ctree.c 151.8 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
C
Chris Mason 已提交
2
/*
C
Chris Mason 已提交
3
 * Copyright (C) 2007,2008 Oracle.  All rights reserved.
C
Chris Mason 已提交
4 5
 */

6
#include <linux/sched.h>
7
#include <linux/slab.h>
8
#include <linux/rbtree.h>
9
#include <linux/mm.h>
10 11
#include "ctree.h"
#include "disk-io.h"
12
#include "transaction.h"
13
#include "print-tree.h"
14
#include "locking.h"
15
#include "volumes.h"
16

17 18
static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
		      *root, struct btrfs_path *path, int level);
19 20 21
static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root *root,
		      const struct btrfs_key *ins_key, struct btrfs_path *path,
		      int data_size, int extend);
22
static int push_node_left(struct btrfs_trans_handle *trans,
23 24
			  struct btrfs_fs_info *fs_info,
			  struct extent_buffer *dst,
25
			  struct extent_buffer *src, int empty);
26
static int balance_node_right(struct btrfs_trans_handle *trans,
27
			      struct btrfs_fs_info *fs_info,
28 29
			      struct extent_buffer *dst_buf,
			      struct extent_buffer *src_buf);
30 31
static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
		    int level, int slot);
32

C
Chris Mason 已提交
33
struct btrfs_path *btrfs_alloc_path(void)
C
Chris Mason 已提交
34
{
35
	return kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS);
C
Chris Mason 已提交
36 37
}

38 39 40 41 42 43 44 45
/*
 * set all locked nodes in the path to blocking locks.  This should
 * be done before scheduling
 */
noinline void btrfs_set_path_blocking(struct btrfs_path *p)
{
	int i;
	for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
46 47 48 49 50 51 52
		if (!p->nodes[i] || !p->locks[i])
			continue;
		btrfs_set_lock_blocking_rw(p->nodes[i], p->locks[i]);
		if (p->locks[i] == BTRFS_READ_LOCK)
			p->locks[i] = BTRFS_READ_LOCK_BLOCKING;
		else if (p->locks[i] == BTRFS_WRITE_LOCK)
			p->locks[i] = BTRFS_WRITE_LOCK_BLOCKING;
53 54 55
	}
}

C
Chris Mason 已提交
56
/* this also releases the path */
C
Chris Mason 已提交
57
void btrfs_free_path(struct btrfs_path *p)
58
{
59 60
	if (!p)
		return;
61
	btrfs_release_path(p);
C
Chris Mason 已提交
62
	kmem_cache_free(btrfs_path_cachep, p);
63 64
}

C
Chris Mason 已提交
65 66 67 68 69 70
/*
 * path release drops references on the extent buffers in the path
 * and it drops any locks held by this path
 *
 * It is safe to call this on paths that no locks or extent buffers held.
 */
71
noinline void btrfs_release_path(struct btrfs_path *p)
72 73
{
	int i;
74

C
Chris Mason 已提交
75
	for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
76
		p->slots[i] = 0;
77
		if (!p->nodes[i])
78 79
			continue;
		if (p->locks[i]) {
80
			btrfs_tree_unlock_rw(p->nodes[i], p->locks[i]);
81 82
			p->locks[i] = 0;
		}
83
		free_extent_buffer(p->nodes[i]);
84
		p->nodes[i] = NULL;
85 86 87
	}
}

C
Chris Mason 已提交
88 89 90 91 92 93 94 95 96 97
/*
 * safely gets a reference on the root node of a tree.  A lock
 * is not taken, so a concurrent writer may put a different node
 * at the root of the tree.  See btrfs_lock_root_node for the
 * looping required.
 *
 * The extent buffer returned by this has a reference taken, so
 * it won't disappear.  It may stop being the root of the tree
 * at any time because there are no locks held.
 */
98 99 100
struct extent_buffer *btrfs_root_node(struct btrfs_root *root)
{
	struct extent_buffer *eb;
101

102 103 104 105 106 107
	while (1) {
		rcu_read_lock();
		eb = rcu_dereference(root->node);

		/*
		 * RCU really hurts here, we could free up the root node because
108
		 * it was COWed but we may not get the new root node yet so do
109 110 111 112 113 114 115 116 117 118
		 * the inc_not_zero dance and if it doesn't work then
		 * synchronize_rcu and try again.
		 */
		if (atomic_inc_not_zero(&eb->refs)) {
			rcu_read_unlock();
			break;
		}
		rcu_read_unlock();
		synchronize_rcu();
	}
119 120 121
	return eb;
}

C
Chris Mason 已提交
122 123 124 125
/* loop around taking references on and locking the root node of the
 * tree until you end up with a lock on the root.  A locked buffer
 * is returned, with a reference held.
 */
126 127 128 129
struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root)
{
	struct extent_buffer *eb;

C
Chris Mason 已提交
130
	while (1) {
131 132
		eb = btrfs_root_node(root);
		btrfs_tree_lock(eb);
133
		if (eb == root->node)
134 135 136 137 138 139 140
			break;
		btrfs_tree_unlock(eb);
		free_extent_buffer(eb);
	}
	return eb;
}

141 142 143 144
/* loop around taking references on and locking the root node of the
 * tree until you end up with a lock on the root.  A locked buffer
 * is returned, with a reference held.
 */
145
struct extent_buffer *btrfs_read_lock_root_node(struct btrfs_root *root)
146 147 148 149 150 151 152 153 154 155 156 157 158 159
{
	struct extent_buffer *eb;

	while (1) {
		eb = btrfs_root_node(root);
		btrfs_tree_read_lock(eb);
		if (eb == root->node)
			break;
		btrfs_tree_read_unlock(eb);
		free_extent_buffer(eb);
	}
	return eb;
}

C
Chris Mason 已提交
160 161 162 163
/* cowonly root (everything not a reference counted cow subvolume), just get
 * put onto a simple dirty list.  transaction.c walks this to make sure they
 * get properly updated on disk.
 */
164 165
static void add_root_to_dirty_list(struct btrfs_root *root)
{
166 167
	struct btrfs_fs_info *fs_info = root->fs_info;

168 169 170 171
	if (test_bit(BTRFS_ROOT_DIRTY, &root->state) ||
	    !test_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state))
		return;

172
	spin_lock(&fs_info->trans_lock);
173 174
	if (!test_and_set_bit(BTRFS_ROOT_DIRTY, &root->state)) {
		/* Want the extent tree to be the last on the list */
175
		if (root->root_key.objectid == BTRFS_EXTENT_TREE_OBJECTID)
176
			list_move_tail(&root->dirty_list,
177
				       &fs_info->dirty_cowonly_roots);
178 179
		else
			list_move(&root->dirty_list,
180
				  &fs_info->dirty_cowonly_roots);
181
	}
182
	spin_unlock(&fs_info->trans_lock);
183 184
}

C
Chris Mason 已提交
185 186 187 188 189
/*
 * used by snapshot creation to make a copy of a root for a tree with
 * a given objectid.  The buffer with the new root node is returned in
 * cow_ret, and this func returns zero on success or a negative error code.
 */
190 191 192 193 194
int btrfs_copy_root(struct btrfs_trans_handle *trans,
		      struct btrfs_root *root,
		      struct extent_buffer *buf,
		      struct extent_buffer **cow_ret, u64 new_root_objectid)
{
195
	struct btrfs_fs_info *fs_info = root->fs_info;
196 197 198
	struct extent_buffer *cow;
	int ret = 0;
	int level;
199
	struct btrfs_disk_key disk_key;
200

201
	WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
202
		trans->transid != fs_info->running_transaction->transid);
203 204
	WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
		trans->transid != root->last_trans);
205 206

	level = btrfs_header_level(buf);
207 208 209 210
	if (level == 0)
		btrfs_item_key(buf, &disk_key, 0);
	else
		btrfs_node_key(buf, &disk_key, 0);
Z
Zheng Yan 已提交
211

212 213
	cow = btrfs_alloc_tree_block(trans, root, 0, new_root_objectid,
			&disk_key, level, buf->start, 0);
214
	if (IS_ERR(cow))
215 216
		return PTR_ERR(cow);

217
	copy_extent_buffer_full(cow, buf);
218 219
	btrfs_set_header_bytenr(cow, cow->start);
	btrfs_set_header_generation(cow, trans->transid);
220 221 222 223 224 225 226
	btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
	btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
				     BTRFS_HEADER_FLAG_RELOC);
	if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
		btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
	else
		btrfs_set_header_owner(cow, new_root_objectid);
227

228
	write_extent_buffer_fsid(cow, fs_info->fs_devices->metadata_uuid);
Y
Yan Zheng 已提交
229

230
	WARN_ON(btrfs_header_generation(buf) > trans->transid);
231
	if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
232
		ret = btrfs_inc_ref(trans, root, cow, 1);
233
	else
234
		ret = btrfs_inc_ref(trans, root, cow, 0);
235

236 237 238 239 240 241 242 243
	if (ret)
		return ret;

	btrfs_mark_buffer_dirty(cow);
	*cow_ret = cow;
	return 0;
}

244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260
enum mod_log_op {
	MOD_LOG_KEY_REPLACE,
	MOD_LOG_KEY_ADD,
	MOD_LOG_KEY_REMOVE,
	MOD_LOG_KEY_REMOVE_WHILE_FREEING,
	MOD_LOG_KEY_REMOVE_WHILE_MOVING,
	MOD_LOG_MOVE_KEYS,
	MOD_LOG_ROOT_REPLACE,
};

struct tree_mod_root {
	u64 logical;
	u8 level;
};

struct tree_mod_elem {
	struct rb_node node;
261
	u64 logical;
262
	u64 seq;
263 264 265 266 267 268 269 270 271 272 273 274 275
	enum mod_log_op op;

	/* this is used for MOD_LOG_KEY_* and MOD_LOG_MOVE_KEYS operations */
	int slot;

	/* this is used for MOD_LOG_KEY* and MOD_LOG_ROOT_REPLACE */
	u64 generation;

	/* those are used for op == MOD_LOG_KEY_{REPLACE,REMOVE} */
	struct btrfs_disk_key key;
	u64 blockptr;

	/* this is used for op == MOD_LOG_MOVE_KEYS */
276 277 278 279
	struct {
		int dst_slot;
		int nr_items;
	} move;
280 281 282 283 284

	/* this is used for op == MOD_LOG_ROOT_REPLACE */
	struct tree_mod_root old_root;
};

285
/*
J
Josef Bacik 已提交
286
 * Pull a new tree mod seq number for our operation.
287
 */
J
Josef Bacik 已提交
288
static inline u64 btrfs_inc_tree_mod_seq(struct btrfs_fs_info *fs_info)
289 290 291 292
{
	return atomic64_inc_return(&fs_info->tree_mod_seq);
}

293 294 295 296 297 298 299 300 301 302
/*
 * This adds a new blocker to the tree mod log's blocker list if the @elem
 * passed does not already have a sequence number set. So when a caller expects
 * to record tree modifications, it should ensure to set elem->seq to zero
 * before calling btrfs_get_tree_mod_seq.
 * Returns a fresh, unused tree log modification sequence number, even if no new
 * blocker was added.
 */
u64 btrfs_get_tree_mod_seq(struct btrfs_fs_info *fs_info,
			   struct seq_list *elem)
303
{
304
	write_lock(&fs_info->tree_mod_log_lock);
305
	spin_lock(&fs_info->tree_mod_seq_lock);
306
	if (!elem->seq) {
J
Josef Bacik 已提交
307
		elem->seq = btrfs_inc_tree_mod_seq(fs_info);
308 309
		list_add_tail(&elem->list, &fs_info->tree_mod_seq_list);
	}
310
	spin_unlock(&fs_info->tree_mod_seq_lock);
311
	write_unlock(&fs_info->tree_mod_log_lock);
312

J
Josef Bacik 已提交
313
	return elem->seq;
314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331
}

void btrfs_put_tree_mod_seq(struct btrfs_fs_info *fs_info,
			    struct seq_list *elem)
{
	struct rb_root *tm_root;
	struct rb_node *node;
	struct rb_node *next;
	struct seq_list *cur_elem;
	struct tree_mod_elem *tm;
	u64 min_seq = (u64)-1;
	u64 seq_putting = elem->seq;

	if (!seq_putting)
		return;

	spin_lock(&fs_info->tree_mod_seq_lock);
	list_del(&elem->list);
332
	elem->seq = 0;
333 334

	list_for_each_entry(cur_elem, &fs_info->tree_mod_seq_list, list) {
335
		if (cur_elem->seq < min_seq) {
336 337 338 339 340
			if (seq_putting > cur_elem->seq) {
				/*
				 * blocker with lower sequence number exists, we
				 * cannot remove anything from the log
				 */
341 342
				spin_unlock(&fs_info->tree_mod_seq_lock);
				return;
343 344 345 346
			}
			min_seq = cur_elem->seq;
		}
	}
347 348
	spin_unlock(&fs_info->tree_mod_seq_lock);

349 350 351 352
	/*
	 * anything that's lower than the lowest existing (read: blocked)
	 * sequence number can be removed from the tree.
	 */
353
	write_lock(&fs_info->tree_mod_log_lock);
354 355 356
	tm_root = &fs_info->tree_mod_log;
	for (node = rb_first(tm_root); node; node = next) {
		next = rb_next(node);
357
		tm = rb_entry(node, struct tree_mod_elem, node);
358
		if (tm->seq > min_seq)
359 360 361 362
			continue;
		rb_erase(node, tm_root);
		kfree(tm);
	}
363
	write_unlock(&fs_info->tree_mod_log_lock);
364 365 366 367
}

/*
 * key order of the log:
368
 *       node/leaf start address -> sequence
369
 *
370 371 372
 * The 'start address' is the logical address of the *new* root node
 * for root replace operations, or the logical address of the affected
 * block for all other operations.
373
 *
374
 * Note: must be called with write lock for fs_info::tree_mod_log_lock.
375 376 377 378 379 380 381 382
 */
static noinline int
__tree_mod_log_insert(struct btrfs_fs_info *fs_info, struct tree_mod_elem *tm)
{
	struct rb_root *tm_root;
	struct rb_node **new;
	struct rb_node *parent = NULL;
	struct tree_mod_elem *cur;
383

J
Josef Bacik 已提交
384
	tm->seq = btrfs_inc_tree_mod_seq(fs_info);
385 386 387 388

	tm_root = &fs_info->tree_mod_log;
	new = &tm_root->rb_node;
	while (*new) {
389
		cur = rb_entry(*new, struct tree_mod_elem, node);
390
		parent = *new;
391
		if (cur->logical < tm->logical)
392
			new = &((*new)->rb_left);
393
		else if (cur->logical > tm->logical)
394
			new = &((*new)->rb_right);
395
		else if (cur->seq < tm->seq)
396
			new = &((*new)->rb_left);
397
		else if (cur->seq > tm->seq)
398
			new = &((*new)->rb_right);
399 400
		else
			return -EEXIST;
401 402 403 404
	}

	rb_link_node(&tm->node, parent, new);
	rb_insert_color(&tm->node, tm_root);
405
	return 0;
406 407
}

408 409 410 411
/*
 * Determines if logging can be omitted. Returns 1 if it can. Otherwise, it
 * returns zero with the tree_mod_log_lock acquired. The caller must hold
 * this until all tree mod log insertions are recorded in the rb tree and then
412
 * write unlock fs_info::tree_mod_log_lock.
413
 */
414 415 416 417 418
static inline int tree_mod_dont_log(struct btrfs_fs_info *fs_info,
				    struct extent_buffer *eb) {
	smp_mb();
	if (list_empty(&(fs_info)->tree_mod_seq_list))
		return 1;
419 420
	if (eb && btrfs_header_level(eb) == 0)
		return 1;
421

422
	write_lock(&fs_info->tree_mod_log_lock);
423
	if (list_empty(&(fs_info)->tree_mod_seq_list)) {
424
		write_unlock(&fs_info->tree_mod_log_lock);
425 426 427
		return 1;
	}

428 429 430
	return 0;
}

431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446
/* Similar to tree_mod_dont_log, but doesn't acquire any locks. */
static inline int tree_mod_need_log(const struct btrfs_fs_info *fs_info,
				    struct extent_buffer *eb)
{
	smp_mb();
	if (list_empty(&(fs_info)->tree_mod_seq_list))
		return 0;
	if (eb && btrfs_header_level(eb) == 0)
		return 0;

	return 1;
}

static struct tree_mod_elem *
alloc_tree_mod_elem(struct extent_buffer *eb, int slot,
		    enum mod_log_op op, gfp_t flags)
447
{
448
	struct tree_mod_elem *tm;
449

450 451
	tm = kzalloc(sizeof(*tm), flags);
	if (!tm)
452
		return NULL;
453

454
	tm->logical = eb->start;
455 456 457 458 459 460 461
	if (op != MOD_LOG_KEY_ADD) {
		btrfs_node_key(eb, &tm->key, slot);
		tm->blockptr = btrfs_node_blockptr(eb, slot);
	}
	tm->op = op;
	tm->slot = slot;
	tm->generation = btrfs_node_ptr_generation(eb, slot);
462
	RB_CLEAR_NODE(&tm->node);
463

464
	return tm;
465 466
}

467 468
static noinline int tree_mod_log_insert_key(struct extent_buffer *eb, int slot,
		enum mod_log_op op, gfp_t flags)
469
{
470 471 472
	struct tree_mod_elem *tm;
	int ret;

473
	if (!tree_mod_need_log(eb->fs_info, eb))
474 475 476 477 478 479
		return 0;

	tm = alloc_tree_mod_elem(eb, slot, op, flags);
	if (!tm)
		return -ENOMEM;

480
	if (tree_mod_dont_log(eb->fs_info, eb)) {
481
		kfree(tm);
482
		return 0;
483 484
	}

485
	ret = __tree_mod_log_insert(eb->fs_info, tm);
486
	write_unlock(&eb->fs_info->tree_mod_log_lock);
487 488
	if (ret)
		kfree(tm);
489

490
	return ret;
491 492
}

493 494
static noinline int tree_mod_log_insert_move(struct extent_buffer *eb,
		int dst_slot, int src_slot, int nr_items)
495
{
496 497 498
	struct tree_mod_elem *tm = NULL;
	struct tree_mod_elem **tm_list = NULL;
	int ret = 0;
499
	int i;
500
	int locked = 0;
501

502
	if (!tree_mod_need_log(eb->fs_info, eb))
J
Jan Schmidt 已提交
503
		return 0;
504

505
	tm_list = kcalloc(nr_items, sizeof(struct tree_mod_elem *), GFP_NOFS);
506 507 508
	if (!tm_list)
		return -ENOMEM;

509
	tm = kzalloc(sizeof(*tm), GFP_NOFS);
510 511 512 513 514
	if (!tm) {
		ret = -ENOMEM;
		goto free_tms;
	}

515
	tm->logical = eb->start;
516 517 518 519 520 521 522
	tm->slot = src_slot;
	tm->move.dst_slot = dst_slot;
	tm->move.nr_items = nr_items;
	tm->op = MOD_LOG_MOVE_KEYS;

	for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) {
		tm_list[i] = alloc_tree_mod_elem(eb, i + dst_slot,
523
		    MOD_LOG_KEY_REMOVE_WHILE_MOVING, GFP_NOFS);
524 525 526 527 528 529
		if (!tm_list[i]) {
			ret = -ENOMEM;
			goto free_tms;
		}
	}

530
	if (tree_mod_dont_log(eb->fs_info, eb))
531 532 533
		goto free_tms;
	locked = 1;

534 535 536 537 538
	/*
	 * When we override something during the move, we log these removals.
	 * This can only happen when we move towards the beginning of the
	 * buffer, i.e. dst_slot < src_slot.
	 */
539
	for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) {
540
		ret = __tree_mod_log_insert(eb->fs_info, tm_list[i]);
541 542
		if (ret)
			goto free_tms;
543 544
	}

545
	ret = __tree_mod_log_insert(eb->fs_info, tm);
546 547
	if (ret)
		goto free_tms;
548
	write_unlock(&eb->fs_info->tree_mod_log_lock);
549
	kfree(tm_list);
J
Jan Schmidt 已提交
550

551 552 553 554
	return 0;
free_tms:
	for (i = 0; i < nr_items; i++) {
		if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node))
555
			rb_erase(&tm_list[i]->node, &eb->fs_info->tree_mod_log);
556 557 558
		kfree(tm_list[i]);
	}
	if (locked)
559
		write_unlock(&eb->fs_info->tree_mod_log_lock);
560 561
	kfree(tm_list);
	kfree(tm);
562

563
	return ret;
564 565
}

566 567 568 569
static inline int
__tree_mod_log_free_eb(struct btrfs_fs_info *fs_info,
		       struct tree_mod_elem **tm_list,
		       int nritems)
570
{
571
	int i, j;
572 573 574
	int ret;

	for (i = nritems - 1; i >= 0; i--) {
575 576 577 578 579 580 581
		ret = __tree_mod_log_insert(fs_info, tm_list[i]);
		if (ret) {
			for (j = nritems - 1; j > i; j--)
				rb_erase(&tm_list[j]->node,
					 &fs_info->tree_mod_log);
			return ret;
		}
582
	}
583 584

	return 0;
585 586
}

587 588
static noinline int tree_mod_log_insert_root(struct extent_buffer *old_root,
			 struct extent_buffer *new_root, int log_removal)
589
{
590
	struct btrfs_fs_info *fs_info = old_root->fs_info;
591 592 593 594 595
	struct tree_mod_elem *tm = NULL;
	struct tree_mod_elem **tm_list = NULL;
	int nritems = 0;
	int ret = 0;
	int i;
596

597
	if (!tree_mod_need_log(fs_info, NULL))
598 599
		return 0;

600 601
	if (log_removal && btrfs_header_level(old_root) > 0) {
		nritems = btrfs_header_nritems(old_root);
602
		tm_list = kcalloc(nritems, sizeof(struct tree_mod_elem *),
603
				  GFP_NOFS);
604 605 606 607 608 609
		if (!tm_list) {
			ret = -ENOMEM;
			goto free_tms;
		}
		for (i = 0; i < nritems; i++) {
			tm_list[i] = alloc_tree_mod_elem(old_root, i,
610
			    MOD_LOG_KEY_REMOVE_WHILE_FREEING, GFP_NOFS);
611 612 613 614 615 616
			if (!tm_list[i]) {
				ret = -ENOMEM;
				goto free_tms;
			}
		}
	}
617

618
	tm = kzalloc(sizeof(*tm), GFP_NOFS);
619 620 621 622
	if (!tm) {
		ret = -ENOMEM;
		goto free_tms;
	}
623

624
	tm->logical = new_root->start;
625 626 627 628 629
	tm->old_root.logical = old_root->start;
	tm->old_root.level = btrfs_header_level(old_root);
	tm->generation = btrfs_header_generation(old_root);
	tm->op = MOD_LOG_ROOT_REPLACE;

630 631 632 633 634 635 636 637
	if (tree_mod_dont_log(fs_info, NULL))
		goto free_tms;

	if (tm_list)
		ret = __tree_mod_log_free_eb(fs_info, tm_list, nritems);
	if (!ret)
		ret = __tree_mod_log_insert(fs_info, tm);

638
	write_unlock(&fs_info->tree_mod_log_lock);
639 640 641 642 643 644 645 646 647 648 649 650 651 652 653
	if (ret)
		goto free_tms;
	kfree(tm_list);

	return ret;

free_tms:
	if (tm_list) {
		for (i = 0; i < nritems; i++)
			kfree(tm_list[i]);
		kfree(tm_list);
	}
	kfree(tm);

	return ret;
654 655 656 657 658 659 660 661 662 663 664
}

static struct tree_mod_elem *
__tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq,
		      int smallest)
{
	struct rb_root *tm_root;
	struct rb_node *node;
	struct tree_mod_elem *cur = NULL;
	struct tree_mod_elem *found = NULL;

665
	read_lock(&fs_info->tree_mod_log_lock);
666 667 668
	tm_root = &fs_info->tree_mod_log;
	node = tm_root->rb_node;
	while (node) {
669
		cur = rb_entry(node, struct tree_mod_elem, node);
670
		if (cur->logical < start) {
671
			node = node->rb_left;
672
		} else if (cur->logical > start) {
673
			node = node->rb_right;
674
		} else if (cur->seq < min_seq) {
675 676 677 678
			node = node->rb_left;
		} else if (!smallest) {
			/* we want the node with the highest seq */
			if (found)
679
				BUG_ON(found->seq > cur->seq);
680 681
			found = cur;
			node = node->rb_left;
682
		} else if (cur->seq > min_seq) {
683 684
			/* we want the node with the smallest seq */
			if (found)
685
				BUG_ON(found->seq < cur->seq);
686 687 688 689 690 691 692
			found = cur;
			node = node->rb_right;
		} else {
			found = cur;
			break;
		}
	}
693
	read_unlock(&fs_info->tree_mod_log_lock);
694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720

	return found;
}

/*
 * this returns the element from the log with the smallest time sequence
 * value that's in the log (the oldest log item). any element with a time
 * sequence lower than min_seq will be ignored.
 */
static struct tree_mod_elem *
tree_mod_log_search_oldest(struct btrfs_fs_info *fs_info, u64 start,
			   u64 min_seq)
{
	return __tree_mod_log_search(fs_info, start, min_seq, 1);
}

/*
 * this returns the element from the log with the largest time sequence
 * value that's in the log (the most recent log item). any element with
 * a time sequence lower than min_seq will be ignored.
 */
static struct tree_mod_elem *
tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq)
{
	return __tree_mod_log_search(fs_info, start, min_seq, 0);
}

721
static noinline int
722 723
tree_mod_log_eb_copy(struct btrfs_fs_info *fs_info, struct extent_buffer *dst,
		     struct extent_buffer *src, unsigned long dst_offset,
724
		     unsigned long src_offset, int nr_items)
725
{
726 727 728
	int ret = 0;
	struct tree_mod_elem **tm_list = NULL;
	struct tree_mod_elem **tm_list_add, **tm_list_rem;
729
	int i;
730
	int locked = 0;
731

732 733
	if (!tree_mod_need_log(fs_info, NULL))
		return 0;
734

735
	if (btrfs_header_level(dst) == 0 && btrfs_header_level(src) == 0)
736 737
		return 0;

738
	tm_list = kcalloc(nr_items * 2, sizeof(struct tree_mod_elem *),
739 740 741
			  GFP_NOFS);
	if (!tm_list)
		return -ENOMEM;
742

743 744
	tm_list_add = tm_list;
	tm_list_rem = tm_list + nr_items;
745
	for (i = 0; i < nr_items; i++) {
746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771
		tm_list_rem[i] = alloc_tree_mod_elem(src, i + src_offset,
		    MOD_LOG_KEY_REMOVE, GFP_NOFS);
		if (!tm_list_rem[i]) {
			ret = -ENOMEM;
			goto free_tms;
		}

		tm_list_add[i] = alloc_tree_mod_elem(dst, i + dst_offset,
		    MOD_LOG_KEY_ADD, GFP_NOFS);
		if (!tm_list_add[i]) {
			ret = -ENOMEM;
			goto free_tms;
		}
	}

	if (tree_mod_dont_log(fs_info, NULL))
		goto free_tms;
	locked = 1;

	for (i = 0; i < nr_items; i++) {
		ret = __tree_mod_log_insert(fs_info, tm_list_rem[i]);
		if (ret)
			goto free_tms;
		ret = __tree_mod_log_insert(fs_info, tm_list_add[i]);
		if (ret)
			goto free_tms;
772
	}
773

774
	write_unlock(&fs_info->tree_mod_log_lock);
775 776 777 778 779 780 781 782 783 784 785
	kfree(tm_list);

	return 0;

free_tms:
	for (i = 0; i < nr_items * 2; i++) {
		if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node))
			rb_erase(&tm_list[i]->node, &fs_info->tree_mod_log);
		kfree(tm_list[i]);
	}
	if (locked)
786
		write_unlock(&fs_info->tree_mod_log_lock);
787 788 789
	kfree(tm_list);

	return ret;
790 791
}

792
static noinline int tree_mod_log_free_eb(struct extent_buffer *eb)
793
{
794 795 796 797 798 799 800 801
	struct tree_mod_elem **tm_list = NULL;
	int nritems = 0;
	int i;
	int ret = 0;

	if (btrfs_header_level(eb) == 0)
		return 0;

802
	if (!tree_mod_need_log(eb->fs_info, NULL))
803 804 805
		return 0;

	nritems = btrfs_header_nritems(eb);
806
	tm_list = kcalloc(nritems, sizeof(struct tree_mod_elem *), GFP_NOFS);
807 808 809 810 811 812 813 814 815 816 817 818
	if (!tm_list)
		return -ENOMEM;

	for (i = 0; i < nritems; i++) {
		tm_list[i] = alloc_tree_mod_elem(eb, i,
		    MOD_LOG_KEY_REMOVE_WHILE_FREEING, GFP_NOFS);
		if (!tm_list[i]) {
			ret = -ENOMEM;
			goto free_tms;
		}
	}

819
	if (tree_mod_dont_log(eb->fs_info, eb))
820 821
		goto free_tms;

822
	ret = __tree_mod_log_free_eb(eb->fs_info, tm_list, nritems);
823
	write_unlock(&eb->fs_info->tree_mod_log_lock);
824 825 826 827 828 829 830 831 832 833 834 835
	if (ret)
		goto free_tms;
	kfree(tm_list);

	return 0;

free_tms:
	for (i = 0; i < nritems; i++)
		kfree(tm_list[i]);
	kfree(tm_list);

	return ret;
836 837
}

838 839 840 841 842 843 844
/*
 * check if the tree block can be shared by multiple trees
 */
int btrfs_block_can_be_shared(struct btrfs_root *root,
			      struct extent_buffer *buf)
{
	/*
845
	 * Tree blocks not in reference counted trees and tree roots
846 847 848 849
	 * are never shared. If a block was allocated after the last
	 * snapshot and the block was not allocated by tree relocation,
	 * we know the block is not shared.
	 */
850
	if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
851 852 853 854 855
	    buf != root->node && buf != root->commit_root &&
	    (btrfs_header_generation(buf) <=
	     btrfs_root_last_snapshot(&root->root_item) ||
	     btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)))
		return 1;
856

857 858 859 860 861 862
	return 0;
}

static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans,
				       struct btrfs_root *root,
				       struct extent_buffer *buf,
863 864
				       struct extent_buffer *cow,
				       int *last_ref)
865
{
866
	struct btrfs_fs_info *fs_info = root->fs_info;
867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890
	u64 refs;
	u64 owner;
	u64 flags;
	u64 new_flags = 0;
	int ret;

	/*
	 * Backrefs update rules:
	 *
	 * Always use full backrefs for extent pointers in tree block
	 * allocated by tree relocation.
	 *
	 * If a shared tree block is no longer referenced by its owner
	 * tree (btrfs_header_owner(buf) == root->root_key.objectid),
	 * use full backrefs for extent pointers in tree block.
	 *
	 * If a tree block is been relocating
	 * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID),
	 * use full backrefs for extent pointers in tree block.
	 * The reason for this is some operations (such as drop tree)
	 * are only allowed for blocks use full backrefs.
	 */

	if (btrfs_block_can_be_shared(root, buf)) {
891
		ret = btrfs_lookup_extent_info(trans, fs_info, buf->start,
892 893
					       btrfs_header_level(buf), 1,
					       &refs, &flags);
894 895
		if (ret)
			return ret;
896 897
		if (refs == 0) {
			ret = -EROFS;
898
			btrfs_handle_fs_error(fs_info, ret, NULL);
899 900
			return ret;
		}
901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917
	} else {
		refs = 1;
		if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
		    btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
			flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
		else
			flags = 0;
	}

	owner = btrfs_header_owner(buf);
	BUG_ON(owner == BTRFS_TREE_RELOC_OBJECTID &&
	       !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));

	if (refs > 1) {
		if ((owner == root->root_key.objectid ||
		     root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) &&
		    !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) {
918
			ret = btrfs_inc_ref(trans, root, buf, 1);
919 920
			if (ret)
				return ret;
921 922 923

			if (root->root_key.objectid ==
			    BTRFS_TREE_RELOC_OBJECTID) {
924
				ret = btrfs_dec_ref(trans, root, buf, 0);
925 926
				if (ret)
					return ret;
927
				ret = btrfs_inc_ref(trans, root, cow, 1);
928 929
				if (ret)
					return ret;
930 931 932 933 934 935
			}
			new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
		} else {

			if (root->root_key.objectid ==
			    BTRFS_TREE_RELOC_OBJECTID)
936
				ret = btrfs_inc_ref(trans, root, cow, 1);
937
			else
938
				ret = btrfs_inc_ref(trans, root, cow, 0);
939 940
			if (ret)
				return ret;
941 942
		}
		if (new_flags != 0) {
943 944
			int level = btrfs_header_level(buf);

945
			ret = btrfs_set_disk_extent_flags(trans, fs_info,
946 947
							  buf->start,
							  buf->len,
948
							  new_flags, level, 0);
949 950
			if (ret)
				return ret;
951 952 953 954 955
		}
	} else {
		if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
			if (root->root_key.objectid ==
			    BTRFS_TREE_RELOC_OBJECTID)
956
				ret = btrfs_inc_ref(trans, root, cow, 1);
957
			else
958
				ret = btrfs_inc_ref(trans, root, cow, 0);
959 960
			if (ret)
				return ret;
961
			ret = btrfs_dec_ref(trans, root, buf, 1);
962 963
			if (ret)
				return ret;
964
		}
965
		clean_tree_block(fs_info, buf);
966
		*last_ref = 1;
967 968 969 970
	}
	return 0;
}

971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012
static struct extent_buffer *alloc_tree_block_no_bg_flush(
					  struct btrfs_trans_handle *trans,
					  struct btrfs_root *root,
					  u64 parent_start,
					  const struct btrfs_disk_key *disk_key,
					  int level,
					  u64 hint,
					  u64 empty_size)
{
	struct btrfs_fs_info *fs_info = root->fs_info;
	struct extent_buffer *ret;

	/*
	 * If we are COWing a node/leaf from the extent, chunk, device or free
	 * space trees, make sure that we do not finish block group creation of
	 * pending block groups. We do this to avoid a deadlock.
	 * COWing can result in allocation of a new chunk, and flushing pending
	 * block groups (btrfs_create_pending_block_groups()) can be triggered
	 * when finishing allocation of a new chunk. Creation of a pending block
	 * group modifies the extent, chunk, device and free space trees,
	 * therefore we could deadlock with ourselves since we are holding a
	 * lock on an extent buffer that btrfs_create_pending_block_groups() may
	 * try to COW later.
	 * For similar reasons, we also need to delay flushing pending block
	 * groups when splitting a leaf or node, from one of those trees, since
	 * we are holding a write lock on it and its parent or when inserting a
	 * new root node for one of those trees.
	 */
	if (root == fs_info->extent_root ||
	    root == fs_info->chunk_root ||
	    root == fs_info->dev_root ||
	    root == fs_info->free_space_root)
		trans->can_flush_pending_bgs = false;

	ret = btrfs_alloc_tree_block(trans, root, parent_start,
				     root->root_key.objectid, disk_key, level,
				     hint, empty_size);
	trans->can_flush_pending_bgs = true;

	return ret;
}

C
Chris Mason 已提交
1013
/*
C
Chris Mason 已提交
1014 1015 1016 1017
 * does the dirty work in cow of a single block.  The parent block (if
 * supplied) is updated to point to the new cow copy.  The new buffer is marked
 * dirty and returned locked.  If you modify the block it needs to be marked
 * dirty again.
C
Chris Mason 已提交
1018 1019 1020
 *
 * search_start -- an allocation hint for the new block
 *
C
Chris Mason 已提交
1021 1022 1023
 * empty_size -- a hint that you plan on doing more cow.  This is the size in
 * bytes the allocator should try to find free next to the block it returns.
 * This is just a hint and may be ignored by the allocator.
C
Chris Mason 已提交
1024
 */
C
Chris Mason 已提交
1025
static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans,
1026 1027 1028 1029
			     struct btrfs_root *root,
			     struct extent_buffer *buf,
			     struct extent_buffer *parent, int parent_slot,
			     struct extent_buffer **cow_ret,
1030
			     u64 search_start, u64 empty_size)
C
Chris Mason 已提交
1031
{
1032
	struct btrfs_fs_info *fs_info = root->fs_info;
1033
	struct btrfs_disk_key disk_key;
1034
	struct extent_buffer *cow;
1035
	int level, ret;
1036
	int last_ref = 0;
1037
	int unlock_orig = 0;
1038
	u64 parent_start = 0;
1039

1040 1041 1042
	if (*cow_ret == buf)
		unlock_orig = 1;

1043
	btrfs_assert_tree_locked(buf);
1044

1045
	WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
1046
		trans->transid != fs_info->running_transaction->transid);
1047 1048
	WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
		trans->transid != root->last_trans);
1049

1050
	level = btrfs_header_level(buf);
Z
Zheng Yan 已提交
1051

1052 1053 1054 1055 1056
	if (level == 0)
		btrfs_item_key(buf, &disk_key, 0);
	else
		btrfs_node_key(buf, &disk_key, 0);

1057 1058
	if ((root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) && parent)
		parent_start = parent->start;
1059

1060 1061
	cow = alloc_tree_block_no_bg_flush(trans, root, parent_start, &disk_key,
					   level, search_start, empty_size);
1062 1063
	if (IS_ERR(cow))
		return PTR_ERR(cow);
1064

1065 1066
	/* cow is set to blocking by btrfs_init_new_buffer */

1067
	copy_extent_buffer_full(cow, buf);
1068
	btrfs_set_header_bytenr(cow, cow->start);
1069
	btrfs_set_header_generation(cow, trans->transid);
1070 1071 1072 1073 1074 1075 1076
	btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
	btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
				     BTRFS_HEADER_FLAG_RELOC);
	if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
		btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
	else
		btrfs_set_header_owner(cow, root->root_key.objectid);
1077

1078
	write_extent_buffer_fsid(cow, fs_info->fs_devices->metadata_uuid);
Y
Yan Zheng 已提交
1079

1080
	ret = update_ref_for_cow(trans, root, buf, cow, &last_ref);
1081
	if (ret) {
1082
		btrfs_abort_transaction(trans, ret);
1083 1084
		return ret;
	}
Z
Zheng Yan 已提交
1085

1086
	if (test_bit(BTRFS_ROOT_REF_COWS, &root->state)) {
1087
		ret = btrfs_reloc_cow_block(trans, root, buf, cow);
1088
		if (ret) {
1089
			btrfs_abort_transaction(trans, ret);
1090
			return ret;
1091
		}
1092
	}
1093

C
Chris Mason 已提交
1094
	if (buf == root->node) {
1095
		WARN_ON(parent && parent != buf);
1096 1097 1098
		if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
		    btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
			parent_start = buf->start;
1099

1100
		extent_buffer_get(cow);
1101 1102
		ret = tree_mod_log_insert_root(root->node, cow, 1);
		BUG_ON(ret < 0);
1103
		rcu_assign_pointer(root->node, cow);
1104

1105
		btrfs_free_tree_block(trans, root, buf, parent_start,
1106
				      last_ref);
1107
		free_extent_buffer(buf);
1108
		add_root_to_dirty_list(root);
C
Chris Mason 已提交
1109
	} else {
1110
		WARN_ON(trans->transid != btrfs_header_generation(parent));
1111
		tree_mod_log_insert_key(parent, parent_slot,
1112
					MOD_LOG_KEY_REPLACE, GFP_NOFS);
1113
		btrfs_set_node_blockptr(parent, parent_slot,
1114
					cow->start);
1115 1116
		btrfs_set_node_ptr_generation(parent, parent_slot,
					      trans->transid);
C
Chris Mason 已提交
1117
		btrfs_mark_buffer_dirty(parent);
1118
		if (last_ref) {
1119
			ret = tree_mod_log_free_eb(buf);
1120
			if (ret) {
1121
				btrfs_abort_transaction(trans, ret);
1122 1123 1124
				return ret;
			}
		}
1125
		btrfs_free_tree_block(trans, root, buf, parent_start,
1126
				      last_ref);
C
Chris Mason 已提交
1127
	}
1128 1129
	if (unlock_orig)
		btrfs_tree_unlock(buf);
1130
	free_extent_buffer_stale(buf);
C
Chris Mason 已提交
1131
	btrfs_mark_buffer_dirty(cow);
C
Chris Mason 已提交
1132
	*cow_ret = cow;
C
Chris Mason 已提交
1133 1134 1135
	return 0;
}

J
Jan Schmidt 已提交
1136 1137 1138 1139
/*
 * returns the logical address of the oldest predecessor of the given root.
 * entries older than time_seq are ignored.
 */
1140 1141
static struct tree_mod_elem *__tree_mod_log_oldest_root(
		struct extent_buffer *eb_root, u64 time_seq)
J
Jan Schmidt 已提交
1142 1143 1144
{
	struct tree_mod_elem *tm;
	struct tree_mod_elem *found = NULL;
1145
	u64 root_logical = eb_root->start;
J
Jan Schmidt 已提交
1146 1147 1148
	int looped = 0;

	if (!time_seq)
1149
		return NULL;
J
Jan Schmidt 已提交
1150 1151

	/*
1152 1153 1154 1155
	 * the very last operation that's logged for a root is the
	 * replacement operation (if it is replaced at all). this has
	 * the logical address of the *new* root, making it the very
	 * first operation that's logged for this root.
J
Jan Schmidt 已提交
1156 1157
	 */
	while (1) {
1158
		tm = tree_mod_log_search_oldest(eb_root->fs_info, root_logical,
J
Jan Schmidt 已提交
1159 1160
						time_seq);
		if (!looped && !tm)
1161
			return NULL;
J
Jan Schmidt 已提交
1162
		/*
1163 1164 1165
		 * if there are no tree operation for the oldest root, we simply
		 * return it. this should only happen if that (old) root is at
		 * level 0.
J
Jan Schmidt 已提交
1166
		 */
1167 1168
		if (!tm)
			break;
J
Jan Schmidt 已提交
1169

1170 1171 1172 1173 1174
		/*
		 * if there's an operation that's not a root replacement, we
		 * found the oldest version of our root. normally, we'll find a
		 * MOD_LOG_KEY_REMOVE_WHILE_FREEING operation here.
		 */
J
Jan Schmidt 已提交
1175 1176 1177 1178 1179 1180 1181 1182
		if (tm->op != MOD_LOG_ROOT_REPLACE)
			break;

		found = tm;
		root_logical = tm->old_root.logical;
		looped = 1;
	}

1183 1184 1185 1186
	/* if there's no old root to return, return what we found instead */
	if (!found)
		found = tm;

J
Jan Schmidt 已提交
1187 1188 1189 1190 1191
	return found;
}

/*
 * tm is a pointer to the first operation to rewind within eb. then, all
1192
 * previous operations will be rewound (until we reach something older than
J
Jan Schmidt 已提交
1193 1194 1195
 * time_seq).
 */
static void
1196 1197
__tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct extent_buffer *eb,
		      u64 time_seq, struct tree_mod_elem *first_tm)
J
Jan Schmidt 已提交
1198 1199 1200 1201 1202 1203 1204 1205 1206
{
	u32 n;
	struct rb_node *next;
	struct tree_mod_elem *tm = first_tm;
	unsigned long o_dst;
	unsigned long o_src;
	unsigned long p_size = sizeof(struct btrfs_key_ptr);

	n = btrfs_header_nritems(eb);
1207
	read_lock(&fs_info->tree_mod_log_lock);
1208
	while (tm && tm->seq >= time_seq) {
J
Jan Schmidt 已提交
1209 1210 1211 1212 1213 1214 1215 1216
		/*
		 * all the operations are recorded with the operator used for
		 * the modification. as we're going backwards, we do the
		 * opposite of each operation here.
		 */
		switch (tm->op) {
		case MOD_LOG_KEY_REMOVE_WHILE_FREEING:
			BUG_ON(tm->slot < n);
1217
			/* Fallthrough */
1218
		case MOD_LOG_KEY_REMOVE_WHILE_MOVING:
1219
		case MOD_LOG_KEY_REMOVE:
J
Jan Schmidt 已提交
1220 1221 1222 1223
			btrfs_set_node_key(eb, &tm->key, tm->slot);
			btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
			btrfs_set_node_ptr_generation(eb, tm->slot,
						      tm->generation);
1224
			n++;
J
Jan Schmidt 已提交
1225 1226 1227 1228 1229 1230 1231 1232 1233
			break;
		case MOD_LOG_KEY_REPLACE:
			BUG_ON(tm->slot >= n);
			btrfs_set_node_key(eb, &tm->key, tm->slot);
			btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
			btrfs_set_node_ptr_generation(eb, tm->slot,
						      tm->generation);
			break;
		case MOD_LOG_KEY_ADD:
1234
			/* if a move operation is needed it's in the log */
J
Jan Schmidt 已提交
1235 1236 1237
			n--;
			break;
		case MOD_LOG_MOVE_KEYS:
1238 1239 1240
			o_dst = btrfs_node_key_ptr_offset(tm->slot);
			o_src = btrfs_node_key_ptr_offset(tm->move.dst_slot);
			memmove_extent_buffer(eb, o_dst, o_src,
J
Jan Schmidt 已提交
1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257
					      tm->move.nr_items * p_size);
			break;
		case MOD_LOG_ROOT_REPLACE:
			/*
			 * this operation is special. for roots, this must be
			 * handled explicitly before rewinding.
			 * for non-roots, this operation may exist if the node
			 * was a root: root A -> child B; then A gets empty and
			 * B is promoted to the new root. in the mod log, we'll
			 * have a root-replace operation for B, a tree block
			 * that is no root. we simply ignore that operation.
			 */
			break;
		}
		next = rb_next(&tm->node);
		if (!next)
			break;
1258
		tm = rb_entry(next, struct tree_mod_elem, node);
1259
		if (tm->logical != first_tm->logical)
J
Jan Schmidt 已提交
1260 1261
			break;
	}
1262
	read_unlock(&fs_info->tree_mod_log_lock);
J
Jan Schmidt 已提交
1263 1264 1265
	btrfs_set_header_nritems(eb, n);
}

1266
/*
1267
 * Called with eb read locked. If the buffer cannot be rewound, the same buffer
1268 1269 1270 1271 1272
 * is returned. If rewind operations happen, a fresh buffer is returned. The
 * returned buffer is always read-locked. If the returned buffer is not the
 * input buffer, the lock on the input buffer is released and the input buffer
 * is freed (its refcount is decremented).
 */
J
Jan Schmidt 已提交
1273
static struct extent_buffer *
1274 1275
tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct btrfs_path *path,
		    struct extent_buffer *eb, u64 time_seq)
J
Jan Schmidt 已提交
1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289
{
	struct extent_buffer *eb_rewin;
	struct tree_mod_elem *tm;

	if (!time_seq)
		return eb;

	if (btrfs_header_level(eb) == 0)
		return eb;

	tm = tree_mod_log_search(fs_info, eb->start, time_seq);
	if (!tm)
		return eb;

1290 1291 1292
	btrfs_set_path_blocking(path);
	btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);

J
Jan Schmidt 已提交
1293 1294
	if (tm->op == MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
		BUG_ON(tm->slot != 0);
1295
		eb_rewin = alloc_dummy_extent_buffer(fs_info, eb->start);
1296
		if (!eb_rewin) {
1297
			btrfs_tree_read_unlock_blocking(eb);
1298 1299 1300
			free_extent_buffer(eb);
			return NULL;
		}
J
Jan Schmidt 已提交
1301 1302 1303 1304
		btrfs_set_header_bytenr(eb_rewin, eb->start);
		btrfs_set_header_backref_rev(eb_rewin,
					     btrfs_header_backref_rev(eb));
		btrfs_set_header_owner(eb_rewin, btrfs_header_owner(eb));
1305
		btrfs_set_header_level(eb_rewin, btrfs_header_level(eb));
J
Jan Schmidt 已提交
1306 1307
	} else {
		eb_rewin = btrfs_clone_extent_buffer(eb);
1308
		if (!eb_rewin) {
1309
			btrfs_tree_read_unlock_blocking(eb);
1310 1311 1312
			free_extent_buffer(eb);
			return NULL;
		}
J
Jan Schmidt 已提交
1313 1314
	}

1315
	btrfs_tree_read_unlock_blocking(eb);
J
Jan Schmidt 已提交
1316 1317
	free_extent_buffer(eb);

1318
	btrfs_tree_read_lock(eb_rewin);
1319
	__tree_mod_log_rewind(fs_info, eb_rewin, time_seq, tm);
1320
	WARN_ON(btrfs_header_nritems(eb_rewin) >
1321
		BTRFS_NODEPTRS_PER_BLOCK(fs_info));
J
Jan Schmidt 已提交
1322 1323 1324 1325

	return eb_rewin;
}

1326 1327 1328 1329 1330 1331 1332
/*
 * get_old_root() rewinds the state of @root's root node to the given @time_seq
 * value. If there are no changes, the current root->root_node is returned. If
 * anything changed in between, there's a fresh buffer allocated on which the
 * rewind operations are done. In any case, the returned buffer is read locked.
 * Returns NULL on error (with no locks held).
 */
J
Jan Schmidt 已提交
1333 1334 1335
static inline struct extent_buffer *
get_old_root(struct btrfs_root *root, u64 time_seq)
{
1336
	struct btrfs_fs_info *fs_info = root->fs_info;
J
Jan Schmidt 已提交
1337
	struct tree_mod_elem *tm;
1338 1339
	struct extent_buffer *eb = NULL;
	struct extent_buffer *eb_root;
1340
	struct extent_buffer *old;
1341
	struct tree_mod_root *old_root = NULL;
1342
	u64 old_generation = 0;
1343
	u64 logical;
1344
	int level;
J
Jan Schmidt 已提交
1345

1346
	eb_root = btrfs_read_lock_root_node(root);
1347
	tm = __tree_mod_log_oldest_root(eb_root, time_seq);
J
Jan Schmidt 已提交
1348
	if (!tm)
1349
		return eb_root;
J
Jan Schmidt 已提交
1350

1351 1352 1353 1354
	if (tm->op == MOD_LOG_ROOT_REPLACE) {
		old_root = &tm->old_root;
		old_generation = tm->generation;
		logical = old_root->logical;
1355
		level = old_root->level;
1356
	} else {
1357
		logical = eb_root->start;
1358
		level = btrfs_header_level(eb_root);
1359
	}
J
Jan Schmidt 已提交
1360

1361
	tm = tree_mod_log_search(fs_info, logical, time_seq);
1362
	if (old_root && tm && tm->op != MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
1363 1364
		btrfs_tree_read_unlock(eb_root);
		free_extent_buffer(eb_root);
1365
		old = read_tree_block(fs_info, logical, 0, level, NULL);
1366 1367 1368
		if (WARN_ON(IS_ERR(old) || !extent_buffer_uptodate(old))) {
			if (!IS_ERR(old))
				free_extent_buffer(old);
1369 1370 1371
			btrfs_warn(fs_info,
				   "failed to read tree block %llu from get_old_root",
				   logical);
1372
		} else {
1373 1374
			eb = btrfs_clone_extent_buffer(old);
			free_extent_buffer(old);
1375 1376
		}
	} else if (old_root) {
1377 1378
		btrfs_tree_read_unlock(eb_root);
		free_extent_buffer(eb_root);
1379
		eb = alloc_dummy_extent_buffer(fs_info, logical);
1380
	} else {
1381
		btrfs_set_lock_blocking_rw(eb_root, BTRFS_READ_LOCK);
1382
		eb = btrfs_clone_extent_buffer(eb_root);
1383
		btrfs_tree_read_unlock_blocking(eb_root);
1384
		free_extent_buffer(eb_root);
1385 1386
	}

1387 1388 1389
	if (!eb)
		return NULL;
	btrfs_tree_read_lock(eb);
1390
	if (old_root) {
J
Jan Schmidt 已提交
1391 1392
		btrfs_set_header_bytenr(eb, eb->start);
		btrfs_set_header_backref_rev(eb, BTRFS_MIXED_BACKREF_REV);
1393
		btrfs_set_header_owner(eb, btrfs_header_owner(eb_root));
1394 1395
		btrfs_set_header_level(eb, old_root->level);
		btrfs_set_header_generation(eb, old_generation);
J
Jan Schmidt 已提交
1396
	}
1397
	if (tm)
1398
		__tree_mod_log_rewind(fs_info, eb, time_seq, tm);
1399 1400
	else
		WARN_ON(btrfs_header_level(eb) != 0);
1401
	WARN_ON(btrfs_header_nritems(eb) > BTRFS_NODEPTRS_PER_BLOCK(fs_info));
J
Jan Schmidt 已提交
1402 1403 1404 1405

	return eb;
}

J
Jan Schmidt 已提交
1406 1407 1408 1409
int btrfs_old_root_level(struct btrfs_root *root, u64 time_seq)
{
	struct tree_mod_elem *tm;
	int level;
1410
	struct extent_buffer *eb_root = btrfs_root_node(root);
J
Jan Schmidt 已提交
1411

1412
	tm = __tree_mod_log_oldest_root(eb_root, time_seq);
J
Jan Schmidt 已提交
1413 1414 1415
	if (tm && tm->op == MOD_LOG_ROOT_REPLACE) {
		level = tm->old_root.level;
	} else {
1416
		level = btrfs_header_level(eb_root);
J
Jan Schmidt 已提交
1417
	}
1418
	free_extent_buffer(eb_root);
J
Jan Schmidt 已提交
1419 1420 1421 1422

	return level;
}

1423 1424 1425 1426
static inline int should_cow_block(struct btrfs_trans_handle *trans,
				   struct btrfs_root *root,
				   struct extent_buffer *buf)
{
1427
	if (btrfs_is_testing(root->fs_info))
1428
		return 0;
1429

1430 1431
	/* Ensure we can see the FORCE_COW bit */
	smp_mb__before_atomic();
1432 1433 1434 1435 1436 1437 1438 1439

	/*
	 * We do not need to cow a block if
	 * 1) this block is not created or changed in this transaction;
	 * 2) this block does not belong to TREE_RELOC tree;
	 * 3) the root is not forced COW.
	 *
	 * What is forced COW:
1440
	 *    when we create snapshot during committing the transaction,
1441
	 *    after we've finished copying src root, we must COW the shared
1442 1443
	 *    block to ensure the metadata consistency.
	 */
1444 1445 1446
	if (btrfs_header_generation(buf) == trans->transid &&
	    !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) &&
	    !(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
1447
	      btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)) &&
1448
	    !test_bit(BTRFS_ROOT_FORCE_COW, &root->state))
1449 1450 1451 1452
		return 0;
	return 1;
}

C
Chris Mason 已提交
1453 1454
/*
 * cows a single block, see __btrfs_cow_block for the real work.
1455
 * This version of it has extra checks so that a block isn't COWed more than
C
Chris Mason 已提交
1456 1457
 * once per transaction, as long as it hasn't been written yet
 */
C
Chris Mason 已提交
1458
noinline int btrfs_cow_block(struct btrfs_trans_handle *trans,
1459 1460
		    struct btrfs_root *root, struct extent_buffer *buf,
		    struct extent_buffer *parent, int parent_slot,
1461
		    struct extent_buffer **cow_ret)
1462
{
1463
	struct btrfs_fs_info *fs_info = root->fs_info;
1464
	u64 search_start;
1465
	int ret;
C
Chris Mason 已提交
1466

1467 1468 1469 1470
	if (test_bit(BTRFS_ROOT_DELETING, &root->state))
		btrfs_err(fs_info,
			"COW'ing blocks on a fs root that's being dropped");

1471
	if (trans->transaction != fs_info->running_transaction)
J
Julia Lawall 已提交
1472
		WARN(1, KERN_CRIT "trans %llu running %llu\n",
1473
		       trans->transid,
1474
		       fs_info->running_transaction->transid);
J
Julia Lawall 已提交
1475

1476
	if (trans->transid != fs_info->generation)
J
Julia Lawall 已提交
1477
		WARN(1, KERN_CRIT "trans %llu running %llu\n",
1478
		       trans->transid, fs_info->generation);
C
Chris Mason 已提交
1479

1480
	if (!should_cow_block(trans, root, buf)) {
1481
		trans->dirty = true;
1482 1483 1484
		*cow_ret = buf;
		return 0;
	}
1485

1486
	search_start = buf->start & ~((u64)SZ_1G - 1);
1487 1488 1489 1490 1491

	if (parent)
		btrfs_set_lock_blocking(parent);
	btrfs_set_lock_blocking(buf);

1492
	ret = __btrfs_cow_block(trans, root, buf, parent,
1493
				 parent_slot, cow_ret, search_start, 0);
1494 1495 1496

	trace_btrfs_cow_block(root, buf, *cow_ret);

1497
	return ret;
1498 1499
}

C
Chris Mason 已提交
1500 1501 1502 1503
/*
 * helper function for defrag to decide if two blocks pointed to by a
 * node are actually close by
 */
1504
static int close_blocks(u64 blocknr, u64 other, u32 blocksize)
1505
{
1506
	if (blocknr < other && other - (blocknr + blocksize) < 32768)
1507
		return 1;
1508
	if (blocknr > other && blocknr - (other + blocksize) < 32768)
1509 1510 1511 1512
		return 1;
	return 0;
}

1513 1514 1515
/*
 * compare two keys in a memcmp fashion
 */
1516 1517
static int comp_keys(const struct btrfs_disk_key *disk,
		     const struct btrfs_key *k2)
1518 1519 1520 1521 1522
{
	struct btrfs_key k1;

	btrfs_disk_key_to_cpu(&k1, disk);

1523
	return btrfs_comp_cpu_keys(&k1, k2);
1524 1525
}

1526 1527 1528
/*
 * same as comp_keys only with two btrfs_key's
 */
1529
int btrfs_comp_cpu_keys(const struct btrfs_key *k1, const struct btrfs_key *k2)
1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544
{
	if (k1->objectid > k2->objectid)
		return 1;
	if (k1->objectid < k2->objectid)
		return -1;
	if (k1->type > k2->type)
		return 1;
	if (k1->type < k2->type)
		return -1;
	if (k1->offset > k2->offset)
		return 1;
	if (k1->offset < k2->offset)
		return -1;
	return 0;
}
1545

C
Chris Mason 已提交
1546 1547 1548 1549 1550
/*
 * this is used by the defrag code to go through all the
 * leaves pointed to by a node and reallocate them so that
 * disk order is close to key order
 */
1551
int btrfs_realloc_node(struct btrfs_trans_handle *trans,
1552
		       struct btrfs_root *root, struct extent_buffer *parent,
1553
		       int start_slot, u64 *last_ret,
1554
		       struct btrfs_key *progress)
1555
{
1556
	struct btrfs_fs_info *fs_info = root->fs_info;
1557
	struct extent_buffer *cur;
1558
	u64 blocknr;
1559
	u64 gen;
1560 1561
	u64 search_start = *last_ret;
	u64 last_block = 0;
1562 1563 1564 1565 1566
	u64 other;
	u32 parent_nritems;
	int end_slot;
	int i;
	int err = 0;
1567
	int parent_level;
1568 1569
	int uptodate;
	u32 blocksize;
1570 1571
	int progress_passed = 0;
	struct btrfs_disk_key disk_key;
1572

1573 1574
	parent_level = btrfs_header_level(parent);

1575 1576
	WARN_ON(trans->transaction != fs_info->running_transaction);
	WARN_ON(trans->transid != fs_info->generation);
1577

1578
	parent_nritems = btrfs_header_nritems(parent);
1579
	blocksize = fs_info->nodesize;
1580
	end_slot = parent_nritems - 1;
1581

1582
	if (parent_nritems <= 1)
1583 1584
		return 0;

1585 1586
	btrfs_set_lock_blocking(parent);

1587
	for (i = start_slot; i <= end_slot; i++) {
1588
		struct btrfs_key first_key;
1589
		int close = 1;
1590

1591 1592 1593 1594 1595
		btrfs_node_key(parent, &disk_key, i);
		if (!progress_passed && comp_keys(&disk_key, progress) < 0)
			continue;

		progress_passed = 1;
1596
		blocknr = btrfs_node_blockptr(parent, i);
1597
		gen = btrfs_node_ptr_generation(parent, i);
1598
		btrfs_node_key_to_cpu(parent, &first_key, i);
1599 1600
		if (last_block == 0)
			last_block = blocknr;
1601

1602
		if (i > 0) {
1603 1604
			other = btrfs_node_blockptr(parent, i - 1);
			close = close_blocks(blocknr, other, blocksize);
1605
		}
1606
		if (!close && i < end_slot) {
1607 1608
			other = btrfs_node_blockptr(parent, i + 1);
			close = close_blocks(blocknr, other, blocksize);
1609
		}
1610 1611
		if (close) {
			last_block = blocknr;
1612
			continue;
1613
		}
1614

1615
		cur = find_extent_buffer(fs_info, blocknr);
1616
		if (cur)
1617
			uptodate = btrfs_buffer_uptodate(cur, gen, 0);
1618 1619
		else
			uptodate = 0;
1620
		if (!cur || !uptodate) {
1621
			if (!cur) {
1622 1623 1624
				cur = read_tree_block(fs_info, blocknr, gen,
						      parent_level - 1,
						      &first_key);
1625 1626 1627
				if (IS_ERR(cur)) {
					return PTR_ERR(cur);
				} else if (!extent_buffer_uptodate(cur)) {
1628
					free_extent_buffer(cur);
1629
					return -EIO;
1630
				}
1631
			} else if (!uptodate) {
1632 1633
				err = btrfs_read_buffer(cur, gen,
						parent_level - 1,&first_key);
1634 1635 1636 1637
				if (err) {
					free_extent_buffer(cur);
					return err;
				}
1638
			}
1639
		}
1640
		if (search_start == 0)
1641
			search_start = last_block;
1642

1643
		btrfs_tree_lock(cur);
1644
		btrfs_set_lock_blocking(cur);
1645
		err = __btrfs_cow_block(trans, root, cur, parent, i,
1646
					&cur, search_start,
1647
					min(16 * blocksize,
1648
					    (end_slot - i) * blocksize));
Y
Yan 已提交
1649
		if (err) {
1650
			btrfs_tree_unlock(cur);
1651
			free_extent_buffer(cur);
1652
			break;
Y
Yan 已提交
1653
		}
1654 1655
		search_start = cur->start;
		last_block = cur->start;
1656
		*last_ret = search_start;
1657 1658
		btrfs_tree_unlock(cur);
		free_extent_buffer(cur);
1659 1660 1661 1662
	}
	return err;
}

C
Chris Mason 已提交
1663
/*
1664 1665 1666
 * search for key in the extent_buffer.  The items start at offset p,
 * and they are item_size apart.  There are 'max' items in p.
 *
C
Chris Mason 已提交
1667 1668 1669 1670 1671 1672
 * the slot in the array is returned via slot, and it points to
 * the place where you would insert key if it is not found in
 * the array.
 *
 * slot may point to max if the key is bigger than all of the keys
 */
1673
static noinline int generic_bin_search(struct extent_buffer *eb,
1674 1675
				       unsigned long p, int item_size,
				       const struct btrfs_key *key,
1676
				       int max, int *slot)
1677 1678 1679 1680 1681
{
	int low = 0;
	int high = max;
	int mid;
	int ret;
1682
	struct btrfs_disk_key *tmp = NULL;
1683 1684 1685 1686 1687
	struct btrfs_disk_key unaligned;
	unsigned long offset;
	char *kaddr = NULL;
	unsigned long map_start = 0;
	unsigned long map_len = 0;
1688
	int err;
1689

1690 1691 1692 1693 1694 1695 1696 1697
	if (low > high) {
		btrfs_err(eb->fs_info,
		 "%s: low (%d) > high (%d) eb %llu owner %llu level %d",
			  __func__, low, high, eb->start,
			  btrfs_header_owner(eb), btrfs_header_level(eb));
		return -EINVAL;
	}

C
Chris Mason 已提交
1698
	while (low < high) {
1699
		mid = (low + high) / 2;
1700 1701
		offset = p + mid * item_size;

1702
		if (!kaddr || offset < map_start ||
1703 1704
		    (offset + sizeof(struct btrfs_disk_key)) >
		    map_start + map_len) {
1705 1706

			err = map_private_extent_buffer(eb, offset,
1707
						sizeof(struct btrfs_disk_key),
1708
						&kaddr, &map_start, &map_len);
1709 1710 1711 1712

			if (!err) {
				tmp = (struct btrfs_disk_key *)(kaddr + offset -
							map_start);
1713
			} else if (err == 1) {
1714 1715 1716
				read_extent_buffer(eb, &unaligned,
						   offset, sizeof(unaligned));
				tmp = &unaligned;
1717 1718
			} else {
				return err;
1719
			}
1720 1721 1722 1723 1724

		} else {
			tmp = (struct btrfs_disk_key *)(kaddr + offset -
							map_start);
		}
1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739
		ret = comp_keys(tmp, key);

		if (ret < 0)
			low = mid + 1;
		else if (ret > 0)
			high = mid;
		else {
			*slot = mid;
			return 0;
		}
	}
	*slot = low;
	return 1;
}

C
Chris Mason 已提交
1740 1741 1742 1743
/*
 * simple bin_search frontend that does the right thing for
 * leaves vs nodes
 */
1744 1745
int btrfs_bin_search(struct extent_buffer *eb, const struct btrfs_key *key,
		     int level, int *slot)
1746
{
1747
	if (level == 0)
1748 1749
		return generic_bin_search(eb,
					  offsetof(struct btrfs_leaf, items),
C
Chris Mason 已提交
1750
					  sizeof(struct btrfs_item),
1751
					  key, btrfs_header_nritems(eb),
1752
					  slot);
1753
	else
1754 1755
		return generic_bin_search(eb,
					  offsetof(struct btrfs_node, ptrs),
C
Chris Mason 已提交
1756
					  sizeof(struct btrfs_key_ptr),
1757
					  key, btrfs_header_nritems(eb),
1758
					  slot);
1759 1760
}

1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776
static void root_add_used(struct btrfs_root *root, u32 size)
{
	spin_lock(&root->accounting_lock);
	btrfs_set_root_used(&root->root_item,
			    btrfs_root_used(&root->root_item) + size);
	spin_unlock(&root->accounting_lock);
}

static void root_sub_used(struct btrfs_root *root, u32 size)
{
	spin_lock(&root->accounting_lock);
	btrfs_set_root_used(&root->root_item,
			    btrfs_root_used(&root->root_item) - size);
	spin_unlock(&root->accounting_lock);
}

C
Chris Mason 已提交
1777 1778 1779
/* given a node and slot number, this reads the blocks it points to.  The
 * extent buffer is returned with a reference taken (but unlocked).
 */
1780 1781 1782
static noinline struct extent_buffer *
read_node_slot(struct btrfs_fs_info *fs_info, struct extent_buffer *parent,
	       int slot)
1783
{
1784
	int level = btrfs_header_level(parent);
1785
	struct extent_buffer *eb;
1786
	struct btrfs_key first_key;
1787

1788 1789
	if (slot < 0 || slot >= btrfs_header_nritems(parent))
		return ERR_PTR(-ENOENT);
1790 1791 1792

	BUG_ON(level == 0);

1793
	btrfs_node_key_to_cpu(parent, &first_key, slot);
1794
	eb = read_tree_block(fs_info, btrfs_node_blockptr(parent, slot),
1795 1796
			     btrfs_node_ptr_generation(parent, slot),
			     level - 1, &first_key);
1797 1798 1799
	if (!IS_ERR(eb) && !extent_buffer_uptodate(eb)) {
		free_extent_buffer(eb);
		eb = ERR_PTR(-EIO);
1800 1801 1802
	}

	return eb;
1803 1804
}

C
Chris Mason 已提交
1805 1806 1807 1808 1809
/*
 * node level balancing, used to make sure nodes are in proper order for
 * item deletion.  We balance from the top down, so we have to make sure
 * that a deletion won't leave an node completely empty later on.
 */
1810
static noinline int balance_level(struct btrfs_trans_handle *trans,
1811 1812
			 struct btrfs_root *root,
			 struct btrfs_path *path, int level)
1813
{
1814
	struct btrfs_fs_info *fs_info = root->fs_info;
1815 1816 1817 1818
	struct extent_buffer *right = NULL;
	struct extent_buffer *mid;
	struct extent_buffer *left = NULL;
	struct extent_buffer *parent = NULL;
1819 1820 1821 1822
	int ret = 0;
	int wret;
	int pslot;
	int orig_slot = path->slots[level];
1823
	u64 orig_ptr;
1824

1825
	ASSERT(level > 0);
1826

1827
	mid = path->nodes[level];
1828

1829 1830
	WARN_ON(path->locks[level] != BTRFS_WRITE_LOCK &&
		path->locks[level] != BTRFS_WRITE_LOCK_BLOCKING);
1831 1832
	WARN_ON(btrfs_header_generation(mid) != trans->transid);

1833
	orig_ptr = btrfs_node_blockptr(mid, orig_slot);
1834

L
Li Zefan 已提交
1835
	if (level < BTRFS_MAX_LEVEL - 1) {
1836
		parent = path->nodes[level + 1];
L
Li Zefan 已提交
1837 1838
		pslot = path->slots[level + 1];
	}
1839

C
Chris Mason 已提交
1840 1841 1842 1843
	/*
	 * deal with the case where there is only one pointer in the root
	 * by promoting the node below to a root
	 */
1844 1845
	if (!parent) {
		struct extent_buffer *child;
1846

1847
		if (btrfs_header_nritems(mid) != 1)
1848 1849 1850
			return 0;

		/* promote the child to a root */
1851
		child = read_node_slot(fs_info, mid, 0);
1852 1853
		if (IS_ERR(child)) {
			ret = PTR_ERR(child);
1854
			btrfs_handle_fs_error(fs_info, ret, NULL);
1855 1856 1857
			goto enospc;
		}

1858
		btrfs_tree_lock(child);
1859
		btrfs_set_lock_blocking(child);
1860
		ret = btrfs_cow_block(trans, root, child, mid, 0, &child);
1861 1862 1863 1864 1865
		if (ret) {
			btrfs_tree_unlock(child);
			free_extent_buffer(child);
			goto enospc;
		}
1866

1867 1868
		ret = tree_mod_log_insert_root(root->node, child, 1);
		BUG_ON(ret < 0);
1869
		rcu_assign_pointer(root->node, child);
1870

1871
		add_root_to_dirty_list(root);
1872
		btrfs_tree_unlock(child);
1873

1874
		path->locks[level] = 0;
1875
		path->nodes[level] = NULL;
1876
		clean_tree_block(fs_info, mid);
1877
		btrfs_tree_unlock(mid);
1878
		/* once for the path */
1879
		free_extent_buffer(mid);
1880 1881

		root_sub_used(root, mid->len);
1882
		btrfs_free_tree_block(trans, root, mid, 0, 1);
1883
		/* once for the root ptr */
1884
		free_extent_buffer_stale(mid);
1885
		return 0;
1886
	}
1887
	if (btrfs_header_nritems(mid) >
1888
	    BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 4)
1889 1890
		return 0;

1891
	left = read_node_slot(fs_info, parent, pslot - 1);
1892 1893 1894
	if (IS_ERR(left))
		left = NULL;

1895
	if (left) {
1896
		btrfs_tree_lock(left);
1897
		btrfs_set_lock_blocking(left);
1898
		wret = btrfs_cow_block(trans, root, left,
1899
				       parent, pslot - 1, &left);
1900 1901 1902 1903
		if (wret) {
			ret = wret;
			goto enospc;
		}
1904
	}
1905

1906
	right = read_node_slot(fs_info, parent, pslot + 1);
1907 1908 1909
	if (IS_ERR(right))
		right = NULL;

1910
	if (right) {
1911
		btrfs_tree_lock(right);
1912
		btrfs_set_lock_blocking(right);
1913
		wret = btrfs_cow_block(trans, root, right,
1914
				       parent, pslot + 1, &right);
1915 1916 1917 1918 1919 1920 1921
		if (wret) {
			ret = wret;
			goto enospc;
		}
	}

	/* first, try to make some room in the middle buffer */
1922 1923
	if (left) {
		orig_slot += btrfs_header_nritems(left);
1924
		wret = push_node_left(trans, fs_info, left, mid, 1);
1925 1926
		if (wret < 0)
			ret = wret;
1927
	}
1928 1929 1930 1931

	/*
	 * then try to empty the right most buffer into the middle
	 */
1932
	if (right) {
1933
		wret = push_node_left(trans, fs_info, mid, right, 1);
1934
		if (wret < 0 && wret != -ENOSPC)
1935
			ret = wret;
1936
		if (btrfs_header_nritems(right) == 0) {
1937
			clean_tree_block(fs_info, right);
1938
			btrfs_tree_unlock(right);
1939
			del_ptr(root, path, level + 1, pslot + 1);
1940
			root_sub_used(root, right->len);
1941
			btrfs_free_tree_block(trans, root, right, 0, 1);
1942
			free_extent_buffer_stale(right);
1943
			right = NULL;
1944
		} else {
1945 1946
			struct btrfs_disk_key right_key;
			btrfs_node_key(right, &right_key, 0);
1947 1948 1949
			ret = tree_mod_log_insert_key(parent, pslot + 1,
					MOD_LOG_KEY_REPLACE, GFP_NOFS);
			BUG_ON(ret < 0);
1950 1951
			btrfs_set_node_key(parent, &right_key, pslot + 1);
			btrfs_mark_buffer_dirty(parent);
1952 1953
		}
	}
1954
	if (btrfs_header_nritems(mid) == 1) {
1955 1956 1957 1958 1959 1960 1961 1962 1963
		/*
		 * we're not allowed to leave a node with one item in the
		 * tree during a delete.  A deletion from lower in the tree
		 * could try to delete the only pointer in this node.
		 * So, pull some keys from the left.
		 * There has to be a left pointer at this point because
		 * otherwise we would have pulled some pointers from the
		 * right
		 */
1964 1965
		if (!left) {
			ret = -EROFS;
1966
			btrfs_handle_fs_error(fs_info, ret, NULL);
1967 1968
			goto enospc;
		}
1969
		wret = balance_node_right(trans, fs_info, mid, left);
1970
		if (wret < 0) {
1971
			ret = wret;
1972 1973
			goto enospc;
		}
1974
		if (wret == 1) {
1975
			wret = push_node_left(trans, fs_info, left, mid, 1);
1976 1977 1978
			if (wret < 0)
				ret = wret;
		}
1979 1980
		BUG_ON(wret == 1);
	}
1981
	if (btrfs_header_nritems(mid) == 0) {
1982
		clean_tree_block(fs_info, mid);
1983
		btrfs_tree_unlock(mid);
1984
		del_ptr(root, path, level + 1, pslot);
1985
		root_sub_used(root, mid->len);
1986
		btrfs_free_tree_block(trans, root, mid, 0, 1);
1987
		free_extent_buffer_stale(mid);
1988
		mid = NULL;
1989 1990
	} else {
		/* update the parent key to reflect our changes */
1991 1992
		struct btrfs_disk_key mid_key;
		btrfs_node_key(mid, &mid_key, 0);
1993 1994 1995
		ret = tree_mod_log_insert_key(parent, pslot,
				MOD_LOG_KEY_REPLACE, GFP_NOFS);
		BUG_ON(ret < 0);
1996 1997
		btrfs_set_node_key(parent, &mid_key, pslot);
		btrfs_mark_buffer_dirty(parent);
1998
	}
1999

2000
	/* update the path */
2001 2002 2003
	if (left) {
		if (btrfs_header_nritems(left) > orig_slot) {
			extent_buffer_get(left);
2004
			/* left was locked after cow */
2005
			path->nodes[level] = left;
2006 2007
			path->slots[level + 1] -= 1;
			path->slots[level] = orig_slot;
2008 2009
			if (mid) {
				btrfs_tree_unlock(mid);
2010
				free_extent_buffer(mid);
2011
			}
2012
		} else {
2013
			orig_slot -= btrfs_header_nritems(left);
2014 2015 2016
			path->slots[level] = orig_slot;
		}
	}
2017
	/* double check we haven't messed things up */
C
Chris Mason 已提交
2018
	if (orig_ptr !=
2019
	    btrfs_node_blockptr(path->nodes[level], path->slots[level]))
2020
		BUG();
2021
enospc:
2022 2023
	if (right) {
		btrfs_tree_unlock(right);
2024
		free_extent_buffer(right);
2025 2026 2027 2028
	}
	if (left) {
		if (path->nodes[level] != left)
			btrfs_tree_unlock(left);
2029
		free_extent_buffer(left);
2030
	}
2031 2032 2033
	return ret;
}

C
Chris Mason 已提交
2034 2035 2036 2037
/* Node balancing for insertion.  Here we only split or push nodes around
 * when they are completely full.  This is also done top down, so we
 * have to be pessimistic.
 */
C
Chris Mason 已提交
2038
static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans,
2039 2040
					  struct btrfs_root *root,
					  struct btrfs_path *path, int level)
2041
{
2042
	struct btrfs_fs_info *fs_info = root->fs_info;
2043 2044 2045 2046
	struct extent_buffer *right = NULL;
	struct extent_buffer *mid;
	struct extent_buffer *left = NULL;
	struct extent_buffer *parent = NULL;
2047 2048 2049 2050 2051 2052 2053 2054
	int ret = 0;
	int wret;
	int pslot;
	int orig_slot = path->slots[level];

	if (level == 0)
		return 1;

2055
	mid = path->nodes[level];
2056
	WARN_ON(btrfs_header_generation(mid) != trans->transid);
2057

L
Li Zefan 已提交
2058
	if (level < BTRFS_MAX_LEVEL - 1) {
2059
		parent = path->nodes[level + 1];
L
Li Zefan 已提交
2060 2061
		pslot = path->slots[level + 1];
	}
2062

2063
	if (!parent)
2064 2065
		return 1;

2066
	left = read_node_slot(fs_info, parent, pslot - 1);
2067 2068
	if (IS_ERR(left))
		left = NULL;
2069 2070

	/* first, try to make some room in the middle buffer */
2071
	if (left) {
2072
		u32 left_nr;
2073 2074

		btrfs_tree_lock(left);
2075 2076
		btrfs_set_lock_blocking(left);

2077
		left_nr = btrfs_header_nritems(left);
2078
		if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) {
C
Chris Mason 已提交
2079 2080
			wret = 1;
		} else {
2081
			ret = btrfs_cow_block(trans, root, left, parent,
2082
					      pslot - 1, &left);
2083 2084 2085
			if (ret)
				wret = 1;
			else {
2086
				wret = push_node_left(trans, fs_info,
2087
						      left, mid, 0);
2088
			}
C
Chris Mason 已提交
2089
		}
2090 2091 2092
		if (wret < 0)
			ret = wret;
		if (wret == 0) {
2093
			struct btrfs_disk_key disk_key;
2094
			orig_slot += left_nr;
2095
			btrfs_node_key(mid, &disk_key, 0);
2096 2097 2098
			ret = tree_mod_log_insert_key(parent, pslot,
					MOD_LOG_KEY_REPLACE, GFP_NOFS);
			BUG_ON(ret < 0);
2099 2100 2101 2102
			btrfs_set_node_key(parent, &disk_key, pslot);
			btrfs_mark_buffer_dirty(parent);
			if (btrfs_header_nritems(left) > orig_slot) {
				path->nodes[level] = left;
2103 2104
				path->slots[level + 1] -= 1;
				path->slots[level] = orig_slot;
2105
				btrfs_tree_unlock(mid);
2106
				free_extent_buffer(mid);
2107 2108
			} else {
				orig_slot -=
2109
					btrfs_header_nritems(left);
2110
				path->slots[level] = orig_slot;
2111
				btrfs_tree_unlock(left);
2112
				free_extent_buffer(left);
2113 2114 2115
			}
			return 0;
		}
2116
		btrfs_tree_unlock(left);
2117
		free_extent_buffer(left);
2118
	}
2119
	right = read_node_slot(fs_info, parent, pslot + 1);
2120 2121
	if (IS_ERR(right))
		right = NULL;
2122 2123 2124 2125

	/*
	 * then try to empty the right most buffer into the middle
	 */
2126
	if (right) {
C
Chris Mason 已提交
2127
		u32 right_nr;
2128

2129
		btrfs_tree_lock(right);
2130 2131
		btrfs_set_lock_blocking(right);

2132
		right_nr = btrfs_header_nritems(right);
2133
		if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) {
C
Chris Mason 已提交
2134 2135
			wret = 1;
		} else {
2136 2137
			ret = btrfs_cow_block(trans, root, right,
					      parent, pslot + 1,
2138
					      &right);
2139 2140 2141
			if (ret)
				wret = 1;
			else {
2142
				wret = balance_node_right(trans, fs_info,
2143
							  right, mid);
2144
			}
C
Chris Mason 已提交
2145
		}
2146 2147 2148
		if (wret < 0)
			ret = wret;
		if (wret == 0) {
2149 2150 2151
			struct btrfs_disk_key disk_key;

			btrfs_node_key(right, &disk_key, 0);
2152 2153 2154
			ret = tree_mod_log_insert_key(parent, pslot + 1,
					MOD_LOG_KEY_REPLACE, GFP_NOFS);
			BUG_ON(ret < 0);
2155 2156 2157 2158 2159
			btrfs_set_node_key(parent, &disk_key, pslot + 1);
			btrfs_mark_buffer_dirty(parent);

			if (btrfs_header_nritems(mid) <= orig_slot) {
				path->nodes[level] = right;
2160 2161
				path->slots[level + 1] += 1;
				path->slots[level] = orig_slot -
2162
					btrfs_header_nritems(mid);
2163
				btrfs_tree_unlock(mid);
2164
				free_extent_buffer(mid);
2165
			} else {
2166
				btrfs_tree_unlock(right);
2167
				free_extent_buffer(right);
2168 2169 2170
			}
			return 0;
		}
2171
		btrfs_tree_unlock(right);
2172
		free_extent_buffer(right);
2173 2174 2175 2176
	}
	return 1;
}

2177
/*
C
Chris Mason 已提交
2178 2179
 * readahead one full node of leaves, finding things that are close
 * to the block in 'slot', and triggering ra on them.
2180
 */
2181
static void reada_for_search(struct btrfs_fs_info *fs_info,
2182 2183
			     struct btrfs_path *path,
			     int level, int slot, u64 objectid)
2184
{
2185
	struct extent_buffer *node;
2186
	struct btrfs_disk_key disk_key;
2187 2188
	u32 nritems;
	u64 search;
2189
	u64 target;
2190
	u64 nread = 0;
2191
	struct extent_buffer *eb;
2192 2193 2194
	u32 nr;
	u32 blocksize;
	u32 nscan = 0;
2195

2196
	if (level != 1)
2197 2198 2199
		return;

	if (!path->nodes[level])
2200 2201
		return;

2202
	node = path->nodes[level];
2203

2204
	search = btrfs_node_blockptr(node, slot);
2205 2206
	blocksize = fs_info->nodesize;
	eb = find_extent_buffer(fs_info, search);
2207 2208
	if (eb) {
		free_extent_buffer(eb);
2209 2210 2211
		return;
	}

2212
	target = search;
2213

2214
	nritems = btrfs_header_nritems(node);
2215
	nr = slot;
2216

C
Chris Mason 已提交
2217
	while (1) {
2218
		if (path->reada == READA_BACK) {
2219 2220 2221
			if (nr == 0)
				break;
			nr--;
2222
		} else if (path->reada == READA_FORWARD) {
2223 2224 2225
			nr++;
			if (nr >= nritems)
				break;
2226
		}
2227
		if (path->reada == READA_BACK && objectid) {
2228 2229 2230 2231
			btrfs_node_key(node, &disk_key, nr);
			if (btrfs_disk_key_objectid(&disk_key) != objectid)
				break;
		}
2232
		search = btrfs_node_blockptr(node, nr);
2233 2234
		if ((search <= target && target - search <= 65536) ||
		    (search > target && search - target <= 65536)) {
2235
			readahead_tree_block(fs_info, search);
2236 2237 2238
			nread += blocksize;
		}
		nscan++;
2239
		if ((nread > 65536 || nscan > 32))
2240
			break;
2241 2242
	}
}
2243

2244
static noinline void reada_for_balance(struct btrfs_fs_info *fs_info,
J
Josef Bacik 已提交
2245
				       struct btrfs_path *path, int level)
2246 2247 2248 2249 2250 2251 2252 2253 2254
{
	int slot;
	int nritems;
	struct extent_buffer *parent;
	struct extent_buffer *eb;
	u64 gen;
	u64 block1 = 0;
	u64 block2 = 0;

2255
	parent = path->nodes[level + 1];
2256
	if (!parent)
J
Josef Bacik 已提交
2257
		return;
2258 2259

	nritems = btrfs_header_nritems(parent);
2260
	slot = path->slots[level + 1];
2261 2262 2263 2264

	if (slot > 0) {
		block1 = btrfs_node_blockptr(parent, slot - 1);
		gen = btrfs_node_ptr_generation(parent, slot - 1);
2265
		eb = find_extent_buffer(fs_info, block1);
2266 2267 2268 2269 2270 2271
		/*
		 * if we get -eagain from btrfs_buffer_uptodate, we
		 * don't want to return eagain here.  That will loop
		 * forever
		 */
		if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
2272 2273 2274
			block1 = 0;
		free_extent_buffer(eb);
	}
2275
	if (slot + 1 < nritems) {
2276 2277
		block2 = btrfs_node_blockptr(parent, slot + 1);
		gen = btrfs_node_ptr_generation(parent, slot + 1);
2278
		eb = find_extent_buffer(fs_info, block2);
2279
		if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
2280 2281 2282
			block2 = 0;
		free_extent_buffer(eb);
	}
2283

J
Josef Bacik 已提交
2284
	if (block1)
2285
		readahead_tree_block(fs_info, block1);
J
Josef Bacik 已提交
2286
	if (block2)
2287
		readahead_tree_block(fs_info, block2);
2288 2289 2290
}


C
Chris Mason 已提交
2291
/*
C
Chris Mason 已提交
2292 2293 2294 2295
 * when we walk down the tree, it is usually safe to unlock the higher layers
 * in the tree.  The exceptions are when our path goes through slot 0, because
 * operations on the tree might require changing key pointers higher up in the
 * tree.
C
Chris Mason 已提交
2296
 *
C
Chris Mason 已提交
2297 2298 2299
 * callers might also have set path->keep_locks, which tells this code to keep
 * the lock if the path points to the last slot in the block.  This is part of
 * walking through the tree, and selecting the next slot in the higher block.
C
Chris Mason 已提交
2300
 *
C
Chris Mason 已提交
2301 2302
 * lowest_unlock sets the lowest level in the tree we're allowed to unlock.  so
 * if lowest_unlock is 1, level 0 won't be unlocked
C
Chris Mason 已提交
2303
 */
2304
static noinline void unlock_up(struct btrfs_path *path, int level,
2305 2306
			       int lowest_unlock, int min_write_lock_level,
			       int *write_lock_level)
2307 2308 2309
{
	int i;
	int skip_level = level;
2310
	int no_skips = 0;
2311 2312 2313 2314 2315 2316 2317
	struct extent_buffer *t;

	for (i = level; i < BTRFS_MAX_LEVEL; i++) {
		if (!path->nodes[i])
			break;
		if (!path->locks[i])
			break;
2318
		if (!no_skips && path->slots[i] == 0) {
2319 2320 2321
			skip_level = i + 1;
			continue;
		}
2322
		if (!no_skips && path->keep_locks) {
2323 2324 2325
			u32 nritems;
			t = path->nodes[i];
			nritems = btrfs_header_nritems(t);
2326
			if (nritems < 1 || path->slots[i] >= nritems - 1) {
2327 2328 2329 2330
				skip_level = i + 1;
				continue;
			}
		}
2331 2332 2333
		if (skip_level < i && i >= lowest_unlock)
			no_skips = 1;

2334
		t = path->nodes[i];
2335
		if (i >= lowest_unlock && i > skip_level) {
2336
			btrfs_tree_unlock_rw(t, path->locks[i]);
2337
			path->locks[i] = 0;
2338 2339 2340 2341 2342
			if (write_lock_level &&
			    i > min_write_lock_level &&
			    i <= *write_lock_level) {
				*write_lock_level = i - 1;
			}
2343 2344 2345 2346
		}
	}
}

2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359
/*
 * This releases any locks held in the path starting at level and
 * going all the way up to the root.
 *
 * btrfs_search_slot will keep the lock held on higher nodes in a few
 * corner cases, such as COW of the block at slot zero in the node.  This
 * ignores those rules, and it should only be called when there are no
 * more updates to be done higher up in the tree.
 */
noinline void btrfs_unlock_up_safe(struct btrfs_path *path, int level)
{
	int i;

J
Josef Bacik 已提交
2360
	if (path->keep_locks)
2361 2362 2363 2364
		return;

	for (i = level; i < BTRFS_MAX_LEVEL; i++) {
		if (!path->nodes[i])
2365
			continue;
2366
		if (!path->locks[i])
2367
			continue;
2368
		btrfs_tree_unlock_rw(path->nodes[i], path->locks[i]);
2369 2370 2371 2372
		path->locks[i] = 0;
	}
}

2373 2374 2375 2376 2377 2378 2379 2380 2381
/*
 * helper function for btrfs_search_slot.  The goal is to find a block
 * in cache without setting the path to blocking.  If we find the block
 * we return zero and the path is unchanged.
 *
 * If we can't find the block, we set the path blocking and do some
 * reada.  -EAGAIN is returned and the search must be repeated.
 */
static int
2382 2383
read_block_for_search(struct btrfs_root *root, struct btrfs_path *p,
		      struct extent_buffer **eb_ret, int level, int slot,
2384
		      const struct btrfs_key *key)
2385
{
2386
	struct btrfs_fs_info *fs_info = root->fs_info;
2387 2388 2389 2390
	u64 blocknr;
	u64 gen;
	struct extent_buffer *b = *eb_ret;
	struct extent_buffer *tmp;
2391
	struct btrfs_key first_key;
2392
	int ret;
2393
	int parent_level;
2394 2395 2396

	blocknr = btrfs_node_blockptr(b, slot);
	gen = btrfs_node_ptr_generation(b, slot);
2397 2398
	parent_level = btrfs_header_level(b);
	btrfs_node_key_to_cpu(b, &first_key, slot);
2399

2400
	tmp = find_extent_buffer(fs_info, blocknr);
2401
	if (tmp) {
2402
		/* first we do an atomic uptodate check */
2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416
		if (btrfs_buffer_uptodate(tmp, gen, 1) > 0) {
			*eb_ret = tmp;
			return 0;
		}

		/* the pages were up to date, but we failed
		 * the generation number check.  Do a full
		 * read for the generation number that is correct.
		 * We must do this without dropping locks so
		 * we can trust our generation number
		 */
		btrfs_set_path_blocking(p);

		/* now we're allowed to do a blocking uptodate check */
2417
		ret = btrfs_read_buffer(tmp, gen, parent_level - 1, &first_key);
2418 2419 2420
		if (!ret) {
			*eb_ret = tmp;
			return 0;
2421
		}
2422 2423 2424
		free_extent_buffer(tmp);
		btrfs_release_path(p);
		return -EIO;
2425 2426 2427 2428 2429
	}

	/*
	 * reduce lock contention at high levels
	 * of the btree by dropping locks before
2430 2431 2432
	 * we read.  Don't release the lock on the current
	 * level because we need to walk this node to figure
	 * out which blocks to read.
2433
	 */
2434 2435 2436
	btrfs_unlock_up_safe(p, level + 1);
	btrfs_set_path_blocking(p);

2437
	if (p->reada != READA_NONE)
2438
		reada_for_search(fs_info, p, level, slot, key->objectid);
2439

2440
	ret = -EAGAIN;
2441
	tmp = read_tree_block(fs_info, blocknr, gen, parent_level - 1,
2442
			      &first_key);
2443
	if (!IS_ERR(tmp)) {
2444 2445 2446 2447 2448 2449
		/*
		 * If the read above didn't mark this buffer up to date,
		 * it will never end up being up to date.  Set ret to EIO now
		 * and give up so that our caller doesn't loop forever
		 * on our EAGAINs.
		 */
2450
		if (!extent_buffer_uptodate(tmp))
2451
			ret = -EIO;
2452
		free_extent_buffer(tmp);
2453 2454
	} else {
		ret = PTR_ERR(tmp);
2455
	}
2456 2457

	btrfs_release_path(p);
2458
	return ret;
2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472
}

/*
 * helper function for btrfs_search_slot.  This does all of the checks
 * for node-level blocks and does any balancing required based on
 * the ins_len.
 *
 * If no extra work was required, zero is returned.  If we had to
 * drop the path, -EAGAIN is returned and btrfs_search_slot must
 * start over
 */
static int
setup_nodes_for_search(struct btrfs_trans_handle *trans,
		       struct btrfs_root *root, struct btrfs_path *p,
2473 2474
		       struct extent_buffer *b, int level, int ins_len,
		       int *write_lock_level)
2475
{
2476
	struct btrfs_fs_info *fs_info = root->fs_info;
2477
	int ret;
2478

2479
	if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >=
2480
	    BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3) {
2481 2482
		int sret;

2483 2484 2485 2486 2487 2488
		if (*write_lock_level < level + 1) {
			*write_lock_level = level + 1;
			btrfs_release_path(p);
			goto again;
		}

2489
		btrfs_set_path_blocking(p);
2490
		reada_for_balance(fs_info, p, level);
2491 2492 2493 2494 2495 2496 2497 2498 2499
		sret = split_node(trans, root, p, level);

		BUG_ON(sret > 0);
		if (sret) {
			ret = sret;
			goto done;
		}
		b = p->nodes[level];
	} else if (ins_len < 0 && btrfs_header_nritems(b) <
2500
		   BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 2) {
2501 2502
		int sret;

2503 2504 2505 2506 2507 2508
		if (*write_lock_level < level + 1) {
			*write_lock_level = level + 1;
			btrfs_release_path(p);
			goto again;
		}

2509
		btrfs_set_path_blocking(p);
2510
		reada_for_balance(fs_info, p, level);
2511 2512 2513 2514 2515 2516 2517 2518
		sret = balance_level(trans, root, p, level);

		if (sret) {
			ret = sret;
			goto done;
		}
		b = p->nodes[level];
		if (!b) {
2519
			btrfs_release_path(p);
2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531
			goto again;
		}
		BUG_ON(btrfs_header_nritems(b) == 1);
	}
	return 0;

again:
	ret = -EAGAIN;
done:
	return ret;
}

2532
static void key_search_validate(struct extent_buffer *b,
2533
				const struct btrfs_key *key,
2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551
				int level)
{
#ifdef CONFIG_BTRFS_ASSERT
	struct btrfs_disk_key disk_key;

	btrfs_cpu_key_to_disk(&disk_key, key);

	if (level == 0)
		ASSERT(!memcmp_extent_buffer(b, &disk_key,
		    offsetof(struct btrfs_leaf, items[0].key),
		    sizeof(disk_key)));
	else
		ASSERT(!memcmp_extent_buffer(b, &disk_key,
		    offsetof(struct btrfs_node, ptrs[0].key),
		    sizeof(disk_key)));
#endif
}

2552
static int key_search(struct extent_buffer *b, const struct btrfs_key *key,
2553 2554 2555
		      int level, int *prev_cmp, int *slot)
{
	if (*prev_cmp != 0) {
2556
		*prev_cmp = btrfs_bin_search(b, key, level, slot);
2557 2558 2559 2560 2561 2562 2563 2564 2565
		return *prev_cmp;
	}

	key_search_validate(b, key, level);
	*slot = 0;

	return 0;
}

2566
int btrfs_find_item(struct btrfs_root *fs_root, struct btrfs_path *path,
2567 2568 2569 2570 2571 2572
		u64 iobjectid, u64 ioff, u8 key_type,
		struct btrfs_key *found_key)
{
	int ret;
	struct btrfs_key key;
	struct extent_buffer *eb;
2573 2574

	ASSERT(path);
2575
	ASSERT(found_key);
2576 2577 2578 2579 2580 2581

	key.type = key_type;
	key.objectid = iobjectid;
	key.offset = ioff;

	ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0);
2582
	if (ret < 0)
2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600
		return ret;

	eb = path->nodes[0];
	if (ret && path->slots[0] >= btrfs_header_nritems(eb)) {
		ret = btrfs_next_leaf(fs_root, path);
		if (ret)
			return ret;
		eb = path->nodes[0];
	}

	btrfs_item_key_to_cpu(eb, found_key, path->slots[0]);
	if (found_key->type != key.type ||
			found_key->objectid != key.objectid)
		return 1;

	return 0;
}

2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613
static struct extent_buffer *btrfs_search_slot_get_root(struct btrfs_root *root,
							struct btrfs_path *p,
							int write_lock_level)
{
	struct btrfs_fs_info *fs_info = root->fs_info;
	struct extent_buffer *b;
	int root_lock;
	int level = 0;

	/* We try very hard to do read locks on the root */
	root_lock = BTRFS_READ_LOCK;

	if (p->search_commit_root) {
2614 2615 2616 2617 2618 2619 2620 2621 2622 2623
		/*
		 * The commit roots are read only so we always do read locks,
		 * and we always must hold the commit_root_sem when doing
		 * searches on them, the only exception is send where we don't
		 * want to block transaction commits for a long time, so
		 * we need to clone the commit root in order to avoid races
		 * with transaction commits that create a snapshot of one of
		 * the roots used by a send operation.
		 */
		if (p->need_commit_sem) {
2624
			down_read(&fs_info->commit_root_sem);
2625
			b = btrfs_clone_extent_buffer(root->commit_root);
2626
			up_read(&fs_info->commit_root_sem);
2627 2628 2629 2630 2631 2632 2633 2634
			if (!b)
				return ERR_PTR(-ENOMEM);

		} else {
			b = root->commit_root;
			extent_buffer_get(b);
		}
		level = btrfs_header_level(b);
2635 2636 2637 2638 2639
		/*
		 * Ensure that all callers have set skip_locking when
		 * p->search_commit_root = 1.
		 */
		ASSERT(p->skip_locking == 1);
2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650

		goto out;
	}

	if (p->skip_locking) {
		b = btrfs_root_node(root);
		level = btrfs_header_level(b);
		goto out;
	}

	/*
2651 2652
	 * If the level is set to maximum, we can skip trying to get the read
	 * lock.
2653
	 */
2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667
	if (write_lock_level < BTRFS_MAX_LEVEL) {
		/*
		 * We don't know the level of the root node until we actually
		 * have it read locked
		 */
		b = btrfs_read_lock_root_node(root);
		level = btrfs_header_level(b);
		if (level > write_lock_level)
			goto out;

		/* Whoops, must trade for write lock */
		btrfs_tree_read_unlock(b);
		free_extent_buffer(b);
	}
2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685

	b = btrfs_lock_root_node(root);
	root_lock = BTRFS_WRITE_LOCK;

	/* The level might have changed, check again */
	level = btrfs_header_level(b);

out:
	p->nodes[level] = b;
	if (!p->skip_locking)
		p->locks[level] = root_lock;
	/*
	 * Callers are responsible for dropping b's references.
	 */
	return b;
}


C
Chris Mason 已提交
2686
/*
2687 2688
 * btrfs_search_slot - look for a key in a tree and perform necessary
 * modifications to preserve tree invariants.
C
Chris Mason 已提交
2689
 *
2690 2691 2692 2693 2694 2695 2696 2697
 * @trans:	Handle of transaction, used when modifying the tree
 * @p:		Holds all btree nodes along the search path
 * @root:	The root node of the tree
 * @key:	The key we are looking for
 * @ins_len:	Indicates purpose of search, for inserts it is 1, for
 *		deletions it's -1. 0 for plain searches
 * @cow:	boolean should CoW operations be performed. Must always be 1
 *		when modifying the tree.
C
Chris Mason 已提交
2698
 *
2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709
 * If @ins_len > 0, nodes and leaves will be split as we walk down the tree.
 * If @ins_len < 0, nodes will be merged as we walk down the tree (if possible)
 *
 * If @key is found, 0 is returned and you can find the item in the leaf level
 * of the path (level 0)
 *
 * If @key isn't found, 1 is returned and the leaf level of the path (level 0)
 * points to the slot where it should be inserted
 *
 * If an error is encountered while searching the tree a negative error number
 * is returned
C
Chris Mason 已提交
2710
 */
2711 2712 2713
int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root *root,
		      const struct btrfs_key *key, struct btrfs_path *p,
		      int ins_len, int cow)
2714
{
2715
	struct btrfs_fs_info *fs_info = root->fs_info;
2716
	struct extent_buffer *b;
2717 2718
	int slot;
	int ret;
2719
	int err;
2720
	int level;
2721
	int lowest_unlock = 1;
2722 2723
	/* everything at write_lock_level or lower must be write locked */
	int write_lock_level = 0;
2724
	u8 lowest_level = 0;
2725
	int min_write_lock_level;
2726
	int prev_cmp;
2727

2728
	lowest_level = p->lowest_level;
2729
	WARN_ON(lowest_level && ins_len > 0);
C
Chris Mason 已提交
2730
	WARN_ON(p->nodes[0] != NULL);
2731
	BUG_ON(!cow && ins_len);
2732

2733
	if (ins_len < 0) {
2734
		lowest_unlock = 2;
2735

2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751
		/* when we are removing items, we might have to go up to level
		 * two as we update tree pointers  Make sure we keep write
		 * for those levels as well
		 */
		write_lock_level = 2;
	} else if (ins_len > 0) {
		/*
		 * for inserting items, make sure we have a write lock on
		 * level 1 so we can update keys
		 */
		write_lock_level = 1;
	}

	if (!cow)
		write_lock_level = -1;

J
Josef Bacik 已提交
2752
	if (cow && (p->keep_locks || p->lowest_level))
2753 2754
		write_lock_level = BTRFS_MAX_LEVEL;

2755 2756
	min_write_lock_level = write_lock_level;

2757
again:
2758
	prev_cmp = -1;
2759
	b = btrfs_search_slot_get_root(root, p, write_lock_level);
2760 2761 2762 2763
	if (IS_ERR(b)) {
		ret = PTR_ERR(b);
		goto done;
	}
2764

2765
	while (b) {
2766
		level = btrfs_header_level(b);
2767 2768 2769 2770 2771

		/*
		 * setup the path here so we can release it under lock
		 * contention with the cow code
		 */
C
Chris Mason 已提交
2772
		if (cow) {
2773 2774
			bool last_level = (level == (BTRFS_MAX_LEVEL - 1));

2775 2776 2777 2778 2779
			/*
			 * if we don't really need to cow this block
			 * then we don't want to set the path blocking,
			 * so we test it here
			 */
2780 2781
			if (!should_cow_block(trans, root, b)) {
				trans->dirty = true;
2782
				goto cow_done;
2783
			}
2784

2785 2786 2787 2788
			/*
			 * must have write locks on this node and the
			 * parent
			 */
2789 2790 2791 2792
			if (level > write_lock_level ||
			    (level + 1 > write_lock_level &&
			    level + 1 < BTRFS_MAX_LEVEL &&
			    p->nodes[level + 1])) {
2793 2794 2795 2796 2797
				write_lock_level = level + 1;
				btrfs_release_path(p);
				goto again;
			}

2798
			btrfs_set_path_blocking(p);
2799 2800 2801 2802 2803 2804 2805
			if (last_level)
				err = btrfs_cow_block(trans, root, b, NULL, 0,
						      &b);
			else
				err = btrfs_cow_block(trans, root, b,
						      p->nodes[level + 1],
						      p->slots[level + 1], &b);
2806 2807
			if (err) {
				ret = err;
2808
				goto done;
2809
			}
C
Chris Mason 已提交
2810
		}
2811
cow_done:
2812
		p->nodes[level] = b;
L
Liu Bo 已提交
2813 2814 2815 2816
		/*
		 * Leave path with blocking locks to avoid massive
		 * lock context switch, this is made on purpose.
		 */
2817 2818 2819 2820 2821 2822 2823

		/*
		 * we have a lock on b and as long as we aren't changing
		 * the tree, there is no way to for the items in b to change.
		 * It is safe to drop the lock on our parent before we
		 * go through the expensive btree search on b.
		 *
2824 2825 2826 2827
		 * If we're inserting or deleting (ins_len != 0), then we might
		 * be changing slot zero, which may require changing the parent.
		 * So, we can't drop the lock until after we know which slot
		 * we're operating on.
2828
		 */
2829 2830 2831 2832 2833 2834 2835 2836
		if (!ins_len && !p->keep_locks) {
			int u = level + 1;

			if (u < BTRFS_MAX_LEVEL && p->locks[u]) {
				btrfs_tree_unlock_rw(p->nodes[u], p->locks[u]);
				p->locks[u] = 0;
			}
		}
2837

2838
		ret = key_search(b, key, level, &prev_cmp, &slot);
2839 2840
		if (ret < 0)
			goto done;
2841

2842
		if (level != 0) {
2843 2844 2845
			int dec = 0;
			if (ret && slot > 0) {
				dec = 1;
2846
				slot -= 1;
2847
			}
2848
			p->slots[level] = slot;
2849
			err = setup_nodes_for_search(trans, root, p, b, level,
2850
					     ins_len, &write_lock_level);
2851
			if (err == -EAGAIN)
2852
				goto again;
2853 2854
			if (err) {
				ret = err;
2855
				goto done;
2856
			}
2857 2858
			b = p->nodes[level];
			slot = p->slots[level];
2859

2860 2861 2862 2863 2864 2865
			/*
			 * slot 0 is special, if we change the key
			 * we have to update the parent pointer
			 * which means we must have a write lock
			 * on the parent
			 */
2866
			if (slot == 0 && ins_len &&
2867 2868 2869 2870 2871 2872
			    write_lock_level < level + 1) {
				write_lock_level = level + 1;
				btrfs_release_path(p);
				goto again;
			}

2873 2874
			unlock_up(p, level, lowest_unlock,
				  min_write_lock_level, &write_lock_level);
2875

2876
			if (level == lowest_level) {
2877 2878
				if (dec)
					p->slots[level]++;
2879
				goto done;
2880
			}
2881

2882
			err = read_block_for_search(root, p, &b, level,
2883
						    slot, key);
2884
			if (err == -EAGAIN)
2885
				goto again;
2886 2887
			if (err) {
				ret = err;
2888
				goto done;
2889
			}
2890

2891
			if (!p->skip_locking) {
2892 2893 2894 2895 2896 2897 2898 2899 2900
				level = btrfs_header_level(b);
				if (level <= write_lock_level) {
					err = btrfs_try_tree_write_lock(b);
					if (!err) {
						btrfs_set_path_blocking(p);
						btrfs_tree_lock(b);
					}
					p->locks[level] = BTRFS_WRITE_LOCK;
				} else {
2901
					err = btrfs_tree_read_lock_atomic(b);
2902 2903 2904 2905 2906
					if (!err) {
						btrfs_set_path_blocking(p);
						btrfs_tree_read_lock(b);
					}
					p->locks[level] = BTRFS_READ_LOCK;
2907
				}
2908
				p->nodes[level] = b;
2909
			}
2910 2911
		} else {
			p->slots[level] = slot;
2912
			if (ins_len > 0 &&
2913
			    btrfs_leaf_free_space(fs_info, b) < ins_len) {
2914 2915 2916 2917 2918 2919
				if (write_lock_level < 1) {
					write_lock_level = 1;
					btrfs_release_path(p);
					goto again;
				}

2920
				btrfs_set_path_blocking(p);
2921 2922
				err = split_leaf(trans, root, key,
						 p, ins_len, ret == 0);
2923

2924 2925 2926
				BUG_ON(err > 0);
				if (err) {
					ret = err;
2927 2928
					goto done;
				}
C
Chris Mason 已提交
2929
			}
2930
			if (!p->search_for_split)
2931
				unlock_up(p, level, lowest_unlock,
2932
					  min_write_lock_level, NULL);
2933
			goto done;
2934 2935
		}
	}
2936 2937
	ret = 1;
done:
2938 2939 2940 2941
	/*
	 * we don't really know what they plan on doing with the path
	 * from here on, so for now just mark it as blocking
	 */
2942 2943
	if (!p->leave_spinning)
		btrfs_set_path_blocking(p);
2944
	if (ret < 0 && !p->skip_release_on_error)
2945
		btrfs_release_path(p);
2946
	return ret;
2947 2948
}

J
Jan Schmidt 已提交
2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959
/*
 * Like btrfs_search_slot, this looks for a key in the given tree. It uses the
 * current state of the tree together with the operations recorded in the tree
 * modification log to search for the key in a previous version of this tree, as
 * denoted by the time_seq parameter.
 *
 * Naturally, there is no support for insert, delete or cow operations.
 *
 * The resulting path and return value will be set up as if we called
 * btrfs_search_slot at that point in time with ins_len and cow both set to 0.
 */
2960
int btrfs_search_old_slot(struct btrfs_root *root, const struct btrfs_key *key,
J
Jan Schmidt 已提交
2961 2962
			  struct btrfs_path *p, u64 time_seq)
{
2963
	struct btrfs_fs_info *fs_info = root->fs_info;
J
Jan Schmidt 已提交
2964 2965 2966 2967 2968 2969 2970
	struct extent_buffer *b;
	int slot;
	int ret;
	int err;
	int level;
	int lowest_unlock = 1;
	u8 lowest_level = 0;
2971
	int prev_cmp = -1;
J
Jan Schmidt 已提交
2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982

	lowest_level = p->lowest_level;
	WARN_ON(p->nodes[0] != NULL);

	if (p->search_commit_root) {
		BUG_ON(time_seq);
		return btrfs_search_slot(NULL, root, key, p, 0, 0);
	}

again:
	b = get_old_root(root, time_seq);
2983 2984 2985 2986
	if (!b) {
		ret = -EIO;
		goto done;
	}
J
Jan Schmidt 已提交
2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001
	level = btrfs_header_level(b);
	p->locks[level] = BTRFS_READ_LOCK;

	while (b) {
		level = btrfs_header_level(b);
		p->nodes[level] = b;

		/*
		 * we have a lock on b and as long as we aren't changing
		 * the tree, there is no way to for the items in b to change.
		 * It is safe to drop the lock on our parent before we
		 * go through the expensive btree search on b.
		 */
		btrfs_unlock_up_safe(p, level + 1);

3002
		/*
3003
		 * Since we can unwind ebs we want to do a real search every
3004 3005 3006
		 * time.
		 */
		prev_cmp = -1;
3007
		ret = key_search(b, key, level, &prev_cmp, &slot);
J
Jan Schmidt 已提交
3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023

		if (level != 0) {
			int dec = 0;
			if (ret && slot > 0) {
				dec = 1;
				slot -= 1;
			}
			p->slots[level] = slot;
			unlock_up(p, level, lowest_unlock, 0, NULL);

			if (level == lowest_level) {
				if (dec)
					p->slots[level]++;
				goto done;
			}

3024
			err = read_block_for_search(root, p, &b, level,
3025
						    slot, key);
J
Jan Schmidt 已提交
3026 3027 3028 3029 3030 3031 3032 3033
			if (err == -EAGAIN)
				goto again;
			if (err) {
				ret = err;
				goto done;
			}

			level = btrfs_header_level(b);
3034
			err = btrfs_tree_read_lock_atomic(b);
J
Jan Schmidt 已提交
3035 3036 3037 3038
			if (!err) {
				btrfs_set_path_blocking(p);
				btrfs_tree_read_lock(b);
			}
3039
			b = tree_mod_log_rewind(fs_info, p, b, time_seq);
3040 3041 3042 3043
			if (!b) {
				ret = -ENOMEM;
				goto done;
			}
J
Jan Schmidt 已提交
3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061
			p->locks[level] = BTRFS_READ_LOCK;
			p->nodes[level] = b;
		} else {
			p->slots[level] = slot;
			unlock_up(p, level, lowest_unlock, 0, NULL);
			goto done;
		}
	}
	ret = 1;
done:
	if (!p->leave_spinning)
		btrfs_set_path_blocking(p);
	if (ret < 0)
		btrfs_release_path(p);

	return ret;
}

3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074
/*
 * helper to use instead of search slot if no exact match is needed but
 * instead the next or previous item should be returned.
 * When find_higher is true, the next higher item is returned, the next lower
 * otherwise.
 * When return_any and find_higher are both true, and no higher item is found,
 * return the next lower instead.
 * When return_any is true and find_higher is false, and no lower item is found,
 * return the next higher instead.
 * It returns 0 if any item is found, 1 if none is found (tree empty), and
 * < 0 on error
 */
int btrfs_search_slot_for_read(struct btrfs_root *root,
3075 3076 3077
			       const struct btrfs_key *key,
			       struct btrfs_path *p, int find_higher,
			       int return_any)
3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111
{
	int ret;
	struct extent_buffer *leaf;

again:
	ret = btrfs_search_slot(NULL, root, key, p, 0, 0);
	if (ret <= 0)
		return ret;
	/*
	 * a return value of 1 means the path is at the position where the
	 * item should be inserted. Normally this is the next bigger item,
	 * but in case the previous item is the last in a leaf, path points
	 * to the first free slot in the previous leaf, i.e. at an invalid
	 * item.
	 */
	leaf = p->nodes[0];

	if (find_higher) {
		if (p->slots[0] >= btrfs_header_nritems(leaf)) {
			ret = btrfs_next_leaf(root, p);
			if (ret <= 0)
				return ret;
			if (!return_any)
				return 1;
			/*
			 * no higher item found, return the next
			 * lower instead
			 */
			return_any = 0;
			find_higher = 0;
			btrfs_release_path(p);
			goto again;
		}
	} else {
3112 3113 3114 3115 3116
		if (p->slots[0] == 0) {
			ret = btrfs_prev_leaf(root, p);
			if (ret < 0)
				return ret;
			if (!ret) {
3117 3118 3119
				leaf = p->nodes[0];
				if (p->slots[0] == btrfs_header_nritems(leaf))
					p->slots[0]--;
3120
				return 0;
3121
			}
3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132
			if (!return_any)
				return 1;
			/*
			 * no lower item found, return the next
			 * higher instead
			 */
			return_any = 0;
			find_higher = 1;
			btrfs_release_path(p);
			goto again;
		} else {
3133 3134 3135 3136 3137 3138
			--p->slots[0];
		}
	}
	return 0;
}

C
Chris Mason 已提交
3139 3140 3141 3142 3143 3144
/*
 * adjust the pointers going up the tree, starting at level
 * making sure the right key of each node is points to 'key'.
 * This is used after shifting pointers to the left, so it stops
 * fixing up pointers when a given leaf/node is not in slot 0 of the
 * higher levels
C
Chris Mason 已提交
3145
 *
C
Chris Mason 已提交
3146
 */
3147
static void fixup_low_keys(struct btrfs_path *path,
3148
			   struct btrfs_disk_key *key, int level)
3149 3150
{
	int i;
3151
	struct extent_buffer *t;
3152
	int ret;
3153

C
Chris Mason 已提交
3154
	for (i = level; i < BTRFS_MAX_LEVEL; i++) {
3155
		int tslot = path->slots[i];
3156

3157
		if (!path->nodes[i])
3158
			break;
3159
		t = path->nodes[i];
3160 3161 3162
		ret = tree_mod_log_insert_key(t, tslot, MOD_LOG_KEY_REPLACE,
				GFP_ATOMIC);
		BUG_ON(ret < 0);
3163
		btrfs_set_node_key(t, key, tslot);
C
Chris Mason 已提交
3164
		btrfs_mark_buffer_dirty(path->nodes[i]);
3165 3166 3167 3168 3169
		if (tslot != 0)
			break;
	}
}

Z
Zheng Yan 已提交
3170 3171 3172 3173 3174 3175
/*
 * update item key.
 *
 * This function isn't completely safe. It's the caller's responsibility
 * that the new key won't break the order
 */
3176 3177
void btrfs_set_item_key_safe(struct btrfs_fs_info *fs_info,
			     struct btrfs_path *path,
3178
			     const struct btrfs_key *new_key)
Z
Zheng Yan 已提交
3179 3180 3181 3182 3183 3184 3185 3186 3187
{
	struct btrfs_disk_key disk_key;
	struct extent_buffer *eb;
	int slot;

	eb = path->nodes[0];
	slot = path->slots[0];
	if (slot > 0) {
		btrfs_item_key(eb, &disk_key, slot - 1);
3188
		BUG_ON(comp_keys(&disk_key, new_key) >= 0);
Z
Zheng Yan 已提交
3189 3190 3191
	}
	if (slot < btrfs_header_nritems(eb) - 1) {
		btrfs_item_key(eb, &disk_key, slot + 1);
3192
		BUG_ON(comp_keys(&disk_key, new_key) <= 0);
Z
Zheng Yan 已提交
3193 3194 3195 3196 3197 3198
	}

	btrfs_cpu_key_to_disk(&disk_key, new_key);
	btrfs_set_item_key(eb, &disk_key, slot);
	btrfs_mark_buffer_dirty(eb);
	if (slot == 0)
3199
		fixup_low_keys(path, &disk_key, 1);
Z
Zheng Yan 已提交
3200 3201
}

C
Chris Mason 已提交
3202 3203
/*
 * try to push data from one node into the next node left in the
3204
 * tree.
C
Chris Mason 已提交
3205 3206 3207
 *
 * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
 * error, and > 0 if there was no room in the left hand block.
C
Chris Mason 已提交
3208
 */
3209
static int push_node_left(struct btrfs_trans_handle *trans,
3210 3211
			  struct btrfs_fs_info *fs_info,
			  struct extent_buffer *dst,
3212
			  struct extent_buffer *src, int empty)
3213 3214
{
	int push_items = 0;
3215 3216
	int src_nritems;
	int dst_nritems;
C
Chris Mason 已提交
3217
	int ret = 0;
3218

3219 3220
	src_nritems = btrfs_header_nritems(src);
	dst_nritems = btrfs_header_nritems(dst);
3221
	push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems;
3222 3223
	WARN_ON(btrfs_header_generation(src) != trans->transid);
	WARN_ON(btrfs_header_generation(dst) != trans->transid);
3224

3225
	if (!empty && src_nritems <= 8)
3226 3227
		return 1;

C
Chris Mason 已提交
3228
	if (push_items <= 0)
3229 3230
		return 1;

3231
	if (empty) {
3232
		push_items = min(src_nritems, push_items);
3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244
		if (push_items < src_nritems) {
			/* leave at least 8 pointers in the node if
			 * we aren't going to empty it
			 */
			if (src_nritems - push_items < 8) {
				if (push_items <= 8)
					return 1;
				push_items -= 8;
			}
		}
	} else
		push_items = min(src_nritems - 8, push_items);
3245

3246
	ret = tree_mod_log_eb_copy(fs_info, dst, src, dst_nritems, 0,
3247 3248
				   push_items);
	if (ret) {
3249
		btrfs_abort_transaction(trans, ret);
3250 3251
		return ret;
	}
3252 3253 3254
	copy_extent_buffer(dst, src,
			   btrfs_node_key_ptr_offset(dst_nritems),
			   btrfs_node_key_ptr_offset(0),
C
Chris Mason 已提交
3255
			   push_items * sizeof(struct btrfs_key_ptr));
3256

3257
	if (push_items < src_nritems) {
3258
		/*
3259 3260
		 * Don't call tree_mod_log_insert_move here, key removal was
		 * already fully logged by tree_mod_log_eb_copy above.
3261
		 */
3262 3263 3264 3265 3266 3267 3268 3269 3270
		memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0),
				      btrfs_node_key_ptr_offset(push_items),
				      (src_nritems - push_items) *
				      sizeof(struct btrfs_key_ptr));
	}
	btrfs_set_header_nritems(src, src_nritems - push_items);
	btrfs_set_header_nritems(dst, dst_nritems + push_items);
	btrfs_mark_buffer_dirty(src);
	btrfs_mark_buffer_dirty(dst);
Z
Zheng Yan 已提交
3271

3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283
	return ret;
}

/*
 * try to push data from one node into the next node right in the
 * tree.
 *
 * returns 0 if some ptrs were pushed, < 0 if there was some horrible
 * error, and > 0 if there was no room in the right hand block.
 *
 * this will  only push up to 1/2 the contents of the left node over
 */
3284
static int balance_node_right(struct btrfs_trans_handle *trans,
3285
			      struct btrfs_fs_info *fs_info,
3286 3287
			      struct extent_buffer *dst,
			      struct extent_buffer *src)
3288 3289 3290 3291 3292 3293 3294
{
	int push_items = 0;
	int max_push;
	int src_nritems;
	int dst_nritems;
	int ret = 0;

3295 3296 3297
	WARN_ON(btrfs_header_generation(src) != trans->transid);
	WARN_ON(btrfs_header_generation(dst) != trans->transid);

3298 3299
	src_nritems = btrfs_header_nritems(src);
	dst_nritems = btrfs_header_nritems(dst);
3300
	push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems;
C
Chris Mason 已提交
3301
	if (push_items <= 0)
3302
		return 1;
3303

C
Chris Mason 已提交
3304
	if (src_nritems < 4)
3305
		return 1;
3306 3307 3308

	max_push = src_nritems / 2 + 1;
	/* don't try to empty the node */
C
Chris Mason 已提交
3309
	if (max_push >= src_nritems)
3310
		return 1;
Y
Yan 已提交
3311

3312 3313 3314
	if (max_push < push_items)
		push_items = max_push;

3315 3316
	ret = tree_mod_log_insert_move(dst, push_items, 0, dst_nritems);
	BUG_ON(ret < 0);
3317 3318 3319 3320
	memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items),
				      btrfs_node_key_ptr_offset(0),
				      (dst_nritems) *
				      sizeof(struct btrfs_key_ptr));
C
Chris Mason 已提交
3321

3322
	ret = tree_mod_log_eb_copy(fs_info, dst, src, 0,
3323 3324
				   src_nritems - push_items, push_items);
	if (ret) {
3325
		btrfs_abort_transaction(trans, ret);
3326 3327
		return ret;
	}
3328 3329 3330
	copy_extent_buffer(dst, src,
			   btrfs_node_key_ptr_offset(0),
			   btrfs_node_key_ptr_offset(src_nritems - push_items),
C
Chris Mason 已提交
3331
			   push_items * sizeof(struct btrfs_key_ptr));
3332

3333 3334
	btrfs_set_header_nritems(src, src_nritems - push_items);
	btrfs_set_header_nritems(dst, dst_nritems + push_items);
3335

3336 3337
	btrfs_mark_buffer_dirty(src);
	btrfs_mark_buffer_dirty(dst);
Z
Zheng Yan 已提交
3338

C
Chris Mason 已提交
3339
	return ret;
3340 3341
}

C
Chris Mason 已提交
3342 3343 3344 3345
/*
 * helper function to insert a new root level in the tree.
 * A new node is allocated, and a single item is inserted to
 * point to the existing root
C
Chris Mason 已提交
3346 3347
 *
 * returns zero on success or < 0 on failure.
C
Chris Mason 已提交
3348
 */
C
Chris Mason 已提交
3349
static noinline int insert_new_root(struct btrfs_trans_handle *trans,
3350
			   struct btrfs_root *root,
3351
			   struct btrfs_path *path, int level)
C
Chris Mason 已提交
3352
{
3353
	struct btrfs_fs_info *fs_info = root->fs_info;
3354
	u64 lower_gen;
3355 3356
	struct extent_buffer *lower;
	struct extent_buffer *c;
3357
	struct extent_buffer *old;
3358
	struct btrfs_disk_key lower_key;
3359
	int ret;
C
Chris Mason 已提交
3360 3361 3362 3363

	BUG_ON(path->nodes[level]);
	BUG_ON(path->nodes[level-1] != root->node);

3364 3365 3366 3367 3368 3369
	lower = path->nodes[level-1];
	if (level == 1)
		btrfs_item_key(lower, &lower_key, 0);
	else
		btrfs_node_key(lower, &lower_key, 0);

3370 3371
	c = alloc_tree_block_no_bg_flush(trans, root, 0, &lower_key, level,
					 root->node->start, 0);
3372 3373
	if (IS_ERR(c))
		return PTR_ERR(c);
3374

3375
	root_add_used(root, fs_info->nodesize);
3376

3377 3378
	btrfs_set_header_nritems(c, 1);
	btrfs_set_node_key(c, &lower_key, 0);
3379
	btrfs_set_node_blockptr(c, 0, lower->start);
3380
	lower_gen = btrfs_header_generation(lower);
Z
Zheng Yan 已提交
3381
	WARN_ON(lower_gen != trans->transid);
3382 3383

	btrfs_set_node_ptr_generation(c, 0, lower_gen);
3384

3385
	btrfs_mark_buffer_dirty(c);
3386

3387
	old = root->node;
3388 3389
	ret = tree_mod_log_insert_root(root->node, c, 0);
	BUG_ON(ret < 0);
3390
	rcu_assign_pointer(root->node, c);
3391 3392 3393 3394

	/* the super has an extra ref to root->node */
	free_extent_buffer(old);

3395
	add_root_to_dirty_list(root);
3396 3397
	extent_buffer_get(c);
	path->nodes[level] = c;
3398
	path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
C
Chris Mason 已提交
3399 3400 3401 3402
	path->slots[level] = 0;
	return 0;
}

C
Chris Mason 已提交
3403 3404 3405
/*
 * worker function to insert a single pointer in a node.
 * the node should have enough room for the pointer already
C
Chris Mason 已提交
3406
 *
C
Chris Mason 已提交
3407 3408 3409
 * slot and level indicate where you want the key to go, and
 * blocknr is the block the key points to.
 */
3410
static void insert_ptr(struct btrfs_trans_handle *trans,
3411
		       struct btrfs_fs_info *fs_info, struct btrfs_path *path,
3412
		       struct btrfs_disk_key *key, u64 bytenr,
3413
		       int slot, int level)
C
Chris Mason 已提交
3414
{
3415
	struct extent_buffer *lower;
C
Chris Mason 已提交
3416
	int nritems;
3417
	int ret;
C
Chris Mason 已提交
3418 3419

	BUG_ON(!path->nodes[level]);
3420
	btrfs_assert_tree_locked(path->nodes[level]);
3421 3422
	lower = path->nodes[level];
	nritems = btrfs_header_nritems(lower);
S
Stoyan Gaydarov 已提交
3423
	BUG_ON(slot > nritems);
3424
	BUG_ON(nritems == BTRFS_NODEPTRS_PER_BLOCK(fs_info));
C
Chris Mason 已提交
3425
	if (slot != nritems) {
3426 3427
		if (level) {
			ret = tree_mod_log_insert_move(lower, slot + 1, slot,
3428
					nritems - slot);
3429 3430
			BUG_ON(ret < 0);
		}
3431 3432 3433
		memmove_extent_buffer(lower,
			      btrfs_node_key_ptr_offset(slot + 1),
			      btrfs_node_key_ptr_offset(slot),
C
Chris Mason 已提交
3434
			      (nritems - slot) * sizeof(struct btrfs_key_ptr));
C
Chris Mason 已提交
3435
	}
3436
	if (level) {
3437 3438
		ret = tree_mod_log_insert_key(lower, slot, MOD_LOG_KEY_ADD,
				GFP_NOFS);
3439 3440
		BUG_ON(ret < 0);
	}
3441
	btrfs_set_node_key(lower, key, slot);
3442
	btrfs_set_node_blockptr(lower, slot, bytenr);
3443 3444
	WARN_ON(trans->transid == 0);
	btrfs_set_node_ptr_generation(lower, slot, trans->transid);
3445 3446
	btrfs_set_header_nritems(lower, nritems + 1);
	btrfs_mark_buffer_dirty(lower);
C
Chris Mason 已提交
3447 3448
}

C
Chris Mason 已提交
3449 3450 3451 3452 3453 3454
/*
 * split the node at the specified level in path in two.
 * The path is corrected to point to the appropriate node after the split
 *
 * Before splitting this tries to make some room in the node by pushing
 * left and right, if either one works, it returns right away.
C
Chris Mason 已提交
3455 3456
 *
 * returns 0 on success and < 0 on failure
C
Chris Mason 已提交
3457
 */
3458 3459 3460
static noinline int split_node(struct btrfs_trans_handle *trans,
			       struct btrfs_root *root,
			       struct btrfs_path *path, int level)
3461
{
3462
	struct btrfs_fs_info *fs_info = root->fs_info;
3463 3464 3465
	struct extent_buffer *c;
	struct extent_buffer *split;
	struct btrfs_disk_key disk_key;
3466
	int mid;
C
Chris Mason 已提交
3467
	int ret;
3468
	u32 c_nritems;
3469

3470
	c = path->nodes[level];
3471
	WARN_ON(btrfs_header_generation(c) != trans->transid);
3472
	if (c == root->node) {
3473
		/*
3474 3475
		 * trying to split the root, lets make a new one
		 *
3476
		 * tree mod log: We don't log_removal old root in
3477 3478 3479 3480 3481
		 * insert_new_root, because that root buffer will be kept as a
		 * normal node. We are going to log removal of half of the
		 * elements below with tree_mod_log_eb_copy. We're holding a
		 * tree lock on the buffer, which is why we cannot race with
		 * other tree_mod_log users.
3482
		 */
3483
		ret = insert_new_root(trans, root, path, level + 1);
C
Chris Mason 已提交
3484 3485
		if (ret)
			return ret;
3486
	} else {
3487
		ret = push_nodes_for_insert(trans, root, path, level);
3488 3489
		c = path->nodes[level];
		if (!ret && btrfs_header_nritems(c) <
3490
		    BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3)
3491
			return 0;
3492 3493
		if (ret < 0)
			return ret;
3494
	}
3495

3496
	c_nritems = btrfs_header_nritems(c);
3497 3498
	mid = (c_nritems + 1) / 2;
	btrfs_node_key(c, &disk_key, mid);
3499

3500 3501
	split = alloc_tree_block_no_bg_flush(trans, root, 0, &disk_key, level,
					     c->start, 0);
3502 3503 3504
	if (IS_ERR(split))
		return PTR_ERR(split);

3505
	root_add_used(root, fs_info->nodesize);
3506
	ASSERT(btrfs_header_level(c) == level);
3507

3508
	ret = tree_mod_log_eb_copy(fs_info, split, c, 0, mid, c_nritems - mid);
3509
	if (ret) {
3510
		btrfs_abort_transaction(trans, ret);
3511 3512
		return ret;
	}
3513 3514 3515 3516 3517 3518
	copy_extent_buffer(split, c,
			   btrfs_node_key_ptr_offset(0),
			   btrfs_node_key_ptr_offset(mid),
			   (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
	btrfs_set_header_nritems(split, c_nritems - mid);
	btrfs_set_header_nritems(c, mid);
C
Chris Mason 已提交
3519 3520
	ret = 0;

3521 3522 3523
	btrfs_mark_buffer_dirty(c);
	btrfs_mark_buffer_dirty(split);

3524
	insert_ptr(trans, fs_info, path, &disk_key, split->start,
3525
		   path->slots[level + 1] + 1, level + 1);
C
Chris Mason 已提交
3526

C
Chris Mason 已提交
3527
	if (path->slots[level] >= mid) {
C
Chris Mason 已提交
3528
		path->slots[level] -= mid;
3529
		btrfs_tree_unlock(c);
3530 3531
		free_extent_buffer(c);
		path->nodes[level] = split;
C
Chris Mason 已提交
3532 3533
		path->slots[level + 1] += 1;
	} else {
3534
		btrfs_tree_unlock(split);
3535
		free_extent_buffer(split);
3536
	}
C
Chris Mason 已提交
3537
	return ret;
3538 3539
}

C
Chris Mason 已提交
3540 3541 3542 3543 3544
/*
 * how many bytes are required to store the items in a leaf.  start
 * and nr indicate which items in the leaf to check.  This totals up the
 * space used both by the item structs and the item data
 */
3545
static int leaf_space_used(struct extent_buffer *l, int start, int nr)
3546
{
J
Josef Bacik 已提交
3547 3548 3549
	struct btrfs_item *start_item;
	struct btrfs_item *end_item;
	struct btrfs_map_token token;
3550
	int data_len;
3551
	int nritems = btrfs_header_nritems(l);
3552
	int end = min(nritems, start + nr) - 1;
3553 3554 3555

	if (!nr)
		return 0;
J
Josef Bacik 已提交
3556
	btrfs_init_map_token(&token);
3557 3558
	start_item = btrfs_item_nr(start);
	end_item = btrfs_item_nr(end);
J
Josef Bacik 已提交
3559 3560 3561
	data_len = btrfs_token_item_offset(l, start_item, &token) +
		btrfs_token_item_size(l, start_item, &token);
	data_len = data_len - btrfs_token_item_offset(l, end_item, &token);
C
Chris Mason 已提交
3562
	data_len += sizeof(struct btrfs_item) * nr;
3563
	WARN_ON(data_len < 0);
3564 3565 3566
	return data_len;
}

3567 3568 3569 3570 3571
/*
 * The space between the end of the leaf items and
 * the start of the leaf data.  IOW, how much room
 * the leaf has left for both items and data
 */
3572
noinline int btrfs_leaf_free_space(struct btrfs_fs_info *fs_info,
3573
				   struct extent_buffer *leaf)
3574
{
3575 3576
	int nritems = btrfs_header_nritems(leaf);
	int ret;
3577 3578

	ret = BTRFS_LEAF_DATA_SIZE(fs_info) - leaf_space_used(leaf, 0, nritems);
3579
	if (ret < 0) {
3580 3581 3582 3583 3584
		btrfs_crit(fs_info,
			   "leaf free space ret %d, leaf data size %lu, used %d nritems %d",
			   ret,
			   (unsigned long) BTRFS_LEAF_DATA_SIZE(fs_info),
			   leaf_space_used(leaf, 0, nritems), nritems);
3585 3586
	}
	return ret;
3587 3588
}

3589 3590 3591 3592
/*
 * min slot controls the lowest index we're willing to push to the
 * right.  We'll push up to and including min_slot, but no lower
 */
3593
static noinline int __push_leaf_right(struct btrfs_fs_info *fs_info,
3594 3595 3596
				      struct btrfs_path *path,
				      int data_size, int empty,
				      struct extent_buffer *right,
3597 3598
				      int free_space, u32 left_nritems,
				      u32 min_slot)
C
Chris Mason 已提交
3599
{
3600
	struct extent_buffer *left = path->nodes[0];
3601
	struct extent_buffer *upper = path->nodes[1];
3602
	struct btrfs_map_token token;
3603
	struct btrfs_disk_key disk_key;
C
Chris Mason 已提交
3604
	int slot;
3605
	u32 i;
C
Chris Mason 已提交
3606 3607
	int push_space = 0;
	int push_items = 0;
C
Chris Mason 已提交
3608
	struct btrfs_item *item;
3609
	u32 nr;
3610
	u32 right_nritems;
3611
	u32 data_end;
3612
	u32 this_item_size;
C
Chris Mason 已提交
3613

3614 3615
	btrfs_init_map_token(&token);

3616 3617 3618
	if (empty)
		nr = 0;
	else
3619
		nr = max_t(u32, 1, min_slot);
3620

Z
Zheng Yan 已提交
3621
	if (path->slots[0] >= left_nritems)
3622
		push_space += data_size;
Z
Zheng Yan 已提交
3623

3624
	slot = path->slots[1];
3625 3626
	i = left_nritems - 1;
	while (i >= nr) {
3627
		item = btrfs_item_nr(i);
3628

Z
Zheng Yan 已提交
3629 3630 3631 3632
		if (!empty && push_items > 0) {
			if (path->slots[0] > i)
				break;
			if (path->slots[0] == i) {
3633
				int space = btrfs_leaf_free_space(fs_info, left);
Z
Zheng Yan 已提交
3634 3635 3636 3637 3638
				if (space + push_space * 2 > free_space)
					break;
			}
		}

C
Chris Mason 已提交
3639
		if (path->slots[0] == i)
3640
			push_space += data_size;
3641 3642 3643

		this_item_size = btrfs_item_size(left, item);
		if (this_item_size + sizeof(*item) + push_space > free_space)
C
Chris Mason 已提交
3644
			break;
Z
Zheng Yan 已提交
3645

C
Chris Mason 已提交
3646
		push_items++;
3647
		push_space += this_item_size + sizeof(*item);
3648 3649 3650
		if (i == 0)
			break;
		i--;
3651
	}
3652

3653 3654
	if (push_items == 0)
		goto out_unlock;
3655

J
Julia Lawall 已提交
3656
	WARN_ON(!empty && push_items == left_nritems);
3657

C
Chris Mason 已提交
3658
	/* push left to right */
3659
	right_nritems = btrfs_header_nritems(right);
3660

3661
	push_space = btrfs_item_end_nr(left, left_nritems - push_items);
3662
	push_space -= leaf_data_end(fs_info, left);
3663

C
Chris Mason 已提交
3664
	/* make room in the right data area */
3665
	data_end = leaf_data_end(fs_info, right);
3666
	memmove_extent_buffer(right,
3667 3668
			      BTRFS_LEAF_DATA_OFFSET + data_end - push_space,
			      BTRFS_LEAF_DATA_OFFSET + data_end,
3669
			      BTRFS_LEAF_DATA_SIZE(fs_info) - data_end);
3670

C
Chris Mason 已提交
3671
	/* copy from the left data area */
3672
	copy_extent_buffer(right, left, BTRFS_LEAF_DATA_OFFSET +
3673
		     BTRFS_LEAF_DATA_SIZE(fs_info) - push_space,
3674
		     BTRFS_LEAF_DATA_OFFSET + leaf_data_end(fs_info, left),
C
Chris Mason 已提交
3675
		     push_space);
3676 3677 3678 3679 3680

	memmove_extent_buffer(right, btrfs_item_nr_offset(push_items),
			      btrfs_item_nr_offset(0),
			      right_nritems * sizeof(struct btrfs_item));

C
Chris Mason 已提交
3681
	/* copy the items from left to right */
3682 3683 3684
	copy_extent_buffer(right, left, btrfs_item_nr_offset(0),
		   btrfs_item_nr_offset(left_nritems - push_items),
		   push_items * sizeof(struct btrfs_item));
C
Chris Mason 已提交
3685 3686

	/* update the item pointers */
3687
	right_nritems += push_items;
3688
	btrfs_set_header_nritems(right, right_nritems);
3689
	push_space = BTRFS_LEAF_DATA_SIZE(fs_info);
3690
	for (i = 0; i < right_nritems; i++) {
3691
		item = btrfs_item_nr(i);
3692 3693
		push_space -= btrfs_token_item_size(right, item, &token);
		btrfs_set_token_item_offset(right, item, push_space, &token);
3694 3695
	}

3696
	left_nritems -= push_items;
3697
	btrfs_set_header_nritems(left, left_nritems);
C
Chris Mason 已提交
3698

3699 3700
	if (left_nritems)
		btrfs_mark_buffer_dirty(left);
3701
	else
3702
		clean_tree_block(fs_info, left);
3703

3704
	btrfs_mark_buffer_dirty(right);
3705

3706 3707
	btrfs_item_key(right, &disk_key, 0);
	btrfs_set_node_key(upper, &disk_key, slot + 1);
C
Chris Mason 已提交
3708
	btrfs_mark_buffer_dirty(upper);
C
Chris Mason 已提交
3709

C
Chris Mason 已提交
3710
	/* then fixup the leaf pointer in the path */
3711 3712
	if (path->slots[0] >= left_nritems) {
		path->slots[0] -= left_nritems;
3713
		if (btrfs_header_nritems(path->nodes[0]) == 0)
3714
			clean_tree_block(fs_info, path->nodes[0]);
3715
		btrfs_tree_unlock(path->nodes[0]);
3716 3717
		free_extent_buffer(path->nodes[0]);
		path->nodes[0] = right;
C
Chris Mason 已提交
3718 3719
		path->slots[1] += 1;
	} else {
3720
		btrfs_tree_unlock(right);
3721
		free_extent_buffer(right);
C
Chris Mason 已提交
3722 3723
	}
	return 0;
3724 3725 3726 3727 3728

out_unlock:
	btrfs_tree_unlock(right);
	free_extent_buffer(right);
	return 1;
C
Chris Mason 已提交
3729
}
3730

3731 3732 3733 3734 3735 3736
/*
 * push some data in the path leaf to the right, trying to free up at
 * least data_size bytes.  returns zero if the push worked, nonzero otherwise
 *
 * returns 1 if the push failed because the other node didn't have enough
 * room, 0 if everything worked out and < 0 if there were major errors.
3737 3738 3739
 *
 * this will push starting from min_slot to the end of the leaf.  It won't
 * push any slot lower than min_slot
3740 3741
 */
static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
3742 3743 3744
			   *root, struct btrfs_path *path,
			   int min_data_size, int data_size,
			   int empty, u32 min_slot)
3745
{
3746
	struct btrfs_fs_info *fs_info = root->fs_info;
3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764
	struct extent_buffer *left = path->nodes[0];
	struct extent_buffer *right;
	struct extent_buffer *upper;
	int slot;
	int free_space;
	u32 left_nritems;
	int ret;

	if (!path->nodes[1])
		return 1;

	slot = path->slots[1];
	upper = path->nodes[1];
	if (slot >= btrfs_header_nritems(upper) - 1)
		return 1;

	btrfs_assert_tree_locked(path->nodes[1]);

3765
	right = read_node_slot(fs_info, upper, slot + 1);
3766 3767 3768 3769 3770
	/*
	 * slot + 1 is not valid or we fail to read the right node,
	 * no big deal, just return.
	 */
	if (IS_ERR(right))
T
Tsutomu Itoh 已提交
3771 3772
		return 1;

3773 3774 3775
	btrfs_tree_lock(right);
	btrfs_set_lock_blocking(right);

3776
	free_space = btrfs_leaf_free_space(fs_info, right);
3777 3778 3779 3780 3781 3782 3783 3784 3785
	if (free_space < data_size)
		goto out_unlock;

	/* cow and double check */
	ret = btrfs_cow_block(trans, root, right, upper,
			      slot + 1, &right);
	if (ret)
		goto out_unlock;

3786
	free_space = btrfs_leaf_free_space(fs_info, right);
3787 3788 3789 3790 3791 3792 3793
	if (free_space < data_size)
		goto out_unlock;

	left_nritems = btrfs_header_nritems(left);
	if (left_nritems == 0)
		goto out_unlock;

3794 3795 3796 3797
	if (path->slots[0] == left_nritems && !empty) {
		/* Key greater than all keys in the leaf, right neighbor has
		 * enough room for it and we're not emptying our leaf to delete
		 * it, therefore use right neighbor to insert the new item and
3798
		 * no need to touch/dirty our left leaf. */
3799 3800 3801 3802 3803 3804 3805 3806
		btrfs_tree_unlock(left);
		free_extent_buffer(left);
		path->nodes[0] = right;
		path->slots[0] = 0;
		path->slots[1]++;
		return 0;
	}

3807
	return __push_leaf_right(fs_info, path, min_data_size, empty,
3808
				right, free_space, left_nritems, min_slot);
3809 3810 3811 3812 3813 3814
out_unlock:
	btrfs_tree_unlock(right);
	free_extent_buffer(right);
	return 1;
}

C
Chris Mason 已提交
3815 3816 3817
/*
 * push some data in the path leaf to the left, trying to free up at
 * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3818 3819 3820 3821
 *
 * max_slot can put a limit on how far into the leaf we'll push items.  The
 * item at 'max_slot' won't be touched.  Use (u32)-1 to make us do all the
 * items
C
Chris Mason 已提交
3822
 */
3823
static noinline int __push_leaf_left(struct btrfs_fs_info *fs_info,
3824 3825
				     struct btrfs_path *path, int data_size,
				     int empty, struct extent_buffer *left,
3826 3827
				     int free_space, u32 right_nritems,
				     u32 max_slot)
3828
{
3829 3830
	struct btrfs_disk_key disk_key;
	struct extent_buffer *right = path->nodes[0];
3831 3832 3833
	int i;
	int push_space = 0;
	int push_items = 0;
C
Chris Mason 已提交
3834
	struct btrfs_item *item;
3835
	u32 old_left_nritems;
3836
	u32 nr;
C
Chris Mason 已提交
3837
	int ret = 0;
3838 3839
	u32 this_item_size;
	u32 old_left_item_size;
3840 3841 3842
	struct btrfs_map_token token;

	btrfs_init_map_token(&token);
3843

3844
	if (empty)
3845
		nr = min(right_nritems, max_slot);
3846
	else
3847
		nr = min(right_nritems - 1, max_slot);
3848 3849

	for (i = 0; i < nr; i++) {
3850
		item = btrfs_item_nr(i);
3851

Z
Zheng Yan 已提交
3852 3853 3854 3855
		if (!empty && push_items > 0) {
			if (path->slots[0] < i)
				break;
			if (path->slots[0] == i) {
3856
				int space = btrfs_leaf_free_space(fs_info, right);
Z
Zheng Yan 已提交
3857 3858 3859 3860 3861
				if (space + push_space * 2 > free_space)
					break;
			}
		}

3862
		if (path->slots[0] == i)
3863
			push_space += data_size;
3864 3865 3866

		this_item_size = btrfs_item_size(right, item);
		if (this_item_size + sizeof(*item) + push_space > free_space)
3867
			break;
3868

3869
		push_items++;
3870 3871 3872
		push_space += this_item_size + sizeof(*item);
	}

3873
	if (push_items == 0) {
3874 3875
		ret = 1;
		goto out;
3876
	}
3877
	WARN_ON(!empty && push_items == btrfs_header_nritems(right));
3878

3879
	/* push data from right to left */
3880 3881 3882 3883 3884
	copy_extent_buffer(left, right,
			   btrfs_item_nr_offset(btrfs_header_nritems(left)),
			   btrfs_item_nr_offset(0),
			   push_items * sizeof(struct btrfs_item));

3885
	push_space = BTRFS_LEAF_DATA_SIZE(fs_info) -
C
Chris Mason 已提交
3886
		     btrfs_item_offset_nr(right, push_items - 1);
3887

3888
	copy_extent_buffer(left, right, BTRFS_LEAF_DATA_OFFSET +
3889
		     leaf_data_end(fs_info, left) - push_space,
3890
		     BTRFS_LEAF_DATA_OFFSET +
3891
		     btrfs_item_offset_nr(right, push_items - 1),
C
Chris Mason 已提交
3892
		     push_space);
3893
	old_left_nritems = btrfs_header_nritems(left);
3894
	BUG_ON(old_left_nritems <= 0);
3895

3896
	old_left_item_size = btrfs_item_offset_nr(left, old_left_nritems - 1);
C
Chris Mason 已提交
3897
	for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
3898
		u32 ioff;
3899

3900
		item = btrfs_item_nr(i);
3901

3902 3903
		ioff = btrfs_token_item_offset(left, item, &token);
		btrfs_set_token_item_offset(left, item,
3904
		      ioff - (BTRFS_LEAF_DATA_SIZE(fs_info) - old_left_item_size),
3905
		      &token);
3906
	}
3907
	btrfs_set_header_nritems(left, old_left_nritems + push_items);
3908 3909

	/* fixup right node */
J
Julia Lawall 已提交
3910 3911
	if (push_items > right_nritems)
		WARN(1, KERN_CRIT "push items %d nr %u\n", push_items,
C
Chris Mason 已提交
3912
		       right_nritems);
3913 3914 3915

	if (push_items < right_nritems) {
		push_space = btrfs_item_offset_nr(right, push_items - 1) -
3916
						  leaf_data_end(fs_info, right);
3917
		memmove_extent_buffer(right, BTRFS_LEAF_DATA_OFFSET +
3918
				      BTRFS_LEAF_DATA_SIZE(fs_info) - push_space,
3919
				      BTRFS_LEAF_DATA_OFFSET +
3920
				      leaf_data_end(fs_info, right), push_space);
3921 3922

		memmove_extent_buffer(right, btrfs_item_nr_offset(0),
3923 3924 3925
			      btrfs_item_nr_offset(push_items),
			     (btrfs_header_nritems(right) - push_items) *
			     sizeof(struct btrfs_item));
3926
	}
3927 3928
	right_nritems -= push_items;
	btrfs_set_header_nritems(right, right_nritems);
3929
	push_space = BTRFS_LEAF_DATA_SIZE(fs_info);
3930
	for (i = 0; i < right_nritems; i++) {
3931
		item = btrfs_item_nr(i);
3932

3933 3934 3935
		push_space = push_space - btrfs_token_item_size(right,
								item, &token);
		btrfs_set_token_item_offset(right, item, push_space, &token);
3936
	}
3937

3938
	btrfs_mark_buffer_dirty(left);
3939 3940
	if (right_nritems)
		btrfs_mark_buffer_dirty(right);
3941
	else
3942
		clean_tree_block(fs_info, right);
3943

3944
	btrfs_item_key(right, &disk_key, 0);
3945
	fixup_low_keys(path, &disk_key, 1);
3946 3947 3948 3949

	/* then fixup the leaf pointer in the path */
	if (path->slots[0] < push_items) {
		path->slots[0] += old_left_nritems;
3950
		btrfs_tree_unlock(path->nodes[0]);
3951 3952
		free_extent_buffer(path->nodes[0]);
		path->nodes[0] = left;
3953 3954
		path->slots[1] -= 1;
	} else {
3955
		btrfs_tree_unlock(left);
3956
		free_extent_buffer(left);
3957 3958
		path->slots[0] -= push_items;
	}
3959
	BUG_ON(path->slots[0] < 0);
C
Chris Mason 已提交
3960
	return ret;
3961 3962 3963 3964
out:
	btrfs_tree_unlock(left);
	free_extent_buffer(left);
	return ret;
3965 3966
}

3967 3968 3969
/*
 * push some data in the path leaf to the left, trying to free up at
 * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3970 3971 3972 3973
 *
 * max_slot can put a limit on how far into the leaf we'll push items.  The
 * item at 'max_slot' won't be touched.  Use (u32)-1 to make us push all the
 * items
3974 3975
 */
static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
3976 3977
			  *root, struct btrfs_path *path, int min_data_size,
			  int data_size, int empty, u32 max_slot)
3978
{
3979
	struct btrfs_fs_info *fs_info = root->fs_info;
3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998
	struct extent_buffer *right = path->nodes[0];
	struct extent_buffer *left;
	int slot;
	int free_space;
	u32 right_nritems;
	int ret = 0;

	slot = path->slots[1];
	if (slot == 0)
		return 1;
	if (!path->nodes[1])
		return 1;

	right_nritems = btrfs_header_nritems(right);
	if (right_nritems == 0)
		return 1;

	btrfs_assert_tree_locked(path->nodes[1]);

3999
	left = read_node_slot(fs_info, path->nodes[1], slot - 1);
4000 4001 4002 4003 4004
	/*
	 * slot - 1 is not valid or we fail to read the left node,
	 * no big deal, just return.
	 */
	if (IS_ERR(left))
T
Tsutomu Itoh 已提交
4005 4006
		return 1;

4007 4008 4009
	btrfs_tree_lock(left);
	btrfs_set_lock_blocking(left);

4010
	free_space = btrfs_leaf_free_space(fs_info, left);
4011 4012 4013 4014 4015 4016 4017 4018 4019 4020
	if (free_space < data_size) {
		ret = 1;
		goto out;
	}

	/* cow and double check */
	ret = btrfs_cow_block(trans, root, left,
			      path->nodes[1], slot - 1, &left);
	if (ret) {
		/* we hit -ENOSPC, but it isn't fatal here */
4021 4022
		if (ret == -ENOSPC)
			ret = 1;
4023 4024 4025
		goto out;
	}

4026
	free_space = btrfs_leaf_free_space(fs_info, left);
4027 4028 4029 4030 4031
	if (free_space < data_size) {
		ret = 1;
		goto out;
	}

4032
	return __push_leaf_left(fs_info, path, min_data_size,
4033 4034
			       empty, left, free_space, right_nritems,
			       max_slot);
4035 4036 4037 4038 4039 4040 4041 4042 4043 4044
out:
	btrfs_tree_unlock(left);
	free_extent_buffer(left);
	return ret;
}

/*
 * split the path's leaf in two, making sure there is at least data_size
 * available for the resulting leaf level of the path.
 */
4045
static noinline void copy_for_split(struct btrfs_trans_handle *trans,
4046
				    struct btrfs_fs_info *fs_info,
4047 4048 4049 4050
				    struct btrfs_path *path,
				    struct extent_buffer *l,
				    struct extent_buffer *right,
				    int slot, int mid, int nritems)
4051 4052 4053 4054 4055
{
	int data_copy_size;
	int rt_data_off;
	int i;
	struct btrfs_disk_key disk_key;
4056 4057 4058
	struct btrfs_map_token token;

	btrfs_init_map_token(&token);
4059 4060 4061

	nritems = nritems - mid;
	btrfs_set_header_nritems(right, nritems);
4062
	data_copy_size = btrfs_item_end_nr(l, mid) - leaf_data_end(fs_info, l);
4063 4064 4065 4066 4067 4068

	copy_extent_buffer(right, l, btrfs_item_nr_offset(0),
			   btrfs_item_nr_offset(mid),
			   nritems * sizeof(struct btrfs_item));

	copy_extent_buffer(right, l,
4069 4070
		     BTRFS_LEAF_DATA_OFFSET + BTRFS_LEAF_DATA_SIZE(fs_info) -
		     data_copy_size, BTRFS_LEAF_DATA_OFFSET +
4071
		     leaf_data_end(fs_info, l), data_copy_size);
4072

4073
	rt_data_off = BTRFS_LEAF_DATA_SIZE(fs_info) - btrfs_item_end_nr(l, mid);
4074 4075

	for (i = 0; i < nritems; i++) {
4076
		struct btrfs_item *item = btrfs_item_nr(i);
4077 4078
		u32 ioff;

4079 4080 4081
		ioff = btrfs_token_item_offset(right, item, &token);
		btrfs_set_token_item_offset(right, item,
					    ioff + rt_data_off, &token);
4082 4083 4084 4085
	}

	btrfs_set_header_nritems(l, mid);
	btrfs_item_key(right, &disk_key, 0);
4086
	insert_ptr(trans, fs_info, path, &disk_key, right->start,
4087
		   path->slots[1] + 1, 1);
4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106

	btrfs_mark_buffer_dirty(right);
	btrfs_mark_buffer_dirty(l);
	BUG_ON(path->slots[0] != slot);

	if (mid <= slot) {
		btrfs_tree_unlock(path->nodes[0]);
		free_extent_buffer(path->nodes[0]);
		path->nodes[0] = right;
		path->slots[0] -= mid;
		path->slots[1] += 1;
	} else {
		btrfs_tree_unlock(right);
		free_extent_buffer(right);
	}

	BUG_ON(path->slots[0] < 0);
}

4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121
/*
 * double splits happen when we need to insert a big item in the middle
 * of a leaf.  A double split can leave us with 3 mostly empty leaves:
 * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ]
 *          A                 B                 C
 *
 * We avoid this by trying to push the items on either side of our target
 * into the adjacent leaves.  If all goes well we can avoid the double split
 * completely.
 */
static noinline int push_for_double_split(struct btrfs_trans_handle *trans,
					  struct btrfs_root *root,
					  struct btrfs_path *path,
					  int data_size)
{
4122
	struct btrfs_fs_info *fs_info = root->fs_info;
4123 4124 4125 4126
	int ret;
	int progress = 0;
	int slot;
	u32 nritems;
4127
	int space_needed = data_size;
4128 4129

	slot = path->slots[0];
4130
	if (slot < btrfs_header_nritems(path->nodes[0]))
4131
		space_needed -= btrfs_leaf_free_space(fs_info, path->nodes[0]);
4132 4133 4134 4135 4136

	/*
	 * try to push all the items after our slot into the
	 * right leaf
	 */
4137
	ret = push_leaf_right(trans, root, path, 1, space_needed, 0, slot);
4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151
	if (ret < 0)
		return ret;

	if (ret == 0)
		progress++;

	nritems = btrfs_header_nritems(path->nodes[0]);
	/*
	 * our goal is to get our slot at the start or end of a leaf.  If
	 * we've done so we're done
	 */
	if (path->slots[0] == 0 || path->slots[0] == nritems)
		return 0;

4152
	if (btrfs_leaf_free_space(fs_info, path->nodes[0]) >= data_size)
4153 4154 4155 4156
		return 0;

	/* try to push all the items before our slot into the next leaf */
	slot = path->slots[0];
4157 4158 4159
	space_needed = data_size;
	if (slot > 0)
		space_needed -= btrfs_leaf_free_space(fs_info, path->nodes[0]);
4160
	ret = push_leaf_left(trans, root, path, 1, space_needed, 0, slot);
4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171
	if (ret < 0)
		return ret;

	if (ret == 0)
		progress++;

	if (progress)
		return 0;
	return 1;
}

C
Chris Mason 已提交
4172 4173 4174
/*
 * split the path's leaf in two, making sure there is at least data_size
 * available for the resulting leaf level of the path.
C
Chris Mason 已提交
4175 4176
 *
 * returns 0 if all went well and < 0 on failure.
C
Chris Mason 已提交
4177
 */
4178 4179
static noinline int split_leaf(struct btrfs_trans_handle *trans,
			       struct btrfs_root *root,
4180
			       const struct btrfs_key *ins_key,
4181 4182
			       struct btrfs_path *path, int data_size,
			       int extend)
4183
{
4184
	struct btrfs_disk_key disk_key;
4185
	struct extent_buffer *l;
4186
	u32 nritems;
4187 4188
	int mid;
	int slot;
4189
	struct extent_buffer *right;
4190
	struct btrfs_fs_info *fs_info = root->fs_info;
4191
	int ret = 0;
C
Chris Mason 已提交
4192
	int wret;
4193
	int split;
4194
	int num_doubles = 0;
4195
	int tried_avoid_double = 0;
C
Chris Mason 已提交
4196

4197 4198 4199
	l = path->nodes[0];
	slot = path->slots[0];
	if (extend && data_size + btrfs_item_size_nr(l, slot) +
4200
	    sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(fs_info))
4201 4202
		return -EOVERFLOW;

C
Chris Mason 已提交
4203
	/* first try to make some room by pushing left and right */
4204
	if (data_size && path->nodes[1]) {
4205 4206 4207
		int space_needed = data_size;

		if (slot < btrfs_header_nritems(l))
4208
			space_needed -= btrfs_leaf_free_space(fs_info, l);
4209 4210 4211

		wret = push_leaf_right(trans, root, path, space_needed,
				       space_needed, 0, 0);
C
Chris Mason 已提交
4212
		if (wret < 0)
C
Chris Mason 已提交
4213
			return wret;
4214
		if (wret) {
4215 4216 4217 4218
			space_needed = data_size;
			if (slot > 0)
				space_needed -= btrfs_leaf_free_space(fs_info,
								      l);
4219 4220
			wret = push_leaf_left(trans, root, path, space_needed,
					      space_needed, 0, (u32)-1);
4221 4222 4223 4224
			if (wret < 0)
				return wret;
		}
		l = path->nodes[0];
C
Chris Mason 已提交
4225

4226
		/* did the pushes work? */
4227
		if (btrfs_leaf_free_space(fs_info, l) >= data_size)
4228
			return 0;
4229
	}
C
Chris Mason 已提交
4230

C
Chris Mason 已提交
4231
	if (!path->nodes[1]) {
4232
		ret = insert_new_root(trans, root, path, 1);
C
Chris Mason 已提交
4233 4234 4235
		if (ret)
			return ret;
	}
4236
again:
4237
	split = 1;
4238
	l = path->nodes[0];
4239
	slot = path->slots[0];
4240
	nritems = btrfs_header_nritems(l);
C
Chris Mason 已提交
4241
	mid = (nritems + 1) / 2;
4242

4243 4244 4245
	if (mid <= slot) {
		if (nritems == 1 ||
		    leaf_space_used(l, mid, nritems - mid) + data_size >
4246
			BTRFS_LEAF_DATA_SIZE(fs_info)) {
4247 4248 4249 4250 4251 4252
			if (slot >= nritems) {
				split = 0;
			} else {
				mid = slot;
				if (mid != nritems &&
				    leaf_space_used(l, mid, nritems - mid) +
4253
				    data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) {
4254 4255
					if (data_size && !tried_avoid_double)
						goto push_for_double;
4256 4257 4258 4259 4260 4261
					split = 2;
				}
			}
		}
	} else {
		if (leaf_space_used(l, 0, mid) + data_size >
4262
			BTRFS_LEAF_DATA_SIZE(fs_info)) {
4263 4264 4265 4266 4267 4268 4269 4270
			if (!extend && data_size && slot == 0) {
				split = 0;
			} else if ((extend || !data_size) && slot == 0) {
				mid = 1;
			} else {
				mid = slot;
				if (mid != nritems &&
				    leaf_space_used(l, mid, nritems - mid) +
4271
				    data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) {
4272 4273
					if (data_size && !tried_avoid_double)
						goto push_for_double;
4274
					split = 2;
4275 4276 4277 4278 4279 4280 4281 4282 4283 4284
				}
			}
		}
	}

	if (split == 0)
		btrfs_cpu_key_to_disk(&disk_key, ins_key);
	else
		btrfs_item_key(l, &disk_key, mid);

4285 4286
	right = alloc_tree_block_no_bg_flush(trans, root, 0, &disk_key, 0,
					     l->start, 0);
4287
	if (IS_ERR(right))
4288
		return PTR_ERR(right);
4289

4290
	root_add_used(root, fs_info->nodesize);
4291

4292 4293 4294
	if (split == 0) {
		if (mid <= slot) {
			btrfs_set_header_nritems(right, 0);
4295 4296
			insert_ptr(trans, fs_info, path, &disk_key,
				   right->start, path->slots[1] + 1, 1);
4297 4298 4299 4300 4301 4302 4303
			btrfs_tree_unlock(path->nodes[0]);
			free_extent_buffer(path->nodes[0]);
			path->nodes[0] = right;
			path->slots[0] = 0;
			path->slots[1] += 1;
		} else {
			btrfs_set_header_nritems(right, 0);
4304 4305
			insert_ptr(trans, fs_info, path, &disk_key,
				   right->start, path->slots[1], 1);
4306 4307 4308 4309
			btrfs_tree_unlock(path->nodes[0]);
			free_extent_buffer(path->nodes[0]);
			path->nodes[0] = right;
			path->slots[0] = 0;
4310
			if (path->slots[1] == 0)
4311
				fixup_low_keys(path, &disk_key, 1);
4312
		}
4313 4314 4315 4316 4317
		/*
		 * We create a new leaf 'right' for the required ins_len and
		 * we'll do btrfs_mark_buffer_dirty() on this leaf after copying
		 * the content of ins_len to 'right'.
		 */
4318
		return ret;
4319
	}
C
Chris Mason 已提交
4320

4321
	copy_for_split(trans, fs_info, path, l, right, slot, mid, nritems);
Z
Zheng Yan 已提交
4322

4323
	if (split == 2) {
4324 4325 4326
		BUG_ON(num_doubles != 0);
		num_doubles++;
		goto again;
4327
	}
4328

4329
	return 0;
4330 4331 4332 4333

push_for_double:
	push_for_double_split(trans, root, path, data_size);
	tried_avoid_double = 1;
4334
	if (btrfs_leaf_free_space(fs_info, path->nodes[0]) >= data_size)
4335 4336
		return 0;
	goto again;
4337 4338
}

Y
Yan, Zheng 已提交
4339 4340 4341
static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans,
					 struct btrfs_root *root,
					 struct btrfs_path *path, int ins_len)
4342
{
4343
	struct btrfs_fs_info *fs_info = root->fs_info;
Y
Yan, Zheng 已提交
4344
	struct btrfs_key key;
4345
	struct extent_buffer *leaf;
Y
Yan, Zheng 已提交
4346 4347 4348 4349
	struct btrfs_file_extent_item *fi;
	u64 extent_len = 0;
	u32 item_size;
	int ret;
4350 4351

	leaf = path->nodes[0];
Y
Yan, Zheng 已提交
4352 4353 4354 4355 4356
	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);

	BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY &&
	       key.type != BTRFS_EXTENT_CSUM_KEY);

4357
	if (btrfs_leaf_free_space(fs_info, leaf) >= ins_len)
Y
Yan, Zheng 已提交
4358
		return 0;
4359 4360

	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
Y
Yan, Zheng 已提交
4361 4362 4363 4364 4365
	if (key.type == BTRFS_EXTENT_DATA_KEY) {
		fi = btrfs_item_ptr(leaf, path->slots[0],
				    struct btrfs_file_extent_item);
		extent_len = btrfs_file_extent_num_bytes(leaf, fi);
	}
4366
	btrfs_release_path(path);
4367 4368

	path->keep_locks = 1;
Y
Yan, Zheng 已提交
4369 4370
	path->search_for_split = 1;
	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
4371
	path->search_for_split = 0;
4372 4373
	if (ret > 0)
		ret = -EAGAIN;
Y
Yan, Zheng 已提交
4374 4375
	if (ret < 0)
		goto err;
4376

Y
Yan, Zheng 已提交
4377 4378
	ret = -EAGAIN;
	leaf = path->nodes[0];
4379 4380
	/* if our item isn't there, return now */
	if (item_size != btrfs_item_size_nr(leaf, path->slots[0]))
Y
Yan, Zheng 已提交
4381 4382
		goto err;

4383
	/* the leaf has  changed, it now has room.  return now */
4384
	if (btrfs_leaf_free_space(fs_info, path->nodes[0]) >= ins_len)
4385 4386
		goto err;

Y
Yan, Zheng 已提交
4387 4388 4389 4390 4391
	if (key.type == BTRFS_EXTENT_DATA_KEY) {
		fi = btrfs_item_ptr(leaf, path->slots[0],
				    struct btrfs_file_extent_item);
		if (extent_len != btrfs_file_extent_num_bytes(leaf, fi))
			goto err;
4392 4393
	}

4394
	btrfs_set_path_blocking(path);
Y
Yan, Zheng 已提交
4395
	ret = split_leaf(trans, root, &key, path, ins_len, 1);
4396 4397
	if (ret)
		goto err;
4398

Y
Yan, Zheng 已提交
4399
	path->keep_locks = 0;
4400
	btrfs_unlock_up_safe(path, 1);
Y
Yan, Zheng 已提交
4401 4402 4403 4404 4405 4406
	return 0;
err:
	path->keep_locks = 0;
	return ret;
}

4407
static noinline int split_item(struct btrfs_fs_info *fs_info,
Y
Yan, Zheng 已提交
4408
			       struct btrfs_path *path,
4409
			       const struct btrfs_key *new_key,
Y
Yan, Zheng 已提交
4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421
			       unsigned long split_offset)
{
	struct extent_buffer *leaf;
	struct btrfs_item *item;
	struct btrfs_item *new_item;
	int slot;
	char *buf;
	u32 nritems;
	u32 item_size;
	u32 orig_offset;
	struct btrfs_disk_key disk_key;

4422
	leaf = path->nodes[0];
4423
	BUG_ON(btrfs_leaf_free_space(fs_info, leaf) < sizeof(struct btrfs_item));
4424

4425 4426
	btrfs_set_path_blocking(path);

4427
	item = btrfs_item_nr(path->slots[0]);
4428 4429 4430 4431
	orig_offset = btrfs_item_offset(leaf, item);
	item_size = btrfs_item_size(leaf, item);

	buf = kmalloc(item_size, GFP_NOFS);
Y
Yan, Zheng 已提交
4432 4433 4434
	if (!buf)
		return -ENOMEM;

4435 4436 4437
	read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf,
			    path->slots[0]), item_size);

Y
Yan, Zheng 已提交
4438
	slot = path->slots[0] + 1;
4439 4440 4441 4442
	nritems = btrfs_header_nritems(leaf);
	if (slot != nritems) {
		/* shift the items */
		memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1),
Y
Yan, Zheng 已提交
4443 4444
				btrfs_item_nr_offset(slot),
				(nritems - slot) * sizeof(struct btrfs_item));
4445 4446 4447 4448 4449
	}

	btrfs_cpu_key_to_disk(&disk_key, new_key);
	btrfs_set_item_key(leaf, &disk_key, slot);

4450
	new_item = btrfs_item_nr(slot);
4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471

	btrfs_set_item_offset(leaf, new_item, orig_offset);
	btrfs_set_item_size(leaf, new_item, item_size - split_offset);

	btrfs_set_item_offset(leaf, item,
			      orig_offset + item_size - split_offset);
	btrfs_set_item_size(leaf, item, split_offset);

	btrfs_set_header_nritems(leaf, nritems + 1);

	/* write the data for the start of the original item */
	write_extent_buffer(leaf, buf,
			    btrfs_item_ptr_offset(leaf, path->slots[0]),
			    split_offset);

	/* write the data for the new item */
	write_extent_buffer(leaf, buf + split_offset,
			    btrfs_item_ptr_offset(leaf, slot),
			    item_size - split_offset);
	btrfs_mark_buffer_dirty(leaf);

4472
	BUG_ON(btrfs_leaf_free_space(fs_info, leaf) < 0);
4473
	kfree(buf);
Y
Yan, Zheng 已提交
4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494
	return 0;
}

/*
 * This function splits a single item into two items,
 * giving 'new_key' to the new item and splitting the
 * old one at split_offset (from the start of the item).
 *
 * The path may be released by this operation.  After
 * the split, the path is pointing to the old item.  The
 * new item is going to be in the same node as the old one.
 *
 * Note, the item being split must be smaller enough to live alone on
 * a tree block with room for one extra struct btrfs_item
 *
 * This allows us to split the item in place, keeping a lock on the
 * leaf the entire time.
 */
int btrfs_split_item(struct btrfs_trans_handle *trans,
		     struct btrfs_root *root,
		     struct btrfs_path *path,
4495
		     const struct btrfs_key *new_key,
Y
Yan, Zheng 已提交
4496 4497 4498 4499 4500 4501 4502 4503
		     unsigned long split_offset)
{
	int ret;
	ret = setup_leaf_for_split(trans, root, path,
				   sizeof(struct btrfs_item));
	if (ret)
		return ret;

4504
	ret = split_item(root->fs_info, path, new_key, split_offset);
4505 4506 4507
	return ret;
}

Y
Yan, Zheng 已提交
4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518
/*
 * This function duplicate a item, giving 'new_key' to the new item.
 * It guarantees both items live in the same tree leaf and the new item
 * is contiguous with the original item.
 *
 * This allows us to split file extent in place, keeping a lock on the
 * leaf the entire time.
 */
int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
			 struct btrfs_root *root,
			 struct btrfs_path *path,
4519
			 const struct btrfs_key *new_key)
Y
Yan, Zheng 已提交
4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532
{
	struct extent_buffer *leaf;
	int ret;
	u32 item_size;

	leaf = path->nodes[0];
	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
	ret = setup_leaf_for_split(trans, root, path,
				   item_size + sizeof(struct btrfs_item));
	if (ret)
		return ret;

	path->slots[0]++;
4533
	setup_items_for_insert(root, path, new_key, &item_size,
4534 4535
			       item_size, item_size +
			       sizeof(struct btrfs_item), 1);
Y
Yan, Zheng 已提交
4536 4537 4538 4539 4540 4541 4542 4543
	leaf = path->nodes[0];
	memcpy_extent_buffer(leaf,
			     btrfs_item_ptr_offset(leaf, path->slots[0]),
			     btrfs_item_ptr_offset(leaf, path->slots[0] - 1),
			     item_size);
	return 0;
}

C
Chris Mason 已提交
4544 4545 4546 4547 4548 4549
/*
 * make the item pointed to by the path smaller.  new_size indicates
 * how small to make it, and from_end tells us if we just chop bytes
 * off the end of the item or if we shift the item to chop bytes off
 * the front.
 */
4550 4551
void btrfs_truncate_item(struct btrfs_fs_info *fs_info,
			 struct btrfs_path *path, u32 new_size, int from_end)
C
Chris Mason 已提交
4552 4553
{
	int slot;
4554 4555
	struct extent_buffer *leaf;
	struct btrfs_item *item;
C
Chris Mason 已提交
4556 4557 4558 4559 4560 4561
	u32 nritems;
	unsigned int data_end;
	unsigned int old_data_start;
	unsigned int old_size;
	unsigned int size_diff;
	int i;
4562 4563 4564
	struct btrfs_map_token token;

	btrfs_init_map_token(&token);
C
Chris Mason 已提交
4565

4566
	leaf = path->nodes[0];
4567 4568 4569 4570
	slot = path->slots[0];

	old_size = btrfs_item_size_nr(leaf, slot);
	if (old_size == new_size)
4571
		return;
C
Chris Mason 已提交
4572

4573
	nritems = btrfs_header_nritems(leaf);
4574
	data_end = leaf_data_end(fs_info, leaf);
C
Chris Mason 已提交
4575

4576
	old_data_start = btrfs_item_offset_nr(leaf, slot);
4577

C
Chris Mason 已提交
4578 4579 4580 4581 4582 4583 4584 4585 4586 4587
	size_diff = old_size - new_size;

	BUG_ON(slot < 0);
	BUG_ON(slot >= nritems);

	/*
	 * item0..itemN ... dataN.offset..dataN.size .. data0.size
	 */
	/* first correct the data pointers */
	for (i = slot; i < nritems; i++) {
4588
		u32 ioff;
4589
		item = btrfs_item_nr(i);
4590

4591 4592 4593
		ioff = btrfs_token_item_offset(leaf, item, &token);
		btrfs_set_token_item_offset(leaf, item,
					    ioff + size_diff, &token);
C
Chris Mason 已提交
4594
	}
4595

C
Chris Mason 已提交
4596
	/* shift the data */
4597
	if (from_end) {
4598 4599
		memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
			      data_end + size_diff, BTRFS_LEAF_DATA_OFFSET +
4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619
			      data_end, old_data_start + new_size - data_end);
	} else {
		struct btrfs_disk_key disk_key;
		u64 offset;

		btrfs_item_key(leaf, &disk_key, slot);

		if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) {
			unsigned long ptr;
			struct btrfs_file_extent_item *fi;

			fi = btrfs_item_ptr(leaf, slot,
					    struct btrfs_file_extent_item);
			fi = (struct btrfs_file_extent_item *)(
			     (unsigned long)fi - size_diff);

			if (btrfs_file_extent_type(leaf, fi) ==
			    BTRFS_FILE_EXTENT_INLINE) {
				ptr = btrfs_item_ptr_offset(leaf, slot);
				memmove_extent_buffer(leaf, ptr,
C
Chris Mason 已提交
4620
				      (unsigned long)fi,
4621
				      BTRFS_FILE_EXTENT_INLINE_DATA_START);
4622 4623 4624
			}
		}

4625 4626
		memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
			      data_end + size_diff, BTRFS_LEAF_DATA_OFFSET +
4627 4628 4629 4630 4631 4632
			      data_end, old_data_start - data_end);

		offset = btrfs_disk_key_offset(&disk_key);
		btrfs_set_disk_key_offset(&disk_key, offset + size_diff);
		btrfs_set_item_key(leaf, &disk_key, slot);
		if (slot == 0)
4633
			fixup_low_keys(path, &disk_key, 1);
4634
	}
4635

4636
	item = btrfs_item_nr(slot);
4637 4638
	btrfs_set_item_size(leaf, item, new_size);
	btrfs_mark_buffer_dirty(leaf);
C
Chris Mason 已提交
4639

4640
	if (btrfs_leaf_free_space(fs_info, leaf) < 0) {
4641
		btrfs_print_leaf(leaf);
C
Chris Mason 已提交
4642
		BUG();
4643
	}
C
Chris Mason 已提交
4644 4645
}

C
Chris Mason 已提交
4646
/*
S
Stefan Behrens 已提交
4647
 * make the item pointed to by the path bigger, data_size is the added size.
C
Chris Mason 已提交
4648
 */
4649
void btrfs_extend_item(struct btrfs_fs_info *fs_info, struct btrfs_path *path,
4650
		       u32 data_size)
4651 4652
{
	int slot;
4653 4654
	struct extent_buffer *leaf;
	struct btrfs_item *item;
4655 4656 4657 4658 4659
	u32 nritems;
	unsigned int data_end;
	unsigned int old_data;
	unsigned int old_size;
	int i;
4660 4661 4662
	struct btrfs_map_token token;

	btrfs_init_map_token(&token);
4663

4664
	leaf = path->nodes[0];
4665

4666
	nritems = btrfs_header_nritems(leaf);
4667
	data_end = leaf_data_end(fs_info, leaf);
4668

4669
	if (btrfs_leaf_free_space(fs_info, leaf) < data_size) {
4670
		btrfs_print_leaf(leaf);
4671
		BUG();
4672
	}
4673
	slot = path->slots[0];
4674
	old_data = btrfs_item_end_nr(leaf, slot);
4675 4676

	BUG_ON(slot < 0);
4677
	if (slot >= nritems) {
4678
		btrfs_print_leaf(leaf);
4679 4680
		btrfs_crit(fs_info, "slot %d too large, nritems %d",
			   slot, nritems);
4681 4682
		BUG_ON(1);
	}
4683 4684 4685 4686 4687 4688

	/*
	 * item0..itemN ... dataN.offset..dataN.size .. data0.size
	 */
	/* first correct the data pointers */
	for (i = slot; i < nritems; i++) {
4689
		u32 ioff;
4690
		item = btrfs_item_nr(i);
4691

4692 4693 4694
		ioff = btrfs_token_item_offset(leaf, item, &token);
		btrfs_set_token_item_offset(leaf, item,
					    ioff - data_size, &token);
4695
	}
4696

4697
	/* shift the data */
4698 4699
	memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
		      data_end - data_size, BTRFS_LEAF_DATA_OFFSET +
4700
		      data_end, old_data - data_end);
4701

4702
	data_end = old_data;
4703
	old_size = btrfs_item_size_nr(leaf, slot);
4704
	item = btrfs_item_nr(slot);
4705 4706
	btrfs_set_item_size(leaf, item, old_size + data_size);
	btrfs_mark_buffer_dirty(leaf);
4707

4708
	if (btrfs_leaf_free_space(fs_info, leaf) < 0) {
4709
		btrfs_print_leaf(leaf);
4710
		BUG();
4711
	}
4712 4713
}

C
Chris Mason 已提交
4714
/*
4715 4716 4717
 * this is a helper for btrfs_insert_empty_items, the main goal here is
 * to save stack depth by doing the bulk of the work in a function
 * that doesn't call btrfs_search_slot
C
Chris Mason 已提交
4718
 */
4719
void setup_items_for_insert(struct btrfs_root *root, struct btrfs_path *path,
4720
			    const struct btrfs_key *cpu_key, u32 *data_size,
4721
			    u32 total_data, u32 total_size, int nr)
4722
{
4723
	struct btrfs_fs_info *fs_info = root->fs_info;
4724
	struct btrfs_item *item;
4725
	int i;
4726
	u32 nritems;
4727
	unsigned int data_end;
C
Chris Mason 已提交
4728
	struct btrfs_disk_key disk_key;
4729 4730
	struct extent_buffer *leaf;
	int slot;
4731 4732
	struct btrfs_map_token token;

4733 4734
	if (path->slots[0] == 0) {
		btrfs_cpu_key_to_disk(&disk_key, cpu_key);
4735
		fixup_low_keys(path, &disk_key, 1);
4736 4737 4738
	}
	btrfs_unlock_up_safe(path, 1);

4739
	btrfs_init_map_token(&token);
C
Chris Mason 已提交
4740

4741
	leaf = path->nodes[0];
4742
	slot = path->slots[0];
C
Chris Mason 已提交
4743

4744
	nritems = btrfs_header_nritems(leaf);
4745
	data_end = leaf_data_end(fs_info, leaf);
4746

4747
	if (btrfs_leaf_free_space(fs_info, leaf) < total_size) {
4748
		btrfs_print_leaf(leaf);
4749
		btrfs_crit(fs_info, "not enough freespace need %u have %d",
4750
			   total_size, btrfs_leaf_free_space(fs_info, leaf));
4751
		BUG();
4752
	}
4753

4754
	if (slot != nritems) {
4755
		unsigned int old_data = btrfs_item_end_nr(leaf, slot);
4756

4757
		if (old_data < data_end) {
4758
			btrfs_print_leaf(leaf);
4759
			btrfs_crit(fs_info, "slot %d old_data %d data_end %d",
J
Jeff Mahoney 已提交
4760
				   slot, old_data, data_end);
4761 4762
			BUG_ON(1);
		}
4763 4764 4765 4766
		/*
		 * item0..itemN ... dataN.offset..dataN.size .. data0.size
		 */
		/* first correct the data pointers */
C
Chris Mason 已提交
4767
		for (i = slot; i < nritems; i++) {
4768
			u32 ioff;
4769

4770
			item = btrfs_item_nr(i);
4771 4772 4773
			ioff = btrfs_token_item_offset(leaf, item, &token);
			btrfs_set_token_item_offset(leaf, item,
						    ioff - total_data, &token);
C
Chris Mason 已提交
4774
		}
4775
		/* shift the items */
4776
		memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
4777
			      btrfs_item_nr_offset(slot),
C
Chris Mason 已提交
4778
			      (nritems - slot) * sizeof(struct btrfs_item));
4779 4780

		/* shift the data */
4781 4782
		memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
			      data_end - total_data, BTRFS_LEAF_DATA_OFFSET +
C
Chris Mason 已提交
4783
			      data_end, old_data - data_end);
4784 4785
		data_end = old_data;
	}
4786

4787
	/* setup the item for the new data */
4788 4789 4790
	for (i = 0; i < nr; i++) {
		btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
		btrfs_set_item_key(leaf, &disk_key, slot + i);
4791
		item = btrfs_item_nr(slot + i);
4792 4793
		btrfs_set_token_item_offset(leaf, item,
					    data_end - data_size[i], &token);
4794
		data_end -= data_size[i];
4795
		btrfs_set_token_item_size(leaf, item, data_size[i], &token);
4796
	}
4797

4798
	btrfs_set_header_nritems(leaf, nritems + nr);
4799
	btrfs_mark_buffer_dirty(leaf);
C
Chris Mason 已提交
4800

4801
	if (btrfs_leaf_free_space(fs_info, leaf) < 0) {
4802
		btrfs_print_leaf(leaf);
4803
		BUG();
4804
	}
4805 4806 4807 4808 4809 4810 4811 4812 4813
}

/*
 * Given a key and some data, insert items into the tree.
 * This does all the path init required, making room in the tree if needed.
 */
int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
			    struct btrfs_root *root,
			    struct btrfs_path *path,
4814
			    const struct btrfs_key *cpu_key, u32 *data_size,
4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830
			    int nr)
{
	int ret = 0;
	int slot;
	int i;
	u32 total_size = 0;
	u32 total_data = 0;

	for (i = 0; i < nr; i++)
		total_data += data_size[i];

	total_size = total_data + (nr * sizeof(struct btrfs_item));
	ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
	if (ret == 0)
		return -EEXIST;
	if (ret < 0)
4831
		return ret;
4832 4833 4834 4835

	slot = path->slots[0];
	BUG_ON(slot < 0);

4836
	setup_items_for_insert(root, path, cpu_key, data_size,
4837
			       total_data, total_size, nr);
4838
	return 0;
4839 4840 4841 4842 4843 4844
}

/*
 * Given a key and some data, insert an item into the tree.
 * This does all the path init required, making room in the tree if needed.
 */
4845 4846 4847
int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root *root,
		      const struct btrfs_key *cpu_key, void *data,
		      u32 data_size)
4848 4849
{
	int ret = 0;
C
Chris Mason 已提交
4850
	struct btrfs_path *path;
4851 4852
	struct extent_buffer *leaf;
	unsigned long ptr;
4853

C
Chris Mason 已提交
4854
	path = btrfs_alloc_path();
T
Tsutomu Itoh 已提交
4855 4856
	if (!path)
		return -ENOMEM;
C
Chris Mason 已提交
4857
	ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
4858
	if (!ret) {
4859 4860 4861 4862
		leaf = path->nodes[0];
		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
		write_extent_buffer(leaf, data, ptr, data_size);
		btrfs_mark_buffer_dirty(leaf);
4863
	}
C
Chris Mason 已提交
4864
	btrfs_free_path(path);
C
Chris Mason 已提交
4865
	return ret;
4866 4867
}

C
Chris Mason 已提交
4868
/*
C
Chris Mason 已提交
4869
 * delete the pointer from a given node.
C
Chris Mason 已提交
4870
 *
C
Chris Mason 已提交
4871 4872
 * the tree should have been previously balanced so the deletion does not
 * empty a node.
C
Chris Mason 已提交
4873
 */
4874 4875
static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
		    int level, int slot)
4876
{
4877
	struct extent_buffer *parent = path->nodes[level];
4878
	u32 nritems;
4879
	int ret;
4880

4881
	nritems = btrfs_header_nritems(parent);
C
Chris Mason 已提交
4882
	if (slot != nritems - 1) {
4883 4884
		if (level) {
			ret = tree_mod_log_insert_move(parent, slot, slot + 1,
4885
					nritems - slot - 1);
4886 4887
			BUG_ON(ret < 0);
		}
4888 4889 4890
		memmove_extent_buffer(parent,
			      btrfs_node_key_ptr_offset(slot),
			      btrfs_node_key_ptr_offset(slot + 1),
C
Chris Mason 已提交
4891 4892
			      sizeof(struct btrfs_key_ptr) *
			      (nritems - slot - 1));
4893
	} else if (level) {
4894 4895
		ret = tree_mod_log_insert_key(parent, slot, MOD_LOG_KEY_REMOVE,
				GFP_NOFS);
4896
		BUG_ON(ret < 0);
4897
	}
4898

4899
	nritems--;
4900
	btrfs_set_header_nritems(parent, nritems);
4901
	if (nritems == 0 && parent == root->node) {
4902
		BUG_ON(btrfs_header_level(root->node) != 1);
4903
		/* just turn the root into a leaf and break */
4904
		btrfs_set_header_level(root->node, 0);
4905
	} else if (slot == 0) {
4906 4907 4908
		struct btrfs_disk_key disk_key;

		btrfs_node_key(parent, &disk_key, 0);
4909
		fixup_low_keys(path, &disk_key, level + 1);
4910
	}
C
Chris Mason 已提交
4911
	btrfs_mark_buffer_dirty(parent);
4912 4913
}

4914 4915
/*
 * a helper function to delete the leaf pointed to by path->slots[1] and
4916
 * path->nodes[1].
4917 4918 4919 4920 4921 4922 4923
 *
 * This deletes the pointer in path->nodes[1] and frees the leaf
 * block extent.  zero is returned if it all worked out, < 0 otherwise.
 *
 * The path must have already been setup for deleting the leaf, including
 * all the proper balancing.  path->nodes[1] must be locked.
 */
4924 4925 4926 4927
static noinline void btrfs_del_leaf(struct btrfs_trans_handle *trans,
				    struct btrfs_root *root,
				    struct btrfs_path *path,
				    struct extent_buffer *leaf)
4928
{
4929
	WARN_ON(btrfs_header_generation(leaf) != trans->transid);
4930
	del_ptr(root, path, 1, path->slots[1]);
4931

4932 4933 4934 4935 4936 4937
	/*
	 * btrfs_free_extent is expensive, we want to make sure we
	 * aren't holding any locks when we call it
	 */
	btrfs_unlock_up_safe(path, 0);

4938 4939
	root_sub_used(root, leaf->len);

4940
	extent_buffer_get(leaf);
4941
	btrfs_free_tree_block(trans, root, leaf, 0, 1);
4942
	free_extent_buffer_stale(leaf);
4943
}
C
Chris Mason 已提交
4944 4945 4946 4947
/*
 * delete the item at the leaf level in path.  If that empties
 * the leaf, remove it from the tree
 */
4948 4949
int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
		    struct btrfs_path *path, int slot, int nr)
4950
{
4951
	struct btrfs_fs_info *fs_info = root->fs_info;
4952 4953
	struct extent_buffer *leaf;
	struct btrfs_item *item;
4954 4955
	u32 last_off;
	u32 dsize = 0;
C
Chris Mason 已提交
4956 4957
	int ret = 0;
	int wret;
4958
	int i;
4959
	u32 nritems;
4960 4961 4962
	struct btrfs_map_token token;

	btrfs_init_map_token(&token);
4963

4964
	leaf = path->nodes[0];
4965 4966 4967 4968 4969
	last_off = btrfs_item_offset_nr(leaf, slot + nr - 1);

	for (i = 0; i < nr; i++)
		dsize += btrfs_item_size_nr(leaf, slot + i);

4970
	nritems = btrfs_header_nritems(leaf);
4971

4972
	if (slot + nr != nritems) {
4973
		int data_end = leaf_data_end(fs_info, leaf);
4974

4975
		memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
C
Chris Mason 已提交
4976
			      data_end + dsize,
4977
			      BTRFS_LEAF_DATA_OFFSET + data_end,
4978
			      last_off - data_end);
4979

4980
		for (i = slot + nr; i < nritems; i++) {
4981
			u32 ioff;
4982

4983
			item = btrfs_item_nr(i);
4984 4985 4986
			ioff = btrfs_token_item_offset(leaf, item, &token);
			btrfs_set_token_item_offset(leaf, item,
						    ioff + dsize, &token);
C
Chris Mason 已提交
4987
		}
4988

4989
		memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot),
4990
			      btrfs_item_nr_offset(slot + nr),
C
Chris Mason 已提交
4991
			      sizeof(struct btrfs_item) *
4992
			      (nritems - slot - nr));
4993
	}
4994 4995
	btrfs_set_header_nritems(leaf, nritems - nr);
	nritems -= nr;
4996

C
Chris Mason 已提交
4997
	/* delete the leaf if we've emptied it */
4998
	if (nritems == 0) {
4999 5000
		if (leaf == root->node) {
			btrfs_set_header_level(leaf, 0);
5001
		} else {
5002
			btrfs_set_path_blocking(path);
5003
			clean_tree_block(fs_info, leaf);
5004
			btrfs_del_leaf(trans, root, path, leaf);
5005
		}
5006
	} else {
5007
		int used = leaf_space_used(leaf, 0, nritems);
C
Chris Mason 已提交
5008
		if (slot == 0) {
5009 5010 5011
			struct btrfs_disk_key disk_key;

			btrfs_item_key(leaf, &disk_key, 0);
5012
			fixup_low_keys(path, &disk_key, 1);
C
Chris Mason 已提交
5013 5014
		}

C
Chris Mason 已提交
5015
		/* delete the leaf if it is mostly empty */
5016
		if (used < BTRFS_LEAF_DATA_SIZE(fs_info) / 3) {
5017 5018 5019 5020
			/* push_leaf_left fixes the path.
			 * make sure the path still points to our leaf
			 * for possible call to del_ptr below
			 */
5021
			slot = path->slots[1];
5022 5023
			extent_buffer_get(leaf);

5024
			btrfs_set_path_blocking(path);
5025 5026
			wret = push_leaf_left(trans, root, path, 1, 1,
					      1, (u32)-1);
5027
			if (wret < 0 && wret != -ENOSPC)
C
Chris Mason 已提交
5028
				ret = wret;
5029 5030 5031

			if (path->nodes[0] == leaf &&
			    btrfs_header_nritems(leaf)) {
5032 5033
				wret = push_leaf_right(trans, root, path, 1,
						       1, 1, 0);
5034
				if (wret < 0 && wret != -ENOSPC)
C
Chris Mason 已提交
5035 5036
					ret = wret;
			}
5037 5038

			if (btrfs_header_nritems(leaf) == 0) {
5039
				path->slots[1] = slot;
5040
				btrfs_del_leaf(trans, root, path, leaf);
5041
				free_extent_buffer(leaf);
5042
				ret = 0;
C
Chris Mason 已提交
5043
			} else {
5044 5045 5046 5047 5048 5049 5050
				/* if we're still in the path, make sure
				 * we're dirty.  Otherwise, one of the
				 * push_leaf functions must have already
				 * dirtied this buffer
				 */
				if (path->nodes[0] == leaf)
					btrfs_mark_buffer_dirty(leaf);
5051
				free_extent_buffer(leaf);
5052
			}
5053
		} else {
5054
			btrfs_mark_buffer_dirty(leaf);
5055 5056
		}
	}
C
Chris Mason 已提交
5057
	return ret;
5058 5059
}

5060
/*
5061
 * search the tree again to find a leaf with lesser keys
5062 5063
 * returns 0 if it found something or 1 if there are no lesser leaves.
 * returns < 0 on io errors.
C
Chris Mason 已提交
5064 5065 5066
 *
 * This may release the path, and so you may lose any locks held at the
 * time you call it.
5067
 */
5068
int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path)
5069
{
5070 5071 5072
	struct btrfs_key key;
	struct btrfs_disk_key found_key;
	int ret;
5073

5074
	btrfs_item_key_to_cpu(path->nodes[0], &key, 0);
5075

5076
	if (key.offset > 0) {
5077
		key.offset--;
5078
	} else if (key.type > 0) {
5079
		key.type--;
5080 5081
		key.offset = (u64)-1;
	} else if (key.objectid > 0) {
5082
		key.objectid--;
5083 5084 5085
		key.type = (u8)-1;
		key.offset = (u64)-1;
	} else {
5086
		return 1;
5087
	}
5088

5089
	btrfs_release_path(path);
5090 5091 5092 5093 5094
	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
	if (ret < 0)
		return ret;
	btrfs_item_key(path->nodes[0], &found_key, 0);
	ret = comp_keys(&found_key, &key);
5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105
	/*
	 * We might have had an item with the previous key in the tree right
	 * before we released our path. And after we released our path, that
	 * item might have been pushed to the first slot (0) of the leaf we
	 * were holding due to a tree balance. Alternatively, an item with the
	 * previous key can exist as the only element of a leaf (big fat item).
	 * Therefore account for these 2 cases, so that our callers (like
	 * btrfs_previous_item) don't miss an existing item with a key matching
	 * the previous key we computed above.
	 */
	if (ret <= 0)
5106 5107
		return 0;
	return 1;
5108 5109
}

5110 5111
/*
 * A helper function to walk down the tree starting at min_key, and looking
5112 5113
 * for nodes or leaves that are have a minimum transaction id.
 * This is used by the btree defrag code, and tree logging
5114 5115 5116 5117 5118 5119 5120 5121
 *
 * This does not cow, but it does stuff the starting key it finds back
 * into min_key, so you can call btrfs_search_slot with cow=1 on the
 * key and get a writable path.
 *
 * This honors path->lowest_level to prevent descent past a given level
 * of the tree.
 *
C
Chris Mason 已提交
5122 5123 5124 5125
 * min_trans indicates the oldest transaction that you are interested
 * in walking through.  Any nodes or leaves older than min_trans are
 * skipped over (without reading them).
 *
5126 5127 5128 5129
 * returns zero if something useful was found, < 0 on error and 1 if there
 * was nothing in the tree that matched the search criteria.
 */
int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
5130
			 struct btrfs_path *path,
5131 5132
			 u64 min_trans)
{
5133
	struct btrfs_fs_info *fs_info = root->fs_info;
5134 5135 5136
	struct extent_buffer *cur;
	struct btrfs_key found_key;
	int slot;
5137
	int sret;
5138 5139 5140
	u32 nritems;
	int level;
	int ret = 1;
5141
	int keep_locks = path->keep_locks;
5142

5143
	path->keep_locks = 1;
5144
again:
5145
	cur = btrfs_read_lock_root_node(root);
5146
	level = btrfs_header_level(cur);
5147
	WARN_ON(path->nodes[level]);
5148
	path->nodes[level] = cur;
5149
	path->locks[level] = BTRFS_READ_LOCK;
5150 5151 5152 5153 5154

	if (btrfs_header_generation(cur) < min_trans) {
		ret = 1;
		goto out;
	}
C
Chris Mason 已提交
5155
	while (1) {
5156 5157
		nritems = btrfs_header_nritems(cur);
		level = btrfs_header_level(cur);
5158
		sret = btrfs_bin_search(cur, min_key, level, &slot);
5159

5160 5161
		/* at the lowest level, we're done, setup the path and exit */
		if (level == path->lowest_level) {
5162 5163
			if (slot >= nritems)
				goto find_next_key;
5164 5165 5166 5167 5168
			ret = 0;
			path->slots[level] = slot;
			btrfs_item_key_to_cpu(cur, &found_key, slot);
			goto out;
		}
5169 5170
		if (sret && slot > 0)
			slot--;
5171
		/*
5172 5173
		 * check this node pointer against the min_trans parameters.
		 * If it is too old, old, skip to the next one.
5174
		 */
C
Chris Mason 已提交
5175
		while (slot < nritems) {
5176
			u64 gen;
5177

5178 5179 5180 5181 5182
			gen = btrfs_node_ptr_generation(cur, slot);
			if (gen < min_trans) {
				slot++;
				continue;
			}
5183
			break;
5184
		}
5185
find_next_key:
5186 5187 5188 5189 5190
		/*
		 * we didn't find a candidate key in this node, walk forward
		 * and find another one
		 */
		if (slot >= nritems) {
5191
			path->slots[level] = slot;
5192
			btrfs_set_path_blocking(path);
5193
			sret = btrfs_find_next_key(root, path, min_key, level,
5194
						  min_trans);
5195
			if (sret == 0) {
5196
				btrfs_release_path(path);
5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208
				goto again;
			} else {
				goto out;
			}
		}
		/* save our key for returning back */
		btrfs_node_key_to_cpu(cur, &found_key, slot);
		path->slots[level] = slot;
		if (level == path->lowest_level) {
			ret = 0;
			goto out;
		}
5209
		btrfs_set_path_blocking(path);
5210
		cur = read_node_slot(fs_info, cur, slot);
5211 5212 5213 5214
		if (IS_ERR(cur)) {
			ret = PTR_ERR(cur);
			goto out;
		}
5215

5216
		btrfs_tree_read_lock(cur);
5217

5218
		path->locks[level - 1] = BTRFS_READ_LOCK;
5219
		path->nodes[level - 1] = cur;
5220
		unlock_up(path, level, 1, 0, NULL);
5221 5222
	}
out:
5223 5224 5225 5226
	path->keep_locks = keep_locks;
	if (ret == 0) {
		btrfs_unlock_up_safe(path, path->lowest_level + 1);
		btrfs_set_path_blocking(path);
5227
		memcpy(min_key, &found_key, sizeof(found_key));
5228
	}
5229 5230 5231
	return ret;
}

5232
static int tree_move_down(struct btrfs_fs_info *fs_info,
5233
			   struct btrfs_path *path,
5234
			   int *level)
5235
{
5236 5237
	struct extent_buffer *eb;

5238
	BUG_ON(*level == 0);
5239
	eb = read_node_slot(fs_info, path->nodes[*level], path->slots[*level]);
5240 5241 5242 5243
	if (IS_ERR(eb))
		return PTR_ERR(eb);

	path->nodes[*level - 1] = eb;
5244 5245
	path->slots[*level - 1] = 0;
	(*level)--;
5246
	return 0;
5247 5248
}

5249
static int tree_move_next_or_upnext(struct btrfs_path *path,
5250 5251 5252 5253 5254 5255 5256 5257
				    int *level, int root_level)
{
	int ret = 0;
	int nritems;
	nritems = btrfs_header_nritems(path->nodes[*level]);

	path->slots[*level]++;

5258
	while (path->slots[*level] >= nritems) {
5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278
		if (*level == root_level)
			return -1;

		/* move upnext */
		path->slots[*level] = 0;
		free_extent_buffer(path->nodes[*level]);
		path->nodes[*level] = NULL;
		(*level)++;
		path->slots[*level]++;

		nritems = btrfs_header_nritems(path->nodes[*level]);
		ret = 1;
	}
	return ret;
}

/*
 * Returns 1 if it had to move up and next. 0 is returned if it moved only next
 * or down.
 */
5279
static int tree_advance(struct btrfs_fs_info *fs_info,
5280 5281 5282 5283 5284 5285 5286 5287
			struct btrfs_path *path,
			int *level, int root_level,
			int allow_down,
			struct btrfs_key *key)
{
	int ret;

	if (*level == 0 || !allow_down) {
5288
		ret = tree_move_next_or_upnext(path, level, root_level);
5289
	} else {
5290
		ret = tree_move_down(fs_info, path, level);
5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302
	}
	if (ret >= 0) {
		if (*level == 0)
			btrfs_item_key_to_cpu(path->nodes[*level], key,
					path->slots[*level]);
		else
			btrfs_node_key_to_cpu(path->nodes[*level], key,
					path->slots[*level]);
	}
	return ret;
}

5303
static int tree_compare_item(struct btrfs_path *left_path,
5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347
			     struct btrfs_path *right_path,
			     char *tmp_buf)
{
	int cmp;
	int len1, len2;
	unsigned long off1, off2;

	len1 = btrfs_item_size_nr(left_path->nodes[0], left_path->slots[0]);
	len2 = btrfs_item_size_nr(right_path->nodes[0], right_path->slots[0]);
	if (len1 != len2)
		return 1;

	off1 = btrfs_item_ptr_offset(left_path->nodes[0], left_path->slots[0]);
	off2 = btrfs_item_ptr_offset(right_path->nodes[0],
				right_path->slots[0]);

	read_extent_buffer(left_path->nodes[0], tmp_buf, off1, len1);

	cmp = memcmp_extent_buffer(right_path->nodes[0], tmp_buf, off2, len1);
	if (cmp)
		return 1;
	return 0;
}

#define ADVANCE 1
#define ADVANCE_ONLY_NEXT -1

/*
 * This function compares two trees and calls the provided callback for
 * every changed/new/deleted item it finds.
 * If shared tree blocks are encountered, whole subtrees are skipped, making
 * the compare pretty fast on snapshotted subvolumes.
 *
 * This currently works on commit roots only. As commit roots are read only,
 * we don't do any locking. The commit roots are protected with transactions.
 * Transactions are ended and rejoined when a commit is tried in between.
 *
 * This function checks for modifications done to the trees while comparing.
 * If it detects a change, it aborts immediately.
 */
int btrfs_compare_trees(struct btrfs_root *left_root,
			struct btrfs_root *right_root,
			btrfs_changed_cb_t changed_cb, void *ctx)
{
5348
	struct btrfs_fs_info *fs_info = left_root->fs_info;
5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365
	int ret;
	int cmp;
	struct btrfs_path *left_path = NULL;
	struct btrfs_path *right_path = NULL;
	struct btrfs_key left_key;
	struct btrfs_key right_key;
	char *tmp_buf = NULL;
	int left_root_level;
	int right_root_level;
	int left_level;
	int right_level;
	int left_end_reached;
	int right_end_reached;
	int advance_left;
	int advance_right;
	u64 left_blockptr;
	u64 right_blockptr;
5366 5367
	u64 left_gen;
	u64 right_gen;
5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379

	left_path = btrfs_alloc_path();
	if (!left_path) {
		ret = -ENOMEM;
		goto out;
	}
	right_path = btrfs_alloc_path();
	if (!right_path) {
		ret = -ENOMEM;
		goto out;
	}

5380
	tmp_buf = kvmalloc(fs_info->nodesize, GFP_KERNEL);
5381
	if (!tmp_buf) {
5382 5383
		ret = -ENOMEM;
		goto out;
5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426
	}

	left_path->search_commit_root = 1;
	left_path->skip_locking = 1;
	right_path->search_commit_root = 1;
	right_path->skip_locking = 1;

	/*
	 * Strategy: Go to the first items of both trees. Then do
	 *
	 * If both trees are at level 0
	 *   Compare keys of current items
	 *     If left < right treat left item as new, advance left tree
	 *       and repeat
	 *     If left > right treat right item as deleted, advance right tree
	 *       and repeat
	 *     If left == right do deep compare of items, treat as changed if
	 *       needed, advance both trees and repeat
	 * If both trees are at the same level but not at level 0
	 *   Compare keys of current nodes/leafs
	 *     If left < right advance left tree and repeat
	 *     If left > right advance right tree and repeat
	 *     If left == right compare blockptrs of the next nodes/leafs
	 *       If they match advance both trees but stay at the same level
	 *         and repeat
	 *       If they don't match advance both trees while allowing to go
	 *         deeper and repeat
	 * If tree levels are different
	 *   Advance the tree that needs it and repeat
	 *
	 * Advancing a tree means:
	 *   If we are at level 0, try to go to the next slot. If that's not
	 *   possible, go one level up and repeat. Stop when we found a level
	 *   where we could go to the next slot. We may at this point be on a
	 *   node or a leaf.
	 *
	 *   If we are not at level 0 and not on shared tree blocks, go one
	 *   level deeper.
	 *
	 *   If we are not at level 0 and on shared tree blocks, go one slot to
	 *   the right if possible or go up and right.
	 */

5427
	down_read(&fs_info->commit_root_sem);
5428 5429
	left_level = btrfs_header_level(left_root->commit_root);
	left_root_level = left_level;
5430 5431 5432 5433 5434 5435 5436
	left_path->nodes[left_level] =
			btrfs_clone_extent_buffer(left_root->commit_root);
	if (!left_path->nodes[left_level]) {
		up_read(&fs_info->commit_root_sem);
		ret = -ENOMEM;
		goto out;
	}
5437 5438 5439

	right_level = btrfs_header_level(right_root->commit_root);
	right_root_level = right_level;
5440 5441 5442 5443 5444 5445 5446
	right_path->nodes[right_level] =
			btrfs_clone_extent_buffer(right_root->commit_root);
	if (!right_path->nodes[right_level]) {
		up_read(&fs_info->commit_root_sem);
		ret = -ENOMEM;
		goto out;
	}
5447
	up_read(&fs_info->commit_root_sem);
5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466

	if (left_level == 0)
		btrfs_item_key_to_cpu(left_path->nodes[left_level],
				&left_key, left_path->slots[left_level]);
	else
		btrfs_node_key_to_cpu(left_path->nodes[left_level],
				&left_key, left_path->slots[left_level]);
	if (right_level == 0)
		btrfs_item_key_to_cpu(right_path->nodes[right_level],
				&right_key, right_path->slots[right_level]);
	else
		btrfs_node_key_to_cpu(right_path->nodes[right_level],
				&right_key, right_path->slots[right_level]);

	left_end_reached = right_end_reached = 0;
	advance_left = advance_right = 0;

	while (1) {
		if (advance_left && !left_end_reached) {
5467
			ret = tree_advance(fs_info, left_path, &left_level,
5468 5469 5470
					left_root_level,
					advance_left != ADVANCE_ONLY_NEXT,
					&left_key);
5471
			if (ret == -1)
5472
				left_end_reached = ADVANCE;
5473 5474
			else if (ret < 0)
				goto out;
5475 5476 5477
			advance_left = 0;
		}
		if (advance_right && !right_end_reached) {
5478
			ret = tree_advance(fs_info, right_path, &right_level,
5479 5480 5481
					right_root_level,
					advance_right != ADVANCE_ONLY_NEXT,
					&right_key);
5482
			if (ret == -1)
5483
				right_end_reached = ADVANCE;
5484 5485
			else if (ret < 0)
				goto out;
5486 5487 5488 5489 5490 5491 5492 5493
			advance_right = 0;
		}

		if (left_end_reached && right_end_reached) {
			ret = 0;
			goto out;
		} else if (left_end_reached) {
			if (right_level == 0) {
5494
				ret = changed_cb(left_path, right_path,
5495 5496 5497 5498 5499 5500 5501 5502 5503 5504
						&right_key,
						BTRFS_COMPARE_TREE_DELETED,
						ctx);
				if (ret < 0)
					goto out;
			}
			advance_right = ADVANCE;
			continue;
		} else if (right_end_reached) {
			if (left_level == 0) {
5505
				ret = changed_cb(left_path, right_path,
5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518
						&left_key,
						BTRFS_COMPARE_TREE_NEW,
						ctx);
				if (ret < 0)
					goto out;
			}
			advance_left = ADVANCE;
			continue;
		}

		if (left_level == 0 && right_level == 0) {
			cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
			if (cmp < 0) {
5519
				ret = changed_cb(left_path, right_path,
5520 5521 5522 5523 5524 5525 5526
						&left_key,
						BTRFS_COMPARE_TREE_NEW,
						ctx);
				if (ret < 0)
					goto out;
				advance_left = ADVANCE;
			} else if (cmp > 0) {
5527
				ret = changed_cb(left_path, right_path,
5528 5529 5530 5531 5532 5533 5534
						&right_key,
						BTRFS_COMPARE_TREE_DELETED,
						ctx);
				if (ret < 0)
					goto out;
				advance_right = ADVANCE;
			} else {
5535
				enum btrfs_compare_tree_result result;
5536

5537
				WARN_ON(!extent_buffer_uptodate(left_path->nodes[0]));
5538 5539
				ret = tree_compare_item(left_path, right_path,
							tmp_buf);
5540
				if (ret)
5541
					result = BTRFS_COMPARE_TREE_CHANGED;
5542
				else
5543
					result = BTRFS_COMPARE_TREE_SAME;
5544
				ret = changed_cb(left_path, right_path,
5545
						 &left_key, result, ctx);
5546 5547
				if (ret < 0)
					goto out;
5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563
				advance_left = ADVANCE;
				advance_right = ADVANCE;
			}
		} else if (left_level == right_level) {
			cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
			if (cmp < 0) {
				advance_left = ADVANCE;
			} else if (cmp > 0) {
				advance_right = ADVANCE;
			} else {
				left_blockptr = btrfs_node_blockptr(
						left_path->nodes[left_level],
						left_path->slots[left_level]);
				right_blockptr = btrfs_node_blockptr(
						right_path->nodes[right_level],
						right_path->slots[right_level]);
5564 5565 5566 5567 5568 5569 5570 5571
				left_gen = btrfs_node_ptr_generation(
						left_path->nodes[left_level],
						left_path->slots[left_level]);
				right_gen = btrfs_node_ptr_generation(
						right_path->nodes[right_level],
						right_path->slots[right_level]);
				if (left_blockptr == right_blockptr &&
				    left_gen == right_gen) {
5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592
					/*
					 * As we're on a shared block, don't
					 * allow to go deeper.
					 */
					advance_left = ADVANCE_ONLY_NEXT;
					advance_right = ADVANCE_ONLY_NEXT;
				} else {
					advance_left = ADVANCE;
					advance_right = ADVANCE;
				}
			}
		} else if (left_level < right_level) {
			advance_right = ADVANCE;
		} else {
			advance_left = ADVANCE;
		}
	}

out:
	btrfs_free_path(left_path);
	btrfs_free_path(right_path);
5593
	kvfree(tmp_buf);
5594 5595 5596
	return ret;
}

5597 5598 5599
/*
 * this is similar to btrfs_next_leaf, but does not try to preserve
 * and fixup the path.  It looks for and returns the next key in the
5600
 * tree based on the current path and the min_trans parameters.
5601 5602 5603 5604 5605 5606 5607
 *
 * 0 is returned if another key is found, < 0 if there are any errors
 * and 1 is returned if there are no higher keys in the tree
 *
 * path->keep_locks should be set to 1 on the search made before
 * calling this function.
 */
5608
int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
5609
			struct btrfs_key *key, int level, u64 min_trans)
5610 5611 5612 5613
{
	int slot;
	struct extent_buffer *c;

5614
	WARN_ON(!path->keep_locks);
C
Chris Mason 已提交
5615
	while (level < BTRFS_MAX_LEVEL) {
5616 5617 5618 5619 5620
		if (!path->nodes[level])
			return 1;

		slot = path->slots[level] + 1;
		c = path->nodes[level];
5621
next:
5622
		if (slot >= btrfs_header_nritems(c)) {
5623 5624 5625 5626 5627
			int ret;
			int orig_lowest;
			struct btrfs_key cur_key;
			if (level + 1 >= BTRFS_MAX_LEVEL ||
			    !path->nodes[level + 1])
5628
				return 1;
5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641

			if (path->locks[level + 1]) {
				level++;
				continue;
			}

			slot = btrfs_header_nritems(c) - 1;
			if (level == 0)
				btrfs_item_key_to_cpu(c, &cur_key, slot);
			else
				btrfs_node_key_to_cpu(c, &cur_key, slot);

			orig_lowest = path->lowest_level;
5642
			btrfs_release_path(path);
5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654
			path->lowest_level = level;
			ret = btrfs_search_slot(NULL, root, &cur_key, path,
						0, 0);
			path->lowest_level = orig_lowest;
			if (ret < 0)
				return ret;

			c = path->nodes[level];
			slot = path->slots[level];
			if (ret == 0)
				slot++;
			goto next;
5655
		}
5656

5657 5658
		if (level == 0)
			btrfs_item_key_to_cpu(c, key, slot);
5659 5660 5661 5662 5663 5664 5665
		else {
			u64 gen = btrfs_node_ptr_generation(c, slot);

			if (gen < min_trans) {
				slot++;
				goto next;
			}
5666
			btrfs_node_key_to_cpu(c, key, slot);
5667
		}
5668 5669 5670 5671 5672
		return 0;
	}
	return 1;
}

C
Chris Mason 已提交
5673
/*
5674
 * search the tree again to find a leaf with greater keys
C
Chris Mason 已提交
5675 5676
 * returns 0 if it found something or 1 if there are no greater leaves.
 * returns < 0 on io errors.
C
Chris Mason 已提交
5677
 */
C
Chris Mason 已提交
5678
int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path)
J
Jan Schmidt 已提交
5679 5680 5681 5682 5683 5684
{
	return btrfs_next_old_leaf(root, path, 0);
}

int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path,
			u64 time_seq)
5685 5686
{
	int slot;
5687
	int level;
5688
	struct extent_buffer *c;
5689
	struct extent_buffer *next;
5690 5691 5692
	struct btrfs_key key;
	u32 nritems;
	int ret;
5693
	int old_spinning = path->leave_spinning;
5694
	int next_rw_lock = 0;
5695 5696

	nritems = btrfs_header_nritems(path->nodes[0]);
C
Chris Mason 已提交
5697
	if (nritems == 0)
5698 5699
		return 1;

5700 5701 5702 5703
	btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1);
again:
	level = 1;
	next = NULL;
5704
	next_rw_lock = 0;
5705
	btrfs_release_path(path);
5706

5707
	path->keep_locks = 1;
5708
	path->leave_spinning = 1;
5709

J
Jan Schmidt 已提交
5710 5711 5712 5713
	if (time_seq)
		ret = btrfs_search_old_slot(root, &key, path, time_seq);
	else
		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5714 5715 5716 5717 5718
	path->keep_locks = 0;

	if (ret < 0)
		return ret;

5719
	nritems = btrfs_header_nritems(path->nodes[0]);
5720 5721 5722 5723 5724 5725
	/*
	 * by releasing the path above we dropped all our locks.  A balance
	 * could have added more items next to the key that used to be
	 * at the very end of the block.  So, check again here and
	 * advance the path if there are now more items available.
	 */
5726
	if (nritems > 0 && path->slots[0] < nritems - 1) {
5727 5728
		if (ret == 0)
			path->slots[0]++;
5729
		ret = 0;
5730 5731
		goto done;
	}
5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749
	/*
	 * So the above check misses one case:
	 * - after releasing the path above, someone has removed the item that
	 *   used to be at the very end of the block, and balance between leafs
	 *   gets another one with bigger key.offset to replace it.
	 *
	 * This one should be returned as well, or we can get leaf corruption
	 * later(esp. in __btrfs_drop_extents()).
	 *
	 * And a bit more explanation about this check,
	 * with ret > 0, the key isn't found, the path points to the slot
	 * where it should be inserted, so the path->slots[0] item must be the
	 * bigger one.
	 */
	if (nritems > 0 && ret > 0 && path->slots[0] == nritems - 1) {
		ret = 0;
		goto done;
	}
5750

C
Chris Mason 已提交
5751
	while (level < BTRFS_MAX_LEVEL) {
5752 5753 5754 5755
		if (!path->nodes[level]) {
			ret = 1;
			goto done;
		}
5756

5757 5758
		slot = path->slots[level] + 1;
		c = path->nodes[level];
5759
		if (slot >= btrfs_header_nritems(c)) {
5760
			level++;
5761 5762 5763 5764
			if (level == BTRFS_MAX_LEVEL) {
				ret = 1;
				goto done;
			}
5765 5766
			continue;
		}
5767

5768
		if (next) {
5769
			btrfs_tree_unlock_rw(next, next_rw_lock);
5770
			free_extent_buffer(next);
5771
		}
5772

5773
		next = c;
5774
		next_rw_lock = path->locks[level];
5775
		ret = read_block_for_search(root, path, &next, level,
5776
					    slot, &key);
5777 5778
		if (ret == -EAGAIN)
			goto again;
5779

5780
		if (ret < 0) {
5781
			btrfs_release_path(path);
5782 5783 5784
			goto done;
		}

5785
		if (!path->skip_locking) {
5786
			ret = btrfs_try_tree_read_lock(next);
5787 5788 5789 5790 5791 5792 5793 5794
			if (!ret && time_seq) {
				/*
				 * If we don't get the lock, we may be racing
				 * with push_leaf_left, holding that lock while
				 * itself waiting for the leaf we've currently
				 * locked. To solve this situation, we give up
				 * on our lock and cycle.
				 */
5795
				free_extent_buffer(next);
5796 5797 5798 5799
				btrfs_release_path(path);
				cond_resched();
				goto again;
			}
5800 5801
			if (!ret) {
				btrfs_set_path_blocking(path);
5802
				btrfs_tree_read_lock(next);
5803
			}
5804
			next_rw_lock = BTRFS_READ_LOCK;
5805
		}
5806 5807 5808
		break;
	}
	path->slots[level] = slot;
C
Chris Mason 已提交
5809
	while (1) {
5810 5811
		level--;
		c = path->nodes[level];
5812
		if (path->locks[level])
5813
			btrfs_tree_unlock_rw(c, path->locks[level]);
5814

5815
		free_extent_buffer(c);
5816 5817
		path->nodes[level] = next;
		path->slots[level] = 0;
5818
		if (!path->skip_locking)
5819
			path->locks[level] = next_rw_lock;
5820 5821
		if (!level)
			break;
5822

5823
		ret = read_block_for_search(root, path, &next, level,
5824
					    0, &key);
5825 5826 5827
		if (ret == -EAGAIN)
			goto again;

5828
		if (ret < 0) {
5829
			btrfs_release_path(path);
5830 5831 5832
			goto done;
		}

5833
		if (!path->skip_locking) {
5834
			ret = btrfs_try_tree_read_lock(next);
5835 5836
			if (!ret) {
				btrfs_set_path_blocking(path);
5837 5838
				btrfs_tree_read_lock(next);
			}
5839
			next_rw_lock = BTRFS_READ_LOCK;
5840
		}
5841
	}
5842
	ret = 0;
5843
done:
5844
	unlock_up(path, 0, 1, 0, NULL);
5845 5846 5847 5848 5849
	path->leave_spinning = old_spinning;
	if (!old_spinning)
		btrfs_set_path_blocking(path);

	return ret;
5850
}
5851

5852 5853 5854 5855 5856 5857
/*
 * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps
 * searching until it gets past min_objectid or finds an item of 'type'
 *
 * returns 0 if something is found, 1 if nothing was found and < 0 on error
 */
5858 5859 5860 5861 5862 5863
int btrfs_previous_item(struct btrfs_root *root,
			struct btrfs_path *path, u64 min_objectid,
			int type)
{
	struct btrfs_key found_key;
	struct extent_buffer *leaf;
5864
	u32 nritems;
5865 5866
	int ret;

C
Chris Mason 已提交
5867
	while (1) {
5868
		if (path->slots[0] == 0) {
5869
			btrfs_set_path_blocking(path);
5870 5871 5872 5873 5874 5875 5876
			ret = btrfs_prev_leaf(root, path);
			if (ret != 0)
				return ret;
		} else {
			path->slots[0]--;
		}
		leaf = path->nodes[0];
5877 5878 5879 5880 5881 5882
		nritems = btrfs_header_nritems(leaf);
		if (nritems == 0)
			return 1;
		if (path->slots[0] == nritems)
			path->slots[0]--;

5883
		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5884 5885
		if (found_key.objectid < min_objectid)
			break;
5886 5887
		if (found_key.type == type)
			return 0;
5888 5889 5890
		if (found_key.objectid == min_objectid &&
		    found_key.type < type)
			break;
5891 5892 5893
	}
	return 1;
}
5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936

/*
 * search in extent tree to find a previous Metadata/Data extent item with
 * min objecitd.
 *
 * returns 0 if something is found, 1 if nothing was found and < 0 on error
 */
int btrfs_previous_extent_item(struct btrfs_root *root,
			struct btrfs_path *path, u64 min_objectid)
{
	struct btrfs_key found_key;
	struct extent_buffer *leaf;
	u32 nritems;
	int ret;

	while (1) {
		if (path->slots[0] == 0) {
			btrfs_set_path_blocking(path);
			ret = btrfs_prev_leaf(root, path);
			if (ret != 0)
				return ret;
		} else {
			path->slots[0]--;
		}
		leaf = path->nodes[0];
		nritems = btrfs_header_nritems(leaf);
		if (nritems == 0)
			return 1;
		if (path->slots[0] == nritems)
			path->slots[0]--;

		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
		if (found_key.objectid < min_objectid)
			break;
		if (found_key.type == BTRFS_EXTENT_ITEM_KEY ||
		    found_key.type == BTRFS_METADATA_ITEM_KEY)
			return 0;
		if (found_key.objectid == min_objectid &&
		    found_key.type < BTRFS_EXTENT_ITEM_KEY)
			break;
	}
	return 1;
}