ctree.c 151.3 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
C
Chris Mason 已提交
2
/*
C
Chris Mason 已提交
3
 * Copyright (C) 2007,2008 Oracle.  All rights reserved.
C
Chris Mason 已提交
4 5
 */

6
#include <linux/sched.h>
7
#include <linux/slab.h>
8
#include <linux/rbtree.h>
9
#include <linux/mm.h>
10 11
#include "ctree.h"
#include "disk-io.h"
12
#include "transaction.h"
13
#include "print-tree.h"
14
#include "locking.h"
15

16 17
static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
		      *root, struct btrfs_path *path, int level);
18 19 20
static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root *root,
		      const struct btrfs_key *ins_key, struct btrfs_path *path,
		      int data_size, int extend);
21
static int push_node_left(struct btrfs_trans_handle *trans,
22 23
			  struct btrfs_fs_info *fs_info,
			  struct extent_buffer *dst,
24
			  struct extent_buffer *src, int empty);
25
static int balance_node_right(struct btrfs_trans_handle *trans,
26
			      struct btrfs_fs_info *fs_info,
27 28
			      struct extent_buffer *dst_buf,
			      struct extent_buffer *src_buf);
29 30
static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
		    int level, int slot);
31

C
Chris Mason 已提交
32
struct btrfs_path *btrfs_alloc_path(void)
C
Chris Mason 已提交
33
{
34
	return kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS);
C
Chris Mason 已提交
35 36
}

37 38 39 40 41 42 43 44
/*
 * set all locked nodes in the path to blocking locks.  This should
 * be done before scheduling
 */
noinline void btrfs_set_path_blocking(struct btrfs_path *p)
{
	int i;
	for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
45 46 47 48 49 50 51
		if (!p->nodes[i] || !p->locks[i])
			continue;
		btrfs_set_lock_blocking_rw(p->nodes[i], p->locks[i]);
		if (p->locks[i] == BTRFS_READ_LOCK)
			p->locks[i] = BTRFS_READ_LOCK_BLOCKING;
		else if (p->locks[i] == BTRFS_WRITE_LOCK)
			p->locks[i] = BTRFS_WRITE_LOCK_BLOCKING;
52 53 54 55 56
	}
}

/*
 * reset all the locked nodes in the patch to spinning locks.
57 58 59 60 61
 *
 * held is used to keep lockdep happy, when lockdep is enabled
 * we set held to a blocking lock before we go around and
 * retake all the spinlocks in the path.  You can safely use NULL
 * for held
62
 */
63
noinline void btrfs_clear_path_blocking(struct btrfs_path *p,
64
					struct extent_buffer *held, int held_rw)
65 66
{
	int i;
67

68 69 70 71 72 73 74
	if (held) {
		btrfs_set_lock_blocking_rw(held, held_rw);
		if (held_rw == BTRFS_WRITE_LOCK)
			held_rw = BTRFS_WRITE_LOCK_BLOCKING;
		else if (held_rw == BTRFS_READ_LOCK)
			held_rw = BTRFS_READ_LOCK_BLOCKING;
	}
75 76 77
	btrfs_set_path_blocking(p);

	for (i = BTRFS_MAX_LEVEL - 1; i >= 0; i--) {
78 79 80 81 82 83 84
		if (p->nodes[i] && p->locks[i]) {
			btrfs_clear_lock_blocking_rw(p->nodes[i], p->locks[i]);
			if (p->locks[i] == BTRFS_WRITE_LOCK_BLOCKING)
				p->locks[i] = BTRFS_WRITE_LOCK;
			else if (p->locks[i] == BTRFS_READ_LOCK_BLOCKING)
				p->locks[i] = BTRFS_READ_LOCK;
		}
85
	}
86 87

	if (held)
88
		btrfs_clear_lock_blocking_rw(held, held_rw);
89 90
}

C
Chris Mason 已提交
91
/* this also releases the path */
C
Chris Mason 已提交
92
void btrfs_free_path(struct btrfs_path *p)
93
{
94 95
	if (!p)
		return;
96
	btrfs_release_path(p);
C
Chris Mason 已提交
97
	kmem_cache_free(btrfs_path_cachep, p);
98 99
}

C
Chris Mason 已提交
100 101 102 103 104 105
/*
 * path release drops references on the extent buffers in the path
 * and it drops any locks held by this path
 *
 * It is safe to call this on paths that no locks or extent buffers held.
 */
106
noinline void btrfs_release_path(struct btrfs_path *p)
107 108
{
	int i;
109

C
Chris Mason 已提交
110
	for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
111
		p->slots[i] = 0;
112
		if (!p->nodes[i])
113 114
			continue;
		if (p->locks[i]) {
115
			btrfs_tree_unlock_rw(p->nodes[i], p->locks[i]);
116 117
			p->locks[i] = 0;
		}
118
		free_extent_buffer(p->nodes[i]);
119
		p->nodes[i] = NULL;
120 121 122
	}
}

C
Chris Mason 已提交
123 124 125 126 127 128 129 130 131 132
/*
 * safely gets a reference on the root node of a tree.  A lock
 * is not taken, so a concurrent writer may put a different node
 * at the root of the tree.  See btrfs_lock_root_node for the
 * looping required.
 *
 * The extent buffer returned by this has a reference taken, so
 * it won't disappear.  It may stop being the root of the tree
 * at any time because there are no locks held.
 */
133 134 135
struct extent_buffer *btrfs_root_node(struct btrfs_root *root)
{
	struct extent_buffer *eb;
136

137 138 139 140 141 142
	while (1) {
		rcu_read_lock();
		eb = rcu_dereference(root->node);

		/*
		 * RCU really hurts here, we could free up the root node because
143
		 * it was COWed but we may not get the new root node yet so do
144 145 146 147 148 149 150 151 152 153
		 * the inc_not_zero dance and if it doesn't work then
		 * synchronize_rcu and try again.
		 */
		if (atomic_inc_not_zero(&eb->refs)) {
			rcu_read_unlock();
			break;
		}
		rcu_read_unlock();
		synchronize_rcu();
	}
154 155 156
	return eb;
}

C
Chris Mason 已提交
157 158 159 160
/* loop around taking references on and locking the root node of the
 * tree until you end up with a lock on the root.  A locked buffer
 * is returned, with a reference held.
 */
161 162 163 164
struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root)
{
	struct extent_buffer *eb;

C
Chris Mason 已提交
165
	while (1) {
166 167
		eb = btrfs_root_node(root);
		btrfs_tree_lock(eb);
168
		if (eb == root->node)
169 170 171 172 173 174 175
			break;
		btrfs_tree_unlock(eb);
		free_extent_buffer(eb);
	}
	return eb;
}

176 177 178 179
/* loop around taking references on and locking the root node of the
 * tree until you end up with a lock on the root.  A locked buffer
 * is returned, with a reference held.
 */
180
struct extent_buffer *btrfs_read_lock_root_node(struct btrfs_root *root)
181 182 183 184 185 186 187 188 189 190 191 192 193 194
{
	struct extent_buffer *eb;

	while (1) {
		eb = btrfs_root_node(root);
		btrfs_tree_read_lock(eb);
		if (eb == root->node)
			break;
		btrfs_tree_read_unlock(eb);
		free_extent_buffer(eb);
	}
	return eb;
}

C
Chris Mason 已提交
195 196 197 198
/* cowonly root (everything not a reference counted cow subvolume), just get
 * put onto a simple dirty list.  transaction.c walks this to make sure they
 * get properly updated on disk.
 */
199 200
static void add_root_to_dirty_list(struct btrfs_root *root)
{
201 202
	struct btrfs_fs_info *fs_info = root->fs_info;

203 204 205 206
	if (test_bit(BTRFS_ROOT_DIRTY, &root->state) ||
	    !test_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state))
		return;

207
	spin_lock(&fs_info->trans_lock);
208 209
	if (!test_and_set_bit(BTRFS_ROOT_DIRTY, &root->state)) {
		/* Want the extent tree to be the last on the list */
210
		if (root->root_key.objectid == BTRFS_EXTENT_TREE_OBJECTID)
211
			list_move_tail(&root->dirty_list,
212
				       &fs_info->dirty_cowonly_roots);
213 214
		else
			list_move(&root->dirty_list,
215
				  &fs_info->dirty_cowonly_roots);
216
	}
217
	spin_unlock(&fs_info->trans_lock);
218 219
}

C
Chris Mason 已提交
220 221 222 223 224
/*
 * used by snapshot creation to make a copy of a root for a tree with
 * a given objectid.  The buffer with the new root node is returned in
 * cow_ret, and this func returns zero on success or a negative error code.
 */
225 226 227 228 229
int btrfs_copy_root(struct btrfs_trans_handle *trans,
		      struct btrfs_root *root,
		      struct extent_buffer *buf,
		      struct extent_buffer **cow_ret, u64 new_root_objectid)
{
230
	struct btrfs_fs_info *fs_info = root->fs_info;
231 232 233
	struct extent_buffer *cow;
	int ret = 0;
	int level;
234
	struct btrfs_disk_key disk_key;
235

236
	WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
237
		trans->transid != fs_info->running_transaction->transid);
238 239
	WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
		trans->transid != root->last_trans);
240 241

	level = btrfs_header_level(buf);
242 243 244 245
	if (level == 0)
		btrfs_item_key(buf, &disk_key, 0);
	else
		btrfs_node_key(buf, &disk_key, 0);
Z
Zheng Yan 已提交
246

247 248
	cow = btrfs_alloc_tree_block(trans, root, 0, new_root_objectid,
			&disk_key, level, buf->start, 0);
249
	if (IS_ERR(cow))
250 251
		return PTR_ERR(cow);

252
	copy_extent_buffer_full(cow, buf);
253 254
	btrfs_set_header_bytenr(cow, cow->start);
	btrfs_set_header_generation(cow, trans->transid);
255 256 257 258 259 260 261
	btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
	btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
				     BTRFS_HEADER_FLAG_RELOC);
	if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
		btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
	else
		btrfs_set_header_owner(cow, new_root_objectid);
262

263
	write_extent_buffer_fsid(cow, fs_info->fsid);
Y
Yan Zheng 已提交
264

265
	WARN_ON(btrfs_header_generation(buf) > trans->transid);
266
	if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
267
		ret = btrfs_inc_ref(trans, root, cow, 1);
268
	else
269
		ret = btrfs_inc_ref(trans, root, cow, 0);
270

271 272 273 274 275 276 277 278
	if (ret)
		return ret;

	btrfs_mark_buffer_dirty(cow);
	*cow_ret = cow;
	return 0;
}

279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295
enum mod_log_op {
	MOD_LOG_KEY_REPLACE,
	MOD_LOG_KEY_ADD,
	MOD_LOG_KEY_REMOVE,
	MOD_LOG_KEY_REMOVE_WHILE_FREEING,
	MOD_LOG_KEY_REMOVE_WHILE_MOVING,
	MOD_LOG_MOVE_KEYS,
	MOD_LOG_ROOT_REPLACE,
};

struct tree_mod_root {
	u64 logical;
	u8 level;
};

struct tree_mod_elem {
	struct rb_node node;
296
	u64 logical;
297
	u64 seq;
298 299 300 301 302 303 304 305 306 307 308 309 310
	enum mod_log_op op;

	/* this is used for MOD_LOG_KEY_* and MOD_LOG_MOVE_KEYS operations */
	int slot;

	/* this is used for MOD_LOG_KEY* and MOD_LOG_ROOT_REPLACE */
	u64 generation;

	/* those are used for op == MOD_LOG_KEY_{REPLACE,REMOVE} */
	struct btrfs_disk_key key;
	u64 blockptr;

	/* this is used for op == MOD_LOG_MOVE_KEYS */
311 312 313 314
	struct {
		int dst_slot;
		int nr_items;
	} move;
315 316 317 318 319

	/* this is used for op == MOD_LOG_ROOT_REPLACE */
	struct tree_mod_root old_root;
};

320
/*
J
Josef Bacik 已提交
321
 * Pull a new tree mod seq number for our operation.
322
 */
J
Josef Bacik 已提交
323
static inline u64 btrfs_inc_tree_mod_seq(struct btrfs_fs_info *fs_info)
324 325 326 327
{
	return atomic64_inc_return(&fs_info->tree_mod_seq);
}

328 329 330 331 332 333 334 335 336 337
/*
 * This adds a new blocker to the tree mod log's blocker list if the @elem
 * passed does not already have a sequence number set. So when a caller expects
 * to record tree modifications, it should ensure to set elem->seq to zero
 * before calling btrfs_get_tree_mod_seq.
 * Returns a fresh, unused tree log modification sequence number, even if no new
 * blocker was added.
 */
u64 btrfs_get_tree_mod_seq(struct btrfs_fs_info *fs_info,
			   struct seq_list *elem)
338
{
339
	write_lock(&fs_info->tree_mod_log_lock);
340
	spin_lock(&fs_info->tree_mod_seq_lock);
341
	if (!elem->seq) {
J
Josef Bacik 已提交
342
		elem->seq = btrfs_inc_tree_mod_seq(fs_info);
343 344
		list_add_tail(&elem->list, &fs_info->tree_mod_seq_list);
	}
345
	spin_unlock(&fs_info->tree_mod_seq_lock);
346
	write_unlock(&fs_info->tree_mod_log_lock);
347

J
Josef Bacik 已提交
348
	return elem->seq;
349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366
}

void btrfs_put_tree_mod_seq(struct btrfs_fs_info *fs_info,
			    struct seq_list *elem)
{
	struct rb_root *tm_root;
	struct rb_node *node;
	struct rb_node *next;
	struct seq_list *cur_elem;
	struct tree_mod_elem *tm;
	u64 min_seq = (u64)-1;
	u64 seq_putting = elem->seq;

	if (!seq_putting)
		return;

	spin_lock(&fs_info->tree_mod_seq_lock);
	list_del(&elem->list);
367
	elem->seq = 0;
368 369

	list_for_each_entry(cur_elem, &fs_info->tree_mod_seq_list, list) {
370
		if (cur_elem->seq < min_seq) {
371 372 373 374 375
			if (seq_putting > cur_elem->seq) {
				/*
				 * blocker with lower sequence number exists, we
				 * cannot remove anything from the log
				 */
376 377
				spin_unlock(&fs_info->tree_mod_seq_lock);
				return;
378 379 380 381
			}
			min_seq = cur_elem->seq;
		}
	}
382 383
	spin_unlock(&fs_info->tree_mod_seq_lock);

384 385 386 387
	/*
	 * anything that's lower than the lowest existing (read: blocked)
	 * sequence number can be removed from the tree.
	 */
388
	write_lock(&fs_info->tree_mod_log_lock);
389 390 391
	tm_root = &fs_info->tree_mod_log;
	for (node = rb_first(tm_root); node; node = next) {
		next = rb_next(node);
392
		tm = rb_entry(node, struct tree_mod_elem, node);
393
		if (tm->seq > min_seq)
394 395 396 397
			continue;
		rb_erase(node, tm_root);
		kfree(tm);
	}
398
	write_unlock(&fs_info->tree_mod_log_lock);
399 400 401 402
}

/*
 * key order of the log:
403
 *       node/leaf start address -> sequence
404
 *
405 406 407
 * The 'start address' is the logical address of the *new* root node
 * for root replace operations, or the logical address of the affected
 * block for all other operations.
408
 *
409
 * Note: must be called with write lock for fs_info::tree_mod_log_lock.
410 411 412 413 414 415 416 417
 */
static noinline int
__tree_mod_log_insert(struct btrfs_fs_info *fs_info, struct tree_mod_elem *tm)
{
	struct rb_root *tm_root;
	struct rb_node **new;
	struct rb_node *parent = NULL;
	struct tree_mod_elem *cur;
418

J
Josef Bacik 已提交
419
	tm->seq = btrfs_inc_tree_mod_seq(fs_info);
420 421 422 423

	tm_root = &fs_info->tree_mod_log;
	new = &tm_root->rb_node;
	while (*new) {
424
		cur = rb_entry(*new, struct tree_mod_elem, node);
425
		parent = *new;
426
		if (cur->logical < tm->logical)
427
			new = &((*new)->rb_left);
428
		else if (cur->logical > tm->logical)
429
			new = &((*new)->rb_right);
430
		else if (cur->seq < tm->seq)
431
			new = &((*new)->rb_left);
432
		else if (cur->seq > tm->seq)
433
			new = &((*new)->rb_right);
434 435
		else
			return -EEXIST;
436 437 438 439
	}

	rb_link_node(&tm->node, parent, new);
	rb_insert_color(&tm->node, tm_root);
440
	return 0;
441 442
}

443 444 445 446
/*
 * Determines if logging can be omitted. Returns 1 if it can. Otherwise, it
 * returns zero with the tree_mod_log_lock acquired. The caller must hold
 * this until all tree mod log insertions are recorded in the rb tree and then
447
 * write unlock fs_info::tree_mod_log_lock.
448
 */
449 450 451 452 453
static inline int tree_mod_dont_log(struct btrfs_fs_info *fs_info,
				    struct extent_buffer *eb) {
	smp_mb();
	if (list_empty(&(fs_info)->tree_mod_seq_list))
		return 1;
454 455
	if (eb && btrfs_header_level(eb) == 0)
		return 1;
456

457
	write_lock(&fs_info->tree_mod_log_lock);
458
	if (list_empty(&(fs_info)->tree_mod_seq_list)) {
459
		write_unlock(&fs_info->tree_mod_log_lock);
460 461 462
		return 1;
	}

463 464 465
	return 0;
}

466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481
/* Similar to tree_mod_dont_log, but doesn't acquire any locks. */
static inline int tree_mod_need_log(const struct btrfs_fs_info *fs_info,
				    struct extent_buffer *eb)
{
	smp_mb();
	if (list_empty(&(fs_info)->tree_mod_seq_list))
		return 0;
	if (eb && btrfs_header_level(eb) == 0)
		return 0;

	return 1;
}

static struct tree_mod_elem *
alloc_tree_mod_elem(struct extent_buffer *eb, int slot,
		    enum mod_log_op op, gfp_t flags)
482
{
483
	struct tree_mod_elem *tm;
484

485 486
	tm = kzalloc(sizeof(*tm), flags);
	if (!tm)
487
		return NULL;
488

489
	tm->logical = eb->start;
490 491 492 493 494 495 496
	if (op != MOD_LOG_KEY_ADD) {
		btrfs_node_key(eb, &tm->key, slot);
		tm->blockptr = btrfs_node_blockptr(eb, slot);
	}
	tm->op = op;
	tm->slot = slot;
	tm->generation = btrfs_node_ptr_generation(eb, slot);
497
	RB_CLEAR_NODE(&tm->node);
498

499
	return tm;
500 501
}

502 503
static noinline int tree_mod_log_insert_key(struct extent_buffer *eb, int slot,
		enum mod_log_op op, gfp_t flags)
504
{
505 506 507
	struct tree_mod_elem *tm;
	int ret;

508
	if (!tree_mod_need_log(eb->fs_info, eb))
509 510 511 512 513 514
		return 0;

	tm = alloc_tree_mod_elem(eb, slot, op, flags);
	if (!tm)
		return -ENOMEM;

515
	if (tree_mod_dont_log(eb->fs_info, eb)) {
516
		kfree(tm);
517
		return 0;
518 519
	}

520
	ret = __tree_mod_log_insert(eb->fs_info, tm);
521
	write_unlock(&eb->fs_info->tree_mod_log_lock);
522 523
	if (ret)
		kfree(tm);
524

525
	return ret;
526 527
}

528 529
static noinline int tree_mod_log_insert_move(struct extent_buffer *eb,
		int dst_slot, int src_slot, int nr_items)
530
{
531 532 533
	struct tree_mod_elem *tm = NULL;
	struct tree_mod_elem **tm_list = NULL;
	int ret = 0;
534
	int i;
535
	int locked = 0;
536

537
	if (!tree_mod_need_log(eb->fs_info, eb))
J
Jan Schmidt 已提交
538
		return 0;
539

540
	tm_list = kcalloc(nr_items, sizeof(struct tree_mod_elem *), GFP_NOFS);
541 542 543
	if (!tm_list)
		return -ENOMEM;

544
	tm = kzalloc(sizeof(*tm), GFP_NOFS);
545 546 547 548 549
	if (!tm) {
		ret = -ENOMEM;
		goto free_tms;
	}

550
	tm->logical = eb->start;
551 552 553 554 555 556 557
	tm->slot = src_slot;
	tm->move.dst_slot = dst_slot;
	tm->move.nr_items = nr_items;
	tm->op = MOD_LOG_MOVE_KEYS;

	for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) {
		tm_list[i] = alloc_tree_mod_elem(eb, i + dst_slot,
558
		    MOD_LOG_KEY_REMOVE_WHILE_MOVING, GFP_NOFS);
559 560 561 562 563 564
		if (!tm_list[i]) {
			ret = -ENOMEM;
			goto free_tms;
		}
	}

565
	if (tree_mod_dont_log(eb->fs_info, eb))
566 567 568
		goto free_tms;
	locked = 1;

569 570 571 572 573
	/*
	 * When we override something during the move, we log these removals.
	 * This can only happen when we move towards the beginning of the
	 * buffer, i.e. dst_slot < src_slot.
	 */
574
	for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) {
575
		ret = __tree_mod_log_insert(eb->fs_info, tm_list[i]);
576 577
		if (ret)
			goto free_tms;
578 579
	}

580
	ret = __tree_mod_log_insert(eb->fs_info, tm);
581 582
	if (ret)
		goto free_tms;
583
	write_unlock(&eb->fs_info->tree_mod_log_lock);
584
	kfree(tm_list);
J
Jan Schmidt 已提交
585

586 587 588 589
	return 0;
free_tms:
	for (i = 0; i < nr_items; i++) {
		if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node))
590
			rb_erase(&tm_list[i]->node, &eb->fs_info->tree_mod_log);
591 592 593
		kfree(tm_list[i]);
	}
	if (locked)
594
		write_unlock(&eb->fs_info->tree_mod_log_lock);
595 596
	kfree(tm_list);
	kfree(tm);
597

598
	return ret;
599 600
}

601 602 603 604
static inline int
__tree_mod_log_free_eb(struct btrfs_fs_info *fs_info,
		       struct tree_mod_elem **tm_list,
		       int nritems)
605
{
606
	int i, j;
607 608 609
	int ret;

	for (i = nritems - 1; i >= 0; i--) {
610 611 612 613 614 615 616
		ret = __tree_mod_log_insert(fs_info, tm_list[i]);
		if (ret) {
			for (j = nritems - 1; j > i; j--)
				rb_erase(&tm_list[j]->node,
					 &fs_info->tree_mod_log);
			return ret;
		}
617
	}
618 619

	return 0;
620 621
}

622 623
static noinline int tree_mod_log_insert_root(struct extent_buffer *old_root,
			 struct extent_buffer *new_root, int log_removal)
624
{
625
	struct btrfs_fs_info *fs_info = old_root->fs_info;
626 627 628 629 630
	struct tree_mod_elem *tm = NULL;
	struct tree_mod_elem **tm_list = NULL;
	int nritems = 0;
	int ret = 0;
	int i;
631

632
	if (!tree_mod_need_log(fs_info, NULL))
633 634
		return 0;

635 636
	if (log_removal && btrfs_header_level(old_root) > 0) {
		nritems = btrfs_header_nritems(old_root);
637
		tm_list = kcalloc(nritems, sizeof(struct tree_mod_elem *),
638
				  GFP_NOFS);
639 640 641 642 643 644
		if (!tm_list) {
			ret = -ENOMEM;
			goto free_tms;
		}
		for (i = 0; i < nritems; i++) {
			tm_list[i] = alloc_tree_mod_elem(old_root, i,
645
			    MOD_LOG_KEY_REMOVE_WHILE_FREEING, GFP_NOFS);
646 647 648 649 650 651
			if (!tm_list[i]) {
				ret = -ENOMEM;
				goto free_tms;
			}
		}
	}
652

653
	tm = kzalloc(sizeof(*tm), GFP_NOFS);
654 655 656 657
	if (!tm) {
		ret = -ENOMEM;
		goto free_tms;
	}
658

659
	tm->logical = new_root->start;
660 661 662 663 664
	tm->old_root.logical = old_root->start;
	tm->old_root.level = btrfs_header_level(old_root);
	tm->generation = btrfs_header_generation(old_root);
	tm->op = MOD_LOG_ROOT_REPLACE;

665 666 667 668 669 670 671 672
	if (tree_mod_dont_log(fs_info, NULL))
		goto free_tms;

	if (tm_list)
		ret = __tree_mod_log_free_eb(fs_info, tm_list, nritems);
	if (!ret)
		ret = __tree_mod_log_insert(fs_info, tm);

673
	write_unlock(&fs_info->tree_mod_log_lock);
674 675 676 677 678 679 680 681 682 683 684 685 686 687 688
	if (ret)
		goto free_tms;
	kfree(tm_list);

	return ret;

free_tms:
	if (tm_list) {
		for (i = 0; i < nritems; i++)
			kfree(tm_list[i]);
		kfree(tm_list);
	}
	kfree(tm);

	return ret;
689 690 691 692 693 694 695 696 697 698 699
}

static struct tree_mod_elem *
__tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq,
		      int smallest)
{
	struct rb_root *tm_root;
	struct rb_node *node;
	struct tree_mod_elem *cur = NULL;
	struct tree_mod_elem *found = NULL;

700
	read_lock(&fs_info->tree_mod_log_lock);
701 702 703
	tm_root = &fs_info->tree_mod_log;
	node = tm_root->rb_node;
	while (node) {
704
		cur = rb_entry(node, struct tree_mod_elem, node);
705
		if (cur->logical < start) {
706
			node = node->rb_left;
707
		} else if (cur->logical > start) {
708
			node = node->rb_right;
709
		} else if (cur->seq < min_seq) {
710 711 712 713
			node = node->rb_left;
		} else if (!smallest) {
			/* we want the node with the highest seq */
			if (found)
714
				BUG_ON(found->seq > cur->seq);
715 716
			found = cur;
			node = node->rb_left;
717
		} else if (cur->seq > min_seq) {
718 719
			/* we want the node with the smallest seq */
			if (found)
720
				BUG_ON(found->seq < cur->seq);
721 722 723 724 725 726 727
			found = cur;
			node = node->rb_right;
		} else {
			found = cur;
			break;
		}
	}
728
	read_unlock(&fs_info->tree_mod_log_lock);
729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755

	return found;
}

/*
 * this returns the element from the log with the smallest time sequence
 * value that's in the log (the oldest log item). any element with a time
 * sequence lower than min_seq will be ignored.
 */
static struct tree_mod_elem *
tree_mod_log_search_oldest(struct btrfs_fs_info *fs_info, u64 start,
			   u64 min_seq)
{
	return __tree_mod_log_search(fs_info, start, min_seq, 1);
}

/*
 * this returns the element from the log with the largest time sequence
 * value that's in the log (the most recent log item). any element with
 * a time sequence lower than min_seq will be ignored.
 */
static struct tree_mod_elem *
tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq)
{
	return __tree_mod_log_search(fs_info, start, min_seq, 0);
}

756
static noinline int
757 758
tree_mod_log_eb_copy(struct btrfs_fs_info *fs_info, struct extent_buffer *dst,
		     struct extent_buffer *src, unsigned long dst_offset,
759
		     unsigned long src_offset, int nr_items)
760
{
761 762 763
	int ret = 0;
	struct tree_mod_elem **tm_list = NULL;
	struct tree_mod_elem **tm_list_add, **tm_list_rem;
764
	int i;
765
	int locked = 0;
766

767 768
	if (!tree_mod_need_log(fs_info, NULL))
		return 0;
769

770
	if (btrfs_header_level(dst) == 0 && btrfs_header_level(src) == 0)
771 772
		return 0;

773
	tm_list = kcalloc(nr_items * 2, sizeof(struct tree_mod_elem *),
774 775 776
			  GFP_NOFS);
	if (!tm_list)
		return -ENOMEM;
777

778 779
	tm_list_add = tm_list;
	tm_list_rem = tm_list + nr_items;
780
	for (i = 0; i < nr_items; i++) {
781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806
		tm_list_rem[i] = alloc_tree_mod_elem(src, i + src_offset,
		    MOD_LOG_KEY_REMOVE, GFP_NOFS);
		if (!tm_list_rem[i]) {
			ret = -ENOMEM;
			goto free_tms;
		}

		tm_list_add[i] = alloc_tree_mod_elem(dst, i + dst_offset,
		    MOD_LOG_KEY_ADD, GFP_NOFS);
		if (!tm_list_add[i]) {
			ret = -ENOMEM;
			goto free_tms;
		}
	}

	if (tree_mod_dont_log(fs_info, NULL))
		goto free_tms;
	locked = 1;

	for (i = 0; i < nr_items; i++) {
		ret = __tree_mod_log_insert(fs_info, tm_list_rem[i]);
		if (ret)
			goto free_tms;
		ret = __tree_mod_log_insert(fs_info, tm_list_add[i]);
		if (ret)
			goto free_tms;
807
	}
808

809
	write_unlock(&fs_info->tree_mod_log_lock);
810 811 812 813 814 815 816 817 818 819 820
	kfree(tm_list);

	return 0;

free_tms:
	for (i = 0; i < nr_items * 2; i++) {
		if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node))
			rb_erase(&tm_list[i]->node, &fs_info->tree_mod_log);
		kfree(tm_list[i]);
	}
	if (locked)
821
		write_unlock(&fs_info->tree_mod_log_lock);
822 823 824
	kfree(tm_list);

	return ret;
825 826
}

827
static noinline int tree_mod_log_free_eb(struct extent_buffer *eb)
828
{
829 830 831 832 833 834 835 836
	struct tree_mod_elem **tm_list = NULL;
	int nritems = 0;
	int i;
	int ret = 0;

	if (btrfs_header_level(eb) == 0)
		return 0;

837
	if (!tree_mod_need_log(eb->fs_info, NULL))
838 839 840
		return 0;

	nritems = btrfs_header_nritems(eb);
841
	tm_list = kcalloc(nritems, sizeof(struct tree_mod_elem *), GFP_NOFS);
842 843 844 845 846 847 848 849 850 851 852 853
	if (!tm_list)
		return -ENOMEM;

	for (i = 0; i < nritems; i++) {
		tm_list[i] = alloc_tree_mod_elem(eb, i,
		    MOD_LOG_KEY_REMOVE_WHILE_FREEING, GFP_NOFS);
		if (!tm_list[i]) {
			ret = -ENOMEM;
			goto free_tms;
		}
	}

854
	if (tree_mod_dont_log(eb->fs_info, eb))
855 856
		goto free_tms;

857
	ret = __tree_mod_log_free_eb(eb->fs_info, tm_list, nritems);
858
	write_unlock(&eb->fs_info->tree_mod_log_lock);
859 860 861 862 863 864 865 866 867 868 869 870
	if (ret)
		goto free_tms;
	kfree(tm_list);

	return 0;

free_tms:
	for (i = 0; i < nritems; i++)
		kfree(tm_list[i]);
	kfree(tm_list);

	return ret;
871 872
}

873 874 875 876 877 878 879
/*
 * check if the tree block can be shared by multiple trees
 */
int btrfs_block_can_be_shared(struct btrfs_root *root,
			      struct extent_buffer *buf)
{
	/*
880
	 * Tree blocks not in reference counted trees and tree roots
881 882 883 884
	 * are never shared. If a block was allocated after the last
	 * snapshot and the block was not allocated by tree relocation,
	 * we know the block is not shared.
	 */
885
	if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
886 887 888 889 890
	    buf != root->node && buf != root->commit_root &&
	    (btrfs_header_generation(buf) <=
	     btrfs_root_last_snapshot(&root->root_item) ||
	     btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)))
		return 1;
891

892 893 894 895 896 897
	return 0;
}

static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans,
				       struct btrfs_root *root,
				       struct extent_buffer *buf,
898 899
				       struct extent_buffer *cow,
				       int *last_ref)
900
{
901
	struct btrfs_fs_info *fs_info = root->fs_info;
902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925
	u64 refs;
	u64 owner;
	u64 flags;
	u64 new_flags = 0;
	int ret;

	/*
	 * Backrefs update rules:
	 *
	 * Always use full backrefs for extent pointers in tree block
	 * allocated by tree relocation.
	 *
	 * If a shared tree block is no longer referenced by its owner
	 * tree (btrfs_header_owner(buf) == root->root_key.objectid),
	 * use full backrefs for extent pointers in tree block.
	 *
	 * If a tree block is been relocating
	 * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID),
	 * use full backrefs for extent pointers in tree block.
	 * The reason for this is some operations (such as drop tree)
	 * are only allowed for blocks use full backrefs.
	 */

	if (btrfs_block_can_be_shared(root, buf)) {
926
		ret = btrfs_lookup_extent_info(trans, fs_info, buf->start,
927 928
					       btrfs_header_level(buf), 1,
					       &refs, &flags);
929 930
		if (ret)
			return ret;
931 932
		if (refs == 0) {
			ret = -EROFS;
933
			btrfs_handle_fs_error(fs_info, ret, NULL);
934 935
			return ret;
		}
936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952
	} else {
		refs = 1;
		if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
		    btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
			flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
		else
			flags = 0;
	}

	owner = btrfs_header_owner(buf);
	BUG_ON(owner == BTRFS_TREE_RELOC_OBJECTID &&
	       !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));

	if (refs > 1) {
		if ((owner == root->root_key.objectid ||
		     root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) &&
		    !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) {
953
			ret = btrfs_inc_ref(trans, root, buf, 1);
954 955
			if (ret)
				return ret;
956 957 958

			if (root->root_key.objectid ==
			    BTRFS_TREE_RELOC_OBJECTID) {
959
				ret = btrfs_dec_ref(trans, root, buf, 0);
960 961
				if (ret)
					return ret;
962
				ret = btrfs_inc_ref(trans, root, cow, 1);
963 964
				if (ret)
					return ret;
965 966 967 968 969 970
			}
			new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
		} else {

			if (root->root_key.objectid ==
			    BTRFS_TREE_RELOC_OBJECTID)
971
				ret = btrfs_inc_ref(trans, root, cow, 1);
972
			else
973
				ret = btrfs_inc_ref(trans, root, cow, 0);
974 975
			if (ret)
				return ret;
976 977
		}
		if (new_flags != 0) {
978 979
			int level = btrfs_header_level(buf);

980
			ret = btrfs_set_disk_extent_flags(trans, fs_info,
981 982
							  buf->start,
							  buf->len,
983
							  new_flags, level, 0);
984 985
			if (ret)
				return ret;
986 987 988 989 990
		}
	} else {
		if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
			if (root->root_key.objectid ==
			    BTRFS_TREE_RELOC_OBJECTID)
991
				ret = btrfs_inc_ref(trans, root, cow, 1);
992
			else
993
				ret = btrfs_inc_ref(trans, root, cow, 0);
994 995
			if (ret)
				return ret;
996
			ret = btrfs_dec_ref(trans, root, buf, 1);
997 998
			if (ret)
				return ret;
999
		}
1000
		clean_tree_block(fs_info, buf);
1001
		*last_ref = 1;
1002 1003 1004 1005
	}
	return 0;
}

C
Chris Mason 已提交
1006
/*
C
Chris Mason 已提交
1007 1008 1009 1010
 * does the dirty work in cow of a single block.  The parent block (if
 * supplied) is updated to point to the new cow copy.  The new buffer is marked
 * dirty and returned locked.  If you modify the block it needs to be marked
 * dirty again.
C
Chris Mason 已提交
1011 1012 1013
 *
 * search_start -- an allocation hint for the new block
 *
C
Chris Mason 已提交
1014 1015 1016
 * empty_size -- a hint that you plan on doing more cow.  This is the size in
 * bytes the allocator should try to find free next to the block it returns.
 * This is just a hint and may be ignored by the allocator.
C
Chris Mason 已提交
1017
 */
C
Chris Mason 已提交
1018
static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans,
1019 1020 1021 1022
			     struct btrfs_root *root,
			     struct extent_buffer *buf,
			     struct extent_buffer *parent, int parent_slot,
			     struct extent_buffer **cow_ret,
1023
			     u64 search_start, u64 empty_size)
C
Chris Mason 已提交
1024
{
1025
	struct btrfs_fs_info *fs_info = root->fs_info;
1026
	struct btrfs_disk_key disk_key;
1027
	struct extent_buffer *cow;
1028
	int level, ret;
1029
	int last_ref = 0;
1030
	int unlock_orig = 0;
1031
	u64 parent_start = 0;
1032

1033 1034 1035
	if (*cow_ret == buf)
		unlock_orig = 1;

1036
	btrfs_assert_tree_locked(buf);
1037

1038
	WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
1039
		trans->transid != fs_info->running_transaction->transid);
1040 1041
	WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
		trans->transid != root->last_trans);
1042

1043
	level = btrfs_header_level(buf);
Z
Zheng Yan 已提交
1044

1045 1046 1047 1048 1049
	if (level == 0)
		btrfs_item_key(buf, &disk_key, 0);
	else
		btrfs_node_key(buf, &disk_key, 0);

1050 1051
	if ((root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) && parent)
		parent_start = parent->start;
1052

1053 1054 1055
	cow = btrfs_alloc_tree_block(trans, root, parent_start,
			root->root_key.objectid, &disk_key, level,
			search_start, empty_size);
1056 1057
	if (IS_ERR(cow))
		return PTR_ERR(cow);
1058

1059 1060
	/* cow is set to blocking by btrfs_init_new_buffer */

1061
	copy_extent_buffer_full(cow, buf);
1062
	btrfs_set_header_bytenr(cow, cow->start);
1063
	btrfs_set_header_generation(cow, trans->transid);
1064 1065 1066 1067 1068 1069 1070
	btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
	btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
				     BTRFS_HEADER_FLAG_RELOC);
	if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
		btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
	else
		btrfs_set_header_owner(cow, root->root_key.objectid);
1071

1072
	write_extent_buffer_fsid(cow, fs_info->fsid);
Y
Yan Zheng 已提交
1073

1074
	ret = update_ref_for_cow(trans, root, buf, cow, &last_ref);
1075
	if (ret) {
1076
		btrfs_abort_transaction(trans, ret);
1077 1078
		return ret;
	}
Z
Zheng Yan 已提交
1079

1080
	if (test_bit(BTRFS_ROOT_REF_COWS, &root->state)) {
1081
		ret = btrfs_reloc_cow_block(trans, root, buf, cow);
1082
		if (ret) {
1083
			btrfs_abort_transaction(trans, ret);
1084
			return ret;
1085
		}
1086
	}
1087

C
Chris Mason 已提交
1088
	if (buf == root->node) {
1089
		WARN_ON(parent && parent != buf);
1090 1091 1092
		if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
		    btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
			parent_start = buf->start;
1093

1094
		extent_buffer_get(cow);
1095 1096
		ret = tree_mod_log_insert_root(root->node, cow, 1);
		BUG_ON(ret < 0);
1097
		rcu_assign_pointer(root->node, cow);
1098

1099
		btrfs_free_tree_block(trans, root, buf, parent_start,
1100
				      last_ref);
1101
		free_extent_buffer(buf);
1102
		add_root_to_dirty_list(root);
C
Chris Mason 已提交
1103
	} else {
1104
		WARN_ON(trans->transid != btrfs_header_generation(parent));
1105
		tree_mod_log_insert_key(parent, parent_slot,
1106
					MOD_LOG_KEY_REPLACE, GFP_NOFS);
1107
		btrfs_set_node_blockptr(parent, parent_slot,
1108
					cow->start);
1109 1110
		btrfs_set_node_ptr_generation(parent, parent_slot,
					      trans->transid);
C
Chris Mason 已提交
1111
		btrfs_mark_buffer_dirty(parent);
1112
		if (last_ref) {
1113
			ret = tree_mod_log_free_eb(buf);
1114
			if (ret) {
1115
				btrfs_abort_transaction(trans, ret);
1116 1117 1118
				return ret;
			}
		}
1119
		btrfs_free_tree_block(trans, root, buf, parent_start,
1120
				      last_ref);
C
Chris Mason 已提交
1121
	}
1122 1123
	if (unlock_orig)
		btrfs_tree_unlock(buf);
1124
	free_extent_buffer_stale(buf);
C
Chris Mason 已提交
1125
	btrfs_mark_buffer_dirty(cow);
C
Chris Mason 已提交
1126
	*cow_ret = cow;
C
Chris Mason 已提交
1127 1128 1129
	return 0;
}

J
Jan Schmidt 已提交
1130 1131 1132 1133
/*
 * returns the logical address of the oldest predecessor of the given root.
 * entries older than time_seq are ignored.
 */
1134 1135
static struct tree_mod_elem *__tree_mod_log_oldest_root(
		struct extent_buffer *eb_root, u64 time_seq)
J
Jan Schmidt 已提交
1136 1137 1138
{
	struct tree_mod_elem *tm;
	struct tree_mod_elem *found = NULL;
1139
	u64 root_logical = eb_root->start;
J
Jan Schmidt 已提交
1140 1141 1142
	int looped = 0;

	if (!time_seq)
1143
		return NULL;
J
Jan Schmidt 已提交
1144 1145

	/*
1146 1147 1148 1149
	 * the very last operation that's logged for a root is the
	 * replacement operation (if it is replaced at all). this has
	 * the logical address of the *new* root, making it the very
	 * first operation that's logged for this root.
J
Jan Schmidt 已提交
1150 1151
	 */
	while (1) {
1152
		tm = tree_mod_log_search_oldest(eb_root->fs_info, root_logical,
J
Jan Schmidt 已提交
1153 1154
						time_seq);
		if (!looped && !tm)
1155
			return NULL;
J
Jan Schmidt 已提交
1156
		/*
1157 1158 1159
		 * if there are no tree operation for the oldest root, we simply
		 * return it. this should only happen if that (old) root is at
		 * level 0.
J
Jan Schmidt 已提交
1160
		 */
1161 1162
		if (!tm)
			break;
J
Jan Schmidt 已提交
1163

1164 1165 1166 1167 1168
		/*
		 * if there's an operation that's not a root replacement, we
		 * found the oldest version of our root. normally, we'll find a
		 * MOD_LOG_KEY_REMOVE_WHILE_FREEING operation here.
		 */
J
Jan Schmidt 已提交
1169 1170 1171 1172 1173 1174 1175 1176
		if (tm->op != MOD_LOG_ROOT_REPLACE)
			break;

		found = tm;
		root_logical = tm->old_root.logical;
		looped = 1;
	}

1177 1178 1179 1180
	/* if there's no old root to return, return what we found instead */
	if (!found)
		found = tm;

J
Jan Schmidt 已提交
1181 1182 1183 1184 1185
	return found;
}

/*
 * tm is a pointer to the first operation to rewind within eb. then, all
1186
 * previous operations will be rewound (until we reach something older than
J
Jan Schmidt 已提交
1187 1188 1189
 * time_seq).
 */
static void
1190 1191
__tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct extent_buffer *eb,
		      u64 time_seq, struct tree_mod_elem *first_tm)
J
Jan Schmidt 已提交
1192 1193 1194 1195 1196 1197 1198 1199 1200
{
	u32 n;
	struct rb_node *next;
	struct tree_mod_elem *tm = first_tm;
	unsigned long o_dst;
	unsigned long o_src;
	unsigned long p_size = sizeof(struct btrfs_key_ptr);

	n = btrfs_header_nritems(eb);
1201
	read_lock(&fs_info->tree_mod_log_lock);
1202
	while (tm && tm->seq >= time_seq) {
J
Jan Schmidt 已提交
1203 1204 1205 1206 1207 1208 1209 1210
		/*
		 * all the operations are recorded with the operator used for
		 * the modification. as we're going backwards, we do the
		 * opposite of each operation here.
		 */
		switch (tm->op) {
		case MOD_LOG_KEY_REMOVE_WHILE_FREEING:
			BUG_ON(tm->slot < n);
1211
			/* Fallthrough */
1212
		case MOD_LOG_KEY_REMOVE_WHILE_MOVING:
1213
		case MOD_LOG_KEY_REMOVE:
J
Jan Schmidt 已提交
1214 1215 1216 1217
			btrfs_set_node_key(eb, &tm->key, tm->slot);
			btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
			btrfs_set_node_ptr_generation(eb, tm->slot,
						      tm->generation);
1218
			n++;
J
Jan Schmidt 已提交
1219 1220 1221 1222 1223 1224 1225 1226 1227
			break;
		case MOD_LOG_KEY_REPLACE:
			BUG_ON(tm->slot >= n);
			btrfs_set_node_key(eb, &tm->key, tm->slot);
			btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
			btrfs_set_node_ptr_generation(eb, tm->slot,
						      tm->generation);
			break;
		case MOD_LOG_KEY_ADD:
1228
			/* if a move operation is needed it's in the log */
J
Jan Schmidt 已提交
1229 1230 1231
			n--;
			break;
		case MOD_LOG_MOVE_KEYS:
1232 1233 1234
			o_dst = btrfs_node_key_ptr_offset(tm->slot);
			o_src = btrfs_node_key_ptr_offset(tm->move.dst_slot);
			memmove_extent_buffer(eb, o_dst, o_src,
J
Jan Schmidt 已提交
1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251
					      tm->move.nr_items * p_size);
			break;
		case MOD_LOG_ROOT_REPLACE:
			/*
			 * this operation is special. for roots, this must be
			 * handled explicitly before rewinding.
			 * for non-roots, this operation may exist if the node
			 * was a root: root A -> child B; then A gets empty and
			 * B is promoted to the new root. in the mod log, we'll
			 * have a root-replace operation for B, a tree block
			 * that is no root. we simply ignore that operation.
			 */
			break;
		}
		next = rb_next(&tm->node);
		if (!next)
			break;
1252
		tm = rb_entry(next, struct tree_mod_elem, node);
1253
		if (tm->logical != first_tm->logical)
J
Jan Schmidt 已提交
1254 1255
			break;
	}
1256
	read_unlock(&fs_info->tree_mod_log_lock);
J
Jan Schmidt 已提交
1257 1258 1259
	btrfs_set_header_nritems(eb, n);
}

1260
/*
1261
 * Called with eb read locked. If the buffer cannot be rewound, the same buffer
1262 1263 1264 1265 1266
 * is returned. If rewind operations happen, a fresh buffer is returned. The
 * returned buffer is always read-locked. If the returned buffer is not the
 * input buffer, the lock on the input buffer is released and the input buffer
 * is freed (its refcount is decremented).
 */
J
Jan Schmidt 已提交
1267
static struct extent_buffer *
1268 1269
tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct btrfs_path *path,
		    struct extent_buffer *eb, u64 time_seq)
J
Jan Schmidt 已提交
1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283
{
	struct extent_buffer *eb_rewin;
	struct tree_mod_elem *tm;

	if (!time_seq)
		return eb;

	if (btrfs_header_level(eb) == 0)
		return eb;

	tm = tree_mod_log_search(fs_info, eb->start, time_seq);
	if (!tm)
		return eb;

1284 1285 1286
	btrfs_set_path_blocking(path);
	btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);

J
Jan Schmidt 已提交
1287 1288
	if (tm->op == MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
		BUG_ON(tm->slot != 0);
1289
		eb_rewin = alloc_dummy_extent_buffer(fs_info, eb->start);
1290
		if (!eb_rewin) {
1291
			btrfs_tree_read_unlock_blocking(eb);
1292 1293 1294
			free_extent_buffer(eb);
			return NULL;
		}
J
Jan Schmidt 已提交
1295 1296 1297 1298
		btrfs_set_header_bytenr(eb_rewin, eb->start);
		btrfs_set_header_backref_rev(eb_rewin,
					     btrfs_header_backref_rev(eb));
		btrfs_set_header_owner(eb_rewin, btrfs_header_owner(eb));
1299
		btrfs_set_header_level(eb_rewin, btrfs_header_level(eb));
J
Jan Schmidt 已提交
1300 1301
	} else {
		eb_rewin = btrfs_clone_extent_buffer(eb);
1302
		if (!eb_rewin) {
1303
			btrfs_tree_read_unlock_blocking(eb);
1304 1305 1306
			free_extent_buffer(eb);
			return NULL;
		}
J
Jan Schmidt 已提交
1307 1308
	}

1309 1310
	btrfs_clear_path_blocking(path, NULL, BTRFS_READ_LOCK);
	btrfs_tree_read_unlock_blocking(eb);
J
Jan Schmidt 已提交
1311 1312
	free_extent_buffer(eb);

1313 1314
	extent_buffer_get(eb_rewin);
	btrfs_tree_read_lock(eb_rewin);
1315
	__tree_mod_log_rewind(fs_info, eb_rewin, time_seq, tm);
1316
	WARN_ON(btrfs_header_nritems(eb_rewin) >
1317
		BTRFS_NODEPTRS_PER_BLOCK(fs_info));
J
Jan Schmidt 已提交
1318 1319 1320 1321

	return eb_rewin;
}

1322 1323 1324 1325 1326 1327 1328
/*
 * get_old_root() rewinds the state of @root's root node to the given @time_seq
 * value. If there are no changes, the current root->root_node is returned. If
 * anything changed in between, there's a fresh buffer allocated on which the
 * rewind operations are done. In any case, the returned buffer is read locked.
 * Returns NULL on error (with no locks held).
 */
J
Jan Schmidt 已提交
1329 1330 1331
static inline struct extent_buffer *
get_old_root(struct btrfs_root *root, u64 time_seq)
{
1332
	struct btrfs_fs_info *fs_info = root->fs_info;
J
Jan Schmidt 已提交
1333
	struct tree_mod_elem *tm;
1334 1335
	struct extent_buffer *eb = NULL;
	struct extent_buffer *eb_root;
1336
	struct extent_buffer *old;
1337
	struct tree_mod_root *old_root = NULL;
1338
	u64 old_generation = 0;
1339
	u64 logical;
1340
	int level;
J
Jan Schmidt 已提交
1341

1342
	eb_root = btrfs_read_lock_root_node(root);
1343
	tm = __tree_mod_log_oldest_root(eb_root, time_seq);
J
Jan Schmidt 已提交
1344
	if (!tm)
1345
		return eb_root;
J
Jan Schmidt 已提交
1346

1347 1348 1349 1350
	if (tm->op == MOD_LOG_ROOT_REPLACE) {
		old_root = &tm->old_root;
		old_generation = tm->generation;
		logical = old_root->logical;
1351
		level = old_root->level;
1352
	} else {
1353
		logical = eb_root->start;
1354
		level = btrfs_header_level(eb_root);
1355
	}
J
Jan Schmidt 已提交
1356

1357
	tm = tree_mod_log_search(fs_info, logical, time_seq);
1358
	if (old_root && tm && tm->op != MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
1359 1360
		btrfs_tree_read_unlock(eb_root);
		free_extent_buffer(eb_root);
1361
		old = read_tree_block(fs_info, logical, 0, level, NULL);
1362 1363 1364
		if (WARN_ON(IS_ERR(old) || !extent_buffer_uptodate(old))) {
			if (!IS_ERR(old))
				free_extent_buffer(old);
1365 1366 1367
			btrfs_warn(fs_info,
				   "failed to read tree block %llu from get_old_root",
				   logical);
1368
		} else {
1369 1370
			eb = btrfs_clone_extent_buffer(old);
			free_extent_buffer(old);
1371 1372
		}
	} else if (old_root) {
1373 1374
		btrfs_tree_read_unlock(eb_root);
		free_extent_buffer(eb_root);
1375
		eb = alloc_dummy_extent_buffer(fs_info, logical);
1376
	} else {
1377
		btrfs_set_lock_blocking_rw(eb_root, BTRFS_READ_LOCK);
1378
		eb = btrfs_clone_extent_buffer(eb_root);
1379
		btrfs_tree_read_unlock_blocking(eb_root);
1380
		free_extent_buffer(eb_root);
1381 1382
	}

1383 1384
	if (!eb)
		return NULL;
1385
	extent_buffer_get(eb);
1386
	btrfs_tree_read_lock(eb);
1387
	if (old_root) {
J
Jan Schmidt 已提交
1388 1389
		btrfs_set_header_bytenr(eb, eb->start);
		btrfs_set_header_backref_rev(eb, BTRFS_MIXED_BACKREF_REV);
1390
		btrfs_set_header_owner(eb, btrfs_header_owner(eb_root));
1391 1392
		btrfs_set_header_level(eb, old_root->level);
		btrfs_set_header_generation(eb, old_generation);
J
Jan Schmidt 已提交
1393
	}
1394
	if (tm)
1395
		__tree_mod_log_rewind(fs_info, eb, time_seq, tm);
1396 1397
	else
		WARN_ON(btrfs_header_level(eb) != 0);
1398
	WARN_ON(btrfs_header_nritems(eb) > BTRFS_NODEPTRS_PER_BLOCK(fs_info));
J
Jan Schmidt 已提交
1399 1400 1401 1402

	return eb;
}

J
Jan Schmidt 已提交
1403 1404 1405 1406
int btrfs_old_root_level(struct btrfs_root *root, u64 time_seq)
{
	struct tree_mod_elem *tm;
	int level;
1407
	struct extent_buffer *eb_root = btrfs_root_node(root);
J
Jan Schmidt 已提交
1408

1409
	tm = __tree_mod_log_oldest_root(eb_root, time_seq);
J
Jan Schmidt 已提交
1410 1411 1412
	if (tm && tm->op == MOD_LOG_ROOT_REPLACE) {
		level = tm->old_root.level;
	} else {
1413
		level = btrfs_header_level(eb_root);
J
Jan Schmidt 已提交
1414
	}
1415
	free_extent_buffer(eb_root);
J
Jan Schmidt 已提交
1416 1417 1418 1419

	return level;
}

1420 1421 1422 1423
static inline int should_cow_block(struct btrfs_trans_handle *trans,
				   struct btrfs_root *root,
				   struct extent_buffer *buf)
{
1424
	if (btrfs_is_testing(root->fs_info))
1425
		return 0;
1426

1427 1428
	/* Ensure we can see the FORCE_COW bit */
	smp_mb__before_atomic();
1429 1430 1431 1432 1433 1434 1435 1436

	/*
	 * We do not need to cow a block if
	 * 1) this block is not created or changed in this transaction;
	 * 2) this block does not belong to TREE_RELOC tree;
	 * 3) the root is not forced COW.
	 *
	 * What is forced COW:
1437
	 *    when we create snapshot during committing the transaction,
1438 1439 1440
	 *    after we've finished coping src root, we must COW the shared
	 *    block to ensure the metadata consistency.
	 */
1441 1442 1443
	if (btrfs_header_generation(buf) == trans->transid &&
	    !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) &&
	    !(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
1444
	      btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)) &&
1445
	    !test_bit(BTRFS_ROOT_FORCE_COW, &root->state))
1446 1447 1448 1449
		return 0;
	return 1;
}

C
Chris Mason 已提交
1450 1451
/*
 * cows a single block, see __btrfs_cow_block for the real work.
1452
 * This version of it has extra checks so that a block isn't COWed more than
C
Chris Mason 已提交
1453 1454
 * once per transaction, as long as it hasn't been written yet
 */
C
Chris Mason 已提交
1455
noinline int btrfs_cow_block(struct btrfs_trans_handle *trans,
1456 1457
		    struct btrfs_root *root, struct extent_buffer *buf,
		    struct extent_buffer *parent, int parent_slot,
1458
		    struct extent_buffer **cow_ret)
1459
{
1460
	struct btrfs_fs_info *fs_info = root->fs_info;
1461
	u64 search_start;
1462
	int ret;
C
Chris Mason 已提交
1463

1464
	if (trans->transaction != fs_info->running_transaction)
J
Julia Lawall 已提交
1465
		WARN(1, KERN_CRIT "trans %llu running %llu\n",
1466
		       trans->transid,
1467
		       fs_info->running_transaction->transid);
J
Julia Lawall 已提交
1468

1469
	if (trans->transid != fs_info->generation)
J
Julia Lawall 已提交
1470
		WARN(1, KERN_CRIT "trans %llu running %llu\n",
1471
		       trans->transid, fs_info->generation);
C
Chris Mason 已提交
1472

1473
	if (!should_cow_block(trans, root, buf)) {
1474
		trans->dirty = true;
1475 1476 1477
		*cow_ret = buf;
		return 0;
	}
1478

1479
	search_start = buf->start & ~((u64)SZ_1G - 1);
1480 1481 1482 1483 1484

	if (parent)
		btrfs_set_lock_blocking(parent);
	btrfs_set_lock_blocking(buf);

1485
	ret = __btrfs_cow_block(trans, root, buf, parent,
1486
				 parent_slot, cow_ret, search_start, 0);
1487 1488 1489

	trace_btrfs_cow_block(root, buf, *cow_ret);

1490
	return ret;
1491 1492
}

C
Chris Mason 已提交
1493 1494 1495 1496
/*
 * helper function for defrag to decide if two blocks pointed to by a
 * node are actually close by
 */
1497
static int close_blocks(u64 blocknr, u64 other, u32 blocksize)
1498
{
1499
	if (blocknr < other && other - (blocknr + blocksize) < 32768)
1500
		return 1;
1501
	if (blocknr > other && blocknr - (other + blocksize) < 32768)
1502 1503 1504 1505
		return 1;
	return 0;
}

1506 1507 1508
/*
 * compare two keys in a memcmp fashion
 */
1509 1510
static int comp_keys(const struct btrfs_disk_key *disk,
		     const struct btrfs_key *k2)
1511 1512 1513 1514 1515
{
	struct btrfs_key k1;

	btrfs_disk_key_to_cpu(&k1, disk);

1516
	return btrfs_comp_cpu_keys(&k1, k2);
1517 1518
}

1519 1520 1521
/*
 * same as comp_keys only with two btrfs_key's
 */
1522
int btrfs_comp_cpu_keys(const struct btrfs_key *k1, const struct btrfs_key *k2)
1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537
{
	if (k1->objectid > k2->objectid)
		return 1;
	if (k1->objectid < k2->objectid)
		return -1;
	if (k1->type > k2->type)
		return 1;
	if (k1->type < k2->type)
		return -1;
	if (k1->offset > k2->offset)
		return 1;
	if (k1->offset < k2->offset)
		return -1;
	return 0;
}
1538

C
Chris Mason 已提交
1539 1540 1541 1542 1543
/*
 * this is used by the defrag code to go through all the
 * leaves pointed to by a node and reallocate them so that
 * disk order is close to key order
 */
1544
int btrfs_realloc_node(struct btrfs_trans_handle *trans,
1545
		       struct btrfs_root *root, struct extent_buffer *parent,
1546
		       int start_slot, u64 *last_ret,
1547
		       struct btrfs_key *progress)
1548
{
1549
	struct btrfs_fs_info *fs_info = root->fs_info;
1550
	struct extent_buffer *cur;
1551
	u64 blocknr;
1552
	u64 gen;
1553 1554
	u64 search_start = *last_ret;
	u64 last_block = 0;
1555 1556 1557 1558 1559
	u64 other;
	u32 parent_nritems;
	int end_slot;
	int i;
	int err = 0;
1560
	int parent_level;
1561 1562
	int uptodate;
	u32 blocksize;
1563 1564
	int progress_passed = 0;
	struct btrfs_disk_key disk_key;
1565

1566 1567
	parent_level = btrfs_header_level(parent);

1568 1569
	WARN_ON(trans->transaction != fs_info->running_transaction);
	WARN_ON(trans->transid != fs_info->generation);
1570

1571
	parent_nritems = btrfs_header_nritems(parent);
1572
	blocksize = fs_info->nodesize;
1573
	end_slot = parent_nritems - 1;
1574

1575
	if (parent_nritems <= 1)
1576 1577
		return 0;

1578 1579
	btrfs_set_lock_blocking(parent);

1580
	for (i = start_slot; i <= end_slot; i++) {
1581
		struct btrfs_key first_key;
1582
		int close = 1;
1583

1584 1585 1586 1587 1588
		btrfs_node_key(parent, &disk_key, i);
		if (!progress_passed && comp_keys(&disk_key, progress) < 0)
			continue;

		progress_passed = 1;
1589
		blocknr = btrfs_node_blockptr(parent, i);
1590
		gen = btrfs_node_ptr_generation(parent, i);
1591
		btrfs_node_key_to_cpu(parent, &first_key, i);
1592 1593
		if (last_block == 0)
			last_block = blocknr;
1594

1595
		if (i > 0) {
1596 1597
			other = btrfs_node_blockptr(parent, i - 1);
			close = close_blocks(blocknr, other, blocksize);
1598
		}
1599
		if (!close && i < end_slot) {
1600 1601
			other = btrfs_node_blockptr(parent, i + 1);
			close = close_blocks(blocknr, other, blocksize);
1602
		}
1603 1604
		if (close) {
			last_block = blocknr;
1605
			continue;
1606
		}
1607

1608
		cur = find_extent_buffer(fs_info, blocknr);
1609
		if (cur)
1610
			uptodate = btrfs_buffer_uptodate(cur, gen, 0);
1611 1612
		else
			uptodate = 0;
1613
		if (!cur || !uptodate) {
1614
			if (!cur) {
1615 1616 1617
				cur = read_tree_block(fs_info, blocknr, gen,
						      parent_level - 1,
						      &first_key);
1618 1619 1620
				if (IS_ERR(cur)) {
					return PTR_ERR(cur);
				} else if (!extent_buffer_uptodate(cur)) {
1621
					free_extent_buffer(cur);
1622
					return -EIO;
1623
				}
1624
			} else if (!uptodate) {
1625 1626
				err = btrfs_read_buffer(cur, gen,
						parent_level - 1,&first_key);
1627 1628 1629 1630
				if (err) {
					free_extent_buffer(cur);
					return err;
				}
1631
			}
1632
		}
1633
		if (search_start == 0)
1634
			search_start = last_block;
1635

1636
		btrfs_tree_lock(cur);
1637
		btrfs_set_lock_blocking(cur);
1638
		err = __btrfs_cow_block(trans, root, cur, parent, i,
1639
					&cur, search_start,
1640
					min(16 * blocksize,
1641
					    (end_slot - i) * blocksize));
Y
Yan 已提交
1642
		if (err) {
1643
			btrfs_tree_unlock(cur);
1644
			free_extent_buffer(cur);
1645
			break;
Y
Yan 已提交
1646
		}
1647 1648
		search_start = cur->start;
		last_block = cur->start;
1649
		*last_ret = search_start;
1650 1651
		btrfs_tree_unlock(cur);
		free_extent_buffer(cur);
1652 1653 1654 1655
	}
	return err;
}

C
Chris Mason 已提交
1656
/*
1657 1658 1659
 * search for key in the extent_buffer.  The items start at offset p,
 * and they are item_size apart.  There are 'max' items in p.
 *
C
Chris Mason 已提交
1660 1661 1662 1663 1664 1665
 * the slot in the array is returned via slot, and it points to
 * the place where you would insert key if it is not found in
 * the array.
 *
 * slot may point to max if the key is bigger than all of the keys
 */
1666
static noinline int generic_bin_search(struct extent_buffer *eb,
1667 1668
				       unsigned long p, int item_size,
				       const struct btrfs_key *key,
1669
				       int max, int *slot)
1670 1671 1672 1673 1674
{
	int low = 0;
	int high = max;
	int mid;
	int ret;
1675
	struct btrfs_disk_key *tmp = NULL;
1676 1677 1678 1679 1680
	struct btrfs_disk_key unaligned;
	unsigned long offset;
	char *kaddr = NULL;
	unsigned long map_start = 0;
	unsigned long map_len = 0;
1681
	int err;
1682

1683 1684 1685 1686 1687 1688 1689 1690
	if (low > high) {
		btrfs_err(eb->fs_info,
		 "%s: low (%d) > high (%d) eb %llu owner %llu level %d",
			  __func__, low, high, eb->start,
			  btrfs_header_owner(eb), btrfs_header_level(eb));
		return -EINVAL;
	}

C
Chris Mason 已提交
1691
	while (low < high) {
1692
		mid = (low + high) / 2;
1693 1694
		offset = p + mid * item_size;

1695
		if (!kaddr || offset < map_start ||
1696 1697
		    (offset + sizeof(struct btrfs_disk_key)) >
		    map_start + map_len) {
1698 1699

			err = map_private_extent_buffer(eb, offset,
1700
						sizeof(struct btrfs_disk_key),
1701
						&kaddr, &map_start, &map_len);
1702 1703 1704 1705

			if (!err) {
				tmp = (struct btrfs_disk_key *)(kaddr + offset -
							map_start);
1706
			} else if (err == 1) {
1707 1708 1709
				read_extent_buffer(eb, &unaligned,
						   offset, sizeof(unaligned));
				tmp = &unaligned;
1710 1711
			} else {
				return err;
1712
			}
1713 1714 1715 1716 1717

		} else {
			tmp = (struct btrfs_disk_key *)(kaddr + offset -
							map_start);
		}
1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732
		ret = comp_keys(tmp, key);

		if (ret < 0)
			low = mid + 1;
		else if (ret > 0)
			high = mid;
		else {
			*slot = mid;
			return 0;
		}
	}
	*slot = low;
	return 1;
}

C
Chris Mason 已提交
1733 1734 1735 1736
/*
 * simple bin_search frontend that does the right thing for
 * leaves vs nodes
 */
1737 1738
int btrfs_bin_search(struct extent_buffer *eb, const struct btrfs_key *key,
		     int level, int *slot)
1739
{
1740
	if (level == 0)
1741 1742
		return generic_bin_search(eb,
					  offsetof(struct btrfs_leaf, items),
C
Chris Mason 已提交
1743
					  sizeof(struct btrfs_item),
1744
					  key, btrfs_header_nritems(eb),
1745
					  slot);
1746
	else
1747 1748
		return generic_bin_search(eb,
					  offsetof(struct btrfs_node, ptrs),
C
Chris Mason 已提交
1749
					  sizeof(struct btrfs_key_ptr),
1750
					  key, btrfs_header_nritems(eb),
1751
					  slot);
1752 1753
}

1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769
static void root_add_used(struct btrfs_root *root, u32 size)
{
	spin_lock(&root->accounting_lock);
	btrfs_set_root_used(&root->root_item,
			    btrfs_root_used(&root->root_item) + size);
	spin_unlock(&root->accounting_lock);
}

static void root_sub_used(struct btrfs_root *root, u32 size)
{
	spin_lock(&root->accounting_lock);
	btrfs_set_root_used(&root->root_item,
			    btrfs_root_used(&root->root_item) - size);
	spin_unlock(&root->accounting_lock);
}

C
Chris Mason 已提交
1770 1771 1772
/* given a node and slot number, this reads the blocks it points to.  The
 * extent buffer is returned with a reference taken (but unlocked).
 */
1773 1774 1775
static noinline struct extent_buffer *
read_node_slot(struct btrfs_fs_info *fs_info, struct extent_buffer *parent,
	       int slot)
1776
{
1777
	int level = btrfs_header_level(parent);
1778
	struct extent_buffer *eb;
1779
	struct btrfs_key first_key;
1780

1781 1782
	if (slot < 0 || slot >= btrfs_header_nritems(parent))
		return ERR_PTR(-ENOENT);
1783 1784 1785

	BUG_ON(level == 0);

1786
	btrfs_node_key_to_cpu(parent, &first_key, slot);
1787
	eb = read_tree_block(fs_info, btrfs_node_blockptr(parent, slot),
1788 1789
			     btrfs_node_ptr_generation(parent, slot),
			     level - 1, &first_key);
1790 1791 1792
	if (!IS_ERR(eb) && !extent_buffer_uptodate(eb)) {
		free_extent_buffer(eb);
		eb = ERR_PTR(-EIO);
1793 1794 1795
	}

	return eb;
1796 1797
}

C
Chris Mason 已提交
1798 1799 1800 1801 1802
/*
 * node level balancing, used to make sure nodes are in proper order for
 * item deletion.  We balance from the top down, so we have to make sure
 * that a deletion won't leave an node completely empty later on.
 */
1803
static noinline int balance_level(struct btrfs_trans_handle *trans,
1804 1805
			 struct btrfs_root *root,
			 struct btrfs_path *path, int level)
1806
{
1807
	struct btrfs_fs_info *fs_info = root->fs_info;
1808 1809 1810 1811
	struct extent_buffer *right = NULL;
	struct extent_buffer *mid;
	struct extent_buffer *left = NULL;
	struct extent_buffer *parent = NULL;
1812 1813 1814 1815
	int ret = 0;
	int wret;
	int pslot;
	int orig_slot = path->slots[level];
1816
	u64 orig_ptr;
1817

1818
	ASSERT(level > 0);
1819

1820
	mid = path->nodes[level];
1821

1822 1823
	WARN_ON(path->locks[level] != BTRFS_WRITE_LOCK &&
		path->locks[level] != BTRFS_WRITE_LOCK_BLOCKING);
1824 1825
	WARN_ON(btrfs_header_generation(mid) != trans->transid);

1826
	orig_ptr = btrfs_node_blockptr(mid, orig_slot);
1827

L
Li Zefan 已提交
1828
	if (level < BTRFS_MAX_LEVEL - 1) {
1829
		parent = path->nodes[level + 1];
L
Li Zefan 已提交
1830 1831
		pslot = path->slots[level + 1];
	}
1832

C
Chris Mason 已提交
1833 1834 1835 1836
	/*
	 * deal with the case where there is only one pointer in the root
	 * by promoting the node below to a root
	 */
1837 1838
	if (!parent) {
		struct extent_buffer *child;
1839

1840
		if (btrfs_header_nritems(mid) != 1)
1841 1842 1843
			return 0;

		/* promote the child to a root */
1844
		child = read_node_slot(fs_info, mid, 0);
1845 1846
		if (IS_ERR(child)) {
			ret = PTR_ERR(child);
1847
			btrfs_handle_fs_error(fs_info, ret, NULL);
1848 1849 1850
			goto enospc;
		}

1851
		btrfs_tree_lock(child);
1852
		btrfs_set_lock_blocking(child);
1853
		ret = btrfs_cow_block(trans, root, child, mid, 0, &child);
1854 1855 1856 1857 1858
		if (ret) {
			btrfs_tree_unlock(child);
			free_extent_buffer(child);
			goto enospc;
		}
1859

1860 1861
		ret = tree_mod_log_insert_root(root->node, child, 1);
		BUG_ON(ret < 0);
1862
		rcu_assign_pointer(root->node, child);
1863

1864
		add_root_to_dirty_list(root);
1865
		btrfs_tree_unlock(child);
1866

1867
		path->locks[level] = 0;
1868
		path->nodes[level] = NULL;
1869
		clean_tree_block(fs_info, mid);
1870
		btrfs_tree_unlock(mid);
1871
		/* once for the path */
1872
		free_extent_buffer(mid);
1873 1874

		root_sub_used(root, mid->len);
1875
		btrfs_free_tree_block(trans, root, mid, 0, 1);
1876
		/* once for the root ptr */
1877
		free_extent_buffer_stale(mid);
1878
		return 0;
1879
	}
1880
	if (btrfs_header_nritems(mid) >
1881
	    BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 4)
1882 1883
		return 0;

1884
	left = read_node_slot(fs_info, parent, pslot - 1);
1885 1886 1887
	if (IS_ERR(left))
		left = NULL;

1888
	if (left) {
1889
		btrfs_tree_lock(left);
1890
		btrfs_set_lock_blocking(left);
1891
		wret = btrfs_cow_block(trans, root, left,
1892
				       parent, pslot - 1, &left);
1893 1894 1895 1896
		if (wret) {
			ret = wret;
			goto enospc;
		}
1897
	}
1898

1899
	right = read_node_slot(fs_info, parent, pslot + 1);
1900 1901 1902
	if (IS_ERR(right))
		right = NULL;

1903
	if (right) {
1904
		btrfs_tree_lock(right);
1905
		btrfs_set_lock_blocking(right);
1906
		wret = btrfs_cow_block(trans, root, right,
1907
				       parent, pslot + 1, &right);
1908 1909 1910 1911 1912 1913 1914
		if (wret) {
			ret = wret;
			goto enospc;
		}
	}

	/* first, try to make some room in the middle buffer */
1915 1916
	if (left) {
		orig_slot += btrfs_header_nritems(left);
1917
		wret = push_node_left(trans, fs_info, left, mid, 1);
1918 1919
		if (wret < 0)
			ret = wret;
1920
	}
1921 1922 1923 1924

	/*
	 * then try to empty the right most buffer into the middle
	 */
1925
	if (right) {
1926
		wret = push_node_left(trans, fs_info, mid, right, 1);
1927
		if (wret < 0 && wret != -ENOSPC)
1928
			ret = wret;
1929
		if (btrfs_header_nritems(right) == 0) {
1930
			clean_tree_block(fs_info, right);
1931
			btrfs_tree_unlock(right);
1932
			del_ptr(root, path, level + 1, pslot + 1);
1933
			root_sub_used(root, right->len);
1934
			btrfs_free_tree_block(trans, root, right, 0, 1);
1935
			free_extent_buffer_stale(right);
1936
			right = NULL;
1937
		} else {
1938 1939
			struct btrfs_disk_key right_key;
			btrfs_node_key(right, &right_key, 0);
1940 1941 1942
			ret = tree_mod_log_insert_key(parent, pslot + 1,
					MOD_LOG_KEY_REPLACE, GFP_NOFS);
			BUG_ON(ret < 0);
1943 1944
			btrfs_set_node_key(parent, &right_key, pslot + 1);
			btrfs_mark_buffer_dirty(parent);
1945 1946
		}
	}
1947
	if (btrfs_header_nritems(mid) == 1) {
1948 1949 1950 1951 1952 1953 1954 1955 1956
		/*
		 * we're not allowed to leave a node with one item in the
		 * tree during a delete.  A deletion from lower in the tree
		 * could try to delete the only pointer in this node.
		 * So, pull some keys from the left.
		 * There has to be a left pointer at this point because
		 * otherwise we would have pulled some pointers from the
		 * right
		 */
1957 1958
		if (!left) {
			ret = -EROFS;
1959
			btrfs_handle_fs_error(fs_info, ret, NULL);
1960 1961
			goto enospc;
		}
1962
		wret = balance_node_right(trans, fs_info, mid, left);
1963
		if (wret < 0) {
1964
			ret = wret;
1965 1966
			goto enospc;
		}
1967
		if (wret == 1) {
1968
			wret = push_node_left(trans, fs_info, left, mid, 1);
1969 1970 1971
			if (wret < 0)
				ret = wret;
		}
1972 1973
		BUG_ON(wret == 1);
	}
1974
	if (btrfs_header_nritems(mid) == 0) {
1975
		clean_tree_block(fs_info, mid);
1976
		btrfs_tree_unlock(mid);
1977
		del_ptr(root, path, level + 1, pslot);
1978
		root_sub_used(root, mid->len);
1979
		btrfs_free_tree_block(trans, root, mid, 0, 1);
1980
		free_extent_buffer_stale(mid);
1981
		mid = NULL;
1982 1983
	} else {
		/* update the parent key to reflect our changes */
1984 1985
		struct btrfs_disk_key mid_key;
		btrfs_node_key(mid, &mid_key, 0);
1986 1987 1988
		ret = tree_mod_log_insert_key(parent, pslot,
				MOD_LOG_KEY_REPLACE, GFP_NOFS);
		BUG_ON(ret < 0);
1989 1990
		btrfs_set_node_key(parent, &mid_key, pslot);
		btrfs_mark_buffer_dirty(parent);
1991
	}
1992

1993
	/* update the path */
1994 1995 1996
	if (left) {
		if (btrfs_header_nritems(left) > orig_slot) {
			extent_buffer_get(left);
1997
			/* left was locked after cow */
1998
			path->nodes[level] = left;
1999 2000
			path->slots[level + 1] -= 1;
			path->slots[level] = orig_slot;
2001 2002
			if (mid) {
				btrfs_tree_unlock(mid);
2003
				free_extent_buffer(mid);
2004
			}
2005
		} else {
2006
			orig_slot -= btrfs_header_nritems(left);
2007 2008 2009
			path->slots[level] = orig_slot;
		}
	}
2010
	/* double check we haven't messed things up */
C
Chris Mason 已提交
2011
	if (orig_ptr !=
2012
	    btrfs_node_blockptr(path->nodes[level], path->slots[level]))
2013
		BUG();
2014
enospc:
2015 2016
	if (right) {
		btrfs_tree_unlock(right);
2017
		free_extent_buffer(right);
2018 2019 2020 2021
	}
	if (left) {
		if (path->nodes[level] != left)
			btrfs_tree_unlock(left);
2022
		free_extent_buffer(left);
2023
	}
2024 2025 2026
	return ret;
}

C
Chris Mason 已提交
2027 2028 2029 2030
/* Node balancing for insertion.  Here we only split or push nodes around
 * when they are completely full.  This is also done top down, so we
 * have to be pessimistic.
 */
C
Chris Mason 已提交
2031
static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans,
2032 2033
					  struct btrfs_root *root,
					  struct btrfs_path *path, int level)
2034
{
2035
	struct btrfs_fs_info *fs_info = root->fs_info;
2036 2037 2038 2039
	struct extent_buffer *right = NULL;
	struct extent_buffer *mid;
	struct extent_buffer *left = NULL;
	struct extent_buffer *parent = NULL;
2040 2041 2042 2043 2044 2045 2046 2047
	int ret = 0;
	int wret;
	int pslot;
	int orig_slot = path->slots[level];

	if (level == 0)
		return 1;

2048
	mid = path->nodes[level];
2049
	WARN_ON(btrfs_header_generation(mid) != trans->transid);
2050

L
Li Zefan 已提交
2051
	if (level < BTRFS_MAX_LEVEL - 1) {
2052
		parent = path->nodes[level + 1];
L
Li Zefan 已提交
2053 2054
		pslot = path->slots[level + 1];
	}
2055

2056
	if (!parent)
2057 2058
		return 1;

2059
	left = read_node_slot(fs_info, parent, pslot - 1);
2060 2061
	if (IS_ERR(left))
		left = NULL;
2062 2063

	/* first, try to make some room in the middle buffer */
2064
	if (left) {
2065
		u32 left_nr;
2066 2067

		btrfs_tree_lock(left);
2068 2069
		btrfs_set_lock_blocking(left);

2070
		left_nr = btrfs_header_nritems(left);
2071
		if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) {
C
Chris Mason 已提交
2072 2073
			wret = 1;
		} else {
2074
			ret = btrfs_cow_block(trans, root, left, parent,
2075
					      pslot - 1, &left);
2076 2077 2078
			if (ret)
				wret = 1;
			else {
2079
				wret = push_node_left(trans, fs_info,
2080
						      left, mid, 0);
2081
			}
C
Chris Mason 已提交
2082
		}
2083 2084 2085
		if (wret < 0)
			ret = wret;
		if (wret == 0) {
2086
			struct btrfs_disk_key disk_key;
2087
			orig_slot += left_nr;
2088
			btrfs_node_key(mid, &disk_key, 0);
2089 2090 2091
			ret = tree_mod_log_insert_key(parent, pslot,
					MOD_LOG_KEY_REPLACE, GFP_NOFS);
			BUG_ON(ret < 0);
2092 2093 2094 2095
			btrfs_set_node_key(parent, &disk_key, pslot);
			btrfs_mark_buffer_dirty(parent);
			if (btrfs_header_nritems(left) > orig_slot) {
				path->nodes[level] = left;
2096 2097
				path->slots[level + 1] -= 1;
				path->slots[level] = orig_slot;
2098
				btrfs_tree_unlock(mid);
2099
				free_extent_buffer(mid);
2100 2101
			} else {
				orig_slot -=
2102
					btrfs_header_nritems(left);
2103
				path->slots[level] = orig_slot;
2104
				btrfs_tree_unlock(left);
2105
				free_extent_buffer(left);
2106 2107 2108
			}
			return 0;
		}
2109
		btrfs_tree_unlock(left);
2110
		free_extent_buffer(left);
2111
	}
2112
	right = read_node_slot(fs_info, parent, pslot + 1);
2113 2114
	if (IS_ERR(right))
		right = NULL;
2115 2116 2117 2118

	/*
	 * then try to empty the right most buffer into the middle
	 */
2119
	if (right) {
C
Chris Mason 已提交
2120
		u32 right_nr;
2121

2122
		btrfs_tree_lock(right);
2123 2124
		btrfs_set_lock_blocking(right);

2125
		right_nr = btrfs_header_nritems(right);
2126
		if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) {
C
Chris Mason 已提交
2127 2128
			wret = 1;
		} else {
2129 2130
			ret = btrfs_cow_block(trans, root, right,
					      parent, pslot + 1,
2131
					      &right);
2132 2133 2134
			if (ret)
				wret = 1;
			else {
2135
				wret = balance_node_right(trans, fs_info,
2136
							  right, mid);
2137
			}
C
Chris Mason 已提交
2138
		}
2139 2140 2141
		if (wret < 0)
			ret = wret;
		if (wret == 0) {
2142 2143 2144
			struct btrfs_disk_key disk_key;

			btrfs_node_key(right, &disk_key, 0);
2145 2146 2147
			ret = tree_mod_log_insert_key(parent, pslot + 1,
					MOD_LOG_KEY_REPLACE, GFP_NOFS);
			BUG_ON(ret < 0);
2148 2149 2150 2151 2152
			btrfs_set_node_key(parent, &disk_key, pslot + 1);
			btrfs_mark_buffer_dirty(parent);

			if (btrfs_header_nritems(mid) <= orig_slot) {
				path->nodes[level] = right;
2153 2154
				path->slots[level + 1] += 1;
				path->slots[level] = orig_slot -
2155
					btrfs_header_nritems(mid);
2156
				btrfs_tree_unlock(mid);
2157
				free_extent_buffer(mid);
2158
			} else {
2159
				btrfs_tree_unlock(right);
2160
				free_extent_buffer(right);
2161 2162 2163
			}
			return 0;
		}
2164
		btrfs_tree_unlock(right);
2165
		free_extent_buffer(right);
2166 2167 2168 2169
	}
	return 1;
}

2170
/*
C
Chris Mason 已提交
2171 2172
 * readahead one full node of leaves, finding things that are close
 * to the block in 'slot', and triggering ra on them.
2173
 */
2174
static void reada_for_search(struct btrfs_fs_info *fs_info,
2175 2176
			     struct btrfs_path *path,
			     int level, int slot, u64 objectid)
2177
{
2178
	struct extent_buffer *node;
2179
	struct btrfs_disk_key disk_key;
2180 2181
	u32 nritems;
	u64 search;
2182
	u64 target;
2183
	u64 nread = 0;
2184
	struct extent_buffer *eb;
2185 2186 2187
	u32 nr;
	u32 blocksize;
	u32 nscan = 0;
2188

2189
	if (level != 1)
2190 2191 2192
		return;

	if (!path->nodes[level])
2193 2194
		return;

2195
	node = path->nodes[level];
2196

2197
	search = btrfs_node_blockptr(node, slot);
2198 2199
	blocksize = fs_info->nodesize;
	eb = find_extent_buffer(fs_info, search);
2200 2201
	if (eb) {
		free_extent_buffer(eb);
2202 2203 2204
		return;
	}

2205
	target = search;
2206

2207
	nritems = btrfs_header_nritems(node);
2208
	nr = slot;
2209

C
Chris Mason 已提交
2210
	while (1) {
2211
		if (path->reada == READA_BACK) {
2212 2213 2214
			if (nr == 0)
				break;
			nr--;
2215
		} else if (path->reada == READA_FORWARD) {
2216 2217 2218
			nr++;
			if (nr >= nritems)
				break;
2219
		}
2220
		if (path->reada == READA_BACK && objectid) {
2221 2222 2223 2224
			btrfs_node_key(node, &disk_key, nr);
			if (btrfs_disk_key_objectid(&disk_key) != objectid)
				break;
		}
2225
		search = btrfs_node_blockptr(node, nr);
2226 2227
		if ((search <= target && target - search <= 65536) ||
		    (search > target && search - target <= 65536)) {
2228
			readahead_tree_block(fs_info, search);
2229 2230 2231
			nread += blocksize;
		}
		nscan++;
2232
		if ((nread > 65536 || nscan > 32))
2233
			break;
2234 2235
	}
}
2236

2237
static noinline void reada_for_balance(struct btrfs_fs_info *fs_info,
J
Josef Bacik 已提交
2238
				       struct btrfs_path *path, int level)
2239 2240 2241 2242 2243 2244 2245 2246 2247
{
	int slot;
	int nritems;
	struct extent_buffer *parent;
	struct extent_buffer *eb;
	u64 gen;
	u64 block1 = 0;
	u64 block2 = 0;

2248
	parent = path->nodes[level + 1];
2249
	if (!parent)
J
Josef Bacik 已提交
2250
		return;
2251 2252

	nritems = btrfs_header_nritems(parent);
2253
	slot = path->slots[level + 1];
2254 2255 2256 2257

	if (slot > 0) {
		block1 = btrfs_node_blockptr(parent, slot - 1);
		gen = btrfs_node_ptr_generation(parent, slot - 1);
2258
		eb = find_extent_buffer(fs_info, block1);
2259 2260 2261 2262 2263 2264
		/*
		 * if we get -eagain from btrfs_buffer_uptodate, we
		 * don't want to return eagain here.  That will loop
		 * forever
		 */
		if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
2265 2266 2267
			block1 = 0;
		free_extent_buffer(eb);
	}
2268
	if (slot + 1 < nritems) {
2269 2270
		block2 = btrfs_node_blockptr(parent, slot + 1);
		gen = btrfs_node_ptr_generation(parent, slot + 1);
2271
		eb = find_extent_buffer(fs_info, block2);
2272
		if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
2273 2274 2275
			block2 = 0;
		free_extent_buffer(eb);
	}
2276

J
Josef Bacik 已提交
2277
	if (block1)
2278
		readahead_tree_block(fs_info, block1);
J
Josef Bacik 已提交
2279
	if (block2)
2280
		readahead_tree_block(fs_info, block2);
2281 2282 2283
}


C
Chris Mason 已提交
2284
/*
C
Chris Mason 已提交
2285 2286 2287 2288
 * when we walk down the tree, it is usually safe to unlock the higher layers
 * in the tree.  The exceptions are when our path goes through slot 0, because
 * operations on the tree might require changing key pointers higher up in the
 * tree.
C
Chris Mason 已提交
2289
 *
C
Chris Mason 已提交
2290 2291 2292
 * callers might also have set path->keep_locks, which tells this code to keep
 * the lock if the path points to the last slot in the block.  This is part of
 * walking through the tree, and selecting the next slot in the higher block.
C
Chris Mason 已提交
2293
 *
C
Chris Mason 已提交
2294 2295
 * lowest_unlock sets the lowest level in the tree we're allowed to unlock.  so
 * if lowest_unlock is 1, level 0 won't be unlocked
C
Chris Mason 已提交
2296
 */
2297
static noinline void unlock_up(struct btrfs_path *path, int level,
2298 2299
			       int lowest_unlock, int min_write_lock_level,
			       int *write_lock_level)
2300 2301 2302
{
	int i;
	int skip_level = level;
2303
	int no_skips = 0;
2304 2305 2306 2307 2308 2309 2310
	struct extent_buffer *t;

	for (i = level; i < BTRFS_MAX_LEVEL; i++) {
		if (!path->nodes[i])
			break;
		if (!path->locks[i])
			break;
2311
		if (!no_skips && path->slots[i] == 0) {
2312 2313 2314
			skip_level = i + 1;
			continue;
		}
2315
		if (!no_skips && path->keep_locks) {
2316 2317 2318
			u32 nritems;
			t = path->nodes[i];
			nritems = btrfs_header_nritems(t);
2319
			if (nritems < 1 || path->slots[i] >= nritems - 1) {
2320 2321 2322 2323
				skip_level = i + 1;
				continue;
			}
		}
2324 2325 2326
		if (skip_level < i && i >= lowest_unlock)
			no_skips = 1;

2327
		t = path->nodes[i];
2328
		if (i >= lowest_unlock && i > skip_level) {
2329
			btrfs_tree_unlock_rw(t, path->locks[i]);
2330
			path->locks[i] = 0;
2331 2332 2333 2334 2335
			if (write_lock_level &&
			    i > min_write_lock_level &&
			    i <= *write_lock_level) {
				*write_lock_level = i - 1;
			}
2336 2337 2338 2339
		}
	}
}

2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352
/*
 * This releases any locks held in the path starting at level and
 * going all the way up to the root.
 *
 * btrfs_search_slot will keep the lock held on higher nodes in a few
 * corner cases, such as COW of the block at slot zero in the node.  This
 * ignores those rules, and it should only be called when there are no
 * more updates to be done higher up in the tree.
 */
noinline void btrfs_unlock_up_safe(struct btrfs_path *path, int level)
{
	int i;

J
Josef Bacik 已提交
2353
	if (path->keep_locks)
2354 2355 2356 2357
		return;

	for (i = level; i < BTRFS_MAX_LEVEL; i++) {
		if (!path->nodes[i])
2358
			continue;
2359
		if (!path->locks[i])
2360
			continue;
2361
		btrfs_tree_unlock_rw(path->nodes[i], path->locks[i]);
2362 2363 2364 2365
		path->locks[i] = 0;
	}
}

2366 2367 2368 2369 2370 2371 2372 2373 2374
/*
 * helper function for btrfs_search_slot.  The goal is to find a block
 * in cache without setting the path to blocking.  If we find the block
 * we return zero and the path is unchanged.
 *
 * If we can't find the block, we set the path blocking and do some
 * reada.  -EAGAIN is returned and the search must be repeated.
 */
static int
2375 2376
read_block_for_search(struct btrfs_root *root, struct btrfs_path *p,
		      struct extent_buffer **eb_ret, int level, int slot,
2377
		      const struct btrfs_key *key)
2378
{
2379
	struct btrfs_fs_info *fs_info = root->fs_info;
2380 2381 2382 2383
	u64 blocknr;
	u64 gen;
	struct extent_buffer *b = *eb_ret;
	struct extent_buffer *tmp;
2384
	struct btrfs_key first_key;
2385
	int ret;
2386
	int parent_level;
2387 2388 2389

	blocknr = btrfs_node_blockptr(b, slot);
	gen = btrfs_node_ptr_generation(b, slot);
2390 2391
	parent_level = btrfs_header_level(b);
	btrfs_node_key_to_cpu(b, &first_key, slot);
2392

2393
	tmp = find_extent_buffer(fs_info, blocknr);
2394
	if (tmp) {
2395
		/* first we do an atomic uptodate check */
2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409
		if (btrfs_buffer_uptodate(tmp, gen, 1) > 0) {
			*eb_ret = tmp;
			return 0;
		}

		/* the pages were up to date, but we failed
		 * the generation number check.  Do a full
		 * read for the generation number that is correct.
		 * We must do this without dropping locks so
		 * we can trust our generation number
		 */
		btrfs_set_path_blocking(p);

		/* now we're allowed to do a blocking uptodate check */
2410
		ret = btrfs_read_buffer(tmp, gen, parent_level - 1, &first_key);
2411 2412 2413
		if (!ret) {
			*eb_ret = tmp;
			return 0;
2414
		}
2415 2416 2417
		free_extent_buffer(tmp);
		btrfs_release_path(p);
		return -EIO;
2418 2419 2420 2421 2422
	}

	/*
	 * reduce lock contention at high levels
	 * of the btree by dropping locks before
2423 2424 2425
	 * we read.  Don't release the lock on the current
	 * level because we need to walk this node to figure
	 * out which blocks to read.
2426
	 */
2427 2428 2429
	btrfs_unlock_up_safe(p, level + 1);
	btrfs_set_path_blocking(p);

2430
	if (p->reada != READA_NONE)
2431
		reada_for_search(fs_info, p, level, slot, key->objectid);
2432

2433
	ret = -EAGAIN;
2434
	tmp = read_tree_block(fs_info, blocknr, gen, parent_level - 1,
2435
			      &first_key);
2436
	if (!IS_ERR(tmp)) {
2437 2438 2439 2440 2441 2442
		/*
		 * If the read above didn't mark this buffer up to date,
		 * it will never end up being up to date.  Set ret to EIO now
		 * and give up so that our caller doesn't loop forever
		 * on our EAGAINs.
		 */
2443
		if (!extent_buffer_uptodate(tmp))
2444
			ret = -EIO;
2445
		free_extent_buffer(tmp);
2446 2447
	} else {
		ret = PTR_ERR(tmp);
2448
	}
2449 2450

	btrfs_release_path(p);
2451
	return ret;
2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465
}

/*
 * helper function for btrfs_search_slot.  This does all of the checks
 * for node-level blocks and does any balancing required based on
 * the ins_len.
 *
 * If no extra work was required, zero is returned.  If we had to
 * drop the path, -EAGAIN is returned and btrfs_search_slot must
 * start over
 */
static int
setup_nodes_for_search(struct btrfs_trans_handle *trans,
		       struct btrfs_root *root, struct btrfs_path *p,
2466 2467
		       struct extent_buffer *b, int level, int ins_len,
		       int *write_lock_level)
2468
{
2469
	struct btrfs_fs_info *fs_info = root->fs_info;
2470
	int ret;
2471

2472
	if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >=
2473
	    BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3) {
2474 2475
		int sret;

2476 2477 2478 2479 2480 2481
		if (*write_lock_level < level + 1) {
			*write_lock_level = level + 1;
			btrfs_release_path(p);
			goto again;
		}

2482
		btrfs_set_path_blocking(p);
2483
		reada_for_balance(fs_info, p, level);
2484
		sret = split_node(trans, root, p, level);
2485
		btrfs_clear_path_blocking(p, NULL, 0);
2486 2487 2488 2489 2490 2491 2492 2493

		BUG_ON(sret > 0);
		if (sret) {
			ret = sret;
			goto done;
		}
		b = p->nodes[level];
	} else if (ins_len < 0 && btrfs_header_nritems(b) <
2494
		   BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 2) {
2495 2496
		int sret;

2497 2498 2499 2500 2501 2502
		if (*write_lock_level < level + 1) {
			*write_lock_level = level + 1;
			btrfs_release_path(p);
			goto again;
		}

2503
		btrfs_set_path_blocking(p);
2504
		reada_for_balance(fs_info, p, level);
2505
		sret = balance_level(trans, root, p, level);
2506
		btrfs_clear_path_blocking(p, NULL, 0);
2507 2508 2509 2510 2511 2512 2513

		if (sret) {
			ret = sret;
			goto done;
		}
		b = p->nodes[level];
		if (!b) {
2514
			btrfs_release_path(p);
2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526
			goto again;
		}
		BUG_ON(btrfs_header_nritems(b) == 1);
	}
	return 0;

again:
	ret = -EAGAIN;
done:
	return ret;
}

2527
static void key_search_validate(struct extent_buffer *b,
2528
				const struct btrfs_key *key,
2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546
				int level)
{
#ifdef CONFIG_BTRFS_ASSERT
	struct btrfs_disk_key disk_key;

	btrfs_cpu_key_to_disk(&disk_key, key);

	if (level == 0)
		ASSERT(!memcmp_extent_buffer(b, &disk_key,
		    offsetof(struct btrfs_leaf, items[0].key),
		    sizeof(disk_key)));
	else
		ASSERT(!memcmp_extent_buffer(b, &disk_key,
		    offsetof(struct btrfs_node, ptrs[0].key),
		    sizeof(disk_key)));
#endif
}

2547
static int key_search(struct extent_buffer *b, const struct btrfs_key *key,
2548 2549 2550
		      int level, int *prev_cmp, int *slot)
{
	if (*prev_cmp != 0) {
2551
		*prev_cmp = btrfs_bin_search(b, key, level, slot);
2552 2553 2554 2555 2556 2557 2558 2559 2560
		return *prev_cmp;
	}

	key_search_validate(b, key, level);
	*slot = 0;

	return 0;
}

2561
int btrfs_find_item(struct btrfs_root *fs_root, struct btrfs_path *path,
2562 2563 2564 2565 2566 2567
		u64 iobjectid, u64 ioff, u8 key_type,
		struct btrfs_key *found_key)
{
	int ret;
	struct btrfs_key key;
	struct extent_buffer *eb;
2568 2569

	ASSERT(path);
2570
	ASSERT(found_key);
2571 2572 2573 2574 2575 2576

	key.type = key_type;
	key.objectid = iobjectid;
	key.offset = ioff;

	ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0);
2577
	if (ret < 0)
2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595
		return ret;

	eb = path->nodes[0];
	if (ret && path->slots[0] >= btrfs_header_nritems(eb)) {
		ret = btrfs_next_leaf(fs_root, path);
		if (ret)
			return ret;
		eb = path->nodes[0];
	}

	btrfs_item_key_to_cpu(eb, found_key, path->slots[0]);
	if (found_key->type != key.type ||
			found_key->objectid != key.objectid)
		return 1;

	return 0;
}

2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616
static struct extent_buffer *btrfs_search_slot_get_root(struct btrfs_root *root,
							struct btrfs_path *p,
							int write_lock_level)
{
	struct btrfs_fs_info *fs_info = root->fs_info;
	struct extent_buffer *b;
	int root_lock;
	int level = 0;

	/* We try very hard to do read locks on the root */
	root_lock = BTRFS_READ_LOCK;

	if (p->search_commit_root) {
		/* The commit roots are read only so we always do read locks */
		if (p->need_commit_sem)
			down_read(&fs_info->commit_root_sem);
		b = root->commit_root;
		extent_buffer_get(b);
		level = btrfs_header_level(b);
		if (p->need_commit_sem)
			up_read(&fs_info->commit_root_sem);
2617 2618 2619 2620 2621
		/*
		 * Ensure that all callers have set skip_locking when
		 * p->search_commit_root = 1.
		 */
		ASSERT(p->skip_locking == 1);
2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632

		goto out;
	}

	if (p->skip_locking) {
		b = btrfs_root_node(root);
		level = btrfs_header_level(b);
		goto out;
	}

	/*
2633 2634
	 * If the level is set to maximum, we can skip trying to get the read
	 * lock.
2635
	 */
2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649
	if (write_lock_level < BTRFS_MAX_LEVEL) {
		/*
		 * We don't know the level of the root node until we actually
		 * have it read locked
		 */
		b = btrfs_read_lock_root_node(root);
		level = btrfs_header_level(b);
		if (level > write_lock_level)
			goto out;

		/* Whoops, must trade for write lock */
		btrfs_tree_read_unlock(b);
		free_extent_buffer(b);
	}
2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667

	b = btrfs_lock_root_node(root);
	root_lock = BTRFS_WRITE_LOCK;

	/* The level might have changed, check again */
	level = btrfs_header_level(b);

out:
	p->nodes[level] = b;
	if (!p->skip_locking)
		p->locks[level] = root_lock;
	/*
	 * Callers are responsible for dropping b's references.
	 */
	return b;
}


C
Chris Mason 已提交
2668
/*
2669 2670
 * btrfs_search_slot - look for a key in a tree and perform necessary
 * modifications to preserve tree invariants.
C
Chris Mason 已提交
2671
 *
2672 2673 2674 2675 2676 2677 2678 2679
 * @trans:	Handle of transaction, used when modifying the tree
 * @p:		Holds all btree nodes along the search path
 * @root:	The root node of the tree
 * @key:	The key we are looking for
 * @ins_len:	Indicates purpose of search, for inserts it is 1, for
 *		deletions it's -1. 0 for plain searches
 * @cow:	boolean should CoW operations be performed. Must always be 1
 *		when modifying the tree.
C
Chris Mason 已提交
2680
 *
2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691
 * If @ins_len > 0, nodes and leaves will be split as we walk down the tree.
 * If @ins_len < 0, nodes will be merged as we walk down the tree (if possible)
 *
 * If @key is found, 0 is returned and you can find the item in the leaf level
 * of the path (level 0)
 *
 * If @key isn't found, 1 is returned and the leaf level of the path (level 0)
 * points to the slot where it should be inserted
 *
 * If an error is encountered while searching the tree a negative error number
 * is returned
C
Chris Mason 已提交
2692
 */
2693 2694 2695
int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root *root,
		      const struct btrfs_key *key, struct btrfs_path *p,
		      int ins_len, int cow)
2696
{
2697
	struct btrfs_fs_info *fs_info = root->fs_info;
2698
	struct extent_buffer *b;
2699 2700
	int slot;
	int ret;
2701
	int err;
2702
	int level;
2703
	int lowest_unlock = 1;
2704 2705
	/* everything at write_lock_level or lower must be write locked */
	int write_lock_level = 0;
2706
	u8 lowest_level = 0;
2707
	int min_write_lock_level;
2708
	int prev_cmp;
2709

2710
	lowest_level = p->lowest_level;
2711
	WARN_ON(lowest_level && ins_len > 0);
C
Chris Mason 已提交
2712
	WARN_ON(p->nodes[0] != NULL);
2713
	BUG_ON(!cow && ins_len);
2714

2715
	if (ins_len < 0) {
2716
		lowest_unlock = 2;
2717

2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733
		/* when we are removing items, we might have to go up to level
		 * two as we update tree pointers  Make sure we keep write
		 * for those levels as well
		 */
		write_lock_level = 2;
	} else if (ins_len > 0) {
		/*
		 * for inserting items, make sure we have a write lock on
		 * level 1 so we can update keys
		 */
		write_lock_level = 1;
	}

	if (!cow)
		write_lock_level = -1;

J
Josef Bacik 已提交
2734
	if (cow && (p->keep_locks || p->lowest_level))
2735 2736
		write_lock_level = BTRFS_MAX_LEVEL;

2737 2738
	min_write_lock_level = write_lock_level;

2739
again:
2740
	prev_cmp = -1;
2741
	b = btrfs_search_slot_get_root(root, p, write_lock_level);
2742

2743
	while (b) {
2744
		level = btrfs_header_level(b);
2745 2746 2747 2748 2749

		/*
		 * setup the path here so we can release it under lock
		 * contention with the cow code
		 */
C
Chris Mason 已提交
2750
		if (cow) {
2751 2752
			bool last_level = (level == (BTRFS_MAX_LEVEL - 1));

2753 2754 2755 2756 2757
			/*
			 * if we don't really need to cow this block
			 * then we don't want to set the path blocking,
			 * so we test it here
			 */
2758 2759
			if (!should_cow_block(trans, root, b)) {
				trans->dirty = true;
2760
				goto cow_done;
2761
			}
2762

2763 2764 2765 2766
			/*
			 * must have write locks on this node and the
			 * parent
			 */
2767 2768 2769 2770
			if (level > write_lock_level ||
			    (level + 1 > write_lock_level &&
			    level + 1 < BTRFS_MAX_LEVEL &&
			    p->nodes[level + 1])) {
2771 2772 2773 2774 2775
				write_lock_level = level + 1;
				btrfs_release_path(p);
				goto again;
			}

2776
			btrfs_set_path_blocking(p);
2777 2778 2779 2780 2781 2782 2783
			if (last_level)
				err = btrfs_cow_block(trans, root, b, NULL, 0,
						      &b);
			else
				err = btrfs_cow_block(trans, root, b,
						      p->nodes[level + 1],
						      p->slots[level + 1], &b);
2784 2785
			if (err) {
				ret = err;
2786
				goto done;
2787
			}
C
Chris Mason 已提交
2788
		}
2789
cow_done:
2790
		p->nodes[level] = b;
2791
		btrfs_clear_path_blocking(p, NULL, 0);
2792 2793 2794 2795 2796 2797 2798

		/*
		 * we have a lock on b and as long as we aren't changing
		 * the tree, there is no way to for the items in b to change.
		 * It is safe to drop the lock on our parent before we
		 * go through the expensive btree search on b.
		 *
2799 2800 2801 2802
		 * If we're inserting or deleting (ins_len != 0), then we might
		 * be changing slot zero, which may require changing the parent.
		 * So, we can't drop the lock until after we know which slot
		 * we're operating on.
2803
		 */
2804 2805 2806 2807 2808 2809 2810 2811
		if (!ins_len && !p->keep_locks) {
			int u = level + 1;

			if (u < BTRFS_MAX_LEVEL && p->locks[u]) {
				btrfs_tree_unlock_rw(p->nodes[u], p->locks[u]);
				p->locks[u] = 0;
			}
		}
2812

2813
		ret = key_search(b, key, level, &prev_cmp, &slot);
2814 2815
		if (ret < 0)
			goto done;
2816

2817
		if (level != 0) {
2818 2819 2820
			int dec = 0;
			if (ret && slot > 0) {
				dec = 1;
2821
				slot -= 1;
2822
			}
2823
			p->slots[level] = slot;
2824
			err = setup_nodes_for_search(trans, root, p, b, level,
2825
					     ins_len, &write_lock_level);
2826
			if (err == -EAGAIN)
2827
				goto again;
2828 2829
			if (err) {
				ret = err;
2830
				goto done;
2831
			}
2832 2833
			b = p->nodes[level];
			slot = p->slots[level];
2834

2835 2836 2837 2838 2839 2840
			/*
			 * slot 0 is special, if we change the key
			 * we have to update the parent pointer
			 * which means we must have a write lock
			 * on the parent
			 */
2841
			if (slot == 0 && ins_len &&
2842 2843 2844 2845 2846 2847
			    write_lock_level < level + 1) {
				write_lock_level = level + 1;
				btrfs_release_path(p);
				goto again;
			}

2848 2849
			unlock_up(p, level, lowest_unlock,
				  min_write_lock_level, &write_lock_level);
2850

2851
			if (level == lowest_level) {
2852 2853
				if (dec)
					p->slots[level]++;
2854
				goto done;
2855
			}
2856

2857
			err = read_block_for_search(root, p, &b, level,
2858
						    slot, key);
2859
			if (err == -EAGAIN)
2860
				goto again;
2861 2862
			if (err) {
				ret = err;
2863
				goto done;
2864
			}
2865

2866
			if (!p->skip_locking) {
2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877
				level = btrfs_header_level(b);
				if (level <= write_lock_level) {
					err = btrfs_try_tree_write_lock(b);
					if (!err) {
						btrfs_set_path_blocking(p);
						btrfs_tree_lock(b);
						btrfs_clear_path_blocking(p, b,
								  BTRFS_WRITE_LOCK);
					}
					p->locks[level] = BTRFS_WRITE_LOCK;
				} else {
2878
					err = btrfs_tree_read_lock_atomic(b);
2879 2880 2881 2882 2883 2884 2885
					if (!err) {
						btrfs_set_path_blocking(p);
						btrfs_tree_read_lock(b);
						btrfs_clear_path_blocking(p, b,
								  BTRFS_READ_LOCK);
					}
					p->locks[level] = BTRFS_READ_LOCK;
2886
				}
2887
				p->nodes[level] = b;
2888
			}
2889 2890
		} else {
			p->slots[level] = slot;
2891
			if (ins_len > 0 &&
2892
			    btrfs_leaf_free_space(fs_info, b) < ins_len) {
2893 2894 2895 2896 2897 2898
				if (write_lock_level < 1) {
					write_lock_level = 1;
					btrfs_release_path(p);
					goto again;
				}

2899
				btrfs_set_path_blocking(p);
2900 2901
				err = split_leaf(trans, root, key,
						 p, ins_len, ret == 0);
2902
				btrfs_clear_path_blocking(p, NULL, 0);
2903

2904 2905 2906
				BUG_ON(err > 0);
				if (err) {
					ret = err;
2907 2908
					goto done;
				}
C
Chris Mason 已提交
2909
			}
2910
			if (!p->search_for_split)
2911
				unlock_up(p, level, lowest_unlock,
2912
					  min_write_lock_level, NULL);
2913
			goto done;
2914 2915
		}
	}
2916 2917
	ret = 1;
done:
2918 2919 2920 2921
	/*
	 * we don't really know what they plan on doing with the path
	 * from here on, so for now just mark it as blocking
	 */
2922 2923
	if (!p->leave_spinning)
		btrfs_set_path_blocking(p);
2924
	if (ret < 0 && !p->skip_release_on_error)
2925
		btrfs_release_path(p);
2926
	return ret;
2927 2928
}

J
Jan Schmidt 已提交
2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939
/*
 * Like btrfs_search_slot, this looks for a key in the given tree. It uses the
 * current state of the tree together with the operations recorded in the tree
 * modification log to search for the key in a previous version of this tree, as
 * denoted by the time_seq parameter.
 *
 * Naturally, there is no support for insert, delete or cow operations.
 *
 * The resulting path and return value will be set up as if we called
 * btrfs_search_slot at that point in time with ins_len and cow both set to 0.
 */
2940
int btrfs_search_old_slot(struct btrfs_root *root, const struct btrfs_key *key,
J
Jan Schmidt 已提交
2941 2942
			  struct btrfs_path *p, u64 time_seq)
{
2943
	struct btrfs_fs_info *fs_info = root->fs_info;
J
Jan Schmidt 已提交
2944 2945 2946 2947 2948 2949 2950
	struct extent_buffer *b;
	int slot;
	int ret;
	int err;
	int level;
	int lowest_unlock = 1;
	u8 lowest_level = 0;
2951
	int prev_cmp = -1;
J
Jan Schmidt 已提交
2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962

	lowest_level = p->lowest_level;
	WARN_ON(p->nodes[0] != NULL);

	if (p->search_commit_root) {
		BUG_ON(time_seq);
		return btrfs_search_slot(NULL, root, key, p, 0, 0);
	}

again:
	b = get_old_root(root, time_seq);
2963 2964 2965 2966
	if (!b) {
		ret = -EIO;
		goto done;
	}
J
Jan Schmidt 已提交
2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982
	level = btrfs_header_level(b);
	p->locks[level] = BTRFS_READ_LOCK;

	while (b) {
		level = btrfs_header_level(b);
		p->nodes[level] = b;
		btrfs_clear_path_blocking(p, NULL, 0);

		/*
		 * we have a lock on b and as long as we aren't changing
		 * the tree, there is no way to for the items in b to change.
		 * It is safe to drop the lock on our parent before we
		 * go through the expensive btree search on b.
		 */
		btrfs_unlock_up_safe(p, level + 1);

2983
		/*
2984
		 * Since we can unwind ebs we want to do a real search every
2985 2986 2987
		 * time.
		 */
		prev_cmp = -1;
2988
		ret = key_search(b, key, level, &prev_cmp, &slot);
J
Jan Schmidt 已提交
2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004

		if (level != 0) {
			int dec = 0;
			if (ret && slot > 0) {
				dec = 1;
				slot -= 1;
			}
			p->slots[level] = slot;
			unlock_up(p, level, lowest_unlock, 0, NULL);

			if (level == lowest_level) {
				if (dec)
					p->slots[level]++;
				goto done;
			}

3005
			err = read_block_for_search(root, p, &b, level,
3006
						    slot, key);
J
Jan Schmidt 已提交
3007 3008 3009 3010 3011 3012 3013 3014
			if (err == -EAGAIN)
				goto again;
			if (err) {
				ret = err;
				goto done;
			}

			level = btrfs_header_level(b);
3015
			err = btrfs_tree_read_lock_atomic(b);
J
Jan Schmidt 已提交
3016 3017 3018 3019 3020 3021
			if (!err) {
				btrfs_set_path_blocking(p);
				btrfs_tree_read_lock(b);
				btrfs_clear_path_blocking(p, b,
							  BTRFS_READ_LOCK);
			}
3022
			b = tree_mod_log_rewind(fs_info, p, b, time_seq);
3023 3024 3025 3026
			if (!b) {
				ret = -ENOMEM;
				goto done;
			}
J
Jan Schmidt 已提交
3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044
			p->locks[level] = BTRFS_READ_LOCK;
			p->nodes[level] = b;
		} else {
			p->slots[level] = slot;
			unlock_up(p, level, lowest_unlock, 0, NULL);
			goto done;
		}
	}
	ret = 1;
done:
	if (!p->leave_spinning)
		btrfs_set_path_blocking(p);
	if (ret < 0)
		btrfs_release_path(p);

	return ret;
}

3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057
/*
 * helper to use instead of search slot if no exact match is needed but
 * instead the next or previous item should be returned.
 * When find_higher is true, the next higher item is returned, the next lower
 * otherwise.
 * When return_any and find_higher are both true, and no higher item is found,
 * return the next lower instead.
 * When return_any is true and find_higher is false, and no lower item is found,
 * return the next higher instead.
 * It returns 0 if any item is found, 1 if none is found (tree empty), and
 * < 0 on error
 */
int btrfs_search_slot_for_read(struct btrfs_root *root,
3058 3059 3060
			       const struct btrfs_key *key,
			       struct btrfs_path *p, int find_higher,
			       int return_any)
3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094
{
	int ret;
	struct extent_buffer *leaf;

again:
	ret = btrfs_search_slot(NULL, root, key, p, 0, 0);
	if (ret <= 0)
		return ret;
	/*
	 * a return value of 1 means the path is at the position where the
	 * item should be inserted. Normally this is the next bigger item,
	 * but in case the previous item is the last in a leaf, path points
	 * to the first free slot in the previous leaf, i.e. at an invalid
	 * item.
	 */
	leaf = p->nodes[0];

	if (find_higher) {
		if (p->slots[0] >= btrfs_header_nritems(leaf)) {
			ret = btrfs_next_leaf(root, p);
			if (ret <= 0)
				return ret;
			if (!return_any)
				return 1;
			/*
			 * no higher item found, return the next
			 * lower instead
			 */
			return_any = 0;
			find_higher = 0;
			btrfs_release_path(p);
			goto again;
		}
	} else {
3095 3096 3097 3098 3099
		if (p->slots[0] == 0) {
			ret = btrfs_prev_leaf(root, p);
			if (ret < 0)
				return ret;
			if (!ret) {
3100 3101 3102
				leaf = p->nodes[0];
				if (p->slots[0] == btrfs_header_nritems(leaf))
					p->slots[0]--;
3103
				return 0;
3104
			}
3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115
			if (!return_any)
				return 1;
			/*
			 * no lower item found, return the next
			 * higher instead
			 */
			return_any = 0;
			find_higher = 1;
			btrfs_release_path(p);
			goto again;
		} else {
3116 3117 3118 3119 3120 3121
			--p->slots[0];
		}
	}
	return 0;
}

C
Chris Mason 已提交
3122 3123 3124 3125 3126 3127
/*
 * adjust the pointers going up the tree, starting at level
 * making sure the right key of each node is points to 'key'.
 * This is used after shifting pointers to the left, so it stops
 * fixing up pointers when a given leaf/node is not in slot 0 of the
 * higher levels
C
Chris Mason 已提交
3128
 *
C
Chris Mason 已提交
3129
 */
3130
static void fixup_low_keys(struct btrfs_path *path,
3131
			   struct btrfs_disk_key *key, int level)
3132 3133
{
	int i;
3134
	struct extent_buffer *t;
3135
	int ret;
3136

C
Chris Mason 已提交
3137
	for (i = level; i < BTRFS_MAX_LEVEL; i++) {
3138
		int tslot = path->slots[i];
3139

3140
		if (!path->nodes[i])
3141
			break;
3142
		t = path->nodes[i];
3143 3144 3145
		ret = tree_mod_log_insert_key(t, tslot, MOD_LOG_KEY_REPLACE,
				GFP_ATOMIC);
		BUG_ON(ret < 0);
3146
		btrfs_set_node_key(t, key, tslot);
C
Chris Mason 已提交
3147
		btrfs_mark_buffer_dirty(path->nodes[i]);
3148 3149 3150 3151 3152
		if (tslot != 0)
			break;
	}
}

Z
Zheng Yan 已提交
3153 3154 3155 3156 3157 3158
/*
 * update item key.
 *
 * This function isn't completely safe. It's the caller's responsibility
 * that the new key won't break the order
 */
3159 3160
void btrfs_set_item_key_safe(struct btrfs_fs_info *fs_info,
			     struct btrfs_path *path,
3161
			     const struct btrfs_key *new_key)
Z
Zheng Yan 已提交
3162 3163 3164 3165 3166 3167 3168 3169 3170
{
	struct btrfs_disk_key disk_key;
	struct extent_buffer *eb;
	int slot;

	eb = path->nodes[0];
	slot = path->slots[0];
	if (slot > 0) {
		btrfs_item_key(eb, &disk_key, slot - 1);
3171
		BUG_ON(comp_keys(&disk_key, new_key) >= 0);
Z
Zheng Yan 已提交
3172 3173 3174
	}
	if (slot < btrfs_header_nritems(eb) - 1) {
		btrfs_item_key(eb, &disk_key, slot + 1);
3175
		BUG_ON(comp_keys(&disk_key, new_key) <= 0);
Z
Zheng Yan 已提交
3176 3177 3178 3179 3180 3181
	}

	btrfs_cpu_key_to_disk(&disk_key, new_key);
	btrfs_set_item_key(eb, &disk_key, slot);
	btrfs_mark_buffer_dirty(eb);
	if (slot == 0)
3182
		fixup_low_keys(path, &disk_key, 1);
Z
Zheng Yan 已提交
3183 3184
}

C
Chris Mason 已提交
3185 3186
/*
 * try to push data from one node into the next node left in the
3187
 * tree.
C
Chris Mason 已提交
3188 3189 3190
 *
 * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
 * error, and > 0 if there was no room in the left hand block.
C
Chris Mason 已提交
3191
 */
3192
static int push_node_left(struct btrfs_trans_handle *trans,
3193 3194
			  struct btrfs_fs_info *fs_info,
			  struct extent_buffer *dst,
3195
			  struct extent_buffer *src, int empty)
3196 3197
{
	int push_items = 0;
3198 3199
	int src_nritems;
	int dst_nritems;
C
Chris Mason 已提交
3200
	int ret = 0;
3201

3202 3203
	src_nritems = btrfs_header_nritems(src);
	dst_nritems = btrfs_header_nritems(dst);
3204
	push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems;
3205 3206
	WARN_ON(btrfs_header_generation(src) != trans->transid);
	WARN_ON(btrfs_header_generation(dst) != trans->transid);
3207

3208
	if (!empty && src_nritems <= 8)
3209 3210
		return 1;

C
Chris Mason 已提交
3211
	if (push_items <= 0)
3212 3213
		return 1;

3214
	if (empty) {
3215
		push_items = min(src_nritems, push_items);
3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227
		if (push_items < src_nritems) {
			/* leave at least 8 pointers in the node if
			 * we aren't going to empty it
			 */
			if (src_nritems - push_items < 8) {
				if (push_items <= 8)
					return 1;
				push_items -= 8;
			}
		}
	} else
		push_items = min(src_nritems - 8, push_items);
3228

3229
	ret = tree_mod_log_eb_copy(fs_info, dst, src, dst_nritems, 0,
3230 3231
				   push_items);
	if (ret) {
3232
		btrfs_abort_transaction(trans, ret);
3233 3234
		return ret;
	}
3235 3236 3237
	copy_extent_buffer(dst, src,
			   btrfs_node_key_ptr_offset(dst_nritems),
			   btrfs_node_key_ptr_offset(0),
C
Chris Mason 已提交
3238
			   push_items * sizeof(struct btrfs_key_ptr));
3239

3240
	if (push_items < src_nritems) {
3241
		/*
3242 3243
		 * Don't call tree_mod_log_insert_move here, key removal was
		 * already fully logged by tree_mod_log_eb_copy above.
3244
		 */
3245 3246 3247 3248 3249 3250 3251 3252 3253
		memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0),
				      btrfs_node_key_ptr_offset(push_items),
				      (src_nritems - push_items) *
				      sizeof(struct btrfs_key_ptr));
	}
	btrfs_set_header_nritems(src, src_nritems - push_items);
	btrfs_set_header_nritems(dst, dst_nritems + push_items);
	btrfs_mark_buffer_dirty(src);
	btrfs_mark_buffer_dirty(dst);
Z
Zheng Yan 已提交
3254

3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266
	return ret;
}

/*
 * try to push data from one node into the next node right in the
 * tree.
 *
 * returns 0 if some ptrs were pushed, < 0 if there was some horrible
 * error, and > 0 if there was no room in the right hand block.
 *
 * this will  only push up to 1/2 the contents of the left node over
 */
3267
static int balance_node_right(struct btrfs_trans_handle *trans,
3268
			      struct btrfs_fs_info *fs_info,
3269 3270
			      struct extent_buffer *dst,
			      struct extent_buffer *src)
3271 3272 3273 3274 3275 3276 3277
{
	int push_items = 0;
	int max_push;
	int src_nritems;
	int dst_nritems;
	int ret = 0;

3278 3279 3280
	WARN_ON(btrfs_header_generation(src) != trans->transid);
	WARN_ON(btrfs_header_generation(dst) != trans->transid);

3281 3282
	src_nritems = btrfs_header_nritems(src);
	dst_nritems = btrfs_header_nritems(dst);
3283
	push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems;
C
Chris Mason 已提交
3284
	if (push_items <= 0)
3285
		return 1;
3286

C
Chris Mason 已提交
3287
	if (src_nritems < 4)
3288
		return 1;
3289 3290 3291

	max_push = src_nritems / 2 + 1;
	/* don't try to empty the node */
C
Chris Mason 已提交
3292
	if (max_push >= src_nritems)
3293
		return 1;
Y
Yan 已提交
3294

3295 3296 3297
	if (max_push < push_items)
		push_items = max_push;

3298 3299
	ret = tree_mod_log_insert_move(dst, push_items, 0, dst_nritems);
	BUG_ON(ret < 0);
3300 3301 3302 3303
	memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items),
				      btrfs_node_key_ptr_offset(0),
				      (dst_nritems) *
				      sizeof(struct btrfs_key_ptr));
C
Chris Mason 已提交
3304

3305
	ret = tree_mod_log_eb_copy(fs_info, dst, src, 0,
3306 3307
				   src_nritems - push_items, push_items);
	if (ret) {
3308
		btrfs_abort_transaction(trans, ret);
3309 3310
		return ret;
	}
3311 3312 3313
	copy_extent_buffer(dst, src,
			   btrfs_node_key_ptr_offset(0),
			   btrfs_node_key_ptr_offset(src_nritems - push_items),
C
Chris Mason 已提交
3314
			   push_items * sizeof(struct btrfs_key_ptr));
3315

3316 3317
	btrfs_set_header_nritems(src, src_nritems - push_items);
	btrfs_set_header_nritems(dst, dst_nritems + push_items);
3318

3319 3320
	btrfs_mark_buffer_dirty(src);
	btrfs_mark_buffer_dirty(dst);
Z
Zheng Yan 已提交
3321

C
Chris Mason 已提交
3322
	return ret;
3323 3324
}

C
Chris Mason 已提交
3325 3326 3327 3328
/*
 * helper function to insert a new root level in the tree.
 * A new node is allocated, and a single item is inserted to
 * point to the existing root
C
Chris Mason 已提交
3329 3330
 *
 * returns zero on success or < 0 on failure.
C
Chris Mason 已提交
3331
 */
C
Chris Mason 已提交
3332
static noinline int insert_new_root(struct btrfs_trans_handle *trans,
3333
			   struct btrfs_root *root,
3334
			   struct btrfs_path *path, int level)
C
Chris Mason 已提交
3335
{
3336
	struct btrfs_fs_info *fs_info = root->fs_info;
3337
	u64 lower_gen;
3338 3339
	struct extent_buffer *lower;
	struct extent_buffer *c;
3340
	struct extent_buffer *old;
3341
	struct btrfs_disk_key lower_key;
3342
	int ret;
C
Chris Mason 已提交
3343 3344 3345 3346

	BUG_ON(path->nodes[level]);
	BUG_ON(path->nodes[level-1] != root->node);

3347 3348 3349 3350 3351 3352
	lower = path->nodes[level-1];
	if (level == 1)
		btrfs_item_key(lower, &lower_key, 0);
	else
		btrfs_node_key(lower, &lower_key, 0);

3353 3354
	c = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
				   &lower_key, level, root->node->start, 0);
3355 3356
	if (IS_ERR(c))
		return PTR_ERR(c);
3357

3358
	root_add_used(root, fs_info->nodesize);
3359

3360 3361
	btrfs_set_header_nritems(c, 1);
	btrfs_set_node_key(c, &lower_key, 0);
3362
	btrfs_set_node_blockptr(c, 0, lower->start);
3363
	lower_gen = btrfs_header_generation(lower);
Z
Zheng Yan 已提交
3364
	WARN_ON(lower_gen != trans->transid);
3365 3366

	btrfs_set_node_ptr_generation(c, 0, lower_gen);
3367

3368
	btrfs_mark_buffer_dirty(c);
3369

3370
	old = root->node;
3371 3372
	ret = tree_mod_log_insert_root(root->node, c, 0);
	BUG_ON(ret < 0);
3373
	rcu_assign_pointer(root->node, c);
3374 3375 3376 3377

	/* the super has an extra ref to root->node */
	free_extent_buffer(old);

3378
	add_root_to_dirty_list(root);
3379 3380
	extent_buffer_get(c);
	path->nodes[level] = c;
3381
	path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
C
Chris Mason 已提交
3382 3383 3384 3385
	path->slots[level] = 0;
	return 0;
}

C
Chris Mason 已提交
3386 3387 3388
/*
 * worker function to insert a single pointer in a node.
 * the node should have enough room for the pointer already
C
Chris Mason 已提交
3389
 *
C
Chris Mason 已提交
3390 3391 3392
 * slot and level indicate where you want the key to go, and
 * blocknr is the block the key points to.
 */
3393
static void insert_ptr(struct btrfs_trans_handle *trans,
3394
		       struct btrfs_fs_info *fs_info, struct btrfs_path *path,
3395
		       struct btrfs_disk_key *key, u64 bytenr,
3396
		       int slot, int level)
C
Chris Mason 已提交
3397
{
3398
	struct extent_buffer *lower;
C
Chris Mason 已提交
3399
	int nritems;
3400
	int ret;
C
Chris Mason 已提交
3401 3402

	BUG_ON(!path->nodes[level]);
3403
	btrfs_assert_tree_locked(path->nodes[level]);
3404 3405
	lower = path->nodes[level];
	nritems = btrfs_header_nritems(lower);
S
Stoyan Gaydarov 已提交
3406
	BUG_ON(slot > nritems);
3407
	BUG_ON(nritems == BTRFS_NODEPTRS_PER_BLOCK(fs_info));
C
Chris Mason 已提交
3408
	if (slot != nritems) {
3409 3410
		if (level) {
			ret = tree_mod_log_insert_move(lower, slot + 1, slot,
3411
					nritems - slot);
3412 3413
			BUG_ON(ret < 0);
		}
3414 3415 3416
		memmove_extent_buffer(lower,
			      btrfs_node_key_ptr_offset(slot + 1),
			      btrfs_node_key_ptr_offset(slot),
C
Chris Mason 已提交
3417
			      (nritems - slot) * sizeof(struct btrfs_key_ptr));
C
Chris Mason 已提交
3418
	}
3419
	if (level) {
3420 3421
		ret = tree_mod_log_insert_key(lower, slot, MOD_LOG_KEY_ADD,
				GFP_NOFS);
3422 3423
		BUG_ON(ret < 0);
	}
3424
	btrfs_set_node_key(lower, key, slot);
3425
	btrfs_set_node_blockptr(lower, slot, bytenr);
3426 3427
	WARN_ON(trans->transid == 0);
	btrfs_set_node_ptr_generation(lower, slot, trans->transid);
3428 3429
	btrfs_set_header_nritems(lower, nritems + 1);
	btrfs_mark_buffer_dirty(lower);
C
Chris Mason 已提交
3430 3431
}

C
Chris Mason 已提交
3432 3433 3434 3435 3436 3437
/*
 * split the node at the specified level in path in two.
 * The path is corrected to point to the appropriate node after the split
 *
 * Before splitting this tries to make some room in the node by pushing
 * left and right, if either one works, it returns right away.
C
Chris Mason 已提交
3438 3439
 *
 * returns 0 on success and < 0 on failure
C
Chris Mason 已提交
3440
 */
3441 3442 3443
static noinline int split_node(struct btrfs_trans_handle *trans,
			       struct btrfs_root *root,
			       struct btrfs_path *path, int level)
3444
{
3445
	struct btrfs_fs_info *fs_info = root->fs_info;
3446 3447 3448
	struct extent_buffer *c;
	struct extent_buffer *split;
	struct btrfs_disk_key disk_key;
3449
	int mid;
C
Chris Mason 已提交
3450
	int ret;
3451
	u32 c_nritems;
3452

3453
	c = path->nodes[level];
3454
	WARN_ON(btrfs_header_generation(c) != trans->transid);
3455
	if (c == root->node) {
3456
		/*
3457 3458
		 * trying to split the root, lets make a new one
		 *
3459
		 * tree mod log: We don't log_removal old root in
3460 3461 3462 3463 3464
		 * insert_new_root, because that root buffer will be kept as a
		 * normal node. We are going to log removal of half of the
		 * elements below with tree_mod_log_eb_copy. We're holding a
		 * tree lock on the buffer, which is why we cannot race with
		 * other tree_mod_log users.
3465
		 */
3466
		ret = insert_new_root(trans, root, path, level + 1);
C
Chris Mason 已提交
3467 3468
		if (ret)
			return ret;
3469
	} else {
3470
		ret = push_nodes_for_insert(trans, root, path, level);
3471 3472
		c = path->nodes[level];
		if (!ret && btrfs_header_nritems(c) <
3473
		    BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3)
3474
			return 0;
3475 3476
		if (ret < 0)
			return ret;
3477
	}
3478

3479
	c_nritems = btrfs_header_nritems(c);
3480 3481
	mid = (c_nritems + 1) / 2;
	btrfs_node_key(c, &disk_key, mid);
3482

3483 3484
	split = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
			&disk_key, level, c->start, 0);
3485 3486 3487
	if (IS_ERR(split))
		return PTR_ERR(split);

3488
	root_add_used(root, fs_info->nodesize);
3489
	ASSERT(btrfs_header_level(c) == level);
3490

3491
	ret = tree_mod_log_eb_copy(fs_info, split, c, 0, mid, c_nritems - mid);
3492
	if (ret) {
3493
		btrfs_abort_transaction(trans, ret);
3494 3495
		return ret;
	}
3496 3497 3498 3499 3500 3501
	copy_extent_buffer(split, c,
			   btrfs_node_key_ptr_offset(0),
			   btrfs_node_key_ptr_offset(mid),
			   (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
	btrfs_set_header_nritems(split, c_nritems - mid);
	btrfs_set_header_nritems(c, mid);
C
Chris Mason 已提交
3502 3503
	ret = 0;

3504 3505 3506
	btrfs_mark_buffer_dirty(c);
	btrfs_mark_buffer_dirty(split);

3507
	insert_ptr(trans, fs_info, path, &disk_key, split->start,
3508
		   path->slots[level + 1] + 1, level + 1);
C
Chris Mason 已提交
3509

C
Chris Mason 已提交
3510
	if (path->slots[level] >= mid) {
C
Chris Mason 已提交
3511
		path->slots[level] -= mid;
3512
		btrfs_tree_unlock(c);
3513 3514
		free_extent_buffer(c);
		path->nodes[level] = split;
C
Chris Mason 已提交
3515 3516
		path->slots[level + 1] += 1;
	} else {
3517
		btrfs_tree_unlock(split);
3518
		free_extent_buffer(split);
3519
	}
C
Chris Mason 已提交
3520
	return ret;
3521 3522
}

C
Chris Mason 已提交
3523 3524 3525 3526 3527
/*
 * how many bytes are required to store the items in a leaf.  start
 * and nr indicate which items in the leaf to check.  This totals up the
 * space used both by the item structs and the item data
 */
3528
static int leaf_space_used(struct extent_buffer *l, int start, int nr)
3529
{
J
Josef Bacik 已提交
3530 3531 3532
	struct btrfs_item *start_item;
	struct btrfs_item *end_item;
	struct btrfs_map_token token;
3533
	int data_len;
3534
	int nritems = btrfs_header_nritems(l);
3535
	int end = min(nritems, start + nr) - 1;
3536 3537 3538

	if (!nr)
		return 0;
J
Josef Bacik 已提交
3539
	btrfs_init_map_token(&token);
3540 3541
	start_item = btrfs_item_nr(start);
	end_item = btrfs_item_nr(end);
J
Josef Bacik 已提交
3542 3543 3544
	data_len = btrfs_token_item_offset(l, start_item, &token) +
		btrfs_token_item_size(l, start_item, &token);
	data_len = data_len - btrfs_token_item_offset(l, end_item, &token);
C
Chris Mason 已提交
3545
	data_len += sizeof(struct btrfs_item) * nr;
3546
	WARN_ON(data_len < 0);
3547 3548 3549
	return data_len;
}

3550 3551 3552 3553 3554
/*
 * The space between the end of the leaf items and
 * the start of the leaf data.  IOW, how much room
 * the leaf has left for both items and data
 */
3555
noinline int btrfs_leaf_free_space(struct btrfs_fs_info *fs_info,
3556
				   struct extent_buffer *leaf)
3557
{
3558 3559
	int nritems = btrfs_header_nritems(leaf);
	int ret;
3560 3561

	ret = BTRFS_LEAF_DATA_SIZE(fs_info) - leaf_space_used(leaf, 0, nritems);
3562
	if (ret < 0) {
3563 3564 3565 3566 3567
		btrfs_crit(fs_info,
			   "leaf free space ret %d, leaf data size %lu, used %d nritems %d",
			   ret,
			   (unsigned long) BTRFS_LEAF_DATA_SIZE(fs_info),
			   leaf_space_used(leaf, 0, nritems), nritems);
3568 3569
	}
	return ret;
3570 3571
}

3572 3573 3574 3575
/*
 * min slot controls the lowest index we're willing to push to the
 * right.  We'll push up to and including min_slot, but no lower
 */
3576
static noinline int __push_leaf_right(struct btrfs_fs_info *fs_info,
3577 3578 3579
				      struct btrfs_path *path,
				      int data_size, int empty,
				      struct extent_buffer *right,
3580 3581
				      int free_space, u32 left_nritems,
				      u32 min_slot)
C
Chris Mason 已提交
3582
{
3583
	struct extent_buffer *left = path->nodes[0];
3584
	struct extent_buffer *upper = path->nodes[1];
3585
	struct btrfs_map_token token;
3586
	struct btrfs_disk_key disk_key;
C
Chris Mason 已提交
3587
	int slot;
3588
	u32 i;
C
Chris Mason 已提交
3589 3590
	int push_space = 0;
	int push_items = 0;
C
Chris Mason 已提交
3591
	struct btrfs_item *item;
3592
	u32 nr;
3593
	u32 right_nritems;
3594
	u32 data_end;
3595
	u32 this_item_size;
C
Chris Mason 已提交
3596

3597 3598
	btrfs_init_map_token(&token);

3599 3600 3601
	if (empty)
		nr = 0;
	else
3602
		nr = max_t(u32, 1, min_slot);
3603

Z
Zheng Yan 已提交
3604
	if (path->slots[0] >= left_nritems)
3605
		push_space += data_size;
Z
Zheng Yan 已提交
3606

3607
	slot = path->slots[1];
3608 3609
	i = left_nritems - 1;
	while (i >= nr) {
3610
		item = btrfs_item_nr(i);
3611

Z
Zheng Yan 已提交
3612 3613 3614 3615
		if (!empty && push_items > 0) {
			if (path->slots[0] > i)
				break;
			if (path->slots[0] == i) {
3616
				int space = btrfs_leaf_free_space(fs_info, left);
Z
Zheng Yan 已提交
3617 3618 3619 3620 3621
				if (space + push_space * 2 > free_space)
					break;
			}
		}

C
Chris Mason 已提交
3622
		if (path->slots[0] == i)
3623
			push_space += data_size;
3624 3625 3626

		this_item_size = btrfs_item_size(left, item);
		if (this_item_size + sizeof(*item) + push_space > free_space)
C
Chris Mason 已提交
3627
			break;
Z
Zheng Yan 已提交
3628

C
Chris Mason 已提交
3629
		push_items++;
3630
		push_space += this_item_size + sizeof(*item);
3631 3632 3633
		if (i == 0)
			break;
		i--;
3634
	}
3635

3636 3637
	if (push_items == 0)
		goto out_unlock;
3638

J
Julia Lawall 已提交
3639
	WARN_ON(!empty && push_items == left_nritems);
3640

C
Chris Mason 已提交
3641
	/* push left to right */
3642
	right_nritems = btrfs_header_nritems(right);
3643

3644
	push_space = btrfs_item_end_nr(left, left_nritems - push_items);
3645
	push_space -= leaf_data_end(fs_info, left);
3646

C
Chris Mason 已提交
3647
	/* make room in the right data area */
3648
	data_end = leaf_data_end(fs_info, right);
3649
	memmove_extent_buffer(right,
3650 3651
			      BTRFS_LEAF_DATA_OFFSET + data_end - push_space,
			      BTRFS_LEAF_DATA_OFFSET + data_end,
3652
			      BTRFS_LEAF_DATA_SIZE(fs_info) - data_end);
3653

C
Chris Mason 已提交
3654
	/* copy from the left data area */
3655
	copy_extent_buffer(right, left, BTRFS_LEAF_DATA_OFFSET +
3656
		     BTRFS_LEAF_DATA_SIZE(fs_info) - push_space,
3657
		     BTRFS_LEAF_DATA_OFFSET + leaf_data_end(fs_info, left),
C
Chris Mason 已提交
3658
		     push_space);
3659 3660 3661 3662 3663

	memmove_extent_buffer(right, btrfs_item_nr_offset(push_items),
			      btrfs_item_nr_offset(0),
			      right_nritems * sizeof(struct btrfs_item));

C
Chris Mason 已提交
3664
	/* copy the items from left to right */
3665 3666 3667
	copy_extent_buffer(right, left, btrfs_item_nr_offset(0),
		   btrfs_item_nr_offset(left_nritems - push_items),
		   push_items * sizeof(struct btrfs_item));
C
Chris Mason 已提交
3668 3669

	/* update the item pointers */
3670
	right_nritems += push_items;
3671
	btrfs_set_header_nritems(right, right_nritems);
3672
	push_space = BTRFS_LEAF_DATA_SIZE(fs_info);
3673
	for (i = 0; i < right_nritems; i++) {
3674
		item = btrfs_item_nr(i);
3675 3676
		push_space -= btrfs_token_item_size(right, item, &token);
		btrfs_set_token_item_offset(right, item, push_space, &token);
3677 3678
	}

3679
	left_nritems -= push_items;
3680
	btrfs_set_header_nritems(left, left_nritems);
C
Chris Mason 已提交
3681

3682 3683
	if (left_nritems)
		btrfs_mark_buffer_dirty(left);
3684
	else
3685
		clean_tree_block(fs_info, left);
3686

3687
	btrfs_mark_buffer_dirty(right);
3688

3689 3690
	btrfs_item_key(right, &disk_key, 0);
	btrfs_set_node_key(upper, &disk_key, slot + 1);
C
Chris Mason 已提交
3691
	btrfs_mark_buffer_dirty(upper);
C
Chris Mason 已提交
3692

C
Chris Mason 已提交
3693
	/* then fixup the leaf pointer in the path */
3694 3695
	if (path->slots[0] >= left_nritems) {
		path->slots[0] -= left_nritems;
3696
		if (btrfs_header_nritems(path->nodes[0]) == 0)
3697
			clean_tree_block(fs_info, path->nodes[0]);
3698
		btrfs_tree_unlock(path->nodes[0]);
3699 3700
		free_extent_buffer(path->nodes[0]);
		path->nodes[0] = right;
C
Chris Mason 已提交
3701 3702
		path->slots[1] += 1;
	} else {
3703
		btrfs_tree_unlock(right);
3704
		free_extent_buffer(right);
C
Chris Mason 已提交
3705 3706
	}
	return 0;
3707 3708 3709 3710 3711

out_unlock:
	btrfs_tree_unlock(right);
	free_extent_buffer(right);
	return 1;
C
Chris Mason 已提交
3712
}
3713

3714 3715 3716 3717 3718 3719
/*
 * push some data in the path leaf to the right, trying to free up at
 * least data_size bytes.  returns zero if the push worked, nonzero otherwise
 *
 * returns 1 if the push failed because the other node didn't have enough
 * room, 0 if everything worked out and < 0 if there were major errors.
3720 3721 3722
 *
 * this will push starting from min_slot to the end of the leaf.  It won't
 * push any slot lower than min_slot
3723 3724
 */
static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
3725 3726 3727
			   *root, struct btrfs_path *path,
			   int min_data_size, int data_size,
			   int empty, u32 min_slot)
3728
{
3729
	struct btrfs_fs_info *fs_info = root->fs_info;
3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747
	struct extent_buffer *left = path->nodes[0];
	struct extent_buffer *right;
	struct extent_buffer *upper;
	int slot;
	int free_space;
	u32 left_nritems;
	int ret;

	if (!path->nodes[1])
		return 1;

	slot = path->slots[1];
	upper = path->nodes[1];
	if (slot >= btrfs_header_nritems(upper) - 1)
		return 1;

	btrfs_assert_tree_locked(path->nodes[1]);

3748
	right = read_node_slot(fs_info, upper, slot + 1);
3749 3750 3751 3752 3753
	/*
	 * slot + 1 is not valid or we fail to read the right node,
	 * no big deal, just return.
	 */
	if (IS_ERR(right))
T
Tsutomu Itoh 已提交
3754 3755
		return 1;

3756 3757 3758
	btrfs_tree_lock(right);
	btrfs_set_lock_blocking(right);

3759
	free_space = btrfs_leaf_free_space(fs_info, right);
3760 3761 3762 3763 3764 3765 3766 3767 3768
	if (free_space < data_size)
		goto out_unlock;

	/* cow and double check */
	ret = btrfs_cow_block(trans, root, right, upper,
			      slot + 1, &right);
	if (ret)
		goto out_unlock;

3769
	free_space = btrfs_leaf_free_space(fs_info, right);
3770 3771 3772 3773 3774 3775 3776
	if (free_space < data_size)
		goto out_unlock;

	left_nritems = btrfs_header_nritems(left);
	if (left_nritems == 0)
		goto out_unlock;

3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789
	if (path->slots[0] == left_nritems && !empty) {
		/* Key greater than all keys in the leaf, right neighbor has
		 * enough room for it and we're not emptying our leaf to delete
		 * it, therefore use right neighbor to insert the new item and
		 * no need to touch/dirty our left leaft. */
		btrfs_tree_unlock(left);
		free_extent_buffer(left);
		path->nodes[0] = right;
		path->slots[0] = 0;
		path->slots[1]++;
		return 0;
	}

3790
	return __push_leaf_right(fs_info, path, min_data_size, empty,
3791
				right, free_space, left_nritems, min_slot);
3792 3793 3794 3795 3796 3797
out_unlock:
	btrfs_tree_unlock(right);
	free_extent_buffer(right);
	return 1;
}

C
Chris Mason 已提交
3798 3799 3800
/*
 * push some data in the path leaf to the left, trying to free up at
 * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3801 3802 3803 3804
 *
 * max_slot can put a limit on how far into the leaf we'll push items.  The
 * item at 'max_slot' won't be touched.  Use (u32)-1 to make us do all the
 * items
C
Chris Mason 已提交
3805
 */
3806
static noinline int __push_leaf_left(struct btrfs_fs_info *fs_info,
3807 3808
				     struct btrfs_path *path, int data_size,
				     int empty, struct extent_buffer *left,
3809 3810
				     int free_space, u32 right_nritems,
				     u32 max_slot)
3811
{
3812 3813
	struct btrfs_disk_key disk_key;
	struct extent_buffer *right = path->nodes[0];
3814 3815 3816
	int i;
	int push_space = 0;
	int push_items = 0;
C
Chris Mason 已提交
3817
	struct btrfs_item *item;
3818
	u32 old_left_nritems;
3819
	u32 nr;
C
Chris Mason 已提交
3820
	int ret = 0;
3821 3822
	u32 this_item_size;
	u32 old_left_item_size;
3823 3824 3825
	struct btrfs_map_token token;

	btrfs_init_map_token(&token);
3826

3827
	if (empty)
3828
		nr = min(right_nritems, max_slot);
3829
	else
3830
		nr = min(right_nritems - 1, max_slot);
3831 3832

	for (i = 0; i < nr; i++) {
3833
		item = btrfs_item_nr(i);
3834

Z
Zheng Yan 已提交
3835 3836 3837 3838
		if (!empty && push_items > 0) {
			if (path->slots[0] < i)
				break;
			if (path->slots[0] == i) {
3839
				int space = btrfs_leaf_free_space(fs_info, right);
Z
Zheng Yan 已提交
3840 3841 3842 3843 3844
				if (space + push_space * 2 > free_space)
					break;
			}
		}

3845
		if (path->slots[0] == i)
3846
			push_space += data_size;
3847 3848 3849

		this_item_size = btrfs_item_size(right, item);
		if (this_item_size + sizeof(*item) + push_space > free_space)
3850
			break;
3851

3852
		push_items++;
3853 3854 3855
		push_space += this_item_size + sizeof(*item);
	}

3856
	if (push_items == 0) {
3857 3858
		ret = 1;
		goto out;
3859
	}
3860
	WARN_ON(!empty && push_items == btrfs_header_nritems(right));
3861

3862
	/* push data from right to left */
3863 3864 3865 3866 3867
	copy_extent_buffer(left, right,
			   btrfs_item_nr_offset(btrfs_header_nritems(left)),
			   btrfs_item_nr_offset(0),
			   push_items * sizeof(struct btrfs_item));

3868
	push_space = BTRFS_LEAF_DATA_SIZE(fs_info) -
C
Chris Mason 已提交
3869
		     btrfs_item_offset_nr(right, push_items - 1);
3870

3871
	copy_extent_buffer(left, right, BTRFS_LEAF_DATA_OFFSET +
3872
		     leaf_data_end(fs_info, left) - push_space,
3873
		     BTRFS_LEAF_DATA_OFFSET +
3874
		     btrfs_item_offset_nr(right, push_items - 1),
C
Chris Mason 已提交
3875
		     push_space);
3876
	old_left_nritems = btrfs_header_nritems(left);
3877
	BUG_ON(old_left_nritems <= 0);
3878

3879
	old_left_item_size = btrfs_item_offset_nr(left, old_left_nritems - 1);
C
Chris Mason 已提交
3880
	for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
3881
		u32 ioff;
3882

3883
		item = btrfs_item_nr(i);
3884

3885 3886
		ioff = btrfs_token_item_offset(left, item, &token);
		btrfs_set_token_item_offset(left, item,
3887
		      ioff - (BTRFS_LEAF_DATA_SIZE(fs_info) - old_left_item_size),
3888
		      &token);
3889
	}
3890
	btrfs_set_header_nritems(left, old_left_nritems + push_items);
3891 3892

	/* fixup right node */
J
Julia Lawall 已提交
3893 3894
	if (push_items > right_nritems)
		WARN(1, KERN_CRIT "push items %d nr %u\n", push_items,
C
Chris Mason 已提交
3895
		       right_nritems);
3896 3897 3898

	if (push_items < right_nritems) {
		push_space = btrfs_item_offset_nr(right, push_items - 1) -
3899
						  leaf_data_end(fs_info, right);
3900
		memmove_extent_buffer(right, BTRFS_LEAF_DATA_OFFSET +
3901
				      BTRFS_LEAF_DATA_SIZE(fs_info) - push_space,
3902
				      BTRFS_LEAF_DATA_OFFSET +
3903
				      leaf_data_end(fs_info, right), push_space);
3904 3905

		memmove_extent_buffer(right, btrfs_item_nr_offset(0),
3906 3907 3908
			      btrfs_item_nr_offset(push_items),
			     (btrfs_header_nritems(right) - push_items) *
			     sizeof(struct btrfs_item));
3909
	}
3910 3911
	right_nritems -= push_items;
	btrfs_set_header_nritems(right, right_nritems);
3912
	push_space = BTRFS_LEAF_DATA_SIZE(fs_info);
3913
	for (i = 0; i < right_nritems; i++) {
3914
		item = btrfs_item_nr(i);
3915

3916 3917 3918
		push_space = push_space - btrfs_token_item_size(right,
								item, &token);
		btrfs_set_token_item_offset(right, item, push_space, &token);
3919
	}
3920

3921
	btrfs_mark_buffer_dirty(left);
3922 3923
	if (right_nritems)
		btrfs_mark_buffer_dirty(right);
3924
	else
3925
		clean_tree_block(fs_info, right);
3926

3927
	btrfs_item_key(right, &disk_key, 0);
3928
	fixup_low_keys(path, &disk_key, 1);
3929 3930 3931 3932

	/* then fixup the leaf pointer in the path */
	if (path->slots[0] < push_items) {
		path->slots[0] += old_left_nritems;
3933
		btrfs_tree_unlock(path->nodes[0]);
3934 3935
		free_extent_buffer(path->nodes[0]);
		path->nodes[0] = left;
3936 3937
		path->slots[1] -= 1;
	} else {
3938
		btrfs_tree_unlock(left);
3939
		free_extent_buffer(left);
3940 3941
		path->slots[0] -= push_items;
	}
3942
	BUG_ON(path->slots[0] < 0);
C
Chris Mason 已提交
3943
	return ret;
3944 3945 3946 3947
out:
	btrfs_tree_unlock(left);
	free_extent_buffer(left);
	return ret;
3948 3949
}

3950 3951 3952
/*
 * push some data in the path leaf to the left, trying to free up at
 * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3953 3954 3955 3956
 *
 * max_slot can put a limit on how far into the leaf we'll push items.  The
 * item at 'max_slot' won't be touched.  Use (u32)-1 to make us push all the
 * items
3957 3958
 */
static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
3959 3960
			  *root, struct btrfs_path *path, int min_data_size,
			  int data_size, int empty, u32 max_slot)
3961
{
3962
	struct btrfs_fs_info *fs_info = root->fs_info;
3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981
	struct extent_buffer *right = path->nodes[0];
	struct extent_buffer *left;
	int slot;
	int free_space;
	u32 right_nritems;
	int ret = 0;

	slot = path->slots[1];
	if (slot == 0)
		return 1;
	if (!path->nodes[1])
		return 1;

	right_nritems = btrfs_header_nritems(right);
	if (right_nritems == 0)
		return 1;

	btrfs_assert_tree_locked(path->nodes[1]);

3982
	left = read_node_slot(fs_info, path->nodes[1], slot - 1);
3983 3984 3985 3986 3987
	/*
	 * slot - 1 is not valid or we fail to read the left node,
	 * no big deal, just return.
	 */
	if (IS_ERR(left))
T
Tsutomu Itoh 已提交
3988 3989
		return 1;

3990 3991 3992
	btrfs_tree_lock(left);
	btrfs_set_lock_blocking(left);

3993
	free_space = btrfs_leaf_free_space(fs_info, left);
3994 3995 3996 3997 3998 3999 4000 4001 4002 4003
	if (free_space < data_size) {
		ret = 1;
		goto out;
	}

	/* cow and double check */
	ret = btrfs_cow_block(trans, root, left,
			      path->nodes[1], slot - 1, &left);
	if (ret) {
		/* we hit -ENOSPC, but it isn't fatal here */
4004 4005
		if (ret == -ENOSPC)
			ret = 1;
4006 4007 4008
		goto out;
	}

4009
	free_space = btrfs_leaf_free_space(fs_info, left);
4010 4011 4012 4013 4014
	if (free_space < data_size) {
		ret = 1;
		goto out;
	}

4015
	return __push_leaf_left(fs_info, path, min_data_size,
4016 4017
			       empty, left, free_space, right_nritems,
			       max_slot);
4018 4019 4020 4021 4022 4023 4024 4025 4026 4027
out:
	btrfs_tree_unlock(left);
	free_extent_buffer(left);
	return ret;
}

/*
 * split the path's leaf in two, making sure there is at least data_size
 * available for the resulting leaf level of the path.
 */
4028
static noinline void copy_for_split(struct btrfs_trans_handle *trans,
4029
				    struct btrfs_fs_info *fs_info,
4030 4031 4032 4033
				    struct btrfs_path *path,
				    struct extent_buffer *l,
				    struct extent_buffer *right,
				    int slot, int mid, int nritems)
4034 4035 4036 4037 4038
{
	int data_copy_size;
	int rt_data_off;
	int i;
	struct btrfs_disk_key disk_key;
4039 4040 4041
	struct btrfs_map_token token;

	btrfs_init_map_token(&token);
4042 4043 4044

	nritems = nritems - mid;
	btrfs_set_header_nritems(right, nritems);
4045
	data_copy_size = btrfs_item_end_nr(l, mid) - leaf_data_end(fs_info, l);
4046 4047 4048 4049 4050 4051

	copy_extent_buffer(right, l, btrfs_item_nr_offset(0),
			   btrfs_item_nr_offset(mid),
			   nritems * sizeof(struct btrfs_item));

	copy_extent_buffer(right, l,
4052 4053
		     BTRFS_LEAF_DATA_OFFSET + BTRFS_LEAF_DATA_SIZE(fs_info) -
		     data_copy_size, BTRFS_LEAF_DATA_OFFSET +
4054
		     leaf_data_end(fs_info, l), data_copy_size);
4055

4056
	rt_data_off = BTRFS_LEAF_DATA_SIZE(fs_info) - btrfs_item_end_nr(l, mid);
4057 4058

	for (i = 0; i < nritems; i++) {
4059
		struct btrfs_item *item = btrfs_item_nr(i);
4060 4061
		u32 ioff;

4062 4063 4064
		ioff = btrfs_token_item_offset(right, item, &token);
		btrfs_set_token_item_offset(right, item,
					    ioff + rt_data_off, &token);
4065 4066 4067 4068
	}

	btrfs_set_header_nritems(l, mid);
	btrfs_item_key(right, &disk_key, 0);
4069
	insert_ptr(trans, fs_info, path, &disk_key, right->start,
4070
		   path->slots[1] + 1, 1);
4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089

	btrfs_mark_buffer_dirty(right);
	btrfs_mark_buffer_dirty(l);
	BUG_ON(path->slots[0] != slot);

	if (mid <= slot) {
		btrfs_tree_unlock(path->nodes[0]);
		free_extent_buffer(path->nodes[0]);
		path->nodes[0] = right;
		path->slots[0] -= mid;
		path->slots[1] += 1;
	} else {
		btrfs_tree_unlock(right);
		free_extent_buffer(right);
	}

	BUG_ON(path->slots[0] < 0);
}

4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104
/*
 * double splits happen when we need to insert a big item in the middle
 * of a leaf.  A double split can leave us with 3 mostly empty leaves:
 * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ]
 *          A                 B                 C
 *
 * We avoid this by trying to push the items on either side of our target
 * into the adjacent leaves.  If all goes well we can avoid the double split
 * completely.
 */
static noinline int push_for_double_split(struct btrfs_trans_handle *trans,
					  struct btrfs_root *root,
					  struct btrfs_path *path,
					  int data_size)
{
4105
	struct btrfs_fs_info *fs_info = root->fs_info;
4106 4107 4108 4109
	int ret;
	int progress = 0;
	int slot;
	u32 nritems;
4110
	int space_needed = data_size;
4111 4112

	slot = path->slots[0];
4113
	if (slot < btrfs_header_nritems(path->nodes[0]))
4114
		space_needed -= btrfs_leaf_free_space(fs_info, path->nodes[0]);
4115 4116 4117 4118 4119

	/*
	 * try to push all the items after our slot into the
	 * right leaf
	 */
4120
	ret = push_leaf_right(trans, root, path, 1, space_needed, 0, slot);
4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134
	if (ret < 0)
		return ret;

	if (ret == 0)
		progress++;

	nritems = btrfs_header_nritems(path->nodes[0]);
	/*
	 * our goal is to get our slot at the start or end of a leaf.  If
	 * we've done so we're done
	 */
	if (path->slots[0] == 0 || path->slots[0] == nritems)
		return 0;

4135
	if (btrfs_leaf_free_space(fs_info, path->nodes[0]) >= data_size)
4136 4137 4138 4139
		return 0;

	/* try to push all the items before our slot into the next leaf */
	slot = path->slots[0];
4140 4141 4142
	space_needed = data_size;
	if (slot > 0)
		space_needed -= btrfs_leaf_free_space(fs_info, path->nodes[0]);
4143
	ret = push_leaf_left(trans, root, path, 1, space_needed, 0, slot);
4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154
	if (ret < 0)
		return ret;

	if (ret == 0)
		progress++;

	if (progress)
		return 0;
	return 1;
}

C
Chris Mason 已提交
4155 4156 4157
/*
 * split the path's leaf in two, making sure there is at least data_size
 * available for the resulting leaf level of the path.
C
Chris Mason 已提交
4158 4159
 *
 * returns 0 if all went well and < 0 on failure.
C
Chris Mason 已提交
4160
 */
4161 4162
static noinline int split_leaf(struct btrfs_trans_handle *trans,
			       struct btrfs_root *root,
4163
			       const struct btrfs_key *ins_key,
4164 4165
			       struct btrfs_path *path, int data_size,
			       int extend)
4166
{
4167
	struct btrfs_disk_key disk_key;
4168
	struct extent_buffer *l;
4169
	u32 nritems;
4170 4171
	int mid;
	int slot;
4172
	struct extent_buffer *right;
4173
	struct btrfs_fs_info *fs_info = root->fs_info;
4174
	int ret = 0;
C
Chris Mason 已提交
4175
	int wret;
4176
	int split;
4177
	int num_doubles = 0;
4178
	int tried_avoid_double = 0;
C
Chris Mason 已提交
4179

4180 4181 4182
	l = path->nodes[0];
	slot = path->slots[0];
	if (extend && data_size + btrfs_item_size_nr(l, slot) +
4183
	    sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(fs_info))
4184 4185
		return -EOVERFLOW;

C
Chris Mason 已提交
4186
	/* first try to make some room by pushing left and right */
4187
	if (data_size && path->nodes[1]) {
4188 4189 4190
		int space_needed = data_size;

		if (slot < btrfs_header_nritems(l))
4191
			space_needed -= btrfs_leaf_free_space(fs_info, l);
4192 4193 4194

		wret = push_leaf_right(trans, root, path, space_needed,
				       space_needed, 0, 0);
C
Chris Mason 已提交
4195
		if (wret < 0)
C
Chris Mason 已提交
4196
			return wret;
4197
		if (wret) {
4198 4199 4200 4201
			space_needed = data_size;
			if (slot > 0)
				space_needed -= btrfs_leaf_free_space(fs_info,
								      l);
4202 4203
			wret = push_leaf_left(trans, root, path, space_needed,
					      space_needed, 0, (u32)-1);
4204 4205 4206 4207
			if (wret < 0)
				return wret;
		}
		l = path->nodes[0];
C
Chris Mason 已提交
4208

4209
		/* did the pushes work? */
4210
		if (btrfs_leaf_free_space(fs_info, l) >= data_size)
4211
			return 0;
4212
	}
C
Chris Mason 已提交
4213

C
Chris Mason 已提交
4214
	if (!path->nodes[1]) {
4215
		ret = insert_new_root(trans, root, path, 1);
C
Chris Mason 已提交
4216 4217 4218
		if (ret)
			return ret;
	}
4219
again:
4220
	split = 1;
4221
	l = path->nodes[0];
4222
	slot = path->slots[0];
4223
	nritems = btrfs_header_nritems(l);
C
Chris Mason 已提交
4224
	mid = (nritems + 1) / 2;
4225

4226 4227 4228
	if (mid <= slot) {
		if (nritems == 1 ||
		    leaf_space_used(l, mid, nritems - mid) + data_size >
4229
			BTRFS_LEAF_DATA_SIZE(fs_info)) {
4230 4231 4232 4233 4234 4235
			if (slot >= nritems) {
				split = 0;
			} else {
				mid = slot;
				if (mid != nritems &&
				    leaf_space_used(l, mid, nritems - mid) +
4236
				    data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) {
4237 4238
					if (data_size && !tried_avoid_double)
						goto push_for_double;
4239 4240 4241 4242 4243 4244
					split = 2;
				}
			}
		}
	} else {
		if (leaf_space_used(l, 0, mid) + data_size >
4245
			BTRFS_LEAF_DATA_SIZE(fs_info)) {
4246 4247 4248 4249 4250 4251 4252 4253
			if (!extend && data_size && slot == 0) {
				split = 0;
			} else if ((extend || !data_size) && slot == 0) {
				mid = 1;
			} else {
				mid = slot;
				if (mid != nritems &&
				    leaf_space_used(l, mid, nritems - mid) +
4254
				    data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) {
4255 4256
					if (data_size && !tried_avoid_double)
						goto push_for_double;
4257
					split = 2;
4258 4259 4260 4261 4262 4263 4264 4265 4266 4267
				}
			}
		}
	}

	if (split == 0)
		btrfs_cpu_key_to_disk(&disk_key, ins_key);
	else
		btrfs_item_key(l, &disk_key, mid);

4268 4269
	right = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
			&disk_key, 0, l->start, 0);
4270
	if (IS_ERR(right))
4271
		return PTR_ERR(right);
4272

4273
	root_add_used(root, fs_info->nodesize);
4274

4275 4276 4277
	if (split == 0) {
		if (mid <= slot) {
			btrfs_set_header_nritems(right, 0);
4278 4279
			insert_ptr(trans, fs_info, path, &disk_key,
				   right->start, path->slots[1] + 1, 1);
4280 4281 4282 4283 4284 4285 4286
			btrfs_tree_unlock(path->nodes[0]);
			free_extent_buffer(path->nodes[0]);
			path->nodes[0] = right;
			path->slots[0] = 0;
			path->slots[1] += 1;
		} else {
			btrfs_set_header_nritems(right, 0);
4287 4288
			insert_ptr(trans, fs_info, path, &disk_key,
				   right->start, path->slots[1], 1);
4289 4290 4291 4292
			btrfs_tree_unlock(path->nodes[0]);
			free_extent_buffer(path->nodes[0]);
			path->nodes[0] = right;
			path->slots[0] = 0;
4293
			if (path->slots[1] == 0)
4294
				fixup_low_keys(path, &disk_key, 1);
4295
		}
4296 4297 4298 4299 4300
		/*
		 * We create a new leaf 'right' for the required ins_len and
		 * we'll do btrfs_mark_buffer_dirty() on this leaf after copying
		 * the content of ins_len to 'right'.
		 */
4301
		return ret;
4302
	}
C
Chris Mason 已提交
4303

4304
	copy_for_split(trans, fs_info, path, l, right, slot, mid, nritems);
Z
Zheng Yan 已提交
4305

4306
	if (split == 2) {
4307 4308 4309
		BUG_ON(num_doubles != 0);
		num_doubles++;
		goto again;
4310
	}
4311

4312
	return 0;
4313 4314 4315 4316

push_for_double:
	push_for_double_split(trans, root, path, data_size);
	tried_avoid_double = 1;
4317
	if (btrfs_leaf_free_space(fs_info, path->nodes[0]) >= data_size)
4318 4319
		return 0;
	goto again;
4320 4321
}

Y
Yan, Zheng 已提交
4322 4323 4324
static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans,
					 struct btrfs_root *root,
					 struct btrfs_path *path, int ins_len)
4325
{
4326
	struct btrfs_fs_info *fs_info = root->fs_info;
Y
Yan, Zheng 已提交
4327
	struct btrfs_key key;
4328
	struct extent_buffer *leaf;
Y
Yan, Zheng 已提交
4329 4330 4331 4332
	struct btrfs_file_extent_item *fi;
	u64 extent_len = 0;
	u32 item_size;
	int ret;
4333 4334

	leaf = path->nodes[0];
Y
Yan, Zheng 已提交
4335 4336 4337 4338 4339
	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);

	BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY &&
	       key.type != BTRFS_EXTENT_CSUM_KEY);

4340
	if (btrfs_leaf_free_space(fs_info, leaf) >= ins_len)
Y
Yan, Zheng 已提交
4341
		return 0;
4342 4343

	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
Y
Yan, Zheng 已提交
4344 4345 4346 4347 4348
	if (key.type == BTRFS_EXTENT_DATA_KEY) {
		fi = btrfs_item_ptr(leaf, path->slots[0],
				    struct btrfs_file_extent_item);
		extent_len = btrfs_file_extent_num_bytes(leaf, fi);
	}
4349
	btrfs_release_path(path);
4350 4351

	path->keep_locks = 1;
Y
Yan, Zheng 已提交
4352 4353
	path->search_for_split = 1;
	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
4354
	path->search_for_split = 0;
4355 4356
	if (ret > 0)
		ret = -EAGAIN;
Y
Yan, Zheng 已提交
4357 4358
	if (ret < 0)
		goto err;
4359

Y
Yan, Zheng 已提交
4360 4361
	ret = -EAGAIN;
	leaf = path->nodes[0];
4362 4363
	/* if our item isn't there, return now */
	if (item_size != btrfs_item_size_nr(leaf, path->slots[0]))
Y
Yan, Zheng 已提交
4364 4365
		goto err;

4366
	/* the leaf has  changed, it now has room.  return now */
4367
	if (btrfs_leaf_free_space(fs_info, path->nodes[0]) >= ins_len)
4368 4369
		goto err;

Y
Yan, Zheng 已提交
4370 4371 4372 4373 4374
	if (key.type == BTRFS_EXTENT_DATA_KEY) {
		fi = btrfs_item_ptr(leaf, path->slots[0],
				    struct btrfs_file_extent_item);
		if (extent_len != btrfs_file_extent_num_bytes(leaf, fi))
			goto err;
4375 4376
	}

4377
	btrfs_set_path_blocking(path);
Y
Yan, Zheng 已提交
4378
	ret = split_leaf(trans, root, &key, path, ins_len, 1);
4379 4380
	if (ret)
		goto err;
4381

Y
Yan, Zheng 已提交
4382
	path->keep_locks = 0;
4383
	btrfs_unlock_up_safe(path, 1);
Y
Yan, Zheng 已提交
4384 4385 4386 4387 4388 4389
	return 0;
err:
	path->keep_locks = 0;
	return ret;
}

4390
static noinline int split_item(struct btrfs_fs_info *fs_info,
Y
Yan, Zheng 已提交
4391
			       struct btrfs_path *path,
4392
			       const struct btrfs_key *new_key,
Y
Yan, Zheng 已提交
4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404
			       unsigned long split_offset)
{
	struct extent_buffer *leaf;
	struct btrfs_item *item;
	struct btrfs_item *new_item;
	int slot;
	char *buf;
	u32 nritems;
	u32 item_size;
	u32 orig_offset;
	struct btrfs_disk_key disk_key;

4405
	leaf = path->nodes[0];
4406
	BUG_ON(btrfs_leaf_free_space(fs_info, leaf) < sizeof(struct btrfs_item));
4407

4408 4409
	btrfs_set_path_blocking(path);

4410
	item = btrfs_item_nr(path->slots[0]);
4411 4412 4413 4414
	orig_offset = btrfs_item_offset(leaf, item);
	item_size = btrfs_item_size(leaf, item);

	buf = kmalloc(item_size, GFP_NOFS);
Y
Yan, Zheng 已提交
4415 4416 4417
	if (!buf)
		return -ENOMEM;

4418 4419 4420
	read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf,
			    path->slots[0]), item_size);

Y
Yan, Zheng 已提交
4421
	slot = path->slots[0] + 1;
4422 4423 4424 4425
	nritems = btrfs_header_nritems(leaf);
	if (slot != nritems) {
		/* shift the items */
		memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1),
Y
Yan, Zheng 已提交
4426 4427
				btrfs_item_nr_offset(slot),
				(nritems - slot) * sizeof(struct btrfs_item));
4428 4429 4430 4431 4432
	}

	btrfs_cpu_key_to_disk(&disk_key, new_key);
	btrfs_set_item_key(leaf, &disk_key, slot);

4433
	new_item = btrfs_item_nr(slot);
4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454

	btrfs_set_item_offset(leaf, new_item, orig_offset);
	btrfs_set_item_size(leaf, new_item, item_size - split_offset);

	btrfs_set_item_offset(leaf, item,
			      orig_offset + item_size - split_offset);
	btrfs_set_item_size(leaf, item, split_offset);

	btrfs_set_header_nritems(leaf, nritems + 1);

	/* write the data for the start of the original item */
	write_extent_buffer(leaf, buf,
			    btrfs_item_ptr_offset(leaf, path->slots[0]),
			    split_offset);

	/* write the data for the new item */
	write_extent_buffer(leaf, buf + split_offset,
			    btrfs_item_ptr_offset(leaf, slot),
			    item_size - split_offset);
	btrfs_mark_buffer_dirty(leaf);

4455
	BUG_ON(btrfs_leaf_free_space(fs_info, leaf) < 0);
4456
	kfree(buf);
Y
Yan, Zheng 已提交
4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477
	return 0;
}

/*
 * This function splits a single item into two items,
 * giving 'new_key' to the new item and splitting the
 * old one at split_offset (from the start of the item).
 *
 * The path may be released by this operation.  After
 * the split, the path is pointing to the old item.  The
 * new item is going to be in the same node as the old one.
 *
 * Note, the item being split must be smaller enough to live alone on
 * a tree block with room for one extra struct btrfs_item
 *
 * This allows us to split the item in place, keeping a lock on the
 * leaf the entire time.
 */
int btrfs_split_item(struct btrfs_trans_handle *trans,
		     struct btrfs_root *root,
		     struct btrfs_path *path,
4478
		     const struct btrfs_key *new_key,
Y
Yan, Zheng 已提交
4479 4480 4481 4482 4483 4484 4485 4486
		     unsigned long split_offset)
{
	int ret;
	ret = setup_leaf_for_split(trans, root, path,
				   sizeof(struct btrfs_item));
	if (ret)
		return ret;

4487
	ret = split_item(root->fs_info, path, new_key, split_offset);
4488 4489 4490
	return ret;
}

Y
Yan, Zheng 已提交
4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501
/*
 * This function duplicate a item, giving 'new_key' to the new item.
 * It guarantees both items live in the same tree leaf and the new item
 * is contiguous with the original item.
 *
 * This allows us to split file extent in place, keeping a lock on the
 * leaf the entire time.
 */
int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
			 struct btrfs_root *root,
			 struct btrfs_path *path,
4502
			 const struct btrfs_key *new_key)
Y
Yan, Zheng 已提交
4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515
{
	struct extent_buffer *leaf;
	int ret;
	u32 item_size;

	leaf = path->nodes[0];
	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
	ret = setup_leaf_for_split(trans, root, path,
				   item_size + sizeof(struct btrfs_item));
	if (ret)
		return ret;

	path->slots[0]++;
4516
	setup_items_for_insert(root, path, new_key, &item_size,
4517 4518
			       item_size, item_size +
			       sizeof(struct btrfs_item), 1);
Y
Yan, Zheng 已提交
4519 4520 4521 4522 4523 4524 4525 4526
	leaf = path->nodes[0];
	memcpy_extent_buffer(leaf,
			     btrfs_item_ptr_offset(leaf, path->slots[0]),
			     btrfs_item_ptr_offset(leaf, path->slots[0] - 1),
			     item_size);
	return 0;
}

C
Chris Mason 已提交
4527 4528 4529 4530 4531 4532
/*
 * make the item pointed to by the path smaller.  new_size indicates
 * how small to make it, and from_end tells us if we just chop bytes
 * off the end of the item or if we shift the item to chop bytes off
 * the front.
 */
4533 4534
void btrfs_truncate_item(struct btrfs_fs_info *fs_info,
			 struct btrfs_path *path, u32 new_size, int from_end)
C
Chris Mason 已提交
4535 4536
{
	int slot;
4537 4538
	struct extent_buffer *leaf;
	struct btrfs_item *item;
C
Chris Mason 已提交
4539 4540 4541 4542 4543 4544
	u32 nritems;
	unsigned int data_end;
	unsigned int old_data_start;
	unsigned int old_size;
	unsigned int size_diff;
	int i;
4545 4546 4547
	struct btrfs_map_token token;

	btrfs_init_map_token(&token);
C
Chris Mason 已提交
4548

4549
	leaf = path->nodes[0];
4550 4551 4552 4553
	slot = path->slots[0];

	old_size = btrfs_item_size_nr(leaf, slot);
	if (old_size == new_size)
4554
		return;
C
Chris Mason 已提交
4555

4556
	nritems = btrfs_header_nritems(leaf);
4557
	data_end = leaf_data_end(fs_info, leaf);
C
Chris Mason 已提交
4558

4559
	old_data_start = btrfs_item_offset_nr(leaf, slot);
4560

C
Chris Mason 已提交
4561 4562 4563 4564 4565 4566 4567 4568 4569 4570
	size_diff = old_size - new_size;

	BUG_ON(slot < 0);
	BUG_ON(slot >= nritems);

	/*
	 * item0..itemN ... dataN.offset..dataN.size .. data0.size
	 */
	/* first correct the data pointers */
	for (i = slot; i < nritems; i++) {
4571
		u32 ioff;
4572
		item = btrfs_item_nr(i);
4573

4574 4575 4576
		ioff = btrfs_token_item_offset(leaf, item, &token);
		btrfs_set_token_item_offset(leaf, item,
					    ioff + size_diff, &token);
C
Chris Mason 已提交
4577
	}
4578

C
Chris Mason 已提交
4579
	/* shift the data */
4580
	if (from_end) {
4581 4582
		memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
			      data_end + size_diff, BTRFS_LEAF_DATA_OFFSET +
4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602
			      data_end, old_data_start + new_size - data_end);
	} else {
		struct btrfs_disk_key disk_key;
		u64 offset;

		btrfs_item_key(leaf, &disk_key, slot);

		if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) {
			unsigned long ptr;
			struct btrfs_file_extent_item *fi;

			fi = btrfs_item_ptr(leaf, slot,
					    struct btrfs_file_extent_item);
			fi = (struct btrfs_file_extent_item *)(
			     (unsigned long)fi - size_diff);

			if (btrfs_file_extent_type(leaf, fi) ==
			    BTRFS_FILE_EXTENT_INLINE) {
				ptr = btrfs_item_ptr_offset(leaf, slot);
				memmove_extent_buffer(leaf, ptr,
C
Chris Mason 已提交
4603
				      (unsigned long)fi,
4604
				      BTRFS_FILE_EXTENT_INLINE_DATA_START);
4605 4606 4607
			}
		}

4608 4609
		memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
			      data_end + size_diff, BTRFS_LEAF_DATA_OFFSET +
4610 4611 4612 4613 4614 4615
			      data_end, old_data_start - data_end);

		offset = btrfs_disk_key_offset(&disk_key);
		btrfs_set_disk_key_offset(&disk_key, offset + size_diff);
		btrfs_set_item_key(leaf, &disk_key, slot);
		if (slot == 0)
4616
			fixup_low_keys(path, &disk_key, 1);
4617
	}
4618

4619
	item = btrfs_item_nr(slot);
4620 4621
	btrfs_set_item_size(leaf, item, new_size);
	btrfs_mark_buffer_dirty(leaf);
C
Chris Mason 已提交
4622

4623
	if (btrfs_leaf_free_space(fs_info, leaf) < 0) {
4624
		btrfs_print_leaf(leaf);
C
Chris Mason 已提交
4625
		BUG();
4626
	}
C
Chris Mason 已提交
4627 4628
}

C
Chris Mason 已提交
4629
/*
S
Stefan Behrens 已提交
4630
 * make the item pointed to by the path bigger, data_size is the added size.
C
Chris Mason 已提交
4631
 */
4632
void btrfs_extend_item(struct btrfs_fs_info *fs_info, struct btrfs_path *path,
4633
		       u32 data_size)
4634 4635
{
	int slot;
4636 4637
	struct extent_buffer *leaf;
	struct btrfs_item *item;
4638 4639 4640 4641 4642
	u32 nritems;
	unsigned int data_end;
	unsigned int old_data;
	unsigned int old_size;
	int i;
4643 4644 4645
	struct btrfs_map_token token;

	btrfs_init_map_token(&token);
4646

4647
	leaf = path->nodes[0];
4648

4649
	nritems = btrfs_header_nritems(leaf);
4650
	data_end = leaf_data_end(fs_info, leaf);
4651

4652
	if (btrfs_leaf_free_space(fs_info, leaf) < data_size) {
4653
		btrfs_print_leaf(leaf);
4654
		BUG();
4655
	}
4656
	slot = path->slots[0];
4657
	old_data = btrfs_item_end_nr(leaf, slot);
4658 4659

	BUG_ON(slot < 0);
4660
	if (slot >= nritems) {
4661
		btrfs_print_leaf(leaf);
4662 4663
		btrfs_crit(fs_info, "slot %d too large, nritems %d",
			   slot, nritems);
4664 4665
		BUG_ON(1);
	}
4666 4667 4668 4669 4670 4671

	/*
	 * item0..itemN ... dataN.offset..dataN.size .. data0.size
	 */
	/* first correct the data pointers */
	for (i = slot; i < nritems; i++) {
4672
		u32 ioff;
4673
		item = btrfs_item_nr(i);
4674

4675 4676 4677
		ioff = btrfs_token_item_offset(leaf, item, &token);
		btrfs_set_token_item_offset(leaf, item,
					    ioff - data_size, &token);
4678
	}
4679

4680
	/* shift the data */
4681 4682
	memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
		      data_end - data_size, BTRFS_LEAF_DATA_OFFSET +
4683
		      data_end, old_data - data_end);
4684

4685
	data_end = old_data;
4686
	old_size = btrfs_item_size_nr(leaf, slot);
4687
	item = btrfs_item_nr(slot);
4688 4689
	btrfs_set_item_size(leaf, item, old_size + data_size);
	btrfs_mark_buffer_dirty(leaf);
4690

4691
	if (btrfs_leaf_free_space(fs_info, leaf) < 0) {
4692
		btrfs_print_leaf(leaf);
4693
		BUG();
4694
	}
4695 4696
}

C
Chris Mason 已提交
4697
/*
4698 4699 4700
 * this is a helper for btrfs_insert_empty_items, the main goal here is
 * to save stack depth by doing the bulk of the work in a function
 * that doesn't call btrfs_search_slot
C
Chris Mason 已提交
4701
 */
4702
void setup_items_for_insert(struct btrfs_root *root, struct btrfs_path *path,
4703
			    const struct btrfs_key *cpu_key, u32 *data_size,
4704
			    u32 total_data, u32 total_size, int nr)
4705
{
4706
	struct btrfs_fs_info *fs_info = root->fs_info;
4707
	struct btrfs_item *item;
4708
	int i;
4709
	u32 nritems;
4710
	unsigned int data_end;
C
Chris Mason 已提交
4711
	struct btrfs_disk_key disk_key;
4712 4713
	struct extent_buffer *leaf;
	int slot;
4714 4715
	struct btrfs_map_token token;

4716 4717
	if (path->slots[0] == 0) {
		btrfs_cpu_key_to_disk(&disk_key, cpu_key);
4718
		fixup_low_keys(path, &disk_key, 1);
4719 4720 4721
	}
	btrfs_unlock_up_safe(path, 1);

4722
	btrfs_init_map_token(&token);
C
Chris Mason 已提交
4723

4724
	leaf = path->nodes[0];
4725
	slot = path->slots[0];
C
Chris Mason 已提交
4726

4727
	nritems = btrfs_header_nritems(leaf);
4728
	data_end = leaf_data_end(fs_info, leaf);
4729

4730
	if (btrfs_leaf_free_space(fs_info, leaf) < total_size) {
4731
		btrfs_print_leaf(leaf);
4732
		btrfs_crit(fs_info, "not enough freespace need %u have %d",
4733
			   total_size, btrfs_leaf_free_space(fs_info, leaf));
4734
		BUG();
4735
	}
4736

4737
	if (slot != nritems) {
4738
		unsigned int old_data = btrfs_item_end_nr(leaf, slot);
4739

4740
		if (old_data < data_end) {
4741
			btrfs_print_leaf(leaf);
4742
			btrfs_crit(fs_info, "slot %d old_data %d data_end %d",
J
Jeff Mahoney 已提交
4743
				   slot, old_data, data_end);
4744 4745
			BUG_ON(1);
		}
4746 4747 4748 4749
		/*
		 * item0..itemN ... dataN.offset..dataN.size .. data0.size
		 */
		/* first correct the data pointers */
C
Chris Mason 已提交
4750
		for (i = slot; i < nritems; i++) {
4751
			u32 ioff;
4752

4753
			item = btrfs_item_nr(i);
4754 4755 4756
			ioff = btrfs_token_item_offset(leaf, item, &token);
			btrfs_set_token_item_offset(leaf, item,
						    ioff - total_data, &token);
C
Chris Mason 已提交
4757
		}
4758
		/* shift the items */
4759
		memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
4760
			      btrfs_item_nr_offset(slot),
C
Chris Mason 已提交
4761
			      (nritems - slot) * sizeof(struct btrfs_item));
4762 4763

		/* shift the data */
4764 4765
		memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
			      data_end - total_data, BTRFS_LEAF_DATA_OFFSET +
C
Chris Mason 已提交
4766
			      data_end, old_data - data_end);
4767 4768
		data_end = old_data;
	}
4769

4770
	/* setup the item for the new data */
4771 4772 4773
	for (i = 0; i < nr; i++) {
		btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
		btrfs_set_item_key(leaf, &disk_key, slot + i);
4774
		item = btrfs_item_nr(slot + i);
4775 4776
		btrfs_set_token_item_offset(leaf, item,
					    data_end - data_size[i], &token);
4777
		data_end -= data_size[i];
4778
		btrfs_set_token_item_size(leaf, item, data_size[i], &token);
4779
	}
4780

4781
	btrfs_set_header_nritems(leaf, nritems + nr);
4782
	btrfs_mark_buffer_dirty(leaf);
C
Chris Mason 已提交
4783

4784
	if (btrfs_leaf_free_space(fs_info, leaf) < 0) {
4785
		btrfs_print_leaf(leaf);
4786
		BUG();
4787
	}
4788 4789 4790 4791 4792 4793 4794 4795 4796
}

/*
 * Given a key and some data, insert items into the tree.
 * This does all the path init required, making room in the tree if needed.
 */
int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
			    struct btrfs_root *root,
			    struct btrfs_path *path,
4797
			    const struct btrfs_key *cpu_key, u32 *data_size,
4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813
			    int nr)
{
	int ret = 0;
	int slot;
	int i;
	u32 total_size = 0;
	u32 total_data = 0;

	for (i = 0; i < nr; i++)
		total_data += data_size[i];

	total_size = total_data + (nr * sizeof(struct btrfs_item));
	ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
	if (ret == 0)
		return -EEXIST;
	if (ret < 0)
4814
		return ret;
4815 4816 4817 4818

	slot = path->slots[0];
	BUG_ON(slot < 0);

4819
	setup_items_for_insert(root, path, cpu_key, data_size,
4820
			       total_data, total_size, nr);
4821
	return 0;
4822 4823 4824 4825 4826 4827
}

/*
 * Given a key and some data, insert an item into the tree.
 * This does all the path init required, making room in the tree if needed.
 */
4828 4829 4830
int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root *root,
		      const struct btrfs_key *cpu_key, void *data,
		      u32 data_size)
4831 4832
{
	int ret = 0;
C
Chris Mason 已提交
4833
	struct btrfs_path *path;
4834 4835
	struct extent_buffer *leaf;
	unsigned long ptr;
4836

C
Chris Mason 已提交
4837
	path = btrfs_alloc_path();
T
Tsutomu Itoh 已提交
4838 4839
	if (!path)
		return -ENOMEM;
C
Chris Mason 已提交
4840
	ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
4841
	if (!ret) {
4842 4843 4844 4845
		leaf = path->nodes[0];
		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
		write_extent_buffer(leaf, data, ptr, data_size);
		btrfs_mark_buffer_dirty(leaf);
4846
	}
C
Chris Mason 已提交
4847
	btrfs_free_path(path);
C
Chris Mason 已提交
4848
	return ret;
4849 4850
}

C
Chris Mason 已提交
4851
/*
C
Chris Mason 已提交
4852
 * delete the pointer from a given node.
C
Chris Mason 已提交
4853
 *
C
Chris Mason 已提交
4854 4855
 * the tree should have been previously balanced so the deletion does not
 * empty a node.
C
Chris Mason 已提交
4856
 */
4857 4858
static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
		    int level, int slot)
4859
{
4860
	struct extent_buffer *parent = path->nodes[level];
4861
	u32 nritems;
4862
	int ret;
4863

4864
	nritems = btrfs_header_nritems(parent);
C
Chris Mason 已提交
4865
	if (slot != nritems - 1) {
4866 4867
		if (level) {
			ret = tree_mod_log_insert_move(parent, slot, slot + 1,
4868
					nritems - slot - 1);
4869 4870
			BUG_ON(ret < 0);
		}
4871 4872 4873
		memmove_extent_buffer(parent,
			      btrfs_node_key_ptr_offset(slot),
			      btrfs_node_key_ptr_offset(slot + 1),
C
Chris Mason 已提交
4874 4875
			      sizeof(struct btrfs_key_ptr) *
			      (nritems - slot - 1));
4876
	} else if (level) {
4877 4878
		ret = tree_mod_log_insert_key(parent, slot, MOD_LOG_KEY_REMOVE,
				GFP_NOFS);
4879
		BUG_ON(ret < 0);
4880
	}
4881

4882
	nritems--;
4883
	btrfs_set_header_nritems(parent, nritems);
4884
	if (nritems == 0 && parent == root->node) {
4885
		BUG_ON(btrfs_header_level(root->node) != 1);
4886
		/* just turn the root into a leaf and break */
4887
		btrfs_set_header_level(root->node, 0);
4888
	} else if (slot == 0) {
4889 4890 4891
		struct btrfs_disk_key disk_key;

		btrfs_node_key(parent, &disk_key, 0);
4892
		fixup_low_keys(path, &disk_key, level + 1);
4893
	}
C
Chris Mason 已提交
4894
	btrfs_mark_buffer_dirty(parent);
4895 4896
}

4897 4898
/*
 * a helper function to delete the leaf pointed to by path->slots[1] and
4899
 * path->nodes[1].
4900 4901 4902 4903 4904 4905 4906
 *
 * This deletes the pointer in path->nodes[1] and frees the leaf
 * block extent.  zero is returned if it all worked out, < 0 otherwise.
 *
 * The path must have already been setup for deleting the leaf, including
 * all the proper balancing.  path->nodes[1] must be locked.
 */
4907 4908 4909 4910
static noinline void btrfs_del_leaf(struct btrfs_trans_handle *trans,
				    struct btrfs_root *root,
				    struct btrfs_path *path,
				    struct extent_buffer *leaf)
4911
{
4912
	WARN_ON(btrfs_header_generation(leaf) != trans->transid);
4913
	del_ptr(root, path, 1, path->slots[1]);
4914

4915 4916 4917 4918 4919 4920
	/*
	 * btrfs_free_extent is expensive, we want to make sure we
	 * aren't holding any locks when we call it
	 */
	btrfs_unlock_up_safe(path, 0);

4921 4922
	root_sub_used(root, leaf->len);

4923
	extent_buffer_get(leaf);
4924
	btrfs_free_tree_block(trans, root, leaf, 0, 1);
4925
	free_extent_buffer_stale(leaf);
4926
}
C
Chris Mason 已提交
4927 4928 4929 4930
/*
 * delete the item at the leaf level in path.  If that empties
 * the leaf, remove it from the tree
 */
4931 4932
int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
		    struct btrfs_path *path, int slot, int nr)
4933
{
4934
	struct btrfs_fs_info *fs_info = root->fs_info;
4935 4936
	struct extent_buffer *leaf;
	struct btrfs_item *item;
4937 4938
	u32 last_off;
	u32 dsize = 0;
C
Chris Mason 已提交
4939 4940
	int ret = 0;
	int wret;
4941
	int i;
4942
	u32 nritems;
4943 4944 4945
	struct btrfs_map_token token;

	btrfs_init_map_token(&token);
4946

4947
	leaf = path->nodes[0];
4948 4949 4950 4951 4952
	last_off = btrfs_item_offset_nr(leaf, slot + nr - 1);

	for (i = 0; i < nr; i++)
		dsize += btrfs_item_size_nr(leaf, slot + i);

4953
	nritems = btrfs_header_nritems(leaf);
4954

4955
	if (slot + nr != nritems) {
4956
		int data_end = leaf_data_end(fs_info, leaf);
4957

4958
		memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
C
Chris Mason 已提交
4959
			      data_end + dsize,
4960
			      BTRFS_LEAF_DATA_OFFSET + data_end,
4961
			      last_off - data_end);
4962

4963
		for (i = slot + nr; i < nritems; i++) {
4964
			u32 ioff;
4965

4966
			item = btrfs_item_nr(i);
4967 4968 4969
			ioff = btrfs_token_item_offset(leaf, item, &token);
			btrfs_set_token_item_offset(leaf, item,
						    ioff + dsize, &token);
C
Chris Mason 已提交
4970
		}
4971

4972
		memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot),
4973
			      btrfs_item_nr_offset(slot + nr),
C
Chris Mason 已提交
4974
			      sizeof(struct btrfs_item) *
4975
			      (nritems - slot - nr));
4976
	}
4977 4978
	btrfs_set_header_nritems(leaf, nritems - nr);
	nritems -= nr;
4979

C
Chris Mason 已提交
4980
	/* delete the leaf if we've emptied it */
4981
	if (nritems == 0) {
4982 4983
		if (leaf == root->node) {
			btrfs_set_header_level(leaf, 0);
4984
		} else {
4985
			btrfs_set_path_blocking(path);
4986
			clean_tree_block(fs_info, leaf);
4987
			btrfs_del_leaf(trans, root, path, leaf);
4988
		}
4989
	} else {
4990
		int used = leaf_space_used(leaf, 0, nritems);
C
Chris Mason 已提交
4991
		if (slot == 0) {
4992 4993 4994
			struct btrfs_disk_key disk_key;

			btrfs_item_key(leaf, &disk_key, 0);
4995
			fixup_low_keys(path, &disk_key, 1);
C
Chris Mason 已提交
4996 4997
		}

C
Chris Mason 已提交
4998
		/* delete the leaf if it is mostly empty */
4999
		if (used < BTRFS_LEAF_DATA_SIZE(fs_info) / 3) {
5000 5001 5002 5003
			/* push_leaf_left fixes the path.
			 * make sure the path still points to our leaf
			 * for possible call to del_ptr below
			 */
5004
			slot = path->slots[1];
5005 5006
			extent_buffer_get(leaf);

5007
			btrfs_set_path_blocking(path);
5008 5009
			wret = push_leaf_left(trans, root, path, 1, 1,
					      1, (u32)-1);
5010
			if (wret < 0 && wret != -ENOSPC)
C
Chris Mason 已提交
5011
				ret = wret;
5012 5013 5014

			if (path->nodes[0] == leaf &&
			    btrfs_header_nritems(leaf)) {
5015 5016
				wret = push_leaf_right(trans, root, path, 1,
						       1, 1, 0);
5017
				if (wret < 0 && wret != -ENOSPC)
C
Chris Mason 已提交
5018 5019
					ret = wret;
			}
5020 5021

			if (btrfs_header_nritems(leaf) == 0) {
5022
				path->slots[1] = slot;
5023
				btrfs_del_leaf(trans, root, path, leaf);
5024
				free_extent_buffer(leaf);
5025
				ret = 0;
C
Chris Mason 已提交
5026
			} else {
5027 5028 5029 5030 5031 5032 5033
				/* if we're still in the path, make sure
				 * we're dirty.  Otherwise, one of the
				 * push_leaf functions must have already
				 * dirtied this buffer
				 */
				if (path->nodes[0] == leaf)
					btrfs_mark_buffer_dirty(leaf);
5034
				free_extent_buffer(leaf);
5035
			}
5036
		} else {
5037
			btrfs_mark_buffer_dirty(leaf);
5038 5039
		}
	}
C
Chris Mason 已提交
5040
	return ret;
5041 5042
}

5043
/*
5044
 * search the tree again to find a leaf with lesser keys
5045 5046
 * returns 0 if it found something or 1 if there are no lesser leaves.
 * returns < 0 on io errors.
C
Chris Mason 已提交
5047 5048 5049
 *
 * This may release the path, and so you may lose any locks held at the
 * time you call it.
5050
 */
5051
int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path)
5052
{
5053 5054 5055
	struct btrfs_key key;
	struct btrfs_disk_key found_key;
	int ret;
5056

5057
	btrfs_item_key_to_cpu(path->nodes[0], &key, 0);
5058

5059
	if (key.offset > 0) {
5060
		key.offset--;
5061
	} else if (key.type > 0) {
5062
		key.type--;
5063 5064
		key.offset = (u64)-1;
	} else if (key.objectid > 0) {
5065
		key.objectid--;
5066 5067 5068
		key.type = (u8)-1;
		key.offset = (u64)-1;
	} else {
5069
		return 1;
5070
	}
5071

5072
	btrfs_release_path(path);
5073 5074 5075 5076 5077
	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
	if (ret < 0)
		return ret;
	btrfs_item_key(path->nodes[0], &found_key, 0);
	ret = comp_keys(&found_key, &key);
5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088
	/*
	 * We might have had an item with the previous key in the tree right
	 * before we released our path. And after we released our path, that
	 * item might have been pushed to the first slot (0) of the leaf we
	 * were holding due to a tree balance. Alternatively, an item with the
	 * previous key can exist as the only element of a leaf (big fat item).
	 * Therefore account for these 2 cases, so that our callers (like
	 * btrfs_previous_item) don't miss an existing item with a key matching
	 * the previous key we computed above.
	 */
	if (ret <= 0)
5089 5090
		return 0;
	return 1;
5091 5092
}

5093 5094
/*
 * A helper function to walk down the tree starting at min_key, and looking
5095 5096
 * for nodes or leaves that are have a minimum transaction id.
 * This is used by the btree defrag code, and tree logging
5097 5098 5099 5100 5101 5102 5103 5104
 *
 * This does not cow, but it does stuff the starting key it finds back
 * into min_key, so you can call btrfs_search_slot with cow=1 on the
 * key and get a writable path.
 *
 * This honors path->lowest_level to prevent descent past a given level
 * of the tree.
 *
C
Chris Mason 已提交
5105 5106 5107 5108
 * min_trans indicates the oldest transaction that you are interested
 * in walking through.  Any nodes or leaves older than min_trans are
 * skipped over (without reading them).
 *
5109 5110 5111 5112
 * returns zero if something useful was found, < 0 on error and 1 if there
 * was nothing in the tree that matched the search criteria.
 */
int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
5113
			 struct btrfs_path *path,
5114 5115
			 u64 min_trans)
{
5116
	struct btrfs_fs_info *fs_info = root->fs_info;
5117 5118 5119
	struct extent_buffer *cur;
	struct btrfs_key found_key;
	int slot;
5120
	int sret;
5121 5122 5123
	u32 nritems;
	int level;
	int ret = 1;
5124
	int keep_locks = path->keep_locks;
5125

5126
	path->keep_locks = 1;
5127
again:
5128
	cur = btrfs_read_lock_root_node(root);
5129
	level = btrfs_header_level(cur);
5130
	WARN_ON(path->nodes[level]);
5131
	path->nodes[level] = cur;
5132
	path->locks[level] = BTRFS_READ_LOCK;
5133 5134 5135 5136 5137

	if (btrfs_header_generation(cur) < min_trans) {
		ret = 1;
		goto out;
	}
C
Chris Mason 已提交
5138
	while (1) {
5139 5140
		nritems = btrfs_header_nritems(cur);
		level = btrfs_header_level(cur);
5141
		sret = btrfs_bin_search(cur, min_key, level, &slot);
5142

5143 5144
		/* at the lowest level, we're done, setup the path and exit */
		if (level == path->lowest_level) {
5145 5146
			if (slot >= nritems)
				goto find_next_key;
5147 5148 5149 5150 5151
			ret = 0;
			path->slots[level] = slot;
			btrfs_item_key_to_cpu(cur, &found_key, slot);
			goto out;
		}
5152 5153
		if (sret && slot > 0)
			slot--;
5154
		/*
5155 5156
		 * check this node pointer against the min_trans parameters.
		 * If it is too old, old, skip to the next one.
5157
		 */
C
Chris Mason 已提交
5158
		while (slot < nritems) {
5159
			u64 gen;
5160

5161 5162 5163 5164 5165
			gen = btrfs_node_ptr_generation(cur, slot);
			if (gen < min_trans) {
				slot++;
				continue;
			}
5166
			break;
5167
		}
5168
find_next_key:
5169 5170 5171 5172 5173
		/*
		 * we didn't find a candidate key in this node, walk forward
		 * and find another one
		 */
		if (slot >= nritems) {
5174
			path->slots[level] = slot;
5175
			btrfs_set_path_blocking(path);
5176
			sret = btrfs_find_next_key(root, path, min_key, level,
5177
						  min_trans);
5178
			if (sret == 0) {
5179
				btrfs_release_path(path);
5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191
				goto again;
			} else {
				goto out;
			}
		}
		/* save our key for returning back */
		btrfs_node_key_to_cpu(cur, &found_key, slot);
		path->slots[level] = slot;
		if (level == path->lowest_level) {
			ret = 0;
			goto out;
		}
5192
		btrfs_set_path_blocking(path);
5193
		cur = read_node_slot(fs_info, cur, slot);
5194 5195 5196 5197
		if (IS_ERR(cur)) {
			ret = PTR_ERR(cur);
			goto out;
		}
5198

5199
		btrfs_tree_read_lock(cur);
5200

5201
		path->locks[level - 1] = BTRFS_READ_LOCK;
5202
		path->nodes[level - 1] = cur;
5203
		unlock_up(path, level, 1, 0, NULL);
5204
		btrfs_clear_path_blocking(path, NULL, 0);
5205 5206
	}
out:
5207 5208 5209 5210
	path->keep_locks = keep_locks;
	if (ret == 0) {
		btrfs_unlock_up_safe(path, path->lowest_level + 1);
		btrfs_set_path_blocking(path);
5211
		memcpy(min_key, &found_key, sizeof(found_key));
5212
	}
5213 5214 5215
	return ret;
}

5216
static int tree_move_down(struct btrfs_fs_info *fs_info,
5217
			   struct btrfs_path *path,
5218
			   int *level)
5219
{
5220 5221
	struct extent_buffer *eb;

5222
	BUG_ON(*level == 0);
5223
	eb = read_node_slot(fs_info, path->nodes[*level], path->slots[*level]);
5224 5225 5226 5227
	if (IS_ERR(eb))
		return PTR_ERR(eb);

	path->nodes[*level - 1] = eb;
5228 5229
	path->slots[*level - 1] = 0;
	(*level)--;
5230
	return 0;
5231 5232
}

5233
static int tree_move_next_or_upnext(struct btrfs_path *path,
5234 5235 5236 5237 5238 5239 5240 5241
				    int *level, int root_level)
{
	int ret = 0;
	int nritems;
	nritems = btrfs_header_nritems(path->nodes[*level]);

	path->slots[*level]++;

5242
	while (path->slots[*level] >= nritems) {
5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262
		if (*level == root_level)
			return -1;

		/* move upnext */
		path->slots[*level] = 0;
		free_extent_buffer(path->nodes[*level]);
		path->nodes[*level] = NULL;
		(*level)++;
		path->slots[*level]++;

		nritems = btrfs_header_nritems(path->nodes[*level]);
		ret = 1;
	}
	return ret;
}

/*
 * Returns 1 if it had to move up and next. 0 is returned if it moved only next
 * or down.
 */
5263
static int tree_advance(struct btrfs_fs_info *fs_info,
5264 5265 5266 5267 5268 5269 5270 5271
			struct btrfs_path *path,
			int *level, int root_level,
			int allow_down,
			struct btrfs_key *key)
{
	int ret;

	if (*level == 0 || !allow_down) {
5272
		ret = tree_move_next_or_upnext(path, level, root_level);
5273
	} else {
5274
		ret = tree_move_down(fs_info, path, level);
5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286
	}
	if (ret >= 0) {
		if (*level == 0)
			btrfs_item_key_to_cpu(path->nodes[*level], key,
					path->slots[*level]);
		else
			btrfs_node_key_to_cpu(path->nodes[*level], key,
					path->slots[*level]);
	}
	return ret;
}

5287
static int tree_compare_item(struct btrfs_path *left_path,
5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331
			     struct btrfs_path *right_path,
			     char *tmp_buf)
{
	int cmp;
	int len1, len2;
	unsigned long off1, off2;

	len1 = btrfs_item_size_nr(left_path->nodes[0], left_path->slots[0]);
	len2 = btrfs_item_size_nr(right_path->nodes[0], right_path->slots[0]);
	if (len1 != len2)
		return 1;

	off1 = btrfs_item_ptr_offset(left_path->nodes[0], left_path->slots[0]);
	off2 = btrfs_item_ptr_offset(right_path->nodes[0],
				right_path->slots[0]);

	read_extent_buffer(left_path->nodes[0], tmp_buf, off1, len1);

	cmp = memcmp_extent_buffer(right_path->nodes[0], tmp_buf, off2, len1);
	if (cmp)
		return 1;
	return 0;
}

#define ADVANCE 1
#define ADVANCE_ONLY_NEXT -1

/*
 * This function compares two trees and calls the provided callback for
 * every changed/new/deleted item it finds.
 * If shared tree blocks are encountered, whole subtrees are skipped, making
 * the compare pretty fast on snapshotted subvolumes.
 *
 * This currently works on commit roots only. As commit roots are read only,
 * we don't do any locking. The commit roots are protected with transactions.
 * Transactions are ended and rejoined when a commit is tried in between.
 *
 * This function checks for modifications done to the trees while comparing.
 * If it detects a change, it aborts immediately.
 */
int btrfs_compare_trees(struct btrfs_root *left_root,
			struct btrfs_root *right_root,
			btrfs_changed_cb_t changed_cb, void *ctx)
{
5332
	struct btrfs_fs_info *fs_info = left_root->fs_info;
5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349
	int ret;
	int cmp;
	struct btrfs_path *left_path = NULL;
	struct btrfs_path *right_path = NULL;
	struct btrfs_key left_key;
	struct btrfs_key right_key;
	char *tmp_buf = NULL;
	int left_root_level;
	int right_root_level;
	int left_level;
	int right_level;
	int left_end_reached;
	int right_end_reached;
	int advance_left;
	int advance_right;
	u64 left_blockptr;
	u64 right_blockptr;
5350 5351
	u64 left_gen;
	u64 right_gen;
5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363

	left_path = btrfs_alloc_path();
	if (!left_path) {
		ret = -ENOMEM;
		goto out;
	}
	right_path = btrfs_alloc_path();
	if (!right_path) {
		ret = -ENOMEM;
		goto out;
	}

5364
	tmp_buf = kvmalloc(fs_info->nodesize, GFP_KERNEL);
5365
	if (!tmp_buf) {
5366 5367
		ret = -ENOMEM;
		goto out;
5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410
	}

	left_path->search_commit_root = 1;
	left_path->skip_locking = 1;
	right_path->search_commit_root = 1;
	right_path->skip_locking = 1;

	/*
	 * Strategy: Go to the first items of both trees. Then do
	 *
	 * If both trees are at level 0
	 *   Compare keys of current items
	 *     If left < right treat left item as new, advance left tree
	 *       and repeat
	 *     If left > right treat right item as deleted, advance right tree
	 *       and repeat
	 *     If left == right do deep compare of items, treat as changed if
	 *       needed, advance both trees and repeat
	 * If both trees are at the same level but not at level 0
	 *   Compare keys of current nodes/leafs
	 *     If left < right advance left tree and repeat
	 *     If left > right advance right tree and repeat
	 *     If left == right compare blockptrs of the next nodes/leafs
	 *       If they match advance both trees but stay at the same level
	 *         and repeat
	 *       If they don't match advance both trees while allowing to go
	 *         deeper and repeat
	 * If tree levels are different
	 *   Advance the tree that needs it and repeat
	 *
	 * Advancing a tree means:
	 *   If we are at level 0, try to go to the next slot. If that's not
	 *   possible, go one level up and repeat. Stop when we found a level
	 *   where we could go to the next slot. We may at this point be on a
	 *   node or a leaf.
	 *
	 *   If we are not at level 0 and not on shared tree blocks, go one
	 *   level deeper.
	 *
	 *   If we are not at level 0 and on shared tree blocks, go one slot to
	 *   the right if possible or go up and right.
	 */

5411
	down_read(&fs_info->commit_root_sem);
5412 5413
	left_level = btrfs_header_level(left_root->commit_root);
	left_root_level = left_level;
5414 5415 5416 5417 5418 5419 5420
	left_path->nodes[left_level] =
			btrfs_clone_extent_buffer(left_root->commit_root);
	if (!left_path->nodes[left_level]) {
		up_read(&fs_info->commit_root_sem);
		ret = -ENOMEM;
		goto out;
	}
5421 5422 5423 5424
	extent_buffer_get(left_path->nodes[left_level]);

	right_level = btrfs_header_level(right_root->commit_root);
	right_root_level = right_level;
5425 5426 5427 5428 5429 5430 5431
	right_path->nodes[right_level] =
			btrfs_clone_extent_buffer(right_root->commit_root);
	if (!right_path->nodes[right_level]) {
		up_read(&fs_info->commit_root_sem);
		ret = -ENOMEM;
		goto out;
	}
5432
	extent_buffer_get(right_path->nodes[right_level]);
5433
	up_read(&fs_info->commit_root_sem);
5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452

	if (left_level == 0)
		btrfs_item_key_to_cpu(left_path->nodes[left_level],
				&left_key, left_path->slots[left_level]);
	else
		btrfs_node_key_to_cpu(left_path->nodes[left_level],
				&left_key, left_path->slots[left_level]);
	if (right_level == 0)
		btrfs_item_key_to_cpu(right_path->nodes[right_level],
				&right_key, right_path->slots[right_level]);
	else
		btrfs_node_key_to_cpu(right_path->nodes[right_level],
				&right_key, right_path->slots[right_level]);

	left_end_reached = right_end_reached = 0;
	advance_left = advance_right = 0;

	while (1) {
		if (advance_left && !left_end_reached) {
5453
			ret = tree_advance(fs_info, left_path, &left_level,
5454 5455 5456
					left_root_level,
					advance_left != ADVANCE_ONLY_NEXT,
					&left_key);
5457
			if (ret == -1)
5458
				left_end_reached = ADVANCE;
5459 5460
			else if (ret < 0)
				goto out;
5461 5462 5463
			advance_left = 0;
		}
		if (advance_right && !right_end_reached) {
5464
			ret = tree_advance(fs_info, right_path, &right_level,
5465 5466 5467
					right_root_level,
					advance_right != ADVANCE_ONLY_NEXT,
					&right_key);
5468
			if (ret == -1)
5469
				right_end_reached = ADVANCE;
5470 5471
			else if (ret < 0)
				goto out;
5472 5473 5474 5475 5476 5477 5478 5479
			advance_right = 0;
		}

		if (left_end_reached && right_end_reached) {
			ret = 0;
			goto out;
		} else if (left_end_reached) {
			if (right_level == 0) {
5480
				ret = changed_cb(left_path, right_path,
5481 5482 5483 5484 5485 5486 5487 5488 5489 5490
						&right_key,
						BTRFS_COMPARE_TREE_DELETED,
						ctx);
				if (ret < 0)
					goto out;
			}
			advance_right = ADVANCE;
			continue;
		} else if (right_end_reached) {
			if (left_level == 0) {
5491
				ret = changed_cb(left_path, right_path,
5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504
						&left_key,
						BTRFS_COMPARE_TREE_NEW,
						ctx);
				if (ret < 0)
					goto out;
			}
			advance_left = ADVANCE;
			continue;
		}

		if (left_level == 0 && right_level == 0) {
			cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
			if (cmp < 0) {
5505
				ret = changed_cb(left_path, right_path,
5506 5507 5508 5509 5510 5511 5512
						&left_key,
						BTRFS_COMPARE_TREE_NEW,
						ctx);
				if (ret < 0)
					goto out;
				advance_left = ADVANCE;
			} else if (cmp > 0) {
5513
				ret = changed_cb(left_path, right_path,
5514 5515 5516 5517 5518 5519 5520
						&right_key,
						BTRFS_COMPARE_TREE_DELETED,
						ctx);
				if (ret < 0)
					goto out;
				advance_right = ADVANCE;
			} else {
5521
				enum btrfs_compare_tree_result result;
5522

5523
				WARN_ON(!extent_buffer_uptodate(left_path->nodes[0]));
5524 5525
				ret = tree_compare_item(left_path, right_path,
							tmp_buf);
5526
				if (ret)
5527
					result = BTRFS_COMPARE_TREE_CHANGED;
5528
				else
5529
					result = BTRFS_COMPARE_TREE_SAME;
5530
				ret = changed_cb(left_path, right_path,
5531
						 &left_key, result, ctx);
5532 5533
				if (ret < 0)
					goto out;
5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549
				advance_left = ADVANCE;
				advance_right = ADVANCE;
			}
		} else if (left_level == right_level) {
			cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
			if (cmp < 0) {
				advance_left = ADVANCE;
			} else if (cmp > 0) {
				advance_right = ADVANCE;
			} else {
				left_blockptr = btrfs_node_blockptr(
						left_path->nodes[left_level],
						left_path->slots[left_level]);
				right_blockptr = btrfs_node_blockptr(
						right_path->nodes[right_level],
						right_path->slots[right_level]);
5550 5551 5552 5553 5554 5555 5556 5557
				left_gen = btrfs_node_ptr_generation(
						left_path->nodes[left_level],
						left_path->slots[left_level]);
				right_gen = btrfs_node_ptr_generation(
						right_path->nodes[right_level],
						right_path->slots[right_level]);
				if (left_blockptr == right_blockptr &&
				    left_gen == right_gen) {
5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578
					/*
					 * As we're on a shared block, don't
					 * allow to go deeper.
					 */
					advance_left = ADVANCE_ONLY_NEXT;
					advance_right = ADVANCE_ONLY_NEXT;
				} else {
					advance_left = ADVANCE;
					advance_right = ADVANCE;
				}
			}
		} else if (left_level < right_level) {
			advance_right = ADVANCE;
		} else {
			advance_left = ADVANCE;
		}
	}

out:
	btrfs_free_path(left_path);
	btrfs_free_path(right_path);
5579
	kvfree(tmp_buf);
5580 5581 5582
	return ret;
}

5583 5584 5585
/*
 * this is similar to btrfs_next_leaf, but does not try to preserve
 * and fixup the path.  It looks for and returns the next key in the
5586
 * tree based on the current path and the min_trans parameters.
5587 5588 5589 5590 5591 5592 5593
 *
 * 0 is returned if another key is found, < 0 if there are any errors
 * and 1 is returned if there are no higher keys in the tree
 *
 * path->keep_locks should be set to 1 on the search made before
 * calling this function.
 */
5594
int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
5595
			struct btrfs_key *key, int level, u64 min_trans)
5596 5597 5598 5599
{
	int slot;
	struct extent_buffer *c;

5600
	WARN_ON(!path->keep_locks);
C
Chris Mason 已提交
5601
	while (level < BTRFS_MAX_LEVEL) {
5602 5603 5604 5605 5606
		if (!path->nodes[level])
			return 1;

		slot = path->slots[level] + 1;
		c = path->nodes[level];
5607
next:
5608
		if (slot >= btrfs_header_nritems(c)) {
5609 5610 5611 5612 5613
			int ret;
			int orig_lowest;
			struct btrfs_key cur_key;
			if (level + 1 >= BTRFS_MAX_LEVEL ||
			    !path->nodes[level + 1])
5614
				return 1;
5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627

			if (path->locks[level + 1]) {
				level++;
				continue;
			}

			slot = btrfs_header_nritems(c) - 1;
			if (level == 0)
				btrfs_item_key_to_cpu(c, &cur_key, slot);
			else
				btrfs_node_key_to_cpu(c, &cur_key, slot);

			orig_lowest = path->lowest_level;
5628
			btrfs_release_path(path);
5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640
			path->lowest_level = level;
			ret = btrfs_search_slot(NULL, root, &cur_key, path,
						0, 0);
			path->lowest_level = orig_lowest;
			if (ret < 0)
				return ret;

			c = path->nodes[level];
			slot = path->slots[level];
			if (ret == 0)
				slot++;
			goto next;
5641
		}
5642

5643 5644
		if (level == 0)
			btrfs_item_key_to_cpu(c, key, slot);
5645 5646 5647 5648 5649 5650 5651
		else {
			u64 gen = btrfs_node_ptr_generation(c, slot);

			if (gen < min_trans) {
				slot++;
				goto next;
			}
5652
			btrfs_node_key_to_cpu(c, key, slot);
5653
		}
5654 5655 5656 5657 5658
		return 0;
	}
	return 1;
}

C
Chris Mason 已提交
5659
/*
5660
 * search the tree again to find a leaf with greater keys
C
Chris Mason 已提交
5661 5662
 * returns 0 if it found something or 1 if there are no greater leaves.
 * returns < 0 on io errors.
C
Chris Mason 已提交
5663
 */
C
Chris Mason 已提交
5664
int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path)
J
Jan Schmidt 已提交
5665 5666 5667 5668 5669 5670
{
	return btrfs_next_old_leaf(root, path, 0);
}

int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path,
			u64 time_seq)
5671 5672
{
	int slot;
5673
	int level;
5674
	struct extent_buffer *c;
5675
	struct extent_buffer *next;
5676 5677 5678
	struct btrfs_key key;
	u32 nritems;
	int ret;
5679
	int old_spinning = path->leave_spinning;
5680
	int next_rw_lock = 0;
5681 5682

	nritems = btrfs_header_nritems(path->nodes[0]);
C
Chris Mason 已提交
5683
	if (nritems == 0)
5684 5685
		return 1;

5686 5687 5688 5689
	btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1);
again:
	level = 1;
	next = NULL;
5690
	next_rw_lock = 0;
5691
	btrfs_release_path(path);
5692

5693
	path->keep_locks = 1;
5694
	path->leave_spinning = 1;
5695

J
Jan Schmidt 已提交
5696 5697 5698 5699
	if (time_seq)
		ret = btrfs_search_old_slot(root, &key, path, time_seq);
	else
		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5700 5701 5702 5703 5704
	path->keep_locks = 0;

	if (ret < 0)
		return ret;

5705
	nritems = btrfs_header_nritems(path->nodes[0]);
5706 5707 5708 5709 5710 5711
	/*
	 * by releasing the path above we dropped all our locks.  A balance
	 * could have added more items next to the key that used to be
	 * at the very end of the block.  So, check again here and
	 * advance the path if there are now more items available.
	 */
5712
	if (nritems > 0 && path->slots[0] < nritems - 1) {
5713 5714
		if (ret == 0)
			path->slots[0]++;
5715
		ret = 0;
5716 5717
		goto done;
	}
5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735
	/*
	 * So the above check misses one case:
	 * - after releasing the path above, someone has removed the item that
	 *   used to be at the very end of the block, and balance between leafs
	 *   gets another one with bigger key.offset to replace it.
	 *
	 * This one should be returned as well, or we can get leaf corruption
	 * later(esp. in __btrfs_drop_extents()).
	 *
	 * And a bit more explanation about this check,
	 * with ret > 0, the key isn't found, the path points to the slot
	 * where it should be inserted, so the path->slots[0] item must be the
	 * bigger one.
	 */
	if (nritems > 0 && ret > 0 && path->slots[0] == nritems - 1) {
		ret = 0;
		goto done;
	}
5736

C
Chris Mason 已提交
5737
	while (level < BTRFS_MAX_LEVEL) {
5738 5739 5740 5741
		if (!path->nodes[level]) {
			ret = 1;
			goto done;
		}
5742

5743 5744
		slot = path->slots[level] + 1;
		c = path->nodes[level];
5745
		if (slot >= btrfs_header_nritems(c)) {
5746
			level++;
5747 5748 5749 5750
			if (level == BTRFS_MAX_LEVEL) {
				ret = 1;
				goto done;
			}
5751 5752
			continue;
		}
5753

5754
		if (next) {
5755
			btrfs_tree_unlock_rw(next, next_rw_lock);
5756
			free_extent_buffer(next);
5757
		}
5758

5759
		next = c;
5760
		next_rw_lock = path->locks[level];
5761
		ret = read_block_for_search(root, path, &next, level,
5762
					    slot, &key);
5763 5764
		if (ret == -EAGAIN)
			goto again;
5765

5766
		if (ret < 0) {
5767
			btrfs_release_path(path);
5768 5769 5770
			goto done;
		}

5771
		if (!path->skip_locking) {
5772
			ret = btrfs_try_tree_read_lock(next);
5773 5774 5775 5776 5777 5778 5779 5780
			if (!ret && time_seq) {
				/*
				 * If we don't get the lock, we may be racing
				 * with push_leaf_left, holding that lock while
				 * itself waiting for the leaf we've currently
				 * locked. To solve this situation, we give up
				 * on our lock and cycle.
				 */
5781
				free_extent_buffer(next);
5782 5783 5784 5785
				btrfs_release_path(path);
				cond_resched();
				goto again;
			}
5786 5787
			if (!ret) {
				btrfs_set_path_blocking(path);
5788
				btrfs_tree_read_lock(next);
5789
				btrfs_clear_path_blocking(path, next,
5790
							  BTRFS_READ_LOCK);
5791
			}
5792
			next_rw_lock = BTRFS_READ_LOCK;
5793
		}
5794 5795 5796
		break;
	}
	path->slots[level] = slot;
C
Chris Mason 已提交
5797
	while (1) {
5798 5799
		level--;
		c = path->nodes[level];
5800
		if (path->locks[level])
5801
			btrfs_tree_unlock_rw(c, path->locks[level]);
5802

5803
		free_extent_buffer(c);
5804 5805
		path->nodes[level] = next;
		path->slots[level] = 0;
5806
		if (!path->skip_locking)
5807
			path->locks[level] = next_rw_lock;
5808 5809
		if (!level)
			break;
5810

5811
		ret = read_block_for_search(root, path, &next, level,
5812
					    0, &key);
5813 5814 5815
		if (ret == -EAGAIN)
			goto again;

5816
		if (ret < 0) {
5817
			btrfs_release_path(path);
5818 5819 5820
			goto done;
		}

5821
		if (!path->skip_locking) {
5822
			ret = btrfs_try_tree_read_lock(next);
5823 5824
			if (!ret) {
				btrfs_set_path_blocking(path);
5825
				btrfs_tree_read_lock(next);
5826
				btrfs_clear_path_blocking(path, next,
5827 5828
							  BTRFS_READ_LOCK);
			}
5829
			next_rw_lock = BTRFS_READ_LOCK;
5830
		}
5831
	}
5832
	ret = 0;
5833
done:
5834
	unlock_up(path, 0, 1, 0, NULL);
5835 5836 5837 5838 5839
	path->leave_spinning = old_spinning;
	if (!old_spinning)
		btrfs_set_path_blocking(path);

	return ret;
5840
}
5841

5842 5843 5844 5845 5846 5847
/*
 * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps
 * searching until it gets past min_objectid or finds an item of 'type'
 *
 * returns 0 if something is found, 1 if nothing was found and < 0 on error
 */
5848 5849 5850 5851 5852 5853
int btrfs_previous_item(struct btrfs_root *root,
			struct btrfs_path *path, u64 min_objectid,
			int type)
{
	struct btrfs_key found_key;
	struct extent_buffer *leaf;
5854
	u32 nritems;
5855 5856
	int ret;

C
Chris Mason 已提交
5857
	while (1) {
5858
		if (path->slots[0] == 0) {
5859
			btrfs_set_path_blocking(path);
5860 5861 5862 5863 5864 5865 5866
			ret = btrfs_prev_leaf(root, path);
			if (ret != 0)
				return ret;
		} else {
			path->slots[0]--;
		}
		leaf = path->nodes[0];
5867 5868 5869 5870 5871 5872
		nritems = btrfs_header_nritems(leaf);
		if (nritems == 0)
			return 1;
		if (path->slots[0] == nritems)
			path->slots[0]--;

5873
		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5874 5875
		if (found_key.objectid < min_objectid)
			break;
5876 5877
		if (found_key.type == type)
			return 0;
5878 5879 5880
		if (found_key.objectid == min_objectid &&
		    found_key.type < type)
			break;
5881 5882 5883
	}
	return 1;
}
5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926

/*
 * search in extent tree to find a previous Metadata/Data extent item with
 * min objecitd.
 *
 * returns 0 if something is found, 1 if nothing was found and < 0 on error
 */
int btrfs_previous_extent_item(struct btrfs_root *root,
			struct btrfs_path *path, u64 min_objectid)
{
	struct btrfs_key found_key;
	struct extent_buffer *leaf;
	u32 nritems;
	int ret;

	while (1) {
		if (path->slots[0] == 0) {
			btrfs_set_path_blocking(path);
			ret = btrfs_prev_leaf(root, path);
			if (ret != 0)
				return ret;
		} else {
			path->slots[0]--;
		}
		leaf = path->nodes[0];
		nritems = btrfs_header_nritems(leaf);
		if (nritems == 0)
			return 1;
		if (path->slots[0] == nritems)
			path->slots[0]--;

		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
		if (found_key.objectid < min_objectid)
			break;
		if (found_key.type == BTRFS_EXTENT_ITEM_KEY ||
		    found_key.type == BTRFS_METADATA_ITEM_KEY)
			return 0;
		if (found_key.objectid == min_objectid &&
		    found_key.type < BTRFS_EXTENT_ITEM_KEY)
			break;
	}
	return 1;
}