ctree.c 28.1 KB
Newer Older
1 2 3
#include <stdio.h>
#include <stdlib.h>
#include "kerncompat.h"
4 5 6
#include "radix-tree.h"
#include "ctree.h"
#include "disk-io.h"
7 8 9 10 11 12

static inline void init_path(struct ctree_path *p)
{
	memset(p, 0, sizeof(*p));
}

13 14 15 16 17 18 19 20 21 22
static void release_path(struct ctree_root *root, struct ctree_path *p)
{
	int i;
	for (i = 0; i < MAX_LEVEL; i++) {
		if (!p->nodes[i])
			break;
		tree_block_release(root, p->nodes[i]);
	}
}

C
Chris Mason 已提交
23 24 25 26 27
/*
 * The leaf data grows from end-to-front in the node.
 * this returns the address of the start of the last item,
 * which is the stop of the leaf data stack
 */
28 29 30 31 32 33 34 35
static inline unsigned int leaf_data_end(struct leaf *leaf)
{
	unsigned int nr = leaf->header.nritems;
	if (nr == 0)
		return ARRAY_SIZE(leaf->data);
	return leaf->items[nr-1].offset;
}

C
Chris Mason 已提交
36 37 38 39 40
/*
 * The space between the end of the leaf items and
 * the start of the leaf data.  IOW, how much room
 * the leaf has left for both items and data
 */
41 42 43 44 45 46 47 48
static inline int leaf_free_space(struct leaf *leaf)
{
	int data_end = leaf_data_end(leaf);
	int nritems = leaf->header.nritems;
	char *items_end = (char *)(leaf->items + nritems + 1);
	return (char *)(leaf->data + data_end) - (char *)items_end;
}

C
Chris Mason 已提交
49 50 51
/*
 * compare two keys in a memcmp fashion
 */
52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67
int comp_keys(struct key *k1, struct key *k2)
{
	if (k1->objectid > k2->objectid)
		return 1;
	if (k1->objectid < k2->objectid)
		return -1;
	if (k1->flags > k2->flags)
		return 1;
	if (k1->flags < k2->flags)
		return -1;
	if (k1->offset > k2->offset)
		return 1;
	if (k1->offset < k2->offset)
		return -1;
	return 0;
}
C
Chris Mason 已提交
68 69 70 71 72 73 74 75 76 77

/*
 * search for key in the array p.  items p are item_size apart
 * and there are 'max' items in p
 * the slot in the array is returned via slot, and it points to
 * the place where you would insert key if it is not found in
 * the array.
 *
 * slot may point to max if the key is bigger than all of the keys
 */
78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117
int generic_bin_search(char *p, int item_size, struct key *key,
		       int max, int *slot)
{
	int low = 0;
	int high = max;
	int mid;
	int ret;
	struct key *tmp;

	while(low < high) {
		mid = (low + high) / 2;
		tmp = (struct key *)(p + mid * item_size);
		ret = comp_keys(tmp, key);

		if (ret < 0)
			low = mid + 1;
		else if (ret > 0)
			high = mid;
		else {
			*slot = mid;
			return 0;
		}
	}
	*slot = low;
	return 1;
}

int bin_search(struct node *c, struct key *key, int *slot)
{
	if (is_leaf(c->header.flags)) {
		struct leaf *l = (struct leaf *)c;
		return generic_bin_search((void *)l->items, sizeof(struct item),
					  key, c->header.nritems, slot);
	} else {
		return generic_bin_search((void *)c->keys, sizeof(struct key),
					  key, c->header.nritems, slot);
	}
	return -1;
}

C
Chris Mason 已提交
118 119 120 121 122 123 124 125
/*
 * look for key in the tree.  path is filled in with nodes along the way
 * if key is found, we return zero and you can find the item in the leaf
 * level of the path (level 0)
 *
 * If the key isn't found, the path points to the slot where it should
 * be inserted.
 */
126 127
int search_slot(struct ctree_root *root, struct key *key, struct ctree_path *p)
{
128 129 130
	struct tree_buffer *b = root->node;
	struct node *c;

131 132 133
	int slot;
	int ret;
	int level;
134 135 136
	b->count++;
	while (b) {
		c = &b->node;
137
		level = node_level(c->header.flags);
138
		p->nodes[level] = b;
139 140 141 142 143
		ret = bin_search(c, key, &slot);
		if (!is_leaf(c->header.flags)) {
			if (ret && slot > 0)
				slot -= 1;
			p->slots[level] = slot;
144
			b = read_tree_block(root, c->blockptrs[slot]);
145 146 147 148 149 150 151 152 153
			continue;
		} else {
			p->slots[level] = slot;
			return ret;
		}
	}
	return -1;
}

C
Chris Mason 已提交
154 155 156 157 158 159 160
/*
 * adjust the pointers going up the tree, starting at level
 * making sure the right key of each node is points to 'key'.
 * This is used after shifting pointers to the left, so it stops
 * fixing up pointers when a given leaf/node is not in slot 0 of the
 * higher levels
 */
161 162 163
static void fixup_low_keys(struct ctree_root *root,
			   struct ctree_path *path, struct key *key,
			   int level)
164 165 166
{
	int i;
	for (i = level; i < MAX_LEVEL; i++) {
167
		struct node *t;
168
		int tslot = path->slots[i];
169
		if (!path->nodes[i])
170
			break;
171
		t = &path->nodes[i]->node;
172
		memcpy(t->keys + tslot, key, sizeof(*key));
173
		write_tree_block(root, path->nodes[i]);
174 175 176 177 178
		if (tslot != 0)
			break;
	}
}

C
Chris Mason 已提交
179 180 181 182 183 184 185 186 187 188
/*
 * try to push data from one node into the next node left in the
 * tree.  The src node is found at specified level in the path.
 * If some bytes were pushed, return 0, otherwise return 1.
 *
 * Lower nodes/leaves in the path are not touched, higher nodes may
 * be modified to reflect the push.
 *
 * The path is altered to reflect the push.
 */
189 190 191 192 193 194 195 196
int push_node_left(struct ctree_root *root, struct ctree_path *path, int level)
{
	int slot;
	struct node *left;
	struct node *right;
	int push_items = 0;
	int left_nritems;
	int right_nritems;
197 198
	struct tree_buffer *t;
	struct tree_buffer *right_buf;
199 200 201 202 203 204 205

	if (level == MAX_LEVEL - 1 || path->nodes[level + 1] == 0)
		return 1;
	slot = path->slots[level + 1];
	if (slot == 0)
		return 1;

206 207 208 209 210
	t = read_tree_block(root,
		            path->nodes[level + 1]->node.blockptrs[slot - 1]);
	left = &t->node;
	right_buf = path->nodes[level];
	right = &right_buf->node;
211 212 213
	left_nritems = left->header.nritems;
	right_nritems = right->header.nritems;
	push_items = NODEPTRS_PER_BLOCK - (left_nritems + 1);
214 215
	if (push_items <= 0) {
		tree_block_release(root, t);
216
		return 1;
217
	}
218 219 220 221 222 223 224 225 226 227 228 229 230 231 232

	if (right_nritems < push_items)
		push_items = right_nritems;
	memcpy(left->keys + left_nritems, right->keys,
		push_items * sizeof(struct key));
	memcpy(left->blockptrs + left_nritems, right->blockptrs,
		push_items * sizeof(u64));
	memmove(right->keys, right->keys + push_items,
		(right_nritems - push_items) * sizeof(struct key));
	memmove(right->blockptrs, right->blockptrs + push_items,
		(right_nritems - push_items) * sizeof(u64));
	right->header.nritems -= push_items;
	left->header.nritems += push_items;

	/* adjust the pointers going up the tree */
233 234 235 236
	fixup_low_keys(root, path, right->keys, level + 1);

	write_tree_block(root, t);
	write_tree_block(root, right_buf);
237 238 239 240

	/* then fixup the leaf pointer in the path */
	if (path->slots[level] < push_items) {
		path->slots[level] += left_nritems;
241 242
		tree_block_release(root, path->nodes[level]);
		path->nodes[level] = t;
243 244 245
		path->slots[level + 1] -= 1;
	} else {
		path->slots[level] -= push_items;
246
		tree_block_release(root, t);
247 248 249 250
	}
	return 0;
}

C
Chris Mason 已提交
251 252 253 254 255 256 257 258 259 260
/*
 * try to push data from one node into the next node right in the
 * tree.  The src node is found at specified level in the path.
 * If some bytes were pushed, return 0, otherwise return 1.
 *
 * Lower nodes/leaves in the path are not touched, higher nodes may
 * be modified to reflect the push.
 *
 * The path is altered to reflect the push.
 */
261 262 263
int push_node_right(struct ctree_root *root, struct ctree_path *path, int level)
{
	int slot;
264 265
	struct tree_buffer *t;
	struct tree_buffer *src_buffer;
266 267 268 269 270 271
	struct node *dst;
	struct node *src;
	int push_items = 0;
	int dst_nritems;
	int src_nritems;

C
Chris Mason 已提交
272
	/* can't push from the root */
273 274
	if (level == MAX_LEVEL - 1 || path->nodes[level + 1] == 0)
		return 1;
C
Chris Mason 已提交
275 276

	/* only try to push inside the node higher up */
277 278 279 280
	slot = path->slots[level + 1];
	if (slot == NODEPTRS_PER_BLOCK - 1)
		return 1;

281
	if (slot >= path->nodes[level + 1]->node.header.nritems -1)
282 283
		return 1;

284 285 286 287 288
	t = read_tree_block(root,
			    path->nodes[level + 1]->node.blockptrs[slot + 1]);
	dst = &t->node;
	src_buffer = path->nodes[level];
	src = &src_buffer->node;
289 290 291
	dst_nritems = dst->header.nritems;
	src_nritems = src->header.nritems;
	push_items = NODEPTRS_PER_BLOCK - (dst_nritems + 1);
292 293
	if (push_items <= 0) {
		tree_block_release(root, t);
294
		return 1;
295
	}
296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312

	if (src_nritems < push_items)
		push_items = src_nritems;
	memmove(dst->keys + push_items, dst->keys,
		dst_nritems * sizeof(struct key));
	memcpy(dst->keys, src->keys + src_nritems - push_items,
		push_items * sizeof(struct key));

	memmove(dst->blockptrs + push_items, dst->blockptrs,
		dst_nritems * sizeof(u64));
	memcpy(dst->blockptrs, src->blockptrs + src_nritems - push_items,
		push_items * sizeof(u64));

	src->header.nritems -= push_items;
	dst->header.nritems += push_items;

	/* adjust the pointers going up the tree */
313
	memcpy(path->nodes[level + 1]->node.keys + path->slots[level + 1] + 1,
314
		dst->keys, sizeof(struct key));
315 316 317 318 319

	write_tree_block(root, path->nodes[level + 1]);
	write_tree_block(root, t);
	write_tree_block(root, src_buffer);

C
Chris Mason 已提交
320
	/* then fixup the pointers in the path */
321 322
	if (path->slots[level] >= src->header.nritems) {
		path->slots[level] -= src->header.nritems;
323 324
		tree_block_release(root, path->nodes[level]);
		path->nodes[level] = t;
325
		path->slots[level + 1] += 1;
326 327
	} else {
		tree_block_release(root, t);
328 329 330 331
	}
	return 0;
}

C
Chris Mason 已提交
332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401
/*
 * worker function to insert a single pointer in a node.
 * the node should have enough room for the pointer already
 * slot and level indicate where you want the key to go, and
 * blocknr is the block the key points to.
 */
int __insert_ptr(struct ctree_root *root,
		struct ctree_path *path, struct key *key,
		u64 blocknr, int slot, int level)
{
	struct node *c;
	struct node *lower;
	struct key *lower_key;
	int nritems;
	/* need a new root */
	if (!path->nodes[level]) {
		struct tree_buffer *t;
		t = alloc_free_block(root);
		c = &t->node;
		memset(c, 0, sizeof(c));
		c->header.nritems = 2;
		c->header.flags = node_level(level);
		c->header.blocknr = t->blocknr;
		lower = &path->nodes[level-1]->node;
		if (is_leaf(lower->header.flags))
			lower_key = &((struct leaf *)lower)->items[0].key;
		else
			lower_key = lower->keys;
		memcpy(c->keys, lower_key, sizeof(struct key));
		memcpy(c->keys + 1, key, sizeof(struct key));
		c->blockptrs[0] = path->nodes[level-1]->blocknr;
		c->blockptrs[1] = blocknr;
		/* the path has an extra ref to root->node */
		tree_block_release(root, root->node);
		root->node = t;
		t->count++;
		write_tree_block(root, t);
		path->nodes[level] = t;
		path->slots[level] = 0;
		if (c->keys[1].objectid == 0)
			BUG();
		return 0;
	}
	lower = &path->nodes[level]->node;
	nritems = lower->header.nritems;
	if (slot > nritems)
		BUG();
	if (nritems == NODEPTRS_PER_BLOCK)
		BUG();
	if (slot != nritems) {
		memmove(lower->keys + slot + 1, lower->keys + slot,
			(nritems - slot) * sizeof(struct key));
		memmove(lower->blockptrs + slot + 1, lower->blockptrs + slot,
			(nritems - slot) * sizeof(u64));
	}
	memcpy(lower->keys + slot, key, sizeof(struct key));
	lower->blockptrs[slot] = blocknr;
	lower->header.nritems++;
	if (lower->keys[1].objectid == 0)
			BUG();
	write_tree_block(root, path->nodes[level]);
	return 0;
}


/*
 * insert a key,blocknr pair into the tree at a given level
 * If the node at that level in the path doesn't have room,
 * it is split or shifted as appropriate.
 */
402 403 404 405
int insert_ptr(struct ctree_root *root,
		struct ctree_path *path, struct key *key,
		u64 blocknr, int level)
{
406 407
	struct tree_buffer *t = path->nodes[level];
	struct node *c = &path->nodes[level]->node;
408
	struct node *b;
409 410
	struct tree_buffer *b_buffer;
	struct tree_buffer *bal[MAX_LEVEL];
411 412 413 414
	int bal_level = level;
	int mid;
	int bal_start = -1;

C
Chris Mason 已提交
415 416 417 418 419 420 421 422 423
	/*
	 * check to see if we need to make room in the node for this
	 * pointer.  If we do, keep walking the tree, making sure there
	 * is enough room in each level for the required insertions.
	 *
	 * The bal array is filled in with any nodes to be inserted
	 * due to splitting.  Once we've done all the splitting required
	 * do the inserts based on the data in the bal array.
	 */
424
	memset(bal, 0, ARRAY_SIZE(bal));
425 426
	while(t && t->node.header.nritems == NODEPTRS_PER_BLOCK) {
		c = &t->node;
427 428 429 430 431 432 433 434 435
		if (push_node_left(root, path,
		   node_level(c->header.flags)) == 0)
			break;
		if (push_node_right(root, path,
		   node_level(c->header.flags)) == 0)
			break;
		bal_start = bal_level;
		if (bal_level == MAX_LEVEL - 1)
			BUG();
436 437
		b_buffer = alloc_free_block(root);
		b = &b_buffer->node;
438
		b->header.flags = c->header.flags;
439
		b->header.blocknr = b_buffer->blocknr;
440 441 442 443 444 445 446
		mid = (c->header.nritems + 1) / 2;
		memcpy(b->keys, c->keys + mid,
			(c->header.nritems - mid) * sizeof(struct key));
		memcpy(b->blockptrs, c->blockptrs + mid,
			(c->header.nritems - mid) * sizeof(u64));
		b->header.nritems = c->header.nritems - mid;
		c->header.nritems = mid;
447 448 449 450 451

		write_tree_block(root, t);
		write_tree_block(root, b_buffer);

		bal[bal_level] = b_buffer;
452 453 454
		if (bal_level == MAX_LEVEL - 1)
			break;
		bal_level += 1;
455
		t = path->nodes[bal_level];
456
	}
C
Chris Mason 已提交
457 458 459 460 461
	/*
	 * bal_start tells us the first level in the tree that needed to
	 * be split.  Go through the bal array inserting the new nodes
	 * as needed.  The path is fixed as we go.
	 */
462
	while(bal_start > 0) {
463 464 465
		b_buffer = bal[bal_start];
		c = &path->nodes[bal_start]->node;
		__insert_ptr(root, path, b_buffer->node.keys, b_buffer->blocknr,
466 467 468
				path->slots[bal_start + 1] + 1, bal_start + 1);
		if (path->slots[bal_start] >= c->header.nritems) {
			path->slots[bal_start] -= c->header.nritems;
469 470
			tree_block_release(root, path->nodes[bal_start]);
			path->nodes[bal_start] = b_buffer;
471
			path->slots[bal_start + 1] += 1;
472 473
		} else {
			tree_block_release(root, b_buffer);
474 475 476 477 478
		}
		bal_start--;
		if (!bal[bal_start])
			break;
	}
C
Chris Mason 已提交
479
	/* Now that the tree has room, insert the requested pointer */
480 481 482 483
	return __insert_ptr(root, path, key, blocknr, path->slots[level] + 1,
			    level);
}

C
Chris Mason 已提交
484 485 486 487 488
/*
 * how many bytes are required to store the items in a leaf.  start
 * and nr indicate which items in the leaf to check.  This totals up the
 * space used both by the item structs and the item data
 */
489 490 491 492 493 494 495 496 497 498 499 500 501
int leaf_space_used(struct leaf *l, int start, int nr)
{
	int data_len;
	int end = start + nr - 1;

	if (!nr)
		return 0;
	data_len = l->items[start].offset + l->items[start].size;
	data_len = data_len - l->items[end].offset;
	data_len += sizeof(struct item) * nr;
	return data_len;
}

C
Chris Mason 已提交
502 503 504 505
/*
 * push some data in the path leaf to the left, trying to free up at
 * least data_size bytes.  returns zero if the push worked, nonzero otherwise
 */
506 507 508
int push_leaf_left(struct ctree_root *root, struct ctree_path *path,
		   int data_size)
{
509 510 511
	struct tree_buffer *right_buf = path->nodes[0];
	struct leaf *right = &right_buf->leaf;
	struct tree_buffer *t;
512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527
	struct leaf *left;
	int slot;
	int i;
	int free_space;
	int push_space = 0;
	int push_items = 0;
	struct item *item;
	int old_left_nritems;

	slot = path->slots[1];
	if (slot == 0) {
		return 1;
	}
	if (!path->nodes[1]) {
		return 1;
	}
528 529
	t = read_tree_block(root, path->nodes[1]->node.blockptrs[slot - 1]);
	left = &t->leaf;
530 531
	free_space = leaf_free_space(left);
	if (free_space < data_size + sizeof(struct item)) {
532
		tree_block_release(root, t);
533 534 535 536 537 538 539 540 541 542 543 544
		return 1;
	}
	for (i = 0; i < right->header.nritems; i++) {
		item = right->items + i;
		if (path->slots[0] == i)
			push_space += data_size + sizeof(*item);
		if (item->size + sizeof(*item) + push_space > free_space)
			break;
		push_items++;
		push_space += item->size + sizeof(*item);
	}
	if (push_items == 0) {
545
		tree_block_release(root, t);
546 547 548 549 550 551 552 553 554 555
		return 1;
	}
	/* push data from right to left */
	memcpy(left->items + left->header.nritems,
		right->items, push_items * sizeof(struct item));
	push_space = LEAF_DATA_SIZE - right->items[push_items -1].offset;
	memcpy(left->data + leaf_data_end(left) - push_space,
		right->data + right->items[push_items - 1].offset,
		push_space);
	old_left_nritems = left->header.nritems;
556 557
	BUG_ON(old_left_nritems < 0);

558 559 560 561 562 563 564 565 566 567 568 569 570 571
	for(i = old_left_nritems; i < old_left_nritems + push_items; i++) {
		left->items[i].offset -= LEAF_DATA_SIZE -
			left->items[old_left_nritems -1].offset;
	}
	left->header.nritems += push_items;

	/* fixup right node */
	push_space = right->items[push_items-1].offset - leaf_data_end(right);
	memmove(right->data + LEAF_DATA_SIZE - push_space, right->data +
		leaf_data_end(right), push_space);
	memmove(right->items, right->items + push_items,
		(right->header.nritems - push_items) * sizeof(struct item));
	right->header.nritems -= push_items;
	push_space = LEAF_DATA_SIZE;
572

573 574 575 576
	for (i = 0; i < right->header.nritems; i++) {
		right->items[i].offset = push_space - right->items[i].size;
		push_space = right->items[i].offset;
	}
577 578 579 580 581

	write_tree_block(root, t);
	write_tree_block(root, right_buf);

	fixup_low_keys(root, path, &right->items[0].key, 1);
582 583 584 585

	/* then fixup the leaf pointer in the path */
	if (path->slots[0] < push_items) {
		path->slots[0] += old_left_nritems;
586 587
		tree_block_release(root, path->nodes[0]);
		path->nodes[0] = t;
588 589
		path->slots[1] -= 1;
	} else {
590
		tree_block_release(root, t);
591 592
		path->slots[0] -= push_items;
	}
593
	BUG_ON(path->slots[0] < 0);
594 595 596
	return 0;
}

C
Chris Mason 已提交
597 598 599 600
/*
 * split the path's leaf in two, making sure there is at least data_size
 * available for the resulting leaf level of the path.
 */
601 602
int split_leaf(struct ctree_root *root, struct ctree_path *path, int data_size)
{
603 604 605 606 607
	struct tree_buffer *l_buf = path->nodes[0];
	struct leaf *l = &l_buf->leaf;
	int nritems;
	int mid;
	int slot;
608
	struct leaf *right;
609
	struct tree_buffer *right_buffer;
610 611 612 613 614 615 616
	int space_needed = data_size + sizeof(struct item);
	int data_copy_size;
	int rt_data_off;
	int i;
	int ret;

	if (push_leaf_left(root, path, data_size) == 0) {
617 618 619 620
		l_buf = path->nodes[0];
		l = &l_buf->leaf;
		if (leaf_free_space(l) >= sizeof(struct item) + data_size)
			return 0;
621
	}
622 623 624 625 626 627 628 629
	slot = path->slots[0];
	nritems = l->header.nritems;
	mid = (nritems + 1)/ 2;

	right_buffer = alloc_free_block(root);
	BUG_ON(!right_buffer);
	BUG_ON(mid == nritems);
	right = &right_buffer->leaf;
630 631 632 633 634 635 636 637 638 639 640
	memset(right, 0, sizeof(*right));
	if (mid <= slot) {
		if (leaf_space_used(l, mid, nritems - mid) + space_needed >
			LEAF_DATA_SIZE)
			BUG();
	} else {
		if (leaf_space_used(l, 0, mid + 1) + space_needed >
			LEAF_DATA_SIZE)
			BUG();
	}
	right->header.nritems = nritems - mid;
641 642
	right->header.blocknr = right_buffer->blocknr;
	right->header.flags = node_level(0);
643 644 645 646 647 648 649 650
	data_copy_size = l->items[mid].offset + l->items[mid].size -
			 leaf_data_end(l);
	memcpy(right->items, l->items + mid,
	       (nritems - mid) * sizeof(struct item));
	memcpy(right->data + LEAF_DATA_SIZE - data_copy_size,
	       l->data + leaf_data_end(l), data_copy_size);
	rt_data_off = LEAF_DATA_SIZE -
		     (l->items[mid].offset + l->items[mid].size);
C
Chris Mason 已提交
651 652

	for (i = 0; i < right->header.nritems; i++)
653
		right->items[i].offset += rt_data_off;
C
Chris Mason 已提交
654

655 656
	l->header.nritems = mid;
	ret = insert_ptr(root, path, &right->items[0].key,
657 658 659 660 661 662
			  right_buffer->blocknr, 1);

	write_tree_block(root, right_buffer);
	write_tree_block(root, l_buf);

	BUG_ON(path->slots[0] != slot);
663
	if (mid <= slot) {
664 665
		tree_block_release(root, path->nodes[0]);
		path->nodes[0] = right_buffer;
666 667
		path->slots[0] -= mid;
		path->slots[1] += 1;
668 669 670
	} else
		tree_block_release(root, right_buffer);
	BUG_ON(path->slots[0] < 0);
671 672 673
	return ret;
}

C
Chris Mason 已提交
674 675 676 677
/*
 * Given a key and some data, insert an item into the tree.
 * This does all the path init required, making room in the tree if needed.
 */
678 679 680 681 682
int insert_item(struct ctree_root *root, struct key *key,
			  void *data, int data_size)
{
	int ret;
	int slot;
683
	int slot_orig;
684
	struct leaf *leaf;
685
	struct tree_buffer *leaf_buf;
686 687 688 689
	unsigned int nritems;
	unsigned int data_end;
	struct ctree_path path;

C
Chris Mason 已提交
690
	/* create a root if there isn't one */
691 692 693 694 695 696 697 698 699 700
	if (!root->node) {
		struct tree_buffer *t;
		t = alloc_free_block(root);
		BUG_ON(!t);
		t->node.header.nritems = 0;
		t->node.header.flags = node_level(0);
		t->node.header.blocknr = t->blocknr;
		root->node = t;
		write_tree_block(root, t);
	}
701 702
	init_path(&path);
	ret = search_slot(root, key, &path);
703 704
	if (ret == 0) {
		release_path(root, &path);
705
		return -EEXIST;
706
	}
707

708 709 710
	slot_orig = path.slots[0];
	leaf_buf = path.nodes[0];
	leaf = &leaf_buf->leaf;
C
Chris Mason 已提交
711 712

	/* make room if needed */
713
	if (leaf_free_space(leaf) <  sizeof(struct item) + data_size) {
714
		split_leaf(root, &path, data_size);
715 716 717
		leaf_buf = path.nodes[0];
		leaf = &path.nodes[0]->leaf;
	}
718 719
	nritems = leaf->header.nritems;
	data_end = leaf_data_end(leaf);
720

721 722 723 724
	if (leaf_free_space(leaf) <  sizeof(struct item) + data_size)
		BUG();

	slot = path.slots[0];
725
	BUG_ON(slot < 0);
726
	if (slot == 0)
727
		fixup_low_keys(root, &path, key, 1);
728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748
	if (slot != nritems) {
		int i;
		unsigned int old_data = leaf->items[slot].offset +
					leaf->items[slot].size;

		/*
		 * item0..itemN ... dataN.offset..dataN.size .. data0.size
		 */
		/* first correct the data pointers */
		for (i = slot; i < nritems; i++)
			leaf->items[i].offset -= data_size;

		/* shift the items */
		memmove(leaf->items + slot + 1, leaf->items + slot,
		        (nritems - slot) * sizeof(struct item));

		/* shift the data */
		memmove(leaf->data + data_end - data_size, leaf->data +
		        data_end, old_data - data_end);
		data_end = old_data;
	}
C
Chris Mason 已提交
749
	/* copy the new data in */
750 751 752 753 754
	memcpy(&leaf->items[slot].key, key, sizeof(struct key));
	leaf->items[slot].offset = data_end - data_size;
	leaf->items[slot].size = data_size;
	memcpy(leaf->data + data_end - data_size, data, data_size);
	leaf->header.nritems += 1;
755
	write_tree_block(root, leaf_buf);
756 757
	if (leaf_free_space(leaf) < 0)
		BUG();
758
	release_path(root, &path);
759 760 761
	return 0;
}

C
Chris Mason 已提交
762 763 764 765 766 767 768 769
/*
 * delete the pointer from a given level in the path.  The path is not
 * fixed up, so after calling this it is not valid at that level.
 *
 * If the delete empties a node, the node is removed from the tree,
 * continuing all the way the root if required.  The root is converted into
 * a leaf if all the nodes are emptied.
 */
770 771 772
int del_ptr(struct ctree_root *root, struct ctree_path *path, int level)
{
	int slot;
773
	struct tree_buffer *t;
774 775 776 777
	struct node *node;
	int nritems;

	while(1) {
778 779
		t = path->nodes[level];
		if (!t)
780
			break;
781
		node = &t->node;
782 783 784 785 786 787 788 789 790 791 792
		slot = path->slots[level];
		nritems = node->header.nritems;

		if (slot != nritems -1) {
			memmove(node->keys + slot, node->keys + slot + 1,
				sizeof(struct key) * (nritems - slot - 1));
			memmove(node->blockptrs + slot,
				node->blockptrs + slot + 1,
				sizeof(u64) * (nritems - slot - 1));
		}
		node->header.nritems--;
793
		write_tree_block(root, t);
794 795 796
		if (node->header.nritems != 0) {
			int tslot;
			if (slot == 0)
797 798
				fixup_low_keys(root, path, node->keys,
					       level + 1);
799
			tslot = path->slots[level+1];
800
			t->count++;
801 802 803 804
			push_node_left(root, path, level);
			if (node->header.nritems) {
				push_node_right(root, path, level);
			}
805 806
			if (node->header.nritems) {
				tree_block_release(root, t);
807
				break;
808 809
			}
			tree_block_release(root, t);
810
			path->slots[level+1] = tslot;
811
		}
812 813 814 815
		if (t == root->node) {
			/* just turn the root into a leaf and break */
			root->node->node.header.flags = node_level(0);
			write_tree_block(root, t);
816 817 818 819 820 821 822 823 824
			break;
		}
		level++;
		if (!path->nodes[level])
			BUG();
	}
	return 0;
}

C
Chris Mason 已提交
825 826 827 828
/*
 * delete the item at the leaf level in path.  If that empties
 * the leaf, remove it from the tree
 */
829
int del_item(struct ctree_root *root, struct ctree_path *path)
830 831 832
{
	int slot;
	struct leaf *leaf;
833
	struct tree_buffer *leaf_buf;
834 835 836
	int doff;
	int dsize;

837 838
	leaf_buf = path->nodes[0];
	leaf = &leaf_buf->leaf;
839
	slot = path->slots[0];
840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855
	doff = leaf->items[slot].offset;
	dsize = leaf->items[slot].size;

	if (slot != leaf->header.nritems - 1) {
		int i;
		int data_end = leaf_data_end(leaf);
		memmove(leaf->data + data_end + dsize,
			leaf->data + data_end,
			doff - data_end);
		for (i = slot + 1; i < leaf->header.nritems; i++)
			leaf->items[i].offset += dsize;
		memmove(leaf->items + slot, leaf->items + slot + 1,
			sizeof(struct item) *
			(leaf->header.nritems - slot - 1));
	}
	leaf->header.nritems -= 1;
C
Chris Mason 已提交
856
	/* delete the leaf if we've emptied it */
857
	if (leaf->header.nritems == 0) {
858 859 860 861
		if (leaf_buf == root->node) {
			leaf->header.flags = node_level(0);
			write_tree_block(root, leaf_buf);
		} else
862
			del_ptr(root, path, 1);
863 864
	} else {
		if (slot == 0)
865 866
			fixup_low_keys(root, path, &leaf->items[0].key, 1);
		write_tree_block(root, leaf_buf);
C
Chris Mason 已提交
867
		/* delete the leaf if it is mostly empty */
868 869 870 871 872 873
		if (leaf_space_used(leaf, 0, leaf->header.nritems) <
		    LEAF_DATA_SIZE / 4) {
			/* push_leaf_left fixes the path.
			 * make sure the path still points to our leaf
			 * for possible call to del_ptr below
			 */
874
			slot = path->slots[1];
875
			leaf_buf->count++;
876
			push_leaf_left(root, path, 1);
877
			if (leaf->header.nritems == 0) {
878 879
				path->slots[1] = slot;
				del_ptr(root, path, 1);
880
			}
881
			tree_block_release(root, leaf_buf);
882 883 884 885 886 887 888 889 890 891
		}
	}
	return 0;
}

void print_leaf(struct leaf *l)
{
	int i;
	int nr = l->header.nritems;
	struct item *item;
892
	printf("leaf %lu total ptrs %d free space %d\n", l->header.blocknr, nr,
893 894 895 896 897 898 899 900 901 902 903 904 905
	       leaf_free_space(l));
	fflush(stdout);
	for (i = 0 ; i < nr ; i++) {
		item = l->items + i;
		printf("\titem %d key (%lu %u %lu) itemoff %d itemsize %d\n",
			i,
			item->key.objectid, item->key.flags, item->key.offset,
			item->offset, item->size);
		fflush(stdout);
		printf("\t\titem data %.*s\n", item->size, l->data+item->offset);
		fflush(stdout);
	}
}
906
void print_tree(struct ctree_root *root, struct tree_buffer *t)
907 908 909
{
	int i;
	int nr;
910
	struct node *c;
911

912
	if (!t)
913
		return;
914
	c = &t->node;
915
	nr = c->header.nritems;
916 917
	if (c->header.blocknr != t->blocknr)
		BUG();
918 919 920 921
	if (is_leaf(c->header.flags)) {
		print_leaf((struct leaf *)c);
		return;
	}
922
	printf("node %lu level %d total ptrs %d free spc %lu\n", t->blocknr,
923 924 925 926
	        node_level(c->header.flags), c->header.nritems,
		NODEPTRS_PER_BLOCK - c->header.nritems);
	fflush(stdout);
	for (i = 0; i < nr; i++) {
927
		printf("\tkey %d (%lu %u %lu) block %lu\n",
928 929 930 931 932 933
		       i,
		       c->keys[i].objectid, c->keys[i].flags, c->keys[i].offset,
		       c->blockptrs[i]);
		fflush(stdout);
	}
	for (i = 0; i < nr; i++) {
934 935 936
		struct tree_buffer *next_buf = read_tree_block(root,
							    c->blockptrs[i]);
		struct node *next = &next_buf->node;
937 938 939 940 941 942
		if (is_leaf(next->header.flags) &&
		    node_level(c->header.flags) != 1)
			BUG();
		if (node_level(next->header.flags) !=
			node_level(c->header.flags) - 1)
			BUG();
943 944
		print_tree(root, next_buf);
		tree_block_release(root, next_buf);
945 946 947 948 949 950 951 952 953 954 955
	}

}

/* for testing only */
int next_key(int i, int max_key) {
	return rand() % max_key;
	// return i;
}

int main() {
956
	struct ctree_root *root;
957
	struct key ins;
958
	struct key last = { (u64)-1, 0, 0};
959 960 961 962
	char *buf;
	int i;
	int num;
	int ret;
C
Chris Mason 已提交
963
	int run_size = 25000;
964 965 966 967
	int max_key = 100000000;
	int tree_size = 0;
	struct ctree_path path;

968 969 970 971
	radix_tree_init();


	root = open_ctree("dbfile");
972 973 974 975 976 977 978 979 980 981 982

	srand(55);
	for (i = 0; i < run_size; i++) {
		buf = malloc(64);
		num = next_key(i, max_key);
		// num = i;
		sprintf(buf, "string-%d", num);
		// printf("insert %d\n", num);
		ins.objectid = num;
		ins.offset = 0;
		ins.flags = 0;
983
		ret = insert_item(root, &ins, buf, strlen(buf));
984 985 986
		if (!ret)
			tree_size++;
	}
987 988 989
	close_ctree(root);
	root = open_ctree("dbfile");
	printf("starting search\n");
990 991 992 993 994
	srand(55);
	for (i = 0; i < run_size; i++) {
		num = next_key(i, max_key);
		ins.objectid = num;
		init_path(&path);
995
		ret = search_slot(root, &ins, &path);
996
		if (ret) {
997
			print_tree(root, root->node);
998 999 1000
			printf("unable to find %d\n", num);
			exit(1);
		}
1001 1002 1003 1004 1005 1006 1007 1008 1009
		release_path(root, &path);
	}
	close_ctree(root);
	root = open_ctree("dbfile");
	printf("node %p level %d total ptrs %d free spc %lu\n", root->node,
	        node_level(root->node->node.header.flags),
		root->node->node.header.nritems,
		NODEPTRS_PER_BLOCK - root->node->node.header.nritems);
	printf("all searches good, deleting some items\n");
1010 1011
	i = 0;
	srand(55);
1012 1013 1014 1015
	for (i = 0 ; i < run_size/4; i++) {
		num = next_key(i, max_key);
		ins.objectid = num;
		init_path(&path);
1016
		ret = search_slot(root, &ins, &path);
1017 1018
		if (ret)
			continue;
1019
		ret = del_item(root, &path);
1020 1021
		if (ret != 0)
			BUG();
1022
		release_path(root, &path);
1023 1024 1025
		tree_size--;
	}
	srand(128);
1026
	for (i = 0; i < run_size; i++) {
1027
		buf = malloc(64);
1028
		num = next_key(i, max_key);
1029
		sprintf(buf, "string-%d", num);
1030
		ins.objectid = num;
1031
		ret = insert_item(root, &ins, buf, strlen(buf));
1032 1033 1034
		if (!ret)
			tree_size++;
	}
1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052
	close_ctree(root);
	root = open_ctree("dbfile");
	printf("starting search2\n");
	srand(128);
	for (i = 0; i < run_size; i++) {
		num = next_key(i, max_key);
		ins.objectid = num;
		init_path(&path);
		ret = search_slot(root, &ins, &path);
		if (ret) {
			print_tree(root, root->node);
			printf("unable to find %d\n", num);
			exit(1);
		}
		release_path(root, &path);
	}
	printf("starting big long delete run\n");
	while(root->node && root->node->node.header.nritems > 0) {
1053 1054 1055 1056
		struct leaf *leaf;
		int slot;
		ins.objectid = (u64)-1;
		init_path(&path);
1057
		ret = search_slot(root, &ins, &path);
1058 1059 1060
		if (ret == 0)
			BUG();

1061
		leaf = &path.nodes[0]->leaf;
1062 1063 1064 1065 1066 1067
		slot = path.slots[0];
		if (slot != leaf->header.nritems)
			BUG();
		while(path.slots[0] > 0) {
			path.slots[0] -= 1;
			slot = path.slots[0];
1068
			leaf = &path.nodes[0]->leaf;
1069 1070 1071 1072

			if (comp_keys(&last, &leaf->items[slot].key) <= 0)
				BUG();
			memcpy(&last, &leaf->items[slot].key, sizeof(last));
1073 1074 1075
			ret = del_item(root, &path);
			if (ret != 0) {
				printf("del_item returned %d\n", ret);
1076
				BUG();
1077
			}
1078 1079
			tree_size--;
		}
1080
		release_path(root, &path);
1081
	}
1082
	close_ctree(root);
1083
	printf("tree size is now %d\n", tree_size);
1084 1085
	return 0;
}