ctree.c 140.2 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
C
Chris Mason 已提交
2
/*
C
Chris Mason 已提交
3
 * Copyright (C) 2007,2008 Oracle.  All rights reserved.
C
Chris Mason 已提交
4 5
 */

6
#include <linux/sched.h>
7
#include <linux/slab.h>
8
#include <linux/rbtree.h>
9
#include <linux/mm.h>
10 11
#include "ctree.h"
#include "disk-io.h"
12
#include "transaction.h"
13
#include "print-tree.h"
14
#include "locking.h"
15
#include "volumes.h"
16
#include "qgroup.h"
17

18 19
static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
		      *root, struct btrfs_path *path, int level);
20 21 22
static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root *root,
		      const struct btrfs_key *ins_key, struct btrfs_path *path,
		      int data_size, int extend);
23
static int push_node_left(struct btrfs_trans_handle *trans,
24
			  struct extent_buffer *dst,
25
			  struct extent_buffer *src, int empty);
26 27 28
static int balance_node_right(struct btrfs_trans_handle *trans,
			      struct extent_buffer *dst_buf,
			      struct extent_buffer *src_buf);
29 30
static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
		    int level, int slot);
31

32 33
static const struct btrfs_csums {
	u16		size;
34 35
	const char	name[10];
	const char	driver[12];
36 37
} btrfs_csums[] = {
	[BTRFS_CSUM_TYPE_CRC32] = { .size = 4, .name = "crc32c" },
38
	[BTRFS_CSUM_TYPE_XXHASH] = { .size = 8, .name = "xxhash64" },
39
	[BTRFS_CSUM_TYPE_SHA256] = { .size = 32, .name = "sha256" },
40 41
	[BTRFS_CSUM_TYPE_BLAKE2] = { .size = 32, .name = "blake2b",
				     .driver = "blake2b-256" },
42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58
};

int btrfs_super_csum_size(const struct btrfs_super_block *s)
{
	u16 t = btrfs_super_csum_type(s);
	/*
	 * csum type is validated at mount time
	 */
	return btrfs_csums[t].size;
}

const char *btrfs_super_csum_name(u16 csum_type)
{
	/* csum type is validated at mount time */
	return btrfs_csums[csum_type].name;
}

59 60 61 62 63 64 65
/*
 * Return driver name if defined, otherwise the name that's also a valid driver
 * name
 */
const char *btrfs_super_csum_driver(u16 csum_type)
{
	/* csum type is validated at mount time */
66 67
	return btrfs_csums[csum_type].driver[0] ?
		btrfs_csums[csum_type].driver :
68 69 70
		btrfs_csums[csum_type].name;
}

71 72 73 74 75
size_t __const btrfs_get_num_csums(void)
{
	return ARRAY_SIZE(btrfs_csums);
}

C
Chris Mason 已提交
76
struct btrfs_path *btrfs_alloc_path(void)
C
Chris Mason 已提交
77
{
78
	return kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS);
C
Chris Mason 已提交
79 80
}

C
Chris Mason 已提交
81
/* this also releases the path */
C
Chris Mason 已提交
82
void btrfs_free_path(struct btrfs_path *p)
83
{
84 85
	if (!p)
		return;
86
	btrfs_release_path(p);
C
Chris Mason 已提交
87
	kmem_cache_free(btrfs_path_cachep, p);
88 89
}

C
Chris Mason 已提交
90 91 92 93 94 95
/*
 * path release drops references on the extent buffers in the path
 * and it drops any locks held by this path
 *
 * It is safe to call this on paths that no locks or extent buffers held.
 */
96
noinline void btrfs_release_path(struct btrfs_path *p)
97 98
{
	int i;
99

C
Chris Mason 已提交
100
	for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
101
		p->slots[i] = 0;
102
		if (!p->nodes[i])
103 104
			continue;
		if (p->locks[i]) {
105
			btrfs_tree_unlock_rw(p->nodes[i], p->locks[i]);
106 107
			p->locks[i] = 0;
		}
108
		free_extent_buffer(p->nodes[i]);
109
		p->nodes[i] = NULL;
110 111 112
	}
}

C
Chris Mason 已提交
113 114 115 116 117 118 119 120 121 122
/*
 * safely gets a reference on the root node of a tree.  A lock
 * is not taken, so a concurrent writer may put a different node
 * at the root of the tree.  See btrfs_lock_root_node for the
 * looping required.
 *
 * The extent buffer returned by this has a reference taken, so
 * it won't disappear.  It may stop being the root of the tree
 * at any time because there are no locks held.
 */
123 124 125
struct extent_buffer *btrfs_root_node(struct btrfs_root *root)
{
	struct extent_buffer *eb;
126

127 128 129 130 131 132
	while (1) {
		rcu_read_lock();
		eb = rcu_dereference(root->node);

		/*
		 * RCU really hurts here, we could free up the root node because
133
		 * it was COWed but we may not get the new root node yet so do
134 135 136 137 138 139 140 141 142 143
		 * the inc_not_zero dance and if it doesn't work then
		 * synchronize_rcu and try again.
		 */
		if (atomic_inc_not_zero(&eb->refs)) {
			rcu_read_unlock();
			break;
		}
		rcu_read_unlock();
		synchronize_rcu();
	}
144 145 146
	return eb;
}

147 148 149 150
/*
 * Cowonly root (not-shareable trees, everything not subvolume or reloc roots),
 * just get put onto a simple dirty list.  Transaction walks this list to make
 * sure they get properly updated on disk.
C
Chris Mason 已提交
151
 */
152 153
static void add_root_to_dirty_list(struct btrfs_root *root)
{
154 155
	struct btrfs_fs_info *fs_info = root->fs_info;

156 157 158 159
	if (test_bit(BTRFS_ROOT_DIRTY, &root->state) ||
	    !test_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state))
		return;

160
	spin_lock(&fs_info->trans_lock);
161 162
	if (!test_and_set_bit(BTRFS_ROOT_DIRTY, &root->state)) {
		/* Want the extent tree to be the last on the list */
163
		if (root->root_key.objectid == BTRFS_EXTENT_TREE_OBJECTID)
164
			list_move_tail(&root->dirty_list,
165
				       &fs_info->dirty_cowonly_roots);
166 167
		else
			list_move(&root->dirty_list,
168
				  &fs_info->dirty_cowonly_roots);
169
	}
170
	spin_unlock(&fs_info->trans_lock);
171 172
}

C
Chris Mason 已提交
173 174 175 176 177
/*
 * used by snapshot creation to make a copy of a root for a tree with
 * a given objectid.  The buffer with the new root node is returned in
 * cow_ret, and this func returns zero on success or a negative error code.
 */
178 179 180 181 182
int btrfs_copy_root(struct btrfs_trans_handle *trans,
		      struct btrfs_root *root,
		      struct extent_buffer *buf,
		      struct extent_buffer **cow_ret, u64 new_root_objectid)
{
183
	struct btrfs_fs_info *fs_info = root->fs_info;
184 185 186
	struct extent_buffer *cow;
	int ret = 0;
	int level;
187
	struct btrfs_disk_key disk_key;
188

189
	WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
190
		trans->transid != fs_info->running_transaction->transid);
191
	WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
192
		trans->transid != root->last_trans);
193 194

	level = btrfs_header_level(buf);
195 196 197 198
	if (level == 0)
		btrfs_item_key(buf, &disk_key, 0);
	else
		btrfs_node_key(buf, &disk_key, 0);
Z
Zheng Yan 已提交
199

200 201
	cow = btrfs_alloc_tree_block(trans, root, 0, new_root_objectid,
			&disk_key, level, buf->start, 0);
202
	if (IS_ERR(cow))
203 204
		return PTR_ERR(cow);

205
	copy_extent_buffer_full(cow, buf);
206 207
	btrfs_set_header_bytenr(cow, cow->start);
	btrfs_set_header_generation(cow, trans->transid);
208 209 210 211 212 213 214
	btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
	btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
				     BTRFS_HEADER_FLAG_RELOC);
	if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
		btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
	else
		btrfs_set_header_owner(cow, new_root_objectid);
215

216
	write_extent_buffer_fsid(cow, fs_info->fs_devices->metadata_uuid);
Y
Yan Zheng 已提交
217

218
	WARN_ON(btrfs_header_generation(buf) > trans->transid);
219
	if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
220
		ret = btrfs_inc_ref(trans, root, cow, 1);
221
	else
222
		ret = btrfs_inc_ref(trans, root, cow, 0);
223

224 225 226 227 228 229 230 231
	if (ret)
		return ret;

	btrfs_mark_buffer_dirty(cow);
	*cow_ret = cow;
	return 0;
}

232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248
enum mod_log_op {
	MOD_LOG_KEY_REPLACE,
	MOD_LOG_KEY_ADD,
	MOD_LOG_KEY_REMOVE,
	MOD_LOG_KEY_REMOVE_WHILE_FREEING,
	MOD_LOG_KEY_REMOVE_WHILE_MOVING,
	MOD_LOG_MOVE_KEYS,
	MOD_LOG_ROOT_REPLACE,
};

struct tree_mod_root {
	u64 logical;
	u8 level;
};

struct tree_mod_elem {
	struct rb_node node;
249
	u64 logical;
250
	u64 seq;
251 252 253 254 255 256 257 258 259 260 261 262 263
	enum mod_log_op op;

	/* this is used for MOD_LOG_KEY_* and MOD_LOG_MOVE_KEYS operations */
	int slot;

	/* this is used for MOD_LOG_KEY* and MOD_LOG_ROOT_REPLACE */
	u64 generation;

	/* those are used for op == MOD_LOG_KEY_{REPLACE,REMOVE} */
	struct btrfs_disk_key key;
	u64 blockptr;

	/* this is used for op == MOD_LOG_MOVE_KEYS */
264 265 266 267
	struct {
		int dst_slot;
		int nr_items;
	} move;
268 269 270 271 272

	/* this is used for op == MOD_LOG_ROOT_REPLACE */
	struct tree_mod_root old_root;
};

273
/*
J
Josef Bacik 已提交
274
 * Pull a new tree mod seq number for our operation.
275
 */
J
Josef Bacik 已提交
276
static inline u64 btrfs_inc_tree_mod_seq(struct btrfs_fs_info *fs_info)
277 278 279 280
{
	return atomic64_inc_return(&fs_info->tree_mod_seq);
}

281 282 283 284 285 286 287 288 289 290
/*
 * This adds a new blocker to the tree mod log's blocker list if the @elem
 * passed does not already have a sequence number set. So when a caller expects
 * to record tree modifications, it should ensure to set elem->seq to zero
 * before calling btrfs_get_tree_mod_seq.
 * Returns a fresh, unused tree log modification sequence number, even if no new
 * blocker was added.
 */
u64 btrfs_get_tree_mod_seq(struct btrfs_fs_info *fs_info,
			   struct seq_list *elem)
291
{
292
	write_lock(&fs_info->tree_mod_log_lock);
293
	if (!elem->seq) {
J
Josef Bacik 已提交
294
		elem->seq = btrfs_inc_tree_mod_seq(fs_info);
295 296
		list_add_tail(&elem->list, &fs_info->tree_mod_seq_list);
	}
297
	write_unlock(&fs_info->tree_mod_log_lock);
298

J
Josef Bacik 已提交
299
	return elem->seq;
300 301 302 303 304 305 306 307 308 309 310 311 312 313 314
}

void btrfs_put_tree_mod_seq(struct btrfs_fs_info *fs_info,
			    struct seq_list *elem)
{
	struct rb_root *tm_root;
	struct rb_node *node;
	struct rb_node *next;
	struct tree_mod_elem *tm;
	u64 min_seq = (u64)-1;
	u64 seq_putting = elem->seq;

	if (!seq_putting)
		return;

315
	write_lock(&fs_info->tree_mod_log_lock);
316
	list_del(&elem->list);
317
	elem->seq = 0;
318

319 320 321 322 323 324 325 326 327 328 329 330
	if (!list_empty(&fs_info->tree_mod_seq_list)) {
		struct seq_list *first;

		first = list_first_entry(&fs_info->tree_mod_seq_list,
					 struct seq_list, list);
		if (seq_putting > first->seq) {
			/*
			 * Blocker with lower sequence number exists, we
			 * cannot remove anything from the log.
			 */
			write_unlock(&fs_info->tree_mod_log_lock);
			return;
331
		}
332
		min_seq = first->seq;
333
	}
334

335 336 337 338 339 340 341
	/*
	 * anything that's lower than the lowest existing (read: blocked)
	 * sequence number can be removed from the tree.
	 */
	tm_root = &fs_info->tree_mod_log;
	for (node = rb_first(tm_root); node; node = next) {
		next = rb_next(node);
342
		tm = rb_entry(node, struct tree_mod_elem, node);
343
		if (tm->seq >= min_seq)
344 345 346 347
			continue;
		rb_erase(node, tm_root);
		kfree(tm);
	}
348
	write_unlock(&fs_info->tree_mod_log_lock);
349 350 351 352
}

/*
 * key order of the log:
353
 *       node/leaf start address -> sequence
354
 *
355 356 357
 * The 'start address' is the logical address of the *new* root node
 * for root replace operations, or the logical address of the affected
 * block for all other operations.
358 359 360 361 362 363 364 365
 */
static noinline int
__tree_mod_log_insert(struct btrfs_fs_info *fs_info, struct tree_mod_elem *tm)
{
	struct rb_root *tm_root;
	struct rb_node **new;
	struct rb_node *parent = NULL;
	struct tree_mod_elem *cur;
366

367 368
	lockdep_assert_held_write(&fs_info->tree_mod_log_lock);

J
Josef Bacik 已提交
369
	tm->seq = btrfs_inc_tree_mod_seq(fs_info);
370 371 372 373

	tm_root = &fs_info->tree_mod_log;
	new = &tm_root->rb_node;
	while (*new) {
374
		cur = rb_entry(*new, struct tree_mod_elem, node);
375
		parent = *new;
376
		if (cur->logical < tm->logical)
377
			new = &((*new)->rb_left);
378
		else if (cur->logical > tm->logical)
379
			new = &((*new)->rb_right);
380
		else if (cur->seq < tm->seq)
381
			new = &((*new)->rb_left);
382
		else if (cur->seq > tm->seq)
383
			new = &((*new)->rb_right);
384 385
		else
			return -EEXIST;
386 387 388 389
	}

	rb_link_node(&tm->node, parent, new);
	rb_insert_color(&tm->node, tm_root);
390
	return 0;
391 392
}

393 394 395 396
/*
 * Determines if logging can be omitted. Returns 1 if it can. Otherwise, it
 * returns zero with the tree_mod_log_lock acquired. The caller must hold
 * this until all tree mod log insertions are recorded in the rb tree and then
397
 * write unlock fs_info::tree_mod_log_lock.
398
 */
399 400 401 402 403
static inline int tree_mod_dont_log(struct btrfs_fs_info *fs_info,
				    struct extent_buffer *eb) {
	smp_mb();
	if (list_empty(&(fs_info)->tree_mod_seq_list))
		return 1;
404 405
	if (eb && btrfs_header_level(eb) == 0)
		return 1;
406

407
	write_lock(&fs_info->tree_mod_log_lock);
408
	if (list_empty(&(fs_info)->tree_mod_seq_list)) {
409
		write_unlock(&fs_info->tree_mod_log_lock);
410 411 412
		return 1;
	}

413 414 415
	return 0;
}

416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431
/* Similar to tree_mod_dont_log, but doesn't acquire any locks. */
static inline int tree_mod_need_log(const struct btrfs_fs_info *fs_info,
				    struct extent_buffer *eb)
{
	smp_mb();
	if (list_empty(&(fs_info)->tree_mod_seq_list))
		return 0;
	if (eb && btrfs_header_level(eb) == 0)
		return 0;

	return 1;
}

static struct tree_mod_elem *
alloc_tree_mod_elem(struct extent_buffer *eb, int slot,
		    enum mod_log_op op, gfp_t flags)
432
{
433
	struct tree_mod_elem *tm;
434

435 436
	tm = kzalloc(sizeof(*tm), flags);
	if (!tm)
437
		return NULL;
438

439
	tm->logical = eb->start;
440 441 442 443 444 445 446
	if (op != MOD_LOG_KEY_ADD) {
		btrfs_node_key(eb, &tm->key, slot);
		tm->blockptr = btrfs_node_blockptr(eb, slot);
	}
	tm->op = op;
	tm->slot = slot;
	tm->generation = btrfs_node_ptr_generation(eb, slot);
447
	RB_CLEAR_NODE(&tm->node);
448

449
	return tm;
450 451
}

452 453
static noinline int tree_mod_log_insert_key(struct extent_buffer *eb, int slot,
		enum mod_log_op op, gfp_t flags)
454
{
455 456 457
	struct tree_mod_elem *tm;
	int ret;

458
	if (!tree_mod_need_log(eb->fs_info, eb))
459 460 461 462 463 464
		return 0;

	tm = alloc_tree_mod_elem(eb, slot, op, flags);
	if (!tm)
		return -ENOMEM;

465
	if (tree_mod_dont_log(eb->fs_info, eb)) {
466
		kfree(tm);
467
		return 0;
468 469
	}

470
	ret = __tree_mod_log_insert(eb->fs_info, tm);
471
	write_unlock(&eb->fs_info->tree_mod_log_lock);
472 473
	if (ret)
		kfree(tm);
474

475
	return ret;
476 477
}

478 479
static noinline int tree_mod_log_insert_move(struct extent_buffer *eb,
		int dst_slot, int src_slot, int nr_items)
480
{
481 482 483
	struct tree_mod_elem *tm = NULL;
	struct tree_mod_elem **tm_list = NULL;
	int ret = 0;
484
	int i;
485
	int locked = 0;
486

487
	if (!tree_mod_need_log(eb->fs_info, eb))
J
Jan Schmidt 已提交
488
		return 0;
489

490
	tm_list = kcalloc(nr_items, sizeof(struct tree_mod_elem *), GFP_NOFS);
491 492 493
	if (!tm_list)
		return -ENOMEM;

494
	tm = kzalloc(sizeof(*tm), GFP_NOFS);
495 496 497 498 499
	if (!tm) {
		ret = -ENOMEM;
		goto free_tms;
	}

500
	tm->logical = eb->start;
501 502 503 504 505 506 507
	tm->slot = src_slot;
	tm->move.dst_slot = dst_slot;
	tm->move.nr_items = nr_items;
	tm->op = MOD_LOG_MOVE_KEYS;

	for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) {
		tm_list[i] = alloc_tree_mod_elem(eb, i + dst_slot,
508
		    MOD_LOG_KEY_REMOVE_WHILE_MOVING, GFP_NOFS);
509 510 511 512 513 514
		if (!tm_list[i]) {
			ret = -ENOMEM;
			goto free_tms;
		}
	}

515
	if (tree_mod_dont_log(eb->fs_info, eb))
516 517 518
		goto free_tms;
	locked = 1;

519 520 521 522 523
	/*
	 * When we override something during the move, we log these removals.
	 * This can only happen when we move towards the beginning of the
	 * buffer, i.e. dst_slot < src_slot.
	 */
524
	for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) {
525
		ret = __tree_mod_log_insert(eb->fs_info, tm_list[i]);
526 527
		if (ret)
			goto free_tms;
528 529
	}

530
	ret = __tree_mod_log_insert(eb->fs_info, tm);
531 532
	if (ret)
		goto free_tms;
533
	write_unlock(&eb->fs_info->tree_mod_log_lock);
534
	kfree(tm_list);
J
Jan Schmidt 已提交
535

536 537 538 539
	return 0;
free_tms:
	for (i = 0; i < nr_items; i++) {
		if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node))
540
			rb_erase(&tm_list[i]->node, &eb->fs_info->tree_mod_log);
541 542 543
		kfree(tm_list[i]);
	}
	if (locked)
544
		write_unlock(&eb->fs_info->tree_mod_log_lock);
545 546
	kfree(tm_list);
	kfree(tm);
547

548
	return ret;
549 550
}

551 552 553 554
static inline int
__tree_mod_log_free_eb(struct btrfs_fs_info *fs_info,
		       struct tree_mod_elem **tm_list,
		       int nritems)
555
{
556
	int i, j;
557 558 559
	int ret;

	for (i = nritems - 1; i >= 0; i--) {
560 561 562 563 564 565 566
		ret = __tree_mod_log_insert(fs_info, tm_list[i]);
		if (ret) {
			for (j = nritems - 1; j > i; j--)
				rb_erase(&tm_list[j]->node,
					 &fs_info->tree_mod_log);
			return ret;
		}
567
	}
568 569

	return 0;
570 571
}

572 573
static noinline int tree_mod_log_insert_root(struct extent_buffer *old_root,
			 struct extent_buffer *new_root, int log_removal)
574
{
575
	struct btrfs_fs_info *fs_info = old_root->fs_info;
576 577 578 579 580
	struct tree_mod_elem *tm = NULL;
	struct tree_mod_elem **tm_list = NULL;
	int nritems = 0;
	int ret = 0;
	int i;
581

582
	if (!tree_mod_need_log(fs_info, NULL))
583 584
		return 0;

585 586
	if (log_removal && btrfs_header_level(old_root) > 0) {
		nritems = btrfs_header_nritems(old_root);
587
		tm_list = kcalloc(nritems, sizeof(struct tree_mod_elem *),
588
				  GFP_NOFS);
589 590 591 592 593 594
		if (!tm_list) {
			ret = -ENOMEM;
			goto free_tms;
		}
		for (i = 0; i < nritems; i++) {
			tm_list[i] = alloc_tree_mod_elem(old_root, i,
595
			    MOD_LOG_KEY_REMOVE_WHILE_FREEING, GFP_NOFS);
596 597 598 599 600 601
			if (!tm_list[i]) {
				ret = -ENOMEM;
				goto free_tms;
			}
		}
	}
602

603
	tm = kzalloc(sizeof(*tm), GFP_NOFS);
604 605 606 607
	if (!tm) {
		ret = -ENOMEM;
		goto free_tms;
	}
608

609
	tm->logical = new_root->start;
610 611 612 613 614
	tm->old_root.logical = old_root->start;
	tm->old_root.level = btrfs_header_level(old_root);
	tm->generation = btrfs_header_generation(old_root);
	tm->op = MOD_LOG_ROOT_REPLACE;

615 616 617 618 619 620 621 622
	if (tree_mod_dont_log(fs_info, NULL))
		goto free_tms;

	if (tm_list)
		ret = __tree_mod_log_free_eb(fs_info, tm_list, nritems);
	if (!ret)
		ret = __tree_mod_log_insert(fs_info, tm);

623
	write_unlock(&fs_info->tree_mod_log_lock);
624 625 626 627 628 629 630 631 632 633 634 635 636 637 638
	if (ret)
		goto free_tms;
	kfree(tm_list);

	return ret;

free_tms:
	if (tm_list) {
		for (i = 0; i < nritems; i++)
			kfree(tm_list[i]);
		kfree(tm_list);
	}
	kfree(tm);

	return ret;
639 640 641 642 643 644 645 646 647 648 649
}

static struct tree_mod_elem *
__tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq,
		      int smallest)
{
	struct rb_root *tm_root;
	struct rb_node *node;
	struct tree_mod_elem *cur = NULL;
	struct tree_mod_elem *found = NULL;

650
	read_lock(&fs_info->tree_mod_log_lock);
651 652 653
	tm_root = &fs_info->tree_mod_log;
	node = tm_root->rb_node;
	while (node) {
654
		cur = rb_entry(node, struct tree_mod_elem, node);
655
		if (cur->logical < start) {
656
			node = node->rb_left;
657
		} else if (cur->logical > start) {
658
			node = node->rb_right;
659
		} else if (cur->seq < min_seq) {
660 661 662 663
			node = node->rb_left;
		} else if (!smallest) {
			/* we want the node with the highest seq */
			if (found)
664
				BUG_ON(found->seq > cur->seq);
665 666
			found = cur;
			node = node->rb_left;
667
		} else if (cur->seq > min_seq) {
668 669
			/* we want the node with the smallest seq */
			if (found)
670
				BUG_ON(found->seq < cur->seq);
671 672 673 674 675 676 677
			found = cur;
			node = node->rb_right;
		} else {
			found = cur;
			break;
		}
	}
678
	read_unlock(&fs_info->tree_mod_log_lock);
679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705

	return found;
}

/*
 * this returns the element from the log with the smallest time sequence
 * value that's in the log (the oldest log item). any element with a time
 * sequence lower than min_seq will be ignored.
 */
static struct tree_mod_elem *
tree_mod_log_search_oldest(struct btrfs_fs_info *fs_info, u64 start,
			   u64 min_seq)
{
	return __tree_mod_log_search(fs_info, start, min_seq, 1);
}

/*
 * this returns the element from the log with the largest time sequence
 * value that's in the log (the most recent log item). any element with
 * a time sequence lower than min_seq will be ignored.
 */
static struct tree_mod_elem *
tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq)
{
	return __tree_mod_log_search(fs_info, start, min_seq, 0);
}

706
static noinline int tree_mod_log_eb_copy(struct extent_buffer *dst,
707
		     struct extent_buffer *src, unsigned long dst_offset,
708
		     unsigned long src_offset, int nr_items)
709
{
710
	struct btrfs_fs_info *fs_info = dst->fs_info;
711 712 713
	int ret = 0;
	struct tree_mod_elem **tm_list = NULL;
	struct tree_mod_elem **tm_list_add, **tm_list_rem;
714
	int i;
715
	int locked = 0;
716

717 718
	if (!tree_mod_need_log(fs_info, NULL))
		return 0;
719

720
	if (btrfs_header_level(dst) == 0 && btrfs_header_level(src) == 0)
721 722
		return 0;

723
	tm_list = kcalloc(nr_items * 2, sizeof(struct tree_mod_elem *),
724 725 726
			  GFP_NOFS);
	if (!tm_list)
		return -ENOMEM;
727

728 729
	tm_list_add = tm_list;
	tm_list_rem = tm_list + nr_items;
730
	for (i = 0; i < nr_items; i++) {
731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756
		tm_list_rem[i] = alloc_tree_mod_elem(src, i + src_offset,
		    MOD_LOG_KEY_REMOVE, GFP_NOFS);
		if (!tm_list_rem[i]) {
			ret = -ENOMEM;
			goto free_tms;
		}

		tm_list_add[i] = alloc_tree_mod_elem(dst, i + dst_offset,
		    MOD_LOG_KEY_ADD, GFP_NOFS);
		if (!tm_list_add[i]) {
			ret = -ENOMEM;
			goto free_tms;
		}
	}

	if (tree_mod_dont_log(fs_info, NULL))
		goto free_tms;
	locked = 1;

	for (i = 0; i < nr_items; i++) {
		ret = __tree_mod_log_insert(fs_info, tm_list_rem[i]);
		if (ret)
			goto free_tms;
		ret = __tree_mod_log_insert(fs_info, tm_list_add[i]);
		if (ret)
			goto free_tms;
757
	}
758

759
	write_unlock(&fs_info->tree_mod_log_lock);
760 761 762 763 764 765 766 767 768 769 770
	kfree(tm_list);

	return 0;

free_tms:
	for (i = 0; i < nr_items * 2; i++) {
		if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node))
			rb_erase(&tm_list[i]->node, &fs_info->tree_mod_log);
		kfree(tm_list[i]);
	}
	if (locked)
771
		write_unlock(&fs_info->tree_mod_log_lock);
772 773 774
	kfree(tm_list);

	return ret;
775 776
}

777
static noinline int tree_mod_log_free_eb(struct extent_buffer *eb)
778
{
779 780 781 782 783 784 785 786
	struct tree_mod_elem **tm_list = NULL;
	int nritems = 0;
	int i;
	int ret = 0;

	if (btrfs_header_level(eb) == 0)
		return 0;

787
	if (!tree_mod_need_log(eb->fs_info, NULL))
788 789 790
		return 0;

	nritems = btrfs_header_nritems(eb);
791
	tm_list = kcalloc(nritems, sizeof(struct tree_mod_elem *), GFP_NOFS);
792 793 794 795 796 797 798 799 800 801 802 803
	if (!tm_list)
		return -ENOMEM;

	for (i = 0; i < nritems; i++) {
		tm_list[i] = alloc_tree_mod_elem(eb, i,
		    MOD_LOG_KEY_REMOVE_WHILE_FREEING, GFP_NOFS);
		if (!tm_list[i]) {
			ret = -ENOMEM;
			goto free_tms;
		}
	}

804
	if (tree_mod_dont_log(eb->fs_info, eb))
805 806
		goto free_tms;

807
	ret = __tree_mod_log_free_eb(eb->fs_info, tm_list, nritems);
808
	write_unlock(&eb->fs_info->tree_mod_log_lock);
809 810 811 812 813 814 815 816 817 818 819 820
	if (ret)
		goto free_tms;
	kfree(tm_list);

	return 0;

free_tms:
	for (i = 0; i < nritems; i++)
		kfree(tm_list[i]);
	kfree(tm_list);

	return ret;
821 822
}

823 824 825 826 827 828 829
/*
 * check if the tree block can be shared by multiple trees
 */
int btrfs_block_can_be_shared(struct btrfs_root *root,
			      struct extent_buffer *buf)
{
	/*
830 831 832
	 * Tree blocks not in shareable trees and tree roots are never shared.
	 * If a block was allocated after the last snapshot and the block was
	 * not allocated by tree relocation, we know the block is not shared.
833
	 */
834
	if (test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
835 836 837 838 839
	    buf != root->node && buf != root->commit_root &&
	    (btrfs_header_generation(buf) <=
	     btrfs_root_last_snapshot(&root->root_item) ||
	     btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)))
		return 1;
840

841 842 843 844 845 846
	return 0;
}

static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans,
				       struct btrfs_root *root,
				       struct extent_buffer *buf,
847 848
				       struct extent_buffer *cow,
				       int *last_ref)
849
{
850
	struct btrfs_fs_info *fs_info = root->fs_info;
851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874
	u64 refs;
	u64 owner;
	u64 flags;
	u64 new_flags = 0;
	int ret;

	/*
	 * Backrefs update rules:
	 *
	 * Always use full backrefs for extent pointers in tree block
	 * allocated by tree relocation.
	 *
	 * If a shared tree block is no longer referenced by its owner
	 * tree (btrfs_header_owner(buf) == root->root_key.objectid),
	 * use full backrefs for extent pointers in tree block.
	 *
	 * If a tree block is been relocating
	 * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID),
	 * use full backrefs for extent pointers in tree block.
	 * The reason for this is some operations (such as drop tree)
	 * are only allowed for blocks use full backrefs.
	 */

	if (btrfs_block_can_be_shared(root, buf)) {
875
		ret = btrfs_lookup_extent_info(trans, fs_info, buf->start,
876 877
					       btrfs_header_level(buf), 1,
					       &refs, &flags);
878 879
		if (ret)
			return ret;
880 881
		if (refs == 0) {
			ret = -EROFS;
882
			btrfs_handle_fs_error(fs_info, ret, NULL);
883 884
			return ret;
		}
885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901
	} else {
		refs = 1;
		if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
		    btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
			flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
		else
			flags = 0;
	}

	owner = btrfs_header_owner(buf);
	BUG_ON(owner == BTRFS_TREE_RELOC_OBJECTID &&
	       !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));

	if (refs > 1) {
		if ((owner == root->root_key.objectid ||
		     root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) &&
		    !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) {
902
			ret = btrfs_inc_ref(trans, root, buf, 1);
903 904
			if (ret)
				return ret;
905 906 907

			if (root->root_key.objectid ==
			    BTRFS_TREE_RELOC_OBJECTID) {
908
				ret = btrfs_dec_ref(trans, root, buf, 0);
909 910
				if (ret)
					return ret;
911
				ret = btrfs_inc_ref(trans, root, cow, 1);
912 913
				if (ret)
					return ret;
914 915 916 917 918 919
			}
			new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
		} else {

			if (root->root_key.objectid ==
			    BTRFS_TREE_RELOC_OBJECTID)
920
				ret = btrfs_inc_ref(trans, root, cow, 1);
921
			else
922
				ret = btrfs_inc_ref(trans, root, cow, 0);
923 924
			if (ret)
				return ret;
925 926
		}
		if (new_flags != 0) {
927 928
			int level = btrfs_header_level(buf);

929
			ret = btrfs_set_disk_extent_flags(trans, buf,
930
							  new_flags, level, 0);
931 932
			if (ret)
				return ret;
933 934 935 936 937
		}
	} else {
		if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
			if (root->root_key.objectid ==
			    BTRFS_TREE_RELOC_OBJECTID)
938
				ret = btrfs_inc_ref(trans, root, cow, 1);
939
			else
940
				ret = btrfs_inc_ref(trans, root, cow, 0);
941 942
			if (ret)
				return ret;
943
			ret = btrfs_dec_ref(trans, root, buf, 1);
944 945
			if (ret)
				return ret;
946
		}
947
		btrfs_clean_tree_block(buf);
948
		*last_ref = 1;
949 950 951 952
	}
	return 0;
}

953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994
static struct extent_buffer *alloc_tree_block_no_bg_flush(
					  struct btrfs_trans_handle *trans,
					  struct btrfs_root *root,
					  u64 parent_start,
					  const struct btrfs_disk_key *disk_key,
					  int level,
					  u64 hint,
					  u64 empty_size)
{
	struct btrfs_fs_info *fs_info = root->fs_info;
	struct extent_buffer *ret;

	/*
	 * If we are COWing a node/leaf from the extent, chunk, device or free
	 * space trees, make sure that we do not finish block group creation of
	 * pending block groups. We do this to avoid a deadlock.
	 * COWing can result in allocation of a new chunk, and flushing pending
	 * block groups (btrfs_create_pending_block_groups()) can be triggered
	 * when finishing allocation of a new chunk. Creation of a pending block
	 * group modifies the extent, chunk, device and free space trees,
	 * therefore we could deadlock with ourselves since we are holding a
	 * lock on an extent buffer that btrfs_create_pending_block_groups() may
	 * try to COW later.
	 * For similar reasons, we also need to delay flushing pending block
	 * groups when splitting a leaf or node, from one of those trees, since
	 * we are holding a write lock on it and its parent or when inserting a
	 * new root node for one of those trees.
	 */
	if (root == fs_info->extent_root ||
	    root == fs_info->chunk_root ||
	    root == fs_info->dev_root ||
	    root == fs_info->free_space_root)
		trans->can_flush_pending_bgs = false;

	ret = btrfs_alloc_tree_block(trans, root, parent_start,
				     root->root_key.objectid, disk_key, level,
				     hint, empty_size);
	trans->can_flush_pending_bgs = true;

	return ret;
}

C
Chris Mason 已提交
995
/*
C
Chris Mason 已提交
996 997 998 999
 * does the dirty work in cow of a single block.  The parent block (if
 * supplied) is updated to point to the new cow copy.  The new buffer is marked
 * dirty and returned locked.  If you modify the block it needs to be marked
 * dirty again.
C
Chris Mason 已提交
1000 1001 1002
 *
 * search_start -- an allocation hint for the new block
 *
C
Chris Mason 已提交
1003 1004 1005
 * empty_size -- a hint that you plan on doing more cow.  This is the size in
 * bytes the allocator should try to find free next to the block it returns.
 * This is just a hint and may be ignored by the allocator.
C
Chris Mason 已提交
1006
 */
C
Chris Mason 已提交
1007
static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans,
1008 1009 1010 1011
			     struct btrfs_root *root,
			     struct extent_buffer *buf,
			     struct extent_buffer *parent, int parent_slot,
			     struct extent_buffer **cow_ret,
1012
			     u64 search_start, u64 empty_size)
C
Chris Mason 已提交
1013
{
1014
	struct btrfs_fs_info *fs_info = root->fs_info;
1015
	struct btrfs_disk_key disk_key;
1016
	struct extent_buffer *cow;
1017
	int level, ret;
1018
	int last_ref = 0;
1019
	int unlock_orig = 0;
1020
	u64 parent_start = 0;
1021

1022 1023 1024
	if (*cow_ret == buf)
		unlock_orig = 1;

1025
	btrfs_assert_tree_locked(buf);
1026

1027
	WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
1028
		trans->transid != fs_info->running_transaction->transid);
1029
	WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
1030
		trans->transid != root->last_trans);
1031

1032
	level = btrfs_header_level(buf);
Z
Zheng Yan 已提交
1033

1034 1035 1036 1037 1038
	if (level == 0)
		btrfs_item_key(buf, &disk_key, 0);
	else
		btrfs_node_key(buf, &disk_key, 0);

1039 1040
	if ((root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) && parent)
		parent_start = parent->start;
1041

1042 1043
	cow = alloc_tree_block_no_bg_flush(trans, root, parent_start, &disk_key,
					   level, search_start, empty_size);
1044 1045
	if (IS_ERR(cow))
		return PTR_ERR(cow);
1046

1047 1048
	/* cow is set to blocking by btrfs_init_new_buffer */

1049
	copy_extent_buffer_full(cow, buf);
1050
	btrfs_set_header_bytenr(cow, cow->start);
1051
	btrfs_set_header_generation(cow, trans->transid);
1052 1053 1054 1055 1056 1057 1058
	btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
	btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
				     BTRFS_HEADER_FLAG_RELOC);
	if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
		btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
	else
		btrfs_set_header_owner(cow, root->root_key.objectid);
1059

1060
	write_extent_buffer_fsid(cow, fs_info->fs_devices->metadata_uuid);
Y
Yan Zheng 已提交
1061

1062
	ret = update_ref_for_cow(trans, root, buf, cow, &last_ref);
1063
	if (ret) {
1064
		btrfs_abort_transaction(trans, ret);
1065 1066
		return ret;
	}
Z
Zheng Yan 已提交
1067

1068
	if (test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) {
1069
		ret = btrfs_reloc_cow_block(trans, root, buf, cow);
1070
		if (ret) {
1071
			btrfs_abort_transaction(trans, ret);
1072
			return ret;
1073
		}
1074
	}
1075

C
Chris Mason 已提交
1076
	if (buf == root->node) {
1077
		WARN_ON(parent && parent != buf);
1078 1079 1080
		if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
		    btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
			parent_start = buf->start;
1081

D
David Sterba 已提交
1082
		atomic_inc(&cow->refs);
1083 1084
		ret = tree_mod_log_insert_root(root->node, cow, 1);
		BUG_ON(ret < 0);
1085
		rcu_assign_pointer(root->node, cow);
1086

1087
		btrfs_free_tree_block(trans, root, buf, parent_start,
1088
				      last_ref);
1089
		free_extent_buffer(buf);
1090
		add_root_to_dirty_list(root);
C
Chris Mason 已提交
1091
	} else {
1092
		WARN_ON(trans->transid != btrfs_header_generation(parent));
1093
		tree_mod_log_insert_key(parent, parent_slot,
1094
					MOD_LOG_KEY_REPLACE, GFP_NOFS);
1095
		btrfs_set_node_blockptr(parent, parent_slot,
1096
					cow->start);
1097 1098
		btrfs_set_node_ptr_generation(parent, parent_slot,
					      trans->transid);
C
Chris Mason 已提交
1099
		btrfs_mark_buffer_dirty(parent);
1100
		if (last_ref) {
1101
			ret = tree_mod_log_free_eb(buf);
1102
			if (ret) {
1103
				btrfs_abort_transaction(trans, ret);
1104 1105 1106
				return ret;
			}
		}
1107
		btrfs_free_tree_block(trans, root, buf, parent_start,
1108
				      last_ref);
C
Chris Mason 已提交
1109
	}
1110 1111
	if (unlock_orig)
		btrfs_tree_unlock(buf);
1112
	free_extent_buffer_stale(buf);
C
Chris Mason 已提交
1113
	btrfs_mark_buffer_dirty(cow);
C
Chris Mason 已提交
1114
	*cow_ret = cow;
C
Chris Mason 已提交
1115 1116 1117
	return 0;
}

J
Jan Schmidt 已提交
1118 1119 1120 1121
/*
 * returns the logical address of the oldest predecessor of the given root.
 * entries older than time_seq are ignored.
 */
1122 1123
static struct tree_mod_elem *__tree_mod_log_oldest_root(
		struct extent_buffer *eb_root, u64 time_seq)
J
Jan Schmidt 已提交
1124 1125 1126
{
	struct tree_mod_elem *tm;
	struct tree_mod_elem *found = NULL;
1127
	u64 root_logical = eb_root->start;
J
Jan Schmidt 已提交
1128 1129 1130
	int looped = 0;

	if (!time_seq)
1131
		return NULL;
J
Jan Schmidt 已提交
1132 1133

	/*
1134 1135 1136 1137
	 * the very last operation that's logged for a root is the
	 * replacement operation (if it is replaced at all). this has
	 * the logical address of the *new* root, making it the very
	 * first operation that's logged for this root.
J
Jan Schmidt 已提交
1138 1139
	 */
	while (1) {
1140
		tm = tree_mod_log_search_oldest(eb_root->fs_info, root_logical,
J
Jan Schmidt 已提交
1141 1142
						time_seq);
		if (!looped && !tm)
1143
			return NULL;
J
Jan Schmidt 已提交
1144
		/*
1145 1146 1147
		 * if there are no tree operation for the oldest root, we simply
		 * return it. this should only happen if that (old) root is at
		 * level 0.
J
Jan Schmidt 已提交
1148
		 */
1149 1150
		if (!tm)
			break;
J
Jan Schmidt 已提交
1151

1152 1153 1154 1155 1156
		/*
		 * if there's an operation that's not a root replacement, we
		 * found the oldest version of our root. normally, we'll find a
		 * MOD_LOG_KEY_REMOVE_WHILE_FREEING operation here.
		 */
J
Jan Schmidt 已提交
1157 1158 1159 1160 1161 1162 1163 1164
		if (tm->op != MOD_LOG_ROOT_REPLACE)
			break;

		found = tm;
		root_logical = tm->old_root.logical;
		looped = 1;
	}

1165 1166 1167 1168
	/* if there's no old root to return, return what we found instead */
	if (!found)
		found = tm;

J
Jan Schmidt 已提交
1169 1170 1171 1172 1173
	return found;
}

/*
 * tm is a pointer to the first operation to rewind within eb. then, all
1174
 * previous operations will be rewound (until we reach something older than
J
Jan Schmidt 已提交
1175 1176 1177
 * time_seq).
 */
static void
1178 1179
__tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct extent_buffer *eb,
		      u64 time_seq, struct tree_mod_elem *first_tm)
J
Jan Schmidt 已提交
1180 1181 1182 1183 1184 1185 1186 1187 1188
{
	u32 n;
	struct rb_node *next;
	struct tree_mod_elem *tm = first_tm;
	unsigned long o_dst;
	unsigned long o_src;
	unsigned long p_size = sizeof(struct btrfs_key_ptr);

	n = btrfs_header_nritems(eb);
1189
	read_lock(&fs_info->tree_mod_log_lock);
1190
	while (tm && tm->seq >= time_seq) {
J
Jan Schmidt 已提交
1191 1192 1193 1194 1195 1196 1197 1198
		/*
		 * all the operations are recorded with the operator used for
		 * the modification. as we're going backwards, we do the
		 * opposite of each operation here.
		 */
		switch (tm->op) {
		case MOD_LOG_KEY_REMOVE_WHILE_FREEING:
			BUG_ON(tm->slot < n);
1199
			/* Fallthrough */
1200
		case MOD_LOG_KEY_REMOVE_WHILE_MOVING:
1201
		case MOD_LOG_KEY_REMOVE:
J
Jan Schmidt 已提交
1202 1203 1204 1205
			btrfs_set_node_key(eb, &tm->key, tm->slot);
			btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
			btrfs_set_node_ptr_generation(eb, tm->slot,
						      tm->generation);
1206
			n++;
J
Jan Schmidt 已提交
1207 1208 1209 1210 1211 1212 1213 1214 1215
			break;
		case MOD_LOG_KEY_REPLACE:
			BUG_ON(tm->slot >= n);
			btrfs_set_node_key(eb, &tm->key, tm->slot);
			btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
			btrfs_set_node_ptr_generation(eb, tm->slot,
						      tm->generation);
			break;
		case MOD_LOG_KEY_ADD:
1216
			/* if a move operation is needed it's in the log */
J
Jan Schmidt 已提交
1217 1218 1219
			n--;
			break;
		case MOD_LOG_MOVE_KEYS:
1220 1221 1222
			o_dst = btrfs_node_key_ptr_offset(tm->slot);
			o_src = btrfs_node_key_ptr_offset(tm->move.dst_slot);
			memmove_extent_buffer(eb, o_dst, o_src,
J
Jan Schmidt 已提交
1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239
					      tm->move.nr_items * p_size);
			break;
		case MOD_LOG_ROOT_REPLACE:
			/*
			 * this operation is special. for roots, this must be
			 * handled explicitly before rewinding.
			 * for non-roots, this operation may exist if the node
			 * was a root: root A -> child B; then A gets empty and
			 * B is promoted to the new root. in the mod log, we'll
			 * have a root-replace operation for B, a tree block
			 * that is no root. we simply ignore that operation.
			 */
			break;
		}
		next = rb_next(&tm->node);
		if (!next)
			break;
1240
		tm = rb_entry(next, struct tree_mod_elem, node);
1241
		if (tm->logical != first_tm->logical)
J
Jan Schmidt 已提交
1242 1243
			break;
	}
1244
	read_unlock(&fs_info->tree_mod_log_lock);
J
Jan Schmidt 已提交
1245 1246 1247
	btrfs_set_header_nritems(eb, n);
}

1248
/*
1249
 * Called with eb read locked. If the buffer cannot be rewound, the same buffer
1250 1251 1252 1253 1254
 * is returned. If rewind operations happen, a fresh buffer is returned. The
 * returned buffer is always read-locked. If the returned buffer is not the
 * input buffer, the lock on the input buffer is released and the input buffer
 * is freed (its refcount is decremented).
 */
J
Jan Schmidt 已提交
1255
static struct extent_buffer *
1256 1257
tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct btrfs_path *path,
		    struct extent_buffer *eb, u64 time_seq)
J
Jan Schmidt 已提交
1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271
{
	struct extent_buffer *eb_rewin;
	struct tree_mod_elem *tm;

	if (!time_seq)
		return eb;

	if (btrfs_header_level(eb) == 0)
		return eb;

	tm = tree_mod_log_search(fs_info, eb->start, time_seq);
	if (!tm)
		return eb;

1272
	btrfs_set_path_blocking(path);
1273
	btrfs_set_lock_blocking_read(eb);
1274

J
Jan Schmidt 已提交
1275 1276
	if (tm->op == MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
		BUG_ON(tm->slot != 0);
1277
		eb_rewin = alloc_dummy_extent_buffer(fs_info, eb->start);
1278
		if (!eb_rewin) {
1279
			btrfs_tree_read_unlock_blocking(eb);
1280 1281 1282
			free_extent_buffer(eb);
			return NULL;
		}
J
Jan Schmidt 已提交
1283 1284 1285 1286
		btrfs_set_header_bytenr(eb_rewin, eb->start);
		btrfs_set_header_backref_rev(eb_rewin,
					     btrfs_header_backref_rev(eb));
		btrfs_set_header_owner(eb_rewin, btrfs_header_owner(eb));
1287
		btrfs_set_header_level(eb_rewin, btrfs_header_level(eb));
J
Jan Schmidt 已提交
1288 1289
	} else {
		eb_rewin = btrfs_clone_extent_buffer(eb);
1290
		if (!eb_rewin) {
1291
			btrfs_tree_read_unlock_blocking(eb);
1292 1293 1294
			free_extent_buffer(eb);
			return NULL;
		}
J
Jan Schmidt 已提交
1295 1296
	}

1297
	btrfs_tree_read_unlock_blocking(eb);
J
Jan Schmidt 已提交
1298 1299
	free_extent_buffer(eb);

1300
	btrfs_tree_read_lock(eb_rewin);
1301
	__tree_mod_log_rewind(fs_info, eb_rewin, time_seq, tm);
1302
	WARN_ON(btrfs_header_nritems(eb_rewin) >
1303
		BTRFS_NODEPTRS_PER_BLOCK(fs_info));
J
Jan Schmidt 已提交
1304 1305 1306 1307

	return eb_rewin;
}

1308 1309 1310 1311 1312 1313 1314
/*
 * get_old_root() rewinds the state of @root's root node to the given @time_seq
 * value. If there are no changes, the current root->root_node is returned. If
 * anything changed in between, there's a fresh buffer allocated on which the
 * rewind operations are done. In any case, the returned buffer is read locked.
 * Returns NULL on error (with no locks held).
 */
J
Jan Schmidt 已提交
1315 1316 1317
static inline struct extent_buffer *
get_old_root(struct btrfs_root *root, u64 time_seq)
{
1318
	struct btrfs_fs_info *fs_info = root->fs_info;
J
Jan Schmidt 已提交
1319
	struct tree_mod_elem *tm;
1320 1321
	struct extent_buffer *eb = NULL;
	struct extent_buffer *eb_root;
1322
	u64 eb_root_owner = 0;
1323
	struct extent_buffer *old;
1324
	struct tree_mod_root *old_root = NULL;
1325
	u64 old_generation = 0;
1326
	u64 logical;
1327
	int level;
J
Jan Schmidt 已提交
1328

1329
	eb_root = btrfs_read_lock_root_node(root);
1330
	tm = __tree_mod_log_oldest_root(eb_root, time_seq);
J
Jan Schmidt 已提交
1331
	if (!tm)
1332
		return eb_root;
J
Jan Schmidt 已提交
1333

1334 1335 1336 1337
	if (tm->op == MOD_LOG_ROOT_REPLACE) {
		old_root = &tm->old_root;
		old_generation = tm->generation;
		logical = old_root->logical;
1338
		level = old_root->level;
1339
	} else {
1340
		logical = eb_root->start;
1341
		level = btrfs_header_level(eb_root);
1342
	}
J
Jan Schmidt 已提交
1343

1344
	tm = tree_mod_log_search(fs_info, logical, time_seq);
1345
	if (old_root && tm && tm->op != MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
1346 1347
		btrfs_tree_read_unlock(eb_root);
		free_extent_buffer(eb_root);
1348
		old = read_tree_block(fs_info, logical, 0, level, NULL);
1349 1350 1351
		if (WARN_ON(IS_ERR(old) || !extent_buffer_uptodate(old))) {
			if (!IS_ERR(old))
				free_extent_buffer(old);
1352 1353 1354
			btrfs_warn(fs_info,
				   "failed to read tree block %llu from get_old_root",
				   logical);
1355
		} else {
1356 1357
			eb = btrfs_clone_extent_buffer(old);
			free_extent_buffer(old);
1358 1359
		}
	} else if (old_root) {
1360
		eb_root_owner = btrfs_header_owner(eb_root);
1361 1362
		btrfs_tree_read_unlock(eb_root);
		free_extent_buffer(eb_root);
1363
		eb = alloc_dummy_extent_buffer(fs_info, logical);
1364
	} else {
1365
		btrfs_set_lock_blocking_read(eb_root);
1366
		eb = btrfs_clone_extent_buffer(eb_root);
1367
		btrfs_tree_read_unlock_blocking(eb_root);
1368
		free_extent_buffer(eb_root);
1369 1370
	}

1371 1372 1373
	if (!eb)
		return NULL;
	btrfs_tree_read_lock(eb);
1374
	if (old_root) {
J
Jan Schmidt 已提交
1375 1376
		btrfs_set_header_bytenr(eb, eb->start);
		btrfs_set_header_backref_rev(eb, BTRFS_MIXED_BACKREF_REV);
1377
		btrfs_set_header_owner(eb, eb_root_owner);
1378 1379
		btrfs_set_header_level(eb, old_root->level);
		btrfs_set_header_generation(eb, old_generation);
J
Jan Schmidt 已提交
1380
	}
1381
	if (tm)
1382
		__tree_mod_log_rewind(fs_info, eb, time_seq, tm);
1383 1384
	else
		WARN_ON(btrfs_header_level(eb) != 0);
1385
	WARN_ON(btrfs_header_nritems(eb) > BTRFS_NODEPTRS_PER_BLOCK(fs_info));
J
Jan Schmidt 已提交
1386 1387 1388 1389

	return eb;
}

J
Jan Schmidt 已提交
1390 1391 1392 1393
int btrfs_old_root_level(struct btrfs_root *root, u64 time_seq)
{
	struct tree_mod_elem *tm;
	int level;
1394
	struct extent_buffer *eb_root = btrfs_root_node(root);
J
Jan Schmidt 已提交
1395

1396
	tm = __tree_mod_log_oldest_root(eb_root, time_seq);
J
Jan Schmidt 已提交
1397 1398 1399
	if (tm && tm->op == MOD_LOG_ROOT_REPLACE) {
		level = tm->old_root.level;
	} else {
1400
		level = btrfs_header_level(eb_root);
J
Jan Schmidt 已提交
1401
	}
1402
	free_extent_buffer(eb_root);
J
Jan Schmidt 已提交
1403 1404 1405 1406

	return level;
}

1407 1408 1409 1410
static inline int should_cow_block(struct btrfs_trans_handle *trans,
				   struct btrfs_root *root,
				   struct extent_buffer *buf)
{
1411
	if (btrfs_is_testing(root->fs_info))
1412
		return 0;
1413

1414 1415
	/* Ensure we can see the FORCE_COW bit */
	smp_mb__before_atomic();
1416 1417 1418 1419 1420 1421 1422 1423

	/*
	 * We do not need to cow a block if
	 * 1) this block is not created or changed in this transaction;
	 * 2) this block does not belong to TREE_RELOC tree;
	 * 3) the root is not forced COW.
	 *
	 * What is forced COW:
1424
	 *    when we create snapshot during committing the transaction,
1425
	 *    after we've finished copying src root, we must COW the shared
1426 1427
	 *    block to ensure the metadata consistency.
	 */
1428 1429 1430
	if (btrfs_header_generation(buf) == trans->transid &&
	    !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) &&
	    !(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
1431
	      btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)) &&
1432
	    !test_bit(BTRFS_ROOT_FORCE_COW, &root->state))
1433 1434 1435 1436
		return 0;
	return 1;
}

C
Chris Mason 已提交
1437 1438
/*
 * cows a single block, see __btrfs_cow_block for the real work.
1439
 * This version of it has extra checks so that a block isn't COWed more than
C
Chris Mason 已提交
1440 1441
 * once per transaction, as long as it hasn't been written yet
 */
C
Chris Mason 已提交
1442
noinline int btrfs_cow_block(struct btrfs_trans_handle *trans,
1443 1444
		    struct btrfs_root *root, struct extent_buffer *buf,
		    struct extent_buffer *parent, int parent_slot,
1445
		    struct extent_buffer **cow_ret)
1446
{
1447
	struct btrfs_fs_info *fs_info = root->fs_info;
1448
	u64 search_start;
1449
	int ret;
C
Chris Mason 已提交
1450

1451 1452 1453 1454
	if (test_bit(BTRFS_ROOT_DELETING, &root->state))
		btrfs_err(fs_info,
			"COW'ing blocks on a fs root that's being dropped");

1455
	if (trans->transaction != fs_info->running_transaction)
J
Julia Lawall 已提交
1456
		WARN(1, KERN_CRIT "trans %llu running %llu\n",
1457
		       trans->transid,
1458
		       fs_info->running_transaction->transid);
J
Julia Lawall 已提交
1459

1460
	if (trans->transid != fs_info->generation)
J
Julia Lawall 已提交
1461
		WARN(1, KERN_CRIT "trans %llu running %llu\n",
1462
		       trans->transid, fs_info->generation);
C
Chris Mason 已提交
1463

1464
	if (!should_cow_block(trans, root, buf)) {
1465
		trans->dirty = true;
1466 1467 1468
		*cow_ret = buf;
		return 0;
	}
1469

1470
	search_start = buf->start & ~((u64)SZ_1G - 1);
1471 1472

	if (parent)
1473 1474
		btrfs_set_lock_blocking_write(parent);
	btrfs_set_lock_blocking_write(buf);
1475

1476 1477 1478 1479 1480 1481 1482
	/*
	 * Before CoWing this block for later modification, check if it's
	 * the subtree root and do the delayed subtree trace if needed.
	 *
	 * Also We don't care about the error, as it's handled internally.
	 */
	btrfs_qgroup_trace_subtree_after_cow(trans, root, buf);
1483
	ret = __btrfs_cow_block(trans, root, buf, parent,
1484
				 parent_slot, cow_ret, search_start, 0);
1485 1486 1487

	trace_btrfs_cow_block(root, buf, *cow_ret);

1488
	return ret;
1489 1490
}

C
Chris Mason 已提交
1491 1492 1493 1494
/*
 * helper function for defrag to decide if two blocks pointed to by a
 * node are actually close by
 */
1495
static int close_blocks(u64 blocknr, u64 other, u32 blocksize)
1496
{
1497
	if (blocknr < other && other - (blocknr + blocksize) < 32768)
1498
		return 1;
1499
	if (blocknr > other && blocknr - (other + blocksize) < 32768)
1500 1501 1502 1503
		return 1;
	return 0;
}

1504 1505 1506
/*
 * compare two keys in a memcmp fashion
 */
1507 1508
static int comp_keys(const struct btrfs_disk_key *disk,
		     const struct btrfs_key *k2)
1509 1510 1511 1512 1513
{
	struct btrfs_key k1;

	btrfs_disk_key_to_cpu(&k1, disk);

1514
	return btrfs_comp_cpu_keys(&k1, k2);
1515 1516
}

1517 1518 1519
/*
 * same as comp_keys only with two btrfs_key's
 */
1520
int __pure btrfs_comp_cpu_keys(const struct btrfs_key *k1, const struct btrfs_key *k2)
1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535
{
	if (k1->objectid > k2->objectid)
		return 1;
	if (k1->objectid < k2->objectid)
		return -1;
	if (k1->type > k2->type)
		return 1;
	if (k1->type < k2->type)
		return -1;
	if (k1->offset > k2->offset)
		return 1;
	if (k1->offset < k2->offset)
		return -1;
	return 0;
}
1536

C
Chris Mason 已提交
1537 1538 1539 1540 1541
/*
 * this is used by the defrag code to go through all the
 * leaves pointed to by a node and reallocate them so that
 * disk order is close to key order
 */
1542
int btrfs_realloc_node(struct btrfs_trans_handle *trans,
1543
		       struct btrfs_root *root, struct extent_buffer *parent,
1544
		       int start_slot, u64 *last_ret,
1545
		       struct btrfs_key *progress)
1546
{
1547
	struct btrfs_fs_info *fs_info = root->fs_info;
1548
	struct extent_buffer *cur;
1549
	u64 blocknr;
1550
	u64 gen;
1551 1552
	u64 search_start = *last_ret;
	u64 last_block = 0;
1553 1554 1555 1556 1557
	u64 other;
	u32 parent_nritems;
	int end_slot;
	int i;
	int err = 0;
1558
	int parent_level;
1559 1560
	int uptodate;
	u32 blocksize;
1561 1562
	int progress_passed = 0;
	struct btrfs_disk_key disk_key;
1563

1564 1565
	parent_level = btrfs_header_level(parent);

1566 1567
	WARN_ON(trans->transaction != fs_info->running_transaction);
	WARN_ON(trans->transid != fs_info->generation);
1568

1569
	parent_nritems = btrfs_header_nritems(parent);
1570
	blocksize = fs_info->nodesize;
1571
	end_slot = parent_nritems - 1;
1572

1573
	if (parent_nritems <= 1)
1574 1575
		return 0;

1576
	btrfs_set_lock_blocking_write(parent);
1577

1578
	for (i = start_slot; i <= end_slot; i++) {
1579
		struct btrfs_key first_key;
1580
		int close = 1;
1581

1582 1583 1584 1585 1586
		btrfs_node_key(parent, &disk_key, i);
		if (!progress_passed && comp_keys(&disk_key, progress) < 0)
			continue;

		progress_passed = 1;
1587
		blocknr = btrfs_node_blockptr(parent, i);
1588
		gen = btrfs_node_ptr_generation(parent, i);
1589
		btrfs_node_key_to_cpu(parent, &first_key, i);
1590 1591
		if (last_block == 0)
			last_block = blocknr;
1592

1593
		if (i > 0) {
1594 1595
			other = btrfs_node_blockptr(parent, i - 1);
			close = close_blocks(blocknr, other, blocksize);
1596
		}
1597
		if (!close && i < end_slot) {
1598 1599
			other = btrfs_node_blockptr(parent, i + 1);
			close = close_blocks(blocknr, other, blocksize);
1600
		}
1601 1602
		if (close) {
			last_block = blocknr;
1603
			continue;
1604
		}
1605

1606
		cur = find_extent_buffer(fs_info, blocknr);
1607
		if (cur)
1608
			uptodate = btrfs_buffer_uptodate(cur, gen, 0);
1609 1610
		else
			uptodate = 0;
1611
		if (!cur || !uptodate) {
1612
			if (!cur) {
1613 1614 1615
				cur = read_tree_block(fs_info, blocknr, gen,
						      parent_level - 1,
						      &first_key);
1616 1617 1618
				if (IS_ERR(cur)) {
					return PTR_ERR(cur);
				} else if (!extent_buffer_uptodate(cur)) {
1619
					free_extent_buffer(cur);
1620
					return -EIO;
1621
				}
1622
			} else if (!uptodate) {
1623 1624
				err = btrfs_read_buffer(cur, gen,
						parent_level - 1,&first_key);
1625 1626 1627 1628
				if (err) {
					free_extent_buffer(cur);
					return err;
				}
1629
			}
1630
		}
1631
		if (search_start == 0)
1632
			search_start = last_block;
1633

1634
		btrfs_tree_lock(cur);
1635
		btrfs_set_lock_blocking_write(cur);
1636
		err = __btrfs_cow_block(trans, root, cur, parent, i,
1637
					&cur, search_start,
1638
					min(16 * blocksize,
1639
					    (end_slot - i) * blocksize));
Y
Yan 已提交
1640
		if (err) {
1641
			btrfs_tree_unlock(cur);
1642
			free_extent_buffer(cur);
1643
			break;
Y
Yan 已提交
1644
		}
1645 1646
		search_start = cur->start;
		last_block = cur->start;
1647
		*last_ret = search_start;
1648 1649
		btrfs_tree_unlock(cur);
		free_extent_buffer(cur);
1650 1651 1652 1653
	}
	return err;
}

C
Chris Mason 已提交
1654
/*
1655 1656 1657
 * search for key in the extent_buffer.  The items start at offset p,
 * and they are item_size apart.  There are 'max' items in p.
 *
C
Chris Mason 已提交
1658 1659 1660 1661 1662 1663
 * the slot in the array is returned via slot, and it points to
 * the place where you would insert key if it is not found in
 * the array.
 *
 * slot may point to max if the key is bigger than all of the keys
 */
1664
static noinline int generic_bin_search(struct extent_buffer *eb,
1665 1666
				       unsigned long p, int item_size,
				       const struct btrfs_key *key,
1667
				       int max, int *slot)
1668 1669 1670 1671
{
	int low = 0;
	int high = max;
	int ret;
1672
	const int key_size = sizeof(struct btrfs_disk_key);
1673

1674 1675 1676 1677 1678 1679 1680 1681
	if (low > high) {
		btrfs_err(eb->fs_info,
		 "%s: low (%d) > high (%d) eb %llu owner %llu level %d",
			  __func__, low, high, eb->start,
			  btrfs_header_owner(eb), btrfs_header_level(eb));
		return -EINVAL;
	}

C
Chris Mason 已提交
1682
	while (low < high) {
1683 1684 1685 1686 1687 1688
		unsigned long oip;
		unsigned long offset;
		struct btrfs_disk_key *tmp;
		struct btrfs_disk_key unaligned;
		int mid;

1689
		mid = (low + high) / 2;
1690
		offset = p + mid * item_size;
1691
		oip = offset_in_page(offset);
1692

1693 1694 1695
		if (oip + key_size <= PAGE_SIZE) {
			const unsigned long idx = offset >> PAGE_SHIFT;
			char *kaddr = page_address(eb->pages[idx]);
1696

1697
			tmp = (struct btrfs_disk_key *)(kaddr + oip);
1698
		} else {
1699 1700
			read_extent_buffer(eb, &unaligned, offset, key_size);
			tmp = &unaligned;
1701
		}
1702

1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717
		ret = comp_keys(tmp, key);

		if (ret < 0)
			low = mid + 1;
		else if (ret > 0)
			high = mid;
		else {
			*slot = mid;
			return 0;
		}
	}
	*slot = low;
	return 1;
}

C
Chris Mason 已提交
1718 1719 1720 1721
/*
 * simple bin_search frontend that does the right thing for
 * leaves vs nodes
 */
1722
int btrfs_bin_search(struct extent_buffer *eb, const struct btrfs_key *key,
1723
		     int *slot)
1724
{
1725
	if (btrfs_header_level(eb) == 0)
1726 1727
		return generic_bin_search(eb,
					  offsetof(struct btrfs_leaf, items),
C
Chris Mason 已提交
1728
					  sizeof(struct btrfs_item),
1729
					  key, btrfs_header_nritems(eb),
1730
					  slot);
1731
	else
1732 1733
		return generic_bin_search(eb,
					  offsetof(struct btrfs_node, ptrs),
C
Chris Mason 已提交
1734
					  sizeof(struct btrfs_key_ptr),
1735
					  key, btrfs_header_nritems(eb),
1736
					  slot);
1737 1738
}

1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754
static void root_add_used(struct btrfs_root *root, u32 size)
{
	spin_lock(&root->accounting_lock);
	btrfs_set_root_used(&root->root_item,
			    btrfs_root_used(&root->root_item) + size);
	spin_unlock(&root->accounting_lock);
}

static void root_sub_used(struct btrfs_root *root, u32 size)
{
	spin_lock(&root->accounting_lock);
	btrfs_set_root_used(&root->root_item,
			    btrfs_root_used(&root->root_item) - size);
	spin_unlock(&root->accounting_lock);
}

C
Chris Mason 已提交
1755 1756 1757
/* given a node and slot number, this reads the blocks it points to.  The
 * extent buffer is returned with a reference taken (but unlocked).
 */
1758 1759
struct extent_buffer *btrfs_read_node_slot(struct extent_buffer *parent,
					   int slot)
1760
{
1761
	int level = btrfs_header_level(parent);
1762
	struct extent_buffer *eb;
1763
	struct btrfs_key first_key;
1764

1765 1766
	if (slot < 0 || slot >= btrfs_header_nritems(parent))
		return ERR_PTR(-ENOENT);
1767 1768 1769

	BUG_ON(level == 0);

1770
	btrfs_node_key_to_cpu(parent, &first_key, slot);
1771
	eb = read_tree_block(parent->fs_info, btrfs_node_blockptr(parent, slot),
1772 1773
			     btrfs_node_ptr_generation(parent, slot),
			     level - 1, &first_key);
1774 1775 1776
	if (!IS_ERR(eb) && !extent_buffer_uptodate(eb)) {
		free_extent_buffer(eb);
		eb = ERR_PTR(-EIO);
1777 1778 1779
	}

	return eb;
1780 1781
}

C
Chris Mason 已提交
1782 1783 1784 1785 1786
/*
 * node level balancing, used to make sure nodes are in proper order for
 * item deletion.  We balance from the top down, so we have to make sure
 * that a deletion won't leave an node completely empty later on.
 */
1787
static noinline int balance_level(struct btrfs_trans_handle *trans,
1788 1789
			 struct btrfs_root *root,
			 struct btrfs_path *path, int level)
1790
{
1791
	struct btrfs_fs_info *fs_info = root->fs_info;
1792 1793 1794 1795
	struct extent_buffer *right = NULL;
	struct extent_buffer *mid;
	struct extent_buffer *left = NULL;
	struct extent_buffer *parent = NULL;
1796 1797 1798 1799
	int ret = 0;
	int wret;
	int pslot;
	int orig_slot = path->slots[level];
1800
	u64 orig_ptr;
1801

1802
	ASSERT(level > 0);
1803

1804
	mid = path->nodes[level];
1805

1806 1807
	WARN_ON(path->locks[level] != BTRFS_WRITE_LOCK &&
		path->locks[level] != BTRFS_WRITE_LOCK_BLOCKING);
1808 1809
	WARN_ON(btrfs_header_generation(mid) != trans->transid);

1810
	orig_ptr = btrfs_node_blockptr(mid, orig_slot);
1811

L
Li Zefan 已提交
1812
	if (level < BTRFS_MAX_LEVEL - 1) {
1813
		parent = path->nodes[level + 1];
L
Li Zefan 已提交
1814 1815
		pslot = path->slots[level + 1];
	}
1816

C
Chris Mason 已提交
1817 1818 1819 1820
	/*
	 * deal with the case where there is only one pointer in the root
	 * by promoting the node below to a root
	 */
1821 1822
	if (!parent) {
		struct extent_buffer *child;
1823

1824
		if (btrfs_header_nritems(mid) != 1)
1825 1826 1827
			return 0;

		/* promote the child to a root */
1828
		child = btrfs_read_node_slot(mid, 0);
1829 1830
		if (IS_ERR(child)) {
			ret = PTR_ERR(child);
1831
			btrfs_handle_fs_error(fs_info, ret, NULL);
1832 1833 1834
			goto enospc;
		}

1835
		btrfs_tree_lock(child);
1836
		btrfs_set_lock_blocking_write(child);
1837
		ret = btrfs_cow_block(trans, root, child, mid, 0, &child);
1838 1839 1840 1841 1842
		if (ret) {
			btrfs_tree_unlock(child);
			free_extent_buffer(child);
			goto enospc;
		}
1843

1844 1845
		ret = tree_mod_log_insert_root(root->node, child, 1);
		BUG_ON(ret < 0);
1846
		rcu_assign_pointer(root->node, child);
1847

1848
		add_root_to_dirty_list(root);
1849
		btrfs_tree_unlock(child);
1850

1851
		path->locks[level] = 0;
1852
		path->nodes[level] = NULL;
1853
		btrfs_clean_tree_block(mid);
1854
		btrfs_tree_unlock(mid);
1855
		/* once for the path */
1856
		free_extent_buffer(mid);
1857 1858

		root_sub_used(root, mid->len);
1859
		btrfs_free_tree_block(trans, root, mid, 0, 1);
1860
		/* once for the root ptr */
1861
		free_extent_buffer_stale(mid);
1862
		return 0;
1863
	}
1864
	if (btrfs_header_nritems(mid) >
1865
	    BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 4)
1866 1867
		return 0;

1868
	left = btrfs_read_node_slot(parent, pslot - 1);
1869 1870 1871
	if (IS_ERR(left))
		left = NULL;

1872
	if (left) {
1873
		btrfs_tree_lock(left);
1874
		btrfs_set_lock_blocking_write(left);
1875
		wret = btrfs_cow_block(trans, root, left,
1876
				       parent, pslot - 1, &left);
1877 1878 1879 1880
		if (wret) {
			ret = wret;
			goto enospc;
		}
1881
	}
1882

1883
	right = btrfs_read_node_slot(parent, pslot + 1);
1884 1885 1886
	if (IS_ERR(right))
		right = NULL;

1887
	if (right) {
1888
		btrfs_tree_lock(right);
1889
		btrfs_set_lock_blocking_write(right);
1890
		wret = btrfs_cow_block(trans, root, right,
1891
				       parent, pslot + 1, &right);
1892 1893 1894 1895 1896 1897 1898
		if (wret) {
			ret = wret;
			goto enospc;
		}
	}

	/* first, try to make some room in the middle buffer */
1899 1900
	if (left) {
		orig_slot += btrfs_header_nritems(left);
1901
		wret = push_node_left(trans, left, mid, 1);
1902 1903
		if (wret < 0)
			ret = wret;
1904
	}
1905 1906 1907 1908

	/*
	 * then try to empty the right most buffer into the middle
	 */
1909
	if (right) {
1910
		wret = push_node_left(trans, mid, right, 1);
1911
		if (wret < 0 && wret != -ENOSPC)
1912
			ret = wret;
1913
		if (btrfs_header_nritems(right) == 0) {
1914
			btrfs_clean_tree_block(right);
1915
			btrfs_tree_unlock(right);
1916
			del_ptr(root, path, level + 1, pslot + 1);
1917
			root_sub_used(root, right->len);
1918
			btrfs_free_tree_block(trans, root, right, 0, 1);
1919
			free_extent_buffer_stale(right);
1920
			right = NULL;
1921
		} else {
1922 1923
			struct btrfs_disk_key right_key;
			btrfs_node_key(right, &right_key, 0);
1924 1925 1926
			ret = tree_mod_log_insert_key(parent, pslot + 1,
					MOD_LOG_KEY_REPLACE, GFP_NOFS);
			BUG_ON(ret < 0);
1927 1928
			btrfs_set_node_key(parent, &right_key, pslot + 1);
			btrfs_mark_buffer_dirty(parent);
1929 1930
		}
	}
1931
	if (btrfs_header_nritems(mid) == 1) {
1932 1933 1934 1935 1936 1937 1938 1939 1940
		/*
		 * we're not allowed to leave a node with one item in the
		 * tree during a delete.  A deletion from lower in the tree
		 * could try to delete the only pointer in this node.
		 * So, pull some keys from the left.
		 * There has to be a left pointer at this point because
		 * otherwise we would have pulled some pointers from the
		 * right
		 */
1941 1942
		if (!left) {
			ret = -EROFS;
1943
			btrfs_handle_fs_error(fs_info, ret, NULL);
1944 1945
			goto enospc;
		}
1946
		wret = balance_node_right(trans, mid, left);
1947
		if (wret < 0) {
1948
			ret = wret;
1949 1950
			goto enospc;
		}
1951
		if (wret == 1) {
1952
			wret = push_node_left(trans, left, mid, 1);
1953 1954 1955
			if (wret < 0)
				ret = wret;
		}
1956 1957
		BUG_ON(wret == 1);
	}
1958
	if (btrfs_header_nritems(mid) == 0) {
1959
		btrfs_clean_tree_block(mid);
1960
		btrfs_tree_unlock(mid);
1961
		del_ptr(root, path, level + 1, pslot);
1962
		root_sub_used(root, mid->len);
1963
		btrfs_free_tree_block(trans, root, mid, 0, 1);
1964
		free_extent_buffer_stale(mid);
1965
		mid = NULL;
1966 1967
	} else {
		/* update the parent key to reflect our changes */
1968 1969
		struct btrfs_disk_key mid_key;
		btrfs_node_key(mid, &mid_key, 0);
1970 1971 1972
		ret = tree_mod_log_insert_key(parent, pslot,
				MOD_LOG_KEY_REPLACE, GFP_NOFS);
		BUG_ON(ret < 0);
1973 1974
		btrfs_set_node_key(parent, &mid_key, pslot);
		btrfs_mark_buffer_dirty(parent);
1975
	}
1976

1977
	/* update the path */
1978 1979
	if (left) {
		if (btrfs_header_nritems(left) > orig_slot) {
D
David Sterba 已提交
1980
			atomic_inc(&left->refs);
1981
			/* left was locked after cow */
1982
			path->nodes[level] = left;
1983 1984
			path->slots[level + 1] -= 1;
			path->slots[level] = orig_slot;
1985 1986
			if (mid) {
				btrfs_tree_unlock(mid);
1987
				free_extent_buffer(mid);
1988
			}
1989
		} else {
1990
			orig_slot -= btrfs_header_nritems(left);
1991 1992 1993
			path->slots[level] = orig_slot;
		}
	}
1994
	/* double check we haven't messed things up */
C
Chris Mason 已提交
1995
	if (orig_ptr !=
1996
	    btrfs_node_blockptr(path->nodes[level], path->slots[level]))
1997
		BUG();
1998
enospc:
1999 2000
	if (right) {
		btrfs_tree_unlock(right);
2001
		free_extent_buffer(right);
2002 2003 2004 2005
	}
	if (left) {
		if (path->nodes[level] != left)
			btrfs_tree_unlock(left);
2006
		free_extent_buffer(left);
2007
	}
2008 2009 2010
	return ret;
}

C
Chris Mason 已提交
2011 2012 2013 2014
/* Node balancing for insertion.  Here we only split or push nodes around
 * when they are completely full.  This is also done top down, so we
 * have to be pessimistic.
 */
C
Chris Mason 已提交
2015
static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans,
2016 2017
					  struct btrfs_root *root,
					  struct btrfs_path *path, int level)
2018
{
2019
	struct btrfs_fs_info *fs_info = root->fs_info;
2020 2021 2022 2023
	struct extent_buffer *right = NULL;
	struct extent_buffer *mid;
	struct extent_buffer *left = NULL;
	struct extent_buffer *parent = NULL;
2024 2025 2026 2027 2028 2029 2030 2031
	int ret = 0;
	int wret;
	int pslot;
	int orig_slot = path->slots[level];

	if (level == 0)
		return 1;

2032
	mid = path->nodes[level];
2033
	WARN_ON(btrfs_header_generation(mid) != trans->transid);
2034

L
Li Zefan 已提交
2035
	if (level < BTRFS_MAX_LEVEL - 1) {
2036
		parent = path->nodes[level + 1];
L
Li Zefan 已提交
2037 2038
		pslot = path->slots[level + 1];
	}
2039

2040
	if (!parent)
2041 2042
		return 1;

2043
	left = btrfs_read_node_slot(parent, pslot - 1);
2044 2045
	if (IS_ERR(left))
		left = NULL;
2046 2047

	/* first, try to make some room in the middle buffer */
2048
	if (left) {
2049
		u32 left_nr;
2050 2051

		btrfs_tree_lock(left);
2052
		btrfs_set_lock_blocking_write(left);
2053

2054
		left_nr = btrfs_header_nritems(left);
2055
		if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) {
C
Chris Mason 已提交
2056 2057
			wret = 1;
		} else {
2058
			ret = btrfs_cow_block(trans, root, left, parent,
2059
					      pslot - 1, &left);
2060 2061 2062
			if (ret)
				wret = 1;
			else {
2063
				wret = push_node_left(trans, left, mid, 0);
2064
			}
C
Chris Mason 已提交
2065
		}
2066 2067 2068
		if (wret < 0)
			ret = wret;
		if (wret == 0) {
2069
			struct btrfs_disk_key disk_key;
2070
			orig_slot += left_nr;
2071
			btrfs_node_key(mid, &disk_key, 0);
2072 2073 2074
			ret = tree_mod_log_insert_key(parent, pslot,
					MOD_LOG_KEY_REPLACE, GFP_NOFS);
			BUG_ON(ret < 0);
2075 2076 2077 2078
			btrfs_set_node_key(parent, &disk_key, pslot);
			btrfs_mark_buffer_dirty(parent);
			if (btrfs_header_nritems(left) > orig_slot) {
				path->nodes[level] = left;
2079 2080
				path->slots[level + 1] -= 1;
				path->slots[level] = orig_slot;
2081
				btrfs_tree_unlock(mid);
2082
				free_extent_buffer(mid);
2083 2084
			} else {
				orig_slot -=
2085
					btrfs_header_nritems(left);
2086
				path->slots[level] = orig_slot;
2087
				btrfs_tree_unlock(left);
2088
				free_extent_buffer(left);
2089 2090 2091
			}
			return 0;
		}
2092
		btrfs_tree_unlock(left);
2093
		free_extent_buffer(left);
2094
	}
2095
	right = btrfs_read_node_slot(parent, pslot + 1);
2096 2097
	if (IS_ERR(right))
		right = NULL;
2098 2099 2100 2101

	/*
	 * then try to empty the right most buffer into the middle
	 */
2102
	if (right) {
C
Chris Mason 已提交
2103
		u32 right_nr;
2104

2105
		btrfs_tree_lock(right);
2106
		btrfs_set_lock_blocking_write(right);
2107

2108
		right_nr = btrfs_header_nritems(right);
2109
		if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) {
C
Chris Mason 已提交
2110 2111
			wret = 1;
		} else {
2112 2113
			ret = btrfs_cow_block(trans, root, right,
					      parent, pslot + 1,
2114
					      &right);
2115 2116 2117
			if (ret)
				wret = 1;
			else {
2118
				wret = balance_node_right(trans, right, mid);
2119
			}
C
Chris Mason 已提交
2120
		}
2121 2122 2123
		if (wret < 0)
			ret = wret;
		if (wret == 0) {
2124 2125 2126
			struct btrfs_disk_key disk_key;

			btrfs_node_key(right, &disk_key, 0);
2127 2128 2129
			ret = tree_mod_log_insert_key(parent, pslot + 1,
					MOD_LOG_KEY_REPLACE, GFP_NOFS);
			BUG_ON(ret < 0);
2130 2131 2132 2133 2134
			btrfs_set_node_key(parent, &disk_key, pslot + 1);
			btrfs_mark_buffer_dirty(parent);

			if (btrfs_header_nritems(mid) <= orig_slot) {
				path->nodes[level] = right;
2135 2136
				path->slots[level + 1] += 1;
				path->slots[level] = orig_slot -
2137
					btrfs_header_nritems(mid);
2138
				btrfs_tree_unlock(mid);
2139
				free_extent_buffer(mid);
2140
			} else {
2141
				btrfs_tree_unlock(right);
2142
				free_extent_buffer(right);
2143 2144 2145
			}
			return 0;
		}
2146
		btrfs_tree_unlock(right);
2147
		free_extent_buffer(right);
2148 2149 2150 2151
	}
	return 1;
}

2152
/*
C
Chris Mason 已提交
2153 2154
 * readahead one full node of leaves, finding things that are close
 * to the block in 'slot', and triggering ra on them.
2155
 */
2156
static void reada_for_search(struct btrfs_fs_info *fs_info,
2157 2158
			     struct btrfs_path *path,
			     int level, int slot, u64 objectid)
2159
{
2160
	struct extent_buffer *node;
2161
	struct btrfs_disk_key disk_key;
2162 2163
	u32 nritems;
	u64 search;
2164
	u64 target;
2165
	u64 nread = 0;
2166
	struct extent_buffer *eb;
2167 2168 2169
	u32 nr;
	u32 blocksize;
	u32 nscan = 0;
2170

2171
	if (level != 1)
2172 2173 2174
		return;

	if (!path->nodes[level])
2175 2176
		return;

2177
	node = path->nodes[level];
2178

2179
	search = btrfs_node_blockptr(node, slot);
2180 2181
	blocksize = fs_info->nodesize;
	eb = find_extent_buffer(fs_info, search);
2182 2183
	if (eb) {
		free_extent_buffer(eb);
2184 2185 2186
		return;
	}

2187
	target = search;
2188

2189
	nritems = btrfs_header_nritems(node);
2190
	nr = slot;
2191

C
Chris Mason 已提交
2192
	while (1) {
2193
		if (path->reada == READA_BACK) {
2194 2195 2196
			if (nr == 0)
				break;
			nr--;
2197
		} else if (path->reada == READA_FORWARD) {
2198 2199 2200
			nr++;
			if (nr >= nritems)
				break;
2201
		}
2202
		if (path->reada == READA_BACK && objectid) {
2203 2204 2205 2206
			btrfs_node_key(node, &disk_key, nr);
			if (btrfs_disk_key_objectid(&disk_key) != objectid)
				break;
		}
2207
		search = btrfs_node_blockptr(node, nr);
2208 2209
		if ((search <= target && target - search <= 65536) ||
		    (search > target && search - target <= 65536)) {
2210
			readahead_tree_block(fs_info, search);
2211 2212 2213
			nread += blocksize;
		}
		nscan++;
2214
		if ((nread > 65536 || nscan > 32))
2215
			break;
2216 2217
	}
}
2218

2219
static noinline void reada_for_balance(struct btrfs_fs_info *fs_info,
J
Josef Bacik 已提交
2220
				       struct btrfs_path *path, int level)
2221 2222 2223 2224 2225 2226 2227 2228 2229
{
	int slot;
	int nritems;
	struct extent_buffer *parent;
	struct extent_buffer *eb;
	u64 gen;
	u64 block1 = 0;
	u64 block2 = 0;

2230
	parent = path->nodes[level + 1];
2231
	if (!parent)
J
Josef Bacik 已提交
2232
		return;
2233 2234

	nritems = btrfs_header_nritems(parent);
2235
	slot = path->slots[level + 1];
2236 2237 2238 2239

	if (slot > 0) {
		block1 = btrfs_node_blockptr(parent, slot - 1);
		gen = btrfs_node_ptr_generation(parent, slot - 1);
2240
		eb = find_extent_buffer(fs_info, block1);
2241 2242 2243 2244 2245 2246
		/*
		 * if we get -eagain from btrfs_buffer_uptodate, we
		 * don't want to return eagain here.  That will loop
		 * forever
		 */
		if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
2247 2248 2249
			block1 = 0;
		free_extent_buffer(eb);
	}
2250
	if (slot + 1 < nritems) {
2251 2252
		block2 = btrfs_node_blockptr(parent, slot + 1);
		gen = btrfs_node_ptr_generation(parent, slot + 1);
2253
		eb = find_extent_buffer(fs_info, block2);
2254
		if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
2255 2256 2257
			block2 = 0;
		free_extent_buffer(eb);
	}
2258

J
Josef Bacik 已提交
2259
	if (block1)
2260
		readahead_tree_block(fs_info, block1);
J
Josef Bacik 已提交
2261
	if (block2)
2262
		readahead_tree_block(fs_info, block2);
2263 2264 2265
}


C
Chris Mason 已提交
2266
/*
C
Chris Mason 已提交
2267 2268 2269 2270
 * when we walk down the tree, it is usually safe to unlock the higher layers
 * in the tree.  The exceptions are when our path goes through slot 0, because
 * operations on the tree might require changing key pointers higher up in the
 * tree.
C
Chris Mason 已提交
2271
 *
C
Chris Mason 已提交
2272 2273 2274
 * callers might also have set path->keep_locks, which tells this code to keep
 * the lock if the path points to the last slot in the block.  This is part of
 * walking through the tree, and selecting the next slot in the higher block.
C
Chris Mason 已提交
2275
 *
C
Chris Mason 已提交
2276 2277
 * lowest_unlock sets the lowest level in the tree we're allowed to unlock.  so
 * if lowest_unlock is 1, level 0 won't be unlocked
C
Chris Mason 已提交
2278
 */
2279
static noinline void unlock_up(struct btrfs_path *path, int level,
2280 2281
			       int lowest_unlock, int min_write_lock_level,
			       int *write_lock_level)
2282 2283 2284
{
	int i;
	int skip_level = level;
2285
	int no_skips = 0;
2286 2287 2288 2289 2290 2291 2292
	struct extent_buffer *t;

	for (i = level; i < BTRFS_MAX_LEVEL; i++) {
		if (!path->nodes[i])
			break;
		if (!path->locks[i])
			break;
2293
		if (!no_skips && path->slots[i] == 0) {
2294 2295 2296
			skip_level = i + 1;
			continue;
		}
2297
		if (!no_skips && path->keep_locks) {
2298 2299 2300
			u32 nritems;
			t = path->nodes[i];
			nritems = btrfs_header_nritems(t);
2301
			if (nritems < 1 || path->slots[i] >= nritems - 1) {
2302 2303 2304 2305
				skip_level = i + 1;
				continue;
			}
		}
2306 2307 2308
		if (skip_level < i && i >= lowest_unlock)
			no_skips = 1;

2309
		t = path->nodes[i];
2310
		if (i >= lowest_unlock && i > skip_level) {
2311
			btrfs_tree_unlock_rw(t, path->locks[i]);
2312
			path->locks[i] = 0;
2313 2314 2315 2316 2317
			if (write_lock_level &&
			    i > min_write_lock_level &&
			    i <= *write_lock_level) {
				*write_lock_level = i - 1;
			}
2318 2319 2320 2321
		}
	}
}

2322 2323 2324 2325 2326 2327 2328 2329 2330
/*
 * helper function for btrfs_search_slot.  The goal is to find a block
 * in cache without setting the path to blocking.  If we find the block
 * we return zero and the path is unchanged.
 *
 * If we can't find the block, we set the path blocking and do some
 * reada.  -EAGAIN is returned and the search must be repeated.
 */
static int
2331 2332
read_block_for_search(struct btrfs_root *root, struct btrfs_path *p,
		      struct extent_buffer **eb_ret, int level, int slot,
2333
		      const struct btrfs_key *key)
2334
{
2335
	struct btrfs_fs_info *fs_info = root->fs_info;
2336 2337 2338 2339
	u64 blocknr;
	u64 gen;
	struct extent_buffer *b = *eb_ret;
	struct extent_buffer *tmp;
2340
	struct btrfs_key first_key;
2341
	int ret;
2342
	int parent_level;
2343 2344 2345

	blocknr = btrfs_node_blockptr(b, slot);
	gen = btrfs_node_ptr_generation(b, slot);
2346 2347
	parent_level = btrfs_header_level(b);
	btrfs_node_key_to_cpu(b, &first_key, slot);
2348

2349
	tmp = find_extent_buffer(fs_info, blocknr);
2350
	if (tmp) {
2351
		/* first we do an atomic uptodate check */
2352
		if (btrfs_buffer_uptodate(tmp, gen, 1) > 0) {
2353 2354 2355 2356 2357
			/*
			 * Do extra check for first_key, eb can be stale due to
			 * being cached, read from scrub, or have multiple
			 * parents (shared tree blocks).
			 */
2358
			if (btrfs_verify_level_key(tmp,
2359 2360 2361 2362
					parent_level - 1, &first_key, gen)) {
				free_extent_buffer(tmp);
				return -EUCLEAN;
			}
2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375
			*eb_ret = tmp;
			return 0;
		}

		/* the pages were up to date, but we failed
		 * the generation number check.  Do a full
		 * read for the generation number that is correct.
		 * We must do this without dropping locks so
		 * we can trust our generation number
		 */
		btrfs_set_path_blocking(p);

		/* now we're allowed to do a blocking uptodate check */
2376
		ret = btrfs_read_buffer(tmp, gen, parent_level - 1, &first_key);
2377 2378 2379
		if (!ret) {
			*eb_ret = tmp;
			return 0;
2380
		}
2381 2382 2383
		free_extent_buffer(tmp);
		btrfs_release_path(p);
		return -EIO;
2384 2385 2386 2387 2388
	}

	/*
	 * reduce lock contention at high levels
	 * of the btree by dropping locks before
2389 2390 2391
	 * we read.  Don't release the lock on the current
	 * level because we need to walk this node to figure
	 * out which blocks to read.
2392
	 */
2393 2394 2395
	btrfs_unlock_up_safe(p, level + 1);
	btrfs_set_path_blocking(p);

2396
	if (p->reada != READA_NONE)
2397
		reada_for_search(fs_info, p, level, slot, key->objectid);
2398

2399
	ret = -EAGAIN;
2400
	tmp = read_tree_block(fs_info, blocknr, gen, parent_level - 1,
2401
			      &first_key);
2402
	if (!IS_ERR(tmp)) {
2403 2404 2405 2406 2407 2408
		/*
		 * If the read above didn't mark this buffer up to date,
		 * it will never end up being up to date.  Set ret to EIO now
		 * and give up so that our caller doesn't loop forever
		 * on our EAGAINs.
		 */
2409
		if (!extent_buffer_uptodate(tmp))
2410
			ret = -EIO;
2411
		free_extent_buffer(tmp);
2412 2413
	} else {
		ret = PTR_ERR(tmp);
2414
	}
2415 2416

	btrfs_release_path(p);
2417
	return ret;
2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431
}

/*
 * helper function for btrfs_search_slot.  This does all of the checks
 * for node-level blocks and does any balancing required based on
 * the ins_len.
 *
 * If no extra work was required, zero is returned.  If we had to
 * drop the path, -EAGAIN is returned and btrfs_search_slot must
 * start over
 */
static int
setup_nodes_for_search(struct btrfs_trans_handle *trans,
		       struct btrfs_root *root, struct btrfs_path *p,
2432 2433
		       struct extent_buffer *b, int level, int ins_len,
		       int *write_lock_level)
2434
{
2435
	struct btrfs_fs_info *fs_info = root->fs_info;
2436
	int ret;
2437

2438
	if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >=
2439
	    BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3) {
2440 2441
		int sret;

2442 2443 2444 2445 2446 2447
		if (*write_lock_level < level + 1) {
			*write_lock_level = level + 1;
			btrfs_release_path(p);
			goto again;
		}

2448
		btrfs_set_path_blocking(p);
2449
		reada_for_balance(fs_info, p, level);
2450 2451 2452 2453 2454 2455 2456 2457 2458
		sret = split_node(trans, root, p, level);

		BUG_ON(sret > 0);
		if (sret) {
			ret = sret;
			goto done;
		}
		b = p->nodes[level];
	} else if (ins_len < 0 && btrfs_header_nritems(b) <
2459
		   BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 2) {
2460 2461
		int sret;

2462 2463 2464 2465 2466 2467
		if (*write_lock_level < level + 1) {
			*write_lock_level = level + 1;
			btrfs_release_path(p);
			goto again;
		}

2468
		btrfs_set_path_blocking(p);
2469
		reada_for_balance(fs_info, p, level);
2470 2471 2472 2473 2474 2475 2476 2477
		sret = balance_level(trans, root, p, level);

		if (sret) {
			ret = sret;
			goto done;
		}
		b = p->nodes[level];
		if (!b) {
2478
			btrfs_release_path(p);
2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490
			goto again;
		}
		BUG_ON(btrfs_header_nritems(b) == 1);
	}
	return 0;

again:
	ret = -EAGAIN;
done:
	return ret;
}

2491
int btrfs_find_item(struct btrfs_root *fs_root, struct btrfs_path *path,
2492 2493 2494 2495 2496 2497
		u64 iobjectid, u64 ioff, u8 key_type,
		struct btrfs_key *found_key)
{
	int ret;
	struct btrfs_key key;
	struct extent_buffer *eb;
2498 2499

	ASSERT(path);
2500
	ASSERT(found_key);
2501 2502 2503 2504 2505 2506

	key.type = key_type;
	key.objectid = iobjectid;
	key.offset = ioff;

	ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0);
2507
	if (ret < 0)
2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525
		return ret;

	eb = path->nodes[0];
	if (ret && path->slots[0] >= btrfs_header_nritems(eb)) {
		ret = btrfs_next_leaf(fs_root, path);
		if (ret)
			return ret;
		eb = path->nodes[0];
	}

	btrfs_item_key_to_cpu(eb, found_key, path->slots[0]);
	if (found_key->type != key.type ||
			found_key->objectid != key.objectid)
		return 1;

	return 0;
}

2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538
static struct extent_buffer *btrfs_search_slot_get_root(struct btrfs_root *root,
							struct btrfs_path *p,
							int write_lock_level)
{
	struct btrfs_fs_info *fs_info = root->fs_info;
	struct extent_buffer *b;
	int root_lock;
	int level = 0;

	/* We try very hard to do read locks on the root */
	root_lock = BTRFS_READ_LOCK;

	if (p->search_commit_root) {
2539 2540 2541 2542 2543 2544 2545 2546 2547 2548
		/*
		 * The commit roots are read only so we always do read locks,
		 * and we always must hold the commit_root_sem when doing
		 * searches on them, the only exception is send where we don't
		 * want to block transaction commits for a long time, so
		 * we need to clone the commit root in order to avoid races
		 * with transaction commits that create a snapshot of one of
		 * the roots used by a send operation.
		 */
		if (p->need_commit_sem) {
2549
			down_read(&fs_info->commit_root_sem);
2550
			b = btrfs_clone_extent_buffer(root->commit_root);
2551
			up_read(&fs_info->commit_root_sem);
2552 2553 2554 2555 2556
			if (!b)
				return ERR_PTR(-ENOMEM);

		} else {
			b = root->commit_root;
D
David Sterba 已提交
2557
			atomic_inc(&b->refs);
2558 2559
		}
		level = btrfs_header_level(b);
2560 2561 2562 2563 2564
		/*
		 * Ensure that all callers have set skip_locking when
		 * p->search_commit_root = 1.
		 */
		ASSERT(p->skip_locking == 1);
2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575

		goto out;
	}

	if (p->skip_locking) {
		b = btrfs_root_node(root);
		level = btrfs_header_level(b);
		goto out;
	}

	/*
2576 2577
	 * If the level is set to maximum, we can skip trying to get the read
	 * lock.
2578
	 */
2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592
	if (write_lock_level < BTRFS_MAX_LEVEL) {
		/*
		 * We don't know the level of the root node until we actually
		 * have it read locked
		 */
		b = btrfs_read_lock_root_node(root);
		level = btrfs_header_level(b);
		if (level > write_lock_level)
			goto out;

		/* Whoops, must trade for write lock */
		btrfs_tree_read_unlock(b);
		free_extent_buffer(b);
	}
2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610

	b = btrfs_lock_root_node(root);
	root_lock = BTRFS_WRITE_LOCK;

	/* The level might have changed, check again */
	level = btrfs_header_level(b);

out:
	p->nodes[level] = b;
	if (!p->skip_locking)
		p->locks[level] = root_lock;
	/*
	 * Callers are responsible for dropping b's references.
	 */
	return b;
}


C
Chris Mason 已提交
2611
/*
2612 2613
 * btrfs_search_slot - look for a key in a tree and perform necessary
 * modifications to preserve tree invariants.
C
Chris Mason 已提交
2614
 *
2615 2616 2617 2618 2619 2620 2621 2622
 * @trans:	Handle of transaction, used when modifying the tree
 * @p:		Holds all btree nodes along the search path
 * @root:	The root node of the tree
 * @key:	The key we are looking for
 * @ins_len:	Indicates purpose of search, for inserts it is 1, for
 *		deletions it's -1. 0 for plain searches
 * @cow:	boolean should CoW operations be performed. Must always be 1
 *		when modifying the tree.
C
Chris Mason 已提交
2623
 *
2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634
 * If @ins_len > 0, nodes and leaves will be split as we walk down the tree.
 * If @ins_len < 0, nodes will be merged as we walk down the tree (if possible)
 *
 * If @key is found, 0 is returned and you can find the item in the leaf level
 * of the path (level 0)
 *
 * If @key isn't found, 1 is returned and the leaf level of the path (level 0)
 * points to the slot where it should be inserted
 *
 * If an error is encountered while searching the tree a negative error number
 * is returned
C
Chris Mason 已提交
2635
 */
2636 2637 2638
int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root *root,
		      const struct btrfs_key *key, struct btrfs_path *p,
		      int ins_len, int cow)
2639
{
2640
	struct extent_buffer *b;
2641 2642
	int slot;
	int ret;
2643
	int err;
2644
	int level;
2645
	int lowest_unlock = 1;
2646 2647
	/* everything at write_lock_level or lower must be write locked */
	int write_lock_level = 0;
2648
	u8 lowest_level = 0;
2649
	int min_write_lock_level;
2650
	int prev_cmp;
2651

2652
	lowest_level = p->lowest_level;
2653
	WARN_ON(lowest_level && ins_len > 0);
C
Chris Mason 已提交
2654
	WARN_ON(p->nodes[0] != NULL);
2655
	BUG_ON(!cow && ins_len);
2656

2657
	if (ins_len < 0) {
2658
		lowest_unlock = 2;
2659

2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675
		/* when we are removing items, we might have to go up to level
		 * two as we update tree pointers  Make sure we keep write
		 * for those levels as well
		 */
		write_lock_level = 2;
	} else if (ins_len > 0) {
		/*
		 * for inserting items, make sure we have a write lock on
		 * level 1 so we can update keys
		 */
		write_lock_level = 1;
	}

	if (!cow)
		write_lock_level = -1;

J
Josef Bacik 已提交
2676
	if (cow && (p->keep_locks || p->lowest_level))
2677 2678
		write_lock_level = BTRFS_MAX_LEVEL;

2679 2680
	min_write_lock_level = write_lock_level;

2681
again:
2682
	prev_cmp = -1;
2683
	b = btrfs_search_slot_get_root(root, p, write_lock_level);
2684 2685 2686 2687
	if (IS_ERR(b)) {
		ret = PTR_ERR(b);
		goto done;
	}
2688

2689
	while (b) {
2690 2691
		int dec = 0;

2692
		level = btrfs_header_level(b);
2693

C
Chris Mason 已提交
2694
		if (cow) {
2695 2696
			bool last_level = (level == (BTRFS_MAX_LEVEL - 1));

2697 2698 2699 2700 2701
			/*
			 * if we don't really need to cow this block
			 * then we don't want to set the path blocking,
			 * so we test it here
			 */
2702 2703
			if (!should_cow_block(trans, root, b)) {
				trans->dirty = true;
2704
				goto cow_done;
2705
			}
2706

2707 2708 2709 2710
			/*
			 * must have write locks on this node and the
			 * parent
			 */
2711 2712 2713 2714
			if (level > write_lock_level ||
			    (level + 1 > write_lock_level &&
			    level + 1 < BTRFS_MAX_LEVEL &&
			    p->nodes[level + 1])) {
2715 2716 2717 2718 2719
				write_lock_level = level + 1;
				btrfs_release_path(p);
				goto again;
			}

2720
			btrfs_set_path_blocking(p);
2721 2722 2723 2724 2725 2726 2727
			if (last_level)
				err = btrfs_cow_block(trans, root, b, NULL, 0,
						      &b);
			else
				err = btrfs_cow_block(trans, root, b,
						      p->nodes[level + 1],
						      p->slots[level + 1], &b);
2728 2729
			if (err) {
				ret = err;
2730
				goto done;
2731
			}
C
Chris Mason 已提交
2732
		}
2733
cow_done:
2734
		p->nodes[level] = b;
L
Liu Bo 已提交
2735 2736 2737 2738
		/*
		 * Leave path with blocking locks to avoid massive
		 * lock context switch, this is made on purpose.
		 */
2739 2740 2741 2742 2743 2744 2745

		/*
		 * we have a lock on b and as long as we aren't changing
		 * the tree, there is no way to for the items in b to change.
		 * It is safe to drop the lock on our parent before we
		 * go through the expensive btree search on b.
		 *
2746 2747 2748 2749
		 * If we're inserting or deleting (ins_len != 0), then we might
		 * be changing slot zero, which may require changing the parent.
		 * So, we can't drop the lock until after we know which slot
		 * we're operating on.
2750
		 */
2751 2752 2753 2754 2755 2756 2757 2758
		if (!ins_len && !p->keep_locks) {
			int u = level + 1;

			if (u < BTRFS_MAX_LEVEL && p->locks[u]) {
				btrfs_tree_unlock_rw(p->nodes[u], p->locks[u]);
				p->locks[u] = 0;
			}
		}
2759

N
Nikolay Borisov 已提交
2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776
		/*
		 * If btrfs_bin_search returns an exact match (prev_cmp == 0)
		 * we can safely assume the target key will always be in slot 0
		 * on lower levels due to the invariants BTRFS' btree provides,
		 * namely that a btrfs_key_ptr entry always points to the
		 * lowest key in the child node, thus we can skip searching
		 * lower levels
		 */
		if (prev_cmp == 0) {
			slot = 0;
			ret = 0;
		} else {
			ret = btrfs_bin_search(b, key, &slot);
			prev_cmp = ret;
			if (ret < 0)
				goto done;
		}
2777

2778
		if (level == 0) {
2779
			p->slots[level] = slot;
2780
			if (ins_len > 0 &&
2781
			    btrfs_leaf_free_space(b) < ins_len) {
2782 2783 2784 2785 2786 2787
				if (write_lock_level < 1) {
					write_lock_level = 1;
					btrfs_release_path(p);
					goto again;
				}

2788
				btrfs_set_path_blocking(p);
2789 2790
				err = split_leaf(trans, root, key,
						 p, ins_len, ret == 0);
2791

2792 2793 2794
				BUG_ON(err > 0);
				if (err) {
					ret = err;
2795 2796
					goto done;
				}
C
Chris Mason 已提交
2797
			}
2798
			if (!p->search_for_split)
2799
				unlock_up(p, level, lowest_unlock,
2800
					  min_write_lock_level, NULL);
2801
			goto done;
2802
		}
2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863
		if (ret && slot > 0) {
			dec = 1;
			slot--;
		}
		p->slots[level] = slot;
		err = setup_nodes_for_search(trans, root, p, b, level, ins_len,
					     &write_lock_level);
		if (err == -EAGAIN)
			goto again;
		if (err) {
			ret = err;
			goto done;
		}
		b = p->nodes[level];
		slot = p->slots[level];

		/*
		 * Slot 0 is special, if we change the key we have to update
		 * the parent pointer which means we must have a write lock on
		 * the parent
		 */
		if (slot == 0 && ins_len && write_lock_level < level + 1) {
			write_lock_level = level + 1;
			btrfs_release_path(p);
			goto again;
		}

		unlock_up(p, level, lowest_unlock, min_write_lock_level,
			  &write_lock_level);

		if (level == lowest_level) {
			if (dec)
				p->slots[level]++;
			goto done;
		}

		err = read_block_for_search(root, p, &b, level, slot, key);
		if (err == -EAGAIN)
			goto again;
		if (err) {
			ret = err;
			goto done;
		}

		if (!p->skip_locking) {
			level = btrfs_header_level(b);
			if (level <= write_lock_level) {
				if (!btrfs_try_tree_write_lock(b)) {
					btrfs_set_path_blocking(p);
					btrfs_tree_lock(b);
				}
				p->locks[level] = BTRFS_WRITE_LOCK;
			} else {
				if (!btrfs_tree_read_lock_atomic(b)) {
					btrfs_set_path_blocking(p);
					btrfs_tree_read_lock(b);
				}
				p->locks[level] = BTRFS_READ_LOCK;
			}
			p->nodes[level] = b;
		}
2864
	}
2865 2866
	ret = 1;
done:
2867 2868 2869 2870
	/*
	 * we don't really know what they plan on doing with the path
	 * from here on, so for now just mark it as blocking
	 */
2871 2872
	if (!p->leave_spinning)
		btrfs_set_path_blocking(p);
2873
	if (ret < 0 && !p->skip_release_on_error)
2874
		btrfs_release_path(p);
2875
	return ret;
2876 2877
}

J
Jan Schmidt 已提交
2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888
/*
 * Like btrfs_search_slot, this looks for a key in the given tree. It uses the
 * current state of the tree together with the operations recorded in the tree
 * modification log to search for the key in a previous version of this tree, as
 * denoted by the time_seq parameter.
 *
 * Naturally, there is no support for insert, delete or cow operations.
 *
 * The resulting path and return value will be set up as if we called
 * btrfs_search_slot at that point in time with ins_len and cow both set to 0.
 */
2889
int btrfs_search_old_slot(struct btrfs_root *root, const struct btrfs_key *key,
J
Jan Schmidt 已提交
2890 2891
			  struct btrfs_path *p, u64 time_seq)
{
2892
	struct btrfs_fs_info *fs_info = root->fs_info;
J
Jan Schmidt 已提交
2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910
	struct extent_buffer *b;
	int slot;
	int ret;
	int err;
	int level;
	int lowest_unlock = 1;
	u8 lowest_level = 0;

	lowest_level = p->lowest_level;
	WARN_ON(p->nodes[0] != NULL);

	if (p->search_commit_root) {
		BUG_ON(time_seq);
		return btrfs_search_slot(NULL, root, key, p, 0, 0);
	}

again:
	b = get_old_root(root, time_seq);
2911 2912 2913 2914
	if (!b) {
		ret = -EIO;
		goto done;
	}
J
Jan Schmidt 已提交
2915 2916 2917 2918
	level = btrfs_header_level(b);
	p->locks[level] = BTRFS_READ_LOCK;

	while (b) {
2919 2920
		int dec = 0;

J
Jan Schmidt 已提交
2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931
		level = btrfs_header_level(b);
		p->nodes[level] = b;

		/*
		 * we have a lock on b and as long as we aren't changing
		 * the tree, there is no way to for the items in b to change.
		 * It is safe to drop the lock on our parent before we
		 * go through the expensive btree search on b.
		 */
		btrfs_unlock_up_safe(p, level + 1);

N
Nikolay Borisov 已提交
2932
		ret = btrfs_bin_search(b, key, &slot);
2933 2934
		if (ret < 0)
			goto done;
J
Jan Schmidt 已提交
2935

2936
		if (level == 0) {
J
Jan Schmidt 已提交
2937 2938
			p->slots[level] = slot;
			unlock_up(p, level, lowest_unlock, 0, NULL);
2939 2940
			goto done;
		}
J
Jan Schmidt 已提交
2941

2942 2943 2944 2945 2946 2947
		if (ret && slot > 0) {
			dec = 1;
			slot--;
		}
		p->slots[level] = slot;
		unlock_up(p, level, lowest_unlock, 0, NULL);
J
Jan Schmidt 已提交
2948

2949 2950 2951 2952 2953
		if (level == lowest_level) {
			if (dec)
				p->slots[level]++;
			goto done;
		}
J
Jan Schmidt 已提交
2954

2955 2956 2957 2958 2959
		err = read_block_for_search(root, p, &b, level, slot, key);
		if (err == -EAGAIN)
			goto again;
		if (err) {
			ret = err;
J
Jan Schmidt 已提交
2960 2961
			goto done;
		}
2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974

		level = btrfs_header_level(b);
		if (!btrfs_tree_read_lock_atomic(b)) {
			btrfs_set_path_blocking(p);
			btrfs_tree_read_lock(b);
		}
		b = tree_mod_log_rewind(fs_info, p, b, time_seq);
		if (!b) {
			ret = -ENOMEM;
			goto done;
		}
		p->locks[level] = BTRFS_READ_LOCK;
		p->nodes[level] = b;
J
Jan Schmidt 已提交
2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985
	}
	ret = 1;
done:
	if (!p->leave_spinning)
		btrfs_set_path_blocking(p);
	if (ret < 0)
		btrfs_release_path(p);

	return ret;
}

2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998
/*
 * helper to use instead of search slot if no exact match is needed but
 * instead the next or previous item should be returned.
 * When find_higher is true, the next higher item is returned, the next lower
 * otherwise.
 * When return_any and find_higher are both true, and no higher item is found,
 * return the next lower instead.
 * When return_any is true and find_higher is false, and no lower item is found,
 * return the next higher instead.
 * It returns 0 if any item is found, 1 if none is found (tree empty), and
 * < 0 on error
 */
int btrfs_search_slot_for_read(struct btrfs_root *root,
2999 3000 3001
			       const struct btrfs_key *key,
			       struct btrfs_path *p, int find_higher,
			       int return_any)
3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035
{
	int ret;
	struct extent_buffer *leaf;

again:
	ret = btrfs_search_slot(NULL, root, key, p, 0, 0);
	if (ret <= 0)
		return ret;
	/*
	 * a return value of 1 means the path is at the position where the
	 * item should be inserted. Normally this is the next bigger item,
	 * but in case the previous item is the last in a leaf, path points
	 * to the first free slot in the previous leaf, i.e. at an invalid
	 * item.
	 */
	leaf = p->nodes[0];

	if (find_higher) {
		if (p->slots[0] >= btrfs_header_nritems(leaf)) {
			ret = btrfs_next_leaf(root, p);
			if (ret <= 0)
				return ret;
			if (!return_any)
				return 1;
			/*
			 * no higher item found, return the next
			 * lower instead
			 */
			return_any = 0;
			find_higher = 0;
			btrfs_release_path(p);
			goto again;
		}
	} else {
3036 3037 3038 3039 3040
		if (p->slots[0] == 0) {
			ret = btrfs_prev_leaf(root, p);
			if (ret < 0)
				return ret;
			if (!ret) {
3041 3042 3043
				leaf = p->nodes[0];
				if (p->slots[0] == btrfs_header_nritems(leaf))
					p->slots[0]--;
3044
				return 0;
3045
			}
3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056
			if (!return_any)
				return 1;
			/*
			 * no lower item found, return the next
			 * higher instead
			 */
			return_any = 0;
			find_higher = 1;
			btrfs_release_path(p);
			goto again;
		} else {
3057 3058 3059 3060 3061 3062
			--p->slots[0];
		}
	}
	return 0;
}

C
Chris Mason 已提交
3063 3064 3065 3066 3067 3068
/*
 * adjust the pointers going up the tree, starting at level
 * making sure the right key of each node is points to 'key'.
 * This is used after shifting pointers to the left, so it stops
 * fixing up pointers when a given leaf/node is not in slot 0 of the
 * higher levels
C
Chris Mason 已提交
3069
 *
C
Chris Mason 已提交
3070
 */
3071
static void fixup_low_keys(struct btrfs_path *path,
3072
			   struct btrfs_disk_key *key, int level)
3073 3074
{
	int i;
3075
	struct extent_buffer *t;
3076
	int ret;
3077

C
Chris Mason 已提交
3078
	for (i = level; i < BTRFS_MAX_LEVEL; i++) {
3079
		int tslot = path->slots[i];
3080

3081
		if (!path->nodes[i])
3082
			break;
3083
		t = path->nodes[i];
3084 3085 3086
		ret = tree_mod_log_insert_key(t, tslot, MOD_LOG_KEY_REPLACE,
				GFP_ATOMIC);
		BUG_ON(ret < 0);
3087
		btrfs_set_node_key(t, key, tslot);
C
Chris Mason 已提交
3088
		btrfs_mark_buffer_dirty(path->nodes[i]);
3089 3090 3091 3092 3093
		if (tslot != 0)
			break;
	}
}

Z
Zheng Yan 已提交
3094 3095 3096 3097 3098 3099
/*
 * update item key.
 *
 * This function isn't completely safe. It's the caller's responsibility
 * that the new key won't break the order
 */
3100 3101
void btrfs_set_item_key_safe(struct btrfs_fs_info *fs_info,
			     struct btrfs_path *path,
3102
			     const struct btrfs_key *new_key)
Z
Zheng Yan 已提交
3103 3104 3105 3106 3107 3108 3109 3110 3111
{
	struct btrfs_disk_key disk_key;
	struct extent_buffer *eb;
	int slot;

	eb = path->nodes[0];
	slot = path->slots[0];
	if (slot > 0) {
		btrfs_item_key(eb, &disk_key, slot - 1);
3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122
		if (unlikely(comp_keys(&disk_key, new_key) >= 0)) {
			btrfs_crit(fs_info,
		"slot %u key (%llu %u %llu) new key (%llu %u %llu)",
				   slot, btrfs_disk_key_objectid(&disk_key),
				   btrfs_disk_key_type(&disk_key),
				   btrfs_disk_key_offset(&disk_key),
				   new_key->objectid, new_key->type,
				   new_key->offset);
			btrfs_print_leaf(eb);
			BUG();
		}
Z
Zheng Yan 已提交
3123 3124 3125
	}
	if (slot < btrfs_header_nritems(eb) - 1) {
		btrfs_item_key(eb, &disk_key, slot + 1);
3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136
		if (unlikely(comp_keys(&disk_key, new_key) <= 0)) {
			btrfs_crit(fs_info,
		"slot %u key (%llu %u %llu) new key (%llu %u %llu)",
				   slot, btrfs_disk_key_objectid(&disk_key),
				   btrfs_disk_key_type(&disk_key),
				   btrfs_disk_key_offset(&disk_key),
				   new_key->objectid, new_key->type,
				   new_key->offset);
			btrfs_print_leaf(eb);
			BUG();
		}
Z
Zheng Yan 已提交
3137 3138 3139 3140 3141 3142
	}

	btrfs_cpu_key_to_disk(&disk_key, new_key);
	btrfs_set_item_key(eb, &disk_key, slot);
	btrfs_mark_buffer_dirty(eb);
	if (slot == 0)
3143
		fixup_low_keys(path, &disk_key, 1);
Z
Zheng Yan 已提交
3144 3145
}

C
Chris Mason 已提交
3146 3147
/*
 * try to push data from one node into the next node left in the
3148
 * tree.
C
Chris Mason 已提交
3149 3150 3151
 *
 * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
 * error, and > 0 if there was no room in the left hand block.
C
Chris Mason 已提交
3152
 */
3153
static int push_node_left(struct btrfs_trans_handle *trans,
3154
			  struct extent_buffer *dst,
3155
			  struct extent_buffer *src, int empty)
3156
{
3157
	struct btrfs_fs_info *fs_info = trans->fs_info;
3158
	int push_items = 0;
3159 3160
	int src_nritems;
	int dst_nritems;
C
Chris Mason 已提交
3161
	int ret = 0;
3162

3163 3164
	src_nritems = btrfs_header_nritems(src);
	dst_nritems = btrfs_header_nritems(dst);
3165
	push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems;
3166 3167
	WARN_ON(btrfs_header_generation(src) != trans->transid);
	WARN_ON(btrfs_header_generation(dst) != trans->transid);
3168

3169
	if (!empty && src_nritems <= 8)
3170 3171
		return 1;

C
Chris Mason 已提交
3172
	if (push_items <= 0)
3173 3174
		return 1;

3175
	if (empty) {
3176
		push_items = min(src_nritems, push_items);
3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188
		if (push_items < src_nritems) {
			/* leave at least 8 pointers in the node if
			 * we aren't going to empty it
			 */
			if (src_nritems - push_items < 8) {
				if (push_items <= 8)
					return 1;
				push_items -= 8;
			}
		}
	} else
		push_items = min(src_nritems - 8, push_items);
3189

3190
	ret = tree_mod_log_eb_copy(dst, src, dst_nritems, 0, push_items);
3191
	if (ret) {
3192
		btrfs_abort_transaction(trans, ret);
3193 3194
		return ret;
	}
3195 3196 3197
	copy_extent_buffer(dst, src,
			   btrfs_node_key_ptr_offset(dst_nritems),
			   btrfs_node_key_ptr_offset(0),
C
Chris Mason 已提交
3198
			   push_items * sizeof(struct btrfs_key_ptr));
3199

3200
	if (push_items < src_nritems) {
3201
		/*
3202 3203
		 * Don't call tree_mod_log_insert_move here, key removal was
		 * already fully logged by tree_mod_log_eb_copy above.
3204
		 */
3205 3206 3207 3208 3209 3210 3211 3212 3213
		memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0),
				      btrfs_node_key_ptr_offset(push_items),
				      (src_nritems - push_items) *
				      sizeof(struct btrfs_key_ptr));
	}
	btrfs_set_header_nritems(src, src_nritems - push_items);
	btrfs_set_header_nritems(dst, dst_nritems + push_items);
	btrfs_mark_buffer_dirty(src);
	btrfs_mark_buffer_dirty(dst);
Z
Zheng Yan 已提交
3214

3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226
	return ret;
}

/*
 * try to push data from one node into the next node right in the
 * tree.
 *
 * returns 0 if some ptrs were pushed, < 0 if there was some horrible
 * error, and > 0 if there was no room in the right hand block.
 *
 * this will  only push up to 1/2 the contents of the left node over
 */
3227 3228 3229
static int balance_node_right(struct btrfs_trans_handle *trans,
			      struct extent_buffer *dst,
			      struct extent_buffer *src)
3230
{
3231
	struct btrfs_fs_info *fs_info = trans->fs_info;
3232 3233 3234 3235 3236 3237
	int push_items = 0;
	int max_push;
	int src_nritems;
	int dst_nritems;
	int ret = 0;

3238 3239 3240
	WARN_ON(btrfs_header_generation(src) != trans->transid);
	WARN_ON(btrfs_header_generation(dst) != trans->transid);

3241 3242
	src_nritems = btrfs_header_nritems(src);
	dst_nritems = btrfs_header_nritems(dst);
3243
	push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems;
C
Chris Mason 已提交
3244
	if (push_items <= 0)
3245
		return 1;
3246

C
Chris Mason 已提交
3247
	if (src_nritems < 4)
3248
		return 1;
3249 3250 3251

	max_push = src_nritems / 2 + 1;
	/* don't try to empty the node */
C
Chris Mason 已提交
3252
	if (max_push >= src_nritems)
3253
		return 1;
Y
Yan 已提交
3254

3255 3256 3257
	if (max_push < push_items)
		push_items = max_push;

3258 3259
	ret = tree_mod_log_insert_move(dst, push_items, 0, dst_nritems);
	BUG_ON(ret < 0);
3260 3261 3262 3263
	memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items),
				      btrfs_node_key_ptr_offset(0),
				      (dst_nritems) *
				      sizeof(struct btrfs_key_ptr));
C
Chris Mason 已提交
3264

3265 3266
	ret = tree_mod_log_eb_copy(dst, src, 0, src_nritems - push_items,
				   push_items);
3267
	if (ret) {
3268
		btrfs_abort_transaction(trans, ret);
3269 3270
		return ret;
	}
3271 3272 3273
	copy_extent_buffer(dst, src,
			   btrfs_node_key_ptr_offset(0),
			   btrfs_node_key_ptr_offset(src_nritems - push_items),
C
Chris Mason 已提交
3274
			   push_items * sizeof(struct btrfs_key_ptr));
3275

3276 3277
	btrfs_set_header_nritems(src, src_nritems - push_items);
	btrfs_set_header_nritems(dst, dst_nritems + push_items);
3278

3279 3280
	btrfs_mark_buffer_dirty(src);
	btrfs_mark_buffer_dirty(dst);
Z
Zheng Yan 已提交
3281

C
Chris Mason 已提交
3282
	return ret;
3283 3284
}

C
Chris Mason 已提交
3285 3286 3287 3288
/*
 * helper function to insert a new root level in the tree.
 * A new node is allocated, and a single item is inserted to
 * point to the existing root
C
Chris Mason 已提交
3289 3290
 *
 * returns zero on success or < 0 on failure.
C
Chris Mason 已提交
3291
 */
C
Chris Mason 已提交
3292
static noinline int insert_new_root(struct btrfs_trans_handle *trans,
3293
			   struct btrfs_root *root,
3294
			   struct btrfs_path *path, int level)
C
Chris Mason 已提交
3295
{
3296
	struct btrfs_fs_info *fs_info = root->fs_info;
3297
	u64 lower_gen;
3298 3299
	struct extent_buffer *lower;
	struct extent_buffer *c;
3300
	struct extent_buffer *old;
3301
	struct btrfs_disk_key lower_key;
3302
	int ret;
C
Chris Mason 已提交
3303 3304 3305 3306

	BUG_ON(path->nodes[level]);
	BUG_ON(path->nodes[level-1] != root->node);

3307 3308 3309 3310 3311 3312
	lower = path->nodes[level-1];
	if (level == 1)
		btrfs_item_key(lower, &lower_key, 0);
	else
		btrfs_node_key(lower, &lower_key, 0);

3313 3314
	c = alloc_tree_block_no_bg_flush(trans, root, 0, &lower_key, level,
					 root->node->start, 0);
3315 3316
	if (IS_ERR(c))
		return PTR_ERR(c);
3317

3318
	root_add_used(root, fs_info->nodesize);
3319

3320 3321
	btrfs_set_header_nritems(c, 1);
	btrfs_set_node_key(c, &lower_key, 0);
3322
	btrfs_set_node_blockptr(c, 0, lower->start);
3323
	lower_gen = btrfs_header_generation(lower);
Z
Zheng Yan 已提交
3324
	WARN_ON(lower_gen != trans->transid);
3325 3326

	btrfs_set_node_ptr_generation(c, 0, lower_gen);
3327

3328
	btrfs_mark_buffer_dirty(c);
3329

3330
	old = root->node;
3331 3332
	ret = tree_mod_log_insert_root(root->node, c, 0);
	BUG_ON(ret < 0);
3333
	rcu_assign_pointer(root->node, c);
3334 3335 3336 3337

	/* the super has an extra ref to root->node */
	free_extent_buffer(old);

3338
	add_root_to_dirty_list(root);
D
David Sterba 已提交
3339
	atomic_inc(&c->refs);
3340
	path->nodes[level] = c;
3341
	path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
C
Chris Mason 已提交
3342 3343 3344 3345
	path->slots[level] = 0;
	return 0;
}

C
Chris Mason 已提交
3346 3347 3348
/*
 * worker function to insert a single pointer in a node.
 * the node should have enough room for the pointer already
C
Chris Mason 已提交
3349
 *
C
Chris Mason 已提交
3350 3351 3352
 * slot and level indicate where you want the key to go, and
 * blocknr is the block the key points to.
 */
3353
static void insert_ptr(struct btrfs_trans_handle *trans,
3354
		       struct btrfs_path *path,
3355
		       struct btrfs_disk_key *key, u64 bytenr,
3356
		       int slot, int level)
C
Chris Mason 已提交
3357
{
3358
	struct extent_buffer *lower;
C
Chris Mason 已提交
3359
	int nritems;
3360
	int ret;
C
Chris Mason 已提交
3361 3362

	BUG_ON(!path->nodes[level]);
3363
	btrfs_assert_tree_locked(path->nodes[level]);
3364 3365
	lower = path->nodes[level];
	nritems = btrfs_header_nritems(lower);
S
Stoyan Gaydarov 已提交
3366
	BUG_ON(slot > nritems);
3367
	BUG_ON(nritems == BTRFS_NODEPTRS_PER_BLOCK(trans->fs_info));
C
Chris Mason 已提交
3368
	if (slot != nritems) {
3369 3370
		if (level) {
			ret = tree_mod_log_insert_move(lower, slot + 1, slot,
3371
					nritems - slot);
3372 3373
			BUG_ON(ret < 0);
		}
3374 3375 3376
		memmove_extent_buffer(lower,
			      btrfs_node_key_ptr_offset(slot + 1),
			      btrfs_node_key_ptr_offset(slot),
C
Chris Mason 已提交
3377
			      (nritems - slot) * sizeof(struct btrfs_key_ptr));
C
Chris Mason 已提交
3378
	}
3379
	if (level) {
3380 3381
		ret = tree_mod_log_insert_key(lower, slot, MOD_LOG_KEY_ADD,
				GFP_NOFS);
3382 3383
		BUG_ON(ret < 0);
	}
3384
	btrfs_set_node_key(lower, key, slot);
3385
	btrfs_set_node_blockptr(lower, slot, bytenr);
3386 3387
	WARN_ON(trans->transid == 0);
	btrfs_set_node_ptr_generation(lower, slot, trans->transid);
3388 3389
	btrfs_set_header_nritems(lower, nritems + 1);
	btrfs_mark_buffer_dirty(lower);
C
Chris Mason 已提交
3390 3391
}

C
Chris Mason 已提交
3392 3393 3394 3395 3396 3397
/*
 * split the node at the specified level in path in two.
 * The path is corrected to point to the appropriate node after the split
 *
 * Before splitting this tries to make some room in the node by pushing
 * left and right, if either one works, it returns right away.
C
Chris Mason 已提交
3398 3399
 *
 * returns 0 on success and < 0 on failure
C
Chris Mason 已提交
3400
 */
3401 3402 3403
static noinline int split_node(struct btrfs_trans_handle *trans,
			       struct btrfs_root *root,
			       struct btrfs_path *path, int level)
3404
{
3405
	struct btrfs_fs_info *fs_info = root->fs_info;
3406 3407 3408
	struct extent_buffer *c;
	struct extent_buffer *split;
	struct btrfs_disk_key disk_key;
3409
	int mid;
C
Chris Mason 已提交
3410
	int ret;
3411
	u32 c_nritems;
3412

3413
	c = path->nodes[level];
3414
	WARN_ON(btrfs_header_generation(c) != trans->transid);
3415
	if (c == root->node) {
3416
		/*
3417 3418
		 * trying to split the root, lets make a new one
		 *
3419
		 * tree mod log: We don't log_removal old root in
3420 3421 3422 3423 3424
		 * insert_new_root, because that root buffer will be kept as a
		 * normal node. We are going to log removal of half of the
		 * elements below with tree_mod_log_eb_copy. We're holding a
		 * tree lock on the buffer, which is why we cannot race with
		 * other tree_mod_log users.
3425
		 */
3426
		ret = insert_new_root(trans, root, path, level + 1);
C
Chris Mason 已提交
3427 3428
		if (ret)
			return ret;
3429
	} else {
3430
		ret = push_nodes_for_insert(trans, root, path, level);
3431 3432
		c = path->nodes[level];
		if (!ret && btrfs_header_nritems(c) <
3433
		    BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3)
3434
			return 0;
3435 3436
		if (ret < 0)
			return ret;
3437
	}
3438

3439
	c_nritems = btrfs_header_nritems(c);
3440 3441
	mid = (c_nritems + 1) / 2;
	btrfs_node_key(c, &disk_key, mid);
3442

3443 3444
	split = alloc_tree_block_no_bg_flush(trans, root, 0, &disk_key, level,
					     c->start, 0);
3445 3446 3447
	if (IS_ERR(split))
		return PTR_ERR(split);

3448
	root_add_used(root, fs_info->nodesize);
3449
	ASSERT(btrfs_header_level(c) == level);
3450

3451
	ret = tree_mod_log_eb_copy(split, c, 0, mid, c_nritems - mid);
3452
	if (ret) {
3453
		btrfs_abort_transaction(trans, ret);
3454 3455
		return ret;
	}
3456 3457 3458 3459 3460 3461
	copy_extent_buffer(split, c,
			   btrfs_node_key_ptr_offset(0),
			   btrfs_node_key_ptr_offset(mid),
			   (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
	btrfs_set_header_nritems(split, c_nritems - mid);
	btrfs_set_header_nritems(c, mid);
C
Chris Mason 已提交
3462 3463
	ret = 0;

3464 3465 3466
	btrfs_mark_buffer_dirty(c);
	btrfs_mark_buffer_dirty(split);

3467
	insert_ptr(trans, path, &disk_key, split->start,
3468
		   path->slots[level + 1] + 1, level + 1);
C
Chris Mason 已提交
3469

C
Chris Mason 已提交
3470
	if (path->slots[level] >= mid) {
C
Chris Mason 已提交
3471
		path->slots[level] -= mid;
3472
		btrfs_tree_unlock(c);
3473 3474
		free_extent_buffer(c);
		path->nodes[level] = split;
C
Chris Mason 已提交
3475 3476
		path->slots[level + 1] += 1;
	} else {
3477
		btrfs_tree_unlock(split);
3478
		free_extent_buffer(split);
3479
	}
C
Chris Mason 已提交
3480
	return ret;
3481 3482
}

C
Chris Mason 已提交
3483 3484 3485 3486 3487
/*
 * how many bytes are required to store the items in a leaf.  start
 * and nr indicate which items in the leaf to check.  This totals up the
 * space used both by the item structs and the item data
 */
3488
static int leaf_space_used(struct extent_buffer *l, int start, int nr)
3489
{
J
Josef Bacik 已提交
3490 3491
	struct btrfs_item *start_item;
	struct btrfs_item *end_item;
3492
	int data_len;
3493
	int nritems = btrfs_header_nritems(l);
3494
	int end = min(nritems, start + nr) - 1;
3495 3496 3497

	if (!nr)
		return 0;
3498 3499
	start_item = btrfs_item_nr(start);
	end_item = btrfs_item_nr(end);
3500 3501 3502
	data_len = btrfs_item_offset(l, start_item) +
		   btrfs_item_size(l, start_item);
	data_len = data_len - btrfs_item_offset(l, end_item);
C
Chris Mason 已提交
3503
	data_len += sizeof(struct btrfs_item) * nr;
3504
	WARN_ON(data_len < 0);
3505 3506 3507
	return data_len;
}

3508 3509 3510 3511 3512
/*
 * The space between the end of the leaf items and
 * the start of the leaf data.  IOW, how much room
 * the leaf has left for both items and data
 */
3513
noinline int btrfs_leaf_free_space(struct extent_buffer *leaf)
3514
{
3515
	struct btrfs_fs_info *fs_info = leaf->fs_info;
3516 3517
	int nritems = btrfs_header_nritems(leaf);
	int ret;
3518 3519

	ret = BTRFS_LEAF_DATA_SIZE(fs_info) - leaf_space_used(leaf, 0, nritems);
3520
	if (ret < 0) {
3521 3522 3523 3524 3525
		btrfs_crit(fs_info,
			   "leaf free space ret %d, leaf data size %lu, used %d nritems %d",
			   ret,
			   (unsigned long) BTRFS_LEAF_DATA_SIZE(fs_info),
			   leaf_space_used(leaf, 0, nritems), nritems);
3526 3527
	}
	return ret;
3528 3529
}

3530 3531 3532 3533
/*
 * min slot controls the lowest index we're willing to push to the
 * right.  We'll push up to and including min_slot, but no lower
 */
3534
static noinline int __push_leaf_right(struct btrfs_path *path,
3535 3536
				      int data_size, int empty,
				      struct extent_buffer *right,
3537 3538
				      int free_space, u32 left_nritems,
				      u32 min_slot)
C
Chris Mason 已提交
3539
{
3540
	struct btrfs_fs_info *fs_info = right->fs_info;
3541
	struct extent_buffer *left = path->nodes[0];
3542
	struct extent_buffer *upper = path->nodes[1];
3543
	struct btrfs_map_token token;
3544
	struct btrfs_disk_key disk_key;
C
Chris Mason 已提交
3545
	int slot;
3546
	u32 i;
C
Chris Mason 已提交
3547 3548
	int push_space = 0;
	int push_items = 0;
C
Chris Mason 已提交
3549
	struct btrfs_item *item;
3550
	u32 nr;
3551
	u32 right_nritems;
3552
	u32 data_end;
3553
	u32 this_item_size;
C
Chris Mason 已提交
3554

3555 3556 3557
	if (empty)
		nr = 0;
	else
3558
		nr = max_t(u32, 1, min_slot);
3559

Z
Zheng Yan 已提交
3560
	if (path->slots[0] >= left_nritems)
3561
		push_space += data_size;
Z
Zheng Yan 已提交
3562

3563
	slot = path->slots[1];
3564 3565
	i = left_nritems - 1;
	while (i >= nr) {
3566
		item = btrfs_item_nr(i);
3567

Z
Zheng Yan 已提交
3568 3569 3570 3571
		if (!empty && push_items > 0) {
			if (path->slots[0] > i)
				break;
			if (path->slots[0] == i) {
3572 3573
				int space = btrfs_leaf_free_space(left);

Z
Zheng Yan 已提交
3574 3575 3576 3577 3578
				if (space + push_space * 2 > free_space)
					break;
			}
		}

C
Chris Mason 已提交
3579
		if (path->slots[0] == i)
3580
			push_space += data_size;
3581 3582 3583

		this_item_size = btrfs_item_size(left, item);
		if (this_item_size + sizeof(*item) + push_space > free_space)
C
Chris Mason 已提交
3584
			break;
Z
Zheng Yan 已提交
3585

C
Chris Mason 已提交
3586
		push_items++;
3587
		push_space += this_item_size + sizeof(*item);
3588 3589 3590
		if (i == 0)
			break;
		i--;
3591
	}
3592

3593 3594
	if (push_items == 0)
		goto out_unlock;
3595

J
Julia Lawall 已提交
3596
	WARN_ON(!empty && push_items == left_nritems);
3597

C
Chris Mason 已提交
3598
	/* push left to right */
3599
	right_nritems = btrfs_header_nritems(right);
3600

3601
	push_space = btrfs_item_end_nr(left, left_nritems - push_items);
3602
	push_space -= leaf_data_end(left);
3603

C
Chris Mason 已提交
3604
	/* make room in the right data area */
3605
	data_end = leaf_data_end(right);
3606
	memmove_extent_buffer(right,
3607 3608
			      BTRFS_LEAF_DATA_OFFSET + data_end - push_space,
			      BTRFS_LEAF_DATA_OFFSET + data_end,
3609
			      BTRFS_LEAF_DATA_SIZE(fs_info) - data_end);
3610

C
Chris Mason 已提交
3611
	/* copy from the left data area */
3612
	copy_extent_buffer(right, left, BTRFS_LEAF_DATA_OFFSET +
3613
		     BTRFS_LEAF_DATA_SIZE(fs_info) - push_space,
3614
		     BTRFS_LEAF_DATA_OFFSET + leaf_data_end(left),
C
Chris Mason 已提交
3615
		     push_space);
3616 3617 3618 3619 3620

	memmove_extent_buffer(right, btrfs_item_nr_offset(push_items),
			      btrfs_item_nr_offset(0),
			      right_nritems * sizeof(struct btrfs_item));

C
Chris Mason 已提交
3621
	/* copy the items from left to right */
3622 3623 3624
	copy_extent_buffer(right, left, btrfs_item_nr_offset(0),
		   btrfs_item_nr_offset(left_nritems - push_items),
		   push_items * sizeof(struct btrfs_item));
C
Chris Mason 已提交
3625 3626

	/* update the item pointers */
3627
	btrfs_init_map_token(&token, right);
3628
	right_nritems += push_items;
3629
	btrfs_set_header_nritems(right, right_nritems);
3630
	push_space = BTRFS_LEAF_DATA_SIZE(fs_info);
3631
	for (i = 0; i < right_nritems; i++) {
3632
		item = btrfs_item_nr(i);
3633 3634
		push_space -= btrfs_token_item_size(&token, item);
		btrfs_set_token_item_offset(&token, item, push_space);
3635 3636
	}

3637
	left_nritems -= push_items;
3638
	btrfs_set_header_nritems(left, left_nritems);
C
Chris Mason 已提交
3639

3640 3641
	if (left_nritems)
		btrfs_mark_buffer_dirty(left);
3642
	else
3643
		btrfs_clean_tree_block(left);
3644

3645
	btrfs_mark_buffer_dirty(right);
3646

3647 3648
	btrfs_item_key(right, &disk_key, 0);
	btrfs_set_node_key(upper, &disk_key, slot + 1);
C
Chris Mason 已提交
3649
	btrfs_mark_buffer_dirty(upper);
C
Chris Mason 已提交
3650

C
Chris Mason 已提交
3651
	/* then fixup the leaf pointer in the path */
3652 3653
	if (path->slots[0] >= left_nritems) {
		path->slots[0] -= left_nritems;
3654
		if (btrfs_header_nritems(path->nodes[0]) == 0)
3655
			btrfs_clean_tree_block(path->nodes[0]);
3656
		btrfs_tree_unlock(path->nodes[0]);
3657 3658
		free_extent_buffer(path->nodes[0]);
		path->nodes[0] = right;
C
Chris Mason 已提交
3659 3660
		path->slots[1] += 1;
	} else {
3661
		btrfs_tree_unlock(right);
3662
		free_extent_buffer(right);
C
Chris Mason 已提交
3663 3664
	}
	return 0;
3665 3666 3667 3668 3669

out_unlock:
	btrfs_tree_unlock(right);
	free_extent_buffer(right);
	return 1;
C
Chris Mason 已提交
3670
}
3671

3672 3673 3674 3675 3676 3677
/*
 * push some data in the path leaf to the right, trying to free up at
 * least data_size bytes.  returns zero if the push worked, nonzero otherwise
 *
 * returns 1 if the push failed because the other node didn't have enough
 * room, 0 if everything worked out and < 0 if there were major errors.
3678 3679 3680
 *
 * this will push starting from min_slot to the end of the leaf.  It won't
 * push any slot lower than min_slot
3681 3682
 */
static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
3683 3684 3685
			   *root, struct btrfs_path *path,
			   int min_data_size, int data_size,
			   int empty, u32 min_slot)
3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704
{
	struct extent_buffer *left = path->nodes[0];
	struct extent_buffer *right;
	struct extent_buffer *upper;
	int slot;
	int free_space;
	u32 left_nritems;
	int ret;

	if (!path->nodes[1])
		return 1;

	slot = path->slots[1];
	upper = path->nodes[1];
	if (slot >= btrfs_header_nritems(upper) - 1)
		return 1;

	btrfs_assert_tree_locked(path->nodes[1]);

3705
	right = btrfs_read_node_slot(upper, slot + 1);
3706 3707 3708 3709 3710
	/*
	 * slot + 1 is not valid or we fail to read the right node,
	 * no big deal, just return.
	 */
	if (IS_ERR(right))
T
Tsutomu Itoh 已提交
3711 3712
		return 1;

3713
	btrfs_tree_lock(right);
3714
	btrfs_set_lock_blocking_write(right);
3715

3716
	free_space = btrfs_leaf_free_space(right);
3717 3718 3719 3720 3721 3722 3723 3724 3725
	if (free_space < data_size)
		goto out_unlock;

	/* cow and double check */
	ret = btrfs_cow_block(trans, root, right, upper,
			      slot + 1, &right);
	if (ret)
		goto out_unlock;

3726
	free_space = btrfs_leaf_free_space(right);
3727 3728 3729 3730 3731 3732 3733
	if (free_space < data_size)
		goto out_unlock;

	left_nritems = btrfs_header_nritems(left);
	if (left_nritems == 0)
		goto out_unlock;

3734 3735 3736 3737
	if (path->slots[0] == left_nritems && !empty) {
		/* Key greater than all keys in the leaf, right neighbor has
		 * enough room for it and we're not emptying our leaf to delete
		 * it, therefore use right neighbor to insert the new item and
3738
		 * no need to touch/dirty our left leaf. */
3739 3740 3741 3742 3743 3744 3745 3746
		btrfs_tree_unlock(left);
		free_extent_buffer(left);
		path->nodes[0] = right;
		path->slots[0] = 0;
		path->slots[1]++;
		return 0;
	}

3747
	return __push_leaf_right(path, min_data_size, empty,
3748
				right, free_space, left_nritems, min_slot);
3749 3750 3751 3752 3753 3754
out_unlock:
	btrfs_tree_unlock(right);
	free_extent_buffer(right);
	return 1;
}

C
Chris Mason 已提交
3755 3756 3757
/*
 * push some data in the path leaf to the left, trying to free up at
 * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3758 3759 3760 3761
 *
 * max_slot can put a limit on how far into the leaf we'll push items.  The
 * item at 'max_slot' won't be touched.  Use (u32)-1 to make us do all the
 * items
C
Chris Mason 已提交
3762
 */
3763
static noinline int __push_leaf_left(struct btrfs_path *path, int data_size,
3764
				     int empty, struct extent_buffer *left,
3765 3766
				     int free_space, u32 right_nritems,
				     u32 max_slot)
3767
{
3768
	struct btrfs_fs_info *fs_info = left->fs_info;
3769 3770
	struct btrfs_disk_key disk_key;
	struct extent_buffer *right = path->nodes[0];
3771 3772 3773
	int i;
	int push_space = 0;
	int push_items = 0;
C
Chris Mason 已提交
3774
	struct btrfs_item *item;
3775
	u32 old_left_nritems;
3776
	u32 nr;
C
Chris Mason 已提交
3777
	int ret = 0;
3778 3779
	u32 this_item_size;
	u32 old_left_item_size;
3780 3781
	struct btrfs_map_token token;

3782
	if (empty)
3783
		nr = min(right_nritems, max_slot);
3784
	else
3785
		nr = min(right_nritems - 1, max_slot);
3786 3787

	for (i = 0; i < nr; i++) {
3788
		item = btrfs_item_nr(i);
3789

Z
Zheng Yan 已提交
3790 3791 3792 3793
		if (!empty && push_items > 0) {
			if (path->slots[0] < i)
				break;
			if (path->slots[0] == i) {
3794 3795
				int space = btrfs_leaf_free_space(right);

Z
Zheng Yan 已提交
3796 3797 3798 3799 3800
				if (space + push_space * 2 > free_space)
					break;
			}
		}

3801
		if (path->slots[0] == i)
3802
			push_space += data_size;
3803 3804 3805

		this_item_size = btrfs_item_size(right, item);
		if (this_item_size + sizeof(*item) + push_space > free_space)
3806
			break;
3807

3808
		push_items++;
3809 3810 3811
		push_space += this_item_size + sizeof(*item);
	}

3812
	if (push_items == 0) {
3813 3814
		ret = 1;
		goto out;
3815
	}
3816
	WARN_ON(!empty && push_items == btrfs_header_nritems(right));
3817

3818
	/* push data from right to left */
3819 3820 3821 3822 3823
	copy_extent_buffer(left, right,
			   btrfs_item_nr_offset(btrfs_header_nritems(left)),
			   btrfs_item_nr_offset(0),
			   push_items * sizeof(struct btrfs_item));

3824
	push_space = BTRFS_LEAF_DATA_SIZE(fs_info) -
C
Chris Mason 已提交
3825
		     btrfs_item_offset_nr(right, push_items - 1);
3826

3827
	copy_extent_buffer(left, right, BTRFS_LEAF_DATA_OFFSET +
3828
		     leaf_data_end(left) - push_space,
3829
		     BTRFS_LEAF_DATA_OFFSET +
3830
		     btrfs_item_offset_nr(right, push_items - 1),
C
Chris Mason 已提交
3831
		     push_space);
3832
	old_left_nritems = btrfs_header_nritems(left);
3833
	BUG_ON(old_left_nritems <= 0);
3834

3835
	btrfs_init_map_token(&token, left);
3836
	old_left_item_size = btrfs_item_offset_nr(left, old_left_nritems - 1);
C
Chris Mason 已提交
3837
	for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
3838
		u32 ioff;
3839

3840
		item = btrfs_item_nr(i);
3841

3842 3843 3844
		ioff = btrfs_token_item_offset(&token, item);
		btrfs_set_token_item_offset(&token, item,
		      ioff - (BTRFS_LEAF_DATA_SIZE(fs_info) - old_left_item_size));
3845
	}
3846
	btrfs_set_header_nritems(left, old_left_nritems + push_items);
3847 3848

	/* fixup right node */
J
Julia Lawall 已提交
3849 3850
	if (push_items > right_nritems)
		WARN(1, KERN_CRIT "push items %d nr %u\n", push_items,
C
Chris Mason 已提交
3851
		       right_nritems);
3852 3853 3854

	if (push_items < right_nritems) {
		push_space = btrfs_item_offset_nr(right, push_items - 1) -
3855
						  leaf_data_end(right);
3856
		memmove_extent_buffer(right, BTRFS_LEAF_DATA_OFFSET +
3857
				      BTRFS_LEAF_DATA_SIZE(fs_info) - push_space,
3858
				      BTRFS_LEAF_DATA_OFFSET +
3859
				      leaf_data_end(right), push_space);
3860 3861

		memmove_extent_buffer(right, btrfs_item_nr_offset(0),
3862 3863 3864
			      btrfs_item_nr_offset(push_items),
			     (btrfs_header_nritems(right) - push_items) *
			     sizeof(struct btrfs_item));
3865
	}
3866 3867

	btrfs_init_map_token(&token, right);
3868 3869
	right_nritems -= push_items;
	btrfs_set_header_nritems(right, right_nritems);
3870
	push_space = BTRFS_LEAF_DATA_SIZE(fs_info);
3871
	for (i = 0; i < right_nritems; i++) {
3872
		item = btrfs_item_nr(i);
3873

3874 3875
		push_space = push_space - btrfs_token_item_size(&token, item);
		btrfs_set_token_item_offset(&token, item, push_space);
3876
	}
3877

3878
	btrfs_mark_buffer_dirty(left);
3879 3880
	if (right_nritems)
		btrfs_mark_buffer_dirty(right);
3881
	else
3882
		btrfs_clean_tree_block(right);
3883

3884
	btrfs_item_key(right, &disk_key, 0);
3885
	fixup_low_keys(path, &disk_key, 1);
3886 3887 3888 3889

	/* then fixup the leaf pointer in the path */
	if (path->slots[0] < push_items) {
		path->slots[0] += old_left_nritems;
3890
		btrfs_tree_unlock(path->nodes[0]);
3891 3892
		free_extent_buffer(path->nodes[0]);
		path->nodes[0] = left;
3893 3894
		path->slots[1] -= 1;
	} else {
3895
		btrfs_tree_unlock(left);
3896
		free_extent_buffer(left);
3897 3898
		path->slots[0] -= push_items;
	}
3899
	BUG_ON(path->slots[0] < 0);
C
Chris Mason 已提交
3900
	return ret;
3901 3902 3903 3904
out:
	btrfs_tree_unlock(left);
	free_extent_buffer(left);
	return ret;
3905 3906
}

3907 3908 3909
/*
 * push some data in the path leaf to the left, trying to free up at
 * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3910 3911 3912 3913
 *
 * max_slot can put a limit on how far into the leaf we'll push items.  The
 * item at 'max_slot' won't be touched.  Use (u32)-1 to make us push all the
 * items
3914 3915
 */
static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
3916 3917
			  *root, struct btrfs_path *path, int min_data_size,
			  int data_size, int empty, u32 max_slot)
3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937
{
	struct extent_buffer *right = path->nodes[0];
	struct extent_buffer *left;
	int slot;
	int free_space;
	u32 right_nritems;
	int ret = 0;

	slot = path->slots[1];
	if (slot == 0)
		return 1;
	if (!path->nodes[1])
		return 1;

	right_nritems = btrfs_header_nritems(right);
	if (right_nritems == 0)
		return 1;

	btrfs_assert_tree_locked(path->nodes[1]);

3938
	left = btrfs_read_node_slot(path->nodes[1], slot - 1);
3939 3940 3941 3942 3943
	/*
	 * slot - 1 is not valid or we fail to read the left node,
	 * no big deal, just return.
	 */
	if (IS_ERR(left))
T
Tsutomu Itoh 已提交
3944 3945
		return 1;

3946
	btrfs_tree_lock(left);
3947
	btrfs_set_lock_blocking_write(left);
3948

3949
	free_space = btrfs_leaf_free_space(left);
3950 3951 3952 3953 3954 3955 3956 3957 3958 3959
	if (free_space < data_size) {
		ret = 1;
		goto out;
	}

	/* cow and double check */
	ret = btrfs_cow_block(trans, root, left,
			      path->nodes[1], slot - 1, &left);
	if (ret) {
		/* we hit -ENOSPC, but it isn't fatal here */
3960 3961
		if (ret == -ENOSPC)
			ret = 1;
3962 3963 3964
		goto out;
	}

3965
	free_space = btrfs_leaf_free_space(left);
3966 3967 3968 3969 3970
	if (free_space < data_size) {
		ret = 1;
		goto out;
	}

3971
	return __push_leaf_left(path, min_data_size,
3972 3973
			       empty, left, free_space, right_nritems,
			       max_slot);
3974 3975 3976 3977 3978 3979 3980 3981 3982 3983
out:
	btrfs_tree_unlock(left);
	free_extent_buffer(left);
	return ret;
}

/*
 * split the path's leaf in two, making sure there is at least data_size
 * available for the resulting leaf level of the path.
 */
3984 3985 3986 3987 3988
static noinline void copy_for_split(struct btrfs_trans_handle *trans,
				    struct btrfs_path *path,
				    struct extent_buffer *l,
				    struct extent_buffer *right,
				    int slot, int mid, int nritems)
3989
{
3990
	struct btrfs_fs_info *fs_info = trans->fs_info;
3991 3992 3993 3994
	int data_copy_size;
	int rt_data_off;
	int i;
	struct btrfs_disk_key disk_key;
3995 3996
	struct btrfs_map_token token;

3997 3998
	nritems = nritems - mid;
	btrfs_set_header_nritems(right, nritems);
3999
	data_copy_size = btrfs_item_end_nr(l, mid) - leaf_data_end(l);
4000 4001 4002 4003 4004 4005

	copy_extent_buffer(right, l, btrfs_item_nr_offset(0),
			   btrfs_item_nr_offset(mid),
			   nritems * sizeof(struct btrfs_item));

	copy_extent_buffer(right, l,
4006 4007
		     BTRFS_LEAF_DATA_OFFSET + BTRFS_LEAF_DATA_SIZE(fs_info) -
		     data_copy_size, BTRFS_LEAF_DATA_OFFSET +
4008
		     leaf_data_end(l), data_copy_size);
4009

4010
	rt_data_off = BTRFS_LEAF_DATA_SIZE(fs_info) - btrfs_item_end_nr(l, mid);
4011

4012
	btrfs_init_map_token(&token, right);
4013
	for (i = 0; i < nritems; i++) {
4014
		struct btrfs_item *item = btrfs_item_nr(i);
4015 4016
		u32 ioff;

4017 4018
		ioff = btrfs_token_item_offset(&token, item);
		btrfs_set_token_item_offset(&token, item, ioff + rt_data_off);
4019 4020 4021 4022
	}

	btrfs_set_header_nritems(l, mid);
	btrfs_item_key(right, &disk_key, 0);
4023
	insert_ptr(trans, path, &disk_key, right->start, path->slots[1] + 1, 1);
4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042

	btrfs_mark_buffer_dirty(right);
	btrfs_mark_buffer_dirty(l);
	BUG_ON(path->slots[0] != slot);

	if (mid <= slot) {
		btrfs_tree_unlock(path->nodes[0]);
		free_extent_buffer(path->nodes[0]);
		path->nodes[0] = right;
		path->slots[0] -= mid;
		path->slots[1] += 1;
	} else {
		btrfs_tree_unlock(right);
		free_extent_buffer(right);
	}

	BUG_ON(path->slots[0] < 0);
}

4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061
/*
 * double splits happen when we need to insert a big item in the middle
 * of a leaf.  A double split can leave us with 3 mostly empty leaves:
 * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ]
 *          A                 B                 C
 *
 * We avoid this by trying to push the items on either side of our target
 * into the adjacent leaves.  If all goes well we can avoid the double split
 * completely.
 */
static noinline int push_for_double_split(struct btrfs_trans_handle *trans,
					  struct btrfs_root *root,
					  struct btrfs_path *path,
					  int data_size)
{
	int ret;
	int progress = 0;
	int slot;
	u32 nritems;
4062
	int space_needed = data_size;
4063 4064

	slot = path->slots[0];
4065
	if (slot < btrfs_header_nritems(path->nodes[0]))
4066
		space_needed -= btrfs_leaf_free_space(path->nodes[0]);
4067 4068 4069 4070 4071

	/*
	 * try to push all the items after our slot into the
	 * right leaf
	 */
4072
	ret = push_leaf_right(trans, root, path, 1, space_needed, 0, slot);
4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086
	if (ret < 0)
		return ret;

	if (ret == 0)
		progress++;

	nritems = btrfs_header_nritems(path->nodes[0]);
	/*
	 * our goal is to get our slot at the start or end of a leaf.  If
	 * we've done so we're done
	 */
	if (path->slots[0] == 0 || path->slots[0] == nritems)
		return 0;

4087
	if (btrfs_leaf_free_space(path->nodes[0]) >= data_size)
4088 4089 4090 4091
		return 0;

	/* try to push all the items before our slot into the next leaf */
	slot = path->slots[0];
4092 4093
	space_needed = data_size;
	if (slot > 0)
4094
		space_needed -= btrfs_leaf_free_space(path->nodes[0]);
4095
	ret = push_leaf_left(trans, root, path, 1, space_needed, 0, slot);
4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106
	if (ret < 0)
		return ret;

	if (ret == 0)
		progress++;

	if (progress)
		return 0;
	return 1;
}

C
Chris Mason 已提交
4107 4108 4109
/*
 * split the path's leaf in two, making sure there is at least data_size
 * available for the resulting leaf level of the path.
C
Chris Mason 已提交
4110 4111
 *
 * returns 0 if all went well and < 0 on failure.
C
Chris Mason 已提交
4112
 */
4113 4114
static noinline int split_leaf(struct btrfs_trans_handle *trans,
			       struct btrfs_root *root,
4115
			       const struct btrfs_key *ins_key,
4116 4117
			       struct btrfs_path *path, int data_size,
			       int extend)
4118
{
4119
	struct btrfs_disk_key disk_key;
4120
	struct extent_buffer *l;
4121
	u32 nritems;
4122 4123
	int mid;
	int slot;
4124
	struct extent_buffer *right;
4125
	struct btrfs_fs_info *fs_info = root->fs_info;
4126
	int ret = 0;
C
Chris Mason 已提交
4127
	int wret;
4128
	int split;
4129
	int num_doubles = 0;
4130
	int tried_avoid_double = 0;
C
Chris Mason 已提交
4131

4132 4133 4134
	l = path->nodes[0];
	slot = path->slots[0];
	if (extend && data_size + btrfs_item_size_nr(l, slot) +
4135
	    sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(fs_info))
4136 4137
		return -EOVERFLOW;

C
Chris Mason 已提交
4138
	/* first try to make some room by pushing left and right */
4139
	if (data_size && path->nodes[1]) {
4140 4141 4142
		int space_needed = data_size;

		if (slot < btrfs_header_nritems(l))
4143
			space_needed -= btrfs_leaf_free_space(l);
4144 4145 4146

		wret = push_leaf_right(trans, root, path, space_needed,
				       space_needed, 0, 0);
C
Chris Mason 已提交
4147
		if (wret < 0)
C
Chris Mason 已提交
4148
			return wret;
4149
		if (wret) {
4150 4151
			space_needed = data_size;
			if (slot > 0)
4152
				space_needed -= btrfs_leaf_free_space(l);
4153 4154
			wret = push_leaf_left(trans, root, path, space_needed,
					      space_needed, 0, (u32)-1);
4155 4156 4157 4158
			if (wret < 0)
				return wret;
		}
		l = path->nodes[0];
C
Chris Mason 已提交
4159

4160
		/* did the pushes work? */
4161
		if (btrfs_leaf_free_space(l) >= data_size)
4162
			return 0;
4163
	}
C
Chris Mason 已提交
4164

C
Chris Mason 已提交
4165
	if (!path->nodes[1]) {
4166
		ret = insert_new_root(trans, root, path, 1);
C
Chris Mason 已提交
4167 4168 4169
		if (ret)
			return ret;
	}
4170
again:
4171
	split = 1;
4172
	l = path->nodes[0];
4173
	slot = path->slots[0];
4174
	nritems = btrfs_header_nritems(l);
C
Chris Mason 已提交
4175
	mid = (nritems + 1) / 2;
4176

4177 4178 4179
	if (mid <= slot) {
		if (nritems == 1 ||
		    leaf_space_used(l, mid, nritems - mid) + data_size >
4180
			BTRFS_LEAF_DATA_SIZE(fs_info)) {
4181 4182 4183 4184 4185 4186
			if (slot >= nritems) {
				split = 0;
			} else {
				mid = slot;
				if (mid != nritems &&
				    leaf_space_used(l, mid, nritems - mid) +
4187
				    data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) {
4188 4189
					if (data_size && !tried_avoid_double)
						goto push_for_double;
4190 4191 4192 4193 4194 4195
					split = 2;
				}
			}
		}
	} else {
		if (leaf_space_used(l, 0, mid) + data_size >
4196
			BTRFS_LEAF_DATA_SIZE(fs_info)) {
4197 4198 4199 4200 4201 4202 4203 4204
			if (!extend && data_size && slot == 0) {
				split = 0;
			} else if ((extend || !data_size) && slot == 0) {
				mid = 1;
			} else {
				mid = slot;
				if (mid != nritems &&
				    leaf_space_used(l, mid, nritems - mid) +
4205
				    data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) {
4206 4207
					if (data_size && !tried_avoid_double)
						goto push_for_double;
4208
					split = 2;
4209 4210 4211 4212 4213 4214 4215 4216 4217 4218
				}
			}
		}
	}

	if (split == 0)
		btrfs_cpu_key_to_disk(&disk_key, ins_key);
	else
		btrfs_item_key(l, &disk_key, mid);

4219 4220
	right = alloc_tree_block_no_bg_flush(trans, root, 0, &disk_key, 0,
					     l->start, 0);
4221
	if (IS_ERR(right))
4222
		return PTR_ERR(right);
4223

4224
	root_add_used(root, fs_info->nodesize);
4225

4226 4227 4228
	if (split == 0) {
		if (mid <= slot) {
			btrfs_set_header_nritems(right, 0);
4229
			insert_ptr(trans, path, &disk_key,
4230
				   right->start, path->slots[1] + 1, 1);
4231 4232 4233 4234 4235 4236 4237
			btrfs_tree_unlock(path->nodes[0]);
			free_extent_buffer(path->nodes[0]);
			path->nodes[0] = right;
			path->slots[0] = 0;
			path->slots[1] += 1;
		} else {
			btrfs_set_header_nritems(right, 0);
4238
			insert_ptr(trans, path, &disk_key,
4239
				   right->start, path->slots[1], 1);
4240 4241 4242 4243
			btrfs_tree_unlock(path->nodes[0]);
			free_extent_buffer(path->nodes[0]);
			path->nodes[0] = right;
			path->slots[0] = 0;
4244
			if (path->slots[1] == 0)
4245
				fixup_low_keys(path, &disk_key, 1);
4246
		}
4247 4248 4249 4250 4251
		/*
		 * We create a new leaf 'right' for the required ins_len and
		 * we'll do btrfs_mark_buffer_dirty() on this leaf after copying
		 * the content of ins_len to 'right'.
		 */
4252
		return ret;
4253
	}
C
Chris Mason 已提交
4254

4255
	copy_for_split(trans, path, l, right, slot, mid, nritems);
Z
Zheng Yan 已提交
4256

4257
	if (split == 2) {
4258 4259 4260
		BUG_ON(num_doubles != 0);
		num_doubles++;
		goto again;
4261
	}
4262

4263
	return 0;
4264 4265 4266 4267

push_for_double:
	push_for_double_split(trans, root, path, data_size);
	tried_avoid_double = 1;
4268
	if (btrfs_leaf_free_space(path->nodes[0]) >= data_size)
4269 4270
		return 0;
	goto again;
4271 4272
}

Y
Yan, Zheng 已提交
4273 4274 4275
static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans,
					 struct btrfs_root *root,
					 struct btrfs_path *path, int ins_len)
4276
{
Y
Yan, Zheng 已提交
4277
	struct btrfs_key key;
4278
	struct extent_buffer *leaf;
Y
Yan, Zheng 已提交
4279 4280 4281 4282
	struct btrfs_file_extent_item *fi;
	u64 extent_len = 0;
	u32 item_size;
	int ret;
4283 4284

	leaf = path->nodes[0];
Y
Yan, Zheng 已提交
4285 4286 4287 4288 4289
	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);

	BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY &&
	       key.type != BTRFS_EXTENT_CSUM_KEY);

4290
	if (btrfs_leaf_free_space(leaf) >= ins_len)
Y
Yan, Zheng 已提交
4291
		return 0;
4292 4293

	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
Y
Yan, Zheng 已提交
4294 4295 4296 4297 4298
	if (key.type == BTRFS_EXTENT_DATA_KEY) {
		fi = btrfs_item_ptr(leaf, path->slots[0],
				    struct btrfs_file_extent_item);
		extent_len = btrfs_file_extent_num_bytes(leaf, fi);
	}
4299
	btrfs_release_path(path);
4300 4301

	path->keep_locks = 1;
Y
Yan, Zheng 已提交
4302 4303
	path->search_for_split = 1;
	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
4304
	path->search_for_split = 0;
4305 4306
	if (ret > 0)
		ret = -EAGAIN;
Y
Yan, Zheng 已提交
4307 4308
	if (ret < 0)
		goto err;
4309

Y
Yan, Zheng 已提交
4310 4311
	ret = -EAGAIN;
	leaf = path->nodes[0];
4312 4313
	/* if our item isn't there, return now */
	if (item_size != btrfs_item_size_nr(leaf, path->slots[0]))
Y
Yan, Zheng 已提交
4314 4315
		goto err;

4316
	/* the leaf has  changed, it now has room.  return now */
4317
	if (btrfs_leaf_free_space(path->nodes[0]) >= ins_len)
4318 4319
		goto err;

Y
Yan, Zheng 已提交
4320 4321 4322 4323 4324
	if (key.type == BTRFS_EXTENT_DATA_KEY) {
		fi = btrfs_item_ptr(leaf, path->slots[0],
				    struct btrfs_file_extent_item);
		if (extent_len != btrfs_file_extent_num_bytes(leaf, fi))
			goto err;
4325 4326
	}

4327
	btrfs_set_path_blocking(path);
Y
Yan, Zheng 已提交
4328
	ret = split_leaf(trans, root, &key, path, ins_len, 1);
4329 4330
	if (ret)
		goto err;
4331

Y
Yan, Zheng 已提交
4332
	path->keep_locks = 0;
4333
	btrfs_unlock_up_safe(path, 1);
Y
Yan, Zheng 已提交
4334 4335 4336 4337 4338 4339
	return 0;
err:
	path->keep_locks = 0;
	return ret;
}

4340
static noinline int split_item(struct btrfs_path *path,
4341
			       const struct btrfs_key *new_key,
Y
Yan, Zheng 已提交
4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353
			       unsigned long split_offset)
{
	struct extent_buffer *leaf;
	struct btrfs_item *item;
	struct btrfs_item *new_item;
	int slot;
	char *buf;
	u32 nritems;
	u32 item_size;
	u32 orig_offset;
	struct btrfs_disk_key disk_key;

4354
	leaf = path->nodes[0];
4355
	BUG_ON(btrfs_leaf_free_space(leaf) < sizeof(struct btrfs_item));
4356

4357 4358
	btrfs_set_path_blocking(path);

4359
	item = btrfs_item_nr(path->slots[0]);
4360 4361 4362 4363
	orig_offset = btrfs_item_offset(leaf, item);
	item_size = btrfs_item_size(leaf, item);

	buf = kmalloc(item_size, GFP_NOFS);
Y
Yan, Zheng 已提交
4364 4365 4366
	if (!buf)
		return -ENOMEM;

4367 4368 4369
	read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf,
			    path->slots[0]), item_size);

Y
Yan, Zheng 已提交
4370
	slot = path->slots[0] + 1;
4371 4372 4373 4374
	nritems = btrfs_header_nritems(leaf);
	if (slot != nritems) {
		/* shift the items */
		memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1),
Y
Yan, Zheng 已提交
4375 4376
				btrfs_item_nr_offset(slot),
				(nritems - slot) * sizeof(struct btrfs_item));
4377 4378 4379 4380 4381
	}

	btrfs_cpu_key_to_disk(&disk_key, new_key);
	btrfs_set_item_key(leaf, &disk_key, slot);

4382
	new_item = btrfs_item_nr(slot);
4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403

	btrfs_set_item_offset(leaf, new_item, orig_offset);
	btrfs_set_item_size(leaf, new_item, item_size - split_offset);

	btrfs_set_item_offset(leaf, item,
			      orig_offset + item_size - split_offset);
	btrfs_set_item_size(leaf, item, split_offset);

	btrfs_set_header_nritems(leaf, nritems + 1);

	/* write the data for the start of the original item */
	write_extent_buffer(leaf, buf,
			    btrfs_item_ptr_offset(leaf, path->slots[0]),
			    split_offset);

	/* write the data for the new item */
	write_extent_buffer(leaf, buf + split_offset,
			    btrfs_item_ptr_offset(leaf, slot),
			    item_size - split_offset);
	btrfs_mark_buffer_dirty(leaf);

4404
	BUG_ON(btrfs_leaf_free_space(leaf) < 0);
4405
	kfree(buf);
Y
Yan, Zheng 已提交
4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426
	return 0;
}

/*
 * This function splits a single item into two items,
 * giving 'new_key' to the new item and splitting the
 * old one at split_offset (from the start of the item).
 *
 * The path may be released by this operation.  After
 * the split, the path is pointing to the old item.  The
 * new item is going to be in the same node as the old one.
 *
 * Note, the item being split must be smaller enough to live alone on
 * a tree block with room for one extra struct btrfs_item
 *
 * This allows us to split the item in place, keeping a lock on the
 * leaf the entire time.
 */
int btrfs_split_item(struct btrfs_trans_handle *trans,
		     struct btrfs_root *root,
		     struct btrfs_path *path,
4427
		     const struct btrfs_key *new_key,
Y
Yan, Zheng 已提交
4428 4429 4430 4431 4432 4433 4434 4435
		     unsigned long split_offset)
{
	int ret;
	ret = setup_leaf_for_split(trans, root, path,
				   sizeof(struct btrfs_item));
	if (ret)
		return ret;

4436
	ret = split_item(path, new_key, split_offset);
4437 4438 4439
	return ret;
}

Y
Yan, Zheng 已提交
4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450
/*
 * This function duplicate a item, giving 'new_key' to the new item.
 * It guarantees both items live in the same tree leaf and the new item
 * is contiguous with the original item.
 *
 * This allows us to split file extent in place, keeping a lock on the
 * leaf the entire time.
 */
int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
			 struct btrfs_root *root,
			 struct btrfs_path *path,
4451
			 const struct btrfs_key *new_key)
Y
Yan, Zheng 已提交
4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464
{
	struct extent_buffer *leaf;
	int ret;
	u32 item_size;

	leaf = path->nodes[0];
	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
	ret = setup_leaf_for_split(trans, root, path,
				   item_size + sizeof(struct btrfs_item));
	if (ret)
		return ret;

	path->slots[0]++;
4465
	setup_items_for_insert(root, path, new_key, &item_size,
4466 4467
			       item_size, item_size +
			       sizeof(struct btrfs_item), 1);
Y
Yan, Zheng 已提交
4468 4469 4470 4471 4472 4473 4474 4475
	leaf = path->nodes[0];
	memcpy_extent_buffer(leaf,
			     btrfs_item_ptr_offset(leaf, path->slots[0]),
			     btrfs_item_ptr_offset(leaf, path->slots[0] - 1),
			     item_size);
	return 0;
}

C
Chris Mason 已提交
4476 4477 4478 4479 4480 4481
/*
 * make the item pointed to by the path smaller.  new_size indicates
 * how small to make it, and from_end tells us if we just chop bytes
 * off the end of the item or if we shift the item to chop bytes off
 * the front.
 */
4482
void btrfs_truncate_item(struct btrfs_path *path, u32 new_size, int from_end)
C
Chris Mason 已提交
4483 4484
{
	int slot;
4485 4486
	struct extent_buffer *leaf;
	struct btrfs_item *item;
C
Chris Mason 已提交
4487 4488 4489 4490 4491 4492
	u32 nritems;
	unsigned int data_end;
	unsigned int old_data_start;
	unsigned int old_size;
	unsigned int size_diff;
	int i;
4493 4494
	struct btrfs_map_token token;

4495
	leaf = path->nodes[0];
4496 4497 4498 4499
	slot = path->slots[0];

	old_size = btrfs_item_size_nr(leaf, slot);
	if (old_size == new_size)
4500
		return;
C
Chris Mason 已提交
4501

4502
	nritems = btrfs_header_nritems(leaf);
4503
	data_end = leaf_data_end(leaf);
C
Chris Mason 已提交
4504

4505
	old_data_start = btrfs_item_offset_nr(leaf, slot);
4506

C
Chris Mason 已提交
4507 4508 4509 4510 4511 4512 4513 4514 4515
	size_diff = old_size - new_size;

	BUG_ON(slot < 0);
	BUG_ON(slot >= nritems);

	/*
	 * item0..itemN ... dataN.offset..dataN.size .. data0.size
	 */
	/* first correct the data pointers */
4516
	btrfs_init_map_token(&token, leaf);
C
Chris Mason 已提交
4517
	for (i = slot; i < nritems; i++) {
4518
		u32 ioff;
4519
		item = btrfs_item_nr(i);
4520

4521 4522
		ioff = btrfs_token_item_offset(&token, item);
		btrfs_set_token_item_offset(&token, item, ioff + size_diff);
C
Chris Mason 已提交
4523
	}
4524

C
Chris Mason 已提交
4525
	/* shift the data */
4526
	if (from_end) {
4527 4528
		memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
			      data_end + size_diff, BTRFS_LEAF_DATA_OFFSET +
4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548
			      data_end, old_data_start + new_size - data_end);
	} else {
		struct btrfs_disk_key disk_key;
		u64 offset;

		btrfs_item_key(leaf, &disk_key, slot);

		if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) {
			unsigned long ptr;
			struct btrfs_file_extent_item *fi;

			fi = btrfs_item_ptr(leaf, slot,
					    struct btrfs_file_extent_item);
			fi = (struct btrfs_file_extent_item *)(
			     (unsigned long)fi - size_diff);

			if (btrfs_file_extent_type(leaf, fi) ==
			    BTRFS_FILE_EXTENT_INLINE) {
				ptr = btrfs_item_ptr_offset(leaf, slot);
				memmove_extent_buffer(leaf, ptr,
C
Chris Mason 已提交
4549
				      (unsigned long)fi,
4550
				      BTRFS_FILE_EXTENT_INLINE_DATA_START);
4551 4552 4553
			}
		}

4554 4555
		memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
			      data_end + size_diff, BTRFS_LEAF_DATA_OFFSET +
4556 4557 4558 4559 4560 4561
			      data_end, old_data_start - data_end);

		offset = btrfs_disk_key_offset(&disk_key);
		btrfs_set_disk_key_offset(&disk_key, offset + size_diff);
		btrfs_set_item_key(leaf, &disk_key, slot);
		if (slot == 0)
4562
			fixup_low_keys(path, &disk_key, 1);
4563
	}
4564

4565
	item = btrfs_item_nr(slot);
4566 4567
	btrfs_set_item_size(leaf, item, new_size);
	btrfs_mark_buffer_dirty(leaf);
C
Chris Mason 已提交
4568

4569
	if (btrfs_leaf_free_space(leaf) < 0) {
4570
		btrfs_print_leaf(leaf);
C
Chris Mason 已提交
4571
		BUG();
4572
	}
C
Chris Mason 已提交
4573 4574
}

C
Chris Mason 已提交
4575
/*
S
Stefan Behrens 已提交
4576
 * make the item pointed to by the path bigger, data_size is the added size.
C
Chris Mason 已提交
4577
 */
4578
void btrfs_extend_item(struct btrfs_path *path, u32 data_size)
4579 4580
{
	int slot;
4581 4582
	struct extent_buffer *leaf;
	struct btrfs_item *item;
4583 4584 4585 4586 4587
	u32 nritems;
	unsigned int data_end;
	unsigned int old_data;
	unsigned int old_size;
	int i;
4588 4589
	struct btrfs_map_token token;

4590
	leaf = path->nodes[0];
4591

4592
	nritems = btrfs_header_nritems(leaf);
4593
	data_end = leaf_data_end(leaf);
4594

4595
	if (btrfs_leaf_free_space(leaf) < data_size) {
4596
		btrfs_print_leaf(leaf);
4597
		BUG();
4598
	}
4599
	slot = path->slots[0];
4600
	old_data = btrfs_item_end_nr(leaf, slot);
4601 4602

	BUG_ON(slot < 0);
4603
	if (slot >= nritems) {
4604
		btrfs_print_leaf(leaf);
4605
		btrfs_crit(leaf->fs_info, "slot %d too large, nritems %d",
4606
			   slot, nritems);
4607
		BUG();
4608
	}
4609 4610 4611 4612 4613

	/*
	 * item0..itemN ... dataN.offset..dataN.size .. data0.size
	 */
	/* first correct the data pointers */
4614
	btrfs_init_map_token(&token, leaf);
4615
	for (i = slot; i < nritems; i++) {
4616
		u32 ioff;
4617
		item = btrfs_item_nr(i);
4618

4619 4620
		ioff = btrfs_token_item_offset(&token, item);
		btrfs_set_token_item_offset(&token, item, ioff - data_size);
4621
	}
4622

4623
	/* shift the data */
4624 4625
	memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
		      data_end - data_size, BTRFS_LEAF_DATA_OFFSET +
4626
		      data_end, old_data - data_end);
4627

4628
	data_end = old_data;
4629
	old_size = btrfs_item_size_nr(leaf, slot);
4630
	item = btrfs_item_nr(slot);
4631 4632
	btrfs_set_item_size(leaf, item, old_size + data_size);
	btrfs_mark_buffer_dirty(leaf);
4633

4634
	if (btrfs_leaf_free_space(leaf) < 0) {
4635
		btrfs_print_leaf(leaf);
4636
		BUG();
4637
	}
4638 4639
}

C
Chris Mason 已提交
4640
/*
4641 4642 4643
 * this is a helper for btrfs_insert_empty_items, the main goal here is
 * to save stack depth by doing the bulk of the work in a function
 * that doesn't call btrfs_search_slot
C
Chris Mason 已提交
4644
 */
4645
void setup_items_for_insert(struct btrfs_root *root, struct btrfs_path *path,
4646
			    const struct btrfs_key *cpu_key, u32 *data_size,
4647
			    u32 total_data, u32 total_size, int nr)
4648
{
4649
	struct btrfs_fs_info *fs_info = root->fs_info;
4650
	struct btrfs_item *item;
4651
	int i;
4652
	u32 nritems;
4653
	unsigned int data_end;
C
Chris Mason 已提交
4654
	struct btrfs_disk_key disk_key;
4655 4656
	struct extent_buffer *leaf;
	int slot;
4657 4658
	struct btrfs_map_token token;

4659 4660
	if (path->slots[0] == 0) {
		btrfs_cpu_key_to_disk(&disk_key, cpu_key);
4661
		fixup_low_keys(path, &disk_key, 1);
4662 4663 4664
	}
	btrfs_unlock_up_safe(path, 1);

4665
	leaf = path->nodes[0];
4666
	slot = path->slots[0];
C
Chris Mason 已提交
4667

4668
	nritems = btrfs_header_nritems(leaf);
4669
	data_end = leaf_data_end(leaf);
4670

4671
	if (btrfs_leaf_free_space(leaf) < total_size) {
4672
		btrfs_print_leaf(leaf);
4673
		btrfs_crit(fs_info, "not enough freespace need %u have %d",
4674
			   total_size, btrfs_leaf_free_space(leaf));
4675
		BUG();
4676
	}
4677

4678
	btrfs_init_map_token(&token, leaf);
4679
	if (slot != nritems) {
4680
		unsigned int old_data = btrfs_item_end_nr(leaf, slot);
4681

4682
		if (old_data < data_end) {
4683
			btrfs_print_leaf(leaf);
4684
			btrfs_crit(fs_info, "slot %d old_data %d data_end %d",
J
Jeff Mahoney 已提交
4685
				   slot, old_data, data_end);
4686
			BUG();
4687
		}
4688 4689 4690 4691
		/*
		 * item0..itemN ... dataN.offset..dataN.size .. data0.size
		 */
		/* first correct the data pointers */
C
Chris Mason 已提交
4692
		for (i = slot; i < nritems; i++) {
4693
			u32 ioff;
4694

4695
			item = btrfs_item_nr(i);
4696 4697 4698
			ioff = btrfs_token_item_offset(&token, item);
			btrfs_set_token_item_offset(&token, item,
						    ioff - total_data);
C
Chris Mason 已提交
4699
		}
4700
		/* shift the items */
4701
		memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
4702
			      btrfs_item_nr_offset(slot),
C
Chris Mason 已提交
4703
			      (nritems - slot) * sizeof(struct btrfs_item));
4704 4705

		/* shift the data */
4706 4707
		memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
			      data_end - total_data, BTRFS_LEAF_DATA_OFFSET +
C
Chris Mason 已提交
4708
			      data_end, old_data - data_end);
4709 4710
		data_end = old_data;
	}
4711

4712
	/* setup the item for the new data */
4713 4714 4715
	for (i = 0; i < nr; i++) {
		btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
		btrfs_set_item_key(leaf, &disk_key, slot + i);
4716
		item = btrfs_item_nr(slot + i);
4717
		btrfs_set_token_item_offset(&token, item, data_end - data_size[i]);
4718
		data_end -= data_size[i];
4719
		btrfs_set_token_item_size(&token, item, data_size[i]);
4720
	}
4721

4722
	btrfs_set_header_nritems(leaf, nritems + nr);
4723
	btrfs_mark_buffer_dirty(leaf);
C
Chris Mason 已提交
4724

4725
	if (btrfs_leaf_free_space(leaf) < 0) {
4726
		btrfs_print_leaf(leaf);
4727
		BUG();
4728
	}
4729 4730 4731 4732 4733 4734 4735 4736 4737
}

/*
 * Given a key and some data, insert items into the tree.
 * This does all the path init required, making room in the tree if needed.
 */
int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
			    struct btrfs_root *root,
			    struct btrfs_path *path,
4738
			    const struct btrfs_key *cpu_key, u32 *data_size,
4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754
			    int nr)
{
	int ret = 0;
	int slot;
	int i;
	u32 total_size = 0;
	u32 total_data = 0;

	for (i = 0; i < nr; i++)
		total_data += data_size[i];

	total_size = total_data + (nr * sizeof(struct btrfs_item));
	ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
	if (ret == 0)
		return -EEXIST;
	if (ret < 0)
4755
		return ret;
4756 4757 4758 4759

	slot = path->slots[0];
	BUG_ON(slot < 0);

4760
	setup_items_for_insert(root, path, cpu_key, data_size,
4761
			       total_data, total_size, nr);
4762
	return 0;
4763 4764 4765 4766 4767 4768
}

/*
 * Given a key and some data, insert an item into the tree.
 * This does all the path init required, making room in the tree if needed.
 */
4769 4770 4771
int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root *root,
		      const struct btrfs_key *cpu_key, void *data,
		      u32 data_size)
4772 4773
{
	int ret = 0;
C
Chris Mason 已提交
4774
	struct btrfs_path *path;
4775 4776
	struct extent_buffer *leaf;
	unsigned long ptr;
4777

C
Chris Mason 已提交
4778
	path = btrfs_alloc_path();
T
Tsutomu Itoh 已提交
4779 4780
	if (!path)
		return -ENOMEM;
C
Chris Mason 已提交
4781
	ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
4782
	if (!ret) {
4783 4784 4785 4786
		leaf = path->nodes[0];
		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
		write_extent_buffer(leaf, data, ptr, data_size);
		btrfs_mark_buffer_dirty(leaf);
4787
	}
C
Chris Mason 已提交
4788
	btrfs_free_path(path);
C
Chris Mason 已提交
4789
	return ret;
4790 4791
}

C
Chris Mason 已提交
4792
/*
C
Chris Mason 已提交
4793
 * delete the pointer from a given node.
C
Chris Mason 已提交
4794
 *
C
Chris Mason 已提交
4795 4796
 * the tree should have been previously balanced so the deletion does not
 * empty a node.
C
Chris Mason 已提交
4797
 */
4798 4799
static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
		    int level, int slot)
4800
{
4801
	struct extent_buffer *parent = path->nodes[level];
4802
	u32 nritems;
4803
	int ret;
4804

4805
	nritems = btrfs_header_nritems(parent);
C
Chris Mason 已提交
4806
	if (slot != nritems - 1) {
4807 4808
		if (level) {
			ret = tree_mod_log_insert_move(parent, slot, slot + 1,
4809
					nritems - slot - 1);
4810 4811
			BUG_ON(ret < 0);
		}
4812 4813 4814
		memmove_extent_buffer(parent,
			      btrfs_node_key_ptr_offset(slot),
			      btrfs_node_key_ptr_offset(slot + 1),
C
Chris Mason 已提交
4815 4816
			      sizeof(struct btrfs_key_ptr) *
			      (nritems - slot - 1));
4817
	} else if (level) {
4818 4819
		ret = tree_mod_log_insert_key(parent, slot, MOD_LOG_KEY_REMOVE,
				GFP_NOFS);
4820
		BUG_ON(ret < 0);
4821
	}
4822

4823
	nritems--;
4824
	btrfs_set_header_nritems(parent, nritems);
4825
	if (nritems == 0 && parent == root->node) {
4826
		BUG_ON(btrfs_header_level(root->node) != 1);
4827
		/* just turn the root into a leaf and break */
4828
		btrfs_set_header_level(root->node, 0);
4829
	} else if (slot == 0) {
4830 4831 4832
		struct btrfs_disk_key disk_key;

		btrfs_node_key(parent, &disk_key, 0);
4833
		fixup_low_keys(path, &disk_key, level + 1);
4834
	}
C
Chris Mason 已提交
4835
	btrfs_mark_buffer_dirty(parent);
4836 4837
}

4838 4839
/*
 * a helper function to delete the leaf pointed to by path->slots[1] and
4840
 * path->nodes[1].
4841 4842 4843 4844 4845 4846 4847
 *
 * This deletes the pointer in path->nodes[1] and frees the leaf
 * block extent.  zero is returned if it all worked out, < 0 otherwise.
 *
 * The path must have already been setup for deleting the leaf, including
 * all the proper balancing.  path->nodes[1] must be locked.
 */
4848 4849 4850 4851
static noinline void btrfs_del_leaf(struct btrfs_trans_handle *trans,
				    struct btrfs_root *root,
				    struct btrfs_path *path,
				    struct extent_buffer *leaf)
4852
{
4853
	WARN_ON(btrfs_header_generation(leaf) != trans->transid);
4854
	del_ptr(root, path, 1, path->slots[1]);
4855

4856 4857 4858 4859 4860 4861
	/*
	 * btrfs_free_extent is expensive, we want to make sure we
	 * aren't holding any locks when we call it
	 */
	btrfs_unlock_up_safe(path, 0);

4862 4863
	root_sub_used(root, leaf->len);

D
David Sterba 已提交
4864
	atomic_inc(&leaf->refs);
4865
	btrfs_free_tree_block(trans, root, leaf, 0, 1);
4866
	free_extent_buffer_stale(leaf);
4867
}
C
Chris Mason 已提交
4868 4869 4870 4871
/*
 * delete the item at the leaf level in path.  If that empties
 * the leaf, remove it from the tree
 */
4872 4873
int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
		    struct btrfs_path *path, int slot, int nr)
4874
{
4875
	struct btrfs_fs_info *fs_info = root->fs_info;
4876 4877
	struct extent_buffer *leaf;
	struct btrfs_item *item;
4878 4879
	u32 last_off;
	u32 dsize = 0;
C
Chris Mason 已提交
4880 4881
	int ret = 0;
	int wret;
4882
	int i;
4883
	u32 nritems;
4884

4885
	leaf = path->nodes[0];
4886 4887 4888 4889 4890
	last_off = btrfs_item_offset_nr(leaf, slot + nr - 1);

	for (i = 0; i < nr; i++)
		dsize += btrfs_item_size_nr(leaf, slot + i);

4891
	nritems = btrfs_header_nritems(leaf);
4892

4893
	if (slot + nr != nritems) {
4894
		int data_end = leaf_data_end(leaf);
4895
		struct btrfs_map_token token;
4896

4897
		memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
C
Chris Mason 已提交
4898
			      data_end + dsize,
4899
			      BTRFS_LEAF_DATA_OFFSET + data_end,
4900
			      last_off - data_end);
4901

4902
		btrfs_init_map_token(&token, leaf);
4903
		for (i = slot + nr; i < nritems; i++) {
4904
			u32 ioff;
4905

4906
			item = btrfs_item_nr(i);
4907 4908
			ioff = btrfs_token_item_offset(&token, item);
			btrfs_set_token_item_offset(&token, item, ioff + dsize);
C
Chris Mason 已提交
4909
		}
4910

4911
		memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot),
4912
			      btrfs_item_nr_offset(slot + nr),
C
Chris Mason 已提交
4913
			      sizeof(struct btrfs_item) *
4914
			      (nritems - slot - nr));
4915
	}
4916 4917
	btrfs_set_header_nritems(leaf, nritems - nr);
	nritems -= nr;
4918

C
Chris Mason 已提交
4919
	/* delete the leaf if we've emptied it */
4920
	if (nritems == 0) {
4921 4922
		if (leaf == root->node) {
			btrfs_set_header_level(leaf, 0);
4923
		} else {
4924
			btrfs_set_path_blocking(path);
4925
			btrfs_clean_tree_block(leaf);
4926
			btrfs_del_leaf(trans, root, path, leaf);
4927
		}
4928
	} else {
4929
		int used = leaf_space_used(leaf, 0, nritems);
C
Chris Mason 已提交
4930
		if (slot == 0) {
4931 4932 4933
			struct btrfs_disk_key disk_key;

			btrfs_item_key(leaf, &disk_key, 0);
4934
			fixup_low_keys(path, &disk_key, 1);
C
Chris Mason 已提交
4935 4936
		}

C
Chris Mason 已提交
4937
		/* delete the leaf if it is mostly empty */
4938
		if (used < BTRFS_LEAF_DATA_SIZE(fs_info) / 3) {
4939 4940 4941 4942
			/* push_leaf_left fixes the path.
			 * make sure the path still points to our leaf
			 * for possible call to del_ptr below
			 */
4943
			slot = path->slots[1];
D
David Sterba 已提交
4944
			atomic_inc(&leaf->refs);
4945

4946
			btrfs_set_path_blocking(path);
4947 4948
			wret = push_leaf_left(trans, root, path, 1, 1,
					      1, (u32)-1);
4949
			if (wret < 0 && wret != -ENOSPC)
C
Chris Mason 已提交
4950
				ret = wret;
4951 4952 4953

			if (path->nodes[0] == leaf &&
			    btrfs_header_nritems(leaf)) {
4954 4955
				wret = push_leaf_right(trans, root, path, 1,
						       1, 1, 0);
4956
				if (wret < 0 && wret != -ENOSPC)
C
Chris Mason 已提交
4957 4958
					ret = wret;
			}
4959 4960

			if (btrfs_header_nritems(leaf) == 0) {
4961
				path->slots[1] = slot;
4962
				btrfs_del_leaf(trans, root, path, leaf);
4963
				free_extent_buffer(leaf);
4964
				ret = 0;
C
Chris Mason 已提交
4965
			} else {
4966 4967 4968 4969 4970 4971 4972
				/* if we're still in the path, make sure
				 * we're dirty.  Otherwise, one of the
				 * push_leaf functions must have already
				 * dirtied this buffer
				 */
				if (path->nodes[0] == leaf)
					btrfs_mark_buffer_dirty(leaf);
4973
				free_extent_buffer(leaf);
4974
			}
4975
		} else {
4976
			btrfs_mark_buffer_dirty(leaf);
4977 4978
		}
	}
C
Chris Mason 已提交
4979
	return ret;
4980 4981
}

4982
/*
4983
 * search the tree again to find a leaf with lesser keys
4984 4985
 * returns 0 if it found something or 1 if there are no lesser leaves.
 * returns < 0 on io errors.
C
Chris Mason 已提交
4986 4987 4988
 *
 * This may release the path, and so you may lose any locks held at the
 * time you call it.
4989
 */
4990
int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path)
4991
{
4992 4993 4994
	struct btrfs_key key;
	struct btrfs_disk_key found_key;
	int ret;
4995

4996
	btrfs_item_key_to_cpu(path->nodes[0], &key, 0);
4997

4998
	if (key.offset > 0) {
4999
		key.offset--;
5000
	} else if (key.type > 0) {
5001
		key.type--;
5002 5003
		key.offset = (u64)-1;
	} else if (key.objectid > 0) {
5004
		key.objectid--;
5005 5006 5007
		key.type = (u8)-1;
		key.offset = (u64)-1;
	} else {
5008
		return 1;
5009
	}
5010

5011
	btrfs_release_path(path);
5012 5013 5014 5015 5016
	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
	if (ret < 0)
		return ret;
	btrfs_item_key(path->nodes[0], &found_key, 0);
	ret = comp_keys(&found_key, &key);
5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027
	/*
	 * We might have had an item with the previous key in the tree right
	 * before we released our path. And after we released our path, that
	 * item might have been pushed to the first slot (0) of the leaf we
	 * were holding due to a tree balance. Alternatively, an item with the
	 * previous key can exist as the only element of a leaf (big fat item).
	 * Therefore account for these 2 cases, so that our callers (like
	 * btrfs_previous_item) don't miss an existing item with a key matching
	 * the previous key we computed above.
	 */
	if (ret <= 0)
5028 5029
		return 0;
	return 1;
5030 5031
}

5032 5033
/*
 * A helper function to walk down the tree starting at min_key, and looking
5034 5035
 * for nodes or leaves that are have a minimum transaction id.
 * This is used by the btree defrag code, and tree logging
5036 5037 5038 5039 5040 5041 5042 5043
 *
 * This does not cow, but it does stuff the starting key it finds back
 * into min_key, so you can call btrfs_search_slot with cow=1 on the
 * key and get a writable path.
 *
 * This honors path->lowest_level to prevent descent past a given level
 * of the tree.
 *
C
Chris Mason 已提交
5044 5045 5046 5047
 * min_trans indicates the oldest transaction that you are interested
 * in walking through.  Any nodes or leaves older than min_trans are
 * skipped over (without reading them).
 *
5048 5049 5050 5051
 * returns zero if something useful was found, < 0 on error and 1 if there
 * was nothing in the tree that matched the search criteria.
 */
int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
5052
			 struct btrfs_path *path,
5053 5054 5055 5056 5057
			 u64 min_trans)
{
	struct extent_buffer *cur;
	struct btrfs_key found_key;
	int slot;
5058
	int sret;
5059 5060 5061
	u32 nritems;
	int level;
	int ret = 1;
5062
	int keep_locks = path->keep_locks;
5063

5064
	path->keep_locks = 1;
5065
again:
5066
	cur = btrfs_read_lock_root_node(root);
5067
	level = btrfs_header_level(cur);
5068
	WARN_ON(path->nodes[level]);
5069
	path->nodes[level] = cur;
5070
	path->locks[level] = BTRFS_READ_LOCK;
5071 5072 5073 5074 5075

	if (btrfs_header_generation(cur) < min_trans) {
		ret = 1;
		goto out;
	}
C
Chris Mason 已提交
5076
	while (1) {
5077 5078
		nritems = btrfs_header_nritems(cur);
		level = btrfs_header_level(cur);
5079
		sret = btrfs_bin_search(cur, min_key, &slot);
5080 5081 5082 5083
		if (sret < 0) {
			ret = sret;
			goto out;
		}
5084

5085 5086
		/* at the lowest level, we're done, setup the path and exit */
		if (level == path->lowest_level) {
5087 5088
			if (slot >= nritems)
				goto find_next_key;
5089 5090 5091 5092 5093
			ret = 0;
			path->slots[level] = slot;
			btrfs_item_key_to_cpu(cur, &found_key, slot);
			goto out;
		}
5094 5095
		if (sret && slot > 0)
			slot--;
5096
		/*
5097 5098
		 * check this node pointer against the min_trans parameters.
		 * If it is too old, old, skip to the next one.
5099
		 */
C
Chris Mason 已提交
5100
		while (slot < nritems) {
5101
			u64 gen;
5102

5103 5104 5105 5106 5107
			gen = btrfs_node_ptr_generation(cur, slot);
			if (gen < min_trans) {
				slot++;
				continue;
			}
5108
			break;
5109
		}
5110
find_next_key:
5111 5112 5113 5114 5115
		/*
		 * we didn't find a candidate key in this node, walk forward
		 * and find another one
		 */
		if (slot >= nritems) {
5116
			path->slots[level] = slot;
5117
			btrfs_set_path_blocking(path);
5118
			sret = btrfs_find_next_key(root, path, min_key, level,
5119
						  min_trans);
5120
			if (sret == 0) {
5121
				btrfs_release_path(path);
5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133
				goto again;
			} else {
				goto out;
			}
		}
		/* save our key for returning back */
		btrfs_node_key_to_cpu(cur, &found_key, slot);
		path->slots[level] = slot;
		if (level == path->lowest_level) {
			ret = 0;
			goto out;
		}
5134
		btrfs_set_path_blocking(path);
5135
		cur = btrfs_read_node_slot(cur, slot);
5136 5137 5138 5139
		if (IS_ERR(cur)) {
			ret = PTR_ERR(cur);
			goto out;
		}
5140

5141
		btrfs_tree_read_lock(cur);
5142

5143
		path->locks[level - 1] = BTRFS_READ_LOCK;
5144
		path->nodes[level - 1] = cur;
5145
		unlock_up(path, level, 1, 0, NULL);
5146 5147
	}
out:
5148 5149 5150 5151
	path->keep_locks = keep_locks;
	if (ret == 0) {
		btrfs_unlock_up_safe(path, path->lowest_level + 1);
		btrfs_set_path_blocking(path);
5152
		memcpy(min_key, &found_key, sizeof(found_key));
5153
	}
5154 5155 5156 5157 5158 5159
	return ret;
}

/*
 * this is similar to btrfs_next_leaf, but does not try to preserve
 * and fixup the path.  It looks for and returns the next key in the
5160
 * tree based on the current path and the min_trans parameters.
5161 5162 5163 5164 5165 5166 5167
 *
 * 0 is returned if another key is found, < 0 if there are any errors
 * and 1 is returned if there are no higher keys in the tree
 *
 * path->keep_locks should be set to 1 on the search made before
 * calling this function.
 */
5168
int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
5169
			struct btrfs_key *key, int level, u64 min_trans)
5170 5171 5172 5173
{
	int slot;
	struct extent_buffer *c;

5174
	WARN_ON(!path->keep_locks && !path->skip_locking);
C
Chris Mason 已提交
5175
	while (level < BTRFS_MAX_LEVEL) {
5176 5177 5178 5179 5180
		if (!path->nodes[level])
			return 1;

		slot = path->slots[level] + 1;
		c = path->nodes[level];
5181
next:
5182
		if (slot >= btrfs_header_nritems(c)) {
5183 5184 5185 5186 5187
			int ret;
			int orig_lowest;
			struct btrfs_key cur_key;
			if (level + 1 >= BTRFS_MAX_LEVEL ||
			    !path->nodes[level + 1])
5188
				return 1;
5189

5190
			if (path->locks[level + 1] || path->skip_locking) {
5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201
				level++;
				continue;
			}

			slot = btrfs_header_nritems(c) - 1;
			if (level == 0)
				btrfs_item_key_to_cpu(c, &cur_key, slot);
			else
				btrfs_node_key_to_cpu(c, &cur_key, slot);

			orig_lowest = path->lowest_level;
5202
			btrfs_release_path(path);
5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214
			path->lowest_level = level;
			ret = btrfs_search_slot(NULL, root, &cur_key, path,
						0, 0);
			path->lowest_level = orig_lowest;
			if (ret < 0)
				return ret;

			c = path->nodes[level];
			slot = path->slots[level];
			if (ret == 0)
				slot++;
			goto next;
5215
		}
5216

5217 5218
		if (level == 0)
			btrfs_item_key_to_cpu(c, key, slot);
5219 5220 5221 5222 5223 5224 5225
		else {
			u64 gen = btrfs_node_ptr_generation(c, slot);

			if (gen < min_trans) {
				slot++;
				goto next;
			}
5226
			btrfs_node_key_to_cpu(c, key, slot);
5227
		}
5228 5229 5230 5231 5232
		return 0;
	}
	return 1;
}

C
Chris Mason 已提交
5233
/*
5234
 * search the tree again to find a leaf with greater keys
C
Chris Mason 已提交
5235 5236
 * returns 0 if it found something or 1 if there are no greater leaves.
 * returns < 0 on io errors.
C
Chris Mason 已提交
5237
 */
C
Chris Mason 已提交
5238
int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path)
J
Jan Schmidt 已提交
5239 5240 5241 5242 5243 5244
{
	return btrfs_next_old_leaf(root, path, 0);
}

int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path,
			u64 time_seq)
5245 5246
{
	int slot;
5247
	int level;
5248
	struct extent_buffer *c;
5249
	struct extent_buffer *next;
5250 5251 5252
	struct btrfs_key key;
	u32 nritems;
	int ret;
5253
	int old_spinning = path->leave_spinning;
5254
	int next_rw_lock = 0;
5255 5256

	nritems = btrfs_header_nritems(path->nodes[0]);
C
Chris Mason 已提交
5257
	if (nritems == 0)
5258 5259
		return 1;

5260 5261 5262 5263
	btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1);
again:
	level = 1;
	next = NULL;
5264
	next_rw_lock = 0;
5265
	btrfs_release_path(path);
5266

5267
	path->keep_locks = 1;
5268
	path->leave_spinning = 1;
5269

J
Jan Schmidt 已提交
5270 5271 5272 5273
	if (time_seq)
		ret = btrfs_search_old_slot(root, &key, path, time_seq);
	else
		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5274 5275 5276 5277 5278
	path->keep_locks = 0;

	if (ret < 0)
		return ret;

5279
	nritems = btrfs_header_nritems(path->nodes[0]);
5280 5281 5282 5283 5284 5285
	/*
	 * by releasing the path above we dropped all our locks.  A balance
	 * could have added more items next to the key that used to be
	 * at the very end of the block.  So, check again here and
	 * advance the path if there are now more items available.
	 */
5286
	if (nritems > 0 && path->slots[0] < nritems - 1) {
5287 5288
		if (ret == 0)
			path->slots[0]++;
5289
		ret = 0;
5290 5291
		goto done;
	}
5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309
	/*
	 * So the above check misses one case:
	 * - after releasing the path above, someone has removed the item that
	 *   used to be at the very end of the block, and balance between leafs
	 *   gets another one with bigger key.offset to replace it.
	 *
	 * This one should be returned as well, or we can get leaf corruption
	 * later(esp. in __btrfs_drop_extents()).
	 *
	 * And a bit more explanation about this check,
	 * with ret > 0, the key isn't found, the path points to the slot
	 * where it should be inserted, so the path->slots[0] item must be the
	 * bigger one.
	 */
	if (nritems > 0 && ret > 0 && path->slots[0] == nritems - 1) {
		ret = 0;
		goto done;
	}
5310

C
Chris Mason 已提交
5311
	while (level < BTRFS_MAX_LEVEL) {
5312 5313 5314 5315
		if (!path->nodes[level]) {
			ret = 1;
			goto done;
		}
5316

5317 5318
		slot = path->slots[level] + 1;
		c = path->nodes[level];
5319
		if (slot >= btrfs_header_nritems(c)) {
5320
			level++;
5321 5322 5323 5324
			if (level == BTRFS_MAX_LEVEL) {
				ret = 1;
				goto done;
			}
5325 5326
			continue;
		}
5327

5328
		if (next) {
5329
			btrfs_tree_unlock_rw(next, next_rw_lock);
5330
			free_extent_buffer(next);
5331
		}
5332

5333
		next = c;
5334
		next_rw_lock = path->locks[level];
5335
		ret = read_block_for_search(root, path, &next, level,
5336
					    slot, &key);
5337 5338
		if (ret == -EAGAIN)
			goto again;
5339

5340
		if (ret < 0) {
5341
			btrfs_release_path(path);
5342 5343 5344
			goto done;
		}

5345
		if (!path->skip_locking) {
5346
			ret = btrfs_try_tree_read_lock(next);
5347 5348 5349 5350 5351 5352 5353 5354
			if (!ret && time_seq) {
				/*
				 * If we don't get the lock, we may be racing
				 * with push_leaf_left, holding that lock while
				 * itself waiting for the leaf we've currently
				 * locked. To solve this situation, we give up
				 * on our lock and cycle.
				 */
5355
				free_extent_buffer(next);
5356 5357 5358 5359
				btrfs_release_path(path);
				cond_resched();
				goto again;
			}
5360 5361
			if (!ret) {
				btrfs_set_path_blocking(path);
5362
				btrfs_tree_read_lock(next);
5363
			}
5364
			next_rw_lock = BTRFS_READ_LOCK;
5365
		}
5366 5367 5368
		break;
	}
	path->slots[level] = slot;
C
Chris Mason 已提交
5369
	while (1) {
5370 5371
		level--;
		c = path->nodes[level];
5372
		if (path->locks[level])
5373
			btrfs_tree_unlock_rw(c, path->locks[level]);
5374

5375
		free_extent_buffer(c);
5376 5377
		path->nodes[level] = next;
		path->slots[level] = 0;
5378
		if (!path->skip_locking)
5379
			path->locks[level] = next_rw_lock;
5380 5381
		if (!level)
			break;
5382

5383
		ret = read_block_for_search(root, path, &next, level,
5384
					    0, &key);
5385 5386 5387
		if (ret == -EAGAIN)
			goto again;

5388
		if (ret < 0) {
5389
			btrfs_release_path(path);
5390 5391 5392
			goto done;
		}

5393
		if (!path->skip_locking) {
5394
			ret = btrfs_try_tree_read_lock(next);
5395 5396
			if (!ret) {
				btrfs_set_path_blocking(path);
5397 5398
				btrfs_tree_read_lock(next);
			}
5399
			next_rw_lock = BTRFS_READ_LOCK;
5400
		}
5401
	}
5402
	ret = 0;
5403
done:
5404
	unlock_up(path, 0, 1, 0, NULL);
5405 5406 5407 5408 5409
	path->leave_spinning = old_spinning;
	if (!old_spinning)
		btrfs_set_path_blocking(path);

	return ret;
5410
}
5411

5412 5413 5414 5415 5416 5417
/*
 * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps
 * searching until it gets past min_objectid or finds an item of 'type'
 *
 * returns 0 if something is found, 1 if nothing was found and < 0 on error
 */
5418 5419 5420 5421 5422 5423
int btrfs_previous_item(struct btrfs_root *root,
			struct btrfs_path *path, u64 min_objectid,
			int type)
{
	struct btrfs_key found_key;
	struct extent_buffer *leaf;
5424
	u32 nritems;
5425 5426
	int ret;

C
Chris Mason 已提交
5427
	while (1) {
5428
		if (path->slots[0] == 0) {
5429
			btrfs_set_path_blocking(path);
5430 5431 5432 5433 5434 5435 5436
			ret = btrfs_prev_leaf(root, path);
			if (ret != 0)
				return ret;
		} else {
			path->slots[0]--;
		}
		leaf = path->nodes[0];
5437 5438 5439 5440 5441 5442
		nritems = btrfs_header_nritems(leaf);
		if (nritems == 0)
			return 1;
		if (path->slots[0] == nritems)
			path->slots[0]--;

5443
		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5444 5445
		if (found_key.objectid < min_objectid)
			break;
5446 5447
		if (found_key.type == type)
			return 0;
5448 5449 5450
		if (found_key.objectid == min_objectid &&
		    found_key.type < type)
			break;
5451 5452 5453
	}
	return 1;
}
5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496

/*
 * search in extent tree to find a previous Metadata/Data extent item with
 * min objecitd.
 *
 * returns 0 if something is found, 1 if nothing was found and < 0 on error
 */
int btrfs_previous_extent_item(struct btrfs_root *root,
			struct btrfs_path *path, u64 min_objectid)
{
	struct btrfs_key found_key;
	struct extent_buffer *leaf;
	u32 nritems;
	int ret;

	while (1) {
		if (path->slots[0] == 0) {
			btrfs_set_path_blocking(path);
			ret = btrfs_prev_leaf(root, path);
			if (ret != 0)
				return ret;
		} else {
			path->slots[0]--;
		}
		leaf = path->nodes[0];
		nritems = btrfs_header_nritems(leaf);
		if (nritems == 0)
			return 1;
		if (path->slots[0] == nritems)
			path->slots[0]--;

		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
		if (found_key.objectid < min_objectid)
			break;
		if (found_key.type == BTRFS_EXTENT_ITEM_KEY ||
		    found_key.type == BTRFS_METADATA_ITEM_KEY)
			return 0;
		if (found_key.objectid == min_objectid &&
		    found_key.type < BTRFS_EXTENT_ITEM_KEY)
			break;
	}
	return 1;
}