 3150
/*
 * adjust the pointers going up the tree, starting at level
 * making sure the right key of each node is points to 'key'.
 * This is used after shifting pointers to the left, so it stops
 * fixing up pointers when a given leaf/node is not in slot 0 of the
 * higher levels
C
Chris Mason 已提交
3151
 *
C
Chris Mason 已提交
3152
 */
3153
static void fixup_low_keys(struct btrfs_path *path,
3154
			   struct btrfs_disk_key *key, int level)
3155 3156
{
	int i;
3157
	struct extent_buffer *t;
3158
	int ret;
3159

C
Chris Mason 已提交
3160
	for (i = level; i < BTRFS_MAX_LEVEL; i++) {
3161
		int tslot = path->slots[i];
3162

3163
		if (!path->nodes[i])
3164
			break;
3165
		t = path->nodes[i];
3166 3167 3168
		ret = tree_mod_log_insert_key(t, tslot, MOD_LOG_KEY_REPLACE,
				GFP_ATOMIC);
		BUG_ON(ret < 0);
3169
		btrfs_set_node_key(t, key, tslot);
C
Chris Mason 已提交
3170
		btrfs_mark_buffer_dirty(path->nodes[i]);
3171 3172 3173 3174 3175
		if (tslot != 0)
			break;
	}
}

Z
Zheng Yan 已提交
3176 3177 3178 3179 3180 3181
/*
 * update item key.
 *
 * This function isn't completely safe. It's the caller's responsibility
 * that the new key won't break the order
 */
3182 3183
void btrfs_set_item_key_safe(struct btrfs_fs_info *fs_info,
			     struct btrfs_path *path,
3184
			     const struct btrfs_key *new_key)
Z
Zheng Yan 已提交
3185 3186 3187 3188 3189 3190 3191 3192 3193
{
	struct btrfs_disk_key disk_key;
	struct extent_buffer *eb;
	int slot;

	eb = path->nodes[0];
	slot = path->slots[0];
	if (slot > 0) {
		btrfs_item_key(eb, &disk_key, slot - 1);
3194
		BUG_ON(comp_keys(&disk_key, new_key) >= 0);
Z
Zheng Yan 已提交
3195 3196 3197
	}
	if (slot < btrfs_header_nritems(eb) - 1) {
		btrfs_item_key(eb, &disk_key, slot + 1);
3198
		BUG_ON(comp_keys(&disk_key, new_key) <= 0);
Z
Zheng Yan 已提交
3199 3200 3201 3202 3203 3204
	}

	btrfs_cpu_key_to_disk(&disk_key, new_key);
	btrfs_set_item_key(eb, &disk_key, slot);
	btrfs_mark_buffer_dirty(eb);
	if (slot == 0)
3205
		fixup_low_keys(path, &disk_key, 1);
Z
Zheng Yan 已提交
3206 3207
}

C
Chris Mason 已提交
3208 3209
/*
 * try to push data from one node into the next node left in the
3210
 * tree.
C
Chris Mason 已提交
3211 3212 3213
 *
 * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
 * error, and > 0 if there was no room in the left hand block.
C
Chris Mason 已提交
3214
 */
3215
static int push_node_left(struct btrfs_trans_handle *trans,
3216 3217
			  struct btrfs_fs_info *fs_info,
			  struct extent_buffer *dst,
3218
			  struct extent_buffer *src, int empty)
3219 3220
{
	int push_items = 0;
3221 3222
	int src_nritems;
	int dst_nritems;
C
Chris Mason 已提交
3223
	int ret = 0;
3224

3225 3226
	src_nritems = btrfs_header_nritems(src);
	dst_nritems = btrfs_header_nritems(dst);
3227
	push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems;
3228 3229
	WARN_ON(btrfs_header_generation(src) != trans->transid);
	WARN_ON(btrfs_header_generation(dst) != trans->transid);
3230

3231
	if (!empty && src_nritems <= 8)
3232 3233
		return 1;

C
Chris Mason 已提交
3234
	if (push_items <= 0)
3235 3236
		return 1;

3237
	if (empty) {
3238
		push_items = min(src_nritems, push_items);
3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250
		if (push_items < src_nritems) {
			/* leave at least 8 pointers in the node if
			 * we aren't going to empty it
			 */
			if (src_nritems - push_items < 8) {
				if (push_items <= 8)
					return 1;
				push_items -= 8;
			}
		}
	} else
		push_items = min(src_nritems - 8, push_items);
3251

3252
	ret = tree_mod_log_eb_copy(fs_info, dst, src, dst_nritems, 0,
3253 3254
				   push_items);
	if (ret) {
3255
		btrfs_abort_transaction(trans, ret);
3256 3257
		return ret;
	}
3258 3259 3260
	copy_extent_buffer(dst, src,
			   btrfs_node_key_ptr_offset(dst_nritems),
			   btrfs_node_key_ptr_offset(0),
C
Chris Mason 已提交
3261
			   push_items * sizeof(struct btrfs_key_ptr));
3262

3263
	if (push_items < src_nritems) {
3264
		/*
3265 3266
		 * Don't call tree_mod_log_insert_move here, key removal was
		 * already fully logged by tree_mod_log_eb_copy above.
3267
		 */
3268 3269 3270 3271 3272 3273 3274 3275 3276
		memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0),
				      btrfs_node_key_ptr_offset(push_items),
				      (src_nritems - push_items) *
				      sizeof(struct btrfs_key_ptr));
	}
	btrfs_set_header_nritems(src, src_nritems - push_items);
	btrfs_set_header_nritems(dst, dst_nritems + push_items);
	btrfs_mark_buffer_dirty(src);
	btrfs_mark_buffer_dirty(dst);
Z
Zheng Yan 已提交
3277

3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289
	return ret;
}

/*
 * try to push data from one node into the next node right in the
 * tree.
 *
 * returns 0 if some ptrs were pushed, < 0 if there was some horrible
 * error, and > 0 if there was no room in the right hand block.
 *
 * this will  only push up to 1/2 the contents of the left node over
 */
3290
static int balance_node_right(struct btrfs_trans_handle *trans,
3291
			      struct btrfs_fs_info *fs_info,
3292 3293
			      struct extent_buffer *dst,
			      struct extent_buffer *src)
3294 3295 3296 3297 3298 3299 3300
{
	int push_items = 0;
	int max_push;
	int src_nritems;
	int dst_nritems;
	int ret = 0;

3301 3302 3303
	WARN_ON(btrfs_header_generation(src) != trans->transid);
	WARN_ON(btrfs_header_generation(dst) != trans->transid);

3304 3305
	src_nritems = btrfs_header_nritems(src);
	dst_nritems = btrfs_header_nritems(dst);
3306
	push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems;
C
Chris Mason 已提交
3307
	if (push_items <= 0)
3308
		return 1;
3309

C
Chris Mason 已提交
3310
	if (src_nritems < 4)
3311
		return 1;
3312 3313 3314

	max_push = src_nritems / 2 + 1;
	/* don't try to empty the node */
C
Chris Mason 已提交
3315
	if (max_push >= src_nritems)
3316
		return 1;
Y
Yan 已提交
3317

3318 3319 3320
	if (max_push < push_items)
		push_items = max_push;

3321 3322
	ret = tree_mod_log_insert_move(dst, push_items, 0, dst_nritems);
	BUG_ON(ret < 0);
3323 3324 3325 3326
	memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items),
				      btrfs_node_key_ptr_offset(0),
				      (dst_nritems) *
				      sizeof(struct btrfs_key_ptr));
C
Chris Mason 已提交
3327

3328
	ret = tree_mod_log_eb_copy(fs_info, dst, src, 0,
3329 3330
				   src_nritems - push_items, push_items);
	if (ret) {
3331
		btrfs_abort_transaction(trans, ret);
3332 3333
		return ret;
	}
3334 3335 3336
	copy_extent_buffer(dst, src,
			   btrfs_node_key_ptr_offset(0),
			   btrfs_node_key_ptr_offset(src_nritems - push_items),
C
Chris Mason 已提交
3337
			   push_items * sizeof(struct btrfs_key_ptr));
3338

3339 3340
	btrfs_set_header_nritems(src, src_nritems - push_items);
	btrfs_set_header_nritems(dst, dst_nritems + push_items);
3341

3342 3343
	btrfs_mark_buffer_dirty(src);
	btrfs_mark_buffer_dirty(dst);
Z
Zheng Yan 已提交
3344

C
Chris Mason 已提交
3345
	return ret;
3346 3347
}

C
Chris Mason 已提交
3348 3349 3350 3351
/*
 * helper function to insert a new root level in the tree.
 * A new node is allocated, and a single item is inserted to
 * point to the existing root
C
Chris Mason 已提交
3352 3353
 *
 * returns zero on success or < 0 on failure.
C
Chris Mason 已提交
3354
 */
C
Chris Mason 已提交
3355
static noinline int insert_new_root(struct btrfs_trans_handle *trans,
3356
			   struct btrfs_root *root,
3357
			   struct btrfs_path *path, int level)
C
Chris Mason 已提交
3358
{
3359
	struct btrfs_fs_info *fs_info = root->fs_info;
3360
	u64 lower_gen;
3361 3362
	struct extent_buffer *lower;
	struct extent_buffer *c;
3363
	struct extent_buffer *old;
3364
	struct btrfs_disk_key lower_key;
3365
	int ret;
C
Chris Mason 已提交
3366 3367 3368 3369

	BUG_ON(path->nodes[level]);
	BUG_ON(path->nodes[level-1] != root->node);

3370 3371 3372 3373 3374 3375
	lower = path->nodes[level-1];
	if (level == 1)
		btrfs_item_key(lower, &lower_key, 0);
	else
		btrfs_node_key(lower, &lower_key, 0);

3376 3377
	c = alloc_tree_block_no_bg_flush(trans, root, 0, &lower_key, level,
					 root->node->start, 0);
3378 3379
	if (IS_ERR(c))
		return PTR_ERR(c);
3380

3381
	root_add_used(root, fs_info->nodesize);
3382

3383 3384
	btrfs_set_header_nritems(c, 1);
	btrfs_set_node_key(c, &lower_key, 0);
3385
	btrfs_set_node_blockptr(c, 0, lower->start);
3386
	lower_gen = btrfs_header_generation(lower);
Z
Zheng Yan 已提交
3387
	WARN_ON(lower_gen != trans->transid);
3388 3389

	btrfs_set_node_ptr_generation(c, 0, lower_gen);
3390

3391
	btrfs_mark_buffer_dirty(c);
3392

3393
	old = root->node;
3394 3395
	ret = tree_mod_log_insert_root(root->node, c, 0);
	BUG_ON(ret < 0);
3396
	rcu_assign_pointer(root->node, c);
3397 3398 3399 3400

	/* the super has an extra ref to root->node */
	free_extent_buffer(old);

3401
	add_root_to_dirty_list(root);
3402 3403
	extent_buffer_get(c);
	path->nodes[level] = c;
3404
	path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
C
Chris Mason 已提交
3405 3406 3407 3408
	path->slots[level] = 0;
	return 0;
}

C
Chris Mason 已提交
3409 3410 3411
/*
 * worker function to insert a single pointer in a node.
 * the node should have enough room for the pointer already
C
Chris Mason 已提交
3412
 *
C
Chris Mason 已提交
3413 3414 3415
 * slot and level indicate where you want the key to go, and
 * blocknr is the block the key points to.
 */
3416
static void insert_ptr(struct btrfs_trans_handle *trans,
3417
		       struct btrfs_fs_info *fs_info, struct btrfs_path *path,
3418
		       struct btrfs_disk_key *key, u64 bytenr,
3419
		       int slot, int level)
C
Chris Mason 已提交
3420
{
3421
	struct extent_buffer *lower;
C
Chris Mason 已提交
3422
	int nritems;
3423
	int ret;
C
Chris Mason 已提交
3424 3425

	BUG_ON(!path->nodes[level]);
3426
	btrfs_assert_tree_locked(path->nodes[level]);
3427 3428
	lower = path->nodes[level];
	nritems = btrfs_header_nritems(lower);
S
Stoyan Gaydarov 已提交
3429
	BUG_ON(slot > nritems);
3430
	BUG_ON(nritems == BTRFS_NODEPTRS_PER_BLOCK(fs_info));
C
Chris Mason 已提交
3431
	if (slot != nritems) {
3432 3433
		if (level) {
			ret = tree_mod_log_insert_move(lower, slot + 1, slot,
3434
					nritems - slot);
3435 3436
			BUG_ON(ret < 0);
		}
3437 3438 3439
		memmove_extent_buffer(lower,
			      btrfs_node_key_ptr_offset(slot + 1),
			      btrfs_node_key_ptr_offset(slot),
C
Chris Mason 已提交
3440
			      (nritems - slot) * sizeof(struct btrfs_key_ptr));
C
Chris Mason 已提交
3441
	}
3442
	if (level) {
3443 3444
		ret = tree_mod_log_insert_key(lower, slot, MOD_LOG_KEY_ADD,
				GFP_NOFS);
3445 3446
		BUG_ON(ret < 0);
	}
3447
	btrfs_set_node_key(lower, key, slot);
3448
	btrfs_set_node_blockptr(lower, slot, bytenr);
3449 3450
	WARN_ON(trans->transid == 0);
	btrfs_set_node_ptr_generation(lower, slot, trans->transid);
3451 3452
	btrfs_set_header_nritems(lower, nritems + 1);
	btrfs_mark_buffer_dirty(lower);
C
Chris Mason 已提交
3453 3454
}

C
Chris Mason 已提交
3455 3456 3457 3458 3459 3460
/*
 * split the node at the specified level in path in two.
 * The path is corrected to point to the appropriate node after the split
 *
 * Before splitting this tries to make some room in the node by pushing
 * left and right, if either one works, it returns right away.
C
Chris Mason 已提交
3461 3462
 *
 * returns 0 on success and < 0 on failure
C
Chris Mason 已提交
3463
 */
3464 3465 3466
static noinline int split_node(struct btrfs_trans_handle *trans,
			       struct btrfs_root *root,
			       struct btrfs_path *path, int level)
3467
{
3468
	struct btrfs_fs_info *fs_info = root->fs_info;
3469 3470 3471
	struct extent_buffer *c;
	struct extent_buffer *split;
	struct btrfs_disk_key disk_key;
3472
	int mid;
C
Chris Mason 已提交
3473
	int ret;
3474
	u32 c_nritems;
3475

3476
	c = path->nodes[level];
3477
	WARN_ON(btrfs_header_generation(c) != trans->transid);
3478
	if (c == root->node) {
3479
		/*
3480 3481
		 * trying to split the root, lets make a new one
		 *
3482
		 * tree mod log: We don't log_removal old root in
3483 3484 3485 3486 3487
		 * insert_new_root, because that root buffer will be kept as a
		 * normal node. We are going to log removal of half of the
		 * elements below with tree_mod_log_eb_copy. We're holding a
		 * tree lock on the buffer, which is why we cannot race with
		 * other tree_mod_log users.
3488
		 */
3489
		ret = insert_new_root(trans, root, path, level + 1);
C
Chris Mason 已提交
3490 3491
		if (ret)
			return ret;
3492
	} else {
3493
		ret = push_nodes_for_insert(trans, root, path, level);
3494 3495
		c = path->nodes[level];
		if (!ret && btrfs_header_nritems(c) <
3496
		    BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3)
3497
			return 0;
3498 3499
		if (ret < 0)
			return ret;
3500
	}
3501

3502
	c_nritems = btrfs_header_nritems(c);
3503 3504
	mid = (c_nritems + 1) / 2;
	btrfs_node_key(c, &disk_key, mid);
3505

3506 3507
	split = alloc_tree_block_no_bg_flush(trans, root, 0, &disk_key, level,
					     c->start, 0);
3508 3509 3510
	if (IS_ERR(split))
		return PTR_ERR(split);

3511
	root_add_used(root, fs_info->nodesize);
3512
	ASSERT(btrfs_header_level(c) == level);
3513

3514
	ret = tree_mod_log_eb_copy(fs_info, split, c, 0, mid, c_nritems - mid);
3515
	if (ret) {
3516
		btrfs_abort_transaction(trans, ret);
3517 3518
		return ret;
	}
3519 3520 3521 3522 3523 3524
	copy_extent_buffer(split, c,
			   btrfs_node_key_ptr_offset(0),
			   btrfs_node_key_ptr_offset(mid),
			   (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
	btrfs_set_header_nritems(split, c_nritems - mid);
	btrfs_set_header_nritems(c, mid);
C
Chris Mason 已提交
3525 3526
	ret = 0;

3527 3528 3529
	btrfs_mark_buffer_dirty(c);
	btrfs_mark_buffer_dirty(split);

3530
	insert_ptr(trans, fs_info, path, &disk_key, split->start,
3531
		   path->slots[level + 1] + 1, level + 1);
C
Chris Mason 已提交
3532

C
Chris Mason 已提交
3533
	if (path->slots[level] >= mid) {
C
Chris Mason 已提交
3534
		path->slots[level] -= mid;
3535
		btrfs_tree_unlock(c);
3536 3537
		free_extent_buffer(c);
		path->nodes[level] = split;
C
Chris Mason 已提交
3538 3539
		path->slots[level + 1] += 1;
	} else {
3540
		btrfs_tree_unlock(split);
3541
		free_extent_buffer(split);
3542
	}
C
Chris Mason 已提交
3543
	return ret;
3544 3545
}

C
Chris Mason 已提交
3546 3547 3548 3549 3550
/*
 * how many bytes are required to store the items in a leaf.  start
 * and nr indicate which items in the leaf to check.  This totals up the
 * space used both by the item structs and the item data
 */
3551
static int leaf_space_used(struct extent_buffer *l, int start, int nr)
3552
{
J
Josef Bacik 已提交
3553 3554 3555
	struct btrfs_item *start_item;
	struct btrfs_item *end_item;
	struct btrfs_map_token token;
3556
	int data_len;
3557
	int nritems = btrfs_header_nritems(l);
3558
	int end = min(nritems, start + nr) - 1;
3559 3560 3561

	if (!nr)
		return 0;
J
Josef Bacik 已提交
3562
	btrfs_init_map_token(&token);
3563 3564
	start_item = btrfs_item_nr(start);
	end_item = btrfs_item_nr(end);
J
Josef Bacik 已提交
3565 3566 3567
	data_len = btrfs_token_item_offset(l, start_item, &token) +
		btrfs_token_item_size(l, start_item, &token);
	data_len = data_len - btrfs_token_item_offset(l, end_item, &token);
C
Chris Mason 已提交
3568
	data_len += sizeof(struct btrfs_item) * nr;
3569
	WARN_ON(data_len < 0);
3570 3571 3572
	return data_len;
}

3573 3574 3575 3576 3577
/*
 * The space between the end of the leaf items and
 * the start of the leaf data.  IOW, how much room
 * the leaf has left for both items and data
 */
3578
noinline int btrfs_leaf_free_space(struct btrfs_fs_info *fs_info,
3579
				   struct extent_buffer *leaf)
3580
{
3581 3582
	int nritems = btrfs_header_nritems(leaf);
	int ret;
3583 3584

	ret = BTRFS_LEAF_DATA_SIZE(fs_info) - leaf_space_used(leaf, 0, nritems);
3585
	if (ret < 0) {
3586 3587 3588 3589 3590
		btrfs_crit(fs_info,
			   "leaf free space ret %d, leaf data size %lu, used %d nritems %d",
			   ret,
			   (unsigned long) BTRFS_LEAF_DATA_SIZE(fs_info),
			   leaf_space_used(leaf, 0, nritems), nritems);
3591 3592
	}
	return ret;
3593 3594
}

3595 3596 3597 3598
/*
 * min slot controls the lowest index we're willing to push to the
 * right.  We'll push up to and including min_slot, but no lower
 */
3599
static noinline int __push_leaf_right(struct btrfs_fs_info *fs_info,
3600 3601 3602
				      struct btrfs_path *path,
				      int data_size, int empty,
				      struct extent_buffer *right,
3603 3604
				      int free_space, u32 left_nritems,
				      u32 min_slot)
C
Chris Mason 已提交
3605
{
3606
	struct extent_buffer *left = path->nodes[0];
3607
	struct extent_buffer *upper = path->nodes[1];
3608
	struct btrfs_map_token token;
3609
	struct btrfs_disk_key disk_key;
C
Chris Mason 已提交
3610
	int slot;
3611
	u32 i;
C
Chris Mason 已提交
3612 3613
	int push_space = 0;
	int push_items = 0;
C
Chris Mason 已提交
3614
	struct btrfs_item *item;
3615
	u32 nr;
3616
	u32 right_nritems;
3617
	u32 data_end;
3618
	u32 this_item_size;
C
Chris Mason 已提交
3619

3620 3621
	btrfs_init_map_token(&token);

3622 3623 3624
	if (empty)
		nr = 0;
	else
3625
		nr = max_t(u32, 1, min_slot);
3626

Z
Zheng Yan 已提交
3627
	if (path->slots[0] >= left_nritems)
3628
		push_space += data_size;
Z
Zheng Yan 已提交
3629

3630
	slot = path->slots[1];
3631 3632
	i = left_nritems - 1;
	while (i >= nr) {
3633
		item = btrfs_item_nr(i);
3634

Z
Zheng Yan 已提交
3635 3636 3637 3638
		if (!empty && push_items > 0) {
			if (path->slots[0] > i)
				break;
			if (path->slots[0] == i) {
3639
				int space = btrfs_leaf_free_space(fs_info, left);
Z
Zheng Yan 已提交
3640 3641 3642 3643 3644
				if (space + push_space * 2 > free_space)
					break;
			}
		}

C
Chris Mason 已提交
3645
		if (path->slots[0] == i)
3646
			push_space += data_size;
3647 3648 3649

		this_item_size = btrfs_item_size(left, item);
		if (this_item_size + sizeof(*item) + push_space > free_space)
C
Chris Mason 已提交
3650
			break;
Z
Zheng Yan 已提交
3651

C
Chris Mason 已提交
3652
		push_items++;
3653
		push_space += this_item_size + sizeof(*item);
3654 3655 3656
		if (i == 0)
			break;
		i--;
3657
	}
3658

3659 3660
	if (push_items == 0)
		goto out_unlock;
3661

J
Julia Lawall 已提交
3662
	WARN_ON(!empty && push_items == left_nritems);
3663

C
Chris Mason 已提交
3664
	/* push left to right */
3665
	right_nritems = btrfs_header_nritems(right);
3666

3667
	push_space = btrfs_item_end_nr(left, left_nritems - push_items);
3668
	push_space -= leaf_data_end(fs_info, left);
3669

C
Chris Mason 已提交
3670
	/* make room in the right data area */
3671
	data_end = leaf_data_end(fs_info, right);
3672
	memmove_extent_buffer(right,
3673 3674
			      BTRFS_LEAF_DATA_OFFSET + data_end - push_space,
			      BTRFS_LEAF_DATA_OFFSET + data_end,
3675
			      BTRFS_LEAF_DATA_SIZE(fs_info) - data_end);
3676

C
Chris Mason 已提交
3677
	/* copy from the left data area */
3678
	copy_extent_buffer(right, left, BTRFS_LEAF_DATA_OFFSET +
3679
		     BTRFS_LEAF_DATA_SIZE(fs_info) - push_space,
3680
		     BTRFS_LEAF_DATA_OFFSET + leaf_data_end(fs_info, left),
C
Chris Mason 已提交
3681
		     push_space);
3682 3683 3684 3685 3686

	memmove_extent_buffer(right, btrfs_item_nr_offset(push_items),
			      btrfs_item_nr_offset(0),
			      right_nritems * sizeof(struct btrfs_item));

C
Chris Mason 已提交
3687
	/* copy the items from left to right */
3688 3689 3690
	copy_extent_buffer(right, left, btrfs_item_nr_offset(0),
		   btrfs_item_nr_offset(left_nritems - push_items),
		   push_items * sizeof(struct btrfs_item));
C
Chris Mason 已提交
3691 3692

	/* update the item pointers */
3693
	right_nritems += push_items;
3694
	btrfs_set_header_nritems(right, right_nritems);
3695
	push_space = BTRFS_LEAF_DATA_SIZE(fs_info);
3696
	for (i = 0; i < right_nritems; i++) {
3697
		item = btrfs_item_nr(i);
3698 3699
		push_space -= btrfs_token_item_size(right, item, &token);
		btrfs_set_token_item_offset(right, item, push_space, &token);
3700 3701
	}

3702
	left_nritems -= push_items;
3703
	btrfs_set_header_nritems(left, left_nritems);
C
Chris Mason 已提交
3704

3705 3706
	if (left_nritems)
		btrfs_mark_buffer_dirty(left);
3707
	else
3708
		clean_tree_block(fs_info, left);
3709

3710
	btrfs_mark_buffer_dirty(right);
3711

3712 3713
	btrfs_item_key(right, &disk_key, 0);
	btrfs_set_node_key(upper, &disk_key, slot + 1);
C
Chris Mason 已提交
3714
	btrfs_mark_buffer_dirty(upper);
C
Chris Mason 已提交
3715

C
Chris Mason 已提交
3716
	/* then fixup the leaf pointer in the path */
3717 3718
	if (path->slots[0] >= left_nritems) {
		path->slots[0] -= left_nritems;
3719
		if (btrfs_header_nritems(path->nodes[0]) == 0)
3720
			clean_tree_block(fs_info, path->nodes[0]);
3721
		btrfs_tree_unlock(path->nodes[0]);
3722 3723
		free_extent_buffer(path->nodes[0]);
		path->nodes[0] = right;
C
Chris Mason 已提交
3724 3725
		path->slots[1] += 1;
	} else {
3726
		btrfs_tree_unlock(right);
3727
		free_extent_buffer(right);
C
Chris Mason 已提交
3728 3729
	}
	return 0;
3730 3731 3732 3733 3734

out_unlock:
	btrfs_tree_unlock(right);
	free_extent_buffer(right);
	return 1;
C
Chris Mason 已提交
3735
}
3736

3737 3738 3739 3740 3741 3742
/*
 * push some data in the path leaf to the right, trying to free up at
 * least data_size bytes.  returns zero if the push worked, nonzero otherwise
 *
 * returns 1 if the push failed because the other node didn't have enough
 * room, 0 if everything worked out and < 0 if there were major errors.
3743 3744 3745
 *
 * this will push starting from min_slot to the end of the leaf.  It won't
 * push any slot lower than min_slot
3746 3747
 */
static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
3748 3749 3750
			   *root, struct btrfs_path *path,
			   int min_data_size, int data_size,
			   int empty, u32 min_slot)
3751
{
3752
	struct btrfs_fs_info *fs_info = root->fs_info;
3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770
	struct extent_buffer *left = path->nodes[0];
	struct extent_buffer *right;
	struct extent_buffer *upper;
	int slot;
	int free_space;
	u32 left_nritems;
	int ret;

	if (!path->nodes[1])
		return 1;

	slot = path->slots[1];
	upper = path->nodes[1];
	if (slot >= btrfs_header_nritems(upper) - 1)
		return 1;

	btrfs_assert_tree_locked(path->nodes[1]);

3771
	right = read_node_slot(fs_info, upper, slot + 1);
3772 3773 3774 3775 3776
	/*
	 * slot + 1 is not valid or we fail to read the right node,
	 * no big deal, just return.
	 */
	if (IS_ERR(right))
T
Tsutomu Itoh 已提交
3777 3778
		return 1;

3779
	btrfs_tree_lock(right);
3780
	btrfs_set_lock_blocking_write(right);
3781

3782
	free_space = btrfs_leaf_free_space(fs_info, right);
3783 3784 3785 3786 3787 3788 3789 3790 3791
	if (free_space < data_size)
		goto out_unlock;

	/* cow and double check */
	ret = btrfs_cow_block(trans, root, right, upper,
			      slot + 1, &right);
	if (ret)
		goto out_unlock;

3792
	free_space = btrfs_leaf_free_space(fs_info, right);
3793 3794 3795 3796 3797 3798 3799
	if (free_space < data_size)
		goto out_unlock;

	left_nritems = btrfs_header_nritems(left);
	if (left_nritems == 0)
		goto out_unlock;

3800 3801 3802 3803
	if (path->slots[0] == left_nritems && !empty) {
		/* Key greater than all keys in the leaf, right neighbor has
		 * enough room for it and we're not emptying our leaf to delete
		 * it, therefore use right neighbor to insert the new item and
3804
		 * no need to touch/dirty our left leaf. */
3805 3806 3807 3808 3809 3810 3811 3812
		btrfs_tree_unlock(left);
		free_extent_buffer(left);
		path->nodes[0] = right;
		path->slots[0] = 0;
		path->slots[1]++;
		return 0;
	}

3813
	return __push_leaf_right(fs_info, path, min_data_size, empty,
3814
				right, free_space, left_nritems, min_slot);
3815 3816 3817 3818 3819 3820
out_unlock:
	btrfs_tree_unlock(right);
	free_extent_buffer(right);
	return 1;
}

C
Chris Mason 已提交
3821 3822 3823
/*
 * push some data in the path leaf to the left, trying to free up at
 * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3824 3825 3826 3827
 *
 * max_slot can put a limit on how far into the leaf we'll push items.  The
 * item at 'max_slot' won't be touched.  Use (u32)-1 to make us do all the
 * items
C
Chris Mason 已提交
3828
 */
3829
static noinline int __push_leaf_left(struct btrfs_fs_info *fs_info,
3830 3831
				     struct btrfs_path *path, int data_size,
				     int empty, struct extent_buffer *left,
3832 3833
				     int free_space, u32 right_nritems,
				     u32 max_slot)
3834
{
3835 3836
	struct btrfs_disk_key disk_key;
	struct extent_buffer *right = path->nodes[0];
3837 3838 3839
	int i;
	int push_space = 0;
	int push_items = 0;
C
Chris Mason 已提交
3840
	struct btrfs_item *item;
3841
	u32 old_left_nritems;
3842
	u32 nr;
C
Chris Mason 已提交
3843
	int ret = 0;
3844 3845
	u32 this_item_size;
	u32 old_left_item_size;
3846 3847 3848
	struct btrfs_map_token token;

	btrfs_init_map_token(&token);
3849

3850
	if (empty)
3851
		nr = min(right_nritems, max_slot);
3852
	else
3853
		nr = min(right_nritems - 1, max_slot);
3854 3855

	for (i = 0; i < nr; i++) {
3856
		item = btrfs_item_nr(i);
3857

Z
Zheng Yan 已提交
3858 3859 3860 3861
		if (!empty && push_items > 0) {
			if (path->slots[0] < i)
				break;
			if (path->slots[0] == i) {
3862
				int space = btrfs_leaf_free_space(fs_info, right);
Z
Zheng Yan 已提交
3863 3864 3865 3866 3867
				if (space + push_space * 2 > free_space)
					break;
			}
		}

3868
		if (path->slots[0] == i)
3869
			push_space += data_size;
3870 3871 3872

		this_item_size = btrfs_item_size(right, item);
		if (this_item_size + sizeof(*item) + push_space > free_space)
3873
			break;
3874

3875
		push_items++;
3876 3877 3878
		push_space += this_item_size + sizeof(*item);
	}

3879
	if (push_items == 0) {
3880 3881
		ret = 1;
		goto out;
3882
	}
3883
	WARN_ON(!empty && push_items == btrfs_header_nritems(right));
3884

3885
	/* push data from right to left */
3886 3887 3888 3889 3890
	copy_extent_buffer(left, right,
			   btrfs_item_nr_offset(btrfs_header_nritems(left)),
			   btrfs_item_nr_offset(0),
			   push_items * sizeof(struct btrfs_item));

3891
	push_space = BTRFS_LEAF_DATA_SIZE(fs_info) -
C
Chris Mason 已提交
3892
		     btrfs_item_offset_nr(right, push_items - 1);
3893

3894
	copy_extent_buffer(left, right, BTRFS_LEAF_DATA_OFFSET +
3895
		     leaf_data_end(fs_info, left) - push_space,
3896
		     BTRFS_LEAF_DATA_OFFSET +
3897
		     btrfs_item_offset_nr(right, push_items - 1),
C
Chris Mason 已提交
3898
		     push_space);
3899
	old_left_nritems = btrfs_header_nritems(left);
3900
	BUG_ON(old_left_nritems <= 0);
3901

3902
	old_left_item_size = btrfs_item_offset_nr(left, old_left_nritems - 1);
C
Chris Mason 已提交
3903
	for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
3904
		u32 ioff;
3905

3906
		item = btrfs_item_nr(i);
3907

3908 3909
		ioff = btrfs_token_item_offset(left, item, &token);
		btrfs_set_token_item_offset(left, item,
3910
		      ioff - (BTRFS_LEAF_DATA_SIZE(fs_info) - old_left_item_size),
3911
		      &token);
3912
	}
3913
	btrfs_set_header_nritems(left, old_left_nritems + push_items);
3914 3915

	/* fixup right node */
J
Julia Lawall 已提交
3916 3917
	if (push_items > right_nritems)
		WARN(1, KERN_CRIT "push items %d nr %u\n", push_items,
C
Chris Mason 已提交
3918
		       right_nritems);
3919 3920 3921

	if (push_items < right_nritems) {
		push_space = btrfs_item_offset_nr(right, push_items - 1) -
3922
						  leaf_data_end(fs_info, right);
3923
		memmove_extent_buffer(right, BTRFS_LEAF_DATA_OFFSET +
3924
				      BTRFS_LEAF_DATA_SIZE(fs_info) - push_space,
3925
				      BTRFS_LEAF_DATA_OFFSET +
3926
				      leaf_data_end(fs_info, right), push_space);
3927 3928

		memmove_extent_buffer(right, btrfs_item_nr_offset(0),
3929 3930 3931
			      btrfs_item_nr_offset(push_items),
			     (btrfs_header_nritems(right) - push_items) *
			     sizeof(struct btrfs_item));
3932
	}
3933 3934
	right_nritems -= push_items;
	btrfs_set_header_nritems(right, right_nritems);
3935
	push_space = BTRFS_LEAF_DATA_SIZE(fs_info);
3936
	for (i = 0; i < right_nritems; i++) {
3937
		item = btrfs_item_nr(i);
3938

3939 3940 3941
		push_space = push_space - btrfs_token_item_size(right,
								item, &token);
		btrfs_set_token_item_offset(right, item, push_space, &token);
3942
	}
3943

3944
	btrfs_mark_buffer_dirty(left);
3945 3946
	if (right_nritems)
		btrfs_mark_buffer_dirty(right);
3947
	else
3948
		clean_tree_block(fs_info, right);
3949

3950
	btrfs_item_key(right, &disk_key, 0);
3951
	fixup_low_keys(path, &disk_key, 1);
3952 3953 3954 3955

	/* then fixup the leaf pointer in the path */
	if (path->slots[0] < push_items) {
		path->slots[0] += old_left_nritems;
3956
		btrfs_tree_unlock(path->nodes[0]);
3957 3958
		free_extent_buffer(path->nodes[0]);
		path->nodes[0] = left;
3959 3960
		path->slots[1] -= 1;
	} else {
3961
		btrfs_tree_unlock(left);
3962
		free_extent_buffer(left);
3963 3964
		path->slots[0] -= push_items;
	}
3965
	BUG_ON(path->slots[0] < 0);
C
Chris Mason 已提交
3966
	return ret;
3967 3968 3969 3970
out:
	btrfs_tree_unlock(left);
	free_extent_buffer(left);
	return ret;
3971 3972
}

3973 3974 3975
/*
 * push some data in the path leaf to the left, trying to free up at
 * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3976 3977 3978 3979
 *
 * max_slot can put a limit on how far into the leaf we'll push items.  The
 * item at 'max_slot' won't be touched.  Use (u32)-1 to make us push all the
 * items
3980 3981
 */
static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
3982 3983
			  *root, struct btrfs_path *path, int min_data_size,
			  int data_size, int empty, u32 max_slot)
3984
{
3985
	struct btrfs_fs_info *fs_info = root->fs_info;
3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004
	struct extent_buffer *right = path->nodes[0];
	struct extent_buffer *left;
	int slot;
	int free_space;
	u32 right_nritems;
	int ret = 0;

	slot = path->slots[1];
	if (slot == 0)
		return 1;
	if (!path->nodes[1])
		return 1;

	right_nritems = btrfs_header_nritems(right);
	if (right_nritems == 0)
		return 1;

	btrfs_assert_tree_locked(path->nodes[1]);

4005
	left = read_node_slot(fs_info, path->nodes[1], slot - 1);
4006 4007 4008 4009 4010
	/*
	 * slot - 1 is not valid or we fail to read the left node,
	 * no big deal, just return.
	 */
	if (IS_ERR(left))
T
Tsutomu Itoh 已提交
4011 4012
		return 1;

4013
	btrfs_tree_lock(left);
4014
	btrfs_set_lock_blocking_write(left);
4015

4016
	free_space = btrfs_leaf_free_space(fs_info, left);
4017 4018 4019 4020 4021 4022 4023 4024 4025 4026
	if (free_space < data_size) {
		ret = 1;
		goto out;
	}

	/* cow and double check */
	ret = btrfs_cow_block(trans, root, left,
			      path->nodes[1], slot - 1, &left);
	if (ret) {
		/* we hit -ENOSPC, but it isn't fatal here */
4027 4028
		if (ret == -ENOSPC)
			ret = 1;
4029 4030 4031
		goto out;
	}

4032
	free_space = btrfs_leaf_free_space(fs_info, left);
4033 4034 4035 4036 4037
	if (free_space < data_size) {
		ret = 1;
		goto out;
	}

4038
	return __push_leaf_left(fs_info, path, min_data_size,
4039 4040
			       empty, left, free_space, right_nritems,
			       max_slot);
4041 4042 4043 4044 4045 4046 4047 4048 4049 4050
out:
	btrfs_tree_unlock(left);
	free_extent_buffer(left);
	return ret;
}

/*
 * split the path's leaf in two, making sure there is at least data_size
 * available for the resulting leaf level of the path.
 */
4051
static noinline void copy_for_split(struct btrfs_trans_handle *trans,
4052
				    struct btrfs_fs_info *fs_info,
4053 4054 4055 4056
				    struct btrfs_path *path,
				    struct extent_buffer *l,
				    struct extent_buffer *right,
				    int slot, int mid, int nritems)
4057 4058 4059 4060 4061
{
	int data_copy_size;
	int rt_data_off;
	int i;
	struct btrfs_disk_key disk_key;
4062 4063 4064
	struct btrfs_map_token token;

	btrfs_init_map_token(&token);
4065 4066 4067

	nritems = nritems - mid;
	btrfs_set_header_nritems(right, nritems);
4068
	data_copy_size = btrfs_item_end_nr(l, mid) - leaf_data_end(fs_info, l);
4069 4070 4071 4072 4073 4074

	copy_extent_buffer(right, l, btrfs_item_nr_offset(0),
			   btrfs_item_nr_offset(mid),
			   nritems * sizeof(struct btrfs_item));

	copy_extent_buffer(right, l,
4075 4076
		     BTRFS_LEAF_DATA_OFFSET + BTRFS_LEAF_DATA_SIZE(fs_info) -
		     data_copy_size, BTRFS_LEAF_DATA_OFFSET +
4077
		     leaf_data_end(fs_info, l), data_copy_size);
4078

4079
	rt_data_off = BTRFS_LEAF_DATA_SIZE(fs_info) - btrfs_item_end_nr(l, mid);
4080 4081

	for (i = 0; i < nritems; i++) {
4082
		struct btrfs_item *item = btrfs_item_nr(i);
4083 4084
		u32 ioff;

4085 4086 4087
		ioff = btrfs_token_item_offset(right, item, &token);
		btrfs_set_token_item_offset(right, item,
					    ioff + rt_data_off, &token);
4088 4089 4090 4091
	}

	btrfs_set_header_nritems(l, mid);
	btrfs_item_key(right, &disk_key, 0);
4092
	insert_ptr(trans, fs_info, path, &disk_key, right->start,
4093
		   path->slots[1] + 1, 1);
4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112

	btrfs_mark_buffer_dirty(right);
	btrfs_mark_buffer_dirty(l);
	BUG_ON(path->slots[0] != slot);

	if (mid <= slot) {
		btrfs_tree_unlock(path->nodes[0]);
		free_extent_buffer(path->nodes[0]);
		path->nodes[0] = right;
		path->slots[0] -= mid;
		path->slots[1] += 1;
	} else {
		btrfs_tree_unlock(right);
		free_extent_buffer(right);
	}

	BUG_ON(path->slots[0] < 0);
}

4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127
/*
 * double splits happen when we need to insert a big item in the middle
 * of a leaf.  A double split can leave us with 3 mostly empty leaves:
 * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ]
 *          A                 B                 C
 *
 * We avoid this by trying to push the items on either side of our target
 * into the adjacent leaves.  If all goes well we can avoid the double split
 * completely.
 */
static noinline int push_for_double_split(struct btrfs_trans_handle *trans,
					  struct btrfs_root *root,
					  struct btrfs_path *path,
					  int data_size)
{
4128
	struct btrfs_fs_info *fs_info = root->fs_info;
4129 4130 4131 4132
	int ret;
	int progress = 0;
	int slot;
	u32 nritems;
4133
	int space_needed = data_size;
4134 4135

	slot = path->slots[0];
4136
	if (slot < btrfs_header_nritems(path->nodes[0]))
4137
		space_needed -= btrfs_leaf_free_space(fs_info, path->nodes[0]);
4138 4139 4140 4141 4142

	/*
	 * try to push all the items after our slot into the
	 * right leaf
	 */
4143
	ret = push_leaf_right(trans, root, path, 1, space_needed, 0, slot);
4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157
	if (ret < 0)
		return ret;

	if (ret == 0)
		progress++;

	nritems = btrfs_header_nritems(path->nodes[0]);
	/*
	 * our goal is to get our slot at the start or end of a leaf.  If
	 * we've done so we're done
	 */
	if (path->slots[0] == 0 || path->slots[0] == nritems)
		return 0;

4158
	if (btrfs_leaf_free_space(fs_info, path->nodes[0]) >= data_size)
4159 4160 4161 4162
		return 0;

	/* try to push all the items before our slot into the next leaf */
	slot = path->slots[0];
4163 4164 4165
	space_needed = data_size;
	if (slot > 0)
		space_needed -= btrfs_leaf_free_space(fs_info, path->nodes[0]);
4166
	ret = push_leaf_left(trans, root, path, 1, space_needed, 0, slot);
4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177
	if (ret < 0)
		return ret;

	if (ret == 0)
		progress++;

	if (progress)
		return 0;
	return 1;
}

C
Chris Mason 已提交
4178 4179 4180
/*
 * split the path's leaf in two, making sure there is at least data_size
 * available for the resulting leaf level of the path.
C
Chris Mason 已提交
4181 4182
 *
 * returns 0 if all went well and < 0 on failure.
C
Chris Mason 已提交
4183
 */
4184 4185
static noinline int split_leaf(struct btrfs_trans_handle *trans,
			       struct btrfs_root *root,
4186
			       const struct btrfs_key *ins_key,
4187 4188
			       struct btrfs_path *path, int data_size,
			       int extend)
4189
{
4190
	struct btrfs_disk_key disk_key;
4191
	struct extent_buffer *l;
4192
	u32 nritems;
4193 4194
	int mid;
	int slot;
4195
	struct extent_buffer *right;
4196
	struct btrfs_fs_info *fs_info = root->fs_info;
4197
	int ret = 0;
C
Chris Mason 已提交
4198
	int wret;
4199
	int split;
4200
	int num_doubles = 0;
4201
	int tried_avoid_double = 0;
C
Chris Mason 已提交
4202

4203 4204 4205
	l = path->nodes[0];
	slot = path->slots[0];
	if (extend && data_size + btrfs_item_size_nr(l, slot) +
4206
	    sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(fs_info))
4207 4208
		return -EOVERFLOW;

C
Chris Mason 已提交
4209
	/* first try to make some room by pushing left and right */
4210
	if (data_size && path->nodes[1]) {
4211 4212 4213
		int space_needed = data_size;

		if (slot < btrfs_header_nritems(l))
4214
			space_needed -= btrfs_leaf_free_space(fs_info, l);
4215 4216 4217

		wret = push_leaf_right(trans, root, path, space_needed,
				       space_needed, 0, 0);
C
Chris Mason 已提交
4218
		if (wret < 0)
C
Chris Mason 已提交
4219
			return wret;
4220
		if (wret) {
4221 4222 4223 4224
			space_needed = data_size;
			if (slot > 0)
				space_needed -= btrfs_leaf_free_space(fs_info,
								      l);
4225 4226
			wret = push_leaf_left(trans, root, path, space_needed,
					      space_needed, 0, (u32)-1);
4227 4228 4229 4230
			if (wret < 0)
				return wret;
		}
		l = path->nodes[0];
C
Chris Mason 已提交
4231

4232
		/* did the pushes work? */
4233
		if (btrfs_leaf_free_space(fs_info, l) >= data_size)
4234
			return 0;
4235
	}
C
Chris Mason 已提交
4236

C
Chris Mason 已提交
4237
	if (!path->nodes[1]) {
4238
		ret = insert_new_root(trans, root, path, 1);
C
Chris Mason 已提交
4239 4240 4241
		if (ret)
			return ret;
	}
4242
again:
4243
	split = 1;
4244
	l = path->nodes[0];
4245
	slot = path->slots[0];
4246
	nritems = btrfs_header_nritems(l);
C
Chris Mason 已提交
4247
	mid = (nritems + 1) / 2;
4248

4249 4250 4251
	if (mid <= slot) {
		if (nritems == 1 ||
		    leaf_space_used(l, mid, nritems - mid) + data_size >
4252
			BTRFS_LEAF_DATA_SIZE(fs_info)) {
4253 4254 4255 4256 4257 4258
			if (slot >= nritems) {
				split = 0;
			} else {
				mid = slot;
				if (mid != nritems &&
				    leaf_space_used(l, mid, nritems - mid) +
4259
				    data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) {
4260 4261
					if (data_size && !tried_avoid_double)
						goto push_for_double;
4262 4263 4264 4265 4266 4267
					split = 2;
				}
			}
		}
	} else {
		if (leaf_space_used(l, 0, mid) + data_size >
4268
			BTRFS_LEAF_DATA_SIZE(fs_info)) {
4269 4270 4271 4272 4273 4274 4275 4276
			if (!extend && data_size && slot == 0) {
				split = 0;
			} else if ((extend || !data_size) && slot == 0) {
				mid = 1;
			} else {
				mid = slot;
				if (mid != nritems &&
				    leaf_space_used(l, mid, nritems - mid) +
4277
				    data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) {
4278 4279
					if (data_size && !tried_avoid_double)
						goto push_for_double;
4280
					split = 2;
4281 4282 4283 4284 4285 4286 4287 4288 4289 4290
				}
			}
		}
	}

	if (split == 0)
		btrfs_cpu_key_to_disk(&disk_key, ins_key);
	else
		btrfs_item_key(l, &disk_key, mid);

4291 4292
	right = alloc_tree_block_no_bg_flush(trans, root, 0, &disk_key, 0,
					     l->start, 0);
4293
	if (IS_ERR(right))
4294
		return PTR_ERR(right);
4295

4296
	root_add_used(root, fs_info->nodesize);
4297

4298 4299 4300
	if (split == 0) {
		if (mid <= slot) {
			btrfs_set_header_nritems(right, 0);
4301 4302
			insert_ptr(trans, fs_info, path, &disk_key,
				   right->start, path->slots[1] + 1, 1);
4303 4304 4305 4306 4307 4308 4309
			btrfs_tree_unlock(path->nodes[0]);
			free_extent_buffer(path->nodes[0]);
			path->nodes[0] = right;
			path->slots[0] = 0;
			path->slots[1] += 1;
		} else {
			btrfs_set_header_nritems(right, 0);
4310 4311
			insert_ptr(trans, fs_info, path, &disk_key,
				   right->start, path->slots[1], 1);
4312 4313 4314 4315
			btrfs_tree_unlock(path->nodes[0]);
			free_extent_buffer(path->nodes[0]);
			path->nodes[0] = right;
			path->slots[0] = 0;
4316
			if (path->slots[1] == 0)
4317
				fixup_low_keys(path, &disk_key, 1);
4318
		}
4319 4320 4321 4322 4323
		/*
		 * We create a new leaf 'right' for the required ins_len and
		 * we'll do btrfs_mark_buffer_dirty() on this leaf after copying
		 * the content of ins_len to 'right'.
		 */
4324
		return ret;
4325
	}
C
Chris Mason 已提交
4326

4327
	copy_for_split(trans, fs_info, path, l, right, slot, mid, nritems);
Z
Zheng Yan 已提交
4328

4329
	if (split == 2) {
4330 4331 4332
		BUG_ON(num_doubles != 0);
		num_doubles++;
		goto again;
4333
	}
4334

4335
	return 0;
4336 4337 4338 4339

push_for_double:
	push_for_double_split(trans, root, path, data_size);
	tried_avoid_double = 1;
4340
	if (btrfs_leaf_free_space(fs_info, path->nodes[0]) >= data_size)
4341 4342
		return 0;
	goto again;
4343 4344
}

Y
Yan, Zheng 已提交
4345 4346 4347
static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans,
					 struct btrfs_root *root,
					 struct btrfs_path *path, int ins_len)
4348
{
4349
	struct btrfs_fs_info *fs_info = root->fs_info;
Y
Yan, Zheng 已提交
4350
	struct btrfs_key key;
4351
	struct extent_buffer *leaf;
Y
Yan, Zheng 已提交
4352 4353 4354 4355
	struct btrfs_file_extent_item *fi;
	u64 extent_len = 0;
	u32 item_size;
	int ret;
4356 4357

	leaf = path->nodes[0];
Y
Yan, Zheng 已提交
4358 4359 4360 4361 4362
	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);

	BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY &&
	       key.type != BTRFS_EXTENT_CSUM_KEY);

4363
	if (btrfs_leaf_free_space(fs_info, leaf) >= ins_len)
Y
Yan, Zheng 已提交
4364
		return 0;
4365 4366

	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
Y
Yan, Zheng 已提交
4367 4368 4369 4370 4371
	if (key.type == BTRFS_EXTENT_DATA_KEY) {
		fi = btrfs_item_ptr(leaf, path->slots[0],
				    struct btrfs_file_extent_item);
		extent_len = btrfs_file_extent_num_bytes(leaf, fi);
	}
4372
	btrfs_release_path(path);
4373 4374

	path->keep_locks = 1;
Y
Yan, Zheng 已提交
4375 4376
	path->search_for_split = 1;
	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
4377
	path->search_for_split = 0;
4378 4379
	if (ret > 0)
		ret = -EAGAIN;
Y
Yan, Zheng 已提交
4380 4381
	if (ret < 0)
		goto err;
4382

Y
Yan, Zheng 已提交
4383 4384
	ret = -EAGAIN;
	leaf = path->nodes[0];
4385 4386
	/* if our item isn't there, return now */
	if (item_size != btrfs_item_size_nr(leaf, path->slots[0]))
Y
Yan, Zheng 已提交
4387 4388
		goto err;

4389
	/* the leaf has  changed, it now has room.  return now */
4390
	if (btrfs_leaf_free_space(fs_info, path->nodes[0]) >= ins_len)
4391 4392
		goto err;

Y
Yan, Zheng 已提交
4393 4394 4395 4396 4397
	if (key.type == BTRFS_EXTENT_DATA_KEY) {
		fi = btrfs_item_ptr(leaf, path->slots[0],
				    struct btrfs_file_extent_item);
		if (extent_len != btrfs_file_extent_num_bytes(leaf, fi))
			goto err;
4398 4399
	}

4400
	btrfs_set_path_blocking(path);
Y
Yan, Zheng 已提交
4401
	ret = split_leaf(trans, root, &key, path, ins_len, 1);
4402 4403
	if (ret)
		goto err;
4404

Y
Yan, Zheng 已提交
4405
	path->keep_locks = 0;
4406
	btrfs_unlock_up_safe(path, 1);
Y
Yan, Zheng 已提交
4407 4408 4409 4410 4411 4412
	return 0;
err:
	path->keep_locks = 0;
	return ret;
}

4413
static noinline int split_item(struct btrfs_fs_info *fs_info,
Y
Yan, Zheng 已提交
4414
			       struct btrfs_path *path,
4415
			       const struct btrfs_key *new_key,
Y
Yan, Zheng 已提交
4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427
			       unsigned long split_offset)
{
	struct extent_buffer *leaf;
	struct btrfs_item *item;
	struct btrfs_item *new_item;
	int slot;
	char *buf;
	u32 nritems;
	u32 item_size;
	u32 orig_offset;
	struct btrfs_disk_key disk_key;

4428
	leaf = path->nodes[0];
4429
	BUG_ON(btrfs_leaf_free_space(fs_info, leaf) < sizeof(struct btrfs_item));
4430

4431 4432
	btrfs_set_path_blocking(path);

4433
	item = btrfs_item_nr(path->slots[0]);
4434 4435 4436 4437
	orig_offset = btrfs_item_offset(leaf, item);
	item_size = btrfs_item_size(leaf, item);

	buf = kmalloc(item_size, GFP_NOFS);
Y
Yan, Zheng 已提交
4438 4439 4440
	if (!buf)
		return -ENOMEM;

4441 4442 4443
	read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf,
			    path->slots[0]), item_size);

Y
Yan, Zheng 已提交
4444
	slot = path->slots[0] + 1;
4445 4446 4447 4448
	nritems = btrfs_header_nritems(leaf);
	if (slot != nritems) {
		/* shift the items */
		memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1),
Y
Yan, Zheng 已提交
4449 4450
				btrfs_item_nr_offset(slot),
				(nritems - slot) * sizeof(struct btrfs_item));
4451 4452 4453 4454 4455
	}

	btrfs_cpu_key_to_disk(&disk_key, new_key);
	btrfs_set_item_key(leaf, &disk_key, slot);

4456
	new_item = btrfs_item_nr(slot);
4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477

	btrfs_set_item_offset(leaf, new_item, orig_offset);
	btrfs_set_item_size(leaf, new_item, item_size - split_offset);

	btrfs_set_item_offset(leaf, item,
			      orig_offset + item_size - split_offset);
	btrfs_set_item_size(leaf, item, split_offset);

	btrfs_set_header_nritems(leaf, nritems + 1);

	/* write the data for the start of the original item */
	write_extent_buffer(leaf, buf,
			    btrfs_item_ptr_offset(leaf, path->slots[0]),
			    split_offset);

	/* write the data for the new item */
	write_extent_buffer(leaf, buf + split_offset,
			    btrfs_item_ptr_offset(leaf, slot),
			    item_size - split_offset);
	btrfs_mark_buffer_dirty(leaf);

4478
	BUG_ON(btrfs_leaf_free_space(fs_info, leaf) < 0);
4479
	kfree(buf);
Y
Yan, Zheng 已提交
4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500
	return 0;
}

/*
 * This function splits a single item into two items,
 * giving 'new_key' to the new item and splitting the
 * old one at split_offset (from the start of the item).
 *
 * The path may be released by this operation.  After
 * the split, the path is pointing to the old item.  The
 * new item is going to be in the same node as the old one.
 *
 * Note, the item being split must be smaller enough to live alone on
 * a tree block with room for one extra struct btrfs_item
 *
 * This allows us to split the item in place, keeping a lock on the
 * leaf the entire time.
 */
int btrfs_split_item(struct btrfs_trans_handle *trans,
		     struct btrfs_root *root,
		     struct btrfs_path *path,
4501
		     const struct btrfs_key *new_key,
Y
Yan, Zheng 已提交
4502 4503 4504 4505 4506 4507 4508 4509
		     unsigned long split_offset)
{
	int ret;
	ret = setup_leaf_for_split(trans, root, path,
				   sizeof(struct btrfs_item));
	if (ret)
		return ret;

4510
	ret = split_item(root->fs_info, path, new_key, split_offset);
4511 4512 4513
	return ret;
}

Y
Yan, Zheng 已提交
4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524
/*
 * This function duplicate a item, giving 'new_key' to the new item.
 * It guarantees both items live in the same tree leaf and the new item
 * is contiguous with the original item.
 *
 * This allows us to split file extent in place, keeping a lock on the
 * leaf the entire time.
 */
int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
			 struct btrfs_root *root,
			 struct btrfs_path *path,
4525
			 const struct btrfs_key *new_key)
Y
Yan, Zheng 已提交
4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538
{
	struct extent_buffer *leaf;
	int ret;
	u32 item_size;

	leaf = path->nodes[0];
	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
	ret = setup_leaf_for_split(trans, root, path,
				   item_size + sizeof(struct btrfs_item));
	if (ret)
		return ret;

	path->slots[0]++;
4539
	setup_items_for_insert(root, path, new_key, &item_size,
4540 4541
			       item_size, item_size +
			       sizeof(struct btrfs_item), 1);
Y
Yan, Zheng 已提交
4542 4543 4544 4545 4546 4547 4548 4549
	leaf = path->nodes[0];
	memcpy_extent_buffer(leaf,
			     btrfs_item_ptr_offset(leaf, path->slots[0]),
			     btrfs_item_ptr_offset(leaf, path->slots[0] - 1),
			     item_size);
	return 0;
}

C
Chris Mason 已提交
4550 4551 4552 4553 4554 4555
/*
 * make the item pointed to by the path smaller.  new_size indicates
 * how small to make it, and from_end tells us if we just chop bytes
 * off the end of the item or if we shift the item to chop bytes off
 * the front.
 */
4556 4557
void btrfs_truncate_item(struct btrfs_fs_info *fs_info,
			 struct btrfs_path *path, u32 new_size, int from_end)
C
Chris Mason 已提交
4558 4559
{
	int slot;
4560 4561
	struct extent_buffer *leaf;
	struct btrfs_item *item;
C
Chris Mason 已提交
4562 4563 4564 4565 4566 4567
	u32 nritems;
	unsigned int data_end;
	unsigned int old_data_start;
	unsigned int old_size;
	unsigned int size_diff;
	int i;
4568 4569 4570
	struct btrfs_map_token token;

	btrfs_init_map_token(&token);
C
Chris Mason 已提交
4571

4572
	leaf = path->nodes[0];
4573 4574 4575 4576
	slot = path->slots[0];

	old_size = btrfs_item_size_nr(leaf, slot);
	if (old_size == new_size)
4577
		return;
C
Chris Mason 已提交
4578

4579
	nritems = btrfs_header_nritems(leaf);
4580
	data_end = leaf_data_end(fs_info, leaf);
C
Chris Mason 已提交
4581

4582
	old_data_start = btrfs_item_offset_nr(leaf, slot);
4583

C
Chris Mason 已提交
4584 4585 4586 4587 4588 4589 4590 4591 4592 4593
	size_diff = old_size - new_size;

	BUG_ON(slot < 0);
	BUG_ON(slot >= nritems);

	/*
	 * item0..itemN ... dataN.offset..dataN.size .. data0.size
	 */
	/* first correct the data pointers */
	for (i = slot; i < nritems; i++) {
4594
		u32 ioff;
4595
		item = btrfs_item_nr(i);
4596

4597 4598 4599
		ioff = btrfs_token_item_offset(leaf, item, &token);
		btrfs_set_token_item_offset(leaf, item,
					    ioff + size_diff, &token);
C
Chris Mason 已提交
4600
	}
4601

C
Chris Mason 已提交
4602
	/* shift the data */
4603
	if (from_end) {
4604 4605
		memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
			      data_end + size_diff, BTRFS_LEAF_DATA_OFFSET +
4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625
			      data_end, old_data_start + new_size - data_end);
	} else {
		struct btrfs_disk_key disk_key;
		u64 offset;

		btrfs_item_key(leaf, &disk_key, slot);

		if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) {
			unsigned long ptr;
			struct btrfs_file_extent_item *fi;

			fi = btrfs_item_ptr(leaf, slot,
					    struct btrfs_file_extent_item);
			fi = (struct btrfs_file_extent_item *)(
			     (unsigned long)fi - size_diff);

			if (btrfs_file_extent_type(leaf, fi) ==
			    BTRFS_FILE_EXTENT_INLINE) {
				ptr = btrfs_item_ptr_offset(leaf, slot);
				memmove_extent_buffer(leaf, ptr,
C
Chris Mason 已提交
4626
				      (unsigned long)fi,
4627
				      BTRFS_FILE_EXTENT_INLINE_DATA_START);
4628 4629 4630
			}
		}

4631 4632
		memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
			      data_end + size_diff, BTRFS_LEAF_DATA_OFFSET +
4633 4634 4635 4636 4637 4638
			      data_end, old_data_start - data_end);

		offset = btrfs_disk_key_offset(&disk_key);
		btrfs_set_disk_key_offset(&disk_key, offset + size_diff);
		btrfs_set_item_key(leaf, &disk_key, slot);
		if (slot == 0)
4639
			fixup_low_keys(path, &disk_key, 1);
4640
	}
4641

4642
	item = btrfs_item_nr(slot);
4643 4644
	btrfs_set_item_size(leaf, item, new_size);
	btrfs_mark_buffer_dirty(leaf);
C
Chris Mason 已提交
4645

4646
	if (btrfs_leaf_free_space(fs_info, leaf) < 0) {
4647
		btrfs_print_leaf(leaf);
C
Chris Mason 已提交
4648
		BUG();
4649
	}
C
Chris Mason 已提交
4650 4651
}

C
Chris Mason 已提交
4652
/*
S
Stefan Behrens 已提交
4653
 * make the item pointed to by the path bigger, data_size is the added size.
C
Chris Mason 已提交
4654
 */
4655
void btrfs_extend_item(struct btrfs_fs_info *fs_info, struct btrfs_path *path,
4656
		       u32 data_size)
4657 4658
{
	int slot;
4659 4660
	struct extent_buffer *leaf;
	struct btrfs_item *item;
4661 4662 4663 4664 4665
	u32 nritems;
	unsigned int data_end;
	unsigned int old_data;
	unsigned int old_size;
	int i;
4666 4667 4668
	struct btrfs_map_token token;

	btrfs_init_map_token(&token);
4669

4670
	leaf = path->nodes[0];
4671

4672
	nritems = btrfs_header_nritems(leaf);
4673
	data_end = leaf_data_end(fs_info, leaf);
4674

4675
	if (btrfs_leaf_free_space(fs_info, leaf) < data_size) {
4676
		btrfs_print_leaf(leaf);
4677
		BUG();
4678
	}
4679
	slot = path->slots[0];
4680
	old_data = btrfs_item_end_nr(leaf, slot);
4681 4682

	BUG_ON(slot < 0);
4683
	if (slot >= nritems) {
4684
		btrfs_print_leaf(leaf);
4685 4686
		btrfs_crit(fs_info, "slot %d too large, nritems %d",
			   slot, nritems);
4687
		BUG();
4688
	}
4689 4690 4691 4692 4693 4694

	/*
	 * item0..itemN ... dataN.offset..dataN.size .. data0.size
	 */
	/* first correct the data pointers */
	for (i = slot; i < nritems; i++) {
4695
		u32 ioff;
4696
		item = btrfs_item_nr(i);
4697

4698 4699 4700
		ioff = btrfs_token_item_offset(leaf, item, &token);
		btrfs_set_token_item_offset(leaf, item,
					    ioff - data_size, &token);
4701
	}
4702

4703
	/* shift the data */
4704 4705
	memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
		      data_end - data_size, BTRFS_LEAF_DATA_OFFSET +
4706
		      data_end, old_data - data_end);
4707

4708
	data_end = old_data;
4709
	old_size = btrfs_item_size_nr(leaf, slot);
4710
	item = btrfs_item_nr(slot);
4711 4712
	btrfs_set_item_size(leaf, item, old_size + data_size);
	btrfs_mark_buffer_dirty(leaf);
4713

4714
	if (btrfs_leaf_free_space(fs_info, leaf) < 0) {
4715
		btrfs_print_leaf(leaf);
4716
		BUG();
4717
	}
4718 4719
}

C
Chris Mason 已提交
4720
/*
4721 4722 4723
 * this is a helper for btrfs_insert_empty_items, the main goal here is
 * to save stack depth by doing the bulk of the work in a function
 * that doesn't call btrfs_search_slot
C
Chris Mason 已提交
4724
 */
4725
void setup_items_for_insert(struct btrfs_root *root, struct btrfs_path *path,
4726
			    const struct btrfs_key *cpu_key, u32 *data_size,
4727
			    u32 total_data, u32 total_size, int nr)
4728
{
4729
	struct btrfs_fs_info *fs_info = root->fs_info;
4730
	struct btrfs_item *item;
4731
	int i;
4732
	u32 nritems;
4733
	unsigned int data_end;
C
Chris Mason 已提交
4734
	struct btrfs_disk_key disk_key;
4735 4736
	struct extent_buffer *leaf;
	int slot;
4737 4738
	struct btrfs_map_token token;

4739 4740
	if (path->slots[0] == 0) {
		btrfs_cpu_key_to_disk(&disk_key, cpu_key);
4741
		fixup_low_keys(path, &disk_key, 1);
4742 4743 4744
	}
	btrfs_unlock_up_safe(path, 1);

4745
	btrfs_init_map_token(&token);
C
Chris Mason 已提交
4746

4747
	leaf = path->nodes[0];
4748
	slot = path->slots[0];
C
Chris Mason 已提交
4749

4750
	nritems = btrfs_header_nritems(leaf);
4751
	data_end = leaf_data_end(fs_info, leaf);
4752

4753
	if (btrfs_leaf_free_space(fs_info, leaf) < total_size) {
4754
		btrfs_print_leaf(leaf);
4755
		btrfs_crit(fs_info, "not enough freespace need %u have %d",
4756
			   total_size, btrfs_leaf_free_space(fs_info, leaf));
4757
		BUG();
4758
	}
4759

4760
	if (slot != nritems) {
4761
		unsigned int old_data = btrfs_item_end_nr(leaf, slot);
4762

4763
		if (old_data < data_end) {
4764
			btrfs_print_leaf(leaf);
4765
			btrfs_crit(fs_info, "slot %d old_data %d data_end %d",
J
Jeff Mahoney 已提交
4766
				   slot, old_data, data_end);
4767
			BUG();
4768
		}
4769 4770 4771 4772
		/*
		 * item0..itemN ... dataN.offset..dataN.size .. data0.size
		 */
		/* first correct the data pointers */
C
Chris Mason 已提交
4773
		for (i = slot; i < nritems; i++) {
4774
			u32 ioff;
4775

4776
			item = btrfs_item_nr(i);
4777 4778 4779
			ioff = btrfs_token_item_offset(leaf, item, &token);
			btrfs_set_token_item_offset(leaf, item,
						    ioff - total_data, &token);
C
Chris Mason 已提交
4780
		}
4781
		/* shift the items */
4782
		memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
4783
			      btrfs_item_nr_offset(slot),
C
Chris Mason 已提交
4784
			      (nritems - slot) * sizeof(struct btrfs_item));
4785 4786

		/* shift the data */
4787 4788
		memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
			      data_end - total_data, BTRFS_LEAF_DATA_OFFSET +
C
Chris Mason 已提交
4789
			      data_end, old_data - data_end);
4790 4791
		data_end = old_data;
	}
4792

4793
	/* setup the item for the new data */
4794 4795 4796
	for (i = 0; i < nr; i++) {
		btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
		btrfs_set_item_key(leaf, &disk_key, slot + i);
4797
		item = btrfs_item_nr(slot + i);
4798 4799
		btrfs_set_token_item_offset(leaf, item,
					    data_end - data_size[i], &token);
4800
		data_end -= data_size[i];
4801
		btrfs_set_token_item_size(leaf, item, data_size[i], &token);
4802
	}
4803

4804
	btrfs_set_header_nritems(leaf, nritems + nr);
4805
	btrfs_mark_buffer_dirty(leaf);
C
Chris Mason 已提交
4806

4807
	if (btrfs_leaf_free_space(fs_info, leaf) < 0) {
4808
		btrfs_print_leaf(leaf);
4809
		BUG();
4810
	}
4811 4812 4813 4814 4815 4816 4817 4818 4819
}

/*
 * Given a key and some data, insert items into the tree.
 * This does all the path init required, making room in the tree if needed.
 */
int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
			    struct btrfs_root *root,
			    struct btrfs_path *path,
4820
			    const struct btrfs_key *cpu_key, u32 *data_size,
4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836
			    int nr)
{
	int ret = 0;
	int slot;
	int i;
	u32 total_size = 0;
	u32 total_data = 0;

	for (i = 0; i < nr; i++)
		total_data += data_size[i];

	total_size = total_data + (nr * sizeof(struct btrfs_item));
	ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
	if (ret == 0)
		return -EEXIST;
	if (ret < 0)
4837
		return ret;
4838 4839 4840 4841

	slot = path->slots[0];
	BUG_ON(slot < 0);

4842
	setup_items_for_insert(root, path, cpu_key, data_size,
4843
			       total_data, total_size, nr);
4844
	return 0;
4845 4846 4847 4848 4849 4850
}

/*
 * Given a key and some data, insert an item into the tree.
 * This does all the path init required, making room in the tree if needed.
 */
4851 4852 4853
int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root *root,
		      const struct btrfs_key *cpu_key, void *data,
		      u32 data_size)
4854 4855
{
	int ret = 0;
C
Chris Mason 已提交
4856
	struct btrfs_path *path;
4857 4858
	struct extent_buffer *leaf;
	unsigned long ptr;
4859

C
Chris Mason 已提交
4860
	path = btrfs_alloc_path();
T
Tsutomu Itoh 已提交
4861 4862
	if (!path)
		return -ENOMEM;
C
Chris Mason 已提交
4863
	ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
4864
	if (!ret) {
4865 4866 4867 4868
		leaf = path->nodes[0];
		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
		write_extent_buffer(leaf, data, ptr, data_size);
		btrfs_mark_buffer_dirty(leaf);
4869
	}
C
Chris Mason 已提交
4870
	btrfs_free_path(path);
C
Chris Mason 已提交
4871
	return ret;
4872 4873
}

C
Chris Mason 已提交
4874
/*
C
Chris Mason 已提交
4875
 * delete the pointer from a given node.
C
Chris Mason 已提交
4876
 *
C
Chris Mason 已提交
4877 4878
 * the tree should have been previously balanced so the deletion does not
 * empty a node.
C
Chris Mason 已提交
4879
 */
4880 4881
static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
		    int level, int slot)
4882
{
4883
	struct extent_buffer *parent = path->nodes[level];
4884
	u32 nritems;
4885
	int ret;
4886

4887
	nritems = btrfs_header_nritems(parent);
C
Chris Mason 已提交
4888
	if (slot != nritems - 1) {
4889 4890
		if (level) {
			ret = tree_mod_log_insert_move(parent, slot, slot + 1,
4891
					nritems - slot - 1);
4892 4893
			BUG_ON(ret < 0);
		}
4894 4895 4896
		memmove_extent_buffer(parent,
			      btrfs_node_key_ptr_offset(slot),
			      btrfs_node_key_ptr_offset(slot + 1),
C
Chris Mason 已提交
4897 4898
			      sizeof(struct btrfs_key_ptr) *
			      (nritems - slot - 1));
4899
	} else if (level) {
4900 4901
		ret = tree_mod_log_insert_key(parent, slot, MOD_LOG_KEY_REMOVE,
				GFP_NOFS);
4902
		BUG_ON(ret < 0);
4903
	}
4904

4905
	nritems--;
4906
	btrfs_set_header_nritems(parent, nritems);
4907
	if (nritems == 0 && parent == root->node) {
4908
		BUG_ON(btrfs_header_level(root->node) != 1);
4909
		/* just turn the root into a leaf and break */
4910
		btrfs_set_header_level(root->node, 0);
4911
	} else if (slot == 0) {
4912 4913 4914
		struct btrfs_disk_key disk_key;

		btrfs_node_key(parent, &disk_key, 0);
4915
		fixup_low_keys(path, &disk_key, level + 1);
4916
	}
C
Chris Mason 已提交
4917
	btrfs_mark_buffer_dirty(parent);
4918 4919
}

4920 4921
/*
 * a helper function to delete the leaf pointed to by path->slots[1] and
4922
 * path->nodes[1].
4923 4924 4925 4926 4927 4928 4929
 *
 * This deletes the pointer in path->nodes[1] and frees the leaf
 * block extent.  zero is returned if it all worked out, < 0 otherwise.
 *
 * The path must have already been setup for deleting the leaf, including
 * all the proper balancing.  path->nodes[1] must be locked.
 */
4930 4931 4932 4933
static noinline void btrfs_del_leaf(struct btrfs_trans_handle *trans,
				    struct btrfs_root *root,
				    struct btrfs_path *path,
				    struct extent_buffer *leaf)
4934
{
4935
	WARN_ON(btrfs_header_generation(leaf) != trans->transid);
4936
	del_ptr(root, path, 1, path->slots[1]);
4937

4938 4939 4940 4941 4942 4943
	/*
	 * btrfs_free_extent is expensive, we want to make sure we
	 * aren't holding any locks when we call it
	 */
	btrfs_unlock_up_safe(path, 0);

4944 4945
	root_sub_used(root, leaf->len);

4946
	extent_buffer_get(leaf);
4947
	btrfs_free_tree_block(trans, root, leaf, 0, 1);
4948
	free_extent_buffer_stale(leaf);
4949
}
C
Chris Mason 已提交
4950 4951 4952 4953
/*
 * delete the item at the leaf level in path.  If that empties
 * the leaf, remove it from the tree
 */
4954 4955
int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
		    struct btrfs_path *path, int slot, int nr)
4956
{
4957
	struct btrfs_fs_info *fs_info = root->fs_info;
4958 4959
	struct extent_buffer *leaf;
	struct btrfs_item *item;
4960 4961
	u32 last_off;
	u32 dsize = 0;
C
Chris Mason 已提交
4962 4963
	int ret = 0;
	int wret;
4964
	int i;
4965
	u32 nritems;
4966 4967 4968
	struct btrfs_map_token token;

	btrfs_init_map_token(&token);
4969

4970
	leaf = path->nodes[0];
4971 4972 4973 4974 4975
	last_off = btrfs_item_offset_nr(leaf, slot + nr - 1);

	for (i = 0; i < nr; i++)
		dsize += btrfs_item_size_nr(leaf, slot + i);

4976
	nritems = btrfs_header_nritems(leaf);
4977

4978
	if (slot + nr != nritems) {
4979
		int data_end = leaf_data_end(fs_info, leaf);
4980

4981
		memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
C
Chris Mason 已提交
4982
			      data_end + dsize,
4983
			      BTRFS_LEAF_DATA_OFFSET + data_end,
4984
			      last_off - data_end);
4985

4986
		for (i = slot + nr; i < nritems; i++) {
4987
			u32 ioff;
4988

4989
			item = btrfs_item_nr(i);
4990 4991 4992
			ioff = btrfs_token_item_offset(leaf, item, &token);
			btrfs_set_token_item_offset(leaf, item,
						    ioff + dsize, &token);
C
Chris Mason 已提交
4993
		}
4994

4995
		memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot),
4996
			      btrfs_item_nr_offset(slot + nr),
C
Chris Mason 已提交
4997
			      sizeof(struct btrfs_item) *
4998
			      (nritems - slot - nr));
4999
	}
5000 5001
	btrfs_set_header_nritems(leaf, nritems - nr);
	nritems -= nr;
5002

C
Chris Mason 已提交
5003
	/* delete the leaf if we've emptied it */
5004
	if (nritems == 0) {
5005 5006
		if (leaf == root->node) {
			btrfs_set_header_level(leaf, 0);
5007
		} else {
5008
			btrfs_set_path_blocking(path);
5009
			clean_tree_block(fs_info, leaf);
5010
			btrfs_del_leaf(trans, root, path, leaf);
5011
		}
5012
	} else {
5013
		int used = leaf_space_used(leaf, 0, nritems);
C
Chris Mason 已提交
5014
		if (slot == 0) {
5015 5016 5017
			struct btrfs_disk_key disk_key;

			btrfs_item_key(leaf, &disk_key, 0);
5018
			fixup_low_keys(path, &disk_key, 1);
C
Chris Mason 已提交
5019 5020
		}

C
Chris Mason 已提交
5021
		/* delete the leaf if it is mostly empty */
5022
		if (used < BTRFS_LEAF_DATA_SIZE(fs_info) / 3) {
5023 5024 5025 5026
			/* push_leaf_left fixes the path.
			 * make sure the path still points to our leaf
			 * for possible call to del_ptr below
			 */
5027
			slot = path->slots[1];
5028 5029
			extent_buffer_get(leaf);

5030
			btrfs_set_path_blocking(path);
5031 5032
			wret = push_leaf_left(trans, root, path, 1, 1,
					      1, (u32)-1);
5033
			if (wret < 0 && wret != -ENOSPC)
C
Chris Mason 已提交
5034
				ret = wret;
5035 5036 5037

			if (path->nodes[0] == leaf &&
			    btrfs_header_nritems(leaf)) {
5038 5039
				wret = push_leaf_right(trans, root, path, 1,
						       1, 1, 0);
5040
				if (wret < 0 && wret != -ENOSPC)
C
Chris Mason 已提交
5041 5042
					ret = wret;
			}
5043 5044

			if (btrfs_header_nritems(leaf) == 0) {
5045
				path->slots[1] = slot;
5046
				btrfs_del_leaf(trans, root, path, leaf);
5047
				free_extent_buffer(leaf);
5048
				ret = 0;
C
Chris Mason 已提交
5049
			} else {
5050 5051 5052 5053 5054 5055 5056
				/* if we're still in the path, make sure
				 * we're dirty.  Otherwise, one of the
				 * push_leaf functions must have already
				 * dirtied this buffer
				 */
				if (path->nodes[0] == leaf)
					btrfs_mark_buffer_dirty(leaf);
5057
				free_extent_buffer(leaf);
5058
			}
5059
		} else {
5060
			btrfs_mark_buffer_dirty(leaf);
5061 5062
		}
	}
C
Chris Mason 已提交
5063
	return ret;
5064 5065
}

5066
/*
5067
 * search the tree again to find a leaf with lesser keys
5068 5069
 * returns 0 if it found something or 1 if there are no lesser leaves.
 * returns < 0 on io errors.
C
Chris Mason 已提交
5070 5071 5072
 *
 * This may release the path, and so you may lose any locks held at the
 * time you call it.
5073
 */
5074
int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path)
5075
{
5076 5077 5078
	struct btrfs_key key;
	struct btrfs_disk_key found_key;
	int ret;
5079

5080
	btrfs_item_key_to_cpu(path->nodes[0], &key, 0);
5081

5082
	if (key.offset > 0) {
5083
		key.offset--;
5084
	} else if (key.type > 0) {
5085
		key.type--;
5086 5087
		key.offset = (u64)-1;
	} else if (key.objectid > 0) {
5088
		key.objectid--;
5089 5090 5091
		key.type = (u8)-1;
		key.offset = (u64)-1;
	} else {
5092
		return 1;
5093
	}
5094

5095
	btrfs_release_path(path);
5096 5097 5098 5099 5100
	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
	if (ret < 0)
		return ret;
	btrfs_item_key(path->nodes[0], &found_key, 0);
	ret = comp_keys(&found_key, &key);
5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111
	/*
	 * We might have had an item with the previous key in the tree right
	 * before we released our path. And after we released our path, that
	 * item might have been pushed to the first slot (0) of the leaf we
	 * were holding due to a tree balance. Alternatively, an item with the
	 * previous key can exist as the only element of a leaf (big fat item).
	 * Therefore account for these 2 cases, so that our callers (like
	 * btrfs_previous_item) don't miss an existing item with a key matching
	 * the previous key we computed above.
	 */
	if (ret <= 0)
5112 5113
		return 0;
	return 1;
5114 5115
}

5116 5117
/*
 * A helper function to walk down the tree starting at min_key, and looking
5118 5119
 * for nodes or leaves that are have a minimum transaction id.
 * This is used by the btree defrag code, and tree logging
5120 5121 5122 5123 5124 5125 5126 5127
 *
 * This does not cow, but it does stuff the starting key it finds back
 * into min_key, so you can call btrfs_search_slot with cow=1 on the
 * key and get a writable path.
 *
 * This honors path->lowest_level to prevent descent past a given level
 * of the tree.
 *
C
Chris Mason 已提交
5128 5129 5130 5131
 * min_trans indicates the oldest transaction that you are interested
 * in walking through.  Any nodes or leaves older than min_trans are
 * skipped over (without reading them).
 *
5132 5133 5134 5135
 * returns zero if something useful was found, < 0 on error and 1 if there
 * was nothing in the tree that matched the search criteria.
 */
int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
5136
			 struct btrfs_path *path,
5137 5138
			 u64 min_trans)
{
5139
	struct btrfs_fs_info *fs_info = root->fs_info;
5140 5141 5142
	struct extent_buffer *cur;
	struct btrfs_key found_key;
	int slot;
5143
	int sret;
5144 5145 5146
	u32 nritems;
	int level;
	int ret = 1;
5147
	int keep_locks = path->keep_locks;
5148

5149
	path->keep_locks = 1;
5150
again:
5151
	cur = btrfs_read_lock_root_node(root);
5152
	level = btrfs_header_level(cur);
5153
	WARN_ON(path->nodes[level]);
5154
	path->nodes[level] = cur;
5155
	path->locks[level] = BTRFS_READ_LOCK;
5156 5157 5158 5159 5160

	if (btrfs_header_generation(cur) < min_trans) {
		ret = 1;
		goto out;
	}
C
Chris Mason 已提交
5161
	while (1) {
5162 5163
		nritems = btrfs_header_nritems(cur);
		level = btrfs_header_level(cur);
5164
		sret = btrfs_bin_search(cur, min_key, level, &slot);
5165 5166 5167 5168
		if (sret < 0) {
			ret = sret;
			goto out;
		}
5169

5170 5171
		/* at the lowest level, we're done, setup the path and exit */
		if (level == path->lowest_level) {
5172 5173
			if (slot >= nritems)
				goto find_next_key;
5174 5175 5176 5177 5178
			ret = 0;
			path->slots[level] = slot;
			btrfs_item_key_to_cpu(cur, &found_key, slot);
			goto out;
		}
5179 5180
		if (sret && slot > 0)
			slot--;
5181
		/*
5182 5183
		 * check this node pointer against the min_trans parameters.
		 * If it is too old, old, skip to the next one.
5184
		 */
C
Chris Mason 已提交
5185
		while (slot < nritems) {
5186
			u64 gen;
5187

5188 5189 5190 5191 5192
			gen = btrfs_node_ptr_generation(cur, slot);
			if (gen < min_trans) {
				slot++;
				continue;
			}
5193
			break;
5194
		}
5195
find_next_key:
5196 5197 5198 5199 5200
		/*
		 * we didn't find a candidate key in this node, walk forward
		 * and find another one
		 */
		if (slot >= nritems) {
5201
			path->slots[level] = slot;
5202
			btrfs_set_path_blocking(path);
5203
			sret = btrfs_find_next_key(root, path, min_key, level,
5204
						  min_trans);
5205
			if (sret == 0) {
5206
				btrfs_release_path(path);
5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218
				goto again;
			} else {
				goto out;
			}
		}
		/* save our key for returning back */
		btrfs_node_key_to_cpu(cur, &found_key, slot);
		path->slots[level] = slot;
		if (level == path->lowest_level) {
			ret = 0;
			goto out;
		}
5219
		btrfs_set_path_blocking(path);
5220
		cur = read_node_slot(fs_info, cur, slot);
5221 5222 5223 5224
		if (IS_ERR(cur)) {
			ret = PTR_ERR(cur);
			goto out;
		}
5225

5226
		btrfs_tree_read_lock(cur);
5227

5228
		path->locks[level - 1] = BTRFS_READ_LOCK;
5229
		path->nodes[level - 1] = cur;
5230
		unlock_up(path, level, 1, 0, NULL);
5231 5232
	}
out:
5233 5234 5235 5236
	path->keep_locks = keep_locks;
	if (ret == 0) {
		btrfs_unlock_up_safe(path, path->lowest_level + 1);
		btrfs_set_path_blocking(path);
5237
		memcpy(min_key, &found_key, sizeof(found_key));
5238
	}
5239 5240 5241
	return ret;
}

5242
static int tree_move_down(struct btrfs_fs_info *fs_info,
5243
			   struct btrfs_path *path,
5244
			   int *level)
5245
{
5246 5247
	struct extent_buffer *eb;

5248
	BUG_ON(*level == 0);
5249
	eb = read_node_slot(fs_info, path->nodes[*level], path->slots[*level]);
5250 5251 5252 5253
	if (IS_ERR(eb))
		return PTR_ERR(eb);

	path->nodes[*level - 1] = eb;
5254 5255
	path->slots[*level - 1] = 0;
	(*level)--;
5256
	return 0;
5257 5258
}

5259
static int tree_move_next_or_upnext(struct btrfs_path *path,
5260 5261 5262 5263 5264 5265 5266 5267
				    int *level, int root_level)
{
	int ret = 0;
	int nritems;
	nritems = btrfs_header_nritems(path->nodes[*level]);

	path->slots[*level]++;

5268
	while (path->slots[*level] >= nritems) {
5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288
		if (*level == root_level)
			return -1;

		/* move upnext */
		path->slots[*level] = 0;
		free_extent_buffer(path->nodes[*level]);
		path->nodes[*level] = NULL;
		(*level)++;
		path->slots[*level]++;

		nritems = btrfs_header_nritems(path->nodes[*level]);
		ret = 1;
	}
	return ret;
}

/*
 * Returns 1 if it had to move up and next. 0 is returned if it moved only next
 * or down.
 */
5289
static int tree_advance(struct btrfs_fs_info *fs_info,
5290 5291 5292 5293 5294 5295 5296 5297
			struct btrfs_path *path,
			int *level, int root_level,
			int allow_down,
			struct btrfs_key *key)
{
	int ret;

	if (*level == 0 || !allow_down) {
5298
		ret = tree_move_next_or_upnext(path, level, root_level);
5299
	} else {
5300
		ret = tree_move_down(fs_info, path, level);
5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312
	}
	if (ret >= 0) {
		if (*level == 0)
			btrfs_item_key_to_cpu(path->nodes[*level], key,
					path->slots[*level]);
		else
			btrfs_node_key_to_cpu(path->nodes[*level], key,
					path->slots[*level]);
	}
	return ret;
}

5313
static int tree_compare_item(struct btrfs_path *left_path,
5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357
			     struct btrfs_path *right_path,
			     char *tmp_buf)
{
	int cmp;
	int len1, len2;
	unsigned long off1, off2;

	len1 = btrfs_item_size_nr(left_path->nodes[0], left_path->slots[0]);
	len2 = btrfs_item_size_nr(right_path->nodes[0], right_path->slots[0]);
	if (len1 != len2)
		return 1;

	off1 = btrfs_item_ptr_offset(left_path->nodes[0], left_path->slots[0]);
	off2 = btrfs_item_ptr_offset(right_path->nodes[0],
				right_path->slots[0]);

	read_extent_buffer(left_path->nodes[0], tmp_buf, off1, len1);

	cmp = memcmp_extent_buffer(right_path->nodes[0], tmp_buf, off2, len1);
	if (cmp)
		return 1;
	return 0;
}

#define ADVANCE 1
#define ADVANCE_ONLY_NEXT -1

/*
 * This function compares two trees and calls the provided callback for
 * every changed/new/deleted item it finds.
 * If shared tree blocks are encountered, whole subtrees are skipped, making
 * the compare pretty fast on snapshotted subvolumes.
 *
 * This currently works on commit roots only. As commit roots are read only,
 * we don't do any locking. The commit roots are protected with transactions.
 * Transactions are ended and rejoined when a commit is tried in between.
 *
 * This function checks for modifications done to the trees while comparing.
 * If it detects a change, it aborts immediately.
 */
int btrfs_compare_trees(struct btrfs_root *left_root,
			struct btrfs_root *right_root,
			btrfs_changed_cb_t changed_cb, void *ctx)
{
5358
	struct btrfs_fs_info *fs_info = left_root->fs_info;
5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375
	int ret;
	int cmp;
	struct btrfs_path *left_path = NULL;
	struct btrfs_path *right_path = NULL;
	struct btrfs_key left_key;
	struct btrfs_key right_key;
	char *tmp_buf = NULL;
	int left_root_level;
	int right_root_level;
	int left_level;
	int right_level;
	int left_end_reached;
	int right_end_reached;
	int advance_left;
	int advance_right;
	u64 left_blockptr;
	u64 right_blockptr;
5376 5377
	u64 left_gen;
	u64 right_gen;
5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389

	left_path = btrfs_alloc_path();
	if (!left_path) {
		ret = -ENOMEM;
		goto out;
	}
	right_path = btrfs_alloc_path();
	if (!right_path) {
		ret = -ENOMEM;
		goto out;
	}

5390
	tmp_buf = kvmalloc(fs_info->nodesize, GFP_KERNEL);
5391
	if (!tmp_buf) {
5392 5393
		ret = -ENOMEM;
		goto out;
5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436
	}

	left_path->search_commit_root = 1;
	left_path->skip_locking = 1;
	right_path->search_commit_root = 1;
	right_path->skip_locking = 1;

	/*
	 * Strategy: Go to the first items of both trees. Then do
	 *
	 * If both trees are at level 0
	 *   Compare keys of current items
	 *     If left < right treat left item as new, advance left tree
	 *       and repeat
	 *     If left > right treat right item as deleted, advance right tree
	 *       and repeat
	 *     If left == right do deep compare of items, treat as changed if
	 *       needed, advance both trees and repeat
	 * If both trees are at the same level but not at level 0
	 *   Compare keys of current nodes/leafs
	 *     If left < right advance left tree and repeat
	 *     If left > right advance right tree and repeat
	 *     If left == right compare blockptrs of the next nodes/leafs
	 *       If they match advance both trees but stay at the same level
	 *         and repeat
	 *       If they don't match advance both trees while allowing to go
	 *         deeper and repeat
	 * If tree levels are different
	 *   Advance the tree that needs it and repeat
	 *
	 * Advancing a tree means:
	 *   If we are at level 0, try to go to the next slot. If that's not
	 *   possible, go one level up and repeat. Stop when we found a level
	 *   where we could go to the next slot. We may at this point be on a
	 *   node or a leaf.
	 *
	 *   If we are not at level 0 and not on shared tree blocks, go one
	 *   level deeper.
	 *
	 *   If we are not at level 0 and on shared tree blocks, go one slot to
	 *   the right if possible or go up and right.
	 */

5437
	down_read(&fs_info->commit_root_sem);
5438 5439
	left_level = btrfs_header_level(left_root->commit_root);
	left_root_level = left_level;
5440 5441 5442 5443 5444 5445 5446
	left_path->nodes[left_level] =
			btrfs_clone_extent_buffer(left_root->commit_root);
	if (!left_path->nodes[left_level]) {
		up_read(&fs_info->commit_root_sem);
		ret = -ENOMEM;
		goto out;
	}
5447 5448 5449

	right_level = btrfs_header_level(right_root->commit_root);
	right_root_level = right_level;
5450 5451 5452 5453 5454 5455 5456
	right_path->nodes[right_level] =
			btrfs_clone_extent_buffer(right_root->commit_root);
	if (!right_path->nodes[right_level]) {
		up_read(&fs_info->commit_root_sem);
		ret = -ENOMEM;
		goto out;
	}
5457
	up_read(&fs_info->commit_root_sem);
5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476

	if (left_level == 0)
		btrfs_item_key_to_cpu(left_path->nodes[left_level],
				&left_key, left_path->slots[left_level]);
	else
		btrfs_node_key_to_cpu(left_path->nodes[left_level],
				&left_key, left_path->slots[left_level]);
	if (right_level == 0)
		btrfs_item_key_to_cpu(right_path->nodes[right_level],
				&right_key, right_path->slots[right_level]);
	else
		btrfs_node_key_to_cpu(right_path->nodes[right_level],
				&right_key, right_path->slots[right_level]);

	left_end_reached = right_end_reached = 0;
	advance_left = advance_right = 0;

	while (1) {
		if (advance_left && !left_end_reached) {
5477
			ret = tree_advance(fs_info, left_path, &left_level,
5478 5479 5480
					left_root_level,
					advance_left != ADVANCE_ONLY_NEXT,
					&left_key);
5481
			if (ret == -1)
5482
				left_end_reached = ADVANCE;
5483 5484
			else if (ret < 0)
				goto out;
5485 5486 5487
			advance_left = 0;
		}
		if (advance_right && !right_end_reached) {
5488
			ret = tree_advance(fs_info, right_path, &right_level,
5489 5490 5491
					right_root_level,
					advance_right != ADVANCE_ONLY_NEXT,
					&right_key);
5492
			if (ret == -1)
5493
				right_end_reached = ADVANCE;
5494 5495
			else if (ret < 0)
				goto out;
5496 5497 5498 5499 5500 5501 5502 5503
			advance_right = 0;
		}

		if (left_end_reached && right_end_reached) {
			ret = 0;
			goto out;
		} else if (left_end_reached) {
			if (right_level == 0) {
5504
				ret = changed_cb(left_path, right_path,
5505 5506 5507 5508 5509 5510 5511 5512 5513 5514
						&right_key,
						BTRFS_COMPARE_TREE_DELETED,
						ctx);
				if (ret < 0)
					goto out;
			}
			advance_right = ADVANCE;
			continue;
		} else if (right_end_reached) {
			if (left_level == 0) {
5515
				ret = changed_cb(left_path, right_path,
5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528
						&left_key,
						BTRFS_COMPARE_TREE_NEW,
						ctx);
				if (ret < 0)
					goto out;
			}
			advance_left = ADVANCE;
			continue;
		}

		if (left_level == 0 && right_level == 0) {
			cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
			if (cmp < 0) {
5529
				ret = changed_cb(left_path, right_path,
5530 5531 5532 5533 5534 5535 5536
						&left_key,
						BTRFS_COMPARE_TREE_NEW,
						ctx);
				if (ret < 0)
					goto out;
				advance_left = ADVANCE;
			} else if (cmp > 0) {
5537
				ret = changed_cb(left_path, right_path,
5538 5539 5540 5541 5542 5543 5544
						&right_key,
						BTRFS_COMPARE_TREE_DELETED,
						ctx);
				if (ret < 0)
					goto out;
				advance_right = ADVANCE;
			} else {
5545
				enum btrfs_compare_tree_result result;
5546

5547
				WARN_ON(!extent_buffer_uptodate(left_path->nodes[0]));
5548 5549
				ret = tree_compare_item(left_path, right_path,
							tmp_buf);
5550
				if (ret)
5551
					result = BTRFS_COMPARE_TREE_CHANGED;
5552
				else
5553
					result = BTRFS_COMPARE_TREE_SAME;
5554
				ret = changed_cb(left_path, right_path,
5555
						 &left_key, result, ctx);
5556 5557
				if (ret < 0)
					goto out;
5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573
				advance_left = ADVANCE;
				advance_right = ADVANCE;
			}
		} else if (left_level == right_level) {
			cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
			if (cmp < 0) {
				advance_left = ADVANCE;
			} else if (cmp > 0) {
				advance_right = ADVANCE;
			} else {
				left_blockptr = btrfs_node_blockptr(
						left_path->nodes[left_level],
						left_path->slots[left_level]);
				right_blockptr = btrfs_node_blockptr(
						right_path->nodes[right_level],
						right_path->slots[right_level]);
5574 5575 5576 5577 5578 5579 5580 5581
				left_gen = btrfs_node_ptr_generation(
						left_path->nodes[left_level],
						left_path->slots[left_level]);
				right_gen = btrfs_node_ptr_generation(
						right_path->nodes[right_level],
						right_path->slots[right_level]);
				if (left_blockptr == right_blockptr &&
				    left_gen == right_gen) {
5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602
					/*
					 * As we're on a shared block, don't
					 * allow to go deeper.
					 */
					advance_left = ADVANCE_ONLY_NEXT;
					advance_right = ADVANCE_ONLY_NEXT;
				} else {
					advance_left = ADVANCE;
					advance_right = ADVANCE;
				}
			}
		} else if (left_level < right_level) {
			advance_right = ADVANCE;
		} else {
			advance_left = ADVANCE;
		}
	}

out:
	btrfs_free_path(left_path);
	btrfs_free_path(right_path);
5603
	kvfree(tmp_buf);
5604 5605 5606
	return ret;
}

5607 5608 5609
/*
 * this is similar to btrfs_next_leaf, but does not try to preserve
 * and fixup the path.  It looks for and returns the next key in the
5610
 * tree based on the current path and the min_trans parameters.
5611 5612 5613 5614 5615 5616 5617
 *
 * 0 is returned if another key is found, < 0 if there are any errors
 * and 1 is returned if there are no higher keys in the tree
 *
 * path->keep_locks should be set to 1 on the search made before
 * calling this function.
 */
5618
int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
5619
			struct btrfs_key *key, int level, u64 min_trans)
5620 5621 5622 5623
{
	int slot;
	struct extent_buffer *c;

5624
	WARN_ON(!path->keep_locks);
C
Chris Mason 已提交
5625
	while (level < BTRFS_MAX_LEVEL) {
5626 5627 5628 5629 5630
		if (!path->nodes[level])
			return 1;

		slot = path->slots[level] + 1;
		c = path->nodes[level];
5631
next:
5632
		if (slot >= btrfs_header_nritems(c)) {
5633 5634 5635 5636 5637
			int ret;
			int orig_lowest;
			struct btrfs_key cur_key;
			if (level + 1 >= BTRFS_MAX_LEVEL ||
			    !path->nodes[level + 1])
5638
				return 1;
5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651

			if (path->locks[level + 1]) {
				level++;
				continue;
			}

			slot = btrfs_header_nritems(c) - 1;
			if (level == 0)
				btrfs_item_key_to_cpu(c, &cur_key, slot);
			else
				btrfs_node_key_to_cpu(c, &cur_key, slot);

			orig_lowest = path->lowest_level;
5652
			btrfs_release_path(path);
5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664
			path->lowest_level = level;
			ret = btrfs_search_slot(NULL, root, &cur_key, path,
						0, 0);
			path->lowest_level = orig_lowest;
			if (ret < 0)
				return ret;

			c = path->nodes[level];
			slot = path->slots[level];
			if (ret == 0)
				slot++;
			goto next;
5665
		}
5666

5667 5668
		if (level == 0)
			btrfs_item_key_to_cpu(c, key, slot);
5669 5670 5671 5672 5673 5674 5675
		else {
			u64 gen = btrfs_node_ptr_generation(c, slot);

			if (gen < min_trans) {
				slot++;
				goto next;
			}
5676
			btrfs_node_key_to_cpu(c, key, slot);
5677
		}
5678 5679 5680 5681 5682
		return 0;
	}
	return 1;
}

C
Chris Mason 已提交
5683
/*
5684
 * search the tree again to find a leaf with greater keys
C
Chris Mason 已提交
5685 5686
 * returns 0 if it found something or 1 if there are no greater leaves.
 * returns < 0 on io errors.
C
Chris Mason 已提交
5687
 */
C
Chris Mason 已提交
5688
int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path)
J
Jan Schmidt 已提交
5689 5690 5691 5692 5693 5694
{
	return btrfs_next_old_leaf(root, path, 0);
}

int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path,
			u64 time_seq)
5695 5696
{
	int slot;
5697
	int level;
5698
	struct extent_buffer *c;
5699
	struct extent_buffer *next;
5700 5701 5702
	struct btrfs_key key;
	u32 nritems;
	int ret;
5703
	int old_spinning = path->leave_spinning;
5704
	int next_rw_lock = 0;
5705 5706

	nritems = btrfs_header_nritems(path->nodes[0]);
C
Chris Mason 已提交
5707
	if (nritems == 0)
5708 5709
		return 1;

5710 5711 5712 5713
	btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1);
again:
	level = 1;
	next = NULL;
5714
	next_rw_lock = 0;
5715
	btrfs_release_path(path);
5716

5717
	path->keep_locks = 1;
5718
	path->leave_spinning = 1;
5719

J
Jan Schmidt 已提交
5720 5721 5722 5723
	if (time_seq)
		ret = btrfs_search_old_slot(root, &key, path, time_seq);
	else
		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5724 5725 5726 5727 5728
	path->keep_locks = 0;

	if (ret < 0)
		return ret;

5729
	nritems = btrfs_header_nritems(path->nodes[0]);
5730 5731 5732 5733 5734 5735
	/*
	 * by releasing the path above we dropped all our locks.  A balance
	 * could have added more items next to the key that used to be
	 * at the very end of the block.  So, check again here and
	 * advance the path if there are now more items available.
	 */
5736
	if (nritems > 0 && path->slots[0] < nritems - 1) {
5737 5738
		if (ret == 0)
			path->slots[0]++;
5739
		ret = 0;
5740 5741
		goto done;
	}
5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759
	/*
	 * So the above check misses one case:
	 * - after releasing the path above, someone has removed the item that
	 *   used to be at the very end of the block, and balance between leafs
	 *   gets another one with bigger key.offset to replace it.
	 *
	 * This one should be returned as well, or we can get leaf corruption
	 * later(esp. in __btrfs_drop_extents()).
	 *
	 * And a bit more explanation about this check,
	 * with ret > 0, the key isn't found, the path points to the slot
	 * where it should be inserted, so the path->slots[0] item must be the
	 * bigger one.
	 */
	if (nritems > 0 && ret > 0 && path->slots[0] == nritems - 1) {
		ret = 0;
		goto done;
	}
5760

C
Chris Mason 已提交
5761
	while (level < BTRFS_MAX_LEVEL) {
5762 5763 5764 5765
		if (!path->nodes[level]) {
			ret = 1;
			goto done;
		}
5766

5767 5768
		slot = path->slots[level] + 1;
		c = path->nodes[level];
5769
		if (slot >= btrfs_header_nritems(c)) {
5770
			level++;
5771 5772 5773 5774
			if (level == BTRFS_MAX_LEVEL) {
				ret = 1;
				goto done;
			}
5775 5776
			continue;
		}
5777

5778
		if (next) {
5779
			btrfs_tree_unlock_rw(next, next_rw_lock);
5780
			free_extent_buffer(next);
5781
		}
5782

5783
		next = c;
5784
		next_rw_lock = path->locks[level];
5785
		ret = read_block_for_search(root, path, &next, level,
5786
					    slot, &key);
5787 5788
		if (ret == -EAGAIN)
			goto again;
5789

5790
		if (ret < 0) {
5791
			btrfs_release_path(path);
5792 5793 5794
			goto done;
		}

5795
		if (!path->skip_locking) {
5796
			ret = btrfs_try_tree_read_lock(next);
5797 5798 5799 5800 5801 5802 5803 5804
			if (!ret && time_seq) {
				/*
				 * If we don't get the lock, we may be racing
				 * with push_leaf_left, holding that lock while
				 * itself waiting for the leaf we've currently
				 * locked. To solve this situation, we give up
				 * on our lock and cycle.
				 */
5805
				free_extent_buffer(next);
5806 5807 5808 5809
				btrfs_release_path(path);
				cond_resched();
				goto again;
			}
5810 5811
			if (!ret) {
				btrfs_set_path_blocking(path);
5812
				btrfs_tree_read_lock(next);
5813
			}
5814
			next_rw_lock = BTRFS_READ_LOCK;
5815
		}
5816 5817 5818
		break;
	}
	path->slots[level] = slot;
C
Chris Mason 已提交
5819
	while (1) {
5820 5821
		level--;
		c = path->nodes[level];
5822
		if (path->locks[level])
5823
			btrfs_tree_unlock_rw(c, path->locks[level]);
5824

5825
		free_extent_buffer(c);
5826 5827
		path->nodes[level] = next;
		path->slots[level] = 0;
5828
		if (!path->skip_locking)
5829
			path->locks[level] = next_rw_lock;
5830 5831
		if (!level)
			break;
5832

5833
		ret = read_block_for_search(root, path, &next, level,
5834
					    0, &key);
5835 5836 5837
		if (ret == -EAGAIN)
			goto again;

5838
		if (ret < 0) {
5839
			btrfs_release_path(path);
5840 5841 5842
			goto done;
		}

5843
		if (!path->skip_locking) {
5844
			ret = btrfs_try_tree_read_lock(next);
5845 5846
			if (!ret) {
				btrfs_set_path_blocking(path);
5847 5848
				btrfs_tree_read_lock(next);
			}
5849
			next_rw_lock = BTRFS_READ_LOCK;
5850
		}
5851
	}
5852
	ret = 0;
5853
done:
5854
	unlock_up(path, 0, 1, 0, NULL);
5855 5856 5857 5858 5859
	path->leave_spinning = old_spinning;
	if (!old_spinning)
		btrfs_set_path_blocking(path);

	return ret;
5860
}
5861

5862 5863 5864 5865 5866 5867
/*
 * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps
 * searching until it gets past min_objectid or finds an item of 'type'
 *
 * returns 0 if something is found, 1 if nothing was found and < 0 on error
 */
5868 5869 5870 5871 5872 5873
int btrfs_previous_item(struct btrfs_root *root,
			struct btrfs_path *path, u64 min_objectid,
			int type)
{
	struct btrfs_key found_key;
	struct extent_buffer *leaf;
5874
	u32 nritems;
5875 5876
	int ret;

C
Chris Mason 已提交
5877
	while (1) {
5878
		if (path->slots[0] == 0) {
5879
			btrfs_set_path_blocking(path);
5880 5881 5882 5883 5884 5885 5886
			ret = btrfs_prev_leaf(root, path);
			if (ret != 0)
				return ret;
		} else {
			path->slots[0]--;
		}
		leaf = path->nodes[0];
5887 5888 5889 5890 5891 5892
		nritems = btrfs_header_nritems(leaf);
		if (nritems == 0)
			return 1;
		if (path->slots[0] == nritems)
			path->slots[0]--;

5893
		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5894 5895
		if (found_key.objectid < min_objectid)
			break;
5896 5897
		if (found_key.type == type)
			return 0;
5898 5899 5900
		if (found_key.objectid == min_objectid &&
		    found_key.type < type)
			break;
5901 5902 5903
	}
	return 1;
}
5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946

/*
 * search in extent tree to find a previous Metadata/Data extent item with
 * min objecitd.
 *
 * returns 0 if something is found, 1 if nothing was found and < 0 on error
 */
int btrfs_previous_extent_item(struct btrfs_root *root,
			struct btrfs_path *path, u64 min_objectid)
{
	struct btrfs_key found_key;
	struct extent_buffer *leaf;
	u32 nritems;
	int ret;

	while (1) {
		if (path->slots[0] == 0) {
			btrfs_set_path_blocking(path);
			ret = btrfs_prev_leaf(root, path);
			if (ret != 0)
				return ret;
		} else {
			path->slots[0]--;
		}
		leaf = path->nodes[0];
		nritems = btrfs_header_nritems(leaf);
		if (nritems == 0)
			return 1;
		if (path->slots[0] == nritems)
			path->slots[0]--;

		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
		if (found_key.objectid < min_objectid)
			break;
		if (found_key.type == BTRFS_EXTENT_ITEM_KEY ||
		    found_key.type == BTRFS_METADATA_ITEM_KEY)
			return 0;
		if (found_key.objectid == min_objectid &&
		    found_key.type < BTRFS_EXTENT_ITEM_KEY)
			break;
	}
	return 1;
}