ctree.c 152.9 KB
Newer Older
C
Chris Mason 已提交
1
/*
C
Chris Mason 已提交
2
 * Copyright (C) 2007,2008 Oracle.  All rights reserved.
C
Chris Mason 已提交
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public
 * License v2 as published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * General Public License for more details.
 *
 * You should have received a copy of the GNU General Public
 * License along with this program; if not, write to the
 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
 * Boston, MA 021110-1307, USA.
 */

19
#include <linux/sched.h>
20
#include <linux/slab.h>
21
#include <linux/rbtree.h>
22
#include <linux/vmalloc.h>
23 24
#include "ctree.h"
#include "disk-io.h"
25
#include "transaction.h"
26
#include "print-tree.h"
27
#include "locking.h"
28

29 30 31
static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
		      *root, struct btrfs_path *path, int level);
static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root
32
		      *root, struct btrfs_key *ins_key,
33
		      struct btrfs_path *path, int data_size, int extend);
34 35
static int push_node_left(struct btrfs_trans_handle *trans,
			  struct btrfs_root *root, struct extent_buffer *dst,
36
			  struct extent_buffer *src, int empty);
37 38 39 40
static int balance_node_right(struct btrfs_trans_handle *trans,
			      struct btrfs_root *root,
			      struct extent_buffer *dst_buf,
			      struct extent_buffer *src_buf);
41 42
static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
		    int level, int slot);
43
static int tree_mod_log_free_eb(struct btrfs_fs_info *fs_info,
44
				 struct extent_buffer *eb);
45

C
Chris Mason 已提交
46
struct btrfs_path *btrfs_alloc_path(void)
C
Chris Mason 已提交
47
{
48
	return kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS);
C
Chris Mason 已提交
49 50
}

51 52 53 54 55 56 57 58
/*
 * set all locked nodes in the path to blocking locks.  This should
 * be done before scheduling
 */
noinline void btrfs_set_path_blocking(struct btrfs_path *p)
{
	int i;
	for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
59 60 61 62 63 64 65
		if (!p->nodes[i] || !p->locks[i])
			continue;
		btrfs_set_lock_blocking_rw(p->nodes[i], p->locks[i]);
		if (p->locks[i] == BTRFS_READ_LOCK)
			p->locks[i] = BTRFS_READ_LOCK_BLOCKING;
		else if (p->locks[i] == BTRFS_WRITE_LOCK)
			p->locks[i] = BTRFS_WRITE_LOCK_BLOCKING;
66 67 68 69 70
	}
}

/*
 * reset all the locked nodes in the patch to spinning locks.
71 72 73 74 75
 *
 * held is used to keep lockdep happy, when lockdep is enabled
 * we set held to a blocking lock before we go around and
 * retake all the spinlocks in the path.  You can safely use NULL
 * for held
76
 */
77
noinline void btrfs_clear_path_blocking(struct btrfs_path *p,
78
					struct extent_buffer *held, int held_rw)
79 80
{
	int i;
81

82 83 84 85 86 87 88
	if (held) {
		btrfs_set_lock_blocking_rw(held, held_rw);
		if (held_rw == BTRFS_WRITE_LOCK)
			held_rw = BTRFS_WRITE_LOCK_BLOCKING;
		else if (held_rw == BTRFS_READ_LOCK)
			held_rw = BTRFS_READ_LOCK_BLOCKING;
	}
89 90 91
	btrfs_set_path_blocking(p);

	for (i = BTRFS_MAX_LEVEL - 1; i >= 0; i--) {
92 93 94 95 96 97 98
		if (p->nodes[i] && p->locks[i]) {
			btrfs_clear_lock_blocking_rw(p->nodes[i], p->locks[i]);
			if (p->locks[i] == BTRFS_WRITE_LOCK_BLOCKING)
				p->locks[i] = BTRFS_WRITE_LOCK;
			else if (p->locks[i] == BTRFS_READ_LOCK_BLOCKING)
				p->locks[i] = BTRFS_READ_LOCK;
		}
99
	}
100 101

	if (held)
102
		btrfs_clear_lock_blocking_rw(held, held_rw);
103 104
}

C
Chris Mason 已提交
105
/* this also releases the path */
C
Chris Mason 已提交
106
void btrfs_free_path(struct btrfs_path *p)
107
{
108 109
	if (!p)
		return;
110
	btrfs_release_path(p);
C
Chris Mason 已提交
111
	kmem_cache_free(btrfs_path_cachep, p);
112 113
}

C
Chris Mason 已提交
114 115 116 117 118 119
/*
 * path release drops references on the extent buffers in the path
 * and it drops any locks held by this path
 *
 * It is safe to call this on paths that no locks or extent buffers held.
 */
120
noinline void btrfs_release_path(struct btrfs_path *p)
121 122
{
	int i;
123

C
Chris Mason 已提交
124
	for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
125
		p->slots[i] = 0;
126
		if (!p->nodes[i])
127 128
			continue;
		if (p->locks[i]) {
129
			btrfs_tree_unlock_rw(p->nodes[i], p->locks[i]);
130 131
			p->locks[i] = 0;
		}
132
		free_extent_buffer(p->nodes[i]);
133
		p->nodes[i] = NULL;
134 135 136
	}
}

C
Chris Mason 已提交
137 138 139 140 141 142 143 144 145 146
/*
 * safely gets a reference on the root node of a tree.  A lock
 * is not taken, so a concurrent writer may put a different node
 * at the root of the tree.  See btrfs_lock_root_node for the
 * looping required.
 *
 * The extent buffer returned by this has a reference taken, so
 * it won't disappear.  It may stop being the root of the tree
 * at any time because there are no locks held.
 */
147 148 149
struct extent_buffer *btrfs_root_node(struct btrfs_root *root)
{
	struct extent_buffer *eb;
150

151 152 153 154 155 156
	while (1) {
		rcu_read_lock();
		eb = rcu_dereference(root->node);

		/*
		 * RCU really hurts here, we could free up the root node because
157
		 * it was COWed but we may not get the new root node yet so do
158 159 160 161 162 163 164 165 166 167
		 * the inc_not_zero dance and if it doesn't work then
		 * synchronize_rcu and try again.
		 */
		if (atomic_inc_not_zero(&eb->refs)) {
			rcu_read_unlock();
			break;
		}
		rcu_read_unlock();
		synchronize_rcu();
	}
168 169 170
	return eb;
}

C
Chris Mason 已提交
171 172 173 174
/* loop around taking references on and locking the root node of the
 * tree until you end up with a lock on the root.  A locked buffer
 * is returned, with a reference held.
 */
175 176 177 178
struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root)
{
	struct extent_buffer *eb;

C
Chris Mason 已提交
179
	while (1) {
180 181
		eb = btrfs_root_node(root);
		btrfs_tree_lock(eb);
182
		if (eb == root->node)
183 184 185 186 187 188 189
			break;
		btrfs_tree_unlock(eb);
		free_extent_buffer(eb);
	}
	return eb;
}

190 191 192 193
/* loop around taking references on and locking the root node of the
 * tree until you end up with a lock on the root.  A locked buffer
 * is returned, with a reference held.
 */
194
static struct extent_buffer *btrfs_read_lock_root_node(struct btrfs_root *root)
195 196 197 198 199 200 201 202 203 204 205 206 207 208
{
	struct extent_buffer *eb;

	while (1) {
		eb = btrfs_root_node(root);
		btrfs_tree_read_lock(eb);
		if (eb == root->node)
			break;
		btrfs_tree_read_unlock(eb);
		free_extent_buffer(eb);
	}
	return eb;
}

C
Chris Mason 已提交
209 210 211 212
/* cowonly root (everything not a reference counted cow subvolume), just get
 * put onto a simple dirty list.  transaction.c walks this to make sure they
 * get properly updated on disk.
 */
213 214
static void add_root_to_dirty_list(struct btrfs_root *root)
{
215 216 217 218
	if (test_bit(BTRFS_ROOT_DIRTY, &root->state) ||
	    !test_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state))
		return;

219
	spin_lock(&root->fs_info->trans_lock);
220 221 222 223 224 225 226 227
	if (!test_and_set_bit(BTRFS_ROOT_DIRTY, &root->state)) {
		/* Want the extent tree to be the last on the list */
		if (root->objectid == BTRFS_EXTENT_TREE_OBJECTID)
			list_move_tail(&root->dirty_list,
				       &root->fs_info->dirty_cowonly_roots);
		else
			list_move(&root->dirty_list,
				  &root->fs_info->dirty_cowonly_roots);
228
	}
229
	spin_unlock(&root->fs_info->trans_lock);
230 231
}

C
Chris Mason 已提交
232 233 234 235 236
/*
 * used by snapshot creation to make a copy of a root for a tree with
 * a given objectid.  The buffer with the new root node is returned in
 * cow_ret, and this func returns zero on success or a negative error code.
 */
237 238 239 240 241 242 243 244
int btrfs_copy_root(struct btrfs_trans_handle *trans,
		      struct btrfs_root *root,
		      struct extent_buffer *buf,
		      struct extent_buffer **cow_ret, u64 new_root_objectid)
{
	struct extent_buffer *cow;
	int ret = 0;
	int level;
245
	struct btrfs_disk_key disk_key;
246

247 248 249 250
	WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
		trans->transid != root->fs_info->running_transaction->transid);
	WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
		trans->transid != root->last_trans);
251 252

	level = btrfs_header_level(buf);
253 254 255 256
	if (level == 0)
		btrfs_item_key(buf, &disk_key, 0);
	else
		btrfs_node_key(buf, &disk_key, 0);
Z
Zheng Yan 已提交
257

258 259
	cow = btrfs_alloc_tree_block(trans, root, 0, new_root_objectid,
			&disk_key, level, buf->start, 0);
260
	if (IS_ERR(cow))
261 262 263 264 265
		return PTR_ERR(cow);

	copy_extent_buffer(cow, buf, 0, 0, cow->len);
	btrfs_set_header_bytenr(cow, cow->start);
	btrfs_set_header_generation(cow, trans->transid);
266 267 268 269 270 271 272
	btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
	btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
				     BTRFS_HEADER_FLAG_RELOC);
	if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
		btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
	else
		btrfs_set_header_owner(cow, new_root_objectid);
273

274
	write_extent_buffer(cow, root->fs_info->fsid, btrfs_header_fsid(),
Y
Yan Zheng 已提交
275 276
			    BTRFS_FSID_SIZE);

277
	WARN_ON(btrfs_header_generation(buf) > trans->transid);
278
	if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
279
		ret = btrfs_inc_ref(trans, root, cow, 1);
280
	else
281
		ret = btrfs_inc_ref(trans, root, cow, 0);
282

283 284 285 286 287 288 289 290
	if (ret)
		return ret;

	btrfs_mark_buffer_dirty(cow);
	*cow_ret = cow;
	return 0;
}

291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312
enum mod_log_op {
	MOD_LOG_KEY_REPLACE,
	MOD_LOG_KEY_ADD,
	MOD_LOG_KEY_REMOVE,
	MOD_LOG_KEY_REMOVE_WHILE_FREEING,
	MOD_LOG_KEY_REMOVE_WHILE_MOVING,
	MOD_LOG_MOVE_KEYS,
	MOD_LOG_ROOT_REPLACE,
};

struct tree_mod_move {
	int dst_slot;
	int nr_items;
};

struct tree_mod_root {
	u64 logical;
	u8 level;
};

struct tree_mod_elem {
	struct rb_node node;
313
	u64 logical;
314
	u64 seq;
315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333
	enum mod_log_op op;

	/* this is used for MOD_LOG_KEY_* and MOD_LOG_MOVE_KEYS operations */
	int slot;

	/* this is used for MOD_LOG_KEY* and MOD_LOG_ROOT_REPLACE */
	u64 generation;

	/* those are used for op == MOD_LOG_KEY_{REPLACE,REMOVE} */
	struct btrfs_disk_key key;
	u64 blockptr;

	/* this is used for op == MOD_LOG_MOVE_KEYS */
	struct tree_mod_move move;

	/* this is used for op == MOD_LOG_ROOT_REPLACE */
	struct tree_mod_root old_root;
};

334
static inline void tree_mod_log_read_lock(struct btrfs_fs_info *fs_info)
335
{
336
	read_lock(&fs_info->tree_mod_log_lock);
337 338
}

339 340 341 342 343 344 345 346 347 348 349 350 351 352 353
static inline void tree_mod_log_read_unlock(struct btrfs_fs_info *fs_info)
{
	read_unlock(&fs_info->tree_mod_log_lock);
}

static inline void tree_mod_log_write_lock(struct btrfs_fs_info *fs_info)
{
	write_lock(&fs_info->tree_mod_log_lock);
}

static inline void tree_mod_log_write_unlock(struct btrfs_fs_info *fs_info)
{
	write_unlock(&fs_info->tree_mod_log_lock);
}

354
/*
J
Josef Bacik 已提交
355
 * Pull a new tree mod seq number for our operation.
356
 */
J
Josef Bacik 已提交
357
static inline u64 btrfs_inc_tree_mod_seq(struct btrfs_fs_info *fs_info)
358 359 360 361
{
	return atomic64_inc_return(&fs_info->tree_mod_seq);
}

362 363 364 365 366 367 368 369 370 371
/*
 * This adds a new blocker to the tree mod log's blocker list if the @elem
 * passed does not already have a sequence number set. So when a caller expects
 * to record tree modifications, it should ensure to set elem->seq to zero
 * before calling btrfs_get_tree_mod_seq.
 * Returns a fresh, unused tree log modification sequence number, even if no new
 * blocker was added.
 */
u64 btrfs_get_tree_mod_seq(struct btrfs_fs_info *fs_info,
			   struct seq_list *elem)
372
{
373
	tree_mod_log_write_lock(fs_info);
374
	spin_lock(&fs_info->tree_mod_seq_lock);
375
	if (!elem->seq) {
J
Josef Bacik 已提交
376
		elem->seq = btrfs_inc_tree_mod_seq(fs_info);
377 378
		list_add_tail(&elem->list, &fs_info->tree_mod_seq_list);
	}
379
	spin_unlock(&fs_info->tree_mod_seq_lock);
380 381
	tree_mod_log_write_unlock(fs_info);

J
Josef Bacik 已提交
382
	return elem->seq;
383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400
}

void btrfs_put_tree_mod_seq(struct btrfs_fs_info *fs_info,
			    struct seq_list *elem)
{
	struct rb_root *tm_root;
	struct rb_node *node;
	struct rb_node *next;
	struct seq_list *cur_elem;
	struct tree_mod_elem *tm;
	u64 min_seq = (u64)-1;
	u64 seq_putting = elem->seq;

	if (!seq_putting)
		return;

	spin_lock(&fs_info->tree_mod_seq_lock);
	list_del(&elem->list);
401
	elem->seq = 0;
402 403

	list_for_each_entry(cur_elem, &fs_info->tree_mod_seq_list, list) {
404
		if (cur_elem->seq < min_seq) {
405 406 407 408 409
			if (seq_putting > cur_elem->seq) {
				/*
				 * blocker with lower sequence number exists, we
				 * cannot remove anything from the log
				 */
410 411
				spin_unlock(&fs_info->tree_mod_seq_lock);
				return;
412 413 414 415
			}
			min_seq = cur_elem->seq;
		}
	}
416 417
	spin_unlock(&fs_info->tree_mod_seq_lock);

418 419 420 421
	/*
	 * anything that's lower than the lowest existing (read: blocked)
	 * sequence number can be removed from the tree.
	 */
422
	tree_mod_log_write_lock(fs_info);
423 424 425 426
	tm_root = &fs_info->tree_mod_log;
	for (node = rb_first(tm_root); node; node = next) {
		next = rb_next(node);
		tm = container_of(node, struct tree_mod_elem, node);
427
		if (tm->seq > min_seq)
428 429 430 431
			continue;
		rb_erase(node, tm_root);
		kfree(tm);
	}
432
	tree_mod_log_write_unlock(fs_info);
433 434 435 436
}

/*
 * key order of the log:
437
 *       node/leaf start address -> sequence
438
 *
439 440 441
 * The 'start address' is the logical address of the *new* root node
 * for root replace operations, or the logical address of the affected
 * block for all other operations.
442 443
 *
 * Note: must be called with write lock (tree_mod_log_write_lock).
444 445 446 447 448 449 450 451
 */
static noinline int
__tree_mod_log_insert(struct btrfs_fs_info *fs_info, struct tree_mod_elem *tm)
{
	struct rb_root *tm_root;
	struct rb_node **new;
	struct rb_node *parent = NULL;
	struct tree_mod_elem *cur;
452 453 454

	BUG_ON(!tm);

J
Josef Bacik 已提交
455
	tm->seq = btrfs_inc_tree_mod_seq(fs_info);
456 457 458 459 460 461

	tm_root = &fs_info->tree_mod_log;
	new = &tm_root->rb_node;
	while (*new) {
		cur = container_of(*new, struct tree_mod_elem, node);
		parent = *new;
462
		if (cur->logical < tm->logical)
463
			new = &((*new)->rb_left);
464
		else if (cur->logical > tm->logical)
465
			new = &((*new)->rb_right);
466
		else if (cur->seq < tm->seq)
467
			new = &((*new)->rb_left);
468
		else if (cur->seq > tm->seq)
469
			new = &((*new)->rb_right);
470 471
		else
			return -EEXIST;
472 473 474 475
	}

	rb_link_node(&tm->node, parent, new);
	rb_insert_color(&tm->node, tm_root);
476
	return 0;
477 478
}

479 480 481 482 483 484
/*
 * Determines if logging can be omitted. Returns 1 if it can. Otherwise, it
 * returns zero with the tree_mod_log_lock acquired. The caller must hold
 * this until all tree mod log insertions are recorded in the rb tree and then
 * call tree_mod_log_write_unlock() to release.
 */
485 486 487 488 489
static inline int tree_mod_dont_log(struct btrfs_fs_info *fs_info,
				    struct extent_buffer *eb) {
	smp_mb();
	if (list_empty(&(fs_info)->tree_mod_seq_list))
		return 1;
490 491
	if (eb && btrfs_header_level(eb) == 0)
		return 1;
492 493 494 495 496 497 498

	tree_mod_log_write_lock(fs_info);
	if (list_empty(&(fs_info)->tree_mod_seq_list)) {
		tree_mod_log_write_unlock(fs_info);
		return 1;
	}

499 500 501
	return 0;
}

502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517
/* Similar to tree_mod_dont_log, but doesn't acquire any locks. */
static inline int tree_mod_need_log(const struct btrfs_fs_info *fs_info,
				    struct extent_buffer *eb)
{
	smp_mb();
	if (list_empty(&(fs_info)->tree_mod_seq_list))
		return 0;
	if (eb && btrfs_header_level(eb) == 0)
		return 0;

	return 1;
}

static struct tree_mod_elem *
alloc_tree_mod_elem(struct extent_buffer *eb, int slot,
		    enum mod_log_op op, gfp_t flags)
518
{
519
	struct tree_mod_elem *tm;
520

521 522
	tm = kzalloc(sizeof(*tm), flags);
	if (!tm)
523
		return NULL;
524

525
	tm->logical = eb->start;
526 527 528 529 530 531 532
	if (op != MOD_LOG_KEY_ADD) {
		btrfs_node_key(eb, &tm->key, slot);
		tm->blockptr = btrfs_node_blockptr(eb, slot);
	}
	tm->op = op;
	tm->slot = slot;
	tm->generation = btrfs_node_ptr_generation(eb, slot);
533
	RB_CLEAR_NODE(&tm->node);
534

535
	return tm;
536 537 538
}

static noinline int
539 540 541
tree_mod_log_insert_key(struct btrfs_fs_info *fs_info,
			struct extent_buffer *eb, int slot,
			enum mod_log_op op, gfp_t flags)
542
{
543 544 545 546 547 548 549 550 551 552 553 554
	struct tree_mod_elem *tm;
	int ret;

	if (!tree_mod_need_log(fs_info, eb))
		return 0;

	tm = alloc_tree_mod_elem(eb, slot, op, flags);
	if (!tm)
		return -ENOMEM;

	if (tree_mod_dont_log(fs_info, eb)) {
		kfree(tm);
555
		return 0;
556 557 558 559 560 561
	}

	ret = __tree_mod_log_insert(fs_info, tm);
	tree_mod_log_write_unlock(fs_info);
	if (ret)
		kfree(tm);
562

563
	return ret;
564 565
}

566 567 568 569 570
static noinline int
tree_mod_log_insert_move(struct btrfs_fs_info *fs_info,
			 struct extent_buffer *eb, int dst_slot, int src_slot,
			 int nr_items, gfp_t flags)
{
571 572 573
	struct tree_mod_elem *tm = NULL;
	struct tree_mod_elem **tm_list = NULL;
	int ret = 0;
574
	int i;
575
	int locked = 0;
576

577
	if (!tree_mod_need_log(fs_info, eb))
J
Jan Schmidt 已提交
578
		return 0;
579

580
	tm_list = kcalloc(nr_items, sizeof(struct tree_mod_elem *), flags);
581 582 583 584 585 586 587 588 589
	if (!tm_list)
		return -ENOMEM;

	tm = kzalloc(sizeof(*tm), flags);
	if (!tm) {
		ret = -ENOMEM;
		goto free_tms;
	}

590
	tm->logical = eb->start;
591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608
	tm->slot = src_slot;
	tm->move.dst_slot = dst_slot;
	tm->move.nr_items = nr_items;
	tm->op = MOD_LOG_MOVE_KEYS;

	for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) {
		tm_list[i] = alloc_tree_mod_elem(eb, i + dst_slot,
		    MOD_LOG_KEY_REMOVE_WHILE_MOVING, flags);
		if (!tm_list[i]) {
			ret = -ENOMEM;
			goto free_tms;
		}
	}

	if (tree_mod_dont_log(fs_info, eb))
		goto free_tms;
	locked = 1;

609 610 611 612 613
	/*
	 * When we override something during the move, we log these removals.
	 * This can only happen when we move towards the beginning of the
	 * buffer, i.e. dst_slot < src_slot.
	 */
614
	for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) {
615 616 617
		ret = __tree_mod_log_insert(fs_info, tm_list[i]);
		if (ret)
			goto free_tms;
618 619
	}

620 621 622 623 624
	ret = __tree_mod_log_insert(fs_info, tm);
	if (ret)
		goto free_tms;
	tree_mod_log_write_unlock(fs_info);
	kfree(tm_list);
J
Jan Schmidt 已提交
625

626 627 628 629 630 631 632 633 634 635 636
	return 0;
free_tms:
	for (i = 0; i < nr_items; i++) {
		if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node))
			rb_erase(&tm_list[i]->node, &fs_info->tree_mod_log);
		kfree(tm_list[i]);
	}
	if (locked)
		tree_mod_log_write_unlock(fs_info);
	kfree(tm_list);
	kfree(tm);
637

638
	return ret;
639 640
}

641 642 643 644
static inline int
__tree_mod_log_free_eb(struct btrfs_fs_info *fs_info,
		       struct tree_mod_elem **tm_list,
		       int nritems)
645
{
646
	int i, j;
647 648 649
	int ret;

	for (i = nritems - 1; i >= 0; i--) {
650 651 652 653 654 655 656
		ret = __tree_mod_log_insert(fs_info, tm_list[i]);
		if (ret) {
			for (j = nritems - 1; j > i; j--)
				rb_erase(&tm_list[j]->node,
					 &fs_info->tree_mod_log);
			return ret;
		}
657
	}
658 659

	return 0;
660 661
}

662 663 664
static noinline int
tree_mod_log_insert_root(struct btrfs_fs_info *fs_info,
			 struct extent_buffer *old_root,
665 666
			 struct extent_buffer *new_root, gfp_t flags,
			 int log_removal)
667
{
668 669 670 671 672
	struct tree_mod_elem *tm = NULL;
	struct tree_mod_elem **tm_list = NULL;
	int nritems = 0;
	int ret = 0;
	int i;
673

674
	if (!tree_mod_need_log(fs_info, NULL))
675 676
		return 0;

677 678
	if (log_removal && btrfs_header_level(old_root) > 0) {
		nritems = btrfs_header_nritems(old_root);
679
		tm_list = kcalloc(nritems, sizeof(struct tree_mod_elem *),
680 681 682 683 684 685 686 687 688 689 690 691 692 693
				  flags);
		if (!tm_list) {
			ret = -ENOMEM;
			goto free_tms;
		}
		for (i = 0; i < nritems; i++) {
			tm_list[i] = alloc_tree_mod_elem(old_root, i,
			    MOD_LOG_KEY_REMOVE_WHILE_FREEING, flags);
			if (!tm_list[i]) {
				ret = -ENOMEM;
				goto free_tms;
			}
		}
	}
694

695
	tm = kzalloc(sizeof(*tm), flags);
696 697 698 699
	if (!tm) {
		ret = -ENOMEM;
		goto free_tms;
	}
700

701
	tm->logical = new_root->start;
702 703 704 705 706
	tm->old_root.logical = old_root->start;
	tm->old_root.level = btrfs_header_level(old_root);
	tm->generation = btrfs_header_generation(old_root);
	tm->op = MOD_LOG_ROOT_REPLACE;

707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730
	if (tree_mod_dont_log(fs_info, NULL))
		goto free_tms;

	if (tm_list)
		ret = __tree_mod_log_free_eb(fs_info, tm_list, nritems);
	if (!ret)
		ret = __tree_mod_log_insert(fs_info, tm);

	tree_mod_log_write_unlock(fs_info);
	if (ret)
		goto free_tms;
	kfree(tm_list);

	return ret;

free_tms:
	if (tm_list) {
		for (i = 0; i < nritems; i++)
			kfree(tm_list[i]);
		kfree(tm_list);
	}
	kfree(tm);

	return ret;
731 732 733 734 735 736 737 738 739 740 741
}

static struct tree_mod_elem *
__tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq,
		      int smallest)
{
	struct rb_root *tm_root;
	struct rb_node *node;
	struct tree_mod_elem *cur = NULL;
	struct tree_mod_elem *found = NULL;

742
	tree_mod_log_read_lock(fs_info);
743 744 745 746
	tm_root = &fs_info->tree_mod_log;
	node = tm_root->rb_node;
	while (node) {
		cur = container_of(node, struct tree_mod_elem, node);
747
		if (cur->logical < start) {
748
			node = node->rb_left;
749
		} else if (cur->logical > start) {
750
			node = node->rb_right;
751
		} else if (cur->seq < min_seq) {
752 753 754 755
			node = node->rb_left;
		} else if (!smallest) {
			/* we want the node with the highest seq */
			if (found)
756
				BUG_ON(found->seq > cur->seq);
757 758
			found = cur;
			node = node->rb_left;
759
		} else if (cur->seq > min_seq) {
760 761
			/* we want the node with the smallest seq */
			if (found)
762
				BUG_ON(found->seq < cur->seq);
763 764 765 766 767 768 769
			found = cur;
			node = node->rb_right;
		} else {
			found = cur;
			break;
		}
	}
770
	tree_mod_log_read_unlock(fs_info);
771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797

	return found;
}

/*
 * this returns the element from the log with the smallest time sequence
 * value that's in the log (the oldest log item). any element with a time
 * sequence lower than min_seq will be ignored.
 */
static struct tree_mod_elem *
tree_mod_log_search_oldest(struct btrfs_fs_info *fs_info, u64 start,
			   u64 min_seq)
{
	return __tree_mod_log_search(fs_info, start, min_seq, 1);
}

/*
 * this returns the element from the log with the largest time sequence
 * value that's in the log (the most recent log item). any element with
 * a time sequence lower than min_seq will be ignored.
 */
static struct tree_mod_elem *
tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq)
{
	return __tree_mod_log_search(fs_info, start, min_seq, 0);
}

798
static noinline int
799 800
tree_mod_log_eb_copy(struct btrfs_fs_info *fs_info, struct extent_buffer *dst,
		     struct extent_buffer *src, unsigned long dst_offset,
801
		     unsigned long src_offset, int nr_items)
802
{
803 804 805
	int ret = 0;
	struct tree_mod_elem **tm_list = NULL;
	struct tree_mod_elem **tm_list_add, **tm_list_rem;
806
	int i;
807
	int locked = 0;
808

809 810
	if (!tree_mod_need_log(fs_info, NULL))
		return 0;
811

812
	if (btrfs_header_level(dst) == 0 && btrfs_header_level(src) == 0)
813 814
		return 0;

815
	tm_list = kcalloc(nr_items * 2, sizeof(struct tree_mod_elem *),
816 817 818
			  GFP_NOFS);
	if (!tm_list)
		return -ENOMEM;
819

820 821
	tm_list_add = tm_list;
	tm_list_rem = tm_list + nr_items;
822
	for (i = 0; i < nr_items; i++) {
823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848
		tm_list_rem[i] = alloc_tree_mod_elem(src, i + src_offset,
		    MOD_LOG_KEY_REMOVE, GFP_NOFS);
		if (!tm_list_rem[i]) {
			ret = -ENOMEM;
			goto free_tms;
		}

		tm_list_add[i] = alloc_tree_mod_elem(dst, i + dst_offset,
		    MOD_LOG_KEY_ADD, GFP_NOFS);
		if (!tm_list_add[i]) {
			ret = -ENOMEM;
			goto free_tms;
		}
	}

	if (tree_mod_dont_log(fs_info, NULL))
		goto free_tms;
	locked = 1;

	for (i = 0; i < nr_items; i++) {
		ret = __tree_mod_log_insert(fs_info, tm_list_rem[i]);
		if (ret)
			goto free_tms;
		ret = __tree_mod_log_insert(fs_info, tm_list_add[i]);
		if (ret)
			goto free_tms;
849
	}
850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866

	tree_mod_log_write_unlock(fs_info);
	kfree(tm_list);

	return 0;

free_tms:
	for (i = 0; i < nr_items * 2; i++) {
		if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node))
			rb_erase(&tm_list[i]->node, &fs_info->tree_mod_log);
		kfree(tm_list[i]);
	}
	if (locked)
		tree_mod_log_write_unlock(fs_info);
	kfree(tm_list);

	return ret;
867 868 869 870 871 872 873 874 875 876 877 878
}

static inline void
tree_mod_log_eb_move(struct btrfs_fs_info *fs_info, struct extent_buffer *dst,
		     int dst_offset, int src_offset, int nr_items)
{
	int ret;
	ret = tree_mod_log_insert_move(fs_info, dst, dst_offset, src_offset,
				       nr_items, GFP_NOFS);
	BUG_ON(ret < 0);
}

879
static noinline void
880
tree_mod_log_set_node_key(struct btrfs_fs_info *fs_info,
L
Liu Bo 已提交
881
			  struct extent_buffer *eb, int slot, int atomic)
882 883 884
{
	int ret;

885
	ret = tree_mod_log_insert_key(fs_info, eb, slot,
886 887
					MOD_LOG_KEY_REPLACE,
					atomic ? GFP_ATOMIC : GFP_NOFS);
888 889 890
	BUG_ON(ret < 0);
}

891
static noinline int
892
tree_mod_log_free_eb(struct btrfs_fs_info *fs_info, struct extent_buffer *eb)
893
{
894 895 896 897 898 899 900 901 902 903 904 905
	struct tree_mod_elem **tm_list = NULL;
	int nritems = 0;
	int i;
	int ret = 0;

	if (btrfs_header_level(eb) == 0)
		return 0;

	if (!tree_mod_need_log(fs_info, NULL))
		return 0;

	nritems = btrfs_header_nritems(eb);
906
	tm_list = kcalloc(nritems, sizeof(struct tree_mod_elem *), GFP_NOFS);
907 908 909 910 911 912 913 914 915 916 917 918
	if (!tm_list)
		return -ENOMEM;

	for (i = 0; i < nritems; i++) {
		tm_list[i] = alloc_tree_mod_elem(eb, i,
		    MOD_LOG_KEY_REMOVE_WHILE_FREEING, GFP_NOFS);
		if (!tm_list[i]) {
			ret = -ENOMEM;
			goto free_tms;
		}
	}

919
	if (tree_mod_dont_log(fs_info, eb))
920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935
		goto free_tms;

	ret = __tree_mod_log_free_eb(fs_info, tm_list, nritems);
	tree_mod_log_write_unlock(fs_info);
	if (ret)
		goto free_tms;
	kfree(tm_list);

	return 0;

free_tms:
	for (i = 0; i < nritems; i++)
		kfree(tm_list[i]);
	kfree(tm_list);

	return ret;
936 937
}

938
static noinline void
939
tree_mod_log_set_root_pointer(struct btrfs_root *root,
940 941
			      struct extent_buffer *new_root_node,
			      int log_removal)
942 943 944
{
	int ret;
	ret = tree_mod_log_insert_root(root->fs_info, root->node,
945
				       new_root_node, GFP_NOFS, log_removal);
946 947 948
	BUG_ON(ret < 0);
}

949 950 951 952 953 954 955
/*
 * check if the tree block can be shared by multiple trees
 */
int btrfs_block_can_be_shared(struct btrfs_root *root,
			      struct extent_buffer *buf)
{
	/*
956
	 * Tree blocks not in reference counted trees and tree roots
957 958 959 960
	 * are never shared. If a block was allocated after the last
	 * snapshot and the block was not allocated by tree relocation,
	 * we know the block is not shared.
	 */
961
	if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
962 963 964 965 966 967
	    buf != root->node && buf != root->commit_root &&
	    (btrfs_header_generation(buf) <=
	     btrfs_root_last_snapshot(&root->root_item) ||
	     btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)))
		return 1;
#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
968
	if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
969 970 971 972 973 974 975 976 977
	    btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
		return 1;
#endif
	return 0;
}

static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans,
				       struct btrfs_root *root,
				       struct extent_buffer *buf,
978 979
				       struct extent_buffer *cow,
				       int *last_ref)
980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005
{
	u64 refs;
	u64 owner;
	u64 flags;
	u64 new_flags = 0;
	int ret;

	/*
	 * Backrefs update rules:
	 *
	 * Always use full backrefs for extent pointers in tree block
	 * allocated by tree relocation.
	 *
	 * If a shared tree block is no longer referenced by its owner
	 * tree (btrfs_header_owner(buf) == root->root_key.objectid),
	 * use full backrefs for extent pointers in tree block.
	 *
	 * If a tree block is been relocating
	 * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID),
	 * use full backrefs for extent pointers in tree block.
	 * The reason for this is some operations (such as drop tree)
	 * are only allowed for blocks use full backrefs.
	 */

	if (btrfs_block_can_be_shared(root, buf)) {
		ret = btrfs_lookup_extent_info(trans, root, buf->start,
1006 1007
					       btrfs_header_level(buf), 1,
					       &refs, &flags);
1008 1009
		if (ret)
			return ret;
1010 1011
		if (refs == 0) {
			ret = -EROFS;
1012
			btrfs_handle_fs_error(root->fs_info, ret, NULL);
1013 1014
			return ret;
		}
1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031
	} else {
		refs = 1;
		if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
		    btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
			flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
		else
			flags = 0;
	}

	owner = btrfs_header_owner(buf);
	BUG_ON(owner == BTRFS_TREE_RELOC_OBJECTID &&
	       !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));

	if (refs > 1) {
		if ((owner == root->root_key.objectid ||
		     root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) &&
		    !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) {
1032
			ret = btrfs_inc_ref(trans, root, buf, 1);
1033
			BUG_ON(ret); /* -ENOMEM */
1034 1035 1036

			if (root->root_key.objectid ==
			    BTRFS_TREE_RELOC_OBJECTID) {
1037
				ret = btrfs_dec_ref(trans, root, buf, 0);
1038
				BUG_ON(ret); /* -ENOMEM */
1039
				ret = btrfs_inc_ref(trans, root, cow, 1);
1040
				BUG_ON(ret); /* -ENOMEM */
1041 1042 1043 1044 1045 1046
			}
			new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
		} else {

			if (root->root_key.objectid ==
			    BTRFS_TREE_RELOC_OBJECTID)
1047
				ret = btrfs_inc_ref(trans, root, cow, 1);
1048
			else
1049
				ret = btrfs_inc_ref(trans, root, cow, 0);
1050
			BUG_ON(ret); /* -ENOMEM */
1051 1052
		}
		if (new_flags != 0) {
1053 1054
			int level = btrfs_header_level(buf);

1055 1056 1057
			ret = btrfs_set_disk_extent_flags(trans, root,
							  buf->start,
							  buf->len,
1058
							  new_flags, level, 0);
1059 1060
			if (ret)
				return ret;
1061 1062 1063 1064 1065
		}
	} else {
		if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
			if (root->root_key.objectid ==
			    BTRFS_TREE_RELOC_OBJECTID)
1066
				ret = btrfs_inc_ref(trans, root, cow, 1);
1067
			else
1068
				ret = btrfs_inc_ref(trans, root, cow, 0);
1069
			BUG_ON(ret); /* -ENOMEM */
1070
			ret = btrfs_dec_ref(trans, root, buf, 1);
1071
			BUG_ON(ret); /* -ENOMEM */
1072
		}
1073
		clean_tree_block(trans, root->fs_info, buf);
1074
		*last_ref = 1;
1075 1076 1077 1078
	}
	return 0;
}

C
Chris Mason 已提交
1079
/*
C
Chris Mason 已提交
1080 1081 1082 1083
 * does the dirty work in cow of a single block.  The parent block (if
 * supplied) is updated to point to the new cow copy.  The new buffer is marked
 * dirty and returned locked.  If you modify the block it needs to be marked
 * dirty again.
C
Chris Mason 已提交
1084 1085 1086
 *
 * search_start -- an allocation hint for the new block
 *
C
Chris Mason 已提交
1087 1088 1089
 * empty_size -- a hint that you plan on doing more cow.  This is the size in
 * bytes the allocator should try to find free next to the block it returns.
 * This is just a hint and may be ignored by the allocator.
C
Chris Mason 已提交
1090
 */
C
Chris Mason 已提交
1091
static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans,
1092 1093 1094 1095
			     struct btrfs_root *root,
			     struct extent_buffer *buf,
			     struct extent_buffer *parent, int parent_slot,
			     struct extent_buffer **cow_ret,
1096
			     u64 search_start, u64 empty_size)
C
Chris Mason 已提交
1097
{
1098
	struct btrfs_disk_key disk_key;
1099
	struct extent_buffer *cow;
1100
	int level, ret;
1101
	int last_ref = 0;
1102
	int unlock_orig = 0;
1103
	u64 parent_start;
1104

1105 1106 1107
	if (*cow_ret == buf)
		unlock_orig = 1;

1108
	btrfs_assert_tree_locked(buf);
1109

1110 1111 1112 1113
	WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
		trans->transid != root->fs_info->running_transaction->transid);
	WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
		trans->transid != root->last_trans);
1114

1115
	level = btrfs_header_level(buf);
Z
Zheng Yan 已提交
1116

1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129
	if (level == 0)
		btrfs_item_key(buf, &disk_key, 0);
	else
		btrfs_node_key(buf, &disk_key, 0);

	if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) {
		if (parent)
			parent_start = parent->start;
		else
			parent_start = 0;
	} else
		parent_start = 0;

1130 1131 1132
	cow = btrfs_alloc_tree_block(trans, root, parent_start,
			root->root_key.objectid, &disk_key, level,
			search_start, empty_size);
1133 1134
	if (IS_ERR(cow))
		return PTR_ERR(cow);
1135

1136 1137
	/* cow is set to blocking by btrfs_init_new_buffer */

1138
	copy_extent_buffer(cow, buf, 0, 0, cow->len);
1139
	btrfs_set_header_bytenr(cow, cow->start);
1140
	btrfs_set_header_generation(cow, trans->transid);
1141 1142 1143 1144 1145 1146 1147
	btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
	btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
				     BTRFS_HEADER_FLAG_RELOC);
	if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
		btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
	else
		btrfs_set_header_owner(cow, root->root_key.objectid);
1148

1149
	write_extent_buffer(cow, root->fs_info->fsid, btrfs_header_fsid(),
Y
Yan Zheng 已提交
1150 1151
			    BTRFS_FSID_SIZE);

1152
	ret = update_ref_for_cow(trans, root, buf, cow, &last_ref);
1153
	if (ret) {
1154
		btrfs_abort_transaction(trans, ret);
1155 1156
		return ret;
	}
Z
Zheng Yan 已提交
1157

1158
	if (test_bit(BTRFS_ROOT_REF_COWS, &root->state)) {
1159
		ret = btrfs_reloc_cow_block(trans, root, buf, cow);
1160
		if (ret) {
1161
			btrfs_abort_transaction(trans, ret);
1162
			return ret;
1163
		}
1164
	}
1165

C
Chris Mason 已提交
1166
	if (buf == root->node) {
1167
		WARN_ON(parent && parent != buf);
1168 1169 1170 1171 1172
		if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
		    btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
			parent_start = buf->start;
		else
			parent_start = 0;
1173

1174
		extent_buffer_get(cow);
1175
		tree_mod_log_set_root_pointer(root, cow, 1);
1176
		rcu_assign_pointer(root->node, cow);
1177

1178
		btrfs_free_tree_block(trans, root, buf, parent_start,
1179
				      last_ref);
1180
		free_extent_buffer(buf);
1181
		add_root_to_dirty_list(root);
C
Chris Mason 已提交
1182
	} else {
1183 1184 1185 1186 1187 1188
		if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
			parent_start = parent->start;
		else
			parent_start = 0;

		WARN_ON(trans->transid != btrfs_header_generation(parent));
1189
		tree_mod_log_insert_key(root->fs_info, parent, parent_slot,
1190
					MOD_LOG_KEY_REPLACE, GFP_NOFS);
1191
		btrfs_set_node_blockptr(parent, parent_slot,
1192
					cow->start);
1193 1194
		btrfs_set_node_ptr_generation(parent, parent_slot,
					      trans->transid);
C
Chris Mason 已提交
1195
		btrfs_mark_buffer_dirty(parent);
1196 1197 1198
		if (last_ref) {
			ret = tree_mod_log_free_eb(root->fs_info, buf);
			if (ret) {
1199
				btrfs_abort_transaction(trans, ret);
1200 1201 1202
				return ret;
			}
		}
1203
		btrfs_free_tree_block(trans, root, buf, parent_start,
1204
				      last_ref);
C
Chris Mason 已提交
1205
	}
1206 1207
	if (unlock_orig)
		btrfs_tree_unlock(buf);
1208
	free_extent_buffer_stale(buf);
C
Chris Mason 已提交
1209
	btrfs_mark_buffer_dirty(cow);
C
Chris Mason 已提交
1210
	*cow_ret = cow;
C
Chris Mason 已提交
1211 1212 1213
	return 0;
}

J
Jan Schmidt 已提交
1214 1215 1216 1217 1218 1219
/*
 * returns the logical address of the oldest predecessor of the given root.
 * entries older than time_seq are ignored.
 */
static struct tree_mod_elem *
__tree_mod_log_oldest_root(struct btrfs_fs_info *fs_info,
1220
			   struct extent_buffer *eb_root, u64 time_seq)
J
Jan Schmidt 已提交
1221 1222 1223
{
	struct tree_mod_elem *tm;
	struct tree_mod_elem *found = NULL;
1224
	u64 root_logical = eb_root->start;
J
Jan Schmidt 已提交
1225 1226 1227
	int looped = 0;

	if (!time_seq)
1228
		return NULL;
J
Jan Schmidt 已提交
1229 1230

	/*
1231 1232 1233 1234
	 * the very last operation that's logged for a root is the
	 * replacement operation (if it is replaced at all). this has
	 * the logical address of the *new* root, making it the very
	 * first operation that's logged for this root.
J
Jan Schmidt 已提交
1235 1236 1237 1238 1239
	 */
	while (1) {
		tm = tree_mod_log_search_oldest(fs_info, root_logical,
						time_seq);
		if (!looped && !tm)
1240
			return NULL;
J
Jan Schmidt 已提交
1241
		/*
1242 1243 1244
		 * if there are no tree operation for the oldest root, we simply
		 * return it. this should only happen if that (old) root is at
		 * level 0.
J
Jan Schmidt 已提交
1245
		 */
1246 1247
		if (!tm)
			break;
J
Jan Schmidt 已提交
1248

1249 1250 1251 1252 1253
		/*
		 * if there's an operation that's not a root replacement, we
		 * found the oldest version of our root. normally, we'll find a
		 * MOD_LOG_KEY_REMOVE_WHILE_FREEING operation here.
		 */
J
Jan Schmidt 已提交
1254 1255 1256 1257 1258 1259 1260 1261
		if (tm->op != MOD_LOG_ROOT_REPLACE)
			break;

		found = tm;
		root_logical = tm->old_root.logical;
		looped = 1;
	}

1262 1263 1264 1265
	/* if there's no old root to return, return what we found instead */
	if (!found)
		found = tm;

J
Jan Schmidt 已提交
1266 1267 1268 1269 1270
	return found;
}

/*
 * tm is a pointer to the first operation to rewind within eb. then, all
1271
 * previous operations will be rewound (until we reach something older than
J
Jan Schmidt 已提交
1272 1273 1274
 * time_seq).
 */
static void
1275 1276
__tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct extent_buffer *eb,
		      u64 time_seq, struct tree_mod_elem *first_tm)
J
Jan Schmidt 已提交
1277 1278 1279 1280 1281 1282 1283 1284 1285
{
	u32 n;
	struct rb_node *next;
	struct tree_mod_elem *tm = first_tm;
	unsigned long o_dst;
	unsigned long o_src;
	unsigned long p_size = sizeof(struct btrfs_key_ptr);

	n = btrfs_header_nritems(eb);
1286
	tree_mod_log_read_lock(fs_info);
1287
	while (tm && tm->seq >= time_seq) {
J
Jan Schmidt 已提交
1288 1289 1290 1291 1292 1293 1294 1295
		/*
		 * all the operations are recorded with the operator used for
		 * the modification. as we're going backwards, we do the
		 * opposite of each operation here.
		 */
		switch (tm->op) {
		case MOD_LOG_KEY_REMOVE_WHILE_FREEING:
			BUG_ON(tm->slot < n);
1296
			/* Fallthrough */
1297
		case MOD_LOG_KEY_REMOVE_WHILE_MOVING:
1298
		case MOD_LOG_KEY_REMOVE:
J
Jan Schmidt 已提交
1299 1300 1301 1302
			btrfs_set_node_key(eb, &tm->key, tm->slot);
			btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
			btrfs_set_node_ptr_generation(eb, tm->slot,
						      tm->generation);
1303
			n++;
J
Jan Schmidt 已提交
1304 1305 1306 1307 1308 1309 1310 1311 1312
			break;
		case MOD_LOG_KEY_REPLACE:
			BUG_ON(tm->slot >= n);
			btrfs_set_node_key(eb, &tm->key, tm->slot);
			btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
			btrfs_set_node_ptr_generation(eb, tm->slot,
						      tm->generation);
			break;
		case MOD_LOG_KEY_ADD:
1313
			/* if a move operation is needed it's in the log */
J
Jan Schmidt 已提交
1314 1315 1316
			n--;
			break;
		case MOD_LOG_MOVE_KEYS:
1317 1318 1319
			o_dst = btrfs_node_key_ptr_offset(tm->slot);
			o_src = btrfs_node_key_ptr_offset(tm->move.dst_slot);
			memmove_extent_buffer(eb, o_dst, o_src,
J
Jan Schmidt 已提交
1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337
					      tm->move.nr_items * p_size);
			break;
		case MOD_LOG_ROOT_REPLACE:
			/*
			 * this operation is special. for roots, this must be
			 * handled explicitly before rewinding.
			 * for non-roots, this operation may exist if the node
			 * was a root: root A -> child B; then A gets empty and
			 * B is promoted to the new root. in the mod log, we'll
			 * have a root-replace operation for B, a tree block
			 * that is no root. we simply ignore that operation.
			 */
			break;
		}
		next = rb_next(&tm->node);
		if (!next)
			break;
		tm = container_of(next, struct tree_mod_elem, node);
1338
		if (tm->logical != first_tm->logical)
J
Jan Schmidt 已提交
1339 1340
			break;
	}
1341
	tree_mod_log_read_unlock(fs_info);
J
Jan Schmidt 已提交
1342 1343 1344
	btrfs_set_header_nritems(eb, n);
}

1345
/*
1346
 * Called with eb read locked. If the buffer cannot be rewound, the same buffer
1347 1348 1349 1350 1351
 * is returned. If rewind operations happen, a fresh buffer is returned. The
 * returned buffer is always read-locked. If the returned buffer is not the
 * input buffer, the lock on the input buffer is released and the input buffer
 * is freed (its refcount is decremented).
 */
J
Jan Schmidt 已提交
1352
static struct extent_buffer *
1353 1354
tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct btrfs_path *path,
		    struct extent_buffer *eb, u64 time_seq)
J
Jan Schmidt 已提交
1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368
{
	struct extent_buffer *eb_rewin;
	struct tree_mod_elem *tm;

	if (!time_seq)
		return eb;

	if (btrfs_header_level(eb) == 0)
		return eb;

	tm = tree_mod_log_search(fs_info, eb->start, time_seq);
	if (!tm)
		return eb;

1369 1370 1371
	btrfs_set_path_blocking(path);
	btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);

J
Jan Schmidt 已提交
1372 1373
	if (tm->op == MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
		BUG_ON(tm->slot != 0);
1374 1375
		eb_rewin = alloc_dummy_extent_buffer(fs_info, eb->start,
						eb->len);
1376
		if (!eb_rewin) {
1377
			btrfs_tree_read_unlock_blocking(eb);
1378 1379 1380
			free_extent_buffer(eb);
			return NULL;
		}
J
Jan Schmidt 已提交
1381 1382 1383 1384
		btrfs_set_header_bytenr(eb_rewin, eb->start);
		btrfs_set_header_backref_rev(eb_rewin,
					     btrfs_header_backref_rev(eb));
		btrfs_set_header_owner(eb_rewin, btrfs_header_owner(eb));
1385
		btrfs_set_header_level(eb_rewin, btrfs_header_level(eb));
J
Jan Schmidt 已提交
1386 1387
	} else {
		eb_rewin = btrfs_clone_extent_buffer(eb);
1388
		if (!eb_rewin) {
1389
			btrfs_tree_read_unlock_blocking(eb);
1390 1391 1392
			free_extent_buffer(eb);
			return NULL;
		}
J
Jan Schmidt 已提交
1393 1394
	}

1395 1396
	btrfs_clear_path_blocking(path, NULL, BTRFS_READ_LOCK);
	btrfs_tree_read_unlock_blocking(eb);
J
Jan Schmidt 已提交
1397 1398
	free_extent_buffer(eb);

1399 1400
	extent_buffer_get(eb_rewin);
	btrfs_tree_read_lock(eb_rewin);
1401
	__tree_mod_log_rewind(fs_info, eb_rewin, time_seq, tm);
1402
	WARN_ON(btrfs_header_nritems(eb_rewin) >
1403
		BTRFS_NODEPTRS_PER_BLOCK(fs_info->tree_root));
J
Jan Schmidt 已提交
1404 1405 1406 1407

	return eb_rewin;
}

1408 1409 1410 1411 1412 1413 1414
/*
 * get_old_root() rewinds the state of @root's root node to the given @time_seq
 * value. If there are no changes, the current root->root_node is returned. If
 * anything changed in between, there's a fresh buffer allocated on which the
 * rewind operations are done. In any case, the returned buffer is read locked.
 * Returns NULL on error (with no locks held).
 */
J
Jan Schmidt 已提交
1415 1416 1417 1418
static inline struct extent_buffer *
get_old_root(struct btrfs_root *root, u64 time_seq)
{
	struct tree_mod_elem *tm;
1419 1420
	struct extent_buffer *eb = NULL;
	struct extent_buffer *eb_root;
1421
	struct extent_buffer *old;
1422
	struct tree_mod_root *old_root = NULL;
1423
	u64 old_generation = 0;
1424
	u64 logical;
J
Jan Schmidt 已提交
1425

1426 1427
	eb_root = btrfs_read_lock_root_node(root);
	tm = __tree_mod_log_oldest_root(root->fs_info, eb_root, time_seq);
J
Jan Schmidt 已提交
1428
	if (!tm)
1429
		return eb_root;
J
Jan Schmidt 已提交
1430

1431 1432 1433 1434 1435
	if (tm->op == MOD_LOG_ROOT_REPLACE) {
		old_root = &tm->old_root;
		old_generation = tm->generation;
		logical = old_root->logical;
	} else {
1436
		logical = eb_root->start;
1437
	}
J
Jan Schmidt 已提交
1438

1439
	tm = tree_mod_log_search(root->fs_info, logical, time_seq);
1440
	if (old_root && tm && tm->op != MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
1441 1442
		btrfs_tree_read_unlock(eb_root);
		free_extent_buffer(eb_root);
1443
		old = read_tree_block(root, logical, 0);
1444 1445 1446
		if (WARN_ON(IS_ERR(old) || !extent_buffer_uptodate(old))) {
			if (!IS_ERR(old))
				free_extent_buffer(old);
1447 1448
			btrfs_warn(root->fs_info,
				"failed to read tree block %llu from get_old_root", logical);
1449
		} else {
1450 1451
			eb = btrfs_clone_extent_buffer(old);
			free_extent_buffer(old);
1452 1453
		}
	} else if (old_root) {
1454 1455
		btrfs_tree_read_unlock(eb_root);
		free_extent_buffer(eb_root);
1456 1457
		eb = alloc_dummy_extent_buffer(root->fs_info, logical,
					root->nodesize);
1458
	} else {
1459
		btrfs_set_lock_blocking_rw(eb_root, BTRFS_READ_LOCK);
1460
		eb = btrfs_clone_extent_buffer(eb_root);
1461
		btrfs_tree_read_unlock_blocking(eb_root);
1462
		free_extent_buffer(eb_root);
1463 1464
	}

1465 1466
	if (!eb)
		return NULL;
1467
	extent_buffer_get(eb);
1468
	btrfs_tree_read_lock(eb);
1469
	if (old_root) {
J
Jan Schmidt 已提交
1470 1471
		btrfs_set_header_bytenr(eb, eb->start);
		btrfs_set_header_backref_rev(eb, BTRFS_MIXED_BACKREF_REV);
1472
		btrfs_set_header_owner(eb, btrfs_header_owner(eb_root));
1473 1474
		btrfs_set_header_level(eb, old_root->level);
		btrfs_set_header_generation(eb, old_generation);
J
Jan Schmidt 已提交
1475
	}
1476
	if (tm)
1477
		__tree_mod_log_rewind(root->fs_info, eb, time_seq, tm);
1478 1479
	else
		WARN_ON(btrfs_header_level(eb) != 0);
1480
	WARN_ON(btrfs_header_nritems(eb) > BTRFS_NODEPTRS_PER_BLOCK(root));
J
Jan Schmidt 已提交
1481 1482 1483 1484

	return eb;
}

J
Jan Schmidt 已提交
1485 1486 1487 1488
int btrfs_old_root_level(struct btrfs_root *root, u64 time_seq)
{
	struct tree_mod_elem *tm;
	int level;
1489
	struct extent_buffer *eb_root = btrfs_root_node(root);
J
Jan Schmidt 已提交
1490

1491
	tm = __tree_mod_log_oldest_root(root->fs_info, eb_root, time_seq);
J
Jan Schmidt 已提交
1492 1493 1494
	if (tm && tm->op == MOD_LOG_ROOT_REPLACE) {
		level = tm->old_root.level;
	} else {
1495
		level = btrfs_header_level(eb_root);
J
Jan Schmidt 已提交
1496
	}
1497
	free_extent_buffer(eb_root);
J
Jan Schmidt 已提交
1498 1499 1500 1501

	return level;
}

1502 1503 1504 1505
static inline int should_cow_block(struct btrfs_trans_handle *trans,
				   struct btrfs_root *root,
				   struct extent_buffer *buf)
{
1506
	if (btrfs_is_testing(root->fs_info))
1507
		return 0;
1508

1509 1510 1511 1512 1513 1514 1515 1516 1517 1518
	/* ensure we can see the force_cow */
	smp_rmb();

	/*
	 * We do not need to cow a block if
	 * 1) this block is not created or changed in this transaction;
	 * 2) this block does not belong to TREE_RELOC tree;
	 * 3) the root is not forced COW.
	 *
	 * What is forced COW:
1519
	 *    when we create snapshot during committing the transaction,
1520 1521 1522
	 *    after we've finished coping src root, we must COW the shared
	 *    block to ensure the metadata consistency.
	 */
1523 1524 1525
	if (btrfs_header_generation(buf) == trans->transid &&
	    !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) &&
	    !(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
1526
	      btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)) &&
1527
	    !test_bit(BTRFS_ROOT_FORCE_COW, &root->state))
1528 1529 1530 1531
		return 0;
	return 1;
}

C
Chris Mason 已提交
1532 1533
/*
 * cows a single block, see __btrfs_cow_block for the real work.
1534
 * This version of it has extra checks so that a block isn't COWed more than
C
Chris Mason 已提交
1535 1536
 * once per transaction, as long as it hasn't been written yet
 */
C
Chris Mason 已提交
1537
noinline int btrfs_cow_block(struct btrfs_trans_handle *trans,
1538 1539
		    struct btrfs_root *root, struct extent_buffer *buf,
		    struct extent_buffer *parent, int parent_slot,
1540
		    struct extent_buffer **cow_ret)
1541 1542
{
	u64 search_start;
1543
	int ret;
C
Chris Mason 已提交
1544

J
Julia Lawall 已提交
1545 1546
	if (trans->transaction != root->fs_info->running_transaction)
		WARN(1, KERN_CRIT "trans %llu running %llu\n",
1547
		       trans->transid,
1548
		       root->fs_info->running_transaction->transid);
J
Julia Lawall 已提交
1549 1550 1551

	if (trans->transid != root->fs_info->generation)
		WARN(1, KERN_CRIT "trans %llu running %llu\n",
1552
		       trans->transid, root->fs_info->generation);
C
Chris Mason 已提交
1553

1554
	if (!should_cow_block(trans, root, buf)) {
1555
		trans->dirty = true;
1556 1557 1558
		*cow_ret = buf;
		return 0;
	}
1559

1560
	search_start = buf->start & ~((u64)SZ_1G - 1);
1561 1562 1563 1564 1565

	if (parent)
		btrfs_set_lock_blocking(parent);
	btrfs_set_lock_blocking(buf);

1566
	ret = __btrfs_cow_block(trans, root, buf, parent,
1567
				 parent_slot, cow_ret, search_start, 0);
1568 1569 1570

	trace_btrfs_cow_block(root, buf, *cow_ret);

1571
	return ret;
1572 1573
}

C
Chris Mason 已提交
1574 1575 1576 1577
/*
 * helper function for defrag to decide if two blocks pointed to by a
 * node are actually close by
 */
1578
static int close_blocks(u64 blocknr, u64 other, u32 blocksize)
1579
{
1580
	if (blocknr < other && other - (blocknr + blocksize) < 32768)
1581
		return 1;
1582
	if (blocknr > other && blocknr - (other + blocksize) < 32768)
1583 1584 1585 1586
		return 1;
	return 0;
}

1587 1588 1589 1590 1591 1592 1593 1594 1595
/*
 * compare two keys in a memcmp fashion
 */
static int comp_keys(struct btrfs_disk_key *disk, struct btrfs_key *k2)
{
	struct btrfs_key k1;

	btrfs_disk_key_to_cpu(&k1, disk);

1596
	return btrfs_comp_cpu_keys(&k1, k2);
1597 1598
}

1599 1600 1601
/*
 * same as comp_keys only with two btrfs_key's
 */
1602
int btrfs_comp_cpu_keys(struct btrfs_key *k1, struct btrfs_key *k2)
1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617
{
	if (k1->objectid > k2->objectid)
		return 1;
	if (k1->objectid < k2->objectid)
		return -1;
	if (k1->type > k2->type)
		return 1;
	if (k1->type < k2->type)
		return -1;
	if (k1->offset > k2->offset)
		return 1;
	if (k1->offset < k2->offset)
		return -1;
	return 0;
}
1618

C
Chris Mason 已提交
1619 1620 1621 1622 1623
/*
 * this is used by the defrag code to go through all the
 * leaves pointed to by a node and reallocate them so that
 * disk order is close to key order
 */
1624
int btrfs_realloc_node(struct btrfs_trans_handle *trans,
1625
		       struct btrfs_root *root, struct extent_buffer *parent,
1626
		       int start_slot, u64 *last_ret,
1627
		       struct btrfs_key *progress)
1628
{
1629
	struct extent_buffer *cur;
1630
	u64 blocknr;
1631
	u64 gen;
1632 1633
	u64 search_start = *last_ret;
	u64 last_block = 0;
1634 1635 1636 1637 1638
	u64 other;
	u32 parent_nritems;
	int end_slot;
	int i;
	int err = 0;
1639
	int parent_level;
1640 1641
	int uptodate;
	u32 blocksize;
1642 1643
	int progress_passed = 0;
	struct btrfs_disk_key disk_key;
1644

1645 1646
	parent_level = btrfs_header_level(parent);

J
Julia Lawall 已提交
1647 1648
	WARN_ON(trans->transaction != root->fs_info->running_transaction);
	WARN_ON(trans->transid != root->fs_info->generation);
1649

1650
	parent_nritems = btrfs_header_nritems(parent);
1651
	blocksize = root->nodesize;
1652
	end_slot = parent_nritems - 1;
1653

1654
	if (parent_nritems <= 1)
1655 1656
		return 0;

1657 1658
	btrfs_set_lock_blocking(parent);

1659
	for (i = start_slot; i <= end_slot; i++) {
1660
		int close = 1;
1661

1662 1663 1664 1665 1666
		btrfs_node_key(parent, &disk_key, i);
		if (!progress_passed && comp_keys(&disk_key, progress) < 0)
			continue;

		progress_passed = 1;
1667
		blocknr = btrfs_node_blockptr(parent, i);
1668
		gen = btrfs_node_ptr_generation(parent, i);
1669 1670
		if (last_block == 0)
			last_block = blocknr;
1671

1672
		if (i > 0) {
1673 1674
			other = btrfs_node_blockptr(parent, i - 1);
			close = close_blocks(blocknr, other, blocksize);
1675
		}
1676
		if (!close && i < end_slot) {
1677 1678
			other = btrfs_node_blockptr(parent, i + 1);
			close = close_blocks(blocknr, other, blocksize);
1679
		}
1680 1681
		if (close) {
			last_block = blocknr;
1682
			continue;
1683
		}
1684

1685
		cur = btrfs_find_tree_block(root->fs_info, blocknr);
1686
		if (cur)
1687
			uptodate = btrfs_buffer_uptodate(cur, gen, 0);
1688 1689
		else
			uptodate = 0;
1690
		if (!cur || !uptodate) {
1691
			if (!cur) {
1692
				cur = read_tree_block(root, blocknr, gen);
1693 1694 1695
				if (IS_ERR(cur)) {
					return PTR_ERR(cur);
				} else if (!extent_buffer_uptodate(cur)) {
1696
					free_extent_buffer(cur);
1697
					return -EIO;
1698
				}
1699
			} else if (!uptodate) {
1700 1701 1702 1703 1704
				err = btrfs_read_buffer(cur, gen);
				if (err) {
					free_extent_buffer(cur);
					return err;
				}
1705
			}
1706
		}
1707
		if (search_start == 0)
1708
			search_start = last_block;
1709

1710
		btrfs_tree_lock(cur);
1711
		btrfs_set_lock_blocking(cur);
1712
		err = __btrfs_cow_block(trans, root, cur, parent, i,
1713
					&cur, search_start,
1714
					min(16 * blocksize,
1715
					    (end_slot - i) * blocksize));
Y
Yan 已提交
1716
		if (err) {
1717
			btrfs_tree_unlock(cur);
1718
			free_extent_buffer(cur);
1719
			break;
Y
Yan 已提交
1720
		}
1721 1722
		search_start = cur->start;
		last_block = cur->start;
1723
		*last_ret = search_start;
1724 1725
		btrfs_tree_unlock(cur);
		free_extent_buffer(cur);
1726 1727 1728 1729
	}
	return err;
}

C
Chris Mason 已提交
1730 1731 1732 1733 1734
/*
 * The leaf data grows from end-to-front in the node.
 * this returns the address of the start of the last item,
 * which is the stop of the leaf data stack
 */
C
Chris Mason 已提交
1735
static inline unsigned int leaf_data_end(struct btrfs_root *root,
1736
					 struct extent_buffer *leaf)
1737
{
1738
	u32 nr = btrfs_header_nritems(leaf);
1739
	if (nr == 0)
C
Chris Mason 已提交
1740
		return BTRFS_LEAF_DATA_SIZE(root);
1741
	return btrfs_item_offset_nr(leaf, nr - 1);
1742 1743
}

C
Chris Mason 已提交
1744

C
Chris Mason 已提交
1745
/*
1746 1747 1748
 * search for key in the extent_buffer.  The items start at offset p,
 * and they are item_size apart.  There are 'max' items in p.
 *
C
Chris Mason 已提交
1749 1750 1751 1752 1753 1754
 * the slot in the array is returned via slot, and it points to
 * the place where you would insert key if it is not found in
 * the array.
 *
 * slot may point to max if the key is bigger than all of the keys
 */
1755 1756 1757 1758
static noinline int generic_bin_search(struct extent_buffer *eb,
				       unsigned long p,
				       int item_size, struct btrfs_key *key,
				       int max, int *slot)
1759 1760 1761 1762 1763
{
	int low = 0;
	int high = max;
	int mid;
	int ret;
1764
	struct btrfs_disk_key *tmp = NULL;
1765 1766 1767 1768 1769
	struct btrfs_disk_key unaligned;
	unsigned long offset;
	char *kaddr = NULL;
	unsigned long map_start = 0;
	unsigned long map_len = 0;
1770
	int err;
1771

1772 1773 1774 1775 1776 1777 1778 1779
	if (low > high) {
		btrfs_err(eb->fs_info,
		 "%s: low (%d) > high (%d) eb %llu owner %llu level %d",
			  __func__, low, high, eb->start,
			  btrfs_header_owner(eb), btrfs_header_level(eb));
		return -EINVAL;
	}

C
Chris Mason 已提交
1780
	while (low < high) {
1781
		mid = (low + high) / 2;
1782 1783
		offset = p + mid * item_size;

1784
		if (!kaddr || offset < map_start ||
1785 1786
		    (offset + sizeof(struct btrfs_disk_key)) >
		    map_start + map_len) {
1787 1788

			err = map_private_extent_buffer(eb, offset,
1789
						sizeof(struct btrfs_disk_key),
1790
						&kaddr, &map_start, &map_len);
1791 1792 1793 1794

			if (!err) {
				tmp = (struct btrfs_disk_key *)(kaddr + offset -
							map_start);
1795
			} else if (err == 1) {
1796 1797 1798
				read_extent_buffer(eb, &unaligned,
						   offset, sizeof(unaligned));
				tmp = &unaligned;
1799 1800
			} else {
				return err;
1801
			}
1802 1803 1804 1805 1806

		} else {
			tmp = (struct btrfs_disk_key *)(kaddr + offset -
							map_start);
		}
1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821
		ret = comp_keys(tmp, key);

		if (ret < 0)
			low = mid + 1;
		else if (ret > 0)
			high = mid;
		else {
			*slot = mid;
			return 0;
		}
	}
	*slot = low;
	return 1;
}

C
Chris Mason 已提交
1822 1823 1824 1825
/*
 * simple bin_search frontend that does the right thing for
 * leaves vs nodes
 */
1826 1827
static int bin_search(struct extent_buffer *eb, struct btrfs_key *key,
		      int level, int *slot)
1828
{
1829
	if (level == 0)
1830 1831
		return generic_bin_search(eb,
					  offsetof(struct btrfs_leaf, items),
C
Chris Mason 已提交
1832
					  sizeof(struct btrfs_item),
1833
					  key, btrfs_header_nritems(eb),
1834
					  slot);
1835
	else
1836 1837
		return generic_bin_search(eb,
					  offsetof(struct btrfs_node, ptrs),
C
Chris Mason 已提交
1838
					  sizeof(struct btrfs_key_ptr),
1839
					  key, btrfs_header_nritems(eb),
1840
					  slot);
1841 1842
}

1843 1844 1845 1846 1847 1848
int btrfs_bin_search(struct extent_buffer *eb, struct btrfs_key *key,
		     int level, int *slot)
{
	return bin_search(eb, key, level, slot);
}

1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864
static void root_add_used(struct btrfs_root *root, u32 size)
{
	spin_lock(&root->accounting_lock);
	btrfs_set_root_used(&root->root_item,
			    btrfs_root_used(&root->root_item) + size);
	spin_unlock(&root->accounting_lock);
}

static void root_sub_used(struct btrfs_root *root, u32 size)
{
	spin_lock(&root->accounting_lock);
	btrfs_set_root_used(&root->root_item,
			    btrfs_root_used(&root->root_item) - size);
	spin_unlock(&root->accounting_lock);
}

C
Chris Mason 已提交
1865 1866 1867
/* given a node and slot number, this reads the blocks it points to.  The
 * extent buffer is returned with a reference taken (but unlocked).
 */
1868
static noinline struct extent_buffer *read_node_slot(struct btrfs_root *root,
1869
				   struct extent_buffer *parent, int slot)
1870
{
1871
	int level = btrfs_header_level(parent);
1872 1873
	struct extent_buffer *eb;

1874 1875
	if (slot < 0 || slot >= btrfs_header_nritems(parent))
		return ERR_PTR(-ENOENT);
1876 1877 1878

	BUG_ON(level == 0);

1879 1880
	eb = read_tree_block(root, btrfs_node_blockptr(parent, slot),
			     btrfs_node_ptr_generation(parent, slot));
1881 1882 1883
	if (!IS_ERR(eb) && !extent_buffer_uptodate(eb)) {
		free_extent_buffer(eb);
		eb = ERR_PTR(-EIO);
1884 1885 1886
	}

	return eb;
1887 1888
}

C
Chris Mason 已提交
1889 1890 1891 1892 1893
/*
 * node level balancing, used to make sure nodes are in proper order for
 * item deletion.  We balance from the top down, so we have to make sure
 * that a deletion won't leave an node completely empty later on.
 */
1894
static noinline int balance_level(struct btrfs_trans_handle *trans,
1895 1896
			 struct btrfs_root *root,
			 struct btrfs_path *path, int level)
1897
{
1898 1899 1900 1901
	struct extent_buffer *right = NULL;
	struct extent_buffer *mid;
	struct extent_buffer *left = NULL;
	struct extent_buffer *parent = NULL;
1902 1903 1904 1905
	int ret = 0;
	int wret;
	int pslot;
	int orig_slot = path->slots[level];
1906
	u64 orig_ptr;
1907 1908 1909 1910

	if (level == 0)
		return 0;

1911
	mid = path->nodes[level];
1912

1913 1914
	WARN_ON(path->locks[level] != BTRFS_WRITE_LOCK &&
		path->locks[level] != BTRFS_WRITE_LOCK_BLOCKING);
1915 1916
	WARN_ON(btrfs_header_generation(mid) != trans->transid);

1917
	orig_ptr = btrfs_node_blockptr(mid, orig_slot);
1918

L
Li Zefan 已提交
1919
	if (level < BTRFS_MAX_LEVEL - 1) {
1920
		parent = path->nodes[level + 1];
L
Li Zefan 已提交
1921 1922
		pslot = path->slots[level + 1];
	}
1923

C
Chris Mason 已提交
1924 1925 1926 1927
	/*
	 * deal with the case where there is only one pointer in the root
	 * by promoting the node below to a root
	 */
1928 1929
	if (!parent) {
		struct extent_buffer *child;
1930

1931
		if (btrfs_header_nritems(mid) != 1)
1932 1933 1934
			return 0;

		/* promote the child to a root */
1935
		child = read_node_slot(root, mid, 0);
1936 1937
		if (IS_ERR(child)) {
			ret = PTR_ERR(child);
1938
			btrfs_handle_fs_error(root->fs_info, ret, NULL);
1939 1940 1941
			goto enospc;
		}

1942
		btrfs_tree_lock(child);
1943
		btrfs_set_lock_blocking(child);
1944
		ret = btrfs_cow_block(trans, root, child, mid, 0, &child);
1945 1946 1947 1948 1949
		if (ret) {
			btrfs_tree_unlock(child);
			free_extent_buffer(child);
			goto enospc;
		}
1950

1951
		tree_mod_log_set_root_pointer(root, child, 1);
1952
		rcu_assign_pointer(root->node, child);
1953

1954
		add_root_to_dirty_list(root);
1955
		btrfs_tree_unlock(child);
1956

1957
		path->locks[level] = 0;
1958
		path->nodes[level] = NULL;
1959
		clean_tree_block(trans, root->fs_info, mid);
1960
		btrfs_tree_unlock(mid);
1961
		/* once for the path */
1962
		free_extent_buffer(mid);
1963 1964

		root_sub_used(root, mid->len);
1965
		btrfs_free_tree_block(trans, root, mid, 0, 1);
1966
		/* once for the root ptr */
1967
		free_extent_buffer_stale(mid);
1968
		return 0;
1969
	}
1970
	if (btrfs_header_nritems(mid) >
C
Chris Mason 已提交
1971
	    BTRFS_NODEPTRS_PER_BLOCK(root) / 4)
1972 1973
		return 0;

1974
	left = read_node_slot(root, parent, pslot - 1);
1975 1976 1977
	if (IS_ERR(left))
		left = NULL;

1978
	if (left) {
1979
		btrfs_tree_lock(left);
1980
		btrfs_set_lock_blocking(left);
1981
		wret = btrfs_cow_block(trans, root, left,
1982
				       parent, pslot - 1, &left);
1983 1984 1985 1986
		if (wret) {
			ret = wret;
			goto enospc;
		}
1987
	}
1988

1989
	right = read_node_slot(root, parent, pslot + 1);
1990 1991 1992
	if (IS_ERR(right))
		right = NULL;

1993
	if (right) {
1994
		btrfs_tree_lock(right);
1995
		btrfs_set_lock_blocking(right);
1996
		wret = btrfs_cow_block(trans, root, right,
1997
				       parent, pslot + 1, &right);
1998 1999 2000 2001 2002 2003 2004
		if (wret) {
			ret = wret;
			goto enospc;
		}
	}

	/* first, try to make some room in the middle buffer */
2005 2006
	if (left) {
		orig_slot += btrfs_header_nritems(left);
2007
		wret = push_node_left(trans, root, left, mid, 1);
2008 2009
		if (wret < 0)
			ret = wret;
2010
	}
2011 2012 2013 2014

	/*
	 * then try to empty the right most buffer into the middle
	 */
2015
	if (right) {
2016
		wret = push_node_left(trans, root, mid, right, 1);
2017
		if (wret < 0 && wret != -ENOSPC)
2018
			ret = wret;
2019
		if (btrfs_header_nritems(right) == 0) {
2020
			clean_tree_block(trans, root->fs_info, right);
2021
			btrfs_tree_unlock(right);
2022
			del_ptr(root, path, level + 1, pslot + 1);
2023
			root_sub_used(root, right->len);
2024
			btrfs_free_tree_block(trans, root, right, 0, 1);
2025
			free_extent_buffer_stale(right);
2026
			right = NULL;
2027
		} else {
2028 2029
			struct btrfs_disk_key right_key;
			btrfs_node_key(right, &right_key, 0);
2030
			tree_mod_log_set_node_key(root->fs_info, parent,
L
Liu Bo 已提交
2031
						  pslot + 1, 0);
2032 2033
			btrfs_set_node_key(parent, &right_key, pslot + 1);
			btrfs_mark_buffer_dirty(parent);
2034 2035
		}
	}
2036
	if (btrfs_header_nritems(mid) == 1) {
2037 2038 2039 2040 2041 2042 2043 2044 2045
		/*
		 * we're not allowed to leave a node with one item in the
		 * tree during a delete.  A deletion from lower in the tree
		 * could try to delete the only pointer in this node.
		 * So, pull some keys from the left.
		 * There has to be a left pointer at this point because
		 * otherwise we would have pulled some pointers from the
		 * right
		 */
2046 2047
		if (!left) {
			ret = -EROFS;
2048
			btrfs_handle_fs_error(root->fs_info, ret, NULL);
2049 2050
			goto enospc;
		}
2051
		wret = balance_node_right(trans, root, mid, left);
2052
		if (wret < 0) {
2053
			ret = wret;
2054 2055
			goto enospc;
		}
2056 2057 2058 2059 2060
		if (wret == 1) {
			wret = push_node_left(trans, root, left, mid, 1);
			if (wret < 0)
				ret = wret;
		}
2061 2062
		BUG_ON(wret == 1);
	}
2063
	if (btrfs_header_nritems(mid) == 0) {
2064
		clean_tree_block(trans, root->fs_info, mid);
2065
		btrfs_tree_unlock(mid);
2066
		del_ptr(root, path, level + 1, pslot);
2067
		root_sub_used(root, mid->len);
2068
		btrfs_free_tree_block(trans, root, mid, 0, 1);
2069
		free_extent_buffer_stale(mid);
2070
		mid = NULL;
2071 2072
	} else {
		/* update the parent key to reflect our changes */
2073 2074
		struct btrfs_disk_key mid_key;
		btrfs_node_key(mid, &mid_key, 0);
L
Liu Bo 已提交
2075
		tree_mod_log_set_node_key(root->fs_info, parent,
2076
					  pslot, 0);
2077 2078
		btrfs_set_node_key(parent, &mid_key, pslot);
		btrfs_mark_buffer_dirty(parent);
2079
	}
2080

2081
	/* update the path */
2082 2083 2084
	if (left) {
		if (btrfs_header_nritems(left) > orig_slot) {
			extent_buffer_get(left);
2085
			/* left was locked after cow */
2086
			path->nodes[level] = left;
2087 2088
			path->slots[level + 1] -= 1;
			path->slots[level] = orig_slot;
2089 2090
			if (mid) {
				btrfs_tree_unlock(mid);
2091
				free_extent_buffer(mid);
2092
			}
2093
		} else {
2094
			orig_slot -= btrfs_header_nritems(left);
2095 2096 2097
			path->slots[level] = orig_slot;
		}
	}
2098
	/* double check we haven't messed things up */
C
Chris Mason 已提交
2099
	if (orig_ptr !=
2100
	    btrfs_node_blockptr(path->nodes[level], path->slots[level]))
2101
		BUG();
2102
enospc:
2103 2104
	if (right) {
		btrfs_tree_unlock(right);
2105
		free_extent_buffer(right);
2106 2107 2108 2109
	}
	if (left) {
		if (path->nodes[level] != left)
			btrfs_tree_unlock(left);
2110
		free_extent_buffer(left);
2111
	}
2112 2113 2114
	return ret;
}

C
Chris Mason 已提交
2115 2116 2117 2118
/* Node balancing for insertion.  Here we only split or push nodes around
 * when they are completely full.  This is also done top down, so we
 * have to be pessimistic.
 */
C
Chris Mason 已提交
2119
static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans,
2120 2121
					  struct btrfs_root *root,
					  struct btrfs_path *path, int level)
2122
{
2123 2124 2125 2126
	struct extent_buffer *right = NULL;
	struct extent_buffer *mid;
	struct extent_buffer *left = NULL;
	struct extent_buffer *parent = NULL;
2127 2128 2129 2130 2131 2132 2133 2134
	int ret = 0;
	int wret;
	int pslot;
	int orig_slot = path->slots[level];

	if (level == 0)
		return 1;

2135
	mid = path->nodes[level];
2136
	WARN_ON(btrfs_header_generation(mid) != trans->transid);
2137

L
Li Zefan 已提交
2138
	if (level < BTRFS_MAX_LEVEL - 1) {
2139
		parent = path->nodes[level + 1];
L
Li Zefan 已提交
2140 2141
		pslot = path->slots[level + 1];
	}
2142

2143
	if (!parent)
2144 2145
		return 1;

2146
	left = read_node_slot(root, parent, pslot - 1);
2147 2148
	if (IS_ERR(left))
		left = NULL;
2149 2150

	/* first, try to make some room in the middle buffer */
2151
	if (left) {
2152
		u32 left_nr;
2153 2154

		btrfs_tree_lock(left);
2155 2156
		btrfs_set_lock_blocking(left);

2157
		left_nr = btrfs_header_nritems(left);
C
Chris Mason 已提交
2158 2159 2160
		if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
			wret = 1;
		} else {
2161
			ret = btrfs_cow_block(trans, root, left, parent,
2162
					      pslot - 1, &left);
2163 2164 2165 2166
			if (ret)
				wret = 1;
			else {
				wret = push_node_left(trans, root,
2167
						      left, mid, 0);
2168
			}
C
Chris Mason 已提交
2169
		}
2170 2171 2172
		if (wret < 0)
			ret = wret;
		if (wret == 0) {
2173
			struct btrfs_disk_key disk_key;
2174
			orig_slot += left_nr;
2175
			btrfs_node_key(mid, &disk_key, 0);
2176
			tree_mod_log_set_node_key(root->fs_info, parent,
L
Liu Bo 已提交
2177
						  pslot, 0);
2178 2179 2180 2181
			btrfs_set_node_key(parent, &disk_key, pslot);
			btrfs_mark_buffer_dirty(parent);
			if (btrfs_header_nritems(left) > orig_slot) {
				path->nodes[level] = left;
2182 2183
				path->slots[level + 1] -= 1;
				path->slots[level] = orig_slot;
2184
				btrfs_tree_unlock(mid);
2185
				free_extent_buffer(mid);
2186 2187
			} else {
				orig_slot -=
2188
					btrfs_header_nritems(left);
2189
				path->slots[level] = orig_slot;
2190
				btrfs_tree_unlock(left);
2191
				free_extent_buffer(left);
2192 2193 2194
			}
			return 0;
		}
2195
		btrfs_tree_unlock(left);
2196
		free_extent_buffer(left);
2197
	}
2198
	right = read_node_slot(root, parent, pslot + 1);
2199 2200
	if (IS_ERR(right))
		right = NULL;
2201 2202 2203 2204

	/*
	 * then try to empty the right most buffer into the middle
	 */
2205
	if (right) {
C
Chris Mason 已提交
2206
		u32 right_nr;
2207

2208
		btrfs_tree_lock(right);
2209 2210
		btrfs_set_lock_blocking(right);

2211
		right_nr = btrfs_header_nritems(right);
C
Chris Mason 已提交
2212 2213 2214
		if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
			wret = 1;
		} else {
2215 2216
			ret = btrfs_cow_block(trans, root, right,
					      parent, pslot + 1,
2217
					      &right);
2218 2219 2220 2221
			if (ret)
				wret = 1;
			else {
				wret = balance_node_right(trans, root,
2222
							  right, mid);
2223
			}
C
Chris Mason 已提交
2224
		}
2225 2226 2227
		if (wret < 0)
			ret = wret;
		if (wret == 0) {
2228 2229 2230
			struct btrfs_disk_key disk_key;

			btrfs_node_key(right, &disk_key, 0);
2231
			tree_mod_log_set_node_key(root->fs_info, parent,
L
Liu Bo 已提交
2232
						  pslot + 1, 0);
2233 2234 2235 2236 2237
			btrfs_set_node_key(parent, &disk_key, pslot + 1);
			btrfs_mark_buffer_dirty(parent);

			if (btrfs_header_nritems(mid) <= orig_slot) {
				path->nodes[level] = right;
2238 2239
				path->slots[level + 1] += 1;
				path->slots[level] = orig_slot -
2240
					btrfs_header_nritems(mid);
2241
				btrfs_tree_unlock(mid);
2242
				free_extent_buffer(mid);
2243
			} else {
2244
				btrfs_tree_unlock(right);
2245
				free_extent_buffer(right);
2246 2247 2248
			}
			return 0;
		}
2249
		btrfs_tree_unlock(right);
2250
		free_extent_buffer(right);
2251 2252 2253 2254
	}
	return 1;
}

2255
/*
C
Chris Mason 已提交
2256 2257
 * readahead one full node of leaves, finding things that are close
 * to the block in 'slot', and triggering ra on them.
2258
 */
2259 2260 2261
static void reada_for_search(struct btrfs_root *root,
			     struct btrfs_path *path,
			     int level, int slot, u64 objectid)
2262
{
2263
	struct extent_buffer *node;
2264
	struct btrfs_disk_key disk_key;
2265 2266
	u32 nritems;
	u64 search;
2267
	u64 target;
2268
	u64 nread = 0;
2269
	struct extent_buffer *eb;
2270 2271 2272
	u32 nr;
	u32 blocksize;
	u32 nscan = 0;
2273

2274
	if (level != 1)
2275 2276 2277
		return;

	if (!path->nodes[level])
2278 2279
		return;

2280
	node = path->nodes[level];
2281

2282
	search = btrfs_node_blockptr(node, slot);
2283
	blocksize = root->nodesize;
2284
	eb = btrfs_find_tree_block(root->fs_info, search);
2285 2286
	if (eb) {
		free_extent_buffer(eb);
2287 2288 2289
		return;
	}

2290
	target = search;
2291

2292
	nritems = btrfs_header_nritems(node);
2293
	nr = slot;
2294

C
Chris Mason 已提交
2295
	while (1) {
2296
		if (path->reada == READA_BACK) {
2297 2298 2299
			if (nr == 0)
				break;
			nr--;
2300
		} else if (path->reada == READA_FORWARD) {
2301 2302 2303
			nr++;
			if (nr >= nritems)
				break;
2304
		}
2305
		if (path->reada == READA_BACK && objectid) {
2306 2307 2308 2309
			btrfs_node_key(node, &disk_key, nr);
			if (btrfs_disk_key_objectid(&disk_key) != objectid)
				break;
		}
2310
		search = btrfs_node_blockptr(node, nr);
2311 2312
		if ((search <= target && target - search <= 65536) ||
		    (search > target && search - target <= 65536)) {
2313
			readahead_tree_block(root, search);
2314 2315 2316
			nread += blocksize;
		}
		nscan++;
2317
		if ((nread > 65536 || nscan > 32))
2318
			break;
2319 2320
	}
}
2321

J
Josef Bacik 已提交
2322 2323
static noinline void reada_for_balance(struct btrfs_root *root,
				       struct btrfs_path *path, int level)
2324 2325 2326 2327 2328 2329 2330 2331 2332
{
	int slot;
	int nritems;
	struct extent_buffer *parent;
	struct extent_buffer *eb;
	u64 gen;
	u64 block1 = 0;
	u64 block2 = 0;

2333
	parent = path->nodes[level + 1];
2334
	if (!parent)
J
Josef Bacik 已提交
2335
		return;
2336 2337

	nritems = btrfs_header_nritems(parent);
2338
	slot = path->slots[level + 1];
2339 2340 2341 2342

	if (slot > 0) {
		block1 = btrfs_node_blockptr(parent, slot - 1);
		gen = btrfs_node_ptr_generation(parent, slot - 1);
2343
		eb = btrfs_find_tree_block(root->fs_info, block1);
2344 2345 2346 2347 2348 2349
		/*
		 * if we get -eagain from btrfs_buffer_uptodate, we
		 * don't want to return eagain here.  That will loop
		 * forever
		 */
		if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
2350 2351 2352
			block1 = 0;
		free_extent_buffer(eb);
	}
2353
	if (slot + 1 < nritems) {
2354 2355
		block2 = btrfs_node_blockptr(parent, slot + 1);
		gen = btrfs_node_ptr_generation(parent, slot + 1);
2356
		eb = btrfs_find_tree_block(root->fs_info, block2);
2357
		if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
2358 2359 2360
			block2 = 0;
		free_extent_buffer(eb);
	}
2361

J
Josef Bacik 已提交
2362
	if (block1)
2363
		readahead_tree_block(root, block1);
J
Josef Bacik 已提交
2364
	if (block2)
2365
		readahead_tree_block(root, block2);
2366 2367 2368
}


C
Chris Mason 已提交
2369
/*
C
Chris Mason 已提交
2370 2371 2372 2373
 * when we walk down the tree, it is usually safe to unlock the higher layers
 * in the tree.  The exceptions are when our path goes through slot 0, because
 * operations on the tree might require changing key pointers higher up in the
 * tree.
C
Chris Mason 已提交
2374
 *
C
Chris Mason 已提交
2375 2376 2377
 * callers might also have set path->keep_locks, which tells this code to keep
 * the lock if the path points to the last slot in the block.  This is part of
 * walking through the tree, and selecting the next slot in the higher block.
C
Chris Mason 已提交
2378
 *
C
Chris Mason 已提交
2379 2380
 * lowest_unlock sets the lowest level in the tree we're allowed to unlock.  so
 * if lowest_unlock is 1, level 0 won't be unlocked
C
Chris Mason 已提交
2381
 */
2382
static noinline void unlock_up(struct btrfs_path *path, int level,
2383 2384
			       int lowest_unlock, int min_write_lock_level,
			       int *write_lock_level)
2385 2386 2387
{
	int i;
	int skip_level = level;
2388
	int no_skips = 0;
2389 2390 2391 2392 2393 2394 2395
	struct extent_buffer *t;

	for (i = level; i < BTRFS_MAX_LEVEL; i++) {
		if (!path->nodes[i])
			break;
		if (!path->locks[i])
			break;
2396
		if (!no_skips && path->slots[i] == 0) {
2397 2398 2399
			skip_level = i + 1;
			continue;
		}
2400
		if (!no_skips && path->keep_locks) {
2401 2402 2403
			u32 nritems;
			t = path->nodes[i];
			nritems = btrfs_header_nritems(t);
2404
			if (nritems < 1 || path->slots[i] >= nritems - 1) {
2405 2406 2407 2408
				skip_level = i + 1;
				continue;
			}
		}
2409 2410 2411
		if (skip_level < i && i >= lowest_unlock)
			no_skips = 1;

2412 2413
		t = path->nodes[i];
		if (i >= lowest_unlock && i > skip_level && path->locks[i]) {
2414
			btrfs_tree_unlock_rw(t, path->locks[i]);
2415
			path->locks[i] = 0;
2416 2417 2418 2419 2420
			if (write_lock_level &&
			    i > min_write_lock_level &&
			    i <= *write_lock_level) {
				*write_lock_level = i - 1;
			}
2421 2422 2423 2424
		}
	}
}

2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437
/*
 * This releases any locks held in the path starting at level and
 * going all the way up to the root.
 *
 * btrfs_search_slot will keep the lock held on higher nodes in a few
 * corner cases, such as COW of the block at slot zero in the node.  This
 * ignores those rules, and it should only be called when there are no
 * more updates to be done higher up in the tree.
 */
noinline void btrfs_unlock_up_safe(struct btrfs_path *path, int level)
{
	int i;

J
Josef Bacik 已提交
2438
	if (path->keep_locks)
2439 2440 2441 2442
		return;

	for (i = level; i < BTRFS_MAX_LEVEL; i++) {
		if (!path->nodes[i])
2443
			continue;
2444
		if (!path->locks[i])
2445
			continue;
2446
		btrfs_tree_unlock_rw(path->nodes[i], path->locks[i]);
2447 2448 2449 2450
		path->locks[i] = 0;
	}
}

2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462
/*
 * helper function for btrfs_search_slot.  The goal is to find a block
 * in cache without setting the path to blocking.  If we find the block
 * we return zero and the path is unchanged.
 *
 * If we can't find the block, we set the path blocking and do some
 * reada.  -EAGAIN is returned and the search must be repeated.
 */
static int
read_block_for_search(struct btrfs_trans_handle *trans,
		       struct btrfs_root *root, struct btrfs_path *p,
		       struct extent_buffer **eb_ret, int level, int slot,
J
Jan Schmidt 已提交
2463
		       struct btrfs_key *key, u64 time_seq)
2464 2465 2466 2467 2468
{
	u64 blocknr;
	u64 gen;
	struct extent_buffer *b = *eb_ret;
	struct extent_buffer *tmp;
2469
	int ret;
2470 2471 2472 2473

	blocknr = btrfs_node_blockptr(b, slot);
	gen = btrfs_node_ptr_generation(b, slot);

2474
	tmp = btrfs_find_tree_block(root->fs_info, blocknr);
2475
	if (tmp) {
2476
		/* first we do an atomic uptodate check */
2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494
		if (btrfs_buffer_uptodate(tmp, gen, 1) > 0) {
			*eb_ret = tmp;
			return 0;
		}

		/* the pages were up to date, but we failed
		 * the generation number check.  Do a full
		 * read for the generation number that is correct.
		 * We must do this without dropping locks so
		 * we can trust our generation number
		 */
		btrfs_set_path_blocking(p);

		/* now we're allowed to do a blocking uptodate check */
		ret = btrfs_read_buffer(tmp, gen);
		if (!ret) {
			*eb_ret = tmp;
			return 0;
2495
		}
2496 2497 2498
		free_extent_buffer(tmp);
		btrfs_release_path(p);
		return -EIO;
2499 2500 2501 2502 2503
	}

	/*
	 * reduce lock contention at high levels
	 * of the btree by dropping locks before
2504 2505 2506
	 * we read.  Don't release the lock on the current
	 * level because we need to walk this node to figure
	 * out which blocks to read.
2507
	 */
2508 2509 2510
	btrfs_unlock_up_safe(p, level + 1);
	btrfs_set_path_blocking(p);

2511
	free_extent_buffer(tmp);
2512
	if (p->reada != READA_NONE)
2513 2514
		reada_for_search(root, p, level, slot, key->objectid);

2515
	btrfs_release_path(p);
2516 2517

	ret = -EAGAIN;
2518
	tmp = read_tree_block(root, blocknr, 0);
2519
	if (!IS_ERR(tmp)) {
2520 2521 2522 2523 2524 2525
		/*
		 * If the read above didn't mark this buffer up to date,
		 * it will never end up being up to date.  Set ret to EIO now
		 * and give up so that our caller doesn't loop forever
		 * on our EAGAINs.
		 */
2526
		if (!btrfs_buffer_uptodate(tmp, 0, 0))
2527
			ret = -EIO;
2528
		free_extent_buffer(tmp);
2529 2530
	} else {
		ret = PTR_ERR(tmp);
2531 2532
	}
	return ret;
2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546
}

/*
 * helper function for btrfs_search_slot.  This does all of the checks
 * for node-level blocks and does any balancing required based on
 * the ins_len.
 *
 * If no extra work was required, zero is returned.  If we had to
 * drop the path, -EAGAIN is returned and btrfs_search_slot must
 * start over
 */
static int
setup_nodes_for_search(struct btrfs_trans_handle *trans,
		       struct btrfs_root *root, struct btrfs_path *p,
2547 2548
		       struct extent_buffer *b, int level, int ins_len,
		       int *write_lock_level)
2549 2550 2551 2552 2553 2554
{
	int ret;
	if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >=
	    BTRFS_NODEPTRS_PER_BLOCK(root) - 3) {
		int sret;

2555 2556 2557 2558 2559 2560
		if (*write_lock_level < level + 1) {
			*write_lock_level = level + 1;
			btrfs_release_path(p);
			goto again;
		}

2561
		btrfs_set_path_blocking(p);
J
Josef Bacik 已提交
2562
		reada_for_balance(root, p, level);
2563
		sret = split_node(trans, root, p, level);
2564
		btrfs_clear_path_blocking(p, NULL, 0);
2565 2566 2567 2568 2569 2570 2571 2572

		BUG_ON(sret > 0);
		if (sret) {
			ret = sret;
			goto done;
		}
		b = p->nodes[level];
	} else if (ins_len < 0 && btrfs_header_nritems(b) <
C
Chris Mason 已提交
2573
		   BTRFS_NODEPTRS_PER_BLOCK(root) / 2) {
2574 2575
		int sret;

2576 2577 2578 2579 2580 2581
		if (*write_lock_level < level + 1) {
			*write_lock_level = level + 1;
			btrfs_release_path(p);
			goto again;
		}

2582
		btrfs_set_path_blocking(p);
J
Josef Bacik 已提交
2583
		reada_for_balance(root, p, level);
2584
		sret = balance_level(trans, root, p, level);
2585
		btrfs_clear_path_blocking(p, NULL, 0);
2586 2587 2588 2589 2590 2591 2592

		if (sret) {
			ret = sret;
			goto done;
		}
		b = p->nodes[level];
		if (!b) {
2593
			btrfs_release_path(p);
2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605
			goto again;
		}
		BUG_ON(btrfs_header_nritems(b) == 1);
	}
	return 0;

again:
	ret = -EAGAIN;
done:
	return ret;
}

2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639
static void key_search_validate(struct extent_buffer *b,
				struct btrfs_key *key,
				int level)
{
#ifdef CONFIG_BTRFS_ASSERT
	struct btrfs_disk_key disk_key;

	btrfs_cpu_key_to_disk(&disk_key, key);

	if (level == 0)
		ASSERT(!memcmp_extent_buffer(b, &disk_key,
		    offsetof(struct btrfs_leaf, items[0].key),
		    sizeof(disk_key)));
	else
		ASSERT(!memcmp_extent_buffer(b, &disk_key,
		    offsetof(struct btrfs_node, ptrs[0].key),
		    sizeof(disk_key)));
#endif
}

static int key_search(struct extent_buffer *b, struct btrfs_key *key,
		      int level, int *prev_cmp, int *slot)
{
	if (*prev_cmp != 0) {
		*prev_cmp = bin_search(b, key, level, slot);
		return *prev_cmp;
	}

	key_search_validate(b, key, level);
	*slot = 0;

	return 0;
}

2640
int btrfs_find_item(struct btrfs_root *fs_root, struct btrfs_path *path,
2641 2642 2643 2644 2645 2646
		u64 iobjectid, u64 ioff, u8 key_type,
		struct btrfs_key *found_key)
{
	int ret;
	struct btrfs_key key;
	struct extent_buffer *eb;
2647 2648

	ASSERT(path);
2649
	ASSERT(found_key);
2650 2651 2652 2653 2654 2655

	key.type = key_type;
	key.objectid = iobjectid;
	key.offset = ioff;

	ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0);
2656
	if (ret < 0)
2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674
		return ret;

	eb = path->nodes[0];
	if (ret && path->slots[0] >= btrfs_header_nritems(eb)) {
		ret = btrfs_next_leaf(fs_root, path);
		if (ret)
			return ret;
		eb = path->nodes[0];
	}

	btrfs_item_key_to_cpu(eb, found_key, path->slots[0]);
	if (found_key->type != key.type ||
			found_key->objectid != key.objectid)
		return 1;

	return 0;
}

C
Chris Mason 已提交
2675 2676 2677 2678 2679 2680
/*
 * look for key in the tree.  path is filled in with nodes along the way
 * if key is found, we return zero and you can find the item in the leaf
 * level of the path (level 0)
 *
 * If the key isn't found, the path points to the slot where it should
C
Chris Mason 已提交
2681 2682
 * be inserted, and 1 is returned.  If there are other errors during the
 * search a negative error number is returned.
C
Chris Mason 已提交
2683 2684 2685 2686
 *
 * if ins_len > 0, nodes and leaves will be split as we walk down the
 * tree.  if ins_len < 0, nodes will be merged as we walk down the tree (if
 * possible)
C
Chris Mason 已提交
2687
 */
2688 2689 2690
int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root
		      *root, struct btrfs_key *key, struct btrfs_path *p, int
		      ins_len, int cow)
2691
{
2692
	struct extent_buffer *b;
2693 2694
	int slot;
	int ret;
2695
	int err;
2696
	int level;
2697
	int lowest_unlock = 1;
2698 2699 2700
	int root_lock;
	/* everything at write_lock_level or lower must be write locked */
	int write_lock_level = 0;
2701
	u8 lowest_level = 0;
2702
	int min_write_lock_level;
2703
	int prev_cmp;
2704

2705
	lowest_level = p->lowest_level;
2706
	WARN_ON(lowest_level && ins_len > 0);
C
Chris Mason 已提交
2707
	WARN_ON(p->nodes[0] != NULL);
2708
	BUG_ON(!cow && ins_len);
2709

2710
	if (ins_len < 0) {
2711
		lowest_unlock = 2;
2712

2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728
		/* when we are removing items, we might have to go up to level
		 * two as we update tree pointers  Make sure we keep write
		 * for those levels as well
		 */
		write_lock_level = 2;
	} else if (ins_len > 0) {
		/*
		 * for inserting items, make sure we have a write lock on
		 * level 1 so we can update keys
		 */
		write_lock_level = 1;
	}

	if (!cow)
		write_lock_level = -1;

J
Josef Bacik 已提交
2729
	if (cow && (p->keep_locks || p->lowest_level))
2730 2731
		write_lock_level = BTRFS_MAX_LEVEL;

2732 2733
	min_write_lock_level = write_lock_level;

2734
again:
2735
	prev_cmp = -1;
2736 2737 2738 2739 2740
	/*
	 * we try very hard to do read locks on the root
	 */
	root_lock = BTRFS_READ_LOCK;
	level = 0;
2741
	if (p->search_commit_root) {
2742 2743 2744 2745
		/*
		 * the commit roots are read only
		 * so we always do read locks
		 */
2746 2747
		if (p->need_commit_sem)
			down_read(&root->fs_info->commit_root_sem);
2748 2749
		b = root->commit_root;
		extent_buffer_get(b);
2750
		level = btrfs_header_level(b);
2751 2752
		if (p->need_commit_sem)
			up_read(&root->fs_info->commit_root_sem);
2753
		if (!p->skip_locking)
2754
			btrfs_tree_read_lock(b);
2755
	} else {
2756
		if (p->skip_locking) {
2757
			b = btrfs_root_node(root);
2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775
			level = btrfs_header_level(b);
		} else {
			/* we don't know the level of the root node
			 * until we actually have it read locked
			 */
			b = btrfs_read_lock_root_node(root);
			level = btrfs_header_level(b);
			if (level <= write_lock_level) {
				/* whoops, must trade for write lock */
				btrfs_tree_read_unlock(b);
				free_extent_buffer(b);
				b = btrfs_lock_root_node(root);
				root_lock = BTRFS_WRITE_LOCK;

				/* the level might have changed, check again */
				level = btrfs_header_level(b);
			}
		}
2776
	}
2777 2778 2779
	p->nodes[level] = b;
	if (!p->skip_locking)
		p->locks[level] = root_lock;
2780

2781
	while (b) {
2782
		level = btrfs_header_level(b);
2783 2784 2785 2786 2787

		/*
		 * setup the path here so we can release it under lock
		 * contention with the cow code
		 */
C
Chris Mason 已提交
2788
		if (cow) {
2789 2790 2791 2792 2793
			/*
			 * if we don't really need to cow this block
			 * then we don't want to set the path blocking,
			 * so we test it here
			 */
2794 2795
			if (!should_cow_block(trans, root, b)) {
				trans->dirty = true;
2796
				goto cow_done;
2797
			}
2798

2799 2800 2801 2802
			/*
			 * must have write locks on this node and the
			 * parent
			 */
2803 2804 2805 2806
			if (level > write_lock_level ||
			    (level + 1 > write_lock_level &&
			    level + 1 < BTRFS_MAX_LEVEL &&
			    p->nodes[level + 1])) {
2807 2808 2809 2810 2811
				write_lock_level = level + 1;
				btrfs_release_path(p);
				goto again;
			}

2812
			btrfs_set_path_blocking(p);
2813 2814 2815 2816 2817
			err = btrfs_cow_block(trans, root, b,
					      p->nodes[level + 1],
					      p->slots[level + 1], &b);
			if (err) {
				ret = err;
2818
				goto done;
2819
			}
C
Chris Mason 已提交
2820
		}
2821
cow_done:
2822
		p->nodes[level] = b;
2823
		btrfs_clear_path_blocking(p, NULL, 0);
2824 2825 2826 2827 2828 2829 2830

		/*
		 * we have a lock on b and as long as we aren't changing
		 * the tree, there is no way to for the items in b to change.
		 * It is safe to drop the lock on our parent before we
		 * go through the expensive btree search on b.
		 *
2831 2832 2833 2834
		 * If we're inserting or deleting (ins_len != 0), then we might
		 * be changing slot zero, which may require changing the parent.
		 * So, we can't drop the lock until after we know which slot
		 * we're operating on.
2835
		 */
2836 2837 2838 2839 2840 2841 2842 2843
		if (!ins_len && !p->keep_locks) {
			int u = level + 1;

			if (u < BTRFS_MAX_LEVEL && p->locks[u]) {
				btrfs_tree_unlock_rw(p->nodes[u], p->locks[u]);
				p->locks[u] = 0;
			}
		}
2844

2845
		ret = key_search(b, key, level, &prev_cmp, &slot);
2846 2847
		if (ret < 0)
			goto done;
2848

2849
		if (level != 0) {
2850 2851 2852
			int dec = 0;
			if (ret && slot > 0) {
				dec = 1;
2853
				slot -= 1;
2854
			}
2855
			p->slots[level] = slot;
2856
			err = setup_nodes_for_search(trans, root, p, b, level,
2857
					     ins_len, &write_lock_level);
2858
			if (err == -EAGAIN)
2859
				goto again;
2860 2861
			if (err) {
				ret = err;
2862
				goto done;
2863
			}
2864 2865
			b = p->nodes[level];
			slot = p->slots[level];
2866

2867 2868 2869 2870 2871 2872
			/*
			 * slot 0 is special, if we change the key
			 * we have to update the parent pointer
			 * which means we must have a write lock
			 * on the parent
			 */
2873
			if (slot == 0 && ins_len &&
2874 2875 2876 2877 2878 2879
			    write_lock_level < level + 1) {
				write_lock_level = level + 1;
				btrfs_release_path(p);
				goto again;
			}

2880 2881
			unlock_up(p, level, lowest_unlock,
				  min_write_lock_level, &write_lock_level);
2882

2883
			if (level == lowest_level) {
2884 2885
				if (dec)
					p->slots[level]++;
2886
				goto done;
2887
			}
2888

2889
			err = read_block_for_search(trans, root, p,
J
Jan Schmidt 已提交
2890
						    &b, level, slot, key, 0);
2891
			if (err == -EAGAIN)
2892
				goto again;
2893 2894
			if (err) {
				ret = err;
2895
				goto done;
2896
			}
2897

2898
			if (!p->skip_locking) {
2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909
				level = btrfs_header_level(b);
				if (level <= write_lock_level) {
					err = btrfs_try_tree_write_lock(b);
					if (!err) {
						btrfs_set_path_blocking(p);
						btrfs_tree_lock(b);
						btrfs_clear_path_blocking(p, b,
								  BTRFS_WRITE_LOCK);
					}
					p->locks[level] = BTRFS_WRITE_LOCK;
				} else {
2910
					err = btrfs_tree_read_lock_atomic(b);
2911 2912 2913 2914 2915 2916 2917
					if (!err) {
						btrfs_set_path_blocking(p);
						btrfs_tree_read_lock(b);
						btrfs_clear_path_blocking(p, b,
								  BTRFS_READ_LOCK);
					}
					p->locks[level] = BTRFS_READ_LOCK;
2918
				}
2919
				p->nodes[level] = b;
2920
			}
2921 2922
		} else {
			p->slots[level] = slot;
2923 2924
			if (ins_len > 0 &&
			    btrfs_leaf_free_space(root, b) < ins_len) {
2925 2926 2927 2928 2929 2930
				if (write_lock_level < 1) {
					write_lock_level = 1;
					btrfs_release_path(p);
					goto again;
				}

2931
				btrfs_set_path_blocking(p);
2932 2933
				err = split_leaf(trans, root, key,
						 p, ins_len, ret == 0);
2934
				btrfs_clear_path_blocking(p, NULL, 0);
2935

2936 2937 2938
				BUG_ON(err > 0);
				if (err) {
					ret = err;
2939 2940
					goto done;
				}
C
Chris Mason 已提交
2941
			}
2942
			if (!p->search_for_split)
2943 2944
				unlock_up(p, level, lowest_unlock,
					  min_write_lock_level, &write_lock_level);
2945
			goto done;
2946 2947
		}
	}
2948 2949
	ret = 1;
done:
2950 2951 2952 2953
	/*
	 * we don't really know what they plan on doing with the path
	 * from here on, so for now just mark it as blocking
	 */
2954 2955
	if (!p->leave_spinning)
		btrfs_set_path_blocking(p);
2956
	if (ret < 0 && !p->skip_release_on_error)
2957
		btrfs_release_path(p);
2958
	return ret;
2959 2960
}

J
Jan Schmidt 已提交
2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981
/*
 * Like btrfs_search_slot, this looks for a key in the given tree. It uses the
 * current state of the tree together with the operations recorded in the tree
 * modification log to search for the key in a previous version of this tree, as
 * denoted by the time_seq parameter.
 *
 * Naturally, there is no support for insert, delete or cow operations.
 *
 * The resulting path and return value will be set up as if we called
 * btrfs_search_slot at that point in time with ins_len and cow both set to 0.
 */
int btrfs_search_old_slot(struct btrfs_root *root, struct btrfs_key *key,
			  struct btrfs_path *p, u64 time_seq)
{
	struct extent_buffer *b;
	int slot;
	int ret;
	int err;
	int level;
	int lowest_unlock = 1;
	u8 lowest_level = 0;
2982
	int prev_cmp = -1;
J
Jan Schmidt 已提交
2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009

	lowest_level = p->lowest_level;
	WARN_ON(p->nodes[0] != NULL);

	if (p->search_commit_root) {
		BUG_ON(time_seq);
		return btrfs_search_slot(NULL, root, key, p, 0, 0);
	}

again:
	b = get_old_root(root, time_seq);
	level = btrfs_header_level(b);
	p->locks[level] = BTRFS_READ_LOCK;

	while (b) {
		level = btrfs_header_level(b);
		p->nodes[level] = b;
		btrfs_clear_path_blocking(p, NULL, 0);

		/*
		 * we have a lock on b and as long as we aren't changing
		 * the tree, there is no way to for the items in b to change.
		 * It is safe to drop the lock on our parent before we
		 * go through the expensive btree search on b.
		 */
		btrfs_unlock_up_safe(p, level + 1);

3010
		/*
3011
		 * Since we can unwind ebs we want to do a real search every
3012 3013 3014
		 * time.
		 */
		prev_cmp = -1;
3015
		ret = key_search(b, key, level, &prev_cmp, &slot);
J
Jan Schmidt 已提交
3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041

		if (level != 0) {
			int dec = 0;
			if (ret && slot > 0) {
				dec = 1;
				slot -= 1;
			}
			p->slots[level] = slot;
			unlock_up(p, level, lowest_unlock, 0, NULL);

			if (level == lowest_level) {
				if (dec)
					p->slots[level]++;
				goto done;
			}

			err = read_block_for_search(NULL, root, p, &b, level,
						    slot, key, time_seq);
			if (err == -EAGAIN)
				goto again;
			if (err) {
				ret = err;
				goto done;
			}

			level = btrfs_header_level(b);
3042
			err = btrfs_tree_read_lock_atomic(b);
J
Jan Schmidt 已提交
3043 3044 3045 3046 3047 3048
			if (!err) {
				btrfs_set_path_blocking(p);
				btrfs_tree_read_lock(b);
				btrfs_clear_path_blocking(p, b,
							  BTRFS_READ_LOCK);
			}
3049
			b = tree_mod_log_rewind(root->fs_info, p, b, time_seq);
3050 3051 3052 3053
			if (!b) {
				ret = -ENOMEM;
				goto done;
			}
J
Jan Schmidt 已提交
3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071
			p->locks[level] = BTRFS_READ_LOCK;
			p->nodes[level] = b;
		} else {
			p->slots[level] = slot;
			unlock_up(p, level, lowest_unlock, 0, NULL);
			goto done;
		}
	}
	ret = 1;
done:
	if (!p->leave_spinning)
		btrfs_set_path_blocking(p);
	if (ret < 0)
		btrfs_release_path(p);

	return ret;
}

3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120
/*
 * helper to use instead of search slot if no exact match is needed but
 * instead the next or previous item should be returned.
 * When find_higher is true, the next higher item is returned, the next lower
 * otherwise.
 * When return_any and find_higher are both true, and no higher item is found,
 * return the next lower instead.
 * When return_any is true and find_higher is false, and no lower item is found,
 * return the next higher instead.
 * It returns 0 if any item is found, 1 if none is found (tree empty), and
 * < 0 on error
 */
int btrfs_search_slot_for_read(struct btrfs_root *root,
			       struct btrfs_key *key, struct btrfs_path *p,
			       int find_higher, int return_any)
{
	int ret;
	struct extent_buffer *leaf;

again:
	ret = btrfs_search_slot(NULL, root, key, p, 0, 0);
	if (ret <= 0)
		return ret;
	/*
	 * a return value of 1 means the path is at the position where the
	 * item should be inserted. Normally this is the next bigger item,
	 * but in case the previous item is the last in a leaf, path points
	 * to the first free slot in the previous leaf, i.e. at an invalid
	 * item.
	 */
	leaf = p->nodes[0];

	if (find_higher) {
		if (p->slots[0] >= btrfs_header_nritems(leaf)) {
			ret = btrfs_next_leaf(root, p);
			if (ret <= 0)
				return ret;
			if (!return_any)
				return 1;
			/*
			 * no higher item found, return the next
			 * lower instead
			 */
			return_any = 0;
			find_higher = 0;
			btrfs_release_path(p);
			goto again;
		}
	} else {
3121 3122 3123 3124 3125
		if (p->slots[0] == 0) {
			ret = btrfs_prev_leaf(root, p);
			if (ret < 0)
				return ret;
			if (!ret) {
3126 3127 3128
				leaf = p->nodes[0];
				if (p->slots[0] == btrfs_header_nritems(leaf))
					p->slots[0]--;
3129
				return 0;
3130
			}
3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141
			if (!return_any)
				return 1;
			/*
			 * no lower item found, return the next
			 * higher instead
			 */
			return_any = 0;
			find_higher = 1;
			btrfs_release_path(p);
			goto again;
		} else {
3142 3143 3144 3145 3146 3147
			--p->slots[0];
		}
	}
	return 0;
}

C
Chris Mason 已提交
3148 3149 3150 3151 3152 3153
/*
 * adjust the pointers going up the tree, starting at level
 * making sure the right key of each node is points to 'key'.
 * This is used after shifting pointers to the left, so it stops
 * fixing up pointers when a given leaf/node is not in slot 0 of the
 * higher levels
C
Chris Mason 已提交
3154
 *
C
Chris Mason 已提交
3155
 */
3156 3157
static void fixup_low_keys(struct btrfs_fs_info *fs_info,
			   struct btrfs_path *path,
3158
			   struct btrfs_disk_key *key, int level)
3159 3160
{
	int i;
3161 3162
	struct extent_buffer *t;

C
Chris Mason 已提交
3163
	for (i = level; i < BTRFS_MAX_LEVEL; i++) {
3164
		int tslot = path->slots[i];
3165
		if (!path->nodes[i])
3166
			break;
3167
		t = path->nodes[i];
3168
		tree_mod_log_set_node_key(fs_info, t, tslot, 1);
3169
		btrfs_set_node_key(t, key, tslot);
C
Chris Mason 已提交
3170
		btrfs_mark_buffer_dirty(path->nodes[i]);
3171 3172 3173 3174 3175
		if (tslot != 0)
			break;
	}
}

Z
Zheng Yan 已提交
3176 3177 3178 3179 3180 3181
/*
 * update item key.
 *
 * This function isn't completely safe. It's the caller's responsibility
 * that the new key won't break the order
 */
3182 3183
void btrfs_set_item_key_safe(struct btrfs_fs_info *fs_info,
			     struct btrfs_path *path,
3184
			     struct btrfs_key *new_key)
Z
Zheng Yan 已提交
3185 3186 3187 3188 3189 3190 3191 3192 3193
{
	struct btrfs_disk_key disk_key;
	struct extent_buffer *eb;
	int slot;

	eb = path->nodes[0];
	slot = path->slots[0];
	if (slot > 0) {
		btrfs_item_key(eb, &disk_key, slot - 1);
3194
		BUG_ON(comp_keys(&disk_key, new_key) >= 0);
Z
Zheng Yan 已提交
3195 3196 3197
	}
	if (slot < btrfs_header_nritems(eb) - 1) {
		btrfs_item_key(eb, &disk_key, slot + 1);
3198
		BUG_ON(comp_keys(&disk_key, new_key) <= 0);
Z
Zheng Yan 已提交
3199 3200 3201 3202 3203 3204
	}

	btrfs_cpu_key_to_disk(&disk_key, new_key);
	btrfs_set_item_key(eb, &disk_key, slot);
	btrfs_mark_buffer_dirty(eb);
	if (slot == 0)
3205
		fixup_low_keys(fs_info, path, &disk_key, 1);
Z
Zheng Yan 已提交
3206 3207
}

C
Chris Mason 已提交
3208 3209
/*
 * try to push data from one node into the next node left in the
3210
 * tree.
C
Chris Mason 已提交
3211 3212 3213
 *
 * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
 * error, and > 0 if there was no room in the left hand block.
C
Chris Mason 已提交
3214
 */
3215 3216
static int push_node_left(struct btrfs_trans_handle *trans,
			  struct btrfs_root *root, struct extent_buffer *dst,
3217
			  struct extent_buffer *src, int empty)
3218 3219
{
	int push_items = 0;
3220 3221
	int src_nritems;
	int dst_nritems;
C
Chris Mason 已提交
3222
	int ret = 0;
3223

3224 3225
	src_nritems = btrfs_header_nritems(src);
	dst_nritems = btrfs_header_nritems(dst);
C
Chris Mason 已提交
3226
	push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
3227 3228
	WARN_ON(btrfs_header_generation(src) != trans->transid);
	WARN_ON(btrfs_header_generation(dst) != trans->transid);
3229

3230
	if (!empty && src_nritems <= 8)
3231 3232
		return 1;

C
Chris Mason 已提交
3233
	if (push_items <= 0)
3234 3235
		return 1;

3236
	if (empty) {
3237
		push_items = min(src_nritems, push_items);
3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249
		if (push_items < src_nritems) {
			/* leave at least 8 pointers in the node if
			 * we aren't going to empty it
			 */
			if (src_nritems - push_items < 8) {
				if (push_items <= 8)
					return 1;
				push_items -= 8;
			}
		}
	} else
		push_items = min(src_nritems - 8, push_items);
3250

3251 3252 3253
	ret = tree_mod_log_eb_copy(root->fs_info, dst, src, dst_nritems, 0,
				   push_items);
	if (ret) {
3254
		btrfs_abort_transaction(trans, ret);
3255 3256
		return ret;
	}
3257 3258 3259
	copy_extent_buffer(dst, src,
			   btrfs_node_key_ptr_offset(dst_nritems),
			   btrfs_node_key_ptr_offset(0),
C
Chris Mason 已提交
3260
			   push_items * sizeof(struct btrfs_key_ptr));
3261

3262
	if (push_items < src_nritems) {
3263 3264 3265 3266
		/*
		 * don't call tree_mod_log_eb_move here, key removal was already
		 * fully logged by tree_mod_log_eb_copy above.
		 */
3267 3268 3269 3270 3271 3272 3273 3274 3275
		memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0),
				      btrfs_node_key_ptr_offset(push_items),
				      (src_nritems - push_items) *
				      sizeof(struct btrfs_key_ptr));
	}
	btrfs_set_header_nritems(src, src_nritems - push_items);
	btrfs_set_header_nritems(dst, dst_nritems + push_items);
	btrfs_mark_buffer_dirty(src);
	btrfs_mark_buffer_dirty(dst);
Z
Zheng Yan 已提交
3276

3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288
	return ret;
}

/*
 * try to push data from one node into the next node right in the
 * tree.
 *
 * returns 0 if some ptrs were pushed, < 0 if there was some horrible
 * error, and > 0 if there was no room in the right hand block.
 *
 * this will  only push up to 1/2 the contents of the left node over
 */
3289 3290 3291 3292
static int balance_node_right(struct btrfs_trans_handle *trans,
			      struct btrfs_root *root,
			      struct extent_buffer *dst,
			      struct extent_buffer *src)
3293 3294 3295 3296 3297 3298 3299
{
	int push_items = 0;
	int max_push;
	int src_nritems;
	int dst_nritems;
	int ret = 0;

3300 3301 3302
	WARN_ON(btrfs_header_generation(src) != trans->transid);
	WARN_ON(btrfs_header_generation(dst) != trans->transid);

3303 3304
	src_nritems = btrfs_header_nritems(src);
	dst_nritems = btrfs_header_nritems(dst);
C
Chris Mason 已提交
3305
	push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
C
Chris Mason 已提交
3306
	if (push_items <= 0)
3307
		return 1;
3308

C
Chris Mason 已提交
3309
	if (src_nritems < 4)
3310
		return 1;
3311 3312 3313

	max_push = src_nritems / 2 + 1;
	/* don't try to empty the node */
C
Chris Mason 已提交
3314
	if (max_push >= src_nritems)
3315
		return 1;
Y
Yan 已提交
3316

3317 3318 3319
	if (max_push < push_items)
		push_items = max_push;

3320
	tree_mod_log_eb_move(root->fs_info, dst, push_items, 0, dst_nritems);
3321 3322 3323 3324
	memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items),
				      btrfs_node_key_ptr_offset(0),
				      (dst_nritems) *
				      sizeof(struct btrfs_key_ptr));
C
Chris Mason 已提交
3325

3326 3327 3328
	ret = tree_mod_log_eb_copy(root->fs_info, dst, src, 0,
				   src_nritems - push_items, push_items);
	if (ret) {
3329
		btrfs_abort_transaction(trans, ret);
3330 3331
		return ret;
	}
3332 3333 3334
	copy_extent_buffer(dst, src,
			   btrfs_node_key_ptr_offset(0),
			   btrfs_node_key_ptr_offset(src_nritems - push_items),
C
Chris Mason 已提交
3335
			   push_items * sizeof(struct btrfs_key_ptr));
3336

3337 3338
	btrfs_set_header_nritems(src, src_nritems - push_items);
	btrfs_set_header_nritems(dst, dst_nritems + push_items);
3339

3340 3341
	btrfs_mark_buffer_dirty(src);
	btrfs_mark_buffer_dirty(dst);
Z
Zheng Yan 已提交
3342

C
Chris Mason 已提交
3343
	return ret;
3344 3345
}

C
Chris Mason 已提交
3346 3347 3348 3349
/*
 * helper function to insert a new root level in the tree.
 * A new node is allocated, and a single item is inserted to
 * point to the existing root
C
Chris Mason 已提交
3350 3351
 *
 * returns zero on success or < 0 on failure.
C
Chris Mason 已提交
3352
 */
C
Chris Mason 已提交
3353
static noinline int insert_new_root(struct btrfs_trans_handle *trans,
3354
			   struct btrfs_root *root,
3355
			   struct btrfs_path *path, int level)
C
Chris Mason 已提交
3356
{
3357
	u64 lower_gen;
3358 3359
	struct extent_buffer *lower;
	struct extent_buffer *c;
3360
	struct extent_buffer *old;
3361
	struct btrfs_disk_key lower_key;
C
Chris Mason 已提交
3362 3363 3364 3365

	BUG_ON(path->nodes[level]);
	BUG_ON(path->nodes[level-1] != root->node);

3366 3367 3368 3369 3370 3371
	lower = path->nodes[level-1];
	if (level == 1)
		btrfs_item_key(lower, &lower_key, 0);
	else
		btrfs_node_key(lower, &lower_key, 0);

3372 3373
	c = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
				   &lower_key, level, root->node->start, 0);
3374 3375
	if (IS_ERR(c))
		return PTR_ERR(c);
3376

3377 3378
	root_add_used(root, root->nodesize);

3379
	memset_extent_buffer(c, 0, 0, sizeof(struct btrfs_header));
3380 3381
	btrfs_set_header_nritems(c, 1);
	btrfs_set_header_level(c, level);
3382
	btrfs_set_header_bytenr(c, c->start);
3383
	btrfs_set_header_generation(c, trans->transid);
3384
	btrfs_set_header_backref_rev(c, BTRFS_MIXED_BACKREF_REV);
3385 3386
	btrfs_set_header_owner(c, root->root_key.objectid);

3387
	write_extent_buffer(c, root->fs_info->fsid, btrfs_header_fsid(),
3388
			    BTRFS_FSID_SIZE);
3389 3390

	write_extent_buffer(c, root->fs_info->chunk_tree_uuid,
3391
			    btrfs_header_chunk_tree_uuid(c), BTRFS_UUID_SIZE);
3392

3393
	btrfs_set_node_key(c, &lower_key, 0);
3394
	btrfs_set_node_blockptr(c, 0, lower->start);
3395
	lower_gen = btrfs_header_generation(lower);
Z
Zheng Yan 已提交
3396
	WARN_ON(lower_gen != trans->transid);
3397 3398

	btrfs_set_node_ptr_generation(c, 0, lower_gen);
3399

3400
	btrfs_mark_buffer_dirty(c);
3401

3402
	old = root->node;
3403
	tree_mod_log_set_root_pointer(root, c, 0);
3404
	rcu_assign_pointer(root->node, c);
3405 3406 3407 3408

	/* the super has an extra ref to root->node */
	free_extent_buffer(old);

3409
	add_root_to_dirty_list(root);
3410 3411
	extent_buffer_get(c);
	path->nodes[level] = c;
3412
	path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
C
Chris Mason 已提交
3413 3414 3415 3416
	path->slots[level] = 0;
	return 0;
}

C
Chris Mason 已提交
3417 3418 3419
/*
 * worker function to insert a single pointer in a node.
 * the node should have enough room for the pointer already
C
Chris Mason 已提交
3420
 *
C
Chris Mason 已提交
3421 3422 3423
 * slot and level indicate where you want the key to go, and
 * blocknr is the block the key points to.
 */
3424 3425 3426
static void insert_ptr(struct btrfs_trans_handle *trans,
		       struct btrfs_root *root, struct btrfs_path *path,
		       struct btrfs_disk_key *key, u64 bytenr,
3427
		       int slot, int level)
C
Chris Mason 已提交
3428
{
3429
	struct extent_buffer *lower;
C
Chris Mason 已提交
3430
	int nritems;
3431
	int ret;
C
Chris Mason 已提交
3432 3433

	BUG_ON(!path->nodes[level]);
3434
	btrfs_assert_tree_locked(path->nodes[level]);
3435 3436
	lower = path->nodes[level];
	nritems = btrfs_header_nritems(lower);
S
Stoyan Gaydarov 已提交
3437
	BUG_ON(slot > nritems);
3438
	BUG_ON(nritems == BTRFS_NODEPTRS_PER_BLOCK(root));
C
Chris Mason 已提交
3439
	if (slot != nritems) {
3440
		if (level)
3441 3442
			tree_mod_log_eb_move(root->fs_info, lower, slot + 1,
					     slot, nritems - slot);
3443 3444 3445
		memmove_extent_buffer(lower,
			      btrfs_node_key_ptr_offset(slot + 1),
			      btrfs_node_key_ptr_offset(slot),
C
Chris Mason 已提交
3446
			      (nritems - slot) * sizeof(struct btrfs_key_ptr));
C
Chris Mason 已提交
3447
	}
3448
	if (level) {
3449
		ret = tree_mod_log_insert_key(root->fs_info, lower, slot,
3450
					      MOD_LOG_KEY_ADD, GFP_NOFS);
3451 3452
		BUG_ON(ret < 0);
	}
3453
	btrfs_set_node_key(lower, key, slot);
3454
	btrfs_set_node_blockptr(lower, slot, bytenr);
3455 3456
	WARN_ON(trans->transid == 0);
	btrfs_set_node_ptr_generation(lower, slot, trans->transid);
3457 3458
	btrfs_set_header_nritems(lower, nritems + 1);
	btrfs_mark_buffer_dirty(lower);
C
Chris Mason 已提交
3459 3460
}

C
Chris Mason 已提交
3461 3462 3463 3464 3465 3466
/*
 * split the node at the specified level in path in two.
 * The path is corrected to point to the appropriate node after the split
 *
 * Before splitting this tries to make some room in the node by pushing
 * left and right, if either one works, it returns right away.
C
Chris Mason 已提交
3467 3468
 *
 * returns 0 on success and < 0 on failure
C
Chris Mason 已提交
3469
 */
3470 3471 3472
static noinline int split_node(struct btrfs_trans_handle *trans,
			       struct btrfs_root *root,
			       struct btrfs_path *path, int level)
3473
{
3474 3475 3476
	struct extent_buffer *c;
	struct extent_buffer *split;
	struct btrfs_disk_key disk_key;
3477
	int mid;
C
Chris Mason 已提交
3478
	int ret;
3479
	u32 c_nritems;
3480

3481
	c = path->nodes[level];
3482
	WARN_ON(btrfs_header_generation(c) != trans->transid);
3483
	if (c == root->node) {
3484
		/*
3485 3486
		 * trying to split the root, lets make a new one
		 *
3487
		 * tree mod log: We don't log_removal old root in
3488 3489 3490 3491 3492
		 * insert_new_root, because that root buffer will be kept as a
		 * normal node. We are going to log removal of half of the
		 * elements below with tree_mod_log_eb_copy. We're holding a
		 * tree lock on the buffer, which is why we cannot race with
		 * other tree_mod_log users.
3493
		 */
3494
		ret = insert_new_root(trans, root, path, level + 1);
C
Chris Mason 已提交
3495 3496
		if (ret)
			return ret;
3497
	} else {
3498
		ret = push_nodes_for_insert(trans, root, path, level);
3499 3500
		c = path->nodes[level];
		if (!ret && btrfs_header_nritems(c) <
3501
		    BTRFS_NODEPTRS_PER_BLOCK(root) - 3)
3502
			return 0;
3503 3504
		if (ret < 0)
			return ret;
3505
	}
3506

3507
	c_nritems = btrfs_header_nritems(c);
3508 3509
	mid = (c_nritems + 1) / 2;
	btrfs_node_key(c, &disk_key, mid);
3510

3511 3512
	split = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
			&disk_key, level, c->start, 0);
3513 3514 3515
	if (IS_ERR(split))
		return PTR_ERR(split);

3516 3517
	root_add_used(root, root->nodesize);

3518
	memset_extent_buffer(split, 0, 0, sizeof(struct btrfs_header));
3519
	btrfs_set_header_level(split, btrfs_header_level(c));
3520
	btrfs_set_header_bytenr(split, split->start);
3521
	btrfs_set_header_generation(split, trans->transid);
3522
	btrfs_set_header_backref_rev(split, BTRFS_MIXED_BACKREF_REV);
3523 3524
	btrfs_set_header_owner(split, root->root_key.objectid);
	write_extent_buffer(split, root->fs_info->fsid,
3525
			    btrfs_header_fsid(), BTRFS_FSID_SIZE);
3526
	write_extent_buffer(split, root->fs_info->chunk_tree_uuid,
3527
			    btrfs_header_chunk_tree_uuid(split),
3528
			    BTRFS_UUID_SIZE);
3529

3530 3531 3532
	ret = tree_mod_log_eb_copy(root->fs_info, split, c, 0,
				   mid, c_nritems - mid);
	if (ret) {
3533
		btrfs_abort_transaction(trans, ret);
3534 3535
		return ret;
	}
3536 3537 3538 3539 3540 3541
	copy_extent_buffer(split, c,
			   btrfs_node_key_ptr_offset(0),
			   btrfs_node_key_ptr_offset(mid),
			   (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
	btrfs_set_header_nritems(split, c_nritems - mid);
	btrfs_set_header_nritems(c, mid);
C
Chris Mason 已提交
3542 3543
	ret = 0;

3544 3545 3546
	btrfs_mark_buffer_dirty(c);
	btrfs_mark_buffer_dirty(split);

3547
	insert_ptr(trans, root, path, &disk_key, split->start,
3548
		   path->slots[level + 1] + 1, level + 1);
C
Chris Mason 已提交
3549

C
Chris Mason 已提交
3550
	if (path->slots[level] >= mid) {
C
Chris Mason 已提交
3551
		path->slots[level] -= mid;
3552
		btrfs_tree_unlock(c);
3553 3554
		free_extent_buffer(c);
		path->nodes[level] = split;
C
Chris Mason 已提交
3555 3556
		path->slots[level + 1] += 1;
	} else {
3557
		btrfs_tree_unlock(split);
3558
		free_extent_buffer(split);
3559
	}
C
Chris Mason 已提交
3560
	return ret;
3561 3562
}

C
Chris Mason 已提交
3563 3564 3565 3566 3567
/*
 * how many bytes are required to store the items in a leaf.  start
 * and nr indicate which items in the leaf to check.  This totals up the
 * space used both by the item structs and the item data
 */
3568
static int leaf_space_used(struct extent_buffer *l, int start, int nr)
3569
{
J
Josef Bacik 已提交
3570 3571 3572
	struct btrfs_item *start_item;
	struct btrfs_item *end_item;
	struct btrfs_map_token token;
3573
	int data_len;
3574
	int nritems = btrfs_header_nritems(l);
3575
	int end = min(nritems, start + nr) - 1;
3576 3577 3578

	if (!nr)
		return 0;
J
Josef Bacik 已提交
3579
	btrfs_init_map_token(&token);
3580 3581
	start_item = btrfs_item_nr(start);
	end_item = btrfs_item_nr(end);
J
Josef Bacik 已提交
3582 3583 3584
	data_len = btrfs_token_item_offset(l, start_item, &token) +
		btrfs_token_item_size(l, start_item, &token);
	data_len = data_len - btrfs_token_item_offset(l, end_item, &token);
C
Chris Mason 已提交
3585
	data_len += sizeof(struct btrfs_item) * nr;
3586
	WARN_ON(data_len < 0);
3587 3588 3589
	return data_len;
}

3590 3591 3592 3593 3594
/*
 * The space between the end of the leaf items and
 * the start of the leaf data.  IOW, how much room
 * the leaf has left for both items and data
 */
C
Chris Mason 已提交
3595
noinline int btrfs_leaf_free_space(struct btrfs_root *root,
3596
				   struct extent_buffer *leaf)
3597
{
3598 3599 3600 3601
	int nritems = btrfs_header_nritems(leaf);
	int ret;
	ret = BTRFS_LEAF_DATA_SIZE(root) - leaf_space_used(leaf, 0, nritems);
	if (ret < 0) {
3602 3603
		btrfs_crit(root->fs_info,
			"leaf free space ret %d, leaf data size %lu, used %d nritems %d",
J
Jens Axboe 已提交
3604
		       ret, (unsigned long) BTRFS_LEAF_DATA_SIZE(root),
3605 3606 3607
		       leaf_space_used(leaf, 0, nritems), nritems);
	}
	return ret;
3608 3609
}

3610 3611 3612 3613
/*
 * min slot controls the lowest index we're willing to push to the
 * right.  We'll push up to and including min_slot, but no lower
 */
3614 3615 3616 3617 3618
static noinline int __push_leaf_right(struct btrfs_trans_handle *trans,
				      struct btrfs_root *root,
				      struct btrfs_path *path,
				      int data_size, int empty,
				      struct extent_buffer *right,
3619 3620
				      int free_space, u32 left_nritems,
				      u32 min_slot)
C
Chris Mason 已提交
3621
{
3622
	struct extent_buffer *left = path->nodes[0];
3623
	struct extent_buffer *upper = path->nodes[1];
3624
	struct btrfs_map_token token;
3625
	struct btrfs_disk_key disk_key;
C
Chris Mason 已提交
3626
	int slot;
3627
	u32 i;
C
Chris Mason 已提交
3628 3629
	int push_space = 0;
	int push_items = 0;
C
Chris Mason 已提交
3630
	struct btrfs_item *item;
3631
	u32 nr;
3632
	u32 right_nritems;
3633
	u32 data_end;
3634
	u32 this_item_size;
C
Chris Mason 已提交
3635

3636 3637
	btrfs_init_map_token(&token);

3638 3639 3640
	if (empty)
		nr = 0;
	else
3641
		nr = max_t(u32, 1, min_slot);
3642

Z
Zheng Yan 已提交
3643
	if (path->slots[0] >= left_nritems)
3644
		push_space += data_size;
Z
Zheng Yan 已提交
3645

3646
	slot = path->slots[1];
3647 3648
	i = left_nritems - 1;
	while (i >= nr) {
3649
		item = btrfs_item_nr(i);
3650

Z
Zheng Yan 已提交
3651 3652 3653 3654 3655 3656 3657 3658 3659 3660
		if (!empty && push_items > 0) {
			if (path->slots[0] > i)
				break;
			if (path->slots[0] == i) {
				int space = btrfs_leaf_free_space(root, left);
				if (space + push_space * 2 > free_space)
					break;
			}
		}

C
Chris Mason 已提交
3661
		if (path->slots[0] == i)
3662
			push_space += data_size;
3663 3664 3665

		this_item_size = btrfs_item_size(left, item);
		if (this_item_size + sizeof(*item) + push_space > free_space)
C
Chris Mason 已提交
3666
			break;
Z
Zheng Yan 已提交
3667

C
Chris Mason 已提交
3668
		push_items++;
3669
		push_space += this_item_size + sizeof(*item);
3670 3671 3672
		if (i == 0)
			break;
		i--;
3673
	}
3674

3675 3676
	if (push_items == 0)
		goto out_unlock;
3677

J
Julia Lawall 已提交
3678
	WARN_ON(!empty && push_items == left_nritems);
3679

C
Chris Mason 已提交
3680
	/* push left to right */
3681
	right_nritems = btrfs_header_nritems(right);
3682

3683
	push_space = btrfs_item_end_nr(left, left_nritems - push_items);
C
Chris Mason 已提交
3684
	push_space -= leaf_data_end(root, left);
3685

C
Chris Mason 已提交
3686
	/* make room in the right data area */
3687 3688 3689 3690 3691 3692
	data_end = leaf_data_end(root, right);
	memmove_extent_buffer(right,
			      btrfs_leaf_data(right) + data_end - push_space,
			      btrfs_leaf_data(right) + data_end,
			      BTRFS_LEAF_DATA_SIZE(root) - data_end);

C
Chris Mason 已提交
3693
	/* copy from the left data area */
3694
	copy_extent_buffer(right, left, btrfs_leaf_data(right) +
C
Chris Mason 已提交
3695 3696 3697
		     BTRFS_LEAF_DATA_SIZE(root) - push_space,
		     btrfs_leaf_data(left) + leaf_data_end(root, left),
		     push_space);
3698 3699 3700 3701 3702

	memmove_extent_buffer(right, btrfs_item_nr_offset(push_items),
			      btrfs_item_nr_offset(0),
			      right_nritems * sizeof(struct btrfs_item));

C
Chris Mason 已提交
3703
	/* copy the items from left to right */
3704 3705 3706
	copy_extent_buffer(right, left, btrfs_item_nr_offset(0),
		   btrfs_item_nr_offset(left_nritems - push_items),
		   push_items * sizeof(struct btrfs_item));
C
Chris Mason 已提交
3707 3708

	/* update the item pointers */
3709
	right_nritems += push_items;
3710
	btrfs_set_header_nritems(right, right_nritems);
C
Chris Mason 已提交
3711
	push_space = BTRFS_LEAF_DATA_SIZE(root);
3712
	for (i = 0; i < right_nritems; i++) {
3713
		item = btrfs_item_nr(i);
3714 3715
		push_space -= btrfs_token_item_size(right, item, &token);
		btrfs_set_token_item_offset(right, item, push_space, &token);
3716 3717
	}

3718
	left_nritems -= push_items;
3719
	btrfs_set_header_nritems(left, left_nritems);
C
Chris Mason 已提交
3720

3721 3722
	if (left_nritems)
		btrfs_mark_buffer_dirty(left);
3723
	else
3724
		clean_tree_block(trans, root->fs_info, left);
3725

3726
	btrfs_mark_buffer_dirty(right);
3727

3728 3729
	btrfs_item_key(right, &disk_key, 0);
	btrfs_set_node_key(upper, &disk_key, slot + 1);
C
Chris Mason 已提交
3730
	btrfs_mark_buffer_dirty(upper);
C
Chris Mason 已提交
3731

C
Chris Mason 已提交
3732
	/* then fixup the leaf pointer in the path */
3733 3734
	if (path->slots[0] >= left_nritems) {
		path->slots[0] -= left_nritems;
3735
		if (btrfs_header_nritems(path->nodes[0]) == 0)
3736
			clean_tree_block(trans, root->fs_info, path->nodes[0]);
3737
		btrfs_tree_unlock(path->nodes[0]);
3738 3739
		free_extent_buffer(path->nodes[0]);
		path->nodes[0] = right;
C
Chris Mason 已提交
3740 3741
		path->slots[1] += 1;
	} else {
3742
		btrfs_tree_unlock(right);
3743
		free_extent_buffer(right);
C
Chris Mason 已提交
3744 3745
	}
	return 0;
3746 3747 3748 3749 3750

out_unlock:
	btrfs_tree_unlock(right);
	free_extent_buffer(right);
	return 1;
C
Chris Mason 已提交
3751
}
3752

3753 3754 3755 3756 3757 3758
/*
 * push some data in the path leaf to the right, trying to free up at
 * least data_size bytes.  returns zero if the push worked, nonzero otherwise
 *
 * returns 1 if the push failed because the other node didn't have enough
 * room, 0 if everything worked out and < 0 if there were major errors.
3759 3760 3761
 *
 * this will push starting from min_slot to the end of the leaf.  It won't
 * push any slot lower than min_slot
3762 3763
 */
static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
3764 3765 3766
			   *root, struct btrfs_path *path,
			   int min_data_size, int data_size,
			   int empty, u32 min_slot)
3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786
{
	struct extent_buffer *left = path->nodes[0];
	struct extent_buffer *right;
	struct extent_buffer *upper;
	int slot;
	int free_space;
	u32 left_nritems;
	int ret;

	if (!path->nodes[1])
		return 1;

	slot = path->slots[1];
	upper = path->nodes[1];
	if (slot >= btrfs_header_nritems(upper) - 1)
		return 1;

	btrfs_assert_tree_locked(path->nodes[1]);

	right = read_node_slot(root, upper, slot + 1);
3787 3788 3789 3790 3791
	/*
	 * slot + 1 is not valid or we fail to read the right node,
	 * no big deal, just return.
	 */
	if (IS_ERR(right))
T
Tsutomu Itoh 已提交
3792 3793
		return 1;

3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814
	btrfs_tree_lock(right);
	btrfs_set_lock_blocking(right);

	free_space = btrfs_leaf_free_space(root, right);
	if (free_space < data_size)
		goto out_unlock;

	/* cow and double check */
	ret = btrfs_cow_block(trans, root, right, upper,
			      slot + 1, &right);
	if (ret)
		goto out_unlock;

	free_space = btrfs_leaf_free_space(root, right);
	if (free_space < data_size)
		goto out_unlock;

	left_nritems = btrfs_header_nritems(left);
	if (left_nritems == 0)
		goto out_unlock;

3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827
	if (path->slots[0] == left_nritems && !empty) {
		/* Key greater than all keys in the leaf, right neighbor has
		 * enough room for it and we're not emptying our leaf to delete
		 * it, therefore use right neighbor to insert the new item and
		 * no need to touch/dirty our left leaft. */
		btrfs_tree_unlock(left);
		free_extent_buffer(left);
		path->nodes[0] = right;
		path->slots[0] = 0;
		path->slots[1]++;
		return 0;
	}

3828 3829
	return __push_leaf_right(trans, root, path, min_data_size, empty,
				right, free_space, left_nritems, min_slot);
3830 3831 3832 3833 3834 3835
out_unlock:
	btrfs_tree_unlock(right);
	free_extent_buffer(right);
	return 1;
}

C
Chris Mason 已提交
3836 3837 3838
/*
 * push some data in the path leaf to the left, trying to free up at
 * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3839 3840 3841 3842
 *
 * max_slot can put a limit on how far into the leaf we'll push items.  The
 * item at 'max_slot' won't be touched.  Use (u32)-1 to make us do all the
 * items
C
Chris Mason 已提交
3843
 */
3844 3845 3846 3847
static noinline int __push_leaf_left(struct btrfs_trans_handle *trans,
				     struct btrfs_root *root,
				     struct btrfs_path *path, int data_size,
				     int empty, struct extent_buffer *left,
3848 3849
				     int free_space, u32 right_nritems,
				     u32 max_slot)
3850
{
3851 3852
	struct btrfs_disk_key disk_key;
	struct extent_buffer *right = path->nodes[0];
3853 3854 3855
	int i;
	int push_space = 0;
	int push_items = 0;
C
Chris Mason 已提交
3856
	struct btrfs_item *item;
3857
	u32 old_left_nritems;
3858
	u32 nr;
C
Chris Mason 已提交
3859
	int ret = 0;
3860 3861
	u32 this_item_size;
	u32 old_left_item_size;
3862 3863 3864
	struct btrfs_map_token token;

	btrfs_init_map_token(&token);
3865

3866
	if (empty)
3867
		nr = min(right_nritems, max_slot);
3868
	else
3869
		nr = min(right_nritems - 1, max_slot);
3870 3871

	for (i = 0; i < nr; i++) {
3872
		item = btrfs_item_nr(i);
3873

Z
Zheng Yan 已提交
3874 3875 3876 3877 3878 3879 3880 3881 3882 3883
		if (!empty && push_items > 0) {
			if (path->slots[0] < i)
				break;
			if (path->slots[0] == i) {
				int space = btrfs_leaf_free_space(root, right);
				if (space + push_space * 2 > free_space)
					break;
			}
		}

3884
		if (path->slots[0] == i)
3885
			push_space += data_size;
3886 3887 3888

		this_item_size = btrfs_item_size(right, item);
		if (this_item_size + sizeof(*item) + push_space > free_space)
3889
			break;
3890

3891
		push_items++;
3892 3893 3894
		push_space += this_item_size + sizeof(*item);
	}

3895
	if (push_items == 0) {
3896 3897
		ret = 1;
		goto out;
3898
	}
3899
	WARN_ON(!empty && push_items == btrfs_header_nritems(right));
3900

3901
	/* push data from right to left */
3902 3903 3904 3905 3906
	copy_extent_buffer(left, right,
			   btrfs_item_nr_offset(btrfs_header_nritems(left)),
			   btrfs_item_nr_offset(0),
			   push_items * sizeof(struct btrfs_item));

C
Chris Mason 已提交
3907
	push_space = BTRFS_LEAF_DATA_SIZE(root) -
C
Chris Mason 已提交
3908
		     btrfs_item_offset_nr(right, push_items - 1);
3909 3910

	copy_extent_buffer(left, right, btrfs_leaf_data(left) +
C
Chris Mason 已提交
3911 3912
		     leaf_data_end(root, left) - push_space,
		     btrfs_leaf_data(right) +
3913
		     btrfs_item_offset_nr(right, push_items - 1),
C
Chris Mason 已提交
3914
		     push_space);
3915
	old_left_nritems = btrfs_header_nritems(left);
3916
	BUG_ON(old_left_nritems <= 0);
3917

3918
	old_left_item_size = btrfs_item_offset_nr(left, old_left_nritems - 1);
C
Chris Mason 已提交
3919
	for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
3920
		u32 ioff;
3921

3922
		item = btrfs_item_nr(i);
3923

3924 3925 3926 3927
		ioff = btrfs_token_item_offset(left, item, &token);
		btrfs_set_token_item_offset(left, item,
		      ioff - (BTRFS_LEAF_DATA_SIZE(root) - old_left_item_size),
		      &token);
3928
	}
3929
	btrfs_set_header_nritems(left, old_left_nritems + push_items);
3930 3931

	/* fixup right node */
J
Julia Lawall 已提交
3932 3933
	if (push_items > right_nritems)
		WARN(1, KERN_CRIT "push items %d nr %u\n", push_items,
C
Chris Mason 已提交
3934
		       right_nritems);
3935 3936 3937 3938 3939 3940 3941 3942 3943 3944

	if (push_items < right_nritems) {
		push_space = btrfs_item_offset_nr(right, push_items - 1) -
						  leaf_data_end(root, right);
		memmove_extent_buffer(right, btrfs_leaf_data(right) +
				      BTRFS_LEAF_DATA_SIZE(root) - push_space,
				      btrfs_leaf_data(right) +
				      leaf_data_end(root, right), push_space);

		memmove_extent_buffer(right, btrfs_item_nr_offset(0),
3945 3946 3947
			      btrfs_item_nr_offset(push_items),
			     (btrfs_header_nritems(right) - push_items) *
			     sizeof(struct btrfs_item));
3948
	}
3949 3950
	right_nritems -= push_items;
	btrfs_set_header_nritems(right, right_nritems);
C
Chris Mason 已提交
3951
	push_space = BTRFS_LEAF_DATA_SIZE(root);
3952
	for (i = 0; i < right_nritems; i++) {
3953
		item = btrfs_item_nr(i);
3954

3955 3956 3957
		push_space = push_space - btrfs_token_item_size(right,
								item, &token);
		btrfs_set_token_item_offset(right, item, push_space, &token);
3958
	}
3959

3960
	btrfs_mark_buffer_dirty(left);
3961 3962
	if (right_nritems)
		btrfs_mark_buffer_dirty(right);
3963
	else
3964
		clean_tree_block(trans, root->fs_info, right);
3965

3966
	btrfs_item_key(right, &disk_key, 0);
3967
	fixup_low_keys(root->fs_info, path, &disk_key, 1);
3968 3969 3970 3971

	/* then fixup the leaf pointer in the path */
	if (path->slots[0] < push_items) {
		path->slots[0] += old_left_nritems;
3972
		btrfs_tree_unlock(path->nodes[0]);
3973 3974
		free_extent_buffer(path->nodes[0]);
		path->nodes[0] = left;
3975 3976
		path->slots[1] -= 1;
	} else {
3977
		btrfs_tree_unlock(left);
3978
		free_extent_buffer(left);
3979 3980
		path->slots[0] -= push_items;
	}
3981
	BUG_ON(path->slots[0] < 0);
C
Chris Mason 已提交
3982
	return ret;
3983 3984 3985 3986
out:
	btrfs_tree_unlock(left);
	free_extent_buffer(left);
	return ret;
3987 3988
}

3989 3990 3991
/*
 * push some data in the path leaf to the left, trying to free up at
 * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3992 3993 3994 3995
 *
 * max_slot can put a limit on how far into the leaf we'll push items.  The
 * item at 'max_slot' won't be touched.  Use (u32)-1 to make us push all the
 * items
3996 3997
 */
static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
3998 3999
			  *root, struct btrfs_path *path, int min_data_size,
			  int data_size, int empty, u32 max_slot)
4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020
{
	struct extent_buffer *right = path->nodes[0];
	struct extent_buffer *left;
	int slot;
	int free_space;
	u32 right_nritems;
	int ret = 0;

	slot = path->slots[1];
	if (slot == 0)
		return 1;
	if (!path->nodes[1])
		return 1;

	right_nritems = btrfs_header_nritems(right);
	if (right_nritems == 0)
		return 1;

	btrfs_assert_tree_locked(path->nodes[1]);

	left = read_node_slot(root, path->nodes[1], slot - 1);
4021 4022 4023 4024 4025
	/*
	 * slot - 1 is not valid or we fail to read the left node,
	 * no big deal, just return.
	 */
	if (IS_ERR(left))
T
Tsutomu Itoh 已提交
4026 4027
		return 1;

4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041
	btrfs_tree_lock(left);
	btrfs_set_lock_blocking(left);

	free_space = btrfs_leaf_free_space(root, left);
	if (free_space < data_size) {
		ret = 1;
		goto out;
	}

	/* cow and double check */
	ret = btrfs_cow_block(trans, root, left,
			      path->nodes[1], slot - 1, &left);
	if (ret) {
		/* we hit -ENOSPC, but it isn't fatal here */
4042 4043
		if (ret == -ENOSPC)
			ret = 1;
4044 4045 4046 4047 4048 4049 4050 4051 4052
		goto out;
	}

	free_space = btrfs_leaf_free_space(root, left);
	if (free_space < data_size) {
		ret = 1;
		goto out;
	}

4053 4054 4055
	return __push_leaf_left(trans, root, path, min_data_size,
			       empty, left, free_space, right_nritems,
			       max_slot);
4056 4057 4058 4059 4060 4061 4062 4063 4064 4065
out:
	btrfs_tree_unlock(left);
	free_extent_buffer(left);
	return ret;
}

/*
 * split the path's leaf in two, making sure there is at least data_size
 * available for the resulting leaf level of the path.
 */
4066 4067 4068 4069 4070 4071
static noinline void copy_for_split(struct btrfs_trans_handle *trans,
				    struct btrfs_root *root,
				    struct btrfs_path *path,
				    struct extent_buffer *l,
				    struct extent_buffer *right,
				    int slot, int mid, int nritems)
4072 4073 4074 4075 4076
{
	int data_copy_size;
	int rt_data_off;
	int i;
	struct btrfs_disk_key disk_key;
4077 4078 4079
	struct btrfs_map_token token;

	btrfs_init_map_token(&token);
4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097

	nritems = nritems - mid;
	btrfs_set_header_nritems(right, nritems);
	data_copy_size = btrfs_item_end_nr(l, mid) - leaf_data_end(root, l);

	copy_extent_buffer(right, l, btrfs_item_nr_offset(0),
			   btrfs_item_nr_offset(mid),
			   nritems * sizeof(struct btrfs_item));

	copy_extent_buffer(right, l,
		     btrfs_leaf_data(right) + BTRFS_LEAF_DATA_SIZE(root) -
		     data_copy_size, btrfs_leaf_data(l) +
		     leaf_data_end(root, l), data_copy_size);

	rt_data_off = BTRFS_LEAF_DATA_SIZE(root) -
		      btrfs_item_end_nr(l, mid);

	for (i = 0; i < nritems; i++) {
4098
		struct btrfs_item *item = btrfs_item_nr(i);
4099 4100
		u32 ioff;

4101 4102 4103
		ioff = btrfs_token_item_offset(right, item, &token);
		btrfs_set_token_item_offset(right, item,
					    ioff + rt_data_off, &token);
4104 4105 4106 4107
	}

	btrfs_set_header_nritems(l, mid);
	btrfs_item_key(right, &disk_key, 0);
4108
	insert_ptr(trans, root, path, &disk_key, right->start,
4109
		   path->slots[1] + 1, 1);
4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128

	btrfs_mark_buffer_dirty(right);
	btrfs_mark_buffer_dirty(l);
	BUG_ON(path->slots[0] != slot);

	if (mid <= slot) {
		btrfs_tree_unlock(path->nodes[0]);
		free_extent_buffer(path->nodes[0]);
		path->nodes[0] = right;
		path->slots[0] -= mid;
		path->slots[1] += 1;
	} else {
		btrfs_tree_unlock(right);
		free_extent_buffer(right);
	}

	BUG_ON(path->slots[0] < 0);
}

4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147
/*
 * double splits happen when we need to insert a big item in the middle
 * of a leaf.  A double split can leave us with 3 mostly empty leaves:
 * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ]
 *          A                 B                 C
 *
 * We avoid this by trying to push the items on either side of our target
 * into the adjacent leaves.  If all goes well we can avoid the double split
 * completely.
 */
static noinline int push_for_double_split(struct btrfs_trans_handle *trans,
					  struct btrfs_root *root,
					  struct btrfs_path *path,
					  int data_size)
{
	int ret;
	int progress = 0;
	int slot;
	u32 nritems;
4148
	int space_needed = data_size;
4149 4150

	slot = path->slots[0];
4151 4152
	if (slot < btrfs_header_nritems(path->nodes[0]))
		space_needed -= btrfs_leaf_free_space(root, path->nodes[0]);
4153 4154 4155 4156 4157

	/*
	 * try to push all the items after our slot into the
	 * right leaf
	 */
4158
	ret = push_leaf_right(trans, root, path, 1, space_needed, 0, slot);
4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177
	if (ret < 0)
		return ret;

	if (ret == 0)
		progress++;

	nritems = btrfs_header_nritems(path->nodes[0]);
	/*
	 * our goal is to get our slot at the start or end of a leaf.  If
	 * we've done so we're done
	 */
	if (path->slots[0] == 0 || path->slots[0] == nritems)
		return 0;

	if (btrfs_leaf_free_space(root, path->nodes[0]) >= data_size)
		return 0;

	/* try to push all the items before our slot into the next leaf */
	slot = path->slots[0];
4178
	ret = push_leaf_left(trans, root, path, 1, space_needed, 0, slot);
4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189
	if (ret < 0)
		return ret;

	if (ret == 0)
		progress++;

	if (progress)
		return 0;
	return 1;
}

C
Chris Mason 已提交
4190 4191 4192
/*
 * split the path's leaf in two, making sure there is at least data_size
 * available for the resulting leaf level of the path.
C
Chris Mason 已提交
4193 4194
 *
 * returns 0 if all went well and < 0 on failure.
C
Chris Mason 已提交
4195
 */
4196 4197 4198 4199 4200
static noinline int split_leaf(struct btrfs_trans_handle *trans,
			       struct btrfs_root *root,
			       struct btrfs_key *ins_key,
			       struct btrfs_path *path, int data_size,
			       int extend)
4201
{
4202
	struct btrfs_disk_key disk_key;
4203
	struct extent_buffer *l;
4204
	u32 nritems;
4205 4206
	int mid;
	int slot;
4207
	struct extent_buffer *right;
4208
	struct btrfs_fs_info *fs_info = root->fs_info;
4209
	int ret = 0;
C
Chris Mason 已提交
4210
	int wret;
4211
	int split;
4212
	int num_doubles = 0;
4213
	int tried_avoid_double = 0;
C
Chris Mason 已提交
4214

4215 4216 4217 4218 4219 4220
	l = path->nodes[0];
	slot = path->slots[0];
	if (extend && data_size + btrfs_item_size_nr(l, slot) +
	    sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(root))
		return -EOVERFLOW;

C
Chris Mason 已提交
4221
	/* first try to make some room by pushing left and right */
4222
	if (data_size && path->nodes[1]) {
4223 4224 4225 4226 4227 4228 4229
		int space_needed = data_size;

		if (slot < btrfs_header_nritems(l))
			space_needed -= btrfs_leaf_free_space(root, l);

		wret = push_leaf_right(trans, root, path, space_needed,
				       space_needed, 0, 0);
C
Chris Mason 已提交
4230
		if (wret < 0)
C
Chris Mason 已提交
4231
			return wret;
4232
		if (wret) {
4233 4234
			wret = push_leaf_left(trans, root, path, space_needed,
					      space_needed, 0, (u32)-1);
4235 4236 4237 4238
			if (wret < 0)
				return wret;
		}
		l = path->nodes[0];
C
Chris Mason 已提交
4239

4240
		/* did the pushes work? */
4241
		if (btrfs_leaf_free_space(root, l) >= data_size)
4242
			return 0;
4243
	}
C
Chris Mason 已提交
4244

C
Chris Mason 已提交
4245
	if (!path->nodes[1]) {
4246
		ret = insert_new_root(trans, root, path, 1);
C
Chris Mason 已提交
4247 4248 4249
		if (ret)
			return ret;
	}
4250
again:
4251
	split = 1;
4252
	l = path->nodes[0];
4253
	slot = path->slots[0];
4254
	nritems = btrfs_header_nritems(l);
C
Chris Mason 已提交
4255
	mid = (nritems + 1) / 2;
4256

4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267
	if (mid <= slot) {
		if (nritems == 1 ||
		    leaf_space_used(l, mid, nritems - mid) + data_size >
			BTRFS_LEAF_DATA_SIZE(root)) {
			if (slot >= nritems) {
				split = 0;
			} else {
				mid = slot;
				if (mid != nritems &&
				    leaf_space_used(l, mid, nritems - mid) +
				    data_size > BTRFS_LEAF_DATA_SIZE(root)) {
4268 4269
					if (data_size && !tried_avoid_double)
						goto push_for_double;
4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285
					split = 2;
				}
			}
		}
	} else {
		if (leaf_space_used(l, 0, mid) + data_size >
			BTRFS_LEAF_DATA_SIZE(root)) {
			if (!extend && data_size && slot == 0) {
				split = 0;
			} else if ((extend || !data_size) && slot == 0) {
				mid = 1;
			} else {
				mid = slot;
				if (mid != nritems &&
				    leaf_space_used(l, mid, nritems - mid) +
				    data_size > BTRFS_LEAF_DATA_SIZE(root)) {
4286 4287
					if (data_size && !tried_avoid_double)
						goto push_for_double;
4288
					split = 2;
4289 4290 4291 4292 4293 4294 4295 4296 4297 4298
				}
			}
		}
	}

	if (split == 0)
		btrfs_cpu_key_to_disk(&disk_key, ins_key);
	else
		btrfs_item_key(l, &disk_key, mid);

4299 4300
	right = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
			&disk_key, 0, l->start, 0);
4301
	if (IS_ERR(right))
4302
		return PTR_ERR(right);
4303

4304
	root_add_used(root, root->nodesize);
4305 4306

	memset_extent_buffer(right, 0, 0, sizeof(struct btrfs_header));
4307
	btrfs_set_header_bytenr(right, right->start);
4308
	btrfs_set_header_generation(right, trans->transid);
4309
	btrfs_set_header_backref_rev(right, BTRFS_MIXED_BACKREF_REV);
4310 4311
	btrfs_set_header_owner(right, root->root_key.objectid);
	btrfs_set_header_level(right, 0);
4312
	write_extent_buffer(right, fs_info->fsid,
4313
			    btrfs_header_fsid(), BTRFS_FSID_SIZE);
4314

4315
	write_extent_buffer(right, fs_info->chunk_tree_uuid,
4316
			    btrfs_header_chunk_tree_uuid(right),
4317
			    BTRFS_UUID_SIZE);
4318

4319 4320 4321
	if (split == 0) {
		if (mid <= slot) {
			btrfs_set_header_nritems(right, 0);
4322
			insert_ptr(trans, root, path, &disk_key, right->start,
4323
				   path->slots[1] + 1, 1);
4324 4325 4326 4327 4328 4329 4330
			btrfs_tree_unlock(path->nodes[0]);
			free_extent_buffer(path->nodes[0]);
			path->nodes[0] = right;
			path->slots[0] = 0;
			path->slots[1] += 1;
		} else {
			btrfs_set_header_nritems(right, 0);
4331
			insert_ptr(trans, root, path, &disk_key, right->start,
4332
					  path->slots[1], 1);
4333 4334 4335 4336
			btrfs_tree_unlock(path->nodes[0]);
			free_extent_buffer(path->nodes[0]);
			path->nodes[0] = right;
			path->slots[0] = 0;
4337
			if (path->slots[1] == 0)
4338
				fixup_low_keys(fs_info, path, &disk_key, 1);
4339
		}
4340 4341
		btrfs_mark_buffer_dirty(right);
		return ret;
4342
	}
C
Chris Mason 已提交
4343

4344
	copy_for_split(trans, root, path, l, right, slot, mid, nritems);
Z
Zheng Yan 已提交
4345

4346
	if (split == 2) {
4347 4348 4349
		BUG_ON(num_doubles != 0);
		num_doubles++;
		goto again;
4350
	}
4351

4352
	return 0;
4353 4354 4355 4356 4357 4358 4359

push_for_double:
	push_for_double_split(trans, root, path, data_size);
	tried_avoid_double = 1;
	if (btrfs_leaf_free_space(root, path->nodes[0]) >= data_size)
		return 0;
	goto again;
4360 4361
}

Y
Yan, Zheng 已提交
4362 4363 4364
static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans,
					 struct btrfs_root *root,
					 struct btrfs_path *path, int ins_len)
4365
{
Y
Yan, Zheng 已提交
4366
	struct btrfs_key key;
4367
	struct extent_buffer *leaf;
Y
Yan, Zheng 已提交
4368 4369 4370 4371
	struct btrfs_file_extent_item *fi;
	u64 extent_len = 0;
	u32 item_size;
	int ret;
4372 4373

	leaf = path->nodes[0];
Y
Yan, Zheng 已提交
4374 4375 4376 4377 4378 4379 4380
	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);

	BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY &&
	       key.type != BTRFS_EXTENT_CSUM_KEY);

	if (btrfs_leaf_free_space(root, leaf) >= ins_len)
		return 0;
4381 4382

	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
Y
Yan, Zheng 已提交
4383 4384 4385 4386 4387
	if (key.type == BTRFS_EXTENT_DATA_KEY) {
		fi = btrfs_item_ptr(leaf, path->slots[0],
				    struct btrfs_file_extent_item);
		extent_len = btrfs_file_extent_num_bytes(leaf, fi);
	}
4388
	btrfs_release_path(path);
4389 4390

	path->keep_locks = 1;
Y
Yan, Zheng 已提交
4391 4392
	path->search_for_split = 1;
	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
4393
	path->search_for_split = 0;
4394 4395
	if (ret > 0)
		ret = -EAGAIN;
Y
Yan, Zheng 已提交
4396 4397
	if (ret < 0)
		goto err;
4398

Y
Yan, Zheng 已提交
4399 4400
	ret = -EAGAIN;
	leaf = path->nodes[0];
4401 4402
	/* if our item isn't there, return now */
	if (item_size != btrfs_item_size_nr(leaf, path->slots[0]))
Y
Yan, Zheng 已提交
4403 4404
		goto err;

4405 4406 4407 4408
	/* the leaf has  changed, it now has room.  return now */
	if (btrfs_leaf_free_space(root, path->nodes[0]) >= ins_len)
		goto err;

Y
Yan, Zheng 已提交
4409 4410 4411 4412 4413
	if (key.type == BTRFS_EXTENT_DATA_KEY) {
		fi = btrfs_item_ptr(leaf, path->slots[0],
				    struct btrfs_file_extent_item);
		if (extent_len != btrfs_file_extent_num_bytes(leaf, fi))
			goto err;
4414 4415
	}

4416
	btrfs_set_path_blocking(path);
Y
Yan, Zheng 已提交
4417
	ret = split_leaf(trans, root, &key, path, ins_len, 1);
4418 4419
	if (ret)
		goto err;
4420

Y
Yan, Zheng 已提交
4421
	path->keep_locks = 0;
4422
	btrfs_unlock_up_safe(path, 1);
Y
Yan, Zheng 已提交
4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444
	return 0;
err:
	path->keep_locks = 0;
	return ret;
}

static noinline int split_item(struct btrfs_trans_handle *trans,
			       struct btrfs_root *root,
			       struct btrfs_path *path,
			       struct btrfs_key *new_key,
			       unsigned long split_offset)
{
	struct extent_buffer *leaf;
	struct btrfs_item *item;
	struct btrfs_item *new_item;
	int slot;
	char *buf;
	u32 nritems;
	u32 item_size;
	u32 orig_offset;
	struct btrfs_disk_key disk_key;

4445 4446 4447
	leaf = path->nodes[0];
	BUG_ON(btrfs_leaf_free_space(root, leaf) < sizeof(struct btrfs_item));

4448 4449
	btrfs_set_path_blocking(path);

4450
	item = btrfs_item_nr(path->slots[0]);
4451 4452 4453 4454
	orig_offset = btrfs_item_offset(leaf, item);
	item_size = btrfs_item_size(leaf, item);

	buf = kmalloc(item_size, GFP_NOFS);
Y
Yan, Zheng 已提交
4455 4456 4457
	if (!buf)
		return -ENOMEM;

4458 4459 4460
	read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf,
			    path->slots[0]), item_size);

Y
Yan, Zheng 已提交
4461
	slot = path->slots[0] + 1;
4462 4463 4464 4465
	nritems = btrfs_header_nritems(leaf);
	if (slot != nritems) {
		/* shift the items */
		memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1),
Y
Yan, Zheng 已提交
4466 4467
				btrfs_item_nr_offset(slot),
				(nritems - slot) * sizeof(struct btrfs_item));
4468 4469 4470 4471 4472
	}

	btrfs_cpu_key_to_disk(&disk_key, new_key);
	btrfs_set_item_key(leaf, &disk_key, slot);

4473
	new_item = btrfs_item_nr(slot);
4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494

	btrfs_set_item_offset(leaf, new_item, orig_offset);
	btrfs_set_item_size(leaf, new_item, item_size - split_offset);

	btrfs_set_item_offset(leaf, item,
			      orig_offset + item_size - split_offset);
	btrfs_set_item_size(leaf, item, split_offset);

	btrfs_set_header_nritems(leaf, nritems + 1);

	/* write the data for the start of the original item */
	write_extent_buffer(leaf, buf,
			    btrfs_item_ptr_offset(leaf, path->slots[0]),
			    split_offset);

	/* write the data for the new item */
	write_extent_buffer(leaf, buf + split_offset,
			    btrfs_item_ptr_offset(leaf, slot),
			    item_size - split_offset);
	btrfs_mark_buffer_dirty(leaf);

Y
Yan, Zheng 已提交
4495
	BUG_ON(btrfs_leaf_free_space(root, leaf) < 0);
4496
	kfree(buf);
Y
Yan, Zheng 已提交
4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527
	return 0;
}

/*
 * This function splits a single item into two items,
 * giving 'new_key' to the new item and splitting the
 * old one at split_offset (from the start of the item).
 *
 * The path may be released by this operation.  After
 * the split, the path is pointing to the old item.  The
 * new item is going to be in the same node as the old one.
 *
 * Note, the item being split must be smaller enough to live alone on
 * a tree block with room for one extra struct btrfs_item
 *
 * This allows us to split the item in place, keeping a lock on the
 * leaf the entire time.
 */
int btrfs_split_item(struct btrfs_trans_handle *trans,
		     struct btrfs_root *root,
		     struct btrfs_path *path,
		     struct btrfs_key *new_key,
		     unsigned long split_offset)
{
	int ret;
	ret = setup_leaf_for_split(trans, root, path,
				   sizeof(struct btrfs_item));
	if (ret)
		return ret;

	ret = split_item(trans, root, path, new_key, split_offset);
4528 4529 4530
	return ret;
}

Y
Yan, Zheng 已提交
4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555
/*
 * This function duplicate a item, giving 'new_key' to the new item.
 * It guarantees both items live in the same tree leaf and the new item
 * is contiguous with the original item.
 *
 * This allows us to split file extent in place, keeping a lock on the
 * leaf the entire time.
 */
int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
			 struct btrfs_root *root,
			 struct btrfs_path *path,
			 struct btrfs_key *new_key)
{
	struct extent_buffer *leaf;
	int ret;
	u32 item_size;

	leaf = path->nodes[0];
	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
	ret = setup_leaf_for_split(trans, root, path,
				   item_size + sizeof(struct btrfs_item));
	if (ret)
		return ret;

	path->slots[0]++;
4556
	setup_items_for_insert(root, path, new_key, &item_size,
4557 4558
			       item_size, item_size +
			       sizeof(struct btrfs_item), 1);
Y
Yan, Zheng 已提交
4559 4560 4561 4562 4563 4564 4565 4566
	leaf = path->nodes[0];
	memcpy_extent_buffer(leaf,
			     btrfs_item_ptr_offset(leaf, path->slots[0]),
			     btrfs_item_ptr_offset(leaf, path->slots[0] - 1),
			     item_size);
	return 0;
}

C
Chris Mason 已提交
4567 4568 4569 4570 4571 4572
/*
 * make the item pointed to by the path smaller.  new_size indicates
 * how small to make it, and from_end tells us if we just chop bytes
 * off the end of the item or if we shift the item to chop bytes off
 * the front.
 */
4573
void btrfs_truncate_item(struct btrfs_root *root, struct btrfs_path *path,
4574
			 u32 new_size, int from_end)
C
Chris Mason 已提交
4575 4576
{
	int slot;
4577 4578
	struct extent_buffer *leaf;
	struct btrfs_item *item;
C
Chris Mason 已提交
4579 4580 4581 4582 4583 4584
	u32 nritems;
	unsigned int data_end;
	unsigned int old_data_start;
	unsigned int old_size;
	unsigned int size_diff;
	int i;
4585 4586 4587
	struct btrfs_map_token token;

	btrfs_init_map_token(&token);
C
Chris Mason 已提交
4588

4589
	leaf = path->nodes[0];
4590 4591 4592 4593
	slot = path->slots[0];

	old_size = btrfs_item_size_nr(leaf, slot);
	if (old_size == new_size)
4594
		return;
C
Chris Mason 已提交
4595

4596
	nritems = btrfs_header_nritems(leaf);
C
Chris Mason 已提交
4597 4598
	data_end = leaf_data_end(root, leaf);

4599
	old_data_start = btrfs_item_offset_nr(leaf, slot);
4600

C
Chris Mason 已提交
4601 4602 4603 4604 4605 4606 4607 4608 4609 4610
	size_diff = old_size - new_size;

	BUG_ON(slot < 0);
	BUG_ON(slot >= nritems);

	/*
	 * item0..itemN ... dataN.offset..dataN.size .. data0.size
	 */
	/* first correct the data pointers */
	for (i = slot; i < nritems; i++) {
4611
		u32 ioff;
4612
		item = btrfs_item_nr(i);
4613

4614 4615 4616
		ioff = btrfs_token_item_offset(leaf, item, &token);
		btrfs_set_token_item_offset(leaf, item,
					    ioff + size_diff, &token);
C
Chris Mason 已提交
4617
	}
4618

C
Chris Mason 已提交
4619
	/* shift the data */
4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642
	if (from_end) {
		memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
			      data_end + size_diff, btrfs_leaf_data(leaf) +
			      data_end, old_data_start + new_size - data_end);
	} else {
		struct btrfs_disk_key disk_key;
		u64 offset;

		btrfs_item_key(leaf, &disk_key, slot);

		if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) {
			unsigned long ptr;
			struct btrfs_file_extent_item *fi;

			fi = btrfs_item_ptr(leaf, slot,
					    struct btrfs_file_extent_item);
			fi = (struct btrfs_file_extent_item *)(
			     (unsigned long)fi - size_diff);

			if (btrfs_file_extent_type(leaf, fi) ==
			    BTRFS_FILE_EXTENT_INLINE) {
				ptr = btrfs_item_ptr_offset(leaf, slot);
				memmove_extent_buffer(leaf, ptr,
C
Chris Mason 已提交
4643
				      (unsigned long)fi,
4644
				      BTRFS_FILE_EXTENT_INLINE_DATA_START);
4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655
			}
		}

		memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
			      data_end + size_diff, btrfs_leaf_data(leaf) +
			      data_end, old_data_start - data_end);

		offset = btrfs_disk_key_offset(&disk_key);
		btrfs_set_disk_key_offset(&disk_key, offset + size_diff);
		btrfs_set_item_key(leaf, &disk_key, slot);
		if (slot == 0)
4656
			fixup_low_keys(root->fs_info, path, &disk_key, 1);
4657
	}
4658

4659
	item = btrfs_item_nr(slot);
4660 4661
	btrfs_set_item_size(leaf, item, new_size);
	btrfs_mark_buffer_dirty(leaf);
C
Chris Mason 已提交
4662

4663 4664
	if (btrfs_leaf_free_space(root, leaf) < 0) {
		btrfs_print_leaf(root, leaf);
C
Chris Mason 已提交
4665
		BUG();
4666
	}
C
Chris Mason 已提交
4667 4668
}

C
Chris Mason 已提交
4669
/*
S
Stefan Behrens 已提交
4670
 * make the item pointed to by the path bigger, data_size is the added size.
C
Chris Mason 已提交
4671
 */
4672
void btrfs_extend_item(struct btrfs_root *root, struct btrfs_path *path,
4673
		       u32 data_size)
4674 4675
{
	int slot;
4676 4677
	struct extent_buffer *leaf;
	struct btrfs_item *item;
4678 4679 4680 4681 4682
	u32 nritems;
	unsigned int data_end;
	unsigned int old_data;
	unsigned int old_size;
	int i;
4683 4684 4685
	struct btrfs_map_token token;

	btrfs_init_map_token(&token);
4686

4687
	leaf = path->nodes[0];
4688

4689
	nritems = btrfs_header_nritems(leaf);
4690 4691
	data_end = leaf_data_end(root, leaf);

4692 4693
	if (btrfs_leaf_free_space(root, leaf) < data_size) {
		btrfs_print_leaf(root, leaf);
4694
		BUG();
4695
	}
4696
	slot = path->slots[0];
4697
	old_data = btrfs_item_end_nr(leaf, slot);
4698 4699

	BUG_ON(slot < 0);
4700 4701
	if (slot >= nritems) {
		btrfs_print_leaf(root, leaf);
4702
		btrfs_crit(root->fs_info, "slot %d too large, nritems %d",
C
Chris Mason 已提交
4703
		       slot, nritems);
4704 4705
		BUG_ON(1);
	}
4706 4707 4708 4709 4710 4711

	/*
	 * item0..itemN ... dataN.offset..dataN.size .. data0.size
	 */
	/* first correct the data pointers */
	for (i = slot; i < nritems; i++) {
4712
		u32 ioff;
4713
		item = btrfs_item_nr(i);
4714

4715 4716 4717
		ioff = btrfs_token_item_offset(leaf, item, &token);
		btrfs_set_token_item_offset(leaf, item,
					    ioff - data_size, &token);
4718
	}
4719

4720
	/* shift the data */
4721
	memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4722 4723
		      data_end - data_size, btrfs_leaf_data(leaf) +
		      data_end, old_data - data_end);
4724

4725
	data_end = old_data;
4726
	old_size = btrfs_item_size_nr(leaf, slot);
4727
	item = btrfs_item_nr(slot);
4728 4729
	btrfs_set_item_size(leaf, item, old_size + data_size);
	btrfs_mark_buffer_dirty(leaf);
4730

4731 4732
	if (btrfs_leaf_free_space(root, leaf) < 0) {
		btrfs_print_leaf(root, leaf);
4733
		BUG();
4734
	}
4735 4736
}

C
Chris Mason 已提交
4737
/*
4738 4739 4740
 * this is a helper for btrfs_insert_empty_items, the main goal here is
 * to save stack depth by doing the bulk of the work in a function
 * that doesn't call btrfs_search_slot
C
Chris Mason 已提交
4741
 */
4742
void setup_items_for_insert(struct btrfs_root *root, struct btrfs_path *path,
4743 4744
			    struct btrfs_key *cpu_key, u32 *data_size,
			    u32 total_data, u32 total_size, int nr)
4745
{
4746
	struct btrfs_item *item;
4747
	int i;
4748
	u32 nritems;
4749
	unsigned int data_end;
C
Chris Mason 已提交
4750
	struct btrfs_disk_key disk_key;
4751 4752
	struct extent_buffer *leaf;
	int slot;
4753 4754
	struct btrfs_map_token token;

4755 4756
	if (path->slots[0] == 0) {
		btrfs_cpu_key_to_disk(&disk_key, cpu_key);
4757
		fixup_low_keys(root->fs_info, path, &disk_key, 1);
4758 4759 4760
	}
	btrfs_unlock_up_safe(path, 1);

4761
	btrfs_init_map_token(&token);
C
Chris Mason 已提交
4762

4763
	leaf = path->nodes[0];
4764
	slot = path->slots[0];
C
Chris Mason 已提交
4765

4766
	nritems = btrfs_header_nritems(leaf);
C
Chris Mason 已提交
4767
	data_end = leaf_data_end(root, leaf);
4768

4769
	if (btrfs_leaf_free_space(root, leaf) < total_size) {
4770
		btrfs_print_leaf(root, leaf);
J
Jeff Mahoney 已提交
4771 4772 4773
		btrfs_crit(root->fs_info,
			   "not enough freespace need %u have %d",
			   total_size, btrfs_leaf_free_space(root, leaf));
4774
		BUG();
4775
	}
4776

4777
	if (slot != nritems) {
4778
		unsigned int old_data = btrfs_item_end_nr(leaf, slot);
4779

4780 4781
		if (old_data < data_end) {
			btrfs_print_leaf(root, leaf);
J
Jeff Mahoney 已提交
4782 4783 4784
			btrfs_crit(root->fs_info,
				   "slot %d old_data %d data_end %d",
				   slot, old_data, data_end);
4785 4786
			BUG_ON(1);
		}
4787 4788 4789 4790
		/*
		 * item0..itemN ... dataN.offset..dataN.size .. data0.size
		 */
		/* first correct the data pointers */
C
Chris Mason 已提交
4791
		for (i = slot; i < nritems; i++) {
4792
			u32 ioff;
4793

4794
			item = btrfs_item_nr(i);
4795 4796 4797
			ioff = btrfs_token_item_offset(leaf, item, &token);
			btrfs_set_token_item_offset(leaf, item,
						    ioff - total_data, &token);
C
Chris Mason 已提交
4798
		}
4799
		/* shift the items */
4800
		memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
4801
			      btrfs_item_nr_offset(slot),
C
Chris Mason 已提交
4802
			      (nritems - slot) * sizeof(struct btrfs_item));
4803 4804

		/* shift the data */
4805
		memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4806
			      data_end - total_data, btrfs_leaf_data(leaf) +
C
Chris Mason 已提交
4807
			      data_end, old_data - data_end);
4808 4809
		data_end = old_data;
	}
4810

4811
	/* setup the item for the new data */
4812 4813 4814
	for (i = 0; i < nr; i++) {
		btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
		btrfs_set_item_key(leaf, &disk_key, slot + i);
4815
		item = btrfs_item_nr(slot + i);
4816 4817
		btrfs_set_token_item_offset(leaf, item,
					    data_end - data_size[i], &token);
4818
		data_end -= data_size[i];
4819
		btrfs_set_token_item_size(leaf, item, data_size[i], &token);
4820
	}
4821

4822
	btrfs_set_header_nritems(leaf, nritems + nr);
4823
	btrfs_mark_buffer_dirty(leaf);
C
Chris Mason 已提交
4824

4825 4826
	if (btrfs_leaf_free_space(root, leaf) < 0) {
		btrfs_print_leaf(root, leaf);
4827
		BUG();
4828
	}
4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854
}

/*
 * Given a key and some data, insert items into the tree.
 * This does all the path init required, making room in the tree if needed.
 */
int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
			    struct btrfs_root *root,
			    struct btrfs_path *path,
			    struct btrfs_key *cpu_key, u32 *data_size,
			    int nr)
{
	int ret = 0;
	int slot;
	int i;
	u32 total_size = 0;
	u32 total_data = 0;

	for (i = 0; i < nr; i++)
		total_data += data_size[i];

	total_size = total_data + (nr * sizeof(struct btrfs_item));
	ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
	if (ret == 0)
		return -EEXIST;
	if (ret < 0)
4855
		return ret;
4856 4857 4858 4859

	slot = path->slots[0];
	BUG_ON(slot < 0);

4860
	setup_items_for_insert(root, path, cpu_key, data_size,
4861
			       total_data, total_size, nr);
4862
	return 0;
4863 4864 4865 4866 4867 4868
}

/*
 * Given a key and some data, insert an item into the tree.
 * This does all the path init required, making room in the tree if needed.
 */
4869 4870 4871
int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root
		      *root, struct btrfs_key *cpu_key, void *data, u32
		      data_size)
4872 4873
{
	int ret = 0;
C
Chris Mason 已提交
4874
	struct btrfs_path *path;
4875 4876
	struct extent_buffer *leaf;
	unsigned long ptr;
4877

C
Chris Mason 已提交
4878
	path = btrfs_alloc_path();
T
Tsutomu Itoh 已提交
4879 4880
	if (!path)
		return -ENOMEM;
C
Chris Mason 已提交
4881
	ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
4882
	if (!ret) {
4883 4884 4885 4886
		leaf = path->nodes[0];
		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
		write_extent_buffer(leaf, data, ptr, data_size);
		btrfs_mark_buffer_dirty(leaf);
4887
	}
C
Chris Mason 已提交
4888
	btrfs_free_path(path);
C
Chris Mason 已提交
4889
	return ret;
4890 4891
}

C
Chris Mason 已提交
4892
/*
C
Chris Mason 已提交
4893
 * delete the pointer from a given node.
C
Chris Mason 已提交
4894
 *
C
Chris Mason 已提交
4895 4896
 * the tree should have been previously balanced so the deletion does not
 * empty a node.
C
Chris Mason 已提交
4897
 */
4898 4899
static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
		    int level, int slot)
4900
{
4901
	struct extent_buffer *parent = path->nodes[level];
4902
	u32 nritems;
4903
	int ret;
4904

4905
	nritems = btrfs_header_nritems(parent);
C
Chris Mason 已提交
4906
	if (slot != nritems - 1) {
4907
		if (level)
4908 4909
			tree_mod_log_eb_move(root->fs_info, parent, slot,
					     slot + 1, nritems - slot - 1);
4910 4911 4912
		memmove_extent_buffer(parent,
			      btrfs_node_key_ptr_offset(slot),
			      btrfs_node_key_ptr_offset(slot + 1),
C
Chris Mason 已提交
4913 4914
			      sizeof(struct btrfs_key_ptr) *
			      (nritems - slot - 1));
4915 4916
	} else if (level) {
		ret = tree_mod_log_insert_key(root->fs_info, parent, slot,
4917
					      MOD_LOG_KEY_REMOVE, GFP_NOFS);
4918
		BUG_ON(ret < 0);
4919
	}
4920

4921
	nritems--;
4922
	btrfs_set_header_nritems(parent, nritems);
4923
	if (nritems == 0 && parent == root->node) {
4924
		BUG_ON(btrfs_header_level(root->node) != 1);
4925
		/* just turn the root into a leaf and break */
4926
		btrfs_set_header_level(root->node, 0);
4927
	} else if (slot == 0) {
4928 4929 4930
		struct btrfs_disk_key disk_key;

		btrfs_node_key(parent, &disk_key, 0);
4931
		fixup_low_keys(root->fs_info, path, &disk_key, level + 1);
4932
	}
C
Chris Mason 已提交
4933
	btrfs_mark_buffer_dirty(parent);
4934 4935
}

4936 4937
/*
 * a helper function to delete the leaf pointed to by path->slots[1] and
4938
 * path->nodes[1].
4939 4940 4941 4942 4943 4944 4945
 *
 * This deletes the pointer in path->nodes[1] and frees the leaf
 * block extent.  zero is returned if it all worked out, < 0 otherwise.
 *
 * The path must have already been setup for deleting the leaf, including
 * all the proper balancing.  path->nodes[1] must be locked.
 */
4946 4947 4948 4949
static noinline void btrfs_del_leaf(struct btrfs_trans_handle *trans,
				    struct btrfs_root *root,
				    struct btrfs_path *path,
				    struct extent_buffer *leaf)
4950
{
4951
	WARN_ON(btrfs_header_generation(leaf) != trans->transid);
4952
	del_ptr(root, path, 1, path->slots[1]);
4953

4954 4955 4956 4957 4958 4959
	/*
	 * btrfs_free_extent is expensive, we want to make sure we
	 * aren't holding any locks when we call it
	 */
	btrfs_unlock_up_safe(path, 0);

4960 4961
	root_sub_used(root, leaf->len);

4962
	extent_buffer_get(leaf);
4963
	btrfs_free_tree_block(trans, root, leaf, 0, 1);
4964
	free_extent_buffer_stale(leaf);
4965
}
C
Chris Mason 已提交
4966 4967 4968 4969
/*
 * delete the item at the leaf level in path.  If that empties
 * the leaf, remove it from the tree
 */
4970 4971
int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
		    struct btrfs_path *path, int slot, int nr)
4972
{
4973 4974
	struct extent_buffer *leaf;
	struct btrfs_item *item;
4975 4976
	u32 last_off;
	u32 dsize = 0;
C
Chris Mason 已提交
4977 4978
	int ret = 0;
	int wret;
4979
	int i;
4980
	u32 nritems;
4981 4982 4983
	struct btrfs_map_token token;

	btrfs_init_map_token(&token);
4984

4985
	leaf = path->nodes[0];
4986 4987 4988 4989 4990
	last_off = btrfs_item_offset_nr(leaf, slot + nr - 1);

	for (i = 0; i < nr; i++)
		dsize += btrfs_item_size_nr(leaf, slot + i);

4991
	nritems = btrfs_header_nritems(leaf);
4992

4993
	if (slot + nr != nritems) {
C
Chris Mason 已提交
4994
		int data_end = leaf_data_end(root, leaf);
4995 4996

		memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
C
Chris Mason 已提交
4997 4998
			      data_end + dsize,
			      btrfs_leaf_data(leaf) + data_end,
4999
			      last_off - data_end);
5000

5001
		for (i = slot + nr; i < nritems; i++) {
5002
			u32 ioff;
5003

5004
			item = btrfs_item_nr(i);
5005 5006 5007
			ioff = btrfs_token_item_offset(leaf, item, &token);
			btrfs_set_token_item_offset(leaf, item,
						    ioff + dsize, &token);
C
Chris Mason 已提交
5008
		}
5009

5010
		memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot),
5011
			      btrfs_item_nr_offset(slot + nr),
C
Chris Mason 已提交
5012
			      sizeof(struct btrfs_item) *
5013
			      (nritems - slot - nr));
5014
	}
5015 5016
	btrfs_set_header_nritems(leaf, nritems - nr);
	nritems -= nr;
5017

C
Chris Mason 已提交
5018
	/* delete the leaf if we've emptied it */
5019
	if (nritems == 0) {
5020 5021
		if (leaf == root->node) {
			btrfs_set_header_level(leaf, 0);
5022
		} else {
5023
			btrfs_set_path_blocking(path);
5024
			clean_tree_block(trans, root->fs_info, leaf);
5025
			btrfs_del_leaf(trans, root, path, leaf);
5026
		}
5027
	} else {
5028
		int used = leaf_space_used(leaf, 0, nritems);
C
Chris Mason 已提交
5029
		if (slot == 0) {
5030 5031 5032
			struct btrfs_disk_key disk_key;

			btrfs_item_key(leaf, &disk_key, 0);
5033
			fixup_low_keys(root->fs_info, path, &disk_key, 1);
C
Chris Mason 已提交
5034 5035
		}

C
Chris Mason 已提交
5036
		/* delete the leaf if it is mostly empty */
5037
		if (used < BTRFS_LEAF_DATA_SIZE(root) / 3) {
5038 5039 5040 5041
			/* push_leaf_left fixes the path.
			 * make sure the path still points to our leaf
			 * for possible call to del_ptr below
			 */
5042
			slot = path->slots[1];
5043 5044
			extent_buffer_get(leaf);

5045
			btrfs_set_path_blocking(path);
5046 5047
			wret = push_leaf_left(trans, root, path, 1, 1,
					      1, (u32)-1);
5048
			if (wret < 0 && wret != -ENOSPC)
C
Chris Mason 已提交
5049
				ret = wret;
5050 5051 5052

			if (path->nodes[0] == leaf &&
			    btrfs_header_nritems(leaf)) {
5053 5054
				wret = push_leaf_right(trans, root, path, 1,
						       1, 1, 0);
5055
				if (wret < 0 && wret != -ENOSPC)
C
Chris Mason 已提交
5056 5057
					ret = wret;
			}
5058 5059

			if (btrfs_header_nritems(leaf) == 0) {
5060
				path->slots[1] = slot;
5061
				btrfs_del_leaf(trans, root, path, leaf);
5062
				free_extent_buffer(leaf);
5063
				ret = 0;
C
Chris Mason 已提交
5064
			} else {
5065 5066 5067 5068 5069 5070 5071
				/* if we're still in the path, make sure
				 * we're dirty.  Otherwise, one of the
				 * push_leaf functions must have already
				 * dirtied this buffer
				 */
				if (path->nodes[0] == leaf)
					btrfs_mark_buffer_dirty(leaf);
5072
				free_extent_buffer(leaf);
5073
			}
5074
		} else {
5075
			btrfs_mark_buffer_dirty(leaf);
5076 5077
		}
	}
C
Chris Mason 已提交
5078
	return ret;
5079 5080
}

5081
/*
5082
 * search the tree again to find a leaf with lesser keys
5083 5084
 * returns 0 if it found something or 1 if there are no lesser leaves.
 * returns < 0 on io errors.
C
Chris Mason 已提交
5085 5086 5087
 *
 * This may release the path, and so you may lose any locks held at the
 * time you call it.
5088
 */
5089
int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path)
5090
{
5091 5092 5093
	struct btrfs_key key;
	struct btrfs_disk_key found_key;
	int ret;
5094

5095
	btrfs_item_key_to_cpu(path->nodes[0], &key, 0);
5096

5097
	if (key.offset > 0) {
5098
		key.offset--;
5099
	} else if (key.type > 0) {
5100
		key.type--;
5101 5102
		key.offset = (u64)-1;
	} else if (key.objectid > 0) {
5103
		key.objectid--;
5104 5105 5106
		key.type = (u8)-1;
		key.offset = (u64)-1;
	} else {
5107
		return 1;
5108
	}
5109

5110
	btrfs_release_path(path);
5111 5112 5113 5114 5115
	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
	if (ret < 0)
		return ret;
	btrfs_item_key(path->nodes[0], &found_key, 0);
	ret = comp_keys(&found_key, &key);
5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126
	/*
	 * We might have had an item with the previous key in the tree right
	 * before we released our path. And after we released our path, that
	 * item might have been pushed to the first slot (0) of the leaf we
	 * were holding due to a tree balance. Alternatively, an item with the
	 * previous key can exist as the only element of a leaf (big fat item).
	 * Therefore account for these 2 cases, so that our callers (like
	 * btrfs_previous_item) don't miss an existing item with a key matching
	 * the previous key we computed above.
	 */
	if (ret <= 0)
5127 5128
		return 0;
	return 1;
5129 5130
}

5131 5132
/*
 * A helper function to walk down the tree starting at min_key, and looking
5133 5134
 * for nodes or leaves that are have a minimum transaction id.
 * This is used by the btree defrag code, and tree logging
5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145
 *
 * This does not cow, but it does stuff the starting key it finds back
 * into min_key, so you can call btrfs_search_slot with cow=1 on the
 * key and get a writable path.
 *
 * This does lock as it descends, and path->keep_locks should be set
 * to 1 by the caller.
 *
 * This honors path->lowest_level to prevent descent past a given level
 * of the tree.
 *
C
Chris Mason 已提交
5146 5147 5148 5149
 * min_trans indicates the oldest transaction that you are interested
 * in walking through.  Any nodes or leaves older than min_trans are
 * skipped over (without reading them).
 *
5150 5151 5152 5153
 * returns zero if something useful was found, < 0 on error and 1 if there
 * was nothing in the tree that matched the search criteria.
 */
int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
5154
			 struct btrfs_path *path,
5155 5156 5157 5158 5159
			 u64 min_trans)
{
	struct extent_buffer *cur;
	struct btrfs_key found_key;
	int slot;
5160
	int sret;
5161 5162 5163
	u32 nritems;
	int level;
	int ret = 1;
5164
	int keep_locks = path->keep_locks;
5165

5166
	path->keep_locks = 1;
5167
again:
5168
	cur = btrfs_read_lock_root_node(root);
5169
	level = btrfs_header_level(cur);
5170
	WARN_ON(path->nodes[level]);
5171
	path->nodes[level] = cur;
5172
	path->locks[level] = BTRFS_READ_LOCK;
5173 5174 5175 5176 5177

	if (btrfs_header_generation(cur) < min_trans) {
		ret = 1;
		goto out;
	}
C
Chris Mason 已提交
5178
	while (1) {
5179 5180
		nritems = btrfs_header_nritems(cur);
		level = btrfs_header_level(cur);
5181
		sret = bin_search(cur, min_key, level, &slot);
5182

5183 5184
		/* at the lowest level, we're done, setup the path and exit */
		if (level == path->lowest_level) {
5185 5186
			if (slot >= nritems)
				goto find_next_key;
5187 5188 5189 5190 5191
			ret = 0;
			path->slots[level] = slot;
			btrfs_item_key_to_cpu(cur, &found_key, slot);
			goto out;
		}
5192 5193
		if (sret && slot > 0)
			slot--;
5194
		/*
5195 5196
		 * check this node pointer against the min_trans parameters.
		 * If it is too old, old, skip to the next one.
5197
		 */
C
Chris Mason 已提交
5198
		while (slot < nritems) {
5199
			u64 gen;
5200

5201 5202 5203 5204 5205
			gen = btrfs_node_ptr_generation(cur, slot);
			if (gen < min_trans) {
				slot++;
				continue;
			}
5206
			break;
5207
		}
5208
find_next_key:
5209 5210 5211 5212 5213
		/*
		 * we didn't find a candidate key in this node, walk forward
		 * and find another one
		 */
		if (slot >= nritems) {
5214
			path->slots[level] = slot;
5215
			btrfs_set_path_blocking(path);
5216
			sret = btrfs_find_next_key(root, path, min_key, level,
5217
						  min_trans);
5218
			if (sret == 0) {
5219
				btrfs_release_path(path);
5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231
				goto again;
			} else {
				goto out;
			}
		}
		/* save our key for returning back */
		btrfs_node_key_to_cpu(cur, &found_key, slot);
		path->slots[level] = slot;
		if (level == path->lowest_level) {
			ret = 0;
			goto out;
		}
5232
		btrfs_set_path_blocking(path);
5233
		cur = read_node_slot(root, cur, slot);
5234 5235 5236 5237
		if (IS_ERR(cur)) {
			ret = PTR_ERR(cur);
			goto out;
		}
5238

5239
		btrfs_tree_read_lock(cur);
5240

5241
		path->locks[level - 1] = BTRFS_READ_LOCK;
5242
		path->nodes[level - 1] = cur;
5243
		unlock_up(path, level, 1, 0, NULL);
5244
		btrfs_clear_path_blocking(path, NULL, 0);
5245 5246
	}
out:
5247 5248 5249 5250
	path->keep_locks = keep_locks;
	if (ret == 0) {
		btrfs_unlock_up_safe(path, path->lowest_level + 1);
		btrfs_set_path_blocking(path);
5251
		memcpy(min_key, &found_key, sizeof(found_key));
5252
	}
5253 5254 5255
	return ret;
}

5256
static int tree_move_down(struct btrfs_root *root,
5257 5258 5259
			   struct btrfs_path *path,
			   int *level, int root_level)
{
5260 5261
	struct extent_buffer *eb;

5262
	BUG_ON(*level == 0);
5263 5264 5265 5266 5267
	eb = read_node_slot(root, path->nodes[*level], path->slots[*level]);
	if (IS_ERR(eb))
		return PTR_ERR(eb);

	path->nodes[*level - 1] = eb;
5268 5269
	path->slots[*level - 1] = 0;
	(*level)--;
5270
	return 0;
5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282
}

static int tree_move_next_or_upnext(struct btrfs_root *root,
				    struct btrfs_path *path,
				    int *level, int root_level)
{
	int ret = 0;
	int nritems;
	nritems = btrfs_header_nritems(path->nodes[*level]);

	path->slots[*level]++;

5283
	while (path->slots[*level] >= nritems) {
5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314
		if (*level == root_level)
			return -1;

		/* move upnext */
		path->slots[*level] = 0;
		free_extent_buffer(path->nodes[*level]);
		path->nodes[*level] = NULL;
		(*level)++;
		path->slots[*level]++;

		nritems = btrfs_header_nritems(path->nodes[*level]);
		ret = 1;
	}
	return ret;
}

/*
 * Returns 1 if it had to move up and next. 0 is returned if it moved only next
 * or down.
 */
static int tree_advance(struct btrfs_root *root,
			struct btrfs_path *path,
			int *level, int root_level,
			int allow_down,
			struct btrfs_key *key)
{
	int ret;

	if (*level == 0 || !allow_down) {
		ret = tree_move_next_or_upnext(root, path, level, root_level);
	} else {
5315
		ret = tree_move_down(root, path, level, root_level);
5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390
	}
	if (ret >= 0) {
		if (*level == 0)
			btrfs_item_key_to_cpu(path->nodes[*level], key,
					path->slots[*level]);
		else
			btrfs_node_key_to_cpu(path->nodes[*level], key,
					path->slots[*level]);
	}
	return ret;
}

static int tree_compare_item(struct btrfs_root *left_root,
			     struct btrfs_path *left_path,
			     struct btrfs_path *right_path,
			     char *tmp_buf)
{
	int cmp;
	int len1, len2;
	unsigned long off1, off2;

	len1 = btrfs_item_size_nr(left_path->nodes[0], left_path->slots[0]);
	len2 = btrfs_item_size_nr(right_path->nodes[0], right_path->slots[0]);
	if (len1 != len2)
		return 1;

	off1 = btrfs_item_ptr_offset(left_path->nodes[0], left_path->slots[0]);
	off2 = btrfs_item_ptr_offset(right_path->nodes[0],
				right_path->slots[0]);

	read_extent_buffer(left_path->nodes[0], tmp_buf, off1, len1);

	cmp = memcmp_extent_buffer(right_path->nodes[0], tmp_buf, off2, len1);
	if (cmp)
		return 1;
	return 0;
}

#define ADVANCE 1
#define ADVANCE_ONLY_NEXT -1

/*
 * This function compares two trees and calls the provided callback for
 * every changed/new/deleted item it finds.
 * If shared tree blocks are encountered, whole subtrees are skipped, making
 * the compare pretty fast on snapshotted subvolumes.
 *
 * This currently works on commit roots only. As commit roots are read only,
 * we don't do any locking. The commit roots are protected with transactions.
 * Transactions are ended and rejoined when a commit is tried in between.
 *
 * This function checks for modifications done to the trees while comparing.
 * If it detects a change, it aborts immediately.
 */
int btrfs_compare_trees(struct btrfs_root *left_root,
			struct btrfs_root *right_root,
			btrfs_changed_cb_t changed_cb, void *ctx)
{
	int ret;
	int cmp;
	struct btrfs_path *left_path = NULL;
	struct btrfs_path *right_path = NULL;
	struct btrfs_key left_key;
	struct btrfs_key right_key;
	char *tmp_buf = NULL;
	int left_root_level;
	int right_root_level;
	int left_level;
	int right_level;
	int left_end_reached;
	int right_end_reached;
	int advance_left;
	int advance_right;
	u64 left_blockptr;
	u64 right_blockptr;
5391 5392
	u64 left_gen;
	u64 right_gen;
5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404

	left_path = btrfs_alloc_path();
	if (!left_path) {
		ret = -ENOMEM;
		goto out;
	}
	right_path = btrfs_alloc_path();
	if (!right_path) {
		ret = -ENOMEM;
		goto out;
	}

5405
	tmp_buf = kmalloc(left_root->nodesize, GFP_KERNEL | __GFP_NOWARN);
5406
	if (!tmp_buf) {
5407 5408 5409 5410 5411
		tmp_buf = vmalloc(left_root->nodesize);
		if (!tmp_buf) {
			ret = -ENOMEM;
			goto out;
		}
5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454
	}

	left_path->search_commit_root = 1;
	left_path->skip_locking = 1;
	right_path->search_commit_root = 1;
	right_path->skip_locking = 1;

	/*
	 * Strategy: Go to the first items of both trees. Then do
	 *
	 * If both trees are at level 0
	 *   Compare keys of current items
	 *     If left < right treat left item as new, advance left tree
	 *       and repeat
	 *     If left > right treat right item as deleted, advance right tree
	 *       and repeat
	 *     If left == right do deep compare of items, treat as changed if
	 *       needed, advance both trees and repeat
	 * If both trees are at the same level but not at level 0
	 *   Compare keys of current nodes/leafs
	 *     If left < right advance left tree and repeat
	 *     If left > right advance right tree and repeat
	 *     If left == right compare blockptrs of the next nodes/leafs
	 *       If they match advance both trees but stay at the same level
	 *         and repeat
	 *       If they don't match advance both trees while allowing to go
	 *         deeper and repeat
	 * If tree levels are different
	 *   Advance the tree that needs it and repeat
	 *
	 * Advancing a tree means:
	 *   If we are at level 0, try to go to the next slot. If that's not
	 *   possible, go one level up and repeat. Stop when we found a level
	 *   where we could go to the next slot. We may at this point be on a
	 *   node or a leaf.
	 *
	 *   If we are not at level 0 and not on shared tree blocks, go one
	 *   level deeper.
	 *
	 *   If we are not at level 0 and on shared tree blocks, go one slot to
	 *   the right if possible or go up and right.
	 */

5455
	down_read(&left_root->fs_info->commit_root_sem);
5456 5457 5458 5459 5460 5461 5462 5463 5464
	left_level = btrfs_header_level(left_root->commit_root);
	left_root_level = left_level;
	left_path->nodes[left_level] = left_root->commit_root;
	extent_buffer_get(left_path->nodes[left_level]);

	right_level = btrfs_header_level(right_root->commit_root);
	right_root_level = right_level;
	right_path->nodes[right_level] = right_root->commit_root;
	extent_buffer_get(right_path->nodes[right_level]);
5465
	up_read(&left_root->fs_info->commit_root_sem);
5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488

	if (left_level == 0)
		btrfs_item_key_to_cpu(left_path->nodes[left_level],
				&left_key, left_path->slots[left_level]);
	else
		btrfs_node_key_to_cpu(left_path->nodes[left_level],
				&left_key, left_path->slots[left_level]);
	if (right_level == 0)
		btrfs_item_key_to_cpu(right_path->nodes[right_level],
				&right_key, right_path->slots[right_level]);
	else
		btrfs_node_key_to_cpu(right_path->nodes[right_level],
				&right_key, right_path->slots[right_level]);

	left_end_reached = right_end_reached = 0;
	advance_left = advance_right = 0;

	while (1) {
		if (advance_left && !left_end_reached) {
			ret = tree_advance(left_root, left_path, &left_level,
					left_root_level,
					advance_left != ADVANCE_ONLY_NEXT,
					&left_key);
5489
			if (ret == -1)
5490
				left_end_reached = ADVANCE;
5491 5492
			else if (ret < 0)
				goto out;
5493 5494 5495 5496 5497 5498 5499
			advance_left = 0;
		}
		if (advance_right && !right_end_reached) {
			ret = tree_advance(right_root, right_path, &right_level,
					right_root_level,
					advance_right != ADVANCE_ONLY_NEXT,
					&right_key);
5500
			if (ret == -1)
5501
				right_end_reached = ADVANCE;
5502 5503
			else if (ret < 0)
				goto out;
5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556
			advance_right = 0;
		}

		if (left_end_reached && right_end_reached) {
			ret = 0;
			goto out;
		} else if (left_end_reached) {
			if (right_level == 0) {
				ret = changed_cb(left_root, right_root,
						left_path, right_path,
						&right_key,
						BTRFS_COMPARE_TREE_DELETED,
						ctx);
				if (ret < 0)
					goto out;
			}
			advance_right = ADVANCE;
			continue;
		} else if (right_end_reached) {
			if (left_level == 0) {
				ret = changed_cb(left_root, right_root,
						left_path, right_path,
						&left_key,
						BTRFS_COMPARE_TREE_NEW,
						ctx);
				if (ret < 0)
					goto out;
			}
			advance_left = ADVANCE;
			continue;
		}

		if (left_level == 0 && right_level == 0) {
			cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
			if (cmp < 0) {
				ret = changed_cb(left_root, right_root,
						left_path, right_path,
						&left_key,
						BTRFS_COMPARE_TREE_NEW,
						ctx);
				if (ret < 0)
					goto out;
				advance_left = ADVANCE;
			} else if (cmp > 0) {
				ret = changed_cb(left_root, right_root,
						left_path, right_path,
						&right_key,
						BTRFS_COMPARE_TREE_DELETED,
						ctx);
				if (ret < 0)
					goto out;
				advance_right = ADVANCE;
			} else {
5557
				enum btrfs_compare_tree_result result;
5558

5559
				WARN_ON(!extent_buffer_uptodate(left_path->nodes[0]));
5560 5561
				ret = tree_compare_item(left_root, left_path,
						right_path, tmp_buf);
5562
				if (ret)
5563
					result = BTRFS_COMPARE_TREE_CHANGED;
5564
				else
5565
					result = BTRFS_COMPARE_TREE_SAME;
5566 5567
				ret = changed_cb(left_root, right_root,
						 left_path, right_path,
5568
						 &left_key, result, ctx);
5569 5570
				if (ret < 0)
					goto out;
5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586
				advance_left = ADVANCE;
				advance_right = ADVANCE;
			}
		} else if (left_level == right_level) {
			cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
			if (cmp < 0) {
				advance_left = ADVANCE;
			} else if (cmp > 0) {
				advance_right = ADVANCE;
			} else {
				left_blockptr = btrfs_node_blockptr(
						left_path->nodes[left_level],
						left_path->slots[left_level]);
				right_blockptr = btrfs_node_blockptr(
						right_path->nodes[right_level],
						right_path->slots[right_level]);
5587 5588 5589 5590 5591 5592 5593 5594
				left_gen = btrfs_node_ptr_generation(
						left_path->nodes[left_level],
						left_path->slots[left_level]);
				right_gen = btrfs_node_ptr_generation(
						right_path->nodes[right_level],
						right_path->slots[right_level]);
				if (left_blockptr == right_blockptr &&
				    left_gen == right_gen) {
5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615
					/*
					 * As we're on a shared block, don't
					 * allow to go deeper.
					 */
					advance_left = ADVANCE_ONLY_NEXT;
					advance_right = ADVANCE_ONLY_NEXT;
				} else {
					advance_left = ADVANCE;
					advance_right = ADVANCE;
				}
			}
		} else if (left_level < right_level) {
			advance_right = ADVANCE;
		} else {
			advance_left = ADVANCE;
		}
	}

out:
	btrfs_free_path(left_path);
	btrfs_free_path(right_path);
5616
	kvfree(tmp_buf);
5617 5618 5619
	return ret;
}

5620 5621 5622
/*
 * this is similar to btrfs_next_leaf, but does not try to preserve
 * and fixup the path.  It looks for and returns the next key in the
5623
 * tree based on the current path and the min_trans parameters.
5624 5625 5626 5627 5628 5629 5630
 *
 * 0 is returned if another key is found, < 0 if there are any errors
 * and 1 is returned if there are no higher keys in the tree
 *
 * path->keep_locks should be set to 1 on the search made before
 * calling this function.
 */
5631
int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
5632
			struct btrfs_key *key, int level, u64 min_trans)
5633 5634 5635 5636
{
	int slot;
	struct extent_buffer *c;

5637
	WARN_ON(!path->keep_locks);
C
Chris Mason 已提交
5638
	while (level < BTRFS_MAX_LEVEL) {
5639 5640 5641 5642 5643
		if (!path->nodes[level])
			return 1;

		slot = path->slots[level] + 1;
		c = path->nodes[level];
5644
next:
5645
		if (slot >= btrfs_header_nritems(c)) {
5646 5647 5648 5649 5650
			int ret;
			int orig_lowest;
			struct btrfs_key cur_key;
			if (level + 1 >= BTRFS_MAX_LEVEL ||
			    !path->nodes[level + 1])
5651
				return 1;
5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664

			if (path->locks[level + 1]) {
				level++;
				continue;
			}

			slot = btrfs_header_nritems(c) - 1;
			if (level == 0)
				btrfs_item_key_to_cpu(c, &cur_key, slot);
			else
				btrfs_node_key_to_cpu(c, &cur_key, slot);

			orig_lowest = path->lowest_level;
5665
			btrfs_release_path(path);
5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677
			path->lowest_level = level;
			ret = btrfs_search_slot(NULL, root, &cur_key, path,
						0, 0);
			path->lowest_level = orig_lowest;
			if (ret < 0)
				return ret;

			c = path->nodes[level];
			slot = path->slots[level];
			if (ret == 0)
				slot++;
			goto next;
5678
		}
5679

5680 5681
		if (level == 0)
			btrfs_item_key_to_cpu(c, key, slot);
5682 5683 5684 5685 5686 5687 5688
		else {
			u64 gen = btrfs_node_ptr_generation(c, slot);

			if (gen < min_trans) {
				slot++;
				goto next;
			}
5689
			btrfs_node_key_to_cpu(c, key, slot);
5690
		}
5691 5692 5693 5694 5695
		return 0;
	}
	return 1;
}

C
Chris Mason 已提交
5696
/*
5697
 * search the tree again to find a leaf with greater keys
C
Chris Mason 已提交
5698 5699
 * returns 0 if it found something or 1 if there are no greater leaves.
 * returns < 0 on io errors.
C
Chris Mason 已提交
5700
 */
C
Chris Mason 已提交
5701
int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path)
J
Jan Schmidt 已提交
5702 5703 5704 5705 5706 5707
{
	return btrfs_next_old_leaf(root, path, 0);
}

int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path,
			u64 time_seq)
5708 5709
{
	int slot;
5710
	int level;
5711
	struct extent_buffer *c;
5712
	struct extent_buffer *next;
5713 5714 5715
	struct btrfs_key key;
	u32 nritems;
	int ret;
5716
	int old_spinning = path->leave_spinning;
5717
	int next_rw_lock = 0;
5718 5719

	nritems = btrfs_header_nritems(path->nodes[0]);
C
Chris Mason 已提交
5720
	if (nritems == 0)
5721 5722
		return 1;

5723 5724 5725 5726
	btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1);
again:
	level = 1;
	next = NULL;
5727
	next_rw_lock = 0;
5728
	btrfs_release_path(path);
5729

5730
	path->keep_locks = 1;
5731
	path->leave_spinning = 1;
5732

J
Jan Schmidt 已提交
5733 5734 5735 5736
	if (time_seq)
		ret = btrfs_search_old_slot(root, &key, path, time_seq);
	else
		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5737 5738 5739 5740 5741
	path->keep_locks = 0;

	if (ret < 0)
		return ret;

5742
	nritems = btrfs_header_nritems(path->nodes[0]);
5743 5744 5745 5746 5747 5748
	/*
	 * by releasing the path above we dropped all our locks.  A balance
	 * could have added more items next to the key that used to be
	 * at the very end of the block.  So, check again here and
	 * advance the path if there are now more items available.
	 */
5749
	if (nritems > 0 && path->slots[0] < nritems - 1) {
5750 5751
		if (ret == 0)
			path->slots[0]++;
5752
		ret = 0;
5753 5754
		goto done;
	}
5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772
	/*
	 * So the above check misses one case:
	 * - after releasing the path above, someone has removed the item that
	 *   used to be at the very end of the block, and balance between leafs
	 *   gets another one with bigger key.offset to replace it.
	 *
	 * This one should be returned as well, or we can get leaf corruption
	 * later(esp. in __btrfs_drop_extents()).
	 *
	 * And a bit more explanation about this check,
	 * with ret > 0, the key isn't found, the path points to the slot
	 * where it should be inserted, so the path->slots[0] item must be the
	 * bigger one.
	 */
	if (nritems > 0 && ret > 0 && path->slots[0] == nritems - 1) {
		ret = 0;
		goto done;
	}
5773

C
Chris Mason 已提交
5774
	while (level < BTRFS_MAX_LEVEL) {
5775 5776 5777 5778
		if (!path->nodes[level]) {
			ret = 1;
			goto done;
		}
5779

5780 5781
		slot = path->slots[level] + 1;
		c = path->nodes[level];
5782
		if (slot >= btrfs_header_nritems(c)) {
5783
			level++;
5784 5785 5786 5787
			if (level == BTRFS_MAX_LEVEL) {
				ret = 1;
				goto done;
			}
5788 5789
			continue;
		}
5790

5791
		if (next) {
5792
			btrfs_tree_unlock_rw(next, next_rw_lock);
5793
			free_extent_buffer(next);
5794
		}
5795

5796
		next = c;
5797
		next_rw_lock = path->locks[level];
5798
		ret = read_block_for_search(NULL, root, path, &next, level,
J
Jan Schmidt 已提交
5799
					    slot, &key, 0);
5800 5801
		if (ret == -EAGAIN)
			goto again;
5802

5803
		if (ret < 0) {
5804
			btrfs_release_path(path);
5805 5806 5807
			goto done;
		}

5808
		if (!path->skip_locking) {
5809
			ret = btrfs_try_tree_read_lock(next);
5810 5811 5812 5813 5814 5815 5816 5817
			if (!ret && time_seq) {
				/*
				 * If we don't get the lock, we may be racing
				 * with push_leaf_left, holding that lock while
				 * itself waiting for the leaf we've currently
				 * locked. To solve this situation, we give up
				 * on our lock and cycle.
				 */
5818
				free_extent_buffer(next);
5819 5820 5821 5822
				btrfs_release_path(path);
				cond_resched();
				goto again;
			}
5823 5824
			if (!ret) {
				btrfs_set_path_blocking(path);
5825
				btrfs_tree_read_lock(next);
5826
				btrfs_clear_path_blocking(path, next,
5827
							  BTRFS_READ_LOCK);
5828
			}
5829
			next_rw_lock = BTRFS_READ_LOCK;
5830
		}
5831 5832 5833
		break;
	}
	path->slots[level] = slot;
C
Chris Mason 已提交
5834
	while (1) {
5835 5836
		level--;
		c = path->nodes[level];
5837
		if (path->locks[level])
5838
			btrfs_tree_unlock_rw(c, path->locks[level]);
5839

5840
		free_extent_buffer(c);
5841 5842
		path->nodes[level] = next;
		path->slots[level] = 0;
5843
		if (!path->skip_locking)
5844
			path->locks[level] = next_rw_lock;
5845 5846
		if (!level)
			break;
5847

5848
		ret = read_block_for_search(NULL, root, path, &next, level,
J
Jan Schmidt 已提交
5849
					    0, &key, 0);
5850 5851 5852
		if (ret == -EAGAIN)
			goto again;

5853
		if (ret < 0) {
5854
			btrfs_release_path(path);
5855 5856 5857
			goto done;
		}

5858
		if (!path->skip_locking) {
5859
			ret = btrfs_try_tree_read_lock(next);
5860 5861
			if (!ret) {
				btrfs_set_path_blocking(path);
5862
				btrfs_tree_read_lock(next);
5863
				btrfs_clear_path_blocking(path, next,
5864 5865
							  BTRFS_READ_LOCK);
			}
5866
			next_rw_lock = BTRFS_READ_LOCK;
5867
		}
5868
	}
5869
	ret = 0;
5870
done:
5871
	unlock_up(path, 0, 1, 0, NULL);
5872 5873 5874 5875 5876
	path->leave_spinning = old_spinning;
	if (!old_spinning)
		btrfs_set_path_blocking(path);

	return ret;
5877
}
5878

5879 5880 5881 5882 5883 5884
/*
 * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps
 * searching until it gets past min_objectid or finds an item of 'type'
 *
 * returns 0 if something is found, 1 if nothing was found and < 0 on error
 */
5885 5886 5887 5888 5889 5890
int btrfs_previous_item(struct btrfs_root *root,
			struct btrfs_path *path, u64 min_objectid,
			int type)
{
	struct btrfs_key found_key;
	struct extent_buffer *leaf;
5891
	u32 nritems;
5892 5893
	int ret;

C
Chris Mason 已提交
5894
	while (1) {
5895
		if (path->slots[0] == 0) {
5896
			btrfs_set_path_blocking(path);
5897 5898 5899 5900 5901 5902 5903
			ret = btrfs_prev_leaf(root, path);
			if (ret != 0)
				return ret;
		} else {
			path->slots[0]--;
		}
		leaf = path->nodes[0];
5904 5905 5906 5907 5908 5909
		nritems = btrfs_header_nritems(leaf);
		if (nritems == 0)
			return 1;
		if (path->slots[0] == nritems)
			path->slots[0]--;

5910
		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5911 5912
		if (found_key.objectid < min_objectid)
			break;
5913 5914
		if (found_key.type == type)
			return 0;
5915 5916 5917
		if (found_key.objectid == min_objectid &&
		    found_key.type < type)
			break;
5918 5919 5920
	}
	return 1;
}
5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963

/*
 * search in extent tree to find a previous Metadata/Data extent item with
 * min objecitd.
 *
 * returns 0 if something is found, 1 if nothing was found and < 0 on error
 */
int btrfs_previous_extent_item(struct btrfs_root *root,
			struct btrfs_path *path, u64 min_objectid)
{
	struct btrfs_key found_key;
	struct extent_buffer *leaf;
	u32 nritems;
	int ret;

	while (1) {
		if (path->slots[0] == 0) {
			btrfs_set_path_blocking(path);
			ret = btrfs_prev_leaf(root, path);
			if (ret != 0)
				return ret;
		} else {
			path->slots[0]--;
		}
		leaf = path->nodes[0];
		nritems = btrfs_header_nritems(leaf);
		if (nritems == 0)
			return 1;
		if (path->slots[0] == nritems)
			path->slots[0]--;

		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
		if (found_key.objectid < min_objectid)
			break;
		if (found_key.type == BTRFS_EXTENT_ITEM_KEY ||
		    found_key.type == BTRFS_METADATA_ITEM_KEY)
			return 0;
		if (found_key.objectid == min_objectid &&
		    found_key.type < BTRFS_EXTENT_ITEM_KEY)
			break;
	}
	return 1;
}