ctree.c 141.2 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
C
Chris Mason 已提交
2
/*
C
Chris Mason 已提交
3
 * Copyright (C) 2007,2008 Oracle.  All rights reserved.
C
Chris Mason 已提交
4 5
 */

6
#include <linux/sched.h>
7
#include <linux/slab.h>
8
#include <linux/rbtree.h>
9
#include <linux/mm.h>
10 11
#include "ctree.h"
#include "disk-io.h"
12
#include "transaction.h"
13
#include "print-tree.h"
14
#include "locking.h"
15
#include "volumes.h"
16
#include "qgroup.h"
17

18 19
static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
		      *root, struct btrfs_path *path, int level);
20 21 22
static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root *root,
		      const struct btrfs_key *ins_key, struct btrfs_path *path,
		      int data_size, int extend);
23
static int push_node_left(struct btrfs_trans_handle *trans,
24
			  struct extent_buffer *dst,
25
			  struct extent_buffer *src, int empty);
26 27 28
static int balance_node_right(struct btrfs_trans_handle *trans,
			      struct extent_buffer *dst_buf,
			      struct extent_buffer *src_buf);
29 30
static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
		    int level, int slot);
31

32 33 34 35 36
static const struct btrfs_csums {
	u16		size;
	const char	*name;
} btrfs_csums[] = {
	[BTRFS_CSUM_TYPE_CRC32] = { .size = 4, .name = "crc32c" },
37
	[BTRFS_CSUM_TYPE_XXHASH] = { .size = 8, .name = "xxhash64" },
38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54
};

int btrfs_super_csum_size(const struct btrfs_super_block *s)
{
	u16 t = btrfs_super_csum_type(s);
	/*
	 * csum type is validated at mount time
	 */
	return btrfs_csums[t].size;
}

const char *btrfs_super_csum_name(u16 csum_type)
{
	/* csum type is validated at mount time */
	return btrfs_csums[csum_type].name;
}

C
Chris Mason 已提交
55
struct btrfs_path *btrfs_alloc_path(void)
C
Chris Mason 已提交
56
{
57
	return kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS);
C
Chris Mason 已提交
58 59
}

C
Chris Mason 已提交
60
/* this also releases the path */
C
Chris Mason 已提交
61
void btrfs_free_path(struct btrfs_path *p)
62
{
63 64
	if (!p)
		return;
65
	btrfs_release_path(p);
C
Chris Mason 已提交
66
	kmem_cache_free(btrfs_path_cachep, p);
67 68
}

C
Chris Mason 已提交
69 70 71 72 73 74
/*
 * path release drops references on the extent buffers in the path
 * and it drops any locks held by this path
 *
 * It is safe to call this on paths that no locks or extent buffers held.
 */
75
noinline void btrfs_release_path(struct btrfs_path *p)
76 77
{
	int i;
78

C
Chris Mason 已提交
79
	for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
80
		p->slots[i] = 0;
81
		if (!p->nodes[i])
82 83
			continue;
		if (p->locks[i]) {
84
			btrfs_tree_unlock_rw(p->nodes[i], p->locks[i]);
85 86
			p->locks[i] = 0;
		}
87
		free_extent_buffer(p->nodes[i]);
88
		p->nodes[i] = NULL;
89 90 91
	}
}

C
Chris Mason 已提交
92 93 94 95 96 97 98 99 100 101
/*
 * safely gets a reference on the root node of a tree.  A lock
 * is not taken, so a concurrent writer may put a different node
 * at the root of the tree.  See btrfs_lock_root_node for the
 * looping required.
 *
 * The extent buffer returned by this has a reference taken, so
 * it won't disappear.  It may stop being the root of the tree
 * at any time because there are no locks held.
 */
102 103 104
struct extent_buffer *btrfs_root_node(struct btrfs_root *root)
{
	struct extent_buffer *eb;
105

106 107 108 109 110 111
	while (1) {
		rcu_read_lock();
		eb = rcu_dereference(root->node);

		/*
		 * RCU really hurts here, we could free up the root node because
112
		 * it was COWed but we may not get the new root node yet so do
113 114 115 116 117 118 119 120 121 122
		 * the inc_not_zero dance and if it doesn't work then
		 * synchronize_rcu and try again.
		 */
		if (atomic_inc_not_zero(&eb->refs)) {
			rcu_read_unlock();
			break;
		}
		rcu_read_unlock();
		synchronize_rcu();
	}
123 124 125
	return eb;
}

C
Chris Mason 已提交
126 127 128 129
/* loop around taking references on and locking the root node of the
 * tree until you end up with a lock on the root.  A locked buffer
 * is returned, with a reference held.
 */
130 131 132 133
struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root)
{
	struct extent_buffer *eb;

C
Chris Mason 已提交
134
	while (1) {
135 136
		eb = btrfs_root_node(root);
		btrfs_tree_lock(eb);
137
		if (eb == root->node)
138 139 140 141 142 143 144
			break;
		btrfs_tree_unlock(eb);
		free_extent_buffer(eb);
	}
	return eb;
}

145 146 147 148
/* loop around taking references on and locking the root node of the
 * tree until you end up with a lock on the root.  A locked buffer
 * is returned, with a reference held.
 */
149
struct extent_buffer *btrfs_read_lock_root_node(struct btrfs_root *root)
150 151 152 153 154 155 156 157 158 159 160 161 162 163
{
	struct extent_buffer *eb;

	while (1) {
		eb = btrfs_root_node(root);
		btrfs_tree_read_lock(eb);
		if (eb == root->node)
			break;
		btrfs_tree_read_unlock(eb);
		free_extent_buffer(eb);
	}
	return eb;
}

C
Chris Mason 已提交
164 165 166 167
/* cowonly root (everything not a reference counted cow subvolume), just get
 * put onto a simple dirty list.  transaction.c walks this to make sure they
 * get properly updated on disk.
 */
168 169
static void add_root_to_dirty_list(struct btrfs_root *root)
{
170 171
	struct btrfs_fs_info *fs_info = root->fs_info;

172 173 174 175
	if (test_bit(BTRFS_ROOT_DIRTY, &root->state) ||
	    !test_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state))
		return;

176
	spin_lock(&fs_info->trans_lock);
177 178
	if (!test_and_set_bit(BTRFS_ROOT_DIRTY, &root->state)) {
		/* Want the extent tree to be the last on the list */
179
		if (root->root_key.objectid == BTRFS_EXTENT_TREE_OBJECTID)
180
			list_move_tail(&root->dirty_list,
181
				       &fs_info->dirty_cowonly_roots);
182 183
		else
			list_move(&root->dirty_list,
184
				  &fs_info->dirty_cowonly_roots);
185
	}
186
	spin_unlock(&fs_info->trans_lock);
187 188
}

C
Chris Mason 已提交
189 190 191 192 193
/*
 * used by snapshot creation to make a copy of a root for a tree with
 * a given objectid.  The buffer with the new root node is returned in
 * cow_ret, and this func returns zero on success or a negative error code.
 */
194 195 196 197 198
int btrfs_copy_root(struct btrfs_trans_handle *trans,
		      struct btrfs_root *root,
		      struct extent_buffer *buf,
		      struct extent_buffer **cow_ret, u64 new_root_objectid)
{
199
	struct btrfs_fs_info *fs_info = root->fs_info;
200 201 202
	struct extent_buffer *cow;
	int ret = 0;
	int level;
203
	struct btrfs_disk_key disk_key;
204

205
	WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
206
		trans->transid != fs_info->running_transaction->transid);
207 208
	WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
		trans->transid != root->last_trans);
209 210

	level = btrfs_header_level(buf);
211 212 213 214
	if (level == 0)
		btrfs_item_key(buf, &disk_key, 0);
	else
		btrfs_node_key(buf, &disk_key, 0);
Z
Zheng Yan 已提交
215

216 217
	cow = btrfs_alloc_tree_block(trans, root, 0, new_root_objectid,
			&disk_key, level, buf->start, 0);
218
	if (IS_ERR(cow))
219 220
		return PTR_ERR(cow);

221
	copy_extent_buffer_full(cow, buf);
222 223
	btrfs_set_header_bytenr(cow, cow->start);
	btrfs_set_header_generation(cow, trans->transid);
224 225 226 227 228 229 230
	btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
	btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
				     BTRFS_HEADER_FLAG_RELOC);
	if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
		btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
	else
		btrfs_set_header_owner(cow, new_root_objectid);
231

232
	write_extent_buffer_fsid(cow, fs_info->fs_devices->metadata_uuid);
Y
Yan Zheng 已提交
233

234
	WARN_ON(btrfs_header_generation(buf) > trans->transid);
235
	if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
236
		ret = btrfs_inc_ref(trans, root, cow, 1);
237
	else
238
		ret = btrfs_inc_ref(trans, root, cow, 0);
239

240 241 242 243 244 245 246 247
	if (ret)
		return ret;

	btrfs_mark_buffer_dirty(cow);
	*cow_ret = cow;
	return 0;
}

248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264
enum mod_log_op {
	MOD_LOG_KEY_REPLACE,
	MOD_LOG_KEY_ADD,
	MOD_LOG_KEY_REMOVE,
	MOD_LOG_KEY_REMOVE_WHILE_FREEING,
	MOD_LOG_KEY_REMOVE_WHILE_MOVING,
	MOD_LOG_MOVE_KEYS,
	MOD_LOG_ROOT_REPLACE,
};

struct tree_mod_root {
	u64 logical;
	u8 level;
};

struct tree_mod_elem {
	struct rb_node node;
265
	u64 logical;
266
	u64 seq;
267 268 269 270 271 272 273 274 275 276 277 278 279
	enum mod_log_op op;

	/* this is used for MOD_LOG_KEY_* and MOD_LOG_MOVE_KEYS operations */
	int slot;

	/* this is used for MOD_LOG_KEY* and MOD_LOG_ROOT_REPLACE */
	u64 generation;

	/* those are used for op == MOD_LOG_KEY_{REPLACE,REMOVE} */
	struct btrfs_disk_key key;
	u64 blockptr;

	/* this is used for op == MOD_LOG_MOVE_KEYS */
280 281 282 283
	struct {
		int dst_slot;
		int nr_items;
	} move;
284 285 286 287 288

	/* this is used for op == MOD_LOG_ROOT_REPLACE */
	struct tree_mod_root old_root;
};

289
/*
J
Josef Bacik 已提交
290
 * Pull a new tree mod seq number for our operation.
291
 */
J
Josef Bacik 已提交
292
static inline u64 btrfs_inc_tree_mod_seq(struct btrfs_fs_info *fs_info)
293 294 295 296
{
	return atomic64_inc_return(&fs_info->tree_mod_seq);
}

297 298 299 300 301 302 303 304 305 306
/*
 * This adds a new blocker to the tree mod log's blocker list if the @elem
 * passed does not already have a sequence number set. So when a caller expects
 * to record tree modifications, it should ensure to set elem->seq to zero
 * before calling btrfs_get_tree_mod_seq.
 * Returns a fresh, unused tree log modification sequence number, even if no new
 * blocker was added.
 */
u64 btrfs_get_tree_mod_seq(struct btrfs_fs_info *fs_info,
			   struct seq_list *elem)
307
{
308
	write_lock(&fs_info->tree_mod_log_lock);
309
	spin_lock(&fs_info->tree_mod_seq_lock);
310
	if (!elem->seq) {
J
Josef Bacik 已提交
311
		elem->seq = btrfs_inc_tree_mod_seq(fs_info);
312 313
		list_add_tail(&elem->list, &fs_info->tree_mod_seq_list);
	}
314
	spin_unlock(&fs_info->tree_mod_seq_lock);
315
	write_unlock(&fs_info->tree_mod_log_lock);
316

J
Josef Bacik 已提交
317
	return elem->seq;
318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335
}

void btrfs_put_tree_mod_seq(struct btrfs_fs_info *fs_info,
			    struct seq_list *elem)
{
	struct rb_root *tm_root;
	struct rb_node *node;
	struct rb_node *next;
	struct seq_list *cur_elem;
	struct tree_mod_elem *tm;
	u64 min_seq = (u64)-1;
	u64 seq_putting = elem->seq;

	if (!seq_putting)
		return;

	spin_lock(&fs_info->tree_mod_seq_lock);
	list_del(&elem->list);
336
	elem->seq = 0;
337 338

	list_for_each_entry(cur_elem, &fs_info->tree_mod_seq_list, list) {
339
		if (cur_elem->seq < min_seq) {
340 341 342 343 344
			if (seq_putting > cur_elem->seq) {
				/*
				 * blocker with lower sequence number exists, we
				 * cannot remove anything from the log
				 */
345 346
				spin_unlock(&fs_info->tree_mod_seq_lock);
				return;
347 348 349 350
			}
			min_seq = cur_elem->seq;
		}
	}
351 352
	spin_unlock(&fs_info->tree_mod_seq_lock);

353 354 355 356
	/*
	 * anything that's lower than the lowest existing (read: blocked)
	 * sequence number can be removed from the tree.
	 */
357
	write_lock(&fs_info->tree_mod_log_lock);
358 359 360
	tm_root = &fs_info->tree_mod_log;
	for (node = rb_first(tm_root); node; node = next) {
		next = rb_next(node);
361
		tm = rb_entry(node, struct tree_mod_elem, node);
362
		if (tm->seq > min_seq)
363 364 365 366
			continue;
		rb_erase(node, tm_root);
		kfree(tm);
	}
367
	write_unlock(&fs_info->tree_mod_log_lock);
368 369 370 371
}

/*
 * key order of the log:
372
 *       node/leaf start address -> sequence
373
 *
374 375 376
 * The 'start address' is the logical address of the *new* root node
 * for root replace operations, or the logical address of the affected
 * block for all other operations.
377 378 379 380 381 382 383 384
 */
static noinline int
__tree_mod_log_insert(struct btrfs_fs_info *fs_info, struct tree_mod_elem *tm)
{
	struct rb_root *tm_root;
	struct rb_node **new;
	struct rb_node *parent = NULL;
	struct tree_mod_elem *cur;
385

386 387
	lockdep_assert_held_write(&fs_info->tree_mod_log_lock);

J
Josef Bacik 已提交
388
	tm->seq = btrfs_inc_tree_mod_seq(fs_info);
389 390 391 392

	tm_root = &fs_info->tree_mod_log;
	new = &tm_root->rb_node;
	while (*new) {
393
		cur = rb_entry(*new, struct tree_mod_elem, node);
394
		parent = *new;
395
		if (cur->logical < tm->logical)
396
			new = &((*new)->rb_left);
397
		else if (cur->logical > tm->logical)
398
			new = &((*new)->rb_right);
399
		else if (cur->seq < tm->seq)
400
			new = &((*new)->rb_left);
401
		else if (cur->seq > tm->seq)
402
			new = &((*new)->rb_right);
403 404
		else
			return -EEXIST;
405 406 407 408
	}

	rb_link_node(&tm->node, parent, new);
	rb_insert_color(&tm->node, tm_root);
409
	return 0;
410 411
}

412 413 414 415
/*
 * Determines if logging can be omitted. Returns 1 if it can. Otherwise, it
 * returns zero with the tree_mod_log_lock acquired. The caller must hold
 * this until all tree mod log insertions are recorded in the rb tree and then
416
 * write unlock fs_info::tree_mod_log_lock.
417
 */
418 419 420 421 422
static inline int tree_mod_dont_log(struct btrfs_fs_info *fs_info,
				    struct extent_buffer *eb) {
	smp_mb();
	if (list_empty(&(fs_info)->tree_mod_seq_list))
		return 1;
423 424
	if (eb && btrfs_header_level(eb) == 0)
		return 1;
425

426
	write_lock(&fs_info->tree_mod_log_lock);
427
	if (list_empty(&(fs_info)->tree_mod_seq_list)) {
428
		write_unlock(&fs_info->tree_mod_log_lock);
429 430 431
		return 1;
	}

432 433 434
	return 0;
}

435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450
/* Similar to tree_mod_dont_log, but doesn't acquire any locks. */
static inline int tree_mod_need_log(const struct btrfs_fs_info *fs_info,
				    struct extent_buffer *eb)
{
	smp_mb();
	if (list_empty(&(fs_info)->tree_mod_seq_list))
		return 0;
	if (eb && btrfs_header_level(eb) == 0)
		return 0;

	return 1;
}

static struct tree_mod_elem *
alloc_tree_mod_elem(struct extent_buffer *eb, int slot,
		    enum mod_log_op op, gfp_t flags)
451
{
452
	struct tree_mod_elem *tm;
453

454 455
	tm = kzalloc(sizeof(*tm), flags);
	if (!tm)
456
		return NULL;
457

458
	tm->logical = eb->start;
459 460 461 462 463 464 465
	if (op != MOD_LOG_KEY_ADD) {
		btrfs_node_key(eb, &tm->key, slot);
		tm->blockptr = btrfs_node_blockptr(eb, slot);
	}
	tm->op = op;
	tm->slot = slot;
	tm->generation = btrfs_node_ptr_generation(eb, slot);
466
	RB_CLEAR_NODE(&tm->node);
467

468
	return tm;
469 470
}

471 472
static noinline int tree_mod_log_insert_key(struct extent_buffer *eb, int slot,
		enum mod_log_op op, gfp_t flags)
473
{
474 475 476
	struct tree_mod_elem *tm;
	int ret;

477
	if (!tree_mod_need_log(eb->fs_info, eb))
478 479 480 481 482 483
		return 0;

	tm = alloc_tree_mod_elem(eb, slot, op, flags);
	if (!tm)
		return -ENOMEM;

484
	if (tree_mod_dont_log(eb->fs_info, eb)) {
485
		kfree(tm);
486
		return 0;
487 488
	}

489
	ret = __tree_mod_log_insert(eb->fs_info, tm);
490
	write_unlock(&eb->fs_info->tree_mod_log_lock);
491 492
	if (ret)
		kfree(tm);
493

494
	return ret;
495 496
}

497 498
static noinline int tree_mod_log_insert_move(struct extent_buffer *eb,
		int dst_slot, int src_slot, int nr_items)
499
{
500 501 502
	struct tree_mod_elem *tm = NULL;
	struct tree_mod_elem **tm_list = NULL;
	int ret = 0;
503
	int i;
504
	int locked = 0;
505

506
	if (!tree_mod_need_log(eb->fs_info, eb))
J
Jan Schmidt 已提交
507
		return 0;
508

509
	tm_list = kcalloc(nr_items, sizeof(struct tree_mod_elem *), GFP_NOFS);
510 511 512
	if (!tm_list)
		return -ENOMEM;

513
	tm = kzalloc(sizeof(*tm), GFP_NOFS);
514 515 516 517 518
	if (!tm) {
		ret = -ENOMEM;
		goto free_tms;
	}

519
	tm->logical = eb->start;
520 521 522 523 524 525 526
	tm->slot = src_slot;
	tm->move.dst_slot = dst_slot;
	tm->move.nr_items = nr_items;
	tm->op = MOD_LOG_MOVE_KEYS;

	for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) {
		tm_list[i] = alloc_tree_mod_elem(eb, i + dst_slot,
527
		    MOD_LOG_KEY_REMOVE_WHILE_MOVING, GFP_NOFS);
528 529 530 531 532 533
		if (!tm_list[i]) {
			ret = -ENOMEM;
			goto free_tms;
		}
	}

534
	if (tree_mod_dont_log(eb->fs_info, eb))
535 536 537
		goto free_tms;
	locked = 1;

538 539 540 541 542
	/*
	 * When we override something during the move, we log these removals.
	 * This can only happen when we move towards the beginning of the
	 * buffer, i.e. dst_slot < src_slot.
	 */
543
	for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) {
544
		ret = __tree_mod_log_insert(eb->fs_info, tm_list[i]);
545 546
		if (ret)
			goto free_tms;
547 548
	}

549
	ret = __tree_mod_log_insert(eb->fs_info, tm);
550 551
	if (ret)
		goto free_tms;
552
	write_unlock(&eb->fs_info->tree_mod_log_lock);
553
	kfree(tm_list);
J
Jan Schmidt 已提交
554

555 556 557 558
	return 0;
free_tms:
	for (i = 0; i < nr_items; i++) {
		if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node))
559
			rb_erase(&tm_list[i]->node, &eb->fs_info->tree_mod_log);
560 561 562
		kfree(tm_list[i]);
	}
	if (locked)
563
		write_unlock(&eb->fs_info->tree_mod_log_lock);
564 565
	kfree(tm_list);
	kfree(tm);
566

567
	return ret;
568 569
}

570 571 572 573
static inline int
__tree_mod_log_free_eb(struct btrfs_fs_info *fs_info,
		       struct tree_mod_elem **tm_list,
		       int nritems)
574
{
575
	int i, j;
576 577 578
	int ret;

	for (i = nritems - 1; i >= 0; i--) {
579 580 581 582 583 584 585
		ret = __tree_mod_log_insert(fs_info, tm_list[i]);
		if (ret) {
			for (j = nritems - 1; j > i; j--)
				rb_erase(&tm_list[j]->node,
					 &fs_info->tree_mod_log);
			return ret;
		}
586
	}
587 588

	return 0;
589 590
}

591 592
static noinline int tree_mod_log_insert_root(struct extent_buffer *old_root,
			 struct extent_buffer *new_root, int log_removal)
593
{
594
	struct btrfs_fs_info *fs_info = old_root->fs_info;
595 596 597 598 599
	struct tree_mod_elem *tm = NULL;
	struct tree_mod_elem **tm_list = NULL;
	int nritems = 0;
	int ret = 0;
	int i;
600

601
	if (!tree_mod_need_log(fs_info, NULL))
602 603
		return 0;

604 605
	if (log_removal && btrfs_header_level(old_root) > 0) {
		nritems = btrfs_header_nritems(old_root);
606
		tm_list = kcalloc(nritems, sizeof(struct tree_mod_elem *),
607
				  GFP_NOFS);
608 609 610 611 612 613
		if (!tm_list) {
			ret = -ENOMEM;
			goto free_tms;
		}
		for (i = 0; i < nritems; i++) {
			tm_list[i] = alloc_tree_mod_elem(old_root, i,
614
			    MOD_LOG_KEY_REMOVE_WHILE_FREEING, GFP_NOFS);
615 616 617 618 619 620
			if (!tm_list[i]) {
				ret = -ENOMEM;
				goto free_tms;
			}
		}
	}
621

622
	tm = kzalloc(sizeof(*tm), GFP_NOFS);
623 624 625 626
	if (!tm) {
		ret = -ENOMEM;
		goto free_tms;
	}
627

628
	tm->logical = new_root->start;
629 630 631 632 633
	tm->old_root.logical = old_root->start;
	tm->old_root.level = btrfs_header_level(old_root);
	tm->generation = btrfs_header_generation(old_root);
	tm->op = MOD_LOG_ROOT_REPLACE;

634 635 636 637 638 639 640 641
	if (tree_mod_dont_log(fs_info, NULL))
		goto free_tms;

	if (tm_list)
		ret = __tree_mod_log_free_eb(fs_info, tm_list, nritems);
	if (!ret)
		ret = __tree_mod_log_insert(fs_info, tm);

642
	write_unlock(&fs_info->tree_mod_log_lock);
643 644 645 646 647 648 649 650 651 652 653 654 655 656 657
	if (ret)
		goto free_tms;
	kfree(tm_list);

	return ret;

free_tms:
	if (tm_list) {
		for (i = 0; i < nritems; i++)
			kfree(tm_list[i]);
		kfree(tm_list);
	}
	kfree(tm);

	return ret;
658 659 660 661 662 663 664 665 666 667 668
}

static struct tree_mod_elem *
__tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq,
		      int smallest)
{
	struct rb_root *tm_root;
	struct rb_node *node;
	struct tree_mod_elem *cur = NULL;
	struct tree_mod_elem *found = NULL;

669
	read_lock(&fs_info->tree_mod_log_lock);
670 671 672
	tm_root = &fs_info->tree_mod_log;
	node = tm_root->rb_node;
	while (node) {
673
		cur = rb_entry(node, struct tree_mod_elem, node);
674
		if (cur->logical < start) {
675
			node = node->rb_left;
676
		} else if (cur->logical > start) {
677
			node = node->rb_right;
678
		} else if (cur->seq < min_seq) {
679 680 681 682
			node = node->rb_left;
		} else if (!smallest) {
			/* we want the node with the highest seq */
			if (found)
683
				BUG_ON(found->seq > cur->seq);
684 685
			found = cur;
			node = node->rb_left;
686
		} else if (cur->seq > min_seq) {
687 688
			/* we want the node with the smallest seq */
			if (found)
689
				BUG_ON(found->seq < cur->seq);
690 691 692 693 694 695 696
			found = cur;
			node = node->rb_right;
		} else {
			found = cur;
			break;
		}
	}
697
	read_unlock(&fs_info->tree_mod_log_lock);
698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724

	return found;
}

/*
 * this returns the element from the log with the smallest time sequence
 * value that's in the log (the oldest log item). any element with a time
 * sequence lower than min_seq will be ignored.
 */
static struct tree_mod_elem *
tree_mod_log_search_oldest(struct btrfs_fs_info *fs_info, u64 start,
			   u64 min_seq)
{
	return __tree_mod_log_search(fs_info, start, min_seq, 1);
}

/*
 * this returns the element from the log with the largest time sequence
 * value that's in the log (the most recent log item). any element with
 * a time sequence lower than min_seq will be ignored.
 */
static struct tree_mod_elem *
tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq)
{
	return __tree_mod_log_search(fs_info, start, min_seq, 0);
}

725
static noinline int tree_mod_log_eb_copy(struct extent_buffer *dst,
726
		     struct extent_buffer *src, unsigned long dst_offset,
727
		     unsigned long src_offset, int nr_items)
728
{
729
	struct btrfs_fs_info *fs_info = dst->fs_info;
730 731 732
	int ret = 0;
	struct tree_mod_elem **tm_list = NULL;
	struct tree_mod_elem **tm_list_add, **tm_list_rem;
733
	int i;
734
	int locked = 0;
735

736 737
	if (!tree_mod_need_log(fs_info, NULL))
		return 0;
738

739
	if (btrfs_header_level(dst) == 0 && btrfs_header_level(src) == 0)
740 741
		return 0;

742
	tm_list = kcalloc(nr_items * 2, sizeof(struct tree_mod_elem *),
743 744 745
			  GFP_NOFS);
	if (!tm_list)
		return -ENOMEM;
746

747 748
	tm_list_add = tm_list;
	tm_list_rem = tm_list + nr_items;
749
	for (i = 0; i < nr_items; i++) {
750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775
		tm_list_rem[i] = alloc_tree_mod_elem(src, i + src_offset,
		    MOD_LOG_KEY_REMOVE, GFP_NOFS);
		if (!tm_list_rem[i]) {
			ret = -ENOMEM;
			goto free_tms;
		}

		tm_list_add[i] = alloc_tree_mod_elem(dst, i + dst_offset,
		    MOD_LOG_KEY_ADD, GFP_NOFS);
		if (!tm_list_add[i]) {
			ret = -ENOMEM;
			goto free_tms;
		}
	}

	if (tree_mod_dont_log(fs_info, NULL))
		goto free_tms;
	locked = 1;

	for (i = 0; i < nr_items; i++) {
		ret = __tree_mod_log_insert(fs_info, tm_list_rem[i]);
		if (ret)
			goto free_tms;
		ret = __tree_mod_log_insert(fs_info, tm_list_add[i]);
		if (ret)
			goto free_tms;
776
	}
777

778
	write_unlock(&fs_info->tree_mod_log_lock);
779 780 781 782 783 784 785 786 787 788 789
	kfree(tm_list);

	return 0;

free_tms:
	for (i = 0; i < nr_items * 2; i++) {
		if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node))
			rb_erase(&tm_list[i]->node, &fs_info->tree_mod_log);
		kfree(tm_list[i]);
	}
	if (locked)
790
		write_unlock(&fs_info->tree_mod_log_lock);
791 792 793
	kfree(tm_list);

	return ret;
794 795
}

796
static noinline int tree_mod_log_free_eb(struct extent_buffer *eb)
797
{
798 799 800 801 802 803 804 805
	struct tree_mod_elem **tm_list = NULL;
	int nritems = 0;
	int i;
	int ret = 0;

	if (btrfs_header_level(eb) == 0)
		return 0;

806
	if (!tree_mod_need_log(eb->fs_info, NULL))
807 808 809
		return 0;

	nritems = btrfs_header_nritems(eb);
810
	tm_list = kcalloc(nritems, sizeof(struct tree_mod_elem *), GFP_NOFS);
811 812 813 814 815 816 817 818 819 820 821 822
	if (!tm_list)
		return -ENOMEM;

	for (i = 0; i < nritems; i++) {
		tm_list[i] = alloc_tree_mod_elem(eb, i,
		    MOD_LOG_KEY_REMOVE_WHILE_FREEING, GFP_NOFS);
		if (!tm_list[i]) {
			ret = -ENOMEM;
			goto free_tms;
		}
	}

823
	if (tree_mod_dont_log(eb->fs_info, eb))
824 825
		goto free_tms;

826
	ret = __tree_mod_log_free_eb(eb->fs_info, tm_list, nritems);
827
	write_unlock(&eb->fs_info->tree_mod_log_lock);
828 829 830 831 832 833 834 835 836 837 838 839
	if (ret)
		goto free_tms;
	kfree(tm_list);

	return 0;

free_tms:
	for (i = 0; i < nritems; i++)
		kfree(tm_list[i]);
	kfree(tm_list);

	return ret;
840 841
}

842 843 844 845 846 847 848
/*
 * check if the tree block can be shared by multiple trees
 */
int btrfs_block_can_be_shared(struct btrfs_root *root,
			      struct extent_buffer *buf)
{
	/*
849
	 * Tree blocks not in reference counted trees and tree roots
850 851 852 853
	 * are never shared. If a block was allocated after the last
	 * snapshot and the block was not allocated by tree relocation,
	 * we know the block is not shared.
	 */
854
	if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
855 856 857 858 859
	    buf != root->node && buf != root->commit_root &&
	    (btrfs_header_generation(buf) <=
	     btrfs_root_last_snapshot(&root->root_item) ||
	     btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)))
		return 1;
860

861 862 863 864 865 866
	return 0;
}

static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans,
				       struct btrfs_root *root,
				       struct extent_buffer *buf,
867 868
				       struct extent_buffer *cow,
				       int *last_ref)
869
{
870
	struct btrfs_fs_info *fs_info = root->fs_info;
871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894
	u64 refs;
	u64 owner;
	u64 flags;
	u64 new_flags = 0;
	int ret;

	/*
	 * Backrefs update rules:
	 *
	 * Always use full backrefs for extent pointers in tree block
	 * allocated by tree relocation.
	 *
	 * If a shared tree block is no longer referenced by its owner
	 * tree (btrfs_header_owner(buf) == root->root_key.objectid),
	 * use full backrefs for extent pointers in tree block.
	 *
	 * If a tree block is been relocating
	 * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID),
	 * use full backrefs for extent pointers in tree block.
	 * The reason for this is some operations (such as drop tree)
	 * are only allowed for blocks use full backrefs.
	 */

	if (btrfs_block_can_be_shared(root, buf)) {
895
		ret = btrfs_lookup_extent_info(trans, fs_info, buf->start,
896 897
					       btrfs_header_level(buf), 1,
					       &refs, &flags);
898 899
		if (ret)
			return ret;
900 901
		if (refs == 0) {
			ret = -EROFS;
902
			btrfs_handle_fs_error(fs_info, ret, NULL);
903 904
			return ret;
		}
905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921
	} else {
		refs = 1;
		if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
		    btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
			flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
		else
			flags = 0;
	}

	owner = btrfs_header_owner(buf);
	BUG_ON(owner == BTRFS_TREE_RELOC_OBJECTID &&
	       !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));

	if (refs > 1) {
		if ((owner == root->root_key.objectid ||
		     root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) &&
		    !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) {
922
			ret = btrfs_inc_ref(trans, root, buf, 1);
923 924
			if (ret)
				return ret;
925 926 927

			if (root->root_key.objectid ==
			    BTRFS_TREE_RELOC_OBJECTID) {
928
				ret = btrfs_dec_ref(trans, root, buf, 0);
929 930
				if (ret)
					return ret;
931
				ret = btrfs_inc_ref(trans, root, cow, 1);
932 933
				if (ret)
					return ret;
934 935 936 937 938 939
			}
			new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
		} else {

			if (root->root_key.objectid ==
			    BTRFS_TREE_RELOC_OBJECTID)
940
				ret = btrfs_inc_ref(trans, root, cow, 1);
941
			else
942
				ret = btrfs_inc_ref(trans, root, cow, 0);
943 944
			if (ret)
				return ret;
945 946
		}
		if (new_flags != 0) {
947 948
			int level = btrfs_header_level(buf);

949
			ret = btrfs_set_disk_extent_flags(trans,
950 951
							  buf->start,
							  buf->len,
952
							  new_flags, level, 0);
953 954
			if (ret)
				return ret;
955 956 957 958 959
		}
	} else {
		if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
			if (root->root_key.objectid ==
			    BTRFS_TREE_RELOC_OBJECTID)
960
				ret = btrfs_inc_ref(trans, root, cow, 1);
961
			else
962
				ret = btrfs_inc_ref(trans, root, cow, 0);
963 964
			if (ret)
				return ret;
965
			ret = btrfs_dec_ref(trans, root, buf, 1);
966 967
			if (ret)
				return ret;
968
		}
969
		btrfs_clean_tree_block(buf);
970
		*last_ref = 1;
971 972 973 974
	}
	return 0;
}

975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016
static struct extent_buffer *alloc_tree_block_no_bg_flush(
					  struct btrfs_trans_handle *trans,
					  struct btrfs_root *root,
					  u64 parent_start,
					  const struct btrfs_disk_key *disk_key,
					  int level,
					  u64 hint,
					  u64 empty_size)
{
	struct btrfs_fs_info *fs_info = root->fs_info;
	struct extent_buffer *ret;

	/*
	 * If we are COWing a node/leaf from the extent, chunk, device or free
	 * space trees, make sure that we do not finish block group creation of
	 * pending block groups. We do this to avoid a deadlock.
	 * COWing can result in allocation of a new chunk, and flushing pending
	 * block groups (btrfs_create_pending_block_groups()) can be triggered
	 * when finishing allocation of a new chunk. Creation of a pending block
	 * group modifies the extent, chunk, device and free space trees,
	 * therefore we could deadlock with ourselves since we are holding a
	 * lock on an extent buffer that btrfs_create_pending_block_groups() may
	 * try to COW later.
	 * For similar reasons, we also need to delay flushing pending block
	 * groups when splitting a leaf or node, from one of those trees, since
	 * we are holding a write lock on it and its parent or when inserting a
	 * new root node for one of those trees.
	 */
	if (root == fs_info->extent_root ||
	    root == fs_info->chunk_root ||
	    root == fs_info->dev_root ||
	    root == fs_info->free_space_root)
		trans->can_flush_pending_bgs = false;

	ret = btrfs_alloc_tree_block(trans, root, parent_start,
				     root->root_key.objectid, disk_key, level,
				     hint, empty_size);
	trans->can_flush_pending_bgs = true;

	return ret;
}

C
Chris Mason 已提交
1017
/*
C
Chris Mason 已提交
1018 1019 1020 1021
 * does the dirty work in cow of a single block.  The parent block (if
 * supplied) is updated to point to the new cow copy.  The new buffer is marked
 * dirty and returned locked.  If you modify the block it needs to be marked
 * dirty again.
C
Chris Mason 已提交
1022 1023 1024
 *
 * search_start -- an allocation hint for the new block
 *
C
Chris Mason 已提交
1025 1026 1027
 * empty_size -- a hint that you plan on doing more cow.  This is the size in
 * bytes the allocator should try to find free next to the block it returns.
 * This is just a hint and may be ignored by the allocator.
C
Chris Mason 已提交
1028
 */
C
Chris Mason 已提交
1029
static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans,
1030 1031 1032 1033
			     struct btrfs_root *root,
			     struct extent_buffer *buf,
			     struct extent_buffer *parent, int parent_slot,
			     struct extent_buffer **cow_ret,
1034
			     u64 search_start, u64 empty_size)
C
Chris Mason 已提交
1035
{
1036
	struct btrfs_fs_info *fs_info = root->fs_info;
1037
	struct btrfs_disk_key disk_key;
1038
	struct extent_buffer *cow;
1039
	int level, ret;
1040
	int last_ref = 0;
1041
	int unlock_orig = 0;
1042
	u64 parent_start = 0;
1043

1044 1045 1046
	if (*cow_ret == buf)
		unlock_orig = 1;

1047
	btrfs_assert_tree_locked(buf);
1048

1049
	WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
1050
		trans->transid != fs_info->running_transaction->transid);
1051 1052
	WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
		trans->transid != root->last_trans);
1053

1054
	level = btrfs_header_level(buf);
Z
Zheng Yan 已提交
1055

1056 1057 1058 1059 1060
	if (level == 0)
		btrfs_item_key(buf, &disk_key, 0);
	else
		btrfs_node_key(buf, &disk_key, 0);

1061 1062
	if ((root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) && parent)
		parent_start = parent->start;
1063

1064 1065
	cow = alloc_tree_block_no_bg_flush(trans, root, parent_start, &disk_key,
					   level, search_start, empty_size);
1066 1067
	if (IS_ERR(cow))
		return PTR_ERR(cow);
1068

1069 1070
	/* cow is set to blocking by btrfs_init_new_buffer */

1071
	copy_extent_buffer_full(cow, buf);
1072
	btrfs_set_header_bytenr(cow, cow->start);
1073
	btrfs_set_header_generation(cow, trans->transid);
1074 1075 1076 1077 1078 1079 1080
	btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
	btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
				     BTRFS_HEADER_FLAG_RELOC);
	if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
		btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
	else
		btrfs_set_header_owner(cow, root->root_key.objectid);
1081

1082
	write_extent_buffer_fsid(cow, fs_info->fs_devices->metadata_uuid);
Y
Yan Zheng 已提交
1083

1084
	ret = update_ref_for_cow(trans, root, buf, cow, &last_ref);
1085
	if (ret) {
1086
		btrfs_abort_transaction(trans, ret);
1087 1088
		return ret;
	}
Z
Zheng Yan 已提交
1089

1090
	if (test_bit(BTRFS_ROOT_REF_COWS, &root->state)) {
1091
		ret = btrfs_reloc_cow_block(trans, root, buf, cow);
1092
		if (ret) {
1093
			btrfs_abort_transaction(trans, ret);
1094
			return ret;
1095
		}
1096
	}
1097

C
Chris Mason 已提交
1098
	if (buf == root->node) {
1099
		WARN_ON(parent && parent != buf);
1100 1101 1102
		if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
		    btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
			parent_start = buf->start;
1103

D
David Sterba 已提交
1104
		atomic_inc(&cow->refs);
1105 1106
		ret = tree_mod_log_insert_root(root->node, cow, 1);
		BUG_ON(ret < 0);
1107
		rcu_assign_pointer(root->node, cow);
1108

1109
		btrfs_free_tree_block(trans, root, buf, parent_start,
1110
				      last_ref);
1111
		free_extent_buffer(buf);
1112
		add_root_to_dirty_list(root);
C
Chris Mason 已提交
1113
	} else {
1114
		WARN_ON(trans->transid != btrfs_header_generation(parent));
1115
		tree_mod_log_insert_key(parent, parent_slot,
1116
					MOD_LOG_KEY_REPLACE, GFP_NOFS);
1117
		btrfs_set_node_blockptr(parent, parent_slot,
1118
					cow->start);
1119 1120
		btrfs_set_node_ptr_generation(parent, parent_slot,
					      trans->transid);
C
Chris Mason 已提交
1121
		btrfs_mark_buffer_dirty(parent);
1122
		if (last_ref) {
1123
			ret = tree_mod_log_free_eb(buf);
1124
			if (ret) {
1125
				btrfs_abort_transaction(trans, ret);
1126 1127 1128
				return ret;
			}
		}
1129
		btrfs_free_tree_block(trans, root, buf, parent_start,
1130
				      last_ref);
C
Chris Mason 已提交
1131
	}
1132 1133
	if (unlock_orig)
		btrfs_tree_unlock(buf);
1134
	free_extent_buffer_stale(buf);
C
Chris Mason 已提交
1135
	btrfs_mark_buffer_dirty(cow);
C
Chris Mason 已提交
1136
	*cow_ret = cow;
C
Chris Mason 已提交
1137 1138 1139
	return 0;
}

J
Jan Schmidt 已提交
1140 1141 1142 1143
/*
 * returns the logical address of the oldest predecessor of the given root.
 * entries older than time_seq are ignored.
 */
1144 1145
static struct tree_mod_elem *__tree_mod_log_oldest_root(
		struct extent_buffer *eb_root, u64 time_seq)
J
Jan Schmidt 已提交
1146 1147 1148
{
	struct tree_mod_elem *tm;
	struct tree_mod_elem *found = NULL;
1149
	u64 root_logical = eb_root->start;
J
Jan Schmidt 已提交
1150 1151 1152
	int looped = 0;

	if (!time_seq)
1153
		return NULL;
J
Jan Schmidt 已提交
1154 1155

	/*
1156 1157 1158 1159
	 * the very last operation that's logged for a root is the
	 * replacement operation (if it is replaced at all). this has
	 * the logical address of the *new* root, making it the very
	 * first operation that's logged for this root.
J
Jan Schmidt 已提交
1160 1161
	 */
	while (1) {
1162
		tm = tree_mod_log_search_oldest(eb_root->fs_info, root_logical,
J
Jan Schmidt 已提交
1163 1164
						time_seq);
		if (!looped && !tm)
1165
			return NULL;
J
Jan Schmidt 已提交
1166
		/*
1167 1168 1169
		 * if there are no tree operation for the oldest root, we simply
		 * return it. this should only happen if that (old) root is at
		 * level 0.
J
Jan Schmidt 已提交
1170
		 */
1171 1172
		if (!tm)
			break;
J
Jan Schmidt 已提交
1173

1174 1175 1176 1177 1178
		/*
		 * if there's an operation that's not a root replacement, we
		 * found the oldest version of our root. normally, we'll find a
		 * MOD_LOG_KEY_REMOVE_WHILE_FREEING operation here.
		 */
J
Jan Schmidt 已提交
1179 1180 1181 1182 1183 1184 1185 1186
		if (tm->op != MOD_LOG_ROOT_REPLACE)
			break;

		found = tm;
		root_logical = tm->old_root.logical;
		looped = 1;
	}

1187 1188 1189 1190
	/* if there's no old root to return, return what we found instead */
	if (!found)
		found = tm;

J
Jan Schmidt 已提交
1191 1192 1193 1194 1195
	return found;
}

/*
 * tm is a pointer to the first operation to rewind within eb. then, all
1196
 * previous operations will be rewound (until we reach something older than
J
Jan Schmidt 已提交
1197 1198 1199
 * time_seq).
 */
static void
1200 1201
__tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct extent_buffer *eb,
		      u64 time_seq, struct tree_mod_elem *first_tm)
J
Jan Schmidt 已提交
1202 1203 1204 1205 1206 1207 1208 1209 1210
{
	u32 n;
	struct rb_node *next;
	struct tree_mod_elem *tm = first_tm;
	unsigned long o_dst;
	unsigned long o_src;
	unsigned long p_size = sizeof(struct btrfs_key_ptr);

	n = btrfs_header_nritems(eb);
1211
	read_lock(&fs_info->tree_mod_log_lock);
1212
	while (tm && tm->seq >= time_seq) {
J
Jan Schmidt 已提交
1213 1214 1215 1216 1217 1218 1219 1220
		/*
		 * all the operations are recorded with the operator used for
		 * the modification. as we're going backwards, we do the
		 * opposite of each operation here.
		 */
		switch (tm->op) {
		case MOD_LOG_KEY_REMOVE_WHILE_FREEING:
			BUG_ON(tm->slot < n);
1221
			/* Fallthrough */
1222
		case MOD_LOG_KEY_REMOVE_WHILE_MOVING:
1223
		case MOD_LOG_KEY_REMOVE:
J
Jan Schmidt 已提交
1224 1225 1226 1227
			btrfs_set_node_key(eb, &tm->key, tm->slot);
			btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
			btrfs_set_node_ptr_generation(eb, tm->slot,
						      tm->generation);
1228
			n++;
J
Jan Schmidt 已提交
1229 1230 1231 1232 1233 1234 1235 1236 1237
			break;
		case MOD_LOG_KEY_REPLACE:
			BUG_ON(tm->slot >= n);
			btrfs_set_node_key(eb, &tm->key, tm->slot);
			btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
			btrfs_set_node_ptr_generation(eb, tm->slot,
						      tm->generation);
			break;
		case MOD_LOG_KEY_ADD:
1238
			/* if a move operation is needed it's in the log */
J
Jan Schmidt 已提交
1239 1240 1241
			n--;
			break;
		case MOD_LOG_MOVE_KEYS:
1242 1243 1244
			o_dst = btrfs_node_key_ptr_offset(tm->slot);
			o_src = btrfs_node_key_ptr_offset(tm->move.dst_slot);
			memmove_extent_buffer(eb, o_dst, o_src,
J
Jan Schmidt 已提交
1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261
					      tm->move.nr_items * p_size);
			break;
		case MOD_LOG_ROOT_REPLACE:
			/*
			 * this operation is special. for roots, this must be
			 * handled explicitly before rewinding.
			 * for non-roots, this operation may exist if the node
			 * was a root: root A -> child B; then A gets empty and
			 * B is promoted to the new root. in the mod log, we'll
			 * have a root-replace operation for B, a tree block
			 * that is no root. we simply ignore that operation.
			 */
			break;
		}
		next = rb_next(&tm->node);
		if (!next)
			break;
1262
		tm = rb_entry(next, struct tree_mod_elem, node);
1263
		if (tm->logical != first_tm->logical)
J
Jan Schmidt 已提交
1264 1265
			break;
	}
1266
	read_unlock(&fs_info->tree_mod_log_lock);
J
Jan Schmidt 已提交
1267 1268 1269
	btrfs_set_header_nritems(eb, n);
}

1270
/*
1271
 * Called with eb read locked. If the buffer cannot be rewound, the same buffer
1272 1273 1274 1275 1276
 * is returned. If rewind operations happen, a fresh buffer is returned. The
 * returned buffer is always read-locked. If the returned buffer is not the
 * input buffer, the lock on the input buffer is released and the input buffer
 * is freed (its refcount is decremented).
 */
J
Jan Schmidt 已提交
1277
static struct extent_buffer *
1278 1279
tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct btrfs_path *path,
		    struct extent_buffer *eb, u64 time_seq)
J
Jan Schmidt 已提交
1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293
{
	struct extent_buffer *eb_rewin;
	struct tree_mod_elem *tm;

	if (!time_seq)
		return eb;

	if (btrfs_header_level(eb) == 0)
		return eb;

	tm = tree_mod_log_search(fs_info, eb->start, time_seq);
	if (!tm)
		return eb;

1294
	btrfs_set_path_blocking(path);
1295
	btrfs_set_lock_blocking_read(eb);
1296

J
Jan Schmidt 已提交
1297 1298
	if (tm->op == MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
		BUG_ON(tm->slot != 0);
1299
		eb_rewin = alloc_dummy_extent_buffer(fs_info, eb->start);
1300
		if (!eb_rewin) {
1301
			btrfs_tree_read_unlock_blocking(eb);
1302 1303 1304
			free_extent_buffer(eb);
			return NULL;
		}
J
Jan Schmidt 已提交
1305 1306 1307 1308
		btrfs_set_header_bytenr(eb_rewin, eb->start);
		btrfs_set_header_backref_rev(eb_rewin,
					     btrfs_header_backref_rev(eb));
		btrfs_set_header_owner(eb_rewin, btrfs_header_owner(eb));
1309
		btrfs_set_header_level(eb_rewin, btrfs_header_level(eb));
J
Jan Schmidt 已提交
1310 1311
	} else {
		eb_rewin = btrfs_clone_extent_buffer(eb);
1312
		if (!eb_rewin) {
1313
			btrfs_tree_read_unlock_blocking(eb);
1314 1315 1316
			free_extent_buffer(eb);
			return NULL;
		}
J
Jan Schmidt 已提交
1317 1318
	}

1319
	btrfs_tree_read_unlock_blocking(eb);
J
Jan Schmidt 已提交
1320 1321
	free_extent_buffer(eb);

1322
	btrfs_tree_read_lock(eb_rewin);
1323
	__tree_mod_log_rewind(fs_info, eb_rewin, time_seq, tm);
1324
	WARN_ON(btrfs_header_nritems(eb_rewin) >
1325
		BTRFS_NODEPTRS_PER_BLOCK(fs_info));
J
Jan Schmidt 已提交
1326 1327 1328 1329

	return eb_rewin;
}

1330 1331 1332 1333 1334 1335 1336
/*
 * get_old_root() rewinds the state of @root's root node to the given @time_seq
 * value. If there are no changes, the current root->root_node is returned. If
 * anything changed in between, there's a fresh buffer allocated on which the
 * rewind operations are done. In any case, the returned buffer is read locked.
 * Returns NULL on error (with no locks held).
 */
J
Jan Schmidt 已提交
1337 1338 1339
static inline struct extent_buffer *
get_old_root(struct btrfs_root *root, u64 time_seq)
{
1340
	struct btrfs_fs_info *fs_info = root->fs_info;
J
Jan Schmidt 已提交
1341
	struct tree_mod_elem *tm;
1342 1343
	struct extent_buffer *eb = NULL;
	struct extent_buffer *eb_root;
1344
	u64 eb_root_owner = 0;
1345
	struct extent_buffer *old;
1346
	struct tree_mod_root *old_root = NULL;
1347
	u64 old_generation = 0;
1348
	u64 logical;
1349
	int level;
J
Jan Schmidt 已提交
1350

1351
	eb_root = btrfs_read_lock_root_node(root);
1352
	tm = __tree_mod_log_oldest_root(eb_root, time_seq);
J
Jan Schmidt 已提交
1353
	if (!tm)
1354
		return eb_root;
J
Jan Schmidt 已提交
1355

1356 1357 1358 1359
	if (tm->op == MOD_LOG_ROOT_REPLACE) {
		old_root = &tm->old_root;
		old_generation = tm->generation;
		logical = old_root->logical;
1360
		level = old_root->level;
1361
	} else {
1362
		logical = eb_root->start;
1363
		level = btrfs_header_level(eb_root);
1364
	}
J
Jan Schmidt 已提交
1365

1366
	tm = tree_mod_log_search(fs_info, logical, time_seq);
1367
	if (old_root && tm && tm->op != MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
1368 1369
		btrfs_tree_read_unlock(eb_root);
		free_extent_buffer(eb_root);
1370
		old = read_tree_block(fs_info, logical, 0, level, NULL);
1371 1372 1373
		if (WARN_ON(IS_ERR(old) || !extent_buffer_uptodate(old))) {
			if (!IS_ERR(old))
				free_extent_buffer(old);
1374 1375 1376
			btrfs_warn(fs_info,
				   "failed to read tree block %llu from get_old_root",
				   logical);
1377
		} else {
1378 1379
			eb = btrfs_clone_extent_buffer(old);
			free_extent_buffer(old);
1380 1381
		}
	} else if (old_root) {
1382
		eb_root_owner = btrfs_header_owner(eb_root);
1383 1384
		btrfs_tree_read_unlock(eb_root);
		free_extent_buffer(eb_root);
1385
		eb = alloc_dummy_extent_buffer(fs_info, logical);
1386
	} else {
1387
		btrfs_set_lock_blocking_read(eb_root);
1388
		eb = btrfs_clone_extent_buffer(eb_root);
1389
		btrfs_tree_read_unlock_blocking(eb_root);
1390
		free_extent_buffer(eb_root);
1391 1392
	}

1393 1394 1395
	if (!eb)
		return NULL;
	btrfs_tree_read_lock(eb);
1396
	if (old_root) {
J
Jan Schmidt 已提交
1397 1398
		btrfs_set_header_bytenr(eb, eb->start);
		btrfs_set_header_backref_rev(eb, BTRFS_MIXED_BACKREF_REV);
1399
		btrfs_set_header_owner(eb, eb_root_owner);
1400 1401
		btrfs_set_header_level(eb, old_root->level);
		btrfs_set_header_generation(eb, old_generation);
J
Jan Schmidt 已提交
1402
	}
1403
	if (tm)
1404
		__tree_mod_log_rewind(fs_info, eb, time_seq, tm);
1405 1406
	else
		WARN_ON(btrfs_header_level(eb) != 0);
1407
	WARN_ON(btrfs_header_nritems(eb) > BTRFS_NODEPTRS_PER_BLOCK(fs_info));
J
Jan Schmidt 已提交
1408 1409 1410 1411

	return eb;
}

J
Jan Schmidt 已提交
1412 1413 1414 1415
int btrfs_old_root_level(struct btrfs_root *root, u64 time_seq)
{
	struct tree_mod_elem *tm;
	int level;
1416
	struct extent_buffer *eb_root = btrfs_root_node(root);
J
Jan Schmidt 已提交
1417

1418
	tm = __tree_mod_log_oldest_root(eb_root, time_seq);
J
Jan Schmidt 已提交
1419 1420 1421
	if (tm && tm->op == MOD_LOG_ROOT_REPLACE) {
		level = tm->old_root.level;
	} else {
1422
		level = btrfs_header_level(eb_root);
J
Jan Schmidt 已提交
1423
	}
1424
	free_extent_buffer(eb_root);
J
Jan Schmidt 已提交
1425 1426 1427 1428

	return level;
}

1429 1430 1431 1432
static inline int should_cow_block(struct btrfs_trans_handle *trans,
				   struct btrfs_root *root,
				   struct extent_buffer *buf)
{
1433
	if (btrfs_is_testing(root->fs_info))
1434
		return 0;
1435

1436 1437
	/* Ensure we can see the FORCE_COW bit */
	smp_mb__before_atomic();
1438 1439 1440 1441 1442 1443 1444 1445

	/*
	 * We do not need to cow a block if
	 * 1) this block is not created or changed in this transaction;
	 * 2) this block does not belong to TREE_RELOC tree;
	 * 3) the root is not forced COW.
	 *
	 * What is forced COW:
1446
	 *    when we create snapshot during committing the transaction,
1447
	 *    after we've finished copying src root, we must COW the shared
1448 1449
	 *    block to ensure the metadata consistency.
	 */
1450 1451 1452
	if (btrfs_header_generation(buf) == trans->transid &&
	    !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) &&
	    !(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
1453
	      btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)) &&
1454
	    !test_bit(BTRFS_ROOT_FORCE_COW, &root->state))
1455 1456 1457 1458
		return 0;
	return 1;
}

C
Chris Mason 已提交
1459 1460
/*
 * cows a single block, see __btrfs_cow_block for the real work.
1461
 * This version of it has extra checks so that a block isn't COWed more than
C
Chris Mason 已提交
1462 1463
 * once per transaction, as long as it hasn't been written yet
 */
C
Chris Mason 已提交
1464
noinline int btrfs_cow_block(struct btrfs_trans_handle *trans,
1465 1466
		    struct btrfs_root *root, struct extent_buffer *buf,
		    struct extent_buffer *parent, int parent_slot,
1467
		    struct extent_buffer **cow_ret)
1468
{
1469
	struct btrfs_fs_info *fs_info = root->fs_info;
1470
	u64 search_start;
1471
	int ret;
C
Chris Mason 已提交
1472

1473 1474 1475 1476
	if (test_bit(BTRFS_ROOT_DELETING, &root->state))
		btrfs_err(fs_info,
			"COW'ing blocks on a fs root that's being dropped");

1477
	if (trans->transaction != fs_info->running_transaction)
J
Julia Lawall 已提交
1478
		WARN(1, KERN_CRIT "trans %llu running %llu\n",
1479
		       trans->transid,
1480
		       fs_info->running_transaction->transid);
J
Julia Lawall 已提交
1481

1482
	if (trans->transid != fs_info->generation)
J
Julia Lawall 已提交
1483
		WARN(1, KERN_CRIT "trans %llu running %llu\n",
1484
		       trans->transid, fs_info->generation);
C
Chris Mason 已提交
1485

1486
	if (!should_cow_block(trans, root, buf)) {
1487
		trans->dirty = true;
1488 1489 1490
		*cow_ret = buf;
		return 0;
	}
1491

1492
	search_start = buf->start & ~((u64)SZ_1G - 1);
1493 1494

	if (parent)
1495 1496
		btrfs_set_lock_blocking_write(parent);
	btrfs_set_lock_blocking_write(buf);
1497

1498 1499 1500 1501 1502 1503 1504
	/*
	 * Before CoWing this block for later modification, check if it's
	 * the subtree root and do the delayed subtree trace if needed.
	 *
	 * Also We don't care about the error, as it's handled internally.
	 */
	btrfs_qgroup_trace_subtree_after_cow(trans, root, buf);
1505
	ret = __btrfs_cow_block(trans, root, buf, parent,
1506
				 parent_slot, cow_ret, search_start, 0);
1507 1508 1509

	trace_btrfs_cow_block(root, buf, *cow_ret);

1510
	return ret;
1511 1512
}

C
Chris Mason 已提交
1513 1514 1515 1516
/*
 * helper function for defrag to decide if two blocks pointed to by a
 * node are actually close by
 */
1517
static int close_blocks(u64 blocknr, u64 other, u32 blocksize)
1518
{
1519
	if (blocknr < other && other - (blocknr + blocksize) < 32768)
1520
		return 1;
1521
	if (blocknr > other && blocknr - (other + blocksize) < 32768)
1522 1523 1524 1525
		return 1;
	return 0;
}

1526 1527 1528
/*
 * compare two keys in a memcmp fashion
 */
1529 1530
static int comp_keys(const struct btrfs_disk_key *disk,
		     const struct btrfs_key *k2)
1531 1532 1533 1534 1535
{
	struct btrfs_key k1;

	btrfs_disk_key_to_cpu(&k1, disk);

1536
	return btrfs_comp_cpu_keys(&k1, k2);
1537 1538
}

1539 1540 1541
/*
 * same as comp_keys only with two btrfs_key's
 */
1542
int __pure btrfs_comp_cpu_keys(const struct btrfs_key *k1, const struct btrfs_key *k2)
1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557
{
	if (k1->objectid > k2->objectid)
		return 1;
	if (k1->objectid < k2->objectid)
		return -1;
	if (k1->type > k2->type)
		return 1;
	if (k1->type < k2->type)
		return -1;
	if (k1->offset > k2->offset)
		return 1;
	if (k1->offset < k2->offset)
		return -1;
	return 0;
}
1558

C
Chris Mason 已提交
1559 1560 1561 1562 1563
/*
 * this is used by the defrag code to go through all the
 * leaves pointed to by a node and reallocate them so that
 * disk order is close to key order
 */
1564
int btrfs_realloc_node(struct btrfs_trans_handle *trans,
1565
		       struct btrfs_root *root, struct extent_buffer *parent,
1566
		       int start_slot, u64 *last_ret,
1567
		       struct btrfs_key *progress)
1568
{
1569
	struct btrfs_fs_info *fs_info = root->fs_info;
1570
	struct extent_buffer *cur;
1571
	u64 blocknr;
1572
	u64 gen;
1573 1574
	u64 search_start = *last_ret;
	u64 last_block = 0;
1575 1576 1577 1578 1579
	u64 other;
	u32 parent_nritems;
	int end_slot;
	int i;
	int err = 0;
1580
	int parent_level;
1581 1582
	int uptodate;
	u32 blocksize;
1583 1584
	int progress_passed = 0;
	struct btrfs_disk_key disk_key;
1585

1586 1587
	parent_level = btrfs_header_level(parent);

1588 1589
	WARN_ON(trans->transaction != fs_info->running_transaction);
	WARN_ON(trans->transid != fs_info->generation);
1590

1591
	parent_nritems = btrfs_header_nritems(parent);
1592
	blocksize = fs_info->nodesize;
1593
	end_slot = parent_nritems - 1;
1594

1595
	if (parent_nritems <= 1)
1596 1597
		return 0;

1598
	btrfs_set_lock_blocking_write(parent);
1599

1600
	for (i = start_slot; i <= end_slot; i++) {
1601
		struct btrfs_key first_key;
1602
		int close = 1;
1603

1604 1605 1606 1607 1608
		btrfs_node_key(parent, &disk_key, i);
		if (!progress_passed && comp_keys(&disk_key, progress) < 0)
			continue;

		progress_passed = 1;
1609
		blocknr = btrfs_node_blockptr(parent, i);
1610
		gen = btrfs_node_ptr_generation(parent, i);
1611
		btrfs_node_key_to_cpu(parent, &first_key, i);
1612 1613
		if (last_block == 0)
			last_block = blocknr;
1614

1615
		if (i > 0) {
1616 1617
			other = btrfs_node_blockptr(parent, i - 1);
			close = close_blocks(blocknr, other, blocksize);
1618
		}
1619
		if (!close && i < end_slot) {
1620 1621
			other = btrfs_node_blockptr(parent, i + 1);
			close = close_blocks(blocknr, other, blocksize);
1622
		}
1623 1624
		if (close) {
			last_block = blocknr;
1625
			continue;
1626
		}
1627

1628
		cur = find_extent_buffer(fs_info, blocknr);
1629
		if (cur)
1630
			uptodate = btrfs_buffer_uptodate(cur, gen, 0);
1631 1632
		else
			uptodate = 0;
1633
		if (!cur || !uptodate) {
1634
			if (!cur) {
1635 1636 1637
				cur = read_tree_block(fs_info, blocknr, gen,
						      parent_level - 1,
						      &first_key);
1638 1639 1640
				if (IS_ERR(cur)) {
					return PTR_ERR(cur);
				} else if (!extent_buffer_uptodate(cur)) {
1641
					free_extent_buffer(cur);
1642
					return -EIO;
1643
				}
1644
			} else if (!uptodate) {
1645 1646
				err = btrfs_read_buffer(cur, gen,
						parent_level - 1,&first_key);
1647 1648 1649 1650
				if (err) {
					free_extent_buffer(cur);
					return err;
				}
1651
			}
1652
		}
1653
		if (search_start == 0)
1654
			search_start = last_block;
1655

1656
		btrfs_tree_lock(cur);
1657
		btrfs_set_lock_blocking_write(cur);
1658
		err = __btrfs_cow_block(trans, root, cur, parent, i,
1659
					&cur, search_start,
1660
					min(16 * blocksize,
1661
					    (end_slot - i) * blocksize));
Y
Yan 已提交
1662
		if (err) {
1663
			btrfs_tree_unlock(cur);
1664
			free_extent_buffer(cur);
1665
			break;
Y
Yan 已提交
1666
		}
1667 1668
		search_start = cur->start;
		last_block = cur->start;
1669
		*last_ret = search_start;
1670 1671
		btrfs_tree_unlock(cur);
		free_extent_buffer(cur);
1672 1673 1674 1675
	}
	return err;
}

C
Chris Mason 已提交
1676
/*
1677 1678 1679
 * search for key in the extent_buffer.  The items start at offset p,
 * and they are item_size apart.  There are 'max' items in p.
 *
C
Chris Mason 已提交
1680 1681 1682 1683 1684 1685
 * the slot in the array is returned via slot, and it points to
 * the place where you would insert key if it is not found in
 * the array.
 *
 * slot may point to max if the key is bigger than all of the keys
 */
1686
static noinline int generic_bin_search(struct extent_buffer *eb,
1687 1688
				       unsigned long p, int item_size,
				       const struct btrfs_key *key,
1689
				       int max, int *slot)
1690 1691 1692 1693 1694
{
	int low = 0;
	int high = max;
	int mid;
	int ret;
1695
	struct btrfs_disk_key *tmp = NULL;
1696 1697 1698 1699 1700
	struct btrfs_disk_key unaligned;
	unsigned long offset;
	char *kaddr = NULL;
	unsigned long map_start = 0;
	unsigned long map_len = 0;
1701
	int err;
1702

1703 1704 1705 1706 1707 1708 1709 1710
	if (low > high) {
		btrfs_err(eb->fs_info,
		 "%s: low (%d) > high (%d) eb %llu owner %llu level %d",
			  __func__, low, high, eb->start,
			  btrfs_header_owner(eb), btrfs_header_level(eb));
		return -EINVAL;
	}

C
Chris Mason 已提交
1711
	while (low < high) {
1712
		mid = (low + high) / 2;
1713 1714
		offset = p + mid * item_size;

1715
		if (!kaddr || offset < map_start ||
1716 1717
		    (offset + sizeof(struct btrfs_disk_key)) >
		    map_start + map_len) {
1718 1719

			err = map_private_extent_buffer(eb, offset,
1720
						sizeof(struct btrfs_disk_key),
1721
						&kaddr, &map_start, &map_len);
1722 1723 1724 1725

			if (!err) {
				tmp = (struct btrfs_disk_key *)(kaddr + offset -
							map_start);
1726
			} else if (err == 1) {
1727 1728 1729
				read_extent_buffer(eb, &unaligned,
						   offset, sizeof(unaligned));
				tmp = &unaligned;
1730 1731
			} else {
				return err;
1732
			}
1733 1734 1735 1736 1737

		} else {
			tmp = (struct btrfs_disk_key *)(kaddr + offset -
							map_start);
		}
1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752
		ret = comp_keys(tmp, key);

		if (ret < 0)
			low = mid + 1;
		else if (ret > 0)
			high = mid;
		else {
			*slot = mid;
			return 0;
		}
	}
	*slot = low;
	return 1;
}

C
Chris Mason 已提交
1753 1754 1755 1756
/*
 * simple bin_search frontend that does the right thing for
 * leaves vs nodes
 */
1757 1758
int btrfs_bin_search(struct extent_buffer *eb, const struct btrfs_key *key,
		     int level, int *slot)
1759
{
1760
	if (level == 0)
1761 1762
		return generic_bin_search(eb,
					  offsetof(struct btrfs_leaf, items),
C
Chris Mason 已提交
1763
					  sizeof(struct btrfs_item),
1764
					  key, btrfs_header_nritems(eb),
1765
					  slot);
1766
	else
1767 1768
		return generic_bin_search(eb,
					  offsetof(struct btrfs_node, ptrs),
C
Chris Mason 已提交
1769
					  sizeof(struct btrfs_key_ptr),
1770
					  key, btrfs_header_nritems(eb),
1771
					  slot);
1772 1773
}

1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789
static void root_add_used(struct btrfs_root *root, u32 size)
{
	spin_lock(&root->accounting_lock);
	btrfs_set_root_used(&root->root_item,
			    btrfs_root_used(&root->root_item) + size);
	spin_unlock(&root->accounting_lock);
}

static void root_sub_used(struct btrfs_root *root, u32 size)
{
	spin_lock(&root->accounting_lock);
	btrfs_set_root_used(&root->root_item,
			    btrfs_root_used(&root->root_item) - size);
	spin_unlock(&root->accounting_lock);
}

C
Chris Mason 已提交
1790 1791 1792
/* given a node and slot number, this reads the blocks it points to.  The
 * extent buffer is returned with a reference taken (but unlocked).
 */
1793 1794
struct extent_buffer *btrfs_read_node_slot(struct extent_buffer *parent,
					   int slot)
1795
{
1796
	int level = btrfs_header_level(parent);
1797
	struct extent_buffer *eb;
1798
	struct btrfs_key first_key;
1799

1800 1801
	if (slot < 0 || slot >= btrfs_header_nritems(parent))
		return ERR_PTR(-ENOENT);
1802 1803 1804

	BUG_ON(level == 0);

1805
	btrfs_node_key_to_cpu(parent, &first_key, slot);
1806
	eb = read_tree_block(parent->fs_info, btrfs_node_blockptr(parent, slot),
1807 1808
			     btrfs_node_ptr_generation(parent, slot),
			     level - 1, &first_key);
1809 1810 1811
	if (!IS_ERR(eb) && !extent_buffer_uptodate(eb)) {
		free_extent_buffer(eb);
		eb = ERR_PTR(-EIO);
1812 1813 1814
	}

	return eb;
1815 1816
}

C
Chris Mason 已提交
1817 1818 1819 1820 1821
/*
 * node level balancing, used to make sure nodes are in proper order for
 * item deletion.  We balance from the top down, so we have to make sure
 * that a deletion won't leave an node completely empty later on.
 */
1822
static noinline int balance_level(struct btrfs_trans_handle *trans,
1823 1824
			 struct btrfs_root *root,
			 struct btrfs_path *path, int level)
1825
{
1826
	struct btrfs_fs_info *fs_info = root->fs_info;
1827 1828 1829 1830
	struct extent_buffer *right = NULL;
	struct extent_buffer *mid;
	struct extent_buffer *left = NULL;
	struct extent_buffer *parent = NULL;
1831 1832 1833 1834
	int ret = 0;
	int wret;
	int pslot;
	int orig_slot = path->slots[level];
1835
	u64 orig_ptr;
1836

1837
	ASSERT(level > 0);
1838

1839
	mid = path->nodes[level];
1840

1841 1842
	WARN_ON(path->locks[level] != BTRFS_WRITE_LOCK &&
		path->locks[level] != BTRFS_WRITE_LOCK_BLOCKING);
1843 1844
	WARN_ON(btrfs_header_generation(mid) != trans->transid);

1845
	orig_ptr = btrfs_node_blockptr(mid, orig_slot);
1846

L
Li Zefan 已提交
1847
	if (level < BTRFS_MAX_LEVEL - 1) {
1848
		parent = path->nodes[level + 1];
L
Li Zefan 已提交
1849 1850
		pslot = path->slots[level + 1];
	}
1851

C
Chris Mason 已提交
1852 1853 1854 1855
	/*
	 * deal with the case where there is only one pointer in the root
	 * by promoting the node below to a root
	 */
1856 1857
	if (!parent) {
		struct extent_buffer *child;
1858

1859
		if (btrfs_header_nritems(mid) != 1)
1860 1861 1862
			return 0;

		/* promote the child to a root */
1863
		child = btrfs_read_node_slot(mid, 0);
1864 1865
		if (IS_ERR(child)) {
			ret = PTR_ERR(child);
1866
			btrfs_handle_fs_error(fs_info, ret, NULL);
1867 1868 1869
			goto enospc;
		}

1870
		btrfs_tree_lock(child);
1871
		btrfs_set_lock_blocking_write(child);
1872
		ret = btrfs_cow_block(trans, root, child, mid, 0, &child);
1873 1874 1875 1876 1877
		if (ret) {
			btrfs_tree_unlock(child);
			free_extent_buffer(child);
			goto enospc;
		}
1878

1879 1880
		ret = tree_mod_log_insert_root(root->node, child, 1);
		BUG_ON(ret < 0);
1881
		rcu_assign_pointer(root->node, child);
1882

1883
		add_root_to_dirty_list(root);
1884
		btrfs_tree_unlock(child);
1885

1886
		path->locks[level] = 0;
1887
		path->nodes[level] = NULL;
1888
		btrfs_clean_tree_block(mid);
1889
		btrfs_tree_unlock(mid);
1890
		/* once for the path */
1891
		free_extent_buffer(mid);
1892 1893

		root_sub_used(root, mid->len);
1894
		btrfs_free_tree_block(trans, root, mid, 0, 1);
1895
		/* once for the root ptr */
1896
		free_extent_buffer_stale(mid);
1897
		return 0;
1898
	}
1899
	if (btrfs_header_nritems(mid) >
1900
	    BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 4)
1901 1902
		return 0;

1903
	left = btrfs_read_node_slot(parent, pslot - 1);
1904 1905 1906
	if (IS_ERR(left))
		left = NULL;

1907
	if (left) {
1908
		btrfs_tree_lock(left);
1909
		btrfs_set_lock_blocking_write(left);
1910
		wret = btrfs_cow_block(trans, root, left,
1911
				       parent, pslot - 1, &left);
1912 1913 1914 1915
		if (wret) {
			ret = wret;
			goto enospc;
		}
1916
	}
1917

1918
	right = btrfs_read_node_slot(parent, pslot + 1);
1919 1920 1921
	if (IS_ERR(right))
		right = NULL;

1922
	if (right) {
1923
		btrfs_tree_lock(right);
1924
		btrfs_set_lock_blocking_write(right);
1925
		wret = btrfs_cow_block(trans, root, right,
1926
				       parent, pslot + 1, &right);
1927 1928 1929 1930 1931 1932 1933
		if (wret) {
			ret = wret;
			goto enospc;
		}
	}

	/* first, try to make some room in the middle buffer */
1934 1935
	if (left) {
		orig_slot += btrfs_header_nritems(left);
1936
		wret = push_node_left(trans, left, mid, 1);
1937 1938
		if (wret < 0)
			ret = wret;
1939
	}
1940 1941 1942 1943

	/*
	 * then try to empty the right most buffer into the middle
	 */
1944
	if (right) {
1945
		wret = push_node_left(trans, mid, right, 1);
1946
		if (wret < 0 && wret != -ENOSPC)
1947
			ret = wret;
1948
		if (btrfs_header_nritems(right) == 0) {
1949
			btrfs_clean_tree_block(right);
1950
			btrfs_tree_unlock(right);
1951
			del_ptr(root, path, level + 1, pslot + 1);
1952
			root_sub_used(root, right->len);
1953
			btrfs_free_tree_block(trans, root, right, 0, 1);
1954
			free_extent_buffer_stale(right);
1955
			right = NULL;
1956
		} else {
1957 1958
			struct btrfs_disk_key right_key;
			btrfs_node_key(right, &right_key, 0);
1959 1960 1961
			ret = tree_mod_log_insert_key(parent, pslot + 1,
					MOD_LOG_KEY_REPLACE, GFP_NOFS);
			BUG_ON(ret < 0);
1962 1963
			btrfs_set_node_key(parent, &right_key, pslot + 1);
			btrfs_mark_buffer_dirty(parent);
1964 1965
		}
	}
1966
	if (btrfs_header_nritems(mid) == 1) {
1967 1968 1969 1970 1971 1972 1973 1974 1975
		/*
		 * we're not allowed to leave a node with one item in the
		 * tree during a delete.  A deletion from lower in the tree
		 * could try to delete the only pointer in this node.
		 * So, pull some keys from the left.
		 * There has to be a left pointer at this point because
		 * otherwise we would have pulled some pointers from the
		 * right
		 */
1976 1977
		if (!left) {
			ret = -EROFS;
1978
			btrfs_handle_fs_error(fs_info, ret, NULL);
1979 1980
			goto enospc;
		}
1981
		wret = balance_node_right(trans, mid, left);
1982
		if (wret < 0) {
1983
			ret = wret;
1984 1985
			goto enospc;
		}
1986
		if (wret == 1) {
1987
			wret = push_node_left(trans, left, mid, 1);
1988 1989 1990
			if (wret < 0)
				ret = wret;
		}
1991 1992
		BUG_ON(wret == 1);
	}
1993
	if (btrfs_header_nritems(mid) == 0) {
1994
		btrfs_clean_tree_block(mid);
1995
		btrfs_tree_unlock(mid);
1996
		del_ptr(root, path, level + 1, pslot);
1997
		root_sub_used(root, mid->len);
1998
		btrfs_free_tree_block(trans, root, mid, 0, 1);
1999
		free_extent_buffer_stale(mid);
2000
		mid = NULL;
2001 2002
	} else {
		/* update the parent key to reflect our changes */
2003 2004
		struct btrfs_disk_key mid_key;
		btrfs_node_key(mid, &mid_key, 0);
2005 2006 2007
		ret = tree_mod_log_insert_key(parent, pslot,
				MOD_LOG_KEY_REPLACE, GFP_NOFS);
		BUG_ON(ret < 0);
2008 2009
		btrfs_set_node_key(parent, &mid_key, pslot);
		btrfs_mark_buffer_dirty(parent);
2010
	}
2011

2012
	/* update the path */
2013 2014
	if (left) {
		if (btrfs_header_nritems(left) > orig_slot) {
D
David Sterba 已提交
2015
			atomic_inc(&left->refs);
2016
			/* left was locked after cow */
2017
			path->nodes[level] = left;
2018 2019
			path->slots[level + 1] -= 1;
			path->slots[level] = orig_slot;
2020 2021
			if (mid) {
				btrfs_tree_unlock(mid);
2022
				free_extent_buffer(mid);
2023
			}
2024
		} else {
2025
			orig_slot -= btrfs_header_nritems(left);
2026 2027 2028
			path->slots[level] = orig_slot;
		}
	}
2029
	/* double check we haven't messed things up */
C
Chris Mason 已提交
2030
	if (orig_ptr !=
2031
	    btrfs_node_blockptr(path->nodes[level], path->slots[level]))
2032
		BUG();
2033
enospc:
2034 2035
	if (right) {
		btrfs_tree_unlock(right);
2036
		free_extent_buffer(right);
2037 2038 2039 2040
	}
	if (left) {
		if (path->nodes[level] != left)
			btrfs_tree_unlock(left);
2041
		free_extent_buffer(left);
2042
	}
2043 2044 2045
	return ret;
}

C
Chris Mason 已提交
2046 2047 2048 2049
/* Node balancing for insertion.  Here we only split or push nodes around
 * when they are completely full.  This is also done top down, so we
 * have to be pessimistic.
 */
C
Chris Mason 已提交
2050
static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans,
2051 2052
					  struct btrfs_root *root,
					  struct btrfs_path *path, int level)
2053
{
2054
	struct btrfs_fs_info *fs_info = root->fs_info;
2055 2056 2057 2058
	struct extent_buffer *right = NULL;
	struct extent_buffer *mid;
	struct extent_buffer *left = NULL;
	struct extent_buffer *parent = NULL;
2059 2060 2061 2062 2063 2064 2065 2066
	int ret = 0;
	int wret;
	int pslot;
	int orig_slot = path->slots[level];

	if (level == 0)
		return 1;

2067
	mid = path->nodes[level];
2068
	WARN_ON(btrfs_header_generation(mid) != trans->transid);
2069

L
Li Zefan 已提交
2070
	if (level < BTRFS_MAX_LEVEL - 1) {
2071
		parent = path->nodes[level + 1];
L
Li Zefan 已提交
2072 2073
		pslot = path->slots[level + 1];
	}
2074

2075
	if (!parent)
2076 2077
		return 1;

2078
	left = btrfs_read_node_slot(parent, pslot - 1);
2079 2080
	if (IS_ERR(left))
		left = NULL;
2081 2082

	/* first, try to make some room in the middle buffer */
2083
	if (left) {
2084
		u32 left_nr;
2085 2086

		btrfs_tree_lock(left);
2087
		btrfs_set_lock_blocking_write(left);
2088

2089
		left_nr = btrfs_header_nritems(left);
2090
		if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) {
C
Chris Mason 已提交
2091 2092
			wret = 1;
		} else {
2093
			ret = btrfs_cow_block(trans, root, left, parent,
2094
					      pslot - 1, &left);
2095 2096 2097
			if (ret)
				wret = 1;
			else {
2098
				wret = push_node_left(trans, left, mid, 0);
2099
			}
C
Chris Mason 已提交
2100
		}
2101 2102 2103
		if (wret < 0)
			ret = wret;
		if (wret == 0) {
2104
			struct btrfs_disk_key disk_key;
2105
			orig_slot += left_nr;
2106
			btrfs_node_key(mid, &disk_key, 0);
2107 2108 2109
			ret = tree_mod_log_insert_key(parent, pslot,
					MOD_LOG_KEY_REPLACE, GFP_NOFS);
			BUG_ON(ret < 0);
2110 2111 2112 2113
			btrfs_set_node_key(parent, &disk_key, pslot);
			btrfs_mark_buffer_dirty(parent);
			if (btrfs_header_nritems(left) > orig_slot) {
				path->nodes[level] = left;
2114 2115
				path->slots[level + 1] -= 1;
				path->slots[level] = orig_slot;
2116
				btrfs_tree_unlock(mid);
2117
				free_extent_buffer(mid);
2118 2119
			} else {
				orig_slot -=
2120
					btrfs_header_nritems(left);
2121
				path->slots[level] = orig_slot;
2122
				btrfs_tree_unlock(left);
2123
				free_extent_buffer(left);
2124 2125 2126
			}
			return 0;
		}
2127
		btrfs_tree_unlock(left);
2128
		free_extent_buffer(left);
2129
	}
2130
	right = btrfs_read_node_slot(parent, pslot + 1);
2131 2132
	if (IS_ERR(right))
		right = NULL;
2133 2134 2135 2136

	/*
	 * then try to empty the right most buffer into the middle
	 */
2137
	if (right) {
C
Chris Mason 已提交
2138
		u32 right_nr;
2139

2140
		btrfs_tree_lock(right);
2141
		btrfs_set_lock_blocking_write(right);
2142

2143
		right_nr = btrfs_header_nritems(right);
2144
		if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) {
C
Chris Mason 已提交
2145 2146
			wret = 1;
		} else {
2147 2148
			ret = btrfs_cow_block(trans, root, right,
					      parent, pslot + 1,
2149
					      &right);
2150 2151 2152
			if (ret)
				wret = 1;
			else {
2153
				wret = balance_node_right(trans, right, mid);
2154
			}
C
Chris Mason 已提交
2155
		}
2156 2157 2158
		if (wret < 0)
			ret = wret;
		if (wret == 0) {
2159 2160 2161
			struct btrfs_disk_key disk_key;

			btrfs_node_key(right, &disk_key, 0);
2162 2163 2164
			ret = tree_mod_log_insert_key(parent, pslot + 1,
					MOD_LOG_KEY_REPLACE, GFP_NOFS);
			BUG_ON(ret < 0);
2165 2166 2167 2168 2169
			btrfs_set_node_key(parent, &disk_key, pslot + 1);
			btrfs_mark_buffer_dirty(parent);

			if (btrfs_header_nritems(mid) <= orig_slot) {
				path->nodes[level] = right;
2170 2171
				path->slots[level + 1] += 1;
				path->slots[level] = orig_slot -
2172
					btrfs_header_nritems(mid);
2173
				btrfs_tree_unlock(mid);
2174
				free_extent_buffer(mid);
2175
			} else {
2176
				btrfs_tree_unlock(right);
2177
				free_extent_buffer(right);
2178 2179 2180
			}
			return 0;
		}
2181
		btrfs_tree_unlock(right);
2182
		free_extent_buffer(right);
2183 2184 2185 2186
	}
	return 1;
}

2187
/*
C
Chris Mason 已提交
2188 2189
 * readahead one full node of leaves, finding things that are close
 * to the block in 'slot', and triggering ra on them.
2190
 */
2191
static void reada_for_search(struct btrfs_fs_info *fs_info,
2192 2193
			     struct btrfs_path *path,
			     int level, int slot, u64 objectid)
2194
{
2195
	struct extent_buffer *node;
2196
	struct btrfs_disk_key disk_key;
2197 2198
	u32 nritems;
	u64 search;
2199
	u64 target;
2200
	u64 nread = 0;
2201
	struct extent_buffer *eb;
2202 2203 2204
	u32 nr;
	u32 blocksize;
	u32 nscan = 0;
2205

2206
	if (level != 1)
2207 2208 2209
		return;

	if (!path->nodes[level])
2210 2211
		return;

2212
	node = path->nodes[level];
2213

2214
	search = btrfs_node_blockptr(node, slot);
2215 2216
	blocksize = fs_info->nodesize;
	eb = find_extent_buffer(fs_info, search);
2217 2218
	if (eb) {
		free_extent_buffer(eb);
2219 2220 2221
		return;
	}

2222
	target = search;
2223

2224
	nritems = btrfs_header_nritems(node);
2225
	nr = slot;
2226

C
Chris Mason 已提交
2227
	while (1) {
2228
		if (path->reada == READA_BACK) {
2229 2230 2231
			if (nr == 0)
				break;
			nr--;
2232
		} else if (path->reada == READA_FORWARD) {
2233 2234 2235
			nr++;
			if (nr >= nritems)
				break;
2236
		}
2237
		if (path->reada == READA_BACK && objectid) {
2238 2239 2240 2241
			btrfs_node_key(node, &disk_key, nr);
			if (btrfs_disk_key_objectid(&disk_key) != objectid)
				break;
		}
2242
		search = btrfs_node_blockptr(node, nr);
2243 2244
		if ((search <= target && target - search <= 65536) ||
		    (search > target && search - target <= 65536)) {
2245
			readahead_tree_block(fs_info, search);
2246 2247 2248
			nread += blocksize;
		}
		nscan++;
2249
		if ((nread > 65536 || nscan > 32))
2250
			break;
2251 2252
	}
}
2253

2254
static noinline void reada_for_balance(struct btrfs_fs_info *fs_info,
J
Josef Bacik 已提交
2255
				       struct btrfs_path *path, int level)
2256 2257 2258 2259 2260 2261 2262 2263 2264
{
	int slot;
	int nritems;
	struct extent_buffer *parent;
	struct extent_buffer *eb;
	u64 gen;
	u64 block1 = 0;
	u64 block2 = 0;

2265
	parent = path->nodes[level + 1];
2266
	if (!parent)
J
Josef Bacik 已提交
2267
		return;
2268 2269

	nritems = btrfs_header_nritems(parent);
2270
	slot = path->slots[level + 1];
2271 2272 2273 2274

	if (slot > 0) {
		block1 = btrfs_node_blockptr(parent, slot - 1);
		gen = btrfs_node_ptr_generation(parent, slot - 1);
2275
		eb = find_extent_buffer(fs_info, block1);
2276 2277 2278 2279 2280 2281
		/*
		 * if we get -eagain from btrfs_buffer_uptodate, we
		 * don't want to return eagain here.  That will loop
		 * forever
		 */
		if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
2282 2283 2284
			block1 = 0;
		free_extent_buffer(eb);
	}
2285
	if (slot + 1 < nritems) {
2286 2287
		block2 = btrfs_node_blockptr(parent, slot + 1);
		gen = btrfs_node_ptr_generation(parent, slot + 1);
2288
		eb = find_extent_buffer(fs_info, block2);
2289
		if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
2290 2291 2292
			block2 = 0;
		free_extent_buffer(eb);
	}
2293

J
Josef Bacik 已提交
2294
	if (block1)
2295
		readahead_tree_block(fs_info, block1);
J
Josef Bacik 已提交
2296
	if (block2)
2297
		readahead_tree_block(fs_info, block2);
2298 2299 2300
}


C
Chris Mason 已提交
2301
/*
C
Chris Mason 已提交
2302 2303 2304 2305
 * when we walk down the tree, it is usually safe to unlock the higher layers
 * in the tree.  The exceptions are when our path goes through slot 0, because
 * operations on the tree might require changing key pointers higher up in the
 * tree.
C
Chris Mason 已提交
2306
 *
C
Chris Mason 已提交
2307 2308 2309
 * callers might also have set path->keep_locks, which tells this code to keep
 * the lock if the path points to the last slot in the block.  This is part of
 * walking through the tree, and selecting the next slot in the higher block.
C
Chris Mason 已提交
2310
 *
C
Chris Mason 已提交
2311 2312
 * lowest_unlock sets the lowest level in the tree we're allowed to unlock.  so
 * if lowest_unlock is 1, level 0 won't be unlocked
C
Chris Mason 已提交
2313
 */
2314
static noinline void unlock_up(struct btrfs_path *path, int level,
2315 2316
			       int lowest_unlock, int min_write_lock_level,
			       int *write_lock_level)
2317 2318 2319
{
	int i;
	int skip_level = level;
2320
	int no_skips = 0;
2321 2322 2323 2324 2325 2326 2327
	struct extent_buffer *t;

	for (i = level; i < BTRFS_MAX_LEVEL; i++) {
		if (!path->nodes[i])
			break;
		if (!path->locks[i])
			break;
2328
		if (!no_skips && path->slots[i] == 0) {
2329 2330 2331
			skip_level = i + 1;
			continue;
		}
2332
		if (!no_skips && path->keep_locks) {
2333 2334 2335
			u32 nritems;
			t = path->nodes[i];
			nritems = btrfs_header_nritems(t);
2336
			if (nritems < 1 || path->slots[i] >= nritems - 1) {
2337 2338 2339 2340
				skip_level = i + 1;
				continue;
			}
		}
2341 2342 2343
		if (skip_level < i && i >= lowest_unlock)
			no_skips = 1;

2344
		t = path->nodes[i];
2345
		if (i >= lowest_unlock && i > skip_level) {
2346
			btrfs_tree_unlock_rw(t, path->locks[i]);
2347
			path->locks[i] = 0;
2348 2349 2350 2351 2352
			if (write_lock_level &&
			    i > min_write_lock_level &&
			    i <= *write_lock_level) {
				*write_lock_level = i - 1;
			}
2353 2354 2355 2356
		}
	}
}

2357 2358 2359 2360 2361 2362 2363 2364 2365
/*
 * helper function for btrfs_search_slot.  The goal is to find a block
 * in cache without setting the path to blocking.  If we find the block
 * we return zero and the path is unchanged.
 *
 * If we can't find the block, we set the path blocking and do some
 * reada.  -EAGAIN is returned and the search must be repeated.
 */
static int
2366 2367
read_block_for_search(struct btrfs_root *root, struct btrfs_path *p,
		      struct extent_buffer **eb_ret, int level, int slot,
2368
		      const struct btrfs_key *key)
2369
{
2370
	struct btrfs_fs_info *fs_info = root->fs_info;
2371 2372 2373 2374
	u64 blocknr;
	u64 gen;
	struct extent_buffer *b = *eb_ret;
	struct extent_buffer *tmp;
2375
	struct btrfs_key first_key;
2376
	int ret;
2377
	int parent_level;
2378 2379 2380

	blocknr = btrfs_node_blockptr(b, slot);
	gen = btrfs_node_ptr_generation(b, slot);
2381 2382
	parent_level = btrfs_header_level(b);
	btrfs_node_key_to_cpu(b, &first_key, slot);
2383

2384
	tmp = find_extent_buffer(fs_info, blocknr);
2385
	if (tmp) {
2386
		/* first we do an atomic uptodate check */
2387
		if (btrfs_buffer_uptodate(tmp, gen, 1) > 0) {
2388 2389 2390 2391 2392
			/*
			 * Do extra check for first_key, eb can be stale due to
			 * being cached, read from scrub, or have multiple
			 * parents (shared tree blocks).
			 */
2393
			if (btrfs_verify_level_key(tmp,
2394 2395 2396 2397
					parent_level - 1, &first_key, gen)) {
				free_extent_buffer(tmp);
				return -EUCLEAN;
			}
2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410
			*eb_ret = tmp;
			return 0;
		}

		/* the pages were up to date, but we failed
		 * the generation number check.  Do a full
		 * read for the generation number that is correct.
		 * We must do this without dropping locks so
		 * we can trust our generation number
		 */
		btrfs_set_path_blocking(p);

		/* now we're allowed to do a blocking uptodate check */
2411
		ret = btrfs_read_buffer(tmp, gen, parent_level - 1, &first_key);
2412 2413 2414
		if (!ret) {
			*eb_ret = tmp;
			return 0;
2415
		}
2416 2417 2418
		free_extent_buffer(tmp);
		btrfs_release_path(p);
		return -EIO;
2419 2420 2421 2422 2423
	}

	/*
	 * reduce lock contention at high levels
	 * of the btree by dropping locks before
2424 2425 2426
	 * we read.  Don't release the lock on the current
	 * level because we need to walk this node to figure
	 * out which blocks to read.
2427
	 */
2428 2429 2430
	btrfs_unlock_up_safe(p, level + 1);
	btrfs_set_path_blocking(p);

2431
	if (p->reada != READA_NONE)
2432
		reada_for_search(fs_info, p, level, slot, key->objectid);
2433

2434
	ret = -EAGAIN;
2435
	tmp = read_tree_block(fs_info, blocknr, gen, parent_level - 1,
2436
			      &first_key);
2437
	if (!IS_ERR(tmp)) {
2438 2439 2440 2441 2442 2443
		/*
		 * If the read above didn't mark this buffer up to date,
		 * it will never end up being up to date.  Set ret to EIO now
		 * and give up so that our caller doesn't loop forever
		 * on our EAGAINs.
		 */
2444
		if (!extent_buffer_uptodate(tmp))
2445
			ret = -EIO;
2446
		free_extent_buffer(tmp);
2447 2448
	} else {
		ret = PTR_ERR(tmp);
2449
	}
2450 2451

	btrfs_release_path(p);
2452
	return ret;
2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466
}

/*
 * helper function for btrfs_search_slot.  This does all of the checks
 * for node-level blocks and does any balancing required based on
 * the ins_len.
 *
 * If no extra work was required, zero is returned.  If we had to
 * drop the path, -EAGAIN is returned and btrfs_search_slot must
 * start over
 */
static int
setup_nodes_for_search(struct btrfs_trans_handle *trans,
		       struct btrfs_root *root, struct btrfs_path *p,
2467 2468
		       struct extent_buffer *b, int level, int ins_len,
		       int *write_lock_level)
2469
{
2470
	struct btrfs_fs_info *fs_info = root->fs_info;
2471
	int ret;
2472

2473
	if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >=
2474
	    BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3) {
2475 2476
		int sret;

2477 2478 2479 2480 2481 2482
		if (*write_lock_level < level + 1) {
			*write_lock_level = level + 1;
			btrfs_release_path(p);
			goto again;
		}

2483
		btrfs_set_path_blocking(p);
2484
		reada_for_balance(fs_info, p, level);
2485 2486 2487 2488 2489 2490 2491 2492 2493
		sret = split_node(trans, root, p, level);

		BUG_ON(sret > 0);
		if (sret) {
			ret = sret;
			goto done;
		}
		b = p->nodes[level];
	} else if (ins_len < 0 && btrfs_header_nritems(b) <
2494
		   BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 2) {
2495 2496
		int sret;

2497 2498 2499 2500 2501 2502
		if (*write_lock_level < level + 1) {
			*write_lock_level = level + 1;
			btrfs_release_path(p);
			goto again;
		}

2503
		btrfs_set_path_blocking(p);
2504
		reada_for_balance(fs_info, p, level);
2505 2506 2507 2508 2509 2510 2511 2512
		sret = balance_level(trans, root, p, level);

		if (sret) {
			ret = sret;
			goto done;
		}
		b = p->nodes[level];
		if (!b) {
2513
			btrfs_release_path(p);
2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525
			goto again;
		}
		BUG_ON(btrfs_header_nritems(b) == 1);
	}
	return 0;

again:
	ret = -EAGAIN;
done:
	return ret;
}

2526
static int key_search(struct extent_buffer *b, const struct btrfs_key *key,
2527 2528 2529
		      int level, int *prev_cmp, int *slot)
{
	if (*prev_cmp != 0) {
2530
		*prev_cmp = btrfs_bin_search(b, key, level, slot);
2531 2532 2533 2534 2535 2536 2537 2538
		return *prev_cmp;
	}

	*slot = 0;

	return 0;
}

2539
int btrfs_find_item(struct btrfs_root *fs_root, struct btrfs_path *path,
2540 2541 2542 2543 2544 2545
		u64 iobjectid, u64 ioff, u8 key_type,
		struct btrfs_key *found_key)
{
	int ret;
	struct btrfs_key key;
	struct extent_buffer *eb;
2546 2547

	ASSERT(path);
2548
	ASSERT(found_key);
2549 2550 2551 2552 2553 2554

	key.type = key_type;
	key.objectid = iobjectid;
	key.offset = ioff;

	ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0);
2555
	if (ret < 0)
2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573
		return ret;

	eb = path->nodes[0];
	if (ret && path->slots[0] >= btrfs_header_nritems(eb)) {
		ret = btrfs_next_leaf(fs_root, path);
		if (ret)
			return ret;
		eb = path->nodes[0];
	}

	btrfs_item_key_to_cpu(eb, found_key, path->slots[0]);
	if (found_key->type != key.type ||
			found_key->objectid != key.objectid)
		return 1;

	return 0;
}

2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586
static struct extent_buffer *btrfs_search_slot_get_root(struct btrfs_root *root,
							struct btrfs_path *p,
							int write_lock_level)
{
	struct btrfs_fs_info *fs_info = root->fs_info;
	struct extent_buffer *b;
	int root_lock;
	int level = 0;

	/* We try very hard to do read locks on the root */
	root_lock = BTRFS_READ_LOCK;

	if (p->search_commit_root) {
2587 2588 2589 2590 2591 2592 2593 2594 2595 2596
		/*
		 * The commit roots are read only so we always do read locks,
		 * and we always must hold the commit_root_sem when doing
		 * searches on them, the only exception is send where we don't
		 * want to block transaction commits for a long time, so
		 * we need to clone the commit root in order to avoid races
		 * with transaction commits that create a snapshot of one of
		 * the roots used by a send operation.
		 */
		if (p->need_commit_sem) {
2597
			down_read(&fs_info->commit_root_sem);
2598
			b = btrfs_clone_extent_buffer(root->commit_root);
2599
			up_read(&fs_info->commit_root_sem);
2600 2601 2602 2603 2604
			if (!b)
				return ERR_PTR(-ENOMEM);

		} else {
			b = root->commit_root;
D
David Sterba 已提交
2605
			atomic_inc(&b->refs);
2606 2607
		}
		level = btrfs_header_level(b);
2608 2609 2610 2611 2612
		/*
		 * Ensure that all callers have set skip_locking when
		 * p->search_commit_root = 1.
		 */
		ASSERT(p->skip_locking == 1);
2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623

		goto out;
	}

	if (p->skip_locking) {
		b = btrfs_root_node(root);
		level = btrfs_header_level(b);
		goto out;
	}

	/*
2624 2625
	 * If the level is set to maximum, we can skip trying to get the read
	 * lock.
2626
	 */
2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640
	if (write_lock_level < BTRFS_MAX_LEVEL) {
		/*
		 * We don't know the level of the root node until we actually
		 * have it read locked
		 */
		b = btrfs_read_lock_root_node(root);
		level = btrfs_header_level(b);
		if (level > write_lock_level)
			goto out;

		/* Whoops, must trade for write lock */
		btrfs_tree_read_unlock(b);
		free_extent_buffer(b);
	}
2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658

	b = btrfs_lock_root_node(root);
	root_lock = BTRFS_WRITE_LOCK;

	/* The level might have changed, check again */
	level = btrfs_header_level(b);

out:
	p->nodes[level] = b;
	if (!p->skip_locking)
		p->locks[level] = root_lock;
	/*
	 * Callers are responsible for dropping b's references.
	 */
	return b;
}


C
Chris Mason 已提交
2659
/*
2660 2661
 * btrfs_search_slot - look for a key in a tree and perform necessary
 * modifications to preserve tree invariants.
C
Chris Mason 已提交
2662
 *
2663 2664 2665 2666 2667 2668 2669 2670
 * @trans:	Handle of transaction, used when modifying the tree
 * @p:		Holds all btree nodes along the search path
 * @root:	The root node of the tree
 * @key:	The key we are looking for
 * @ins_len:	Indicates purpose of search, for inserts it is 1, for
 *		deletions it's -1. 0 for plain searches
 * @cow:	boolean should CoW operations be performed. Must always be 1
 *		when modifying the tree.
C
Chris Mason 已提交
2671
 *
2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682
 * If @ins_len > 0, nodes and leaves will be split as we walk down the tree.
 * If @ins_len < 0, nodes will be merged as we walk down the tree (if possible)
 *
 * If @key is found, 0 is returned and you can find the item in the leaf level
 * of the path (level 0)
 *
 * If @key isn't found, 1 is returned and the leaf level of the path (level 0)
 * points to the slot where it should be inserted
 *
 * If an error is encountered while searching the tree a negative error number
 * is returned
C
Chris Mason 已提交
2683
 */
2684 2685 2686
int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root *root,
		      const struct btrfs_key *key, struct btrfs_path *p,
		      int ins_len, int cow)
2687
{
2688
	struct extent_buffer *b;
2689 2690
	int slot;
	int ret;
2691
	int err;
2692
	int level;
2693
	int lowest_unlock = 1;
2694 2695
	/* everything at write_lock_level or lower must be write locked */
	int write_lock_level = 0;
2696
	u8 lowest_level = 0;
2697
	int min_write_lock_level;
2698
	int prev_cmp;
2699

2700
	lowest_level = p->lowest_level;
2701
	WARN_ON(lowest_level && ins_len > 0);
C
Chris Mason 已提交
2702
	WARN_ON(p->nodes[0] != NULL);
2703
	BUG_ON(!cow && ins_len);
2704

2705
	if (ins_len < 0) {
2706
		lowest_unlock = 2;
2707

2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723
		/* when we are removing items, we might have to go up to level
		 * two as we update tree pointers  Make sure we keep write
		 * for those levels as well
		 */
		write_lock_level = 2;
	} else if (ins_len > 0) {
		/*
		 * for inserting items, make sure we have a write lock on
		 * level 1 so we can update keys
		 */
		write_lock_level = 1;
	}

	if (!cow)
		write_lock_level = -1;

J
Josef Bacik 已提交
2724
	if (cow && (p->keep_locks || p->lowest_level))
2725 2726
		write_lock_level = BTRFS_MAX_LEVEL;

2727 2728
	min_write_lock_level = write_lock_level;

2729
again:
2730
	prev_cmp = -1;
2731
	b = btrfs_search_slot_get_root(root, p, write_lock_level);
2732 2733 2734 2735
	if (IS_ERR(b)) {
		ret = PTR_ERR(b);
		goto done;
	}
2736

2737
	while (b) {
2738 2739
		int dec = 0;

2740
		level = btrfs_header_level(b);
2741

C
Chris Mason 已提交
2742
		if (cow) {
2743 2744
			bool last_level = (level == (BTRFS_MAX_LEVEL - 1));

2745 2746 2747 2748 2749
			/*
			 * if we don't really need to cow this block
			 * then we don't want to set the path blocking,
			 * so we test it here
			 */
2750 2751
			if (!should_cow_block(trans, root, b)) {
				trans->dirty = true;
2752
				goto cow_done;
2753
			}
2754

2755 2756 2757 2758
			/*
			 * must have write locks on this node and the
			 * parent
			 */
2759 2760 2761 2762
			if (level > write_lock_level ||
			    (level + 1 > write_lock_level &&
			    level + 1 < BTRFS_MAX_LEVEL &&
			    p->nodes[level + 1])) {
2763 2764 2765 2766 2767
				write_lock_level = level + 1;
				btrfs_release_path(p);
				goto again;
			}

2768
			btrfs_set_path_blocking(p);
2769 2770 2771 2772 2773 2774 2775
			if (last_level)
				err = btrfs_cow_block(trans, root, b, NULL, 0,
						      &b);
			else
				err = btrfs_cow_block(trans, root, b,
						      p->nodes[level + 1],
						      p->slots[level + 1], &b);
2776 2777
			if (err) {
				ret = err;
2778
				goto done;
2779
			}
C
Chris Mason 已提交
2780
		}
2781
cow_done:
2782
		p->nodes[level] = b;
L
Liu Bo 已提交
2783 2784 2785 2786
		/*
		 * Leave path with blocking locks to avoid massive
		 * lock context switch, this is made on purpose.
		 */
2787 2788 2789 2790 2791 2792 2793

		/*
		 * we have a lock on b and as long as we aren't changing
		 * the tree, there is no way to for the items in b to change.
		 * It is safe to drop the lock on our parent before we
		 * go through the expensive btree search on b.
		 *
2794 2795 2796 2797
		 * If we're inserting or deleting (ins_len != 0), then we might
		 * be changing slot zero, which may require changing the parent.
		 * So, we can't drop the lock until after we know which slot
		 * we're operating on.
2798
		 */
2799 2800 2801 2802 2803 2804 2805 2806
		if (!ins_len && !p->keep_locks) {
			int u = level + 1;

			if (u < BTRFS_MAX_LEVEL && p->locks[u]) {
				btrfs_tree_unlock_rw(p->nodes[u], p->locks[u]);
				p->locks[u] = 0;
			}
		}
2807

2808
		ret = key_search(b, key, level, &prev_cmp, &slot);
2809 2810
		if (ret < 0)
			goto done;
2811

2812
		if (level == 0) {
2813
			p->slots[level] = slot;
2814
			if (ins_len > 0 &&
2815
			    btrfs_leaf_free_space(b) < ins_len) {
2816 2817 2818 2819 2820 2821
				if (write_lock_level < 1) {
					write_lock_level = 1;
					btrfs_release_path(p);
					goto again;
				}

2822
				btrfs_set_path_blocking(p);
2823 2824
				err = split_leaf(trans, root, key,
						 p, ins_len, ret == 0);
2825

2826 2827 2828
				BUG_ON(err > 0);
				if (err) {
					ret = err;
2829 2830
					goto done;
				}
C
Chris Mason 已提交
2831
			}
2832
			if (!p->search_for_split)
2833
				unlock_up(p, level, lowest_unlock,
2834
					  min_write_lock_level, NULL);
2835
			goto done;
2836
		}
2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897
		if (ret && slot > 0) {
			dec = 1;
			slot--;
		}
		p->slots[level] = slot;
		err = setup_nodes_for_search(trans, root, p, b, level, ins_len,
					     &write_lock_level);
		if (err == -EAGAIN)
			goto again;
		if (err) {
			ret = err;
			goto done;
		}
		b = p->nodes[level];
		slot = p->slots[level];

		/*
		 * Slot 0 is special, if we change the key we have to update
		 * the parent pointer which means we must have a write lock on
		 * the parent
		 */
		if (slot == 0 && ins_len && write_lock_level < level + 1) {
			write_lock_level = level + 1;
			btrfs_release_path(p);
			goto again;
		}

		unlock_up(p, level, lowest_unlock, min_write_lock_level,
			  &write_lock_level);

		if (level == lowest_level) {
			if (dec)
				p->slots[level]++;
			goto done;
		}

		err = read_block_for_search(root, p, &b, level, slot, key);
		if (err == -EAGAIN)
			goto again;
		if (err) {
			ret = err;
			goto done;
		}

		if (!p->skip_locking) {
			level = btrfs_header_level(b);
			if (level <= write_lock_level) {
				if (!btrfs_try_tree_write_lock(b)) {
					btrfs_set_path_blocking(p);
					btrfs_tree_lock(b);
				}
				p->locks[level] = BTRFS_WRITE_LOCK;
			} else {
				if (!btrfs_tree_read_lock_atomic(b)) {
					btrfs_set_path_blocking(p);
					btrfs_tree_read_lock(b);
				}
				p->locks[level] = BTRFS_READ_LOCK;
			}
			p->nodes[level] = b;
		}
2898
	}
2899 2900
	ret = 1;
done:
2901 2902 2903 2904
	/*
	 * we don't really know what they plan on doing with the path
	 * from here on, so for now just mark it as blocking
	 */
2905 2906
	if (!p->leave_spinning)
		btrfs_set_path_blocking(p);
2907
	if (ret < 0 && !p->skip_release_on_error)
2908
		btrfs_release_path(p);
2909
	return ret;
2910 2911
}

J
Jan Schmidt 已提交
2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922
/*
 * Like btrfs_search_slot, this looks for a key in the given tree. It uses the
 * current state of the tree together with the operations recorded in the tree
 * modification log to search for the key in a previous version of this tree, as
 * denoted by the time_seq parameter.
 *
 * Naturally, there is no support for insert, delete or cow operations.
 *
 * The resulting path and return value will be set up as if we called
 * btrfs_search_slot at that point in time with ins_len and cow both set to 0.
 */
2923
int btrfs_search_old_slot(struct btrfs_root *root, const struct btrfs_key *key,
J
Jan Schmidt 已提交
2924 2925
			  struct btrfs_path *p, u64 time_seq)
{
2926
	struct btrfs_fs_info *fs_info = root->fs_info;
J
Jan Schmidt 已提交
2927 2928 2929 2930 2931 2932 2933
	struct extent_buffer *b;
	int slot;
	int ret;
	int err;
	int level;
	int lowest_unlock = 1;
	u8 lowest_level = 0;
2934
	int prev_cmp = -1;
J
Jan Schmidt 已提交
2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945

	lowest_level = p->lowest_level;
	WARN_ON(p->nodes[0] != NULL);

	if (p->search_commit_root) {
		BUG_ON(time_seq);
		return btrfs_search_slot(NULL, root, key, p, 0, 0);
	}

again:
	b = get_old_root(root, time_seq);
2946 2947 2948 2949
	if (!b) {
		ret = -EIO;
		goto done;
	}
J
Jan Schmidt 已提交
2950 2951 2952 2953
	level = btrfs_header_level(b);
	p->locks[level] = BTRFS_READ_LOCK;

	while (b) {
2954 2955
		int dec = 0;

J
Jan Schmidt 已提交
2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966
		level = btrfs_header_level(b);
		p->nodes[level] = b;

		/*
		 * we have a lock on b and as long as we aren't changing
		 * the tree, there is no way to for the items in b to change.
		 * It is safe to drop the lock on our parent before we
		 * go through the expensive btree search on b.
		 */
		btrfs_unlock_up_safe(p, level + 1);

2967
		/*
2968
		 * Since we can unwind ebs we want to do a real search every
2969 2970 2971
		 * time.
		 */
		prev_cmp = -1;
2972
		ret = key_search(b, key, level, &prev_cmp, &slot);
2973 2974
		if (ret < 0)
			goto done;
J
Jan Schmidt 已提交
2975

2976
		if (level == 0) {
J
Jan Schmidt 已提交
2977 2978
			p->slots[level] = slot;
			unlock_up(p, level, lowest_unlock, 0, NULL);
2979 2980
			goto done;
		}
J
Jan Schmidt 已提交
2981

2982 2983 2984 2985 2986 2987
		if (ret && slot > 0) {
			dec = 1;
			slot--;
		}
		p->slots[level] = slot;
		unlock_up(p, level, lowest_unlock, 0, NULL);
J
Jan Schmidt 已提交
2988

2989 2990 2991 2992 2993
		if (level == lowest_level) {
			if (dec)
				p->slots[level]++;
			goto done;
		}
J
Jan Schmidt 已提交
2994

2995 2996 2997 2998 2999
		err = read_block_for_search(root, p, &b, level, slot, key);
		if (err == -EAGAIN)
			goto again;
		if (err) {
			ret = err;
J
Jan Schmidt 已提交
3000 3001
			goto done;
		}
3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014

		level = btrfs_header_level(b);
		if (!btrfs_tree_read_lock_atomic(b)) {
			btrfs_set_path_blocking(p);
			btrfs_tree_read_lock(b);
		}
		b = tree_mod_log_rewind(fs_info, p, b, time_seq);
		if (!b) {
			ret = -ENOMEM;
			goto done;
		}
		p->locks[level] = BTRFS_READ_LOCK;
		p->nodes[level] = b;
J
Jan Schmidt 已提交
3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025
	}
	ret = 1;
done:
	if (!p->leave_spinning)
		btrfs_set_path_blocking(p);
	if (ret < 0)
		btrfs_release_path(p);

	return ret;
}

3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038
/*
 * helper to use instead of search slot if no exact match is needed but
 * instead the next or previous item should be returned.
 * When find_higher is true, the next higher item is returned, the next lower
 * otherwise.
 * When return_any and find_higher are both true, and no higher item is found,
 * return the next lower instead.
 * When return_any is true and find_higher is false, and no lower item is found,
 * return the next higher instead.
 * It returns 0 if any item is found, 1 if none is found (tree empty), and
 * < 0 on error
 */
int btrfs_search_slot_for_read(struct btrfs_root *root,
3039 3040 3041
			       const struct btrfs_key *key,
			       struct btrfs_path *p, int find_higher,
			       int return_any)
3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075
{
	int ret;
	struct extent_buffer *leaf;

again:
	ret = btrfs_search_slot(NULL, root, key, p, 0, 0);
	if (ret <= 0)
		return ret;
	/*
	 * a return value of 1 means the path is at the position where the
	 * item should be inserted. Normally this is the next bigger item,
	 * but in case the previous item is the last in a leaf, path points
	 * to the first free slot in the previous leaf, i.e. at an invalid
	 * item.
	 */
	leaf = p->nodes[0];

	if (find_higher) {
		if (p->slots[0] >= btrfs_header_nritems(leaf)) {
			ret = btrfs_next_leaf(root, p);
			if (ret <= 0)
				return ret;
			if (!return_any)
				return 1;
			/*
			 * no higher item found, return the next
			 * lower instead
			 */
			return_any = 0;
			find_higher = 0;
			btrfs_release_path(p);
			goto again;
		}
	} else {
3076 3077 3078 3079 3080
		if (p->slots[0] == 0) {
			ret = btrfs_prev_leaf(root, p);
			if (ret < 0)
				return ret;
			if (!ret) {
3081 3082 3083
				leaf = p->nodes[0];
				if (p->slots[0] == btrfs_header_nritems(leaf))
					p->slots[0]--;
3084
				return 0;
3085
			}
3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096
			if (!return_any)
				return 1;
			/*
			 * no lower item found, return the next
			 * higher instead
			 */
			return_any = 0;
			find_higher = 1;
			btrfs_release_path(p);
			goto again;
		} else {
3097 3098 3099 3100 3101 3102
			--p->slots[0];
		}
	}
	return 0;
}

C
Chris Mason 已提交
3103 3104 3105 3106 3107 3108
/*
 * adjust the pointers going up the tree, starting at level
 * making sure the right key of each node is points to 'key'.
 * This is used after shifting pointers to the left, so it stops
 * fixing up pointers when a given leaf/node is not in slot 0 of the
 * higher levels
C
Chris Mason 已提交
3109
 *
C
Chris Mason 已提交
3110
 */
3111
static void fixup_low_keys(struct btrfs_path *path,
3112
			   struct btrfs_disk_key *key, int level)
3113 3114
{
	int i;
3115
	struct extent_buffer *t;
3116
	int ret;
3117

C
Chris Mason 已提交
3118
	for (i = level; i < BTRFS_MAX_LEVEL; i++) {
3119
		int tslot = path->slots[i];
3120

3121
		if (!path->nodes[i])
3122
			break;
3123
		t = path->nodes[i];
3124 3125 3126
		ret = tree_mod_log_insert_key(t, tslot, MOD_LOG_KEY_REPLACE,
				GFP_ATOMIC);
		BUG_ON(ret < 0);
3127
		btrfs_set_node_key(t, key, tslot);
C
Chris Mason 已提交
3128
		btrfs_mark_buffer_dirty(path->nodes[i]);
3129 3130 3131 3132 3133
		if (tslot != 0)
			break;
	}
}

Z
Zheng Yan 已提交
3134 3135 3136 3137 3138 3139
/*
 * update item key.
 *
 * This function isn't completely safe. It's the caller's responsibility
 * that the new key won't break the order
 */
3140 3141
void btrfs_set_item_key_safe(struct btrfs_fs_info *fs_info,
			     struct btrfs_path *path,
3142
			     const struct btrfs_key *new_key)
Z
Zheng Yan 已提交
3143 3144 3145 3146 3147 3148 3149 3150 3151
{
	struct btrfs_disk_key disk_key;
	struct extent_buffer *eb;
	int slot;

	eb = path->nodes[0];
	slot = path->slots[0];
	if (slot > 0) {
		btrfs_item_key(eb, &disk_key, slot - 1);
3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162
		if (unlikely(comp_keys(&disk_key, new_key) >= 0)) {
			btrfs_crit(fs_info,
		"slot %u key (%llu %u %llu) new key (%llu %u %llu)",
				   slot, btrfs_disk_key_objectid(&disk_key),
				   btrfs_disk_key_type(&disk_key),
				   btrfs_disk_key_offset(&disk_key),
				   new_key->objectid, new_key->type,
				   new_key->offset);
			btrfs_print_leaf(eb);
			BUG();
		}
Z
Zheng Yan 已提交
3163 3164 3165
	}
	if (slot < btrfs_header_nritems(eb) - 1) {
		btrfs_item_key(eb, &disk_key, slot + 1);
3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176
		if (unlikely(comp_keys(&disk_key, new_key) <= 0)) {
			btrfs_crit(fs_info,
		"slot %u key (%llu %u %llu) new key (%llu %u %llu)",
				   slot, btrfs_disk_key_objectid(&disk_key),
				   btrfs_disk_key_type(&disk_key),
				   btrfs_disk_key_offset(&disk_key),
				   new_key->objectid, new_key->type,
				   new_key->offset);
			btrfs_print_leaf(eb);
			BUG();
		}
Z
Zheng Yan 已提交
3177 3178 3179 3180 3181 3182
	}

	btrfs_cpu_key_to_disk(&disk_key, new_key);
	btrfs_set_item_key(eb, &disk_key, slot);
	btrfs_mark_buffer_dirty(eb);
	if (slot == 0)
3183
		fixup_low_keys(path, &disk_key, 1);
Z
Zheng Yan 已提交
3184 3185
}

C
Chris Mason 已提交
3186 3187
/*
 * try to push data from one node into the next node left in the
3188
 * tree.
C
Chris Mason 已提交
3189 3190 3191
 *
 * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
 * error, and > 0 if there was no room in the left hand block.
C
Chris Mason 已提交
3192
 */
3193
static int push_node_left(struct btrfs_trans_handle *trans,
3194
			  struct extent_buffer *dst,
3195
			  struct extent_buffer *src, int empty)
3196
{
3197
	struct btrfs_fs_info *fs_info = trans->fs_info;
3198
	int push_items = 0;
3199 3200
	int src_nritems;
	int dst_nritems;
C
Chris Mason 已提交
3201
	int ret = 0;
3202

3203 3204
	src_nritems = btrfs_header_nritems(src);
	dst_nritems = btrfs_header_nritems(dst);
3205
	push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems;
3206 3207
	WARN_ON(btrfs_header_generation(src) != trans->transid);
	WARN_ON(btrfs_header_generation(dst) != trans->transid);
3208

3209
	if (!empty && src_nritems <= 8)
3210 3211
		return 1;

C
Chris Mason 已提交
3212
	if (push_items <= 0)
3213 3214
		return 1;

3215
	if (empty) {
3216
		push_items = min(src_nritems, push_items);
3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228
		if (push_items < src_nritems) {
			/* leave at least 8 pointers in the node if
			 * we aren't going to empty it
			 */
			if (src_nritems - push_items < 8) {
				if (push_items <= 8)
					return 1;
				push_items -= 8;
			}
		}
	} else
		push_items = min(src_nritems - 8, push_items);
3229

3230
	ret = tree_mod_log_eb_copy(dst, src, dst_nritems, 0, push_items);
3231
	if (ret) {
3232
		btrfs_abort_transaction(trans, ret);
3233 3234
		return ret;
	}
3235 3236 3237
	copy_extent_buffer(dst, src,
			   btrfs_node_key_ptr_offset(dst_nritems),
			   btrfs_node_key_ptr_offset(0),
C
Chris Mason 已提交
3238
			   push_items * sizeof(struct btrfs_key_ptr));
3239

3240
	if (push_items < src_nritems) {
3241
		/*
3242 3243
		 * Don't call tree_mod_log_insert_move here, key removal was
		 * already fully logged by tree_mod_log_eb_copy above.
3244
		 */
3245 3246 3247 3248 3249 3250 3251 3252 3253
		memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0),
				      btrfs_node_key_ptr_offset(push_items),
				      (src_nritems - push_items) *
				      sizeof(struct btrfs_key_ptr));
	}
	btrfs_set_header_nritems(src, src_nritems - push_items);
	btrfs_set_header_nritems(dst, dst_nritems + push_items);
	btrfs_mark_buffer_dirty(src);
	btrfs_mark_buffer_dirty(dst);
Z
Zheng Yan 已提交
3254

3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266
	return ret;
}

/*
 * try to push data from one node into the next node right in the
 * tree.
 *
 * returns 0 if some ptrs were pushed, < 0 if there was some horrible
 * error, and > 0 if there was no room in the right hand block.
 *
 * this will  only push up to 1/2 the contents of the left node over
 */
3267 3268 3269
static int balance_node_right(struct btrfs_trans_handle *trans,
			      struct extent_buffer *dst,
			      struct extent_buffer *src)
3270
{
3271
	struct btrfs_fs_info *fs_info = trans->fs_info;
3272 3273 3274 3275 3276 3277
	int push_items = 0;
	int max_push;
	int src_nritems;
	int dst_nritems;
	int ret = 0;

3278 3279 3280
	WARN_ON(btrfs_header_generation(src) != trans->transid);
	WARN_ON(btrfs_header_generation(dst) != trans->transid);

3281 3282
	src_nritems = btrfs_header_nritems(src);
	dst_nritems = btrfs_header_nritems(dst);
3283
	push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems;
C
Chris Mason 已提交
3284
	if (push_items <= 0)
3285
		return 1;
3286

C
Chris Mason 已提交
3287
	if (src_nritems < 4)
3288
		return 1;
3289 3290 3291

	max_push = src_nritems / 2 + 1;
	/* don't try to empty the node */
C
Chris Mason 已提交
3292
	if (max_push >= src_nritems)
3293
		return 1;
Y
Yan 已提交
3294

3295 3296 3297
	if (max_push < push_items)
		push_items = max_push;

3298 3299
	ret = tree_mod_log_insert_move(dst, push_items, 0, dst_nritems);
	BUG_ON(ret < 0);
3300 3301 3302 3303
	memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items),
				      btrfs_node_key_ptr_offset(0),
				      (dst_nritems) *
				      sizeof(struct btrfs_key_ptr));
C
Chris Mason 已提交
3304

3305 3306
	ret = tree_mod_log_eb_copy(dst, src, 0, src_nritems - push_items,
				   push_items);
3307
	if (ret) {
3308
		btrfs_abort_transaction(trans, ret);
3309 3310
		return ret;
	}
3311 3312 3313
	copy_extent_buffer(dst, src,
			   btrfs_node_key_ptr_offset(0),
			   btrfs_node_key_ptr_offset(src_nritems - push_items),
C
Chris Mason 已提交
3314
			   push_items * sizeof(struct btrfs_key_ptr));
3315

3316 3317
	btrfs_set_header_nritems(src, src_nritems - push_items);
	btrfs_set_header_nritems(dst, dst_nritems + push_items);
3318

3319 3320
	btrfs_mark_buffer_dirty(src);
	btrfs_mark_buffer_dirty(dst);
Z
Zheng Yan 已提交
3321

C
Chris Mason 已提交
3322
	return ret;
3323 3324
}

C
Chris Mason 已提交
3325 3326 3327 3328
/*
 * helper function to insert a new root level in the tree.
 * A new node is allocated, and a single item is inserted to
 * point to the existing root
C
Chris Mason 已提交
3329 3330
 *
 * returns zero on success or < 0 on failure.
C
Chris Mason 已提交
3331
 */
C
Chris Mason 已提交
3332
static noinline int insert_new_root(struct btrfs_trans_handle *trans,
3333
			   struct btrfs_root *root,
3334
			   struct btrfs_path *path, int level)
C
Chris Mason 已提交
3335
{
3336
	struct btrfs_fs_info *fs_info = root->fs_info;
3337
	u64 lower_gen;
3338 3339
	struct extent_buffer *lower;
	struct extent_buffer *c;
3340
	struct extent_buffer *old;
3341
	struct btrfs_disk_key lower_key;
3342
	int ret;
C
Chris Mason 已提交
3343 3344 3345 3346

	BUG_ON(path->nodes[level]);
	BUG_ON(path->nodes[level-1] != root->node);

3347 3348 3349 3350 3351 3352
	lower = path->nodes[level-1];
	if (level == 1)
		btrfs_item_key(lower, &lower_key, 0);
	else
		btrfs_node_key(lower, &lower_key, 0);

3353 3354
	c = alloc_tree_block_no_bg_flush(trans, root, 0, &lower_key, level,
					 root->node->start, 0);
3355 3356
	if (IS_ERR(c))
		return PTR_ERR(c);
3357

3358
	root_add_used(root, fs_info->nodesize);
3359

3360 3361
	btrfs_set_header_nritems(c, 1);
	btrfs_set_node_key(c, &lower_key, 0);
3362
	btrfs_set_node_blockptr(c, 0, lower->start);
3363
	lower_gen = btrfs_header_generation(lower);
Z
Zheng Yan 已提交
3364
	WARN_ON(lower_gen != trans->transid);
3365 3366

	btrfs_set_node_ptr_generation(c, 0, lower_gen);
3367

3368
	btrfs_mark_buffer_dirty(c);
3369

3370
	old = root->node;
3371 3372
	ret = tree_mod_log_insert_root(root->node, c, 0);
	BUG_ON(ret < 0);
3373
	rcu_assign_pointer(root->node, c);
3374 3375 3376 3377

	/* the super has an extra ref to root->node */
	free_extent_buffer(old);

3378
	add_root_to_dirty_list(root);
D
David Sterba 已提交
3379
	atomic_inc(&c->refs);
3380
	path->nodes[level] = c;
3381
	path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
C
Chris Mason 已提交
3382 3383 3384 3385
	path->slots[level] = 0;
	return 0;
}

C
Chris Mason 已提交
3386 3387 3388
/*
 * worker function to insert a single pointer in a node.
 * the node should have enough room for the pointer already
C
Chris Mason 已提交
3389
 *
C
Chris Mason 已提交
3390 3391 3392
 * slot and level indicate where you want the key to go, and
 * blocknr is the block the key points to.
 */
3393
static void insert_ptr(struct btrfs_trans_handle *trans,
3394
		       struct btrfs_path *path,
3395
		       struct btrfs_disk_key *key, u64 bytenr,
3396
		       int slot, int level)
C
Chris Mason 已提交
3397
{
3398
	struct extent_buffer *lower;
C
Chris Mason 已提交
3399
	int nritems;
3400
	int ret;
C
Chris Mason 已提交
3401 3402

	BUG_ON(!path->nodes[level]);
3403
	btrfs_assert_tree_locked(path->nodes[level]);
3404 3405
	lower = path->nodes[level];
	nritems = btrfs_header_nritems(lower);
S
Stoyan Gaydarov 已提交
3406
	BUG_ON(slot > nritems);
3407
	BUG_ON(nritems == BTRFS_NODEPTRS_PER_BLOCK(trans->fs_info));
C
Chris Mason 已提交
3408
	if (slot != nritems) {
3409 3410
		if (level) {
			ret = tree_mod_log_insert_move(lower, slot + 1, slot,
3411
					nritems - slot);
3412 3413
			BUG_ON(ret < 0);
		}
3414 3415 3416
		memmove_extent_buffer(lower,
			      btrfs_node_key_ptr_offset(slot + 1),
			      btrfs_node_key_ptr_offset(slot),
C
Chris Mason 已提交
3417
			      (nritems - slot) * sizeof(struct btrfs_key_ptr));
C
Chris Mason 已提交
3418
	}
3419
	if (level) {
3420 3421
		ret = tree_mod_log_insert_key(lower, slot, MOD_LOG_KEY_ADD,
				GFP_NOFS);
3422 3423
		BUG_ON(ret < 0);
	}
3424
	btrfs_set_node_key(lower, key, slot);
3425
	btrfs_set_node_blockptr(lower, slot, bytenr);
3426 3427
	WARN_ON(trans->transid == 0);
	btrfs_set_node_ptr_generation(lower, slot, trans->transid);
3428 3429
	btrfs_set_header_nritems(lower, nritems + 1);
	btrfs_mark_buffer_dirty(lower);
C
Chris Mason 已提交
3430 3431
}

C
Chris Mason 已提交
3432 3433 3434 3435 3436 3437
/*
 * split the node at the specified level in path in two.
 * The path is corrected to point to the appropriate node after the split
 *
 * Before splitting this tries to make some room in the node by pushing
 * left and right, if either one works, it returns right away.
C
Chris Mason 已提交
3438 3439
 *
 * returns 0 on success and < 0 on failure
C
Chris Mason 已提交
3440
 */
3441 3442 3443
static noinline int split_node(struct btrfs_trans_handle *trans,
			       struct btrfs_root *root,
			       struct btrfs_path *path, int level)
3444
{
3445
	struct btrfs_fs_info *fs_info = root->fs_info;
3446 3447 3448
	struct extent_buffer *c;
	struct extent_buffer *split;
	struct btrfs_disk_key disk_key;
3449
	int mid;
C
Chris Mason 已提交
3450
	int ret;
3451
	u32 c_nritems;
3452

3453
	c = path->nodes[level];
3454
	WARN_ON(btrfs_header_generation(c) != trans->transid);
3455
	if (c == root->node) {
3456
		/*
3457 3458
		 * trying to split the root, lets make a new one
		 *
3459
		 * tree mod log: We don't log_removal old root in
3460 3461 3462 3463 3464
		 * insert_new_root, because that root buffer will be kept as a
		 * normal node. We are going to log removal of half of the
		 * elements below with tree_mod_log_eb_copy. We're holding a
		 * tree lock on the buffer, which is why we cannot race with
		 * other tree_mod_log users.
3465
		 */
3466
		ret = insert_new_root(trans, root, path, level + 1);
C
Chris Mason 已提交
3467 3468
		if (ret)
			return ret;
3469
	} else {
3470
		ret = push_nodes_for_insert(trans, root, path, level);
3471 3472
		c = path->nodes[level];
		if (!ret && btrfs_header_nritems(c) <
3473
		    BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3)
3474
			return 0;
3475 3476
		if (ret < 0)
			return ret;
3477
	}
3478

3479
	c_nritems = btrfs_header_nritems(c);
3480 3481
	mid = (c_nritems + 1) / 2;
	btrfs_node_key(c, &disk_key, mid);
3482

3483 3484
	split = alloc_tree_block_no_bg_flush(trans, root, 0, &disk_key, level,
					     c->start, 0);
3485 3486 3487
	if (IS_ERR(split))
		return PTR_ERR(split);

3488
	root_add_used(root, fs_info->nodesize);
3489
	ASSERT(btrfs_header_level(c) == level);
3490

3491
	ret = tree_mod_log_eb_copy(split, c, 0, mid, c_nritems - mid);
3492
	if (ret) {
3493
		btrfs_abort_transaction(trans, ret);
3494 3495
		return ret;
	}
3496 3497 3498 3499 3500 3501
	copy_extent_buffer(split, c,
			   btrfs_node_key_ptr_offset(0),
			   btrfs_node_key_ptr_offset(mid),
			   (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
	btrfs_set_header_nritems(split, c_nritems - mid);
	btrfs_set_header_nritems(c, mid);
C
Chris Mason 已提交
3502 3503
	ret = 0;

3504 3505 3506
	btrfs_mark_buffer_dirty(c);
	btrfs_mark_buffer_dirty(split);

3507
	insert_ptr(trans, path, &disk_key, split->start,
3508
		   path->slots[level + 1] + 1, level + 1);
C
Chris Mason 已提交
3509

C
Chris Mason 已提交
3510
	if (path->slots[level] >= mid) {
C
Chris Mason 已提交
3511
		path->slots[level] -= mid;
3512
		btrfs_tree_unlock(c);
3513 3514
		free_extent_buffer(c);
		path->nodes[level] = split;
C
Chris Mason 已提交
3515 3516
		path->slots[level + 1] += 1;
	} else {
3517
		btrfs_tree_unlock(split);
3518
		free_extent_buffer(split);
3519
	}
C
Chris Mason 已提交
3520
	return ret;
3521 3522
}

C
Chris Mason 已提交
3523 3524 3525 3526 3527
/*
 * how many bytes are required to store the items in a leaf.  start
 * and nr indicate which items in the leaf to check.  This totals up the
 * space used both by the item structs and the item data
 */
3528
static int leaf_space_used(struct extent_buffer *l, int start, int nr)
3529
{
J
Josef Bacik 已提交
3530 3531 3532
	struct btrfs_item *start_item;
	struct btrfs_item *end_item;
	struct btrfs_map_token token;
3533
	int data_len;
3534
	int nritems = btrfs_header_nritems(l);
3535
	int end = min(nritems, start + nr) - 1;
3536 3537 3538

	if (!nr)
		return 0;
3539
	btrfs_init_map_token(&token, l);
3540 3541
	start_item = btrfs_item_nr(start);
	end_item = btrfs_item_nr(end);
J
Josef Bacik 已提交
3542 3543 3544
	data_len = btrfs_token_item_offset(l, start_item, &token) +
		btrfs_token_item_size(l, start_item, &token);
	data_len = data_len - btrfs_token_item_offset(l, end_item, &token);
C
Chris Mason 已提交
3545
	data_len += sizeof(struct btrfs_item) * nr;
3546
	WARN_ON(data_len < 0);
3547 3548 3549
	return data_len;
}

3550 3551 3552 3553 3554
/*
 * The space between the end of the leaf items and
 * the start of the leaf data.  IOW, how much room
 * the leaf has left for both items and data
 */
3555
noinline int btrfs_leaf_free_space(struct extent_buffer *leaf)
3556
{
3557
	struct btrfs_fs_info *fs_info = leaf->fs_info;
3558 3559
	int nritems = btrfs_header_nritems(leaf);
	int ret;
3560 3561

	ret = BTRFS_LEAF_DATA_SIZE(fs_info) - leaf_space_used(leaf, 0, nritems);
3562
	if (ret < 0) {
3563 3564 3565 3566 3567
		btrfs_crit(fs_info,
			   "leaf free space ret %d, leaf data size %lu, used %d nritems %d",
			   ret,
			   (unsigned long) BTRFS_LEAF_DATA_SIZE(fs_info),
			   leaf_space_used(leaf, 0, nritems), nritems);
3568 3569
	}
	return ret;
3570 3571
}

3572 3573 3574 3575
/*
 * min slot controls the lowest index we're willing to push to the
 * right.  We'll push up to and including min_slot, but no lower
 */
3576
static noinline int __push_leaf_right(struct btrfs_path *path,
3577 3578
				      int data_size, int empty,
				      struct extent_buffer *right,
3579 3580
				      int free_space, u32 left_nritems,
				      u32 min_slot)
C
Chris Mason 已提交
3581
{
3582
	struct btrfs_fs_info *fs_info = right->fs_info;
3583
	struct extent_buffer *left = path->nodes[0];
3584
	struct extent_buffer *upper = path->nodes[1];
3585
	struct btrfs_map_token token;
3586
	struct btrfs_disk_key disk_key;
C
Chris Mason 已提交
3587
	int slot;
3588
	u32 i;
C
Chris Mason 已提交
3589 3590
	int push_space = 0;
	int push_items = 0;
C
Chris Mason 已提交
3591
	struct btrfs_item *item;
3592
	u32 nr;
3593
	u32 right_nritems;
3594
	u32 data_end;
3595
	u32 this_item_size;
C
Chris Mason 已提交
3596

3597 3598 3599
	if (empty)
		nr = 0;
	else
3600
		nr = max_t(u32, 1, min_slot);
3601

Z
Zheng Yan 已提交
3602
	if (path->slots[0] >= left_nritems)
3603
		push_space += data_size;
Z
Zheng Yan 已提交
3604

3605
	slot = path->slots[1];
3606 3607
	i = left_nritems - 1;
	while (i >= nr) {
3608
		item = btrfs_item_nr(i);
3609

Z
Zheng Yan 已提交
3610 3611 3612 3613
		if (!empty && push_items > 0) {
			if (path->slots[0] > i)
				break;
			if (path->slots[0] == i) {
3614 3615
				int space = btrfs_leaf_free_space(left);

Z
Zheng Yan 已提交
3616 3617 3618 3619 3620
				if (space + push_space * 2 > free_space)
					break;
			}
		}

C
Chris Mason 已提交
3621
		if (path->slots[0] == i)
3622
			push_space += data_size;
3623 3624 3625

		this_item_size = btrfs_item_size(left, item);
		if (this_item_size + sizeof(*item) + push_space > free_space)
C
Chris Mason 已提交
3626
			break;
Z
Zheng Yan 已提交
3627

C
Chris Mason 已提交
3628
		push_items++;
3629
		push_space += this_item_size + sizeof(*item);
3630 3631 3632
		if (i == 0)
			break;
		i--;
3633
	}
3634

3635 3636
	if (push_items == 0)
		goto out_unlock;
3637

J
Julia Lawall 已提交
3638
	WARN_ON(!empty && push_items == left_nritems);
3639

C
Chris Mason 已提交
3640
	/* push left to right */
3641
	right_nritems = btrfs_header_nritems(right);
3642

3643
	push_space = btrfs_item_end_nr(left, left_nritems - push_items);
3644
	push_space -= leaf_data_end(left);
3645

C
Chris Mason 已提交
3646
	/* make room in the right data area */
3647
	data_end = leaf_data_end(right);
3648
	memmove_extent_buffer(right,
3649 3650
			      BTRFS_LEAF_DATA_OFFSET + data_end - push_space,
			      BTRFS_LEAF_DATA_OFFSET + data_end,
3651
			      BTRFS_LEAF_DATA_SIZE(fs_info) - data_end);
3652

C
Chris Mason 已提交
3653
	/* copy from the left data area */
3654
	copy_extent_buffer(right, left, BTRFS_LEAF_DATA_OFFSET +
3655
		     BTRFS_LEAF_DATA_SIZE(fs_info) - push_space,
3656
		     BTRFS_LEAF_DATA_OFFSET + leaf_data_end(left),
C
Chris Mason 已提交
3657
		     push_space);
3658 3659 3660 3661 3662

	memmove_extent_buffer(right, btrfs_item_nr_offset(push_items),
			      btrfs_item_nr_offset(0),
			      right_nritems * sizeof(struct btrfs_item));

C
Chris Mason 已提交
3663
	/* copy the items from left to right */
3664 3665 3666
	copy_extent_buffer(right, left, btrfs_item_nr_offset(0),
		   btrfs_item_nr_offset(left_nritems - push_items),
		   push_items * sizeof(struct btrfs_item));
C
Chris Mason 已提交
3667 3668

	/* update the item pointers */
3669
	btrfs_init_map_token(&token, right);
3670
	right_nritems += push_items;
3671
	btrfs_set_header_nritems(right, right_nritems);
3672
	push_space = BTRFS_LEAF_DATA_SIZE(fs_info);
3673
	for (i = 0; i < right_nritems; i++) {
3674
		item = btrfs_item_nr(i);
3675 3676
		push_space -= btrfs_token_item_size(right, item, &token);
		btrfs_set_token_item_offset(right, item, push_space, &token);
3677 3678
	}

3679
	left_nritems -= push_items;
3680
	btrfs_set_header_nritems(left, left_nritems);
C
Chris Mason 已提交
3681

3682 3683
	if (left_nritems)
		btrfs_mark_buffer_dirty(left);
3684
	else
3685
		btrfs_clean_tree_block(left);
3686

3687
	btrfs_mark_buffer_dirty(right);
3688

3689 3690
	btrfs_item_key(right, &disk_key, 0);
	btrfs_set_node_key(upper, &disk_key, slot + 1);
C
Chris Mason 已提交
3691
	btrfs_mark_buffer_dirty(upper);
C
Chris Mason 已提交
3692

C
Chris Mason 已提交
3693
	/* then fixup the leaf pointer in the path */
3694 3695
	if (path->slots[0] >= left_nritems) {
		path->slots[0] -= left_nritems;
3696
		if (btrfs_header_nritems(path->nodes[0]) == 0)
3697
			btrfs_clean_tree_block(path->nodes[0]);
3698
		btrfs_tree_unlock(path->nodes[0]);
3699 3700
		free_extent_buffer(path->nodes[0]);
		path->nodes[0] = right;
C
Chris Mason 已提交
3701 3702
		path->slots[1] += 1;
	} else {
3703
		btrfs_tree_unlock(right);
3704
		free_extent_buffer(right);
C
Chris Mason 已提交
3705 3706
	}
	return 0;
3707 3708 3709 3710 3711

out_unlock:
	btrfs_tree_unlock(right);
	free_extent_buffer(right);
	return 1;
C
Chris Mason 已提交
3712
}
3713

3714 3715 3716 3717 3718 3719
/*
 * push some data in the path leaf to the right, trying to free up at
 * least data_size bytes.  returns zero if the push worked, nonzero otherwise
 *
 * returns 1 if the push failed because the other node didn't have enough
 * room, 0 if everything worked out and < 0 if there were major errors.
3720 3721 3722
 *
 * this will push starting from min_slot to the end of the leaf.  It won't
 * push any slot lower than min_slot
3723 3724
 */
static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
3725 3726 3727
			   *root, struct btrfs_path *path,
			   int min_data_size, int data_size,
			   int empty, u32 min_slot)
3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746
{
	struct extent_buffer *left = path->nodes[0];
	struct extent_buffer *right;
	struct extent_buffer *upper;
	int slot;
	int free_space;
	u32 left_nritems;
	int ret;

	if (!path->nodes[1])
		return 1;

	slot = path->slots[1];
	upper = path->nodes[1];
	if (slot >= btrfs_header_nritems(upper) - 1)
		return 1;

	btrfs_assert_tree_locked(path->nodes[1]);

3747
	right = btrfs_read_node_slot(upper, slot + 1);
3748 3749 3750 3751 3752
	/*
	 * slot + 1 is not valid or we fail to read the right node,
	 * no big deal, just return.
	 */
	if (IS_ERR(right))
T
Tsutomu Itoh 已提交
3753 3754
		return 1;

3755
	btrfs_tree_lock(right);
3756
	btrfs_set_lock_blocking_write(right);
3757

3758
	free_space = btrfs_leaf_free_space(right);
3759 3760 3761 3762 3763 3764 3765 3766 3767
	if (free_space < data_size)
		goto out_unlock;

	/* cow and double check */
	ret = btrfs_cow_block(trans, root, right, upper,
			      slot + 1, &right);
	if (ret)
		goto out_unlock;

3768
	free_space = btrfs_leaf_free_space(right);
3769 3770 3771 3772 3773 3774 3775
	if (free_space < data_size)
		goto out_unlock;

	left_nritems = btrfs_header_nritems(left);
	if (left_nritems == 0)
		goto out_unlock;

3776 3777 3778 3779
	if (path->slots[0] == left_nritems && !empty) {
		/* Key greater than all keys in the leaf, right neighbor has
		 * enough room for it and we're not emptying our leaf to delete
		 * it, therefore use right neighbor to insert the new item and
3780
		 * no need to touch/dirty our left leaf. */
3781 3782 3783 3784 3785 3786 3787 3788
		btrfs_tree_unlock(left);
		free_extent_buffer(left);
		path->nodes[0] = right;
		path->slots[0] = 0;
		path->slots[1]++;
		return 0;
	}

3789
	return __push_leaf_right(path, min_data_size, empty,
3790
				right, free_space, left_nritems, min_slot);
3791 3792 3793 3794 3795 3796
out_unlock:
	btrfs_tree_unlock(right);
	free_extent_buffer(right);
	return 1;
}

C
Chris Mason 已提交
3797 3798 3799
/*
 * push some data in the path leaf to the left, trying to free up at
 * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3800 3801 3802 3803
 *
 * max_slot can put a limit on how far into the leaf we'll push items.  The
 * item at 'max_slot' won't be touched.  Use (u32)-1 to make us do all the
 * items
C
Chris Mason 已提交
3804
 */
3805
static noinline int __push_leaf_left(struct btrfs_path *path, int data_size,
3806
				     int empty, struct extent_buffer *left,
3807 3808
				     int free_space, u32 right_nritems,
				     u32 max_slot)
3809
{
3810
	struct btrfs_fs_info *fs_info = left->fs_info;
3811 3812
	struct btrfs_disk_key disk_key;
	struct extent_buffer *right = path->nodes[0];
3813 3814 3815
	int i;
	int push_space = 0;
	int push_items = 0;
C
Chris Mason 已提交
3816
	struct btrfs_item *item;
3817
	u32 old_left_nritems;
3818
	u32 nr;
C
Chris Mason 已提交
3819
	int ret = 0;
3820 3821
	u32 this_item_size;
	u32 old_left_item_size;
3822 3823
	struct btrfs_map_token token;

3824
	if (empty)
3825
		nr = min(right_nritems, max_slot);
3826
	else
3827
		nr = min(right_nritems - 1, max_slot);
3828 3829

	for (i = 0; i < nr; i++) {
3830
		item = btrfs_item_nr(i);
3831

Z
Zheng Yan 已提交
3832 3833 3834 3835
		if (!empty && push_items > 0) {
			if (path->slots[0] < i)
				break;
			if (path->slots[0] == i) {
3836 3837
				int space = btrfs_leaf_free_space(right);

Z
Zheng Yan 已提交
3838 3839 3840 3841 3842
				if (space + push_space * 2 > free_space)
					break;
			}
		}

3843
		if (path->slots[0] == i)
3844
			push_space += data_size;
3845 3846 3847

		this_item_size = btrfs_item_size(right, item);
		if (this_item_size + sizeof(*item) + push_space > free_space)
3848
			break;
3849

3850
		push_items++;
3851 3852 3853
		push_space += this_item_size + sizeof(*item);
	}

3854
	if (push_items == 0) {
3855 3856
		ret = 1;
		goto out;
3857
	}
3858
	WARN_ON(!empty && push_items == btrfs_header_nritems(right));
3859

3860
	/* push data from right to left */
3861 3862 3863 3864 3865
	copy_extent_buffer(left, right,
			   btrfs_item_nr_offset(btrfs_header_nritems(left)),
			   btrfs_item_nr_offset(0),
			   push_items * sizeof(struct btrfs_item));

3866
	push_space = BTRFS_LEAF_DATA_SIZE(fs_info) -
C
Chris Mason 已提交
3867
		     btrfs_item_offset_nr(right, push_items - 1);
3868

3869
	copy_extent_buffer(left, right, BTRFS_LEAF_DATA_OFFSET +
3870
		     leaf_data_end(left) - push_space,
3871
		     BTRFS_LEAF_DATA_OFFSET +
3872
		     btrfs_item_offset_nr(right, push_items - 1),
C
Chris Mason 已提交
3873
		     push_space);
3874
	old_left_nritems = btrfs_header_nritems(left);
3875
	BUG_ON(old_left_nritems <= 0);
3876

3877
	btrfs_init_map_token(&token, left);
3878
	old_left_item_size = btrfs_item_offset_nr(left, old_left_nritems - 1);
C
Chris Mason 已提交
3879
	for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
3880
		u32 ioff;
3881

3882
		item = btrfs_item_nr(i);
3883

3884 3885
		ioff = btrfs_token_item_offset(left, item, &token);
		btrfs_set_token_item_offset(left, item,
3886
		      ioff - (BTRFS_LEAF_DATA_SIZE(fs_info) - old_left_item_size),
3887
		      &token);
3888
	}
3889
	btrfs_set_header_nritems(left, old_left_nritems + push_items);
3890 3891

	/* fixup right node */
J
Julia Lawall 已提交
3892 3893
	if (push_items > right_nritems)
		WARN(1, KERN_CRIT "push items %d nr %u\n", push_items,
C
Chris Mason 已提交
3894
		       right_nritems);
3895 3896 3897

	if (push_items < right_nritems) {
		push_space = btrfs_item_offset_nr(right, push_items - 1) -
3898
						  leaf_data_end(right);
3899
		memmove_extent_buffer(right, BTRFS_LEAF_DATA_OFFSET +
3900
				      BTRFS_LEAF_DATA_SIZE(fs_info) - push_space,
3901
				      BTRFS_LEAF_DATA_OFFSET +
3902
				      leaf_data_end(right), push_space);
3903 3904

		memmove_extent_buffer(right, btrfs_item_nr_offset(0),
3905 3906 3907
			      btrfs_item_nr_offset(push_items),
			     (btrfs_header_nritems(right) - push_items) *
			     sizeof(struct btrfs_item));
3908
	}
3909 3910

	btrfs_init_map_token(&token, right);
3911 3912
	right_nritems -= push_items;
	btrfs_set_header_nritems(right, right_nritems);
3913
	push_space = BTRFS_LEAF_DATA_SIZE(fs_info);
3914
	for (i = 0; i < right_nritems; i++) {
3915
		item = btrfs_item_nr(i);
3916

3917 3918 3919
		push_space = push_space - btrfs_token_item_size(right,
								item, &token);
		btrfs_set_token_item_offset(right, item, push_space, &token);
3920
	}
3921

3922
	btrfs_mark_buffer_dirty(left);
3923 3924
	if (right_nritems)
		btrfs_mark_buffer_dirty(right);
3925
	else
3926
		btrfs_clean_tree_block(right);
3927

3928
	btrfs_item_key(right, &disk_key, 0);
3929
	fixup_low_keys(path, &disk_key, 1);
3930 3931 3932 3933

	/* then fixup the leaf pointer in the path */
	if (path->slots[0] < push_items) {
		path->slots[0] += old_left_nritems;
3934
		btrfs_tree_unlock(path->nodes[0]);
3935 3936
		free_extent_buffer(path->nodes[0]);
		path->nodes[0] = left;
3937 3938
		path->slots[1] -= 1;
	} else {
3939
		btrfs_tree_unlock(left);
3940
		free_extent_buffer(left);
3941 3942
		path->slots[0] -= push_items;
	}
3943
	BUG_ON(path->slots[0] < 0);
C
Chris Mason 已提交
3944
	return ret;
3945 3946 3947 3948
out:
	btrfs_tree_unlock(left);
	free_extent_buffer(left);
	return ret;
3949 3950
}

3951 3952 3953
/*
 * push some data in the path leaf to the left, trying to free up at
 * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3954 3955 3956 3957
 *
 * max_slot can put a limit on how far into the leaf we'll push items.  The
 * item at 'max_slot' won't be touched.  Use (u32)-1 to make us push all the
 * items
3958 3959
 */
static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
3960 3961
			  *root, struct btrfs_path *path, int min_data_size,
			  int data_size, int empty, u32 max_slot)
3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981
{
	struct extent_buffer *right = path->nodes[0];
	struct extent_buffer *left;
	int slot;
	int free_space;
	u32 right_nritems;
	int ret = 0;

	slot = path->slots[1];
	if (slot == 0)
		return 1;
	if (!path->nodes[1])
		return 1;

	right_nritems = btrfs_header_nritems(right);
	if (right_nritems == 0)
		return 1;

	btrfs_assert_tree_locked(path->nodes[1]);

3982
	left = btrfs_read_node_slot(path->nodes[1], slot - 1);
3983 3984 3985 3986 3987
	/*
	 * slot - 1 is not valid or we fail to read the left node,
	 * no big deal, just return.
	 */
	if (IS_ERR(left))
T
Tsutomu Itoh 已提交
3988 3989
		return 1;

3990
	btrfs_tree_lock(left);
3991
	btrfs_set_lock_blocking_write(left);
3992

3993
	free_space = btrfs_leaf_free_space(left);
3994 3995 3996 3997 3998 3999 4000 4001 4002 4003
	if (free_space < data_size) {
		ret = 1;
		goto out;
	}

	/* cow and double check */
	ret = btrfs_cow_block(trans, root, left,
			      path->nodes[1], slot - 1, &left);
	if (ret) {
		/* we hit -ENOSPC, but it isn't fatal here */
4004 4005
		if (ret == -ENOSPC)
			ret = 1;
4006 4007 4008
		goto out;
	}

4009
	free_space = btrfs_leaf_free_space(left);
4010 4011 4012 4013 4014
	if (free_space < data_size) {
		ret = 1;
		goto out;
	}

4015
	return __push_leaf_left(path, min_data_size,
4016 4017
			       empty, left, free_space, right_nritems,
			       max_slot);
4018 4019 4020 4021 4022 4023 4024 4025 4026 4027
out:
	btrfs_tree_unlock(left);
	free_extent_buffer(left);
	return ret;
}

/*
 * split the path's leaf in two, making sure there is at least data_size
 * available for the resulting leaf level of the path.
 */
4028 4029 4030 4031 4032
static noinline void copy_for_split(struct btrfs_trans_handle *trans,
				    struct btrfs_path *path,
				    struct extent_buffer *l,
				    struct extent_buffer *right,
				    int slot, int mid, int nritems)
4033
{
4034
	struct btrfs_fs_info *fs_info = trans->fs_info;
4035 4036 4037 4038
	int data_copy_size;
	int rt_data_off;
	int i;
	struct btrfs_disk_key disk_key;
4039 4040
	struct btrfs_map_token token;

4041 4042
	nritems = nritems - mid;
	btrfs_set_header_nritems(right, nritems);
4043
	data_copy_size = btrfs_item_end_nr(l, mid) - leaf_data_end(l);
4044 4045 4046 4047 4048 4049

	copy_extent_buffer(right, l, btrfs_item_nr_offset(0),
			   btrfs_item_nr_offset(mid),
			   nritems * sizeof(struct btrfs_item));

	copy_extent_buffer(right, l,
4050 4051
		     BTRFS_LEAF_DATA_OFFSET + BTRFS_LEAF_DATA_SIZE(fs_info) -
		     data_copy_size, BTRFS_LEAF_DATA_OFFSET +
4052
		     leaf_data_end(l), data_copy_size);
4053

4054
	rt_data_off = BTRFS_LEAF_DATA_SIZE(fs_info) - btrfs_item_end_nr(l, mid);
4055

4056
	btrfs_init_map_token(&token, right);
4057
	for (i = 0; i < nritems; i++) {
4058
		struct btrfs_item *item = btrfs_item_nr(i);
4059 4060
		u32 ioff;

4061 4062 4063
		ioff = btrfs_token_item_offset(right, item, &token);
		btrfs_set_token_item_offset(right, item,
					    ioff + rt_data_off, &token);
4064 4065 4066 4067
	}

	btrfs_set_header_nritems(l, mid);
	btrfs_item_key(right, &disk_key, 0);
4068
	insert_ptr(trans, path, &disk_key, right->start, path->slots[1] + 1, 1);
4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087

	btrfs_mark_buffer_dirty(right);
	btrfs_mark_buffer_dirty(l);
	BUG_ON(path->slots[0] != slot);

	if (mid <= slot) {
		btrfs_tree_unlock(path->nodes[0]);
		free_extent_buffer(path->nodes[0]);
		path->nodes[0] = right;
		path->slots[0] -= mid;
		path->slots[1] += 1;
	} else {
		btrfs_tree_unlock(right);
		free_extent_buffer(right);
	}

	BUG_ON(path->slots[0] < 0);
}

4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106
/*
 * double splits happen when we need to insert a big item in the middle
 * of a leaf.  A double split can leave us with 3 mostly empty leaves:
 * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ]
 *          A                 B                 C
 *
 * We avoid this by trying to push the items on either side of our target
 * into the adjacent leaves.  If all goes well we can avoid the double split
 * completely.
 */
static noinline int push_for_double_split(struct btrfs_trans_handle *trans,
					  struct btrfs_root *root,
					  struct btrfs_path *path,
					  int data_size)
{
	int ret;
	int progress = 0;
	int slot;
	u32 nritems;
4107
	int space_needed = data_size;
4108 4109

	slot = path->slots[0];
4110
	if (slot < btrfs_header_nritems(path->nodes[0]))
4111
		space_needed -= btrfs_leaf_free_space(path->nodes[0]);
4112 4113 4114 4115 4116

	/*
	 * try to push all the items after our slot into the
	 * right leaf
	 */
4117
	ret = push_leaf_right(trans, root, path, 1, space_needed, 0, slot);
4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131
	if (ret < 0)
		return ret;

	if (ret == 0)
		progress++;

	nritems = btrfs_header_nritems(path->nodes[0]);
	/*
	 * our goal is to get our slot at the start or end of a leaf.  If
	 * we've done so we're done
	 */
	if (path->slots[0] == 0 || path->slots[0] == nritems)
		return 0;

4132
	if (btrfs_leaf_free_space(path->nodes[0]) >= data_size)
4133 4134 4135 4136
		return 0;

	/* try to push all the items before our slot into the next leaf */
	slot = path->slots[0];
4137 4138
	space_needed = data_size;
	if (slot > 0)
4139
		space_needed -= btrfs_leaf_free_space(path->nodes[0]);
4140
	ret = push_leaf_left(trans, root, path, 1, space_needed, 0, slot);
4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151
	if (ret < 0)
		return ret;

	if (ret == 0)
		progress++;

	if (progress)
		return 0;
	return 1;
}

C
Chris Mason 已提交
4152 4153 4154
/*
 * split the path's leaf in two, making sure there is at least data_size
 * available for the resulting leaf level of the path.
C
Chris Mason 已提交
4155 4156
 *
 * returns 0 if all went well and < 0 on failure.
C
Chris Mason 已提交
4157
 */
4158 4159
static noinline int split_leaf(struct btrfs_trans_handle *trans,
			       struct btrfs_root *root,
4160
			       const struct btrfs_key *ins_key,
4161 4162
			       struct btrfs_path *path, int data_size,
			       int extend)
4163
{
4164
	struct btrfs_disk_key disk_key;
4165
	struct extent_buffer *l;
4166
	u32 nritems;
4167 4168
	int mid;
	int slot;
4169
	struct extent_buffer *right;
4170
	struct btrfs_fs_info *fs_info = root->fs_info;
4171
	int ret = 0;
C
Chris Mason 已提交
4172
	int wret;
4173
	int split;
4174
	int num_doubles = 0;
4175
	int tried_avoid_double = 0;
C
Chris Mason 已提交
4176

4177 4178 4179
	l = path->nodes[0];
	slot = path->slots[0];
	if (extend && data_size + btrfs_item_size_nr(l, slot) +
4180
	    sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(fs_info))
4181 4182
		return -EOVERFLOW;

C
Chris Mason 已提交
4183
	/* first try to make some room by pushing left and right */
4184
	if (data_size && path->nodes[1]) {
4185 4186 4187
		int space_needed = data_size;

		if (slot < btrfs_header_nritems(l))
4188
			space_needed -= btrfs_leaf_free_space(l);
4189 4190 4191

		wret = push_leaf_right(trans, root, path, space_needed,
				       space_needed, 0, 0);
C
Chris Mason 已提交
4192
		if (wret < 0)
C
Chris Mason 已提交
4193
			return wret;
4194
		if (wret) {
4195 4196
			space_needed = data_size;
			if (slot > 0)
4197
				space_needed -= btrfs_leaf_free_space(l);
4198 4199
			wret = push_leaf_left(trans, root, path, space_needed,
					      space_needed, 0, (u32)-1);
4200 4201 4202 4203
			if (wret < 0)
				return wret;
		}
		l = path->nodes[0];
C
Chris Mason 已提交
4204

4205
		/* did the pushes work? */
4206
		if (btrfs_leaf_free_space(l) >= data_size)
4207
			return 0;
4208
	}
C
Chris Mason 已提交
4209

C
Chris Mason 已提交
4210
	if (!path->nodes[1]) {
4211
		ret = insert_new_root(trans, root, path, 1);
C
Chris Mason 已提交
4212 4213 4214
		if (ret)
			return ret;
	}
4215
again:
4216
	split = 1;
4217
	l = path->nodes[0];
4218
	slot = path->slots[0];
4219
	nritems = btrfs_header_nritems(l);
C
Chris Mason 已提交
4220
	mid = (nritems + 1) / 2;
4221

4222 4223 4224
	if (mid <= slot) {
		if (nritems == 1 ||
		    leaf_space_used(l, mid, nritems - mid) + data_size >
4225
			BTRFS_LEAF_DATA_SIZE(fs_info)) {
4226 4227 4228 4229 4230 4231
			if (slot >= nritems) {
				split = 0;
			} else {
				mid = slot;
				if (mid != nritems &&
				    leaf_space_used(l, mid, nritems - mid) +
4232
				    data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) {
4233 4234
					if (data_size && !tried_avoid_double)
						goto push_for_double;
4235 4236 4237 4238 4239 4240
					split = 2;
				}
			}
		}
	} else {
		if (leaf_space_used(l, 0, mid) + data_size >
4241
			BTRFS_LEAF_DATA_SIZE(fs_info)) {
4242 4243 4244 4245 4246 4247 4248 4249
			if (!extend && data_size && slot == 0) {
				split = 0;
			} else if ((extend || !data_size) && slot == 0) {
				mid = 1;
			} else {
				mid = slot;
				if (mid != nritems &&
				    leaf_space_used(l, mid, nritems - mid) +
4250
				    data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) {
4251 4252
					if (data_size && !tried_avoid_double)
						goto push_for_double;
4253
					split = 2;
4254 4255 4256 4257 4258 4259 4260 4261 4262 4263
				}
			}
		}
	}

	if (split == 0)
		btrfs_cpu_key_to_disk(&disk_key, ins_key);
	else
		btrfs_item_key(l, &disk_key, mid);

4264 4265
	right = alloc_tree_block_no_bg_flush(trans, root, 0, &disk_key, 0,
					     l->start, 0);
4266
	if (IS_ERR(right))
4267
		return PTR_ERR(right);
4268

4269
	root_add_used(root, fs_info->nodesize);
4270

4271 4272 4273
	if (split == 0) {
		if (mid <= slot) {
			btrfs_set_header_nritems(right, 0);
4274
			insert_ptr(trans, path, &disk_key,
4275
				   right->start, path->slots[1] + 1, 1);
4276 4277 4278 4279 4280 4281 4282
			btrfs_tree_unlock(path->nodes[0]);
			free_extent_buffer(path->nodes[0]);
			path->nodes[0] = right;
			path->slots[0] = 0;
			path->slots[1] += 1;
		} else {
			btrfs_set_header_nritems(right, 0);
4283
			insert_ptr(trans, path, &disk_key,
4284
				   right->start, path->slots[1], 1);
4285 4286 4287 4288
			btrfs_tree_unlock(path->nodes[0]);
			free_extent_buffer(path->nodes[0]);
			path->nodes[0] = right;
			path->slots[0] = 0;
4289
			if (path->slots[1] == 0)
4290
				fixup_low_keys(path, &disk_key, 1);
4291
		}
4292 4293 4294 4295 4296
		/*
		 * We create a new leaf 'right' for the required ins_len and
		 * we'll do btrfs_mark_buffer_dirty() on this leaf after copying
		 * the content of ins_len to 'right'.
		 */
4297
		return ret;
4298
	}
C
Chris Mason 已提交
4299

4300
	copy_for_split(trans, path, l, right, slot, mid, nritems);
Z
Zheng Yan 已提交
4301

4302
	if (split == 2) {
4303 4304 4305
		BUG_ON(num_doubles != 0);
		num_doubles++;
		goto again;
4306
	}
4307

4308
	return 0;
4309 4310 4311 4312

push_for_double:
	push_for_double_split(trans, root, path, data_size);
	tried_avoid_double = 1;
4313
	if (btrfs_leaf_free_space(path->nodes[0]) >= data_size)
4314 4315
		return 0;
	goto again;
4316 4317
}

Y
Yan, Zheng 已提交
4318 4319 4320
static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans,
					 struct btrfs_root *root,
					 struct btrfs_path *path, int ins_len)
4321
{
Y
Yan, Zheng 已提交
4322
	struct btrfs_key key;
4323
	struct extent_buffer *leaf;
Y
Yan, Zheng 已提交
4324 4325 4326 4327
	struct btrfs_file_extent_item *fi;
	u64 extent_len = 0;
	u32 item_size;
	int ret;
4328 4329

	leaf = path->nodes[0];
Y
Yan, Zheng 已提交
4330 4331 4332 4333 4334
	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);

	BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY &&
	       key.type != BTRFS_EXTENT_CSUM_KEY);

4335
	if (btrfs_leaf_free_space(leaf) >= ins_len)
Y
Yan, Zheng 已提交
4336
		return 0;
4337 4338

	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
Y
Yan, Zheng 已提交
4339 4340 4341 4342 4343
	if (key.type == BTRFS_EXTENT_DATA_KEY) {
		fi = btrfs_item_ptr(leaf, path->slots[0],
				    struct btrfs_file_extent_item);
		extent_len = btrfs_file_extent_num_bytes(leaf, fi);
	}
4344
	btrfs_release_path(path);
4345 4346

	path->keep_locks = 1;
Y
Yan, Zheng 已提交
4347 4348
	path->search_for_split = 1;
	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
4349
	path->search_for_split = 0;
4350 4351
	if (ret > 0)
		ret = -EAGAIN;
Y
Yan, Zheng 已提交
4352 4353
	if (ret < 0)
		goto err;
4354

Y
Yan, Zheng 已提交
4355 4356
	ret = -EAGAIN;
	leaf = path->nodes[0];
4357 4358
	/* if our item isn't there, return now */
	if (item_size != btrfs_item_size_nr(leaf, path->slots[0]))
Y
Yan, Zheng 已提交
4359 4360
		goto err;

4361
	/* the leaf has  changed, it now has room.  return now */
4362
	if (btrfs_leaf_free_space(path->nodes[0]) >= ins_len)
4363 4364
		goto err;

Y
Yan, Zheng 已提交
4365 4366 4367 4368 4369
	if (key.type == BTRFS_EXTENT_DATA_KEY) {
		fi = btrfs_item_ptr(leaf, path->slots[0],
				    struct btrfs_file_extent_item);
		if (extent_len != btrfs_file_extent_num_bytes(leaf, fi))
			goto err;
4370 4371
	}

4372
	btrfs_set_path_blocking(path);
Y
Yan, Zheng 已提交
4373
	ret = split_leaf(trans, root, &key, path, ins_len, 1);
4374 4375
	if (ret)
		goto err;
4376

Y
Yan, Zheng 已提交
4377
	path->keep_locks = 0;
4378
	btrfs_unlock_up_safe(path, 1);
Y
Yan, Zheng 已提交
4379 4380 4381 4382 4383 4384
	return 0;
err:
	path->keep_locks = 0;
	return ret;
}

4385
static noinline int split_item(struct btrfs_path *path,
4386
			       const struct btrfs_key *new_key,
Y
Yan, Zheng 已提交
4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398
			       unsigned long split_offset)
{
	struct extent_buffer *leaf;
	struct btrfs_item *item;
	struct btrfs_item *new_item;
	int slot;
	char *buf;
	u32 nritems;
	u32 item_size;
	u32 orig_offset;
	struct btrfs_disk_key disk_key;

4399
	leaf = path->nodes[0];
4400
	BUG_ON(btrfs_leaf_free_space(leaf) < sizeof(struct btrfs_item));
4401

4402 4403
	btrfs_set_path_blocking(path);

4404
	item = btrfs_item_nr(path->slots[0]);
4405 4406 4407 4408
	orig_offset = btrfs_item_offset(leaf, item);
	item_size = btrfs_item_size(leaf, item);

	buf = kmalloc(item_size, GFP_NOFS);
Y
Yan, Zheng 已提交
4409 4410 4411
	if (!buf)
		return -ENOMEM;

4412 4413 4414
	read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf,
			    path->slots[0]), item_size);

Y
Yan, Zheng 已提交
4415
	slot = path->slots[0] + 1;
4416 4417 4418 4419
	nritems = btrfs_header_nritems(leaf);
	if (slot != nritems) {
		/* shift the items */
		memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1),
Y
Yan, Zheng 已提交
4420 4421
				btrfs_item_nr_offset(slot),
				(nritems - slot) * sizeof(struct btrfs_item));
4422 4423 4424 4425 4426
	}

	btrfs_cpu_key_to_disk(&disk_key, new_key);
	btrfs_set_item_key(leaf, &disk_key, slot);

4427
	new_item = btrfs_item_nr(slot);
4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448

	btrfs_set_item_offset(leaf, new_item, orig_offset);
	btrfs_set_item_size(leaf, new_item, item_size - split_offset);

	btrfs_set_item_offset(leaf, item,
			      orig_offset + item_size - split_offset);
	btrfs_set_item_size(leaf, item, split_offset);

	btrfs_set_header_nritems(leaf, nritems + 1);

	/* write the data for the start of the original item */
	write_extent_buffer(leaf, buf,
			    btrfs_item_ptr_offset(leaf, path->slots[0]),
			    split_offset);

	/* write the data for the new item */
	write_extent_buffer(leaf, buf + split_offset,
			    btrfs_item_ptr_offset(leaf, slot),
			    item_size - split_offset);
	btrfs_mark_buffer_dirty(leaf);

4449
	BUG_ON(btrfs_leaf_free_space(leaf) < 0);
4450
	kfree(buf);
Y
Yan, Zheng 已提交
4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471
	return 0;
}

/*
 * This function splits a single item into two items,
 * giving 'new_key' to the new item and splitting the
 * old one at split_offset (from the start of the item).
 *
 * The path may be released by this operation.  After
 * the split, the path is pointing to the old item.  The
 * new item is going to be in the same node as the old one.
 *
 * Note, the item being split must be smaller enough to live alone on
 * a tree block with room for one extra struct btrfs_item
 *
 * This allows us to split the item in place, keeping a lock on the
 * leaf the entire time.
 */
int btrfs_split_item(struct btrfs_trans_handle *trans,
		     struct btrfs_root *root,
		     struct btrfs_path *path,
4472
		     const struct btrfs_key *new_key,
Y
Yan, Zheng 已提交
4473 4474 4475 4476 4477 4478 4479 4480
		     unsigned long split_offset)
{
	int ret;
	ret = setup_leaf_for_split(trans, root, path,
				   sizeof(struct btrfs_item));
	if (ret)
		return ret;

4481
	ret = split_item(path, new_key, split_offset);
4482 4483 4484
	return ret;
}

Y
Yan, Zheng 已提交
4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495
/*
 * This function duplicate a item, giving 'new_key' to the new item.
 * It guarantees both items live in the same tree leaf and the new item
 * is contiguous with the original item.
 *
 * This allows us to split file extent in place, keeping a lock on the
 * leaf the entire time.
 */
int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
			 struct btrfs_root *root,
			 struct btrfs_path *path,
4496
			 const struct btrfs_key *new_key)
Y
Yan, Zheng 已提交
4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509
{
	struct extent_buffer *leaf;
	int ret;
	u32 item_size;

	leaf = path->nodes[0];
	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
	ret = setup_leaf_for_split(trans, root, path,
				   item_size + sizeof(struct btrfs_item));
	if (ret)
		return ret;

	path->slots[0]++;
4510
	setup_items_for_insert(root, path, new_key, &item_size,
4511 4512
			       item_size, item_size +
			       sizeof(struct btrfs_item), 1);
Y
Yan, Zheng 已提交
4513 4514 4515 4516 4517 4518 4519 4520
	leaf = path->nodes[0];
	memcpy_extent_buffer(leaf,
			     btrfs_item_ptr_offset(leaf, path->slots[0]),
			     btrfs_item_ptr_offset(leaf, path->slots[0] - 1),
			     item_size);
	return 0;
}

C
Chris Mason 已提交
4521 4522 4523 4524 4525 4526
/*
 * make the item pointed to by the path smaller.  new_size indicates
 * how small to make it, and from_end tells us if we just chop bytes
 * off the end of the item or if we shift the item to chop bytes off
 * the front.
 */
4527
void btrfs_truncate_item(struct btrfs_path *path, u32 new_size, int from_end)
C
Chris Mason 已提交
4528 4529
{
	int slot;
4530 4531
	struct extent_buffer *leaf;
	struct btrfs_item *item;
C
Chris Mason 已提交
4532 4533 4534 4535 4536 4537
	u32 nritems;
	unsigned int data_end;
	unsigned int old_data_start;
	unsigned int old_size;
	unsigned int size_diff;
	int i;
4538 4539
	struct btrfs_map_token token;

4540
	leaf = path->nodes[0];
4541 4542 4543 4544
	slot = path->slots[0];

	old_size = btrfs_item_size_nr(leaf, slot);
	if (old_size == new_size)
4545
		return;
C
Chris Mason 已提交
4546

4547
	nritems = btrfs_header_nritems(leaf);
4548
	data_end = leaf_data_end(leaf);
C
Chris Mason 已提交
4549

4550
	old_data_start = btrfs_item_offset_nr(leaf, slot);
4551

C
Chris Mason 已提交
4552 4553 4554 4555 4556 4557 4558 4559 4560
	size_diff = old_size - new_size;

	BUG_ON(slot < 0);
	BUG_ON(slot >= nritems);

	/*
	 * item0..itemN ... dataN.offset..dataN.size .. data0.size
	 */
	/* first correct the data pointers */
4561
	btrfs_init_map_token(&token, leaf);
C
Chris Mason 已提交
4562
	for (i = slot; i < nritems; i++) {
4563
		u32 ioff;
4564
		item = btrfs_item_nr(i);
4565

4566 4567 4568
		ioff = btrfs_token_item_offset(leaf, item, &token);
		btrfs_set_token_item_offset(leaf, item,
					    ioff + size_diff, &token);
C
Chris Mason 已提交
4569
	}
4570

C
Chris Mason 已提交
4571
	/* shift the data */
4572
	if (from_end) {
4573 4574
		memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
			      data_end + size_diff, BTRFS_LEAF_DATA_OFFSET +
4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594
			      data_end, old_data_start + new_size - data_end);
	} else {
		struct btrfs_disk_key disk_key;
		u64 offset;

		btrfs_item_key(leaf, &disk_key, slot);

		if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) {
			unsigned long ptr;
			struct btrfs_file_extent_item *fi;

			fi = btrfs_item_ptr(leaf, slot,
					    struct btrfs_file_extent_item);
			fi = (struct btrfs_file_extent_item *)(
			     (unsigned long)fi - size_diff);

			if (btrfs_file_extent_type(leaf, fi) ==
			    BTRFS_FILE_EXTENT_INLINE) {
				ptr = btrfs_item_ptr_offset(leaf, slot);
				memmove_extent_buffer(leaf, ptr,
C
Chris Mason 已提交
4595
				      (unsigned long)fi,
4596
				      BTRFS_FILE_EXTENT_INLINE_DATA_START);
4597 4598 4599
			}
		}

4600 4601
		memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
			      data_end + size_diff, BTRFS_LEAF_DATA_OFFSET +
4602 4603 4604 4605 4606 4607
			      data_end, old_data_start - data_end);

		offset = btrfs_disk_key_offset(&disk_key);
		btrfs_set_disk_key_offset(&disk_key, offset + size_diff);
		btrfs_set_item_key(leaf, &disk_key, slot);
		if (slot == 0)
4608
			fixup_low_keys(path, &disk_key, 1);
4609
	}
4610

4611
	item = btrfs_item_nr(slot);
4612 4613
	btrfs_set_item_size(leaf, item, new_size);
	btrfs_mark_buffer_dirty(leaf);
C
Chris Mason 已提交
4614

4615
	if (btrfs_leaf_free_space(leaf) < 0) {
4616
		btrfs_print_leaf(leaf);
C
Chris Mason 已提交
4617
		BUG();
4618
	}
C
Chris Mason 已提交
4619 4620
}

C
Chris Mason 已提交
4621
/*
S
Stefan Behrens 已提交
4622
 * make the item pointed to by the path bigger, data_size is the added size.
C
Chris Mason 已提交
4623
 */
4624
void btrfs_extend_item(struct btrfs_path *path, u32 data_size)
4625 4626
{
	int slot;
4627 4628
	struct extent_buffer *leaf;
	struct btrfs_item *item;
4629 4630 4631 4632 4633
	u32 nritems;
	unsigned int data_end;
	unsigned int old_data;
	unsigned int old_size;
	int i;
4634 4635
	struct btrfs_map_token token;

4636
	leaf = path->nodes[0];
4637

4638
	nritems = btrfs_header_nritems(leaf);
4639
	data_end = leaf_data_end(leaf);
4640

4641
	if (btrfs_leaf_free_space(leaf) < data_size) {
4642
		btrfs_print_leaf(leaf);
4643
		BUG();
4644
	}
4645
	slot = path->slots[0];
4646
	old_data = btrfs_item_end_nr(leaf, slot);
4647 4648

	BUG_ON(slot < 0);
4649
	if (slot >= nritems) {
4650
		btrfs_print_leaf(leaf);
4651
		btrfs_crit(leaf->fs_info, "slot %d too large, nritems %d",
4652
			   slot, nritems);
4653
		BUG();
4654
	}
4655 4656 4657 4658 4659

	/*
	 * item0..itemN ... dataN.offset..dataN.size .. data0.size
	 */
	/* first correct the data pointers */
4660
	btrfs_init_map_token(&token, leaf);
4661
	for (i = slot; i < nritems; i++) {
4662
		u32 ioff;
4663
		item = btrfs_item_nr(i);
4664

4665 4666 4667
		ioff = btrfs_token_item_offset(leaf, item, &token);
		btrfs_set_token_item_offset(leaf, item,
					    ioff - data_size, &token);
4668
	}
4669

4670
	/* shift the data */
4671 4672
	memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
		      data_end - data_size, BTRFS_LEAF_DATA_OFFSET +
4673
		      data_end, old_data - data_end);
4674

4675
	data_end = old_data;
4676
	old_size = btrfs_item_size_nr(leaf, slot);
4677
	item = btrfs_item_nr(slot);
4678 4679
	btrfs_set_item_size(leaf, item, old_size + data_size);
	btrfs_mark_buffer_dirty(leaf);
4680

4681
	if (btrfs_leaf_free_space(leaf) < 0) {
4682
		btrfs_print_leaf(leaf);
4683
		BUG();
4684
	}
4685 4686
}

C
Chris Mason 已提交
4687
/*
4688 4689 4690
 * this is a helper for btrfs_insert_empty_items, the main goal here is
 * to save stack depth by doing the bulk of the work in a function
 * that doesn't call btrfs_search_slot
C
Chris Mason 已提交
4691
 */
4692
void setup_items_for_insert(struct btrfs_root *root, struct btrfs_path *path,
4693
			    const struct btrfs_key *cpu_key, u32 *data_size,
4694
			    u32 total_data, u32 total_size, int nr)
4695
{
4696
	struct btrfs_fs_info *fs_info = root->fs_info;
4697
	struct btrfs_item *item;
4698
	int i;
4699
	u32 nritems;
4700
	unsigned int data_end;
C
Chris Mason 已提交
4701
	struct btrfs_disk_key disk_key;
4702 4703
	struct extent_buffer *leaf;
	int slot;
4704 4705
	struct btrfs_map_token token;

4706 4707
	if (path->slots[0] == 0) {
		btrfs_cpu_key_to_disk(&disk_key, cpu_key);
4708
		fixup_low_keys(path, &disk_key, 1);
4709 4710 4711
	}
	btrfs_unlock_up_safe(path, 1);

4712
	leaf = path->nodes[0];
4713
	slot = path->slots[0];
C
Chris Mason 已提交
4714

4715
	nritems = btrfs_header_nritems(leaf);
4716
	data_end = leaf_data_end(leaf);
4717

4718
	if (btrfs_leaf_free_space(leaf) < total_size) {
4719
		btrfs_print_leaf(leaf);
4720
		btrfs_crit(fs_info, "not enough freespace need %u have %d",
4721
			   total_size, btrfs_leaf_free_space(leaf));
4722
		BUG();
4723
	}
4724

4725
	btrfs_init_map_token(&token, leaf);
4726
	if (slot != nritems) {
4727
		unsigned int old_data = btrfs_item_end_nr(leaf, slot);
4728

4729
		if (old_data < data_end) {
4730
			btrfs_print_leaf(leaf);
4731
			btrfs_crit(fs_info, "slot %d old_data %d data_end %d",
J
Jeff Mahoney 已提交
4732
				   slot, old_data, data_end);
4733
			BUG();
4734
		}
4735 4736 4737 4738
		/*
		 * item0..itemN ... dataN.offset..dataN.size .. data0.size
		 */
		/* first correct the data pointers */
C
Chris Mason 已提交
4739
		for (i = slot; i < nritems; i++) {
4740
			u32 ioff;
4741

4742
			item = btrfs_item_nr(i);
4743 4744 4745
			ioff = btrfs_token_item_offset(leaf, item, &token);
			btrfs_set_token_item_offset(leaf, item,
						    ioff - total_data, &token);
C
Chris Mason 已提交
4746
		}
4747
		/* shift the items */
4748
		memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
4749
			      btrfs_item_nr_offset(slot),
C
Chris Mason 已提交
4750
			      (nritems - slot) * sizeof(struct btrfs_item));
4751 4752

		/* shift the data */
4753 4754
		memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
			      data_end - total_data, BTRFS_LEAF_DATA_OFFSET +
C
Chris Mason 已提交
4755
			      data_end, old_data - data_end);
4756 4757
		data_end = old_data;
	}
4758

4759
	/* setup the item for the new data */
4760 4761 4762
	for (i = 0; i < nr; i++) {
		btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
		btrfs_set_item_key(leaf, &disk_key, slot + i);
4763
		item = btrfs_item_nr(slot + i);
4764 4765
		btrfs_set_token_item_offset(leaf, item,
					    data_end - data_size[i], &token);
4766
		data_end -= data_size[i];
4767
		btrfs_set_token_item_size(leaf, item, data_size[i], &token);
4768
	}
4769

4770
	btrfs_set_header_nritems(leaf, nritems + nr);
4771
	btrfs_mark_buffer_dirty(leaf);
C
Chris Mason 已提交
4772

4773
	if (btrfs_leaf_free_space(leaf) < 0) {
4774
		btrfs_print_leaf(leaf);
4775
		BUG();
4776
	}
4777 4778 4779 4780 4781 4782 4783 4784 4785
}

/*
 * Given a key and some data, insert items into the tree.
 * This does all the path init required, making room in the tree if needed.
 */
int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
			    struct btrfs_root *root,
			    struct btrfs_path *path,
4786
			    const struct btrfs_key *cpu_key, u32 *data_size,
4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802
			    int nr)
{
	int ret = 0;
	int slot;
	int i;
	u32 total_size = 0;
	u32 total_data = 0;

	for (i = 0; i < nr; i++)
		total_data += data_size[i];

	total_size = total_data + (nr * sizeof(struct btrfs_item));
	ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
	if (ret == 0)
		return -EEXIST;
	if (ret < 0)
4803
		return ret;
4804 4805 4806 4807

	slot = path->slots[0];
	BUG_ON(slot < 0);

4808
	setup_items_for_insert(root, path, cpu_key, data_size,
4809
			       total_data, total_size, nr);
4810
	return 0;
4811 4812 4813 4814 4815 4816
}

/*
 * Given a key and some data, insert an item into the tree.
 * This does all the path init required, making room in the tree if needed.
 */
4817 4818 4819
int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root *root,
		      const struct btrfs_key *cpu_key, void *data,
		      u32 data_size)
4820 4821
{
	int ret = 0;
C
Chris Mason 已提交
4822
	struct btrfs_path *path;
4823 4824
	struct extent_buffer *leaf;
	unsigned long ptr;
4825

C
Chris Mason 已提交
4826
	path = btrfs_alloc_path();
T
Tsutomu Itoh 已提交
4827 4828
	if (!path)
		return -ENOMEM;
C
Chris Mason 已提交
4829
	ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
4830
	if (!ret) {
4831 4832 4833 4834
		leaf = path->nodes[0];
		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
		write_extent_buffer(leaf, data, ptr, data_size);
		btrfs_mark_buffer_dirty(leaf);
4835
	}
C
Chris Mason 已提交
4836
	btrfs_free_path(path);
C
Chris Mason 已提交
4837
	return ret;
4838 4839
}

C
Chris Mason 已提交
4840
/*
C
Chris Mason 已提交
4841
 * delete the pointer from a given node.
C
Chris Mason 已提交
4842
 *
C
Chris Mason 已提交
4843 4844
 * the tree should have been previously balanced so the deletion does not
 * empty a node.
C
Chris Mason 已提交
4845
 */
4846 4847
static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
		    int level, int slot)
4848
{
4849
	struct extent_buffer *parent = path->nodes[level];
4850
	u32 nritems;
4851
	int ret;
4852

4853
	nritems = btrfs_header_nritems(parent);
C
Chris Mason 已提交
4854
	if (slot != nritems - 1) {
4855 4856
		if (level) {
			ret = tree_mod_log_insert_move(parent, slot, slot + 1,
4857
					nritems - slot - 1);
4858 4859
			BUG_ON(ret < 0);
		}
4860 4861 4862
		memmove_extent_buffer(parent,
			      btrfs_node_key_ptr_offset(slot),
			      btrfs_node_key_ptr_offset(slot + 1),
C
Chris Mason 已提交
4863 4864
			      sizeof(struct btrfs_key_ptr) *
			      (nritems - slot - 1));
4865
	} else if (level) {
4866 4867
		ret = tree_mod_log_insert_key(parent, slot, MOD_LOG_KEY_REMOVE,
				GFP_NOFS);
4868
		BUG_ON(ret < 0);
4869
	}
4870

4871
	nritems--;
4872
	btrfs_set_header_nritems(parent, nritems);
4873
	if (nritems == 0 && parent == root->node) {
4874
		BUG_ON(btrfs_header_level(root->node) != 1);
4875
		/* just turn the root into a leaf and break */
4876
		btrfs_set_header_level(root->node, 0);
4877
	} else if (slot == 0) {
4878 4879 4880
		struct btrfs_disk_key disk_key;

		btrfs_node_key(parent, &disk_key, 0);
4881
		fixup_low_keys(path, &disk_key, level + 1);
4882
	}
C
Chris Mason 已提交
4883
	btrfs_mark_buffer_dirty(parent);
4884 4885
}

4886 4887
/*
 * a helper function to delete the leaf pointed to by path->slots[1] and
4888
 * path->nodes[1].
4889 4890 4891 4892 4893 4894 4895
 *
 * This deletes the pointer in path->nodes[1] and frees the leaf
 * block extent.  zero is returned if it all worked out, < 0 otherwise.
 *
 * The path must have already been setup for deleting the leaf, including
 * all the proper balancing.  path->nodes[1] must be locked.
 */
4896 4897 4898 4899
static noinline void btrfs_del_leaf(struct btrfs_trans_handle *trans,
				    struct btrfs_root *root,
				    struct btrfs_path *path,
				    struct extent_buffer *leaf)
4900
{
4901
	WARN_ON(btrfs_header_generation(leaf) != trans->transid);
4902
	del_ptr(root, path, 1, path->slots[1]);
4903

4904 4905 4906 4907 4908 4909
	/*
	 * btrfs_free_extent is expensive, we want to make sure we
	 * aren't holding any locks when we call it
	 */
	btrfs_unlock_up_safe(path, 0);

4910 4911
	root_sub_used(root, leaf->len);

D
David Sterba 已提交
4912
	atomic_inc(&leaf->refs);
4913
	btrfs_free_tree_block(trans, root, leaf, 0, 1);
4914
	free_extent_buffer_stale(leaf);
4915
}
C
Chris Mason 已提交
4916 4917 4918 4919
/*
 * delete the item at the leaf level in path.  If that empties
 * the leaf, remove it from the tree
 */
4920 4921
int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
		    struct btrfs_path *path, int slot, int nr)
4922
{
4923
	struct btrfs_fs_info *fs_info = root->fs_info;
4924 4925
	struct extent_buffer *leaf;
	struct btrfs_item *item;
4926 4927
	u32 last_off;
	u32 dsize = 0;
C
Chris Mason 已提交
4928 4929
	int ret = 0;
	int wret;
4930
	int i;
4931
	u32 nritems;
4932

4933
	leaf = path->nodes[0];
4934 4935 4936 4937 4938
	last_off = btrfs_item_offset_nr(leaf, slot + nr - 1);

	for (i = 0; i < nr; i++)
		dsize += btrfs_item_size_nr(leaf, slot + i);

4939
	nritems = btrfs_header_nritems(leaf);
4940

4941
	if (slot + nr != nritems) {
4942
		int data_end = leaf_data_end(leaf);
4943
		struct btrfs_map_token token;
4944

4945
		memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
C
Chris Mason 已提交
4946
			      data_end + dsize,
4947
			      BTRFS_LEAF_DATA_OFFSET + data_end,
4948
			      last_off - data_end);
4949

4950
		btrfs_init_map_token(&token, leaf);
4951
		for (i = slot + nr; i < nritems; i++) {
4952
			u32 ioff;
4953

4954
			item = btrfs_item_nr(i);
4955 4956 4957
			ioff = btrfs_token_item_offset(leaf, item, &token);
			btrfs_set_token_item_offset(leaf, item,
						    ioff + dsize, &token);
C
Chris Mason 已提交
4958
		}
4959

4960
		memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot),
4961
			      btrfs_item_nr_offset(slot + nr),
C
Chris Mason 已提交
4962
			      sizeof(struct btrfs_item) *
4963
			      (nritems - slot - nr));
4964
	}
4965 4966
	btrfs_set_header_nritems(leaf, nritems - nr);
	nritems -= nr;
4967

C
Chris Mason 已提交
4968
	/* delete the leaf if we've emptied it */
4969
	if (nritems == 0) {
4970 4971
		if (leaf == root->node) {
			btrfs_set_header_level(leaf, 0);
4972
		} else {
4973
			btrfs_set_path_blocking(path);
4974
			btrfs_clean_tree_block(leaf);
4975
			btrfs_del_leaf(trans, root, path, leaf);
4976
		}
4977
	} else {
4978
		int used = leaf_space_used(leaf, 0, nritems);
C
Chris Mason 已提交
4979
		if (slot == 0) {
4980 4981 4982
			struct btrfs_disk_key disk_key;

			btrfs_item_key(leaf, &disk_key, 0);
4983
			fixup_low_keys(path, &disk_key, 1);
C
Chris Mason 已提交
4984 4985
		}

C
Chris Mason 已提交
4986
		/* delete the leaf if it is mostly empty */
4987
		if (used < BTRFS_LEAF_DATA_SIZE(fs_info) / 3) {
4988 4989 4990 4991
			/* push_leaf_left fixes the path.
			 * make sure the path still points to our leaf
			 * for possible call to del_ptr below
			 */
4992
			slot = path->slots[1];
D
David Sterba 已提交
4993
			atomic_inc(&leaf->refs);
4994

4995
			btrfs_set_path_blocking(path);
4996 4997
			wret = push_leaf_left(trans, root, path, 1, 1,
					      1, (u32)-1);
4998
			if (wret < 0 && wret != -ENOSPC)
C
Chris Mason 已提交
4999
				ret = wret;
5000 5001 5002

			if (path->nodes[0] == leaf &&
			    btrfs_header_nritems(leaf)) {
5003 5004
				wret = push_leaf_right(trans, root, path, 1,
						       1, 1, 0);
5005
				if (wret < 0 && wret != -ENOSPC)
C
Chris Mason 已提交
5006 5007
					ret = wret;
			}
5008 5009

			if (btrfs_header_nritems(leaf) == 0) {
5010
				path->slots[1] = slot;
5011
				btrfs_del_leaf(trans, root, path, leaf);
5012
				free_extent_buffer(leaf);
5013
				ret = 0;
C
Chris Mason 已提交
5014
			} else {
5015 5016 5017 5018 5019 5020 5021
				/* if we're still in the path, make sure
				 * we're dirty.  Otherwise, one of the
				 * push_leaf functions must have already
				 * dirtied this buffer
				 */
				if (path->nodes[0] == leaf)
					btrfs_mark_buffer_dirty(leaf);
5022
				free_extent_buffer(leaf);
5023
			}
5024
		} else {
5025
			btrfs_mark_buffer_dirty(leaf);
5026 5027
		}
	}
C
Chris Mason 已提交
5028
	return ret;
5029 5030
}

5031
/*
5032
 * search the tree again to find a leaf with lesser keys
5033 5034
 * returns 0 if it found something or 1 if there are no lesser leaves.
 * returns < 0 on io errors.
C
Chris Mason 已提交
5035 5036 5037
 *
 * This may release the path, and so you may lose any locks held at the
 * time you call it.
5038
 */
5039
int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path)
5040
{
5041 5042 5043
	struct btrfs_key key;
	struct btrfs_disk_key found_key;
	int ret;
5044

5045
	btrfs_item_key_to_cpu(path->nodes[0], &key, 0);
5046

5047
	if (key.offset > 0) {
5048
		key.offset--;
5049
	} else if (key.type > 0) {
5050
		key.type--;
5051 5052
		key.offset = (u64)-1;
	} else if (key.objectid > 0) {
5053
		key.objectid--;
5054 5055 5056
		key.type = (u8)-1;
		key.offset = (u64)-1;
	} else {
5057
		return 1;
5058
	}
5059

5060
	btrfs_release_path(path);
5061 5062 5063 5064 5065
	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
	if (ret < 0)
		return ret;
	btrfs_item_key(path->nodes[0], &found_key, 0);
	ret = comp_keys(&found_key, &key);
5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076
	/*
	 * We might have had an item with the previous key in the tree right
	 * before we released our path. And after we released our path, that
	 * item might have been pushed to the first slot (0) of the leaf we
	 * were holding due to a tree balance. Alternatively, an item with the
	 * previous key can exist as the only element of a leaf (big fat item).
	 * Therefore account for these 2 cases, so that our callers (like
	 * btrfs_previous_item) don't miss an existing item with a key matching
	 * the previous key we computed above.
	 */
	if (ret <= 0)
5077 5078
		return 0;
	return 1;
5079 5080
}

5081 5082
/*
 * A helper function to walk down the tree starting at min_key, and looking
5083 5084
 * for nodes or leaves that are have a minimum transaction id.
 * This is used by the btree defrag code, and tree logging
5085 5086 5087 5088 5089 5090 5091 5092
 *
 * This does not cow, but it does stuff the starting key it finds back
 * into min_key, so you can call btrfs_search_slot with cow=1 on the
 * key and get a writable path.
 *
 * This honors path->lowest_level to prevent descent past a given level
 * of the tree.
 *
C
Chris Mason 已提交
5093 5094 5095 5096
 * min_trans indicates the oldest transaction that you are interested
 * in walking through.  Any nodes or leaves older than min_trans are
 * skipped over (without reading them).
 *
5097 5098 5099 5100
 * returns zero if something useful was found, < 0 on error and 1 if there
 * was nothing in the tree that matched the search criteria.
 */
int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
5101
			 struct btrfs_path *path,
5102 5103 5104 5105 5106
			 u64 min_trans)
{
	struct extent_buffer *cur;
	struct btrfs_key found_key;
	int slot;
5107
	int sret;
5108 5109 5110
	u32 nritems;
	int level;
	int ret = 1;
5111
	int keep_locks = path->keep_locks;
5112

5113
	path->keep_locks = 1;
5114
again:
5115
	cur = btrfs_read_lock_root_node(root);
5116
	level = btrfs_header_level(cur);
5117
	WARN_ON(path->nodes[level]);
5118
	path->nodes[level] = cur;
5119
	path->locks[level] = BTRFS_READ_LOCK;
5120 5121 5122 5123 5124

	if (btrfs_header_generation(cur) < min_trans) {
		ret = 1;
		goto out;
	}
C
Chris Mason 已提交
5125
	while (1) {
5126 5127
		nritems = btrfs_header_nritems(cur);
		level = btrfs_header_level(cur);
5128
		sret = btrfs_bin_search(cur, min_key, level, &slot);
5129 5130 5131 5132
		if (sret < 0) {
			ret = sret;
			goto out;
		}
5133

5134 5135
		/* at the lowest level, we're done, setup the path and exit */
		if (level == path->lowest_level) {
5136 5137
			if (slot >= nritems)
				goto find_next_key;
5138 5139 5140 5141 5142
			ret = 0;
			path->slots[level] = slot;
			btrfs_item_key_to_cpu(cur, &found_key, slot);
			goto out;
		}
5143 5144
		if (sret && slot > 0)
			slot--;
5145
		/*
5146 5147
		 * check this node pointer against the min_trans parameters.
		 * If it is too old, old, skip to the next one.
5148
		 */
C
Chris Mason 已提交
5149
		while (slot < nritems) {
5150
			u64 gen;
5151

5152 5153 5154 5155 5156
			gen = btrfs_node_ptr_generation(cur, slot);
			if (gen < min_trans) {
				slot++;
				continue;
			}
5157
			break;
5158
		}
5159
find_next_key:
5160 5161 5162 5163 5164
		/*
		 * we didn't find a candidate key in this node, walk forward
		 * and find another one
		 */
		if (slot >= nritems) {
5165
			path->slots[level] = slot;
5166
			btrfs_set_path_blocking(path);
5167
			sret = btrfs_find_next_key(root, path, min_key, level,
5168
						  min_trans);
5169
			if (sret == 0) {
5170
				btrfs_release_path(path);
5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182
				goto again;
			} else {
				goto out;
			}
		}
		/* save our key for returning back */
		btrfs_node_key_to_cpu(cur, &found_key, slot);
		path->slots[level] = slot;
		if (level == path->lowest_level) {
			ret = 0;
			goto out;
		}
5183
		btrfs_set_path_blocking(path);
5184
		cur = btrfs_read_node_slot(cur, slot);
5185 5186 5187 5188
		if (IS_ERR(cur)) {
			ret = PTR_ERR(cur);
			goto out;
		}
5189

5190
		btrfs_tree_read_lock(cur);
5191

5192
		path->locks[level - 1] = BTRFS_READ_LOCK;
5193
		path->nodes[level - 1] = cur;
5194
		unlock_up(path, level, 1, 0, NULL);
5195 5196
	}
out:
5197 5198 5199 5200
	path->keep_locks = keep_locks;
	if (ret == 0) {
		btrfs_unlock_up_safe(path, path->lowest_level + 1);
		btrfs_set_path_blocking(path);
5201
		memcpy(min_key, &found_key, sizeof(found_key));
5202
	}
5203 5204 5205 5206 5207 5208
	return ret;
}

/*
 * this is similar to btrfs_next_leaf, but does not try to preserve
 * and fixup the path.  It looks for and returns the next key in the
5209
 * tree based on the current path and the min_trans parameters.
5210 5211 5212 5213 5214 5215 5216
 *
 * 0 is returned if another key is found, < 0 if there are any errors
 * and 1 is returned if there are no higher keys in the tree
 *
 * path->keep_locks should be set to 1 on the search made before
 * calling this function.
 */
5217
int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
5218
			struct btrfs_key *key, int level, u64 min_trans)
5219 5220 5221 5222
{
	int slot;
	struct extent_buffer *c;

5223
	WARN_ON(!path->keep_locks && !path->skip_locking);
C
Chris Mason 已提交
5224
	while (level < BTRFS_MAX_LEVEL) {
5225 5226 5227 5228 5229
		if (!path->nodes[level])
			return 1;

		slot = path->slots[level] + 1;
		c = path->nodes[level];
5230
next:
5231
		if (slot >= btrfs_header_nritems(c)) {
5232 5233 5234 5235 5236
			int ret;
			int orig_lowest;
			struct btrfs_key cur_key;
			if (level + 1 >= BTRFS_MAX_LEVEL ||
			    !path->nodes[level + 1])
5237
				return 1;
5238

5239
			if (path->locks[level + 1] || path->skip_locking) {
5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250
				level++;
				continue;
			}

			slot = btrfs_header_nritems(c) - 1;
			if (level == 0)
				btrfs_item_key_to_cpu(c, &cur_key, slot);
			else
				btrfs_node_key_to_cpu(c, &cur_key, slot);

			orig_lowest = path->lowest_level;
5251
			btrfs_release_path(path);
5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263
			path->lowest_level = level;
			ret = btrfs_search_slot(NULL, root, &cur_key, path,
						0, 0);
			path->lowest_level = orig_lowest;
			if (ret < 0)
				return ret;

			c = path->nodes[level];
			slot = path->slots[level];
			if (ret == 0)
				slot++;
			goto next;
5264
		}
5265

5266 5267
		if (level == 0)
			btrfs_item_key_to_cpu(c, key, slot);
5268 5269 5270 5271 5272 5273 5274
		else {
			u64 gen = btrfs_node_ptr_generation(c, slot);

			if (gen < min_trans) {
				slot++;
				goto next;
			}
5275
			btrfs_node_key_to_cpu(c, key, slot);
5276
		}
5277 5278 5279 5280 5281
		return 0;
	}
	return 1;
}

C
Chris Mason 已提交
5282
/*
5283
 * search the tree again to find a leaf with greater keys
C
Chris Mason 已提交
5284 5285
 * returns 0 if it found something or 1 if there are no greater leaves.
 * returns < 0 on io errors.
C
Chris Mason 已提交
5286
 */
C
Chris Mason 已提交
5287
int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path)
J
Jan Schmidt 已提交
5288 5289 5290 5291 5292 5293
{
	return btrfs_next_old_leaf(root, path, 0);
}

int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path,
			u64 time_seq)
5294 5295
{
	int slot;
5296
	int level;
5297
	struct extent_buffer *c;
5298
	struct extent_buffer *next;
5299 5300 5301
	struct btrfs_key key;
	u32 nritems;
	int ret;
5302
	int old_spinning = path->leave_spinning;
5303
	int next_rw_lock = 0;
5304 5305

	nritems = btrfs_header_nritems(path->nodes[0]);
C
Chris Mason 已提交
5306
	if (nritems == 0)
5307 5308
		return 1;

5309 5310 5311 5312
	btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1);
again:
	level = 1;
	next = NULL;
5313
	next_rw_lock = 0;
5314
	btrfs_release_path(path);
5315

5316
	path->keep_locks = 1;
5317
	path->leave_spinning = 1;
5318

J
Jan Schmidt 已提交
5319 5320 5321 5322
	if (time_seq)
		ret = btrfs_search_old_slot(root, &key, path, time_seq);
	else
		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5323 5324 5325 5326 5327
	path->keep_locks = 0;

	if (ret < 0)
		return ret;

5328
	nritems = btrfs_header_nritems(path->nodes[0]);
5329 5330 5331 5332 5333 5334
	/*
	 * by releasing the path above we dropped all our locks.  A balance
	 * could have added more items next to the key that used to be
	 * at the very end of the block.  So, check again here and
	 * advance the path if there are now more items available.
	 */
5335
	if (nritems > 0 && path->slots[0] < nritems - 1) {
5336 5337
		if (ret == 0)
			path->slots[0]++;
5338
		ret = 0;
5339 5340
		goto done;
	}
5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358
	/*
	 * So the above check misses one case:
	 * - after releasing the path above, someone has removed the item that
	 *   used to be at the very end of the block, and balance between leafs
	 *   gets another one with bigger key.offset to replace it.
	 *
	 * This one should be returned as well, or we can get leaf corruption
	 * later(esp. in __btrfs_drop_extents()).
	 *
	 * And a bit more explanation about this check,
	 * with ret > 0, the key isn't found, the path points to the slot
	 * where it should be inserted, so the path->slots[0] item must be the
	 * bigger one.
	 */
	if (nritems > 0 && ret > 0 && path->slots[0] == nritems - 1) {
		ret = 0;
		goto done;
	}
5359

C
Chris Mason 已提交
5360
	while (level < BTRFS_MAX_LEVEL) {
5361 5362 5363 5364
		if (!path->nodes[level]) {
			ret = 1;
			goto done;
		}
5365

5366 5367
		slot = path->slots[level] + 1;
		c = path->nodes[level];
5368
		if (slot >= btrfs_header_nritems(c)) {
5369
			level++;
5370 5371 5372 5373
			if (level == BTRFS_MAX_LEVEL) {
				ret = 1;
				goto done;
			}
5374 5375
			continue;
		}
5376

5377
		if (next) {
5378
			btrfs_tree_unlock_rw(next, next_rw_lock);
5379
			free_extent_buffer(next);
5380
		}
5381

5382
		next = c;
5383
		next_rw_lock = path->locks[level];
5384
		ret = read_block_for_search(root, path, &next, level,
5385
					    slot, &key);
5386 5387
		if (ret == -EAGAIN)
			goto again;
5388

5389
		if (ret < 0) {
5390
			btrfs_release_path(path);
5391 5392 5393
			goto done;
		}

5394
		if (!path->skip_locking) {
5395
			ret = btrfs_try_tree_read_lock(next);
5396 5397 5398 5399 5400 5401 5402 5403
			if (!ret && time_seq) {
				/*
				 * If we don't get the lock, we may be racing
				 * with push_leaf_left, holding that lock while
				 * itself waiting for the leaf we've currently
				 * locked. To solve this situation, we give up
				 * on our lock and cycle.
				 */
5404
				free_extent_buffer(next);
5405 5406 5407 5408
				btrfs_release_path(path);
				cond_resched();
				goto again;
			}
5409 5410
			if (!ret) {
				btrfs_set_path_blocking(path);
5411
				btrfs_tree_read_lock(next);
5412
			}
5413
			next_rw_lock = BTRFS_READ_LOCK;
5414
		}
5415 5416 5417
		break;
	}
	path->slots[level] = slot;
C
Chris Mason 已提交
5418
	while (1) {
5419 5420
		level--;
		c = path->nodes[level];
5421
		if (path->locks[level])
5422
			btrfs_tree_unlock_rw(c, path->locks[level]);
5423

5424
		free_extent_buffer(c);
5425 5426
		path->nodes[level] = next;
		path->slots[level] = 0;
5427
		if (!path->skip_locking)
5428
			path->locks[level] = next_rw_lock;
5429 5430
		if (!level)
			break;
5431

5432
		ret = read_block_for_search(root, path, &next, level,
5433
					    0, &key);
5434 5435 5436
		if (ret == -EAGAIN)
			goto again;

5437
		if (ret < 0) {
5438
			btrfs_release_path(path);
5439 5440 5441
			goto done;
		}

5442
		if (!path->skip_locking) {
5443
			ret = btrfs_try_tree_read_lock(next);
5444 5445
			if (!ret) {
				btrfs_set_path_blocking(path);
5446 5447
				btrfs_tree_read_lock(next);
			}
5448
			next_rw_lock = BTRFS_READ_LOCK;
5449
		}
5450
	}
5451
	ret = 0;
5452
done:
5453
	unlock_up(path, 0, 1, 0, NULL);
5454 5455 5456 5457 5458
	path->leave_spinning = old_spinning;
	if (!old_spinning)
		btrfs_set_path_blocking(path);

	return ret;
5459
}
5460

5461 5462 5463 5464 5465 5466
/*
 * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps
 * searching until it gets past min_objectid or finds an item of 'type'
 *
 * returns 0 if something is found, 1 if nothing was found and < 0 on error
 */
5467 5468 5469 5470 5471 5472
int btrfs_previous_item(struct btrfs_root *root,
			struct btrfs_path *path, u64 min_objectid,
			int type)
{
	struct btrfs_key found_key;
	struct extent_buffer *leaf;
5473
	u32 nritems;
5474 5475
	int ret;

C
Chris Mason 已提交
5476
	while (1) {
5477
		if (path->slots[0] == 0) {
5478
			btrfs_set_path_blocking(path);
5479 5480 5481 5482 5483 5484 5485
			ret = btrfs_prev_leaf(root, path);
			if (ret != 0)
				return ret;
		} else {
			path->slots[0]--;
		}
		leaf = path->nodes[0];
5486 5487 5488 5489 5490 5491
		nritems = btrfs_header_nritems(leaf);
		if (nritems == 0)
			return 1;
		if (path->slots[0] == nritems)
			path->slots[0]--;

5492
		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5493 5494
		if (found_key.objectid < min_objectid)
			break;
5495 5496
		if (found_key.type == type)
			return 0;
5497 5498 5499
		if (found_key.objectid == min_objectid &&
		    found_key.type < type)
			break;
5500 5501 5502
	}
	return 1;
}
5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545

/*
 * search in extent tree to find a previous Metadata/Data extent item with
 * min objecitd.
 *
 * returns 0 if something is found, 1 if nothing was found and < 0 on error
 */
int btrfs_previous_extent_item(struct btrfs_root *root,
			struct btrfs_path *path, u64 min_objectid)
{
	struct btrfs_key found_key;
	struct extent_buffer *leaf;
	u32 nritems;
	int ret;

	while (1) {
		if (path->slots[0] == 0) {
			btrfs_set_path_blocking(path);
			ret = btrfs_prev_leaf(root, path);
			if (ret != 0)
				return ret;
		} else {
			path->slots[0]--;
		}
		leaf = path->nodes[0];
		nritems = btrfs_header_nritems(leaf);
		if (nritems == 0)
			return 1;
		if (path->slots[0] == nritems)
			path->slots[0]--;

		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
		if (found_key.objectid < min_objectid)
			break;
		if (found_key.type == BTRFS_EXTENT_ITEM_KEY ||
		    found_key.type == BTRFS_METADATA_ITEM_KEY)
			return 0;
		if (found_key.objectid == min_objectid &&
		    found_key.type < BTRFS_EXTENT_ITEM_KEY)
			break;
	}
	return 1;
}