ctree.c 151.2 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
C
Chris Mason 已提交
2
/*
C
Chris Mason 已提交
3
 * Copyright (C) 2007,2008 Oracle.  All rights reserved.
C
Chris Mason 已提交
4 5
 */

6
#include <linux/sched.h>
7
#include <linux/slab.h>
8
#include <linux/rbtree.h>
9
#include <linux/mm.h>
10 11
#include "ctree.h"
#include "disk-io.h"
12
#include "transaction.h"
13
#include "print-tree.h"
14
#include "locking.h"
15

16 17
static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
		      *root, struct btrfs_path *path, int level);
18 19 20
static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root *root,
		      const struct btrfs_key *ins_key, struct btrfs_path *path,
		      int data_size, int extend);
21
static int push_node_left(struct btrfs_trans_handle *trans,
22 23
			  struct btrfs_fs_info *fs_info,
			  struct extent_buffer *dst,
24
			  struct extent_buffer *src, int empty);
25
static int balance_node_right(struct btrfs_trans_handle *trans,
26
			      struct btrfs_fs_info *fs_info,
27 28
			      struct extent_buffer *dst_buf,
			      struct extent_buffer *src_buf);
29 30
static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
		    int level, int slot);
31

C
Chris Mason 已提交
32
struct btrfs_path *btrfs_alloc_path(void)
C
Chris Mason 已提交
33
{
34
	return kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS);
C
Chris Mason 已提交
35 36
}

37 38 39 40 41 42 43 44
/*
 * set all locked nodes in the path to blocking locks.  This should
 * be done before scheduling
 */
noinline void btrfs_set_path_blocking(struct btrfs_path *p)
{
	int i;
	for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
45 46 47 48 49 50 51
		if (!p->nodes[i] || !p->locks[i])
			continue;
		btrfs_set_lock_blocking_rw(p->nodes[i], p->locks[i]);
		if (p->locks[i] == BTRFS_READ_LOCK)
			p->locks[i] = BTRFS_READ_LOCK_BLOCKING;
		else if (p->locks[i] == BTRFS_WRITE_LOCK)
			p->locks[i] = BTRFS_WRITE_LOCK_BLOCKING;
52 53 54 55 56
	}
}

/*
 * reset all the locked nodes in the patch to spinning locks.
57 58 59 60 61
 *
 * held is used to keep lockdep happy, when lockdep is enabled
 * we set held to a blocking lock before we go around and
 * retake all the spinlocks in the path.  You can safely use NULL
 * for held
62
 */
63
noinline void btrfs_clear_path_blocking(struct btrfs_path *p,
64
					struct extent_buffer *held, int held_rw)
65 66
{
	int i;
67

68 69 70 71 72 73 74
	if (held) {
		btrfs_set_lock_blocking_rw(held, held_rw);
		if (held_rw == BTRFS_WRITE_LOCK)
			held_rw = BTRFS_WRITE_LOCK_BLOCKING;
		else if (held_rw == BTRFS_READ_LOCK)
			held_rw = BTRFS_READ_LOCK_BLOCKING;
	}
75 76 77
	btrfs_set_path_blocking(p);

	for (i = BTRFS_MAX_LEVEL - 1; i >= 0; i--) {
78 79 80 81 82 83 84
		if (p->nodes[i] && p->locks[i]) {
			btrfs_clear_lock_blocking_rw(p->nodes[i], p->locks[i]);
			if (p->locks[i] == BTRFS_WRITE_LOCK_BLOCKING)
				p->locks[i] = BTRFS_WRITE_LOCK;
			else if (p->locks[i] == BTRFS_READ_LOCK_BLOCKING)
				p->locks[i] = BTRFS_READ_LOCK;
		}
85
	}
86 87

	if (held)
88
		btrfs_clear_lock_blocking_rw(held, held_rw);
89 90
}

C
Chris Mason 已提交
91
/* this also releases the path */
C
Chris Mason 已提交
92
void btrfs_free_path(struct btrfs_path *p)
93
{
94 95
	if (!p)
		return;
96
	btrfs_release_path(p);
C
Chris Mason 已提交
97
	kmem_cache_free(btrfs_path_cachep, p);
98 99
}

C
Chris Mason 已提交
100 101 102 103 104 105
/*
 * path release drops references on the extent buffers in the path
 * and it drops any locks held by this path
 *
 * It is safe to call this on paths that no locks or extent buffers held.
 */
106
noinline void btrfs_release_path(struct btrfs_path *p)
107 108
{
	int i;
109

C
Chris Mason 已提交
110
	for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
111
		p->slots[i] = 0;
112
		if (!p->nodes[i])
113 114
			continue;
		if (p->locks[i]) {
115
			btrfs_tree_unlock_rw(p->nodes[i], p->locks[i]);
116 117
			p->locks[i] = 0;
		}
118
		free_extent_buffer(p->nodes[i]);
119
		p->nodes[i] = NULL;
120 121 122
	}
}

C
Chris Mason 已提交
123 124 125 126 127 128 129 130 131 132
/*
 * safely gets a reference on the root node of a tree.  A lock
 * is not taken, so a concurrent writer may put a different node
 * at the root of the tree.  See btrfs_lock_root_node for the
 * looping required.
 *
 * The extent buffer returned by this has a reference taken, so
 * it won't disappear.  It may stop being the root of the tree
 * at any time because there are no locks held.
 */
133 134 135
struct extent_buffer *btrfs_root_node(struct btrfs_root *root)
{
	struct extent_buffer *eb;
136

137 138 139 140 141 142
	while (1) {
		rcu_read_lock();
		eb = rcu_dereference(root->node);

		/*
		 * RCU really hurts here, we could free up the root node because
143
		 * it was COWed but we may not get the new root node yet so do
144 145 146 147 148 149 150 151 152 153
		 * the inc_not_zero dance and if it doesn't work then
		 * synchronize_rcu and try again.
		 */
		if (atomic_inc_not_zero(&eb->refs)) {
			rcu_read_unlock();
			break;
		}
		rcu_read_unlock();
		synchronize_rcu();
	}
154 155 156
	return eb;
}

C
Chris Mason 已提交
157 158 159 160
/* loop around taking references on and locking the root node of the
 * tree until you end up with a lock on the root.  A locked buffer
 * is returned, with a reference held.
 */
161 162 163 164
struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root)
{
	struct extent_buffer *eb;

C
Chris Mason 已提交
165
	while (1) {
166 167
		eb = btrfs_root_node(root);
		btrfs_tree_lock(eb);
168
		if (eb == root->node)
169 170 171 172 173 174 175
			break;
		btrfs_tree_unlock(eb);
		free_extent_buffer(eb);
	}
	return eb;
}

176 177 178 179
/* loop around taking references on and locking the root node of the
 * tree until you end up with a lock on the root.  A locked buffer
 * is returned, with a reference held.
 */
180
struct extent_buffer *btrfs_read_lock_root_node(struct btrfs_root *root)
181 182 183 184 185 186 187 188 189 190 191 192 193 194
{
	struct extent_buffer *eb;

	while (1) {
		eb = btrfs_root_node(root);
		btrfs_tree_read_lock(eb);
		if (eb == root->node)
			break;
		btrfs_tree_read_unlock(eb);
		free_extent_buffer(eb);
	}
	return eb;
}

C
Chris Mason 已提交
195 196 197 198
/* cowonly root (everything not a reference counted cow subvolume), just get
 * put onto a simple dirty list.  transaction.c walks this to make sure they
 * get properly updated on disk.
 */
199 200
static void add_root_to_dirty_list(struct btrfs_root *root)
{
201 202
	struct btrfs_fs_info *fs_info = root->fs_info;

203 204 205 206
	if (test_bit(BTRFS_ROOT_DIRTY, &root->state) ||
	    !test_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state))
		return;

207
	spin_lock(&fs_info->trans_lock);
208 209 210 211
	if (!test_and_set_bit(BTRFS_ROOT_DIRTY, &root->state)) {
		/* Want the extent tree to be the last on the list */
		if (root->objectid == BTRFS_EXTENT_TREE_OBJECTID)
			list_move_tail(&root->dirty_list,
212
				       &fs_info->dirty_cowonly_roots);
213 214
		else
			list_move(&root->dirty_list,
215
				  &fs_info->dirty_cowonly_roots);
216
	}
217
	spin_unlock(&fs_info->trans_lock);
218 219
}

C
Chris Mason 已提交
220 221 222 223 224
/*
 * used by snapshot creation to make a copy of a root for a tree with
 * a given objectid.  The buffer with the new root node is returned in
 * cow_ret, and this func returns zero on success or a negative error code.
 */
225 226 227 228 229
int btrfs_copy_root(struct btrfs_trans_handle *trans,
		      struct btrfs_root *root,
		      struct extent_buffer *buf,
		      struct extent_buffer **cow_ret, u64 new_root_objectid)
{
230
	struct btrfs_fs_info *fs_info = root->fs_info;
231 232 233
	struct extent_buffer *cow;
	int ret = 0;
	int level;
234
	struct btrfs_disk_key disk_key;
235

236
	WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
237
		trans->transid != fs_info->running_transaction->transid);
238 239
	WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
		trans->transid != root->last_trans);
240 241

	level = btrfs_header_level(buf);
242 243 244 245
	if (level == 0)
		btrfs_item_key(buf, &disk_key, 0);
	else
		btrfs_node_key(buf, &disk_key, 0);
Z
Zheng Yan 已提交
246

247 248
	cow = btrfs_alloc_tree_block(trans, root, 0, new_root_objectid,
			&disk_key, level, buf->start, 0);
249
	if (IS_ERR(cow))
250 251
		return PTR_ERR(cow);

252
	copy_extent_buffer_full(cow, buf);
253 254
	btrfs_set_header_bytenr(cow, cow->start);
	btrfs_set_header_generation(cow, trans->transid);
255 256 257 258 259 260 261
	btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
	btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
				     BTRFS_HEADER_FLAG_RELOC);
	if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
		btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
	else
		btrfs_set_header_owner(cow, new_root_objectid);
262

263
	write_extent_buffer_fsid(cow, fs_info->fsid);
Y
Yan Zheng 已提交
264

265
	WARN_ON(btrfs_header_generation(buf) > trans->transid);
266
	if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
267
		ret = btrfs_inc_ref(trans, root, cow, 1);
268
	else
269
		ret = btrfs_inc_ref(trans, root, cow, 0);
270

271 272 273 274 275 276 277 278
	if (ret)
		return ret;

	btrfs_mark_buffer_dirty(cow);
	*cow_ret = cow;
	return 0;
}

279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295
enum mod_log_op {
	MOD_LOG_KEY_REPLACE,
	MOD_LOG_KEY_ADD,
	MOD_LOG_KEY_REMOVE,
	MOD_LOG_KEY_REMOVE_WHILE_FREEING,
	MOD_LOG_KEY_REMOVE_WHILE_MOVING,
	MOD_LOG_MOVE_KEYS,
	MOD_LOG_ROOT_REPLACE,
};

struct tree_mod_root {
	u64 logical;
	u8 level;
};

struct tree_mod_elem {
	struct rb_node node;
296
	u64 logical;
297
	u64 seq;
298 299 300 301 302 303 304 305 306 307 308 309 310
	enum mod_log_op op;

	/* this is used for MOD_LOG_KEY_* and MOD_LOG_MOVE_KEYS operations */
	int slot;

	/* this is used for MOD_LOG_KEY* and MOD_LOG_ROOT_REPLACE */
	u64 generation;

	/* those are used for op == MOD_LOG_KEY_{REPLACE,REMOVE} */
	struct btrfs_disk_key key;
	u64 blockptr;

	/* this is used for op == MOD_LOG_MOVE_KEYS */
311 312 313 314
	struct {
		int dst_slot;
		int nr_items;
	} move;
315 316 317 318 319

	/* this is used for op == MOD_LOG_ROOT_REPLACE */
	struct tree_mod_root old_root;
};

320
/*
J
Josef Bacik 已提交
321
 * Pull a new tree mod seq number for our operation.
322
 */
J
Josef Bacik 已提交
323
static inline u64 btrfs_inc_tree_mod_seq(struct btrfs_fs_info *fs_info)
324 325 326 327
{
	return atomic64_inc_return(&fs_info->tree_mod_seq);
}

328 329 330 331 332 333 334 335 336 337
/*
 * This adds a new blocker to the tree mod log's blocker list if the @elem
 * passed does not already have a sequence number set. So when a caller expects
 * to record tree modifications, it should ensure to set elem->seq to zero
 * before calling btrfs_get_tree_mod_seq.
 * Returns a fresh, unused tree log modification sequence number, even if no new
 * blocker was added.
 */
u64 btrfs_get_tree_mod_seq(struct btrfs_fs_info *fs_info,
			   struct seq_list *elem)
338
{
339
	write_lock(&fs_info->tree_mod_log_lock);
340
	spin_lock(&fs_info->tree_mod_seq_lock);
341
	if (!elem->seq) {
J
Josef Bacik 已提交
342
		elem->seq = btrfs_inc_tree_mod_seq(fs_info);
343 344
		list_add_tail(&elem->list, &fs_info->tree_mod_seq_list);
	}
345
	spin_unlock(&fs_info->tree_mod_seq_lock);
346
	write_unlock(&fs_info->tree_mod_log_lock);
347

J
Josef Bacik 已提交
348
	return elem->seq;
349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366
}

void btrfs_put_tree_mod_seq(struct btrfs_fs_info *fs_info,
			    struct seq_list *elem)
{
	struct rb_root *tm_root;
	struct rb_node *node;
	struct rb_node *next;
	struct seq_list *cur_elem;
	struct tree_mod_elem *tm;
	u64 min_seq = (u64)-1;
	u64 seq_putting = elem->seq;

	if (!seq_putting)
		return;

	spin_lock(&fs_info->tree_mod_seq_lock);
	list_del(&elem->list);
367
	elem->seq = 0;
368 369

	list_for_each_entry(cur_elem, &fs_info->tree_mod_seq_list, list) {
370
		if (cur_elem->seq < min_seq) {
371 372 373 374 375
			if (seq_putting > cur_elem->seq) {
				/*
				 * blocker with lower sequence number exists, we
				 * cannot remove anything from the log
				 */
376 377
				spin_unlock(&fs_info->tree_mod_seq_lock);
				return;
378 379 380 381
			}
			min_seq = cur_elem->seq;
		}
	}
382 383
	spin_unlock(&fs_info->tree_mod_seq_lock);

384 385 386 387
	/*
	 * anything that's lower than the lowest existing (read: blocked)
	 * sequence number can be removed from the tree.
	 */
388
	write_lock(&fs_info->tree_mod_log_lock);
389 390 391
	tm_root = &fs_info->tree_mod_log;
	for (node = rb_first(tm_root); node; node = next) {
		next = rb_next(node);
392
		tm = rb_entry(node, struct tree_mod_elem, node);
393
		if (tm->seq > min_seq)
394 395 396 397
			continue;
		rb_erase(node, tm_root);
		kfree(tm);
	}
398
	write_unlock(&fs_info->tree_mod_log_lock);
399 400 401 402
}

/*
 * key order of the log:
403
 *       node/leaf start address -> sequence
404
 *
405 406 407
 * The 'start address' is the logical address of the *new* root node
 * for root replace operations, or the logical address of the affected
 * block for all other operations.
408
 *
409
 * Note: must be called with write lock for fs_info::tree_mod_log_lock.
410 411 412 413 414 415 416 417
 */
static noinline int
__tree_mod_log_insert(struct btrfs_fs_info *fs_info, struct tree_mod_elem *tm)
{
	struct rb_root *tm_root;
	struct rb_node **new;
	struct rb_node *parent = NULL;
	struct tree_mod_elem *cur;
418

J
Josef Bacik 已提交
419
	tm->seq = btrfs_inc_tree_mod_seq(fs_info);
420 421 422 423

	tm_root = &fs_info->tree_mod_log;
	new = &tm_root->rb_node;
	while (*new) {
424
		cur = rb_entry(*new, struct tree_mod_elem, node);
425
		parent = *new;
426
		if (cur->logical < tm->logical)
427
			new = &((*new)->rb_left);
428
		else if (cur->logical > tm->logical)
429
			new = &((*new)->rb_right);
430
		else if (cur->seq < tm->seq)
431
			new = &((*new)->rb_left);
432
		else if (cur->seq > tm->seq)
433
			new = &((*new)->rb_right);
434 435
		else
			return -EEXIST;
436 437 438 439
	}

	rb_link_node(&tm->node, parent, new);
	rb_insert_color(&tm->node, tm_root);
440
	return 0;
441 442
}

443 444 445 446
/*
 * Determines if logging can be omitted. Returns 1 if it can. Otherwise, it
 * returns zero with the tree_mod_log_lock acquired. The caller must hold
 * this until all tree mod log insertions are recorded in the rb tree and then
447
 * write unlock fs_info::tree_mod_log_lock.
448
 */
449 450 451 452 453
static inline int tree_mod_dont_log(struct btrfs_fs_info *fs_info,
				    struct extent_buffer *eb) {
	smp_mb();
	if (list_empty(&(fs_info)->tree_mod_seq_list))
		return 1;
454 455
	if (eb && btrfs_header_level(eb) == 0)
		return 1;
456

457
	write_lock(&fs_info->tree_mod_log_lock);
458
	if (list_empty(&(fs_info)->tree_mod_seq_list)) {
459
		write_unlock(&fs_info->tree_mod_log_lock);
460 461 462
		return 1;
	}

463 464 465
	return 0;
}

466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481
/* Similar to tree_mod_dont_log, but doesn't acquire any locks. */
static inline int tree_mod_need_log(const struct btrfs_fs_info *fs_info,
				    struct extent_buffer *eb)
{
	smp_mb();
	if (list_empty(&(fs_info)->tree_mod_seq_list))
		return 0;
	if (eb && btrfs_header_level(eb) == 0)
		return 0;

	return 1;
}

static struct tree_mod_elem *
alloc_tree_mod_elem(struct extent_buffer *eb, int slot,
		    enum mod_log_op op, gfp_t flags)
482
{
483
	struct tree_mod_elem *tm;
484

485 486
	tm = kzalloc(sizeof(*tm), flags);
	if (!tm)
487
		return NULL;
488

489
	tm->logical = eb->start;
490 491 492 493 494 495 496
	if (op != MOD_LOG_KEY_ADD) {
		btrfs_node_key(eb, &tm->key, slot);
		tm->blockptr = btrfs_node_blockptr(eb, slot);
	}
	tm->op = op;
	tm->slot = slot;
	tm->generation = btrfs_node_ptr_generation(eb, slot);
497
	RB_CLEAR_NODE(&tm->node);
498

499
	return tm;
500 501
}

502 503
static noinline int tree_mod_log_insert_key(struct extent_buffer *eb, int slot,
		enum mod_log_op op, gfp_t flags)
504
{
505 506 507
	struct tree_mod_elem *tm;
	int ret;

508
	if (!tree_mod_need_log(eb->fs_info, eb))
509 510 511 512 513 514
		return 0;

	tm = alloc_tree_mod_elem(eb, slot, op, flags);
	if (!tm)
		return -ENOMEM;

515
	if (tree_mod_dont_log(eb->fs_info, eb)) {
516
		kfree(tm);
517
		return 0;
518 519
	}

520
	ret = __tree_mod_log_insert(eb->fs_info, tm);
521
	write_unlock(&eb->fs_info->tree_mod_log_lock);
522 523
	if (ret)
		kfree(tm);
524

525
	return ret;
526 527
}

528 529
static noinline int tree_mod_log_insert_move(struct extent_buffer *eb,
		int dst_slot, int src_slot, int nr_items)
530
{
531 532 533
	struct tree_mod_elem *tm = NULL;
	struct tree_mod_elem **tm_list = NULL;
	int ret = 0;
534
	int i;
535
	int locked = 0;
536

537
	if (!tree_mod_need_log(eb->fs_info, eb))
J
Jan Schmidt 已提交
538
		return 0;
539

540
	tm_list = kcalloc(nr_items, sizeof(struct tree_mod_elem *), GFP_NOFS);
541 542 543
	if (!tm_list)
		return -ENOMEM;

544
	tm = kzalloc(sizeof(*tm), GFP_NOFS);
545 546 547 548 549
	if (!tm) {
		ret = -ENOMEM;
		goto free_tms;
	}

550
	tm->logical = eb->start;
551 552 553 554 555 556 557
	tm->slot = src_slot;
	tm->move.dst_slot = dst_slot;
	tm->move.nr_items = nr_items;
	tm->op = MOD_LOG_MOVE_KEYS;

	for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) {
		tm_list[i] = alloc_tree_mod_elem(eb, i + dst_slot,
558
		    MOD_LOG_KEY_REMOVE_WHILE_MOVING, GFP_NOFS);
559 560 561 562 563 564
		if (!tm_list[i]) {
			ret = -ENOMEM;
			goto free_tms;
		}
	}

565
	if (tree_mod_dont_log(eb->fs_info, eb))
566 567 568
		goto free_tms;
	locked = 1;

569 570 571 572 573
	/*
	 * When we override something during the move, we log these removals.
	 * This can only happen when we move towards the beginning of the
	 * buffer, i.e. dst_slot < src_slot.
	 */
574
	for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) {
575
		ret = __tree_mod_log_insert(eb->fs_info, tm_list[i]);
576 577
		if (ret)
			goto free_tms;
578 579
	}

580
	ret = __tree_mod_log_insert(eb->fs_info, tm);
581 582
	if (ret)
		goto free_tms;
583
	write_unlock(&eb->fs_info->tree_mod_log_lock);
584
	kfree(tm_list);
J
Jan Schmidt 已提交
585

586 587 588 589
	return 0;
free_tms:
	for (i = 0; i < nr_items; i++) {
		if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node))
590
			rb_erase(&tm_list[i]->node, &eb->fs_info->tree_mod_log);
591 592 593
		kfree(tm_list[i]);
	}
	if (locked)
594
		write_unlock(&eb->fs_info->tree_mod_log_lock);
595 596
	kfree(tm_list);
	kfree(tm);
597

598
	return ret;
599 600
}

601 602 603 604
static inline int
__tree_mod_log_free_eb(struct btrfs_fs_info *fs_info,
		       struct tree_mod_elem **tm_list,
		       int nritems)
605
{
606
	int i, j;
607 608 609
	int ret;

	for (i = nritems - 1; i >= 0; i--) {
610 611 612 613 614 615 616
		ret = __tree_mod_log_insert(fs_info, tm_list[i]);
		if (ret) {
			for (j = nritems - 1; j > i; j--)
				rb_erase(&tm_list[j]->node,
					 &fs_info->tree_mod_log);
			return ret;
		}
617
	}
618 619

	return 0;
620 621
}

622 623
static noinline int tree_mod_log_insert_root(struct extent_buffer *old_root,
			 struct extent_buffer *new_root, int log_removal)
624
{
625
	struct btrfs_fs_info *fs_info = old_root->fs_info;
626 627 628 629 630
	struct tree_mod_elem *tm = NULL;
	struct tree_mod_elem **tm_list = NULL;
	int nritems = 0;
	int ret = 0;
	int i;
631

632
	if (!tree_mod_need_log(fs_info, NULL))
633 634
		return 0;

635 636
	if (log_removal && btrfs_header_level(old_root) > 0) {
		nritems = btrfs_header_nritems(old_root);
637
		tm_list = kcalloc(nritems, sizeof(struct tree_mod_elem *),
638
				  GFP_NOFS);
639 640 641 642 643 644
		if (!tm_list) {
			ret = -ENOMEM;
			goto free_tms;
		}
		for (i = 0; i < nritems; i++) {
			tm_list[i] = alloc_tree_mod_elem(old_root, i,
645
			    MOD_LOG_KEY_REMOVE_WHILE_FREEING, GFP_NOFS);
646 647 648 649 650 651
			if (!tm_list[i]) {
				ret = -ENOMEM;
				goto free_tms;
			}
		}
	}
652

653
	tm = kzalloc(sizeof(*tm), GFP_NOFS);
654 655 656 657
	if (!tm) {
		ret = -ENOMEM;
		goto free_tms;
	}
658

659
	tm->logical = new_root->start;
660 661 662 663 664
	tm->old_root.logical = old_root->start;
	tm->old_root.level = btrfs_header_level(old_root);
	tm->generation = btrfs_header_generation(old_root);
	tm->op = MOD_LOG_ROOT_REPLACE;

665 666 667 668 669 670 671 672
	if (tree_mod_dont_log(fs_info, NULL))
		goto free_tms;

	if (tm_list)
		ret = __tree_mod_log_free_eb(fs_info, tm_list, nritems);
	if (!ret)
		ret = __tree_mod_log_insert(fs_info, tm);

673
	write_unlock(&fs_info->tree_mod_log_lock);
674 675 676 677 678 679 680 681 682 683 684 685 686 687 688
	if (ret)
		goto free_tms;
	kfree(tm_list);

	return ret;

free_tms:
	if (tm_list) {
		for (i = 0; i < nritems; i++)
			kfree(tm_list[i]);
		kfree(tm_list);
	}
	kfree(tm);

	return ret;
689 690 691 692 693 694 695 696 697 698 699
}

static struct tree_mod_elem *
__tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq,
		      int smallest)
{
	struct rb_root *tm_root;
	struct rb_node *node;
	struct tree_mod_elem *cur = NULL;
	struct tree_mod_elem *found = NULL;

700
	read_lock(&fs_info->tree_mod_log_lock);
701 702 703
	tm_root = &fs_info->tree_mod_log;
	node = tm_root->rb_node;
	while (node) {
704
		cur = rb_entry(node, struct tree_mod_elem, node);
705
		if (cur->logical < start) {
706
			node = node->rb_left;
707
		} else if (cur->logical > start) {
708
			node = node->rb_right;
709
		} else if (cur->seq < min_seq) {
710 711 712 713
			node = node->rb_left;
		} else if (!smallest) {
			/* we want the node with the highest seq */
			if (found)
714
				BUG_ON(found->seq > cur->seq);
715 716
			found = cur;
			node = node->rb_left;
717
		} else if (cur->seq > min_seq) {
718 719
			/* we want the node with the smallest seq */
			if (found)
720
				BUG_ON(found->seq < cur->seq);
721 722 723 724 725 726 727
			found = cur;
			node = node->rb_right;
		} else {
			found = cur;
			break;
		}
	}
728
	read_unlock(&fs_info->tree_mod_log_lock);
729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755

	return found;
}

/*
 * this returns the element from the log with the smallest time sequence
 * value that's in the log (the oldest log item). any element with a time
 * sequence lower than min_seq will be ignored.
 */
static struct tree_mod_elem *
tree_mod_log_search_oldest(struct btrfs_fs_info *fs_info, u64 start,
			   u64 min_seq)
{
	return __tree_mod_log_search(fs_info, start, min_seq, 1);
}

/*
 * this returns the element from the log with the largest time sequence
 * value that's in the log (the most recent log item). any element with
 * a time sequence lower than min_seq will be ignored.
 */
static struct tree_mod_elem *
tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq)
{
	return __tree_mod_log_search(fs_info, start, min_seq, 0);
}

756
static noinline int
757 758
tree_mod_log_eb_copy(struct btrfs_fs_info *fs_info, struct extent_buffer *dst,
		     struct extent_buffer *src, unsigned long dst_offset,
759
		     unsigned long src_offset, int nr_items)
760
{
761 762 763
	int ret = 0;
	struct tree_mod_elem **tm_list = NULL;
	struct tree_mod_elem **tm_list_add, **tm_list_rem;
764
	int i;
765
	int locked = 0;
766

767 768
	if (!tree_mod_need_log(fs_info, NULL))
		return 0;
769

770
	if (btrfs_header_level(dst) == 0 && btrfs_header_level(src) == 0)
771 772
		return 0;

773
	tm_list = kcalloc(nr_items * 2, sizeof(struct tree_mod_elem *),
774 775 776
			  GFP_NOFS);
	if (!tm_list)
		return -ENOMEM;
777

778 779
	tm_list_add = tm_list;
	tm_list_rem = tm_list + nr_items;
780
	for (i = 0; i < nr_items; i++) {
781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806
		tm_list_rem[i] = alloc_tree_mod_elem(src, i + src_offset,
		    MOD_LOG_KEY_REMOVE, GFP_NOFS);
		if (!tm_list_rem[i]) {
			ret = -ENOMEM;
			goto free_tms;
		}

		tm_list_add[i] = alloc_tree_mod_elem(dst, i + dst_offset,
		    MOD_LOG_KEY_ADD, GFP_NOFS);
		if (!tm_list_add[i]) {
			ret = -ENOMEM;
			goto free_tms;
		}
	}

	if (tree_mod_dont_log(fs_info, NULL))
		goto free_tms;
	locked = 1;

	for (i = 0; i < nr_items; i++) {
		ret = __tree_mod_log_insert(fs_info, tm_list_rem[i]);
		if (ret)
			goto free_tms;
		ret = __tree_mod_log_insert(fs_info, tm_list_add[i]);
		if (ret)
			goto free_tms;
807
	}
808

809
	write_unlock(&fs_info->tree_mod_log_lock);
810 811 812 813 814 815 816 817 818 819 820
	kfree(tm_list);

	return 0;

free_tms:
	for (i = 0; i < nr_items * 2; i++) {
		if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node))
			rb_erase(&tm_list[i]->node, &fs_info->tree_mod_log);
		kfree(tm_list[i]);
	}
	if (locked)
821
		write_unlock(&fs_info->tree_mod_log_lock);
822 823 824
	kfree(tm_list);

	return ret;
825 826
}

827
static noinline int tree_mod_log_free_eb(struct extent_buffer *eb)
828
{
829 830 831 832 833 834 835 836
	struct tree_mod_elem **tm_list = NULL;
	int nritems = 0;
	int i;
	int ret = 0;

	if (btrfs_header_level(eb) == 0)
		return 0;

837
	if (!tree_mod_need_log(eb->fs_info, NULL))
838 839 840
		return 0;

	nritems = btrfs_header_nritems(eb);
841
	tm_list = kcalloc(nritems, sizeof(struct tree_mod_elem *), GFP_NOFS);
842 843 844 845 846 847 848 849 850 851 852 853
	if (!tm_list)
		return -ENOMEM;

	for (i = 0; i < nritems; i++) {
		tm_list[i] = alloc_tree_mod_elem(eb, i,
		    MOD_LOG_KEY_REMOVE_WHILE_FREEING, GFP_NOFS);
		if (!tm_list[i]) {
			ret = -ENOMEM;
			goto free_tms;
		}
	}

854
	if (tree_mod_dont_log(eb->fs_info, eb))
855 856
		goto free_tms;

857
	ret = __tree_mod_log_free_eb(eb->fs_info, tm_list, nritems);
858
	write_unlock(&eb->fs_info->tree_mod_log_lock);
859 860 861 862 863 864 865 866 867 868 869 870
	if (ret)
		goto free_tms;
	kfree(tm_list);

	return 0;

free_tms:
	for (i = 0; i < nritems; i++)
		kfree(tm_list[i]);
	kfree(tm_list);

	return ret;
871 872
}

873 874 875 876 877 878 879
/*
 * check if the tree block can be shared by multiple trees
 */
int btrfs_block_can_be_shared(struct btrfs_root *root,
			      struct extent_buffer *buf)
{
	/*
880
	 * Tree blocks not in reference counted trees and tree roots
881 882 883 884
	 * are never shared. If a block was allocated after the last
	 * snapshot and the block was not allocated by tree relocation,
	 * we know the block is not shared.
	 */
885
	if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
886 887 888 889 890
	    buf != root->node && buf != root->commit_root &&
	    (btrfs_header_generation(buf) <=
	     btrfs_root_last_snapshot(&root->root_item) ||
	     btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)))
		return 1;
891

892 893 894 895 896 897
	return 0;
}

static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans,
				       struct btrfs_root *root,
				       struct extent_buffer *buf,
898 899
				       struct extent_buffer *cow,
				       int *last_ref)
900
{
901
	struct btrfs_fs_info *fs_info = root->fs_info;
902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925
	u64 refs;
	u64 owner;
	u64 flags;
	u64 new_flags = 0;
	int ret;

	/*
	 * Backrefs update rules:
	 *
	 * Always use full backrefs for extent pointers in tree block
	 * allocated by tree relocation.
	 *
	 * If a shared tree block is no longer referenced by its owner
	 * tree (btrfs_header_owner(buf) == root->root_key.objectid),
	 * use full backrefs for extent pointers in tree block.
	 *
	 * If a tree block is been relocating
	 * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID),
	 * use full backrefs for extent pointers in tree block.
	 * The reason for this is some operations (such as drop tree)
	 * are only allowed for blocks use full backrefs.
	 */

	if (btrfs_block_can_be_shared(root, buf)) {
926
		ret = btrfs_lookup_extent_info(trans, fs_info, buf->start,
927 928
					       btrfs_header_level(buf), 1,
					       &refs, &flags);
929 930
		if (ret)
			return ret;
931 932
		if (refs == 0) {
			ret = -EROFS;
933
			btrfs_handle_fs_error(fs_info, ret, NULL);
934 935
			return ret;
		}
936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952
	} else {
		refs = 1;
		if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
		    btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
			flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
		else
			flags = 0;
	}

	owner = btrfs_header_owner(buf);
	BUG_ON(owner == BTRFS_TREE_RELOC_OBJECTID &&
	       !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));

	if (refs > 1) {
		if ((owner == root->root_key.objectid ||
		     root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) &&
		    !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) {
953
			ret = btrfs_inc_ref(trans, root, buf, 1);
954 955
			if (ret)
				return ret;
956 957 958

			if (root->root_key.objectid ==
			    BTRFS_TREE_RELOC_OBJECTID) {
959
				ret = btrfs_dec_ref(trans, root, buf, 0);
960 961
				if (ret)
					return ret;
962
				ret = btrfs_inc_ref(trans, root, cow, 1);
963 964
				if (ret)
					return ret;
965 966 967 968 969 970
			}
			new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
		} else {

			if (root->root_key.objectid ==
			    BTRFS_TREE_RELOC_OBJECTID)
971
				ret = btrfs_inc_ref(trans, root, cow, 1);
972
			else
973
				ret = btrfs_inc_ref(trans, root, cow, 0);
974 975
			if (ret)
				return ret;
976 977
		}
		if (new_flags != 0) {
978 979
			int level = btrfs_header_level(buf);

980
			ret = btrfs_set_disk_extent_flags(trans, fs_info,
981 982
							  buf->start,
							  buf->len,
983
							  new_flags, level, 0);
984 985
			if (ret)
				return ret;
986 987 988 989 990
		}
	} else {
		if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
			if (root->root_key.objectid ==
			    BTRFS_TREE_RELOC_OBJECTID)
991
				ret = btrfs_inc_ref(trans, root, cow, 1);
992
			else
993
				ret = btrfs_inc_ref(trans, root, cow, 0);
994 995
			if (ret)
				return ret;
996
			ret = btrfs_dec_ref(trans, root, buf, 1);
997 998
			if (ret)
				return ret;
999
		}
1000
		clean_tree_block(fs_info, buf);
1001
		*last_ref = 1;
1002 1003 1004 1005
	}
	return 0;
}

C
Chris Mason 已提交
1006
/*
C
Chris Mason 已提交
1007 1008 1009 1010
 * does the dirty work in cow of a single block.  The parent block (if
 * supplied) is updated to point to the new cow copy.  The new buffer is marked
 * dirty and returned locked.  If you modify the block it needs to be marked
 * dirty again.
C
Chris Mason 已提交
1011 1012 1013
 *
 * search_start -- an allocation hint for the new block
 *
C
Chris Mason 已提交
1014 1015 1016
 * empty_size -- a hint that you plan on doing more cow.  This is the size in
 * bytes the allocator should try to find free next to the block it returns.
 * This is just a hint and may be ignored by the allocator.
C
Chris Mason 已提交
1017
 */
C
Chris Mason 已提交
1018
static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans,
1019 1020 1021 1022
			     struct btrfs_root *root,
			     struct extent_buffer *buf,
			     struct extent_buffer *parent, int parent_slot,
			     struct extent_buffer **cow_ret,
1023
			     u64 search_start, u64 empty_size)
C
Chris Mason 已提交
1024
{
1025
	struct btrfs_fs_info *fs_info = root->fs_info;
1026
	struct btrfs_disk_key disk_key;
1027
	struct extent_buffer *cow;
1028
	int level, ret;
1029
	int last_ref = 0;
1030
	int unlock_orig = 0;
1031
	u64 parent_start = 0;
1032

1033 1034 1035
	if (*cow_ret == buf)
		unlock_orig = 1;

1036
	btrfs_assert_tree_locked(buf);
1037

1038
	WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
1039
		trans->transid != fs_info->running_transaction->transid);
1040 1041
	WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
		trans->transid != root->last_trans);
1042

1043
	level = btrfs_header_level(buf);
Z
Zheng Yan 已提交
1044

1045 1046 1047 1048 1049
	if (level == 0)
		btrfs_item_key(buf, &disk_key, 0);
	else
		btrfs_node_key(buf, &disk_key, 0);

1050 1051
	if ((root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) && parent)
		parent_start = parent->start;
1052

1053 1054 1055
	cow = btrfs_alloc_tree_block(trans, root, parent_start,
			root->root_key.objectid, &disk_key, level,
			search_start, empty_size);
1056 1057
	if (IS_ERR(cow))
		return PTR_ERR(cow);
1058

1059 1060
	/* cow is set to blocking by btrfs_init_new_buffer */

1061
	copy_extent_buffer_full(cow, buf);
1062
	btrfs_set_header_bytenr(cow, cow->start);
1063
	btrfs_set_header_generation(cow, trans->transid);
1064 1065 1066 1067 1068 1069 1070
	btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
	btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
				     BTRFS_HEADER_FLAG_RELOC);
	if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
		btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
	else
		btrfs_set_header_owner(cow, root->root_key.objectid);
1071

1072
	write_extent_buffer_fsid(cow, fs_info->fsid);
Y
Yan Zheng 已提交
1073

1074
	ret = update_ref_for_cow(trans, root, buf, cow, &last_ref);
1075
	if (ret) {
1076
		btrfs_abort_transaction(trans, ret);
1077 1078
		return ret;
	}
Z
Zheng Yan 已提交
1079

1080
	if (test_bit(BTRFS_ROOT_REF_COWS, &root->state)) {
1081
		ret = btrfs_reloc_cow_block(trans, root, buf, cow);
1082
		if (ret) {
1083
			btrfs_abort_transaction(trans, ret);
1084
			return ret;
1085
		}
1086
	}
1087

C
Chris Mason 已提交
1088
	if (buf == root->node) {
1089
		WARN_ON(parent && parent != buf);
1090 1091 1092
		if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
		    btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
			parent_start = buf->start;
1093

1094
		extent_buffer_get(cow);
1095 1096
		ret = tree_mod_log_insert_root(root->node, cow, 1);
		BUG_ON(ret < 0);
1097
		rcu_assign_pointer(root->node, cow);
1098

1099
		btrfs_free_tree_block(trans, root, buf, parent_start,
1100
				      last_ref);
1101
		free_extent_buffer(buf);
1102
		add_root_to_dirty_list(root);
C
Chris Mason 已提交
1103
	} else {
1104
		WARN_ON(trans->transid != btrfs_header_generation(parent));
1105
		tree_mod_log_insert_key(parent, parent_slot,
1106
					MOD_LOG_KEY_REPLACE, GFP_NOFS);
1107
		btrfs_set_node_blockptr(parent, parent_slot,
1108
					cow->start);
1109 1110
		btrfs_set_node_ptr_generation(parent, parent_slot,
					      trans->transid);
C
Chris Mason 已提交
1111
		btrfs_mark_buffer_dirty(parent);
1112
		if (last_ref) {
1113
			ret = tree_mod_log_free_eb(buf);
1114
			if (ret) {
1115
				btrfs_abort_transaction(trans, ret);
1116 1117 1118
				return ret;
			}
		}
1119
		btrfs_free_tree_block(trans, root, buf, parent_start,
1120
				      last_ref);
C
Chris Mason 已提交
1121
	}
1122 1123
	if (unlock_orig)
		btrfs_tree_unlock(buf);
1124
	free_extent_buffer_stale(buf);
C
Chris Mason 已提交
1125
	btrfs_mark_buffer_dirty(cow);
C
Chris Mason 已提交
1126
	*cow_ret = cow;
C
Chris Mason 已提交
1127 1128 1129
	return 0;
}

J
Jan Schmidt 已提交
1130 1131 1132 1133
/*
 * returns the logical address of the oldest predecessor of the given root.
 * entries older than time_seq are ignored.
 */
1134 1135
static struct tree_mod_elem *__tree_mod_log_oldest_root(
		struct extent_buffer *eb_root, u64 time_seq)
J
Jan Schmidt 已提交
1136 1137 1138
{
	struct tree_mod_elem *tm;
	struct tree_mod_elem *found = NULL;
1139
	u64 root_logical = eb_root->start;
J
Jan Schmidt 已提交
1140 1141 1142
	int looped = 0;

	if (!time_seq)
1143
		return NULL;
J
Jan Schmidt 已提交
1144 1145

	/*
1146 1147 1148 1149
	 * the very last operation that's logged for a root is the
	 * replacement operation (if it is replaced at all). this has
	 * the logical address of the *new* root, making it the very
	 * first operation that's logged for this root.
J
Jan Schmidt 已提交
1150 1151
	 */
	while (1) {
1152
		tm = tree_mod_log_search_oldest(eb_root->fs_info, root_logical,
J
Jan Schmidt 已提交
1153 1154
						time_seq);
		if (!looped && !tm)
1155
			return NULL;
J
Jan Schmidt 已提交
1156
		/*
1157 1158 1159
		 * if there are no tree operation for the oldest root, we simply
		 * return it. this should only happen if that (old) root is at
		 * level 0.
J
Jan Schmidt 已提交
1160
		 */
1161 1162
		if (!tm)
			break;
J
Jan Schmidt 已提交
1163

1164 1165 1166 1167 1168
		/*
		 * if there's an operation that's not a root replacement, we
		 * found the oldest version of our root. normally, we'll find a
		 * MOD_LOG_KEY_REMOVE_WHILE_FREEING operation here.
		 */
J
Jan Schmidt 已提交
1169 1170 1171 1172 1173 1174 1175 1176
		if (tm->op != MOD_LOG_ROOT_REPLACE)
			break;

		found = tm;
		root_logical = tm->old_root.logical;
		looped = 1;
	}

1177 1178 1179 1180
	/* if there's no old root to return, return what we found instead */
	if (!found)
		found = tm;

J
Jan Schmidt 已提交
1181 1182 1183 1184 1185
	return found;
}

/*
 * tm is a pointer to the first operation to rewind within eb. then, all
1186
 * previous operations will be rewound (until we reach something older than
J
Jan Schmidt 已提交
1187 1188 1189
 * time_seq).
 */
static void
1190 1191
__tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct extent_buffer *eb,
		      u64 time_seq, struct tree_mod_elem *first_tm)
J
Jan Schmidt 已提交
1192 1193 1194 1195 1196 1197 1198 1199 1200
{
	u32 n;
	struct rb_node *next;
	struct tree_mod_elem *tm = first_tm;
	unsigned long o_dst;
	unsigned long o_src;
	unsigned long p_size = sizeof(struct btrfs_key_ptr);

	n = btrfs_header_nritems(eb);
1201
	read_lock(&fs_info->tree_mod_log_lock);
1202
	while (tm && tm->seq >= time_seq) {
J
Jan Schmidt 已提交
1203 1204 1205 1206 1207 1208 1209 1210
		/*
		 * all the operations are recorded with the operator used for
		 * the modification. as we're going backwards, we do the
		 * opposite of each operation here.
		 */
		switch (tm->op) {
		case MOD_LOG_KEY_REMOVE_WHILE_FREEING:
			BUG_ON(tm->slot < n);
1211
			/* Fallthrough */
1212
		case MOD_LOG_KEY_REMOVE_WHILE_MOVING:
1213
		case MOD_LOG_KEY_REMOVE:
J
Jan Schmidt 已提交
1214 1215 1216 1217
			btrfs_set_node_key(eb, &tm->key, tm->slot);
			btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
			btrfs_set_node_ptr_generation(eb, tm->slot,
						      tm->generation);
1218
			n++;
J
Jan Schmidt 已提交
1219 1220 1221 1222 1223 1224 1225 1226 1227
			break;
		case MOD_LOG_KEY_REPLACE:
			BUG_ON(tm->slot >= n);
			btrfs_set_node_key(eb, &tm->key, tm->slot);
			btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
			btrfs_set_node_ptr_generation(eb, tm->slot,
						      tm->generation);
			break;
		case MOD_LOG_KEY_ADD:
1228
			/* if a move operation is needed it's in the log */
J
Jan Schmidt 已提交
1229 1230 1231
			n--;
			break;
		case MOD_LOG_MOVE_KEYS:
1232 1233 1234
			o_dst = btrfs_node_key_ptr_offset(tm->slot);
			o_src = btrfs_node_key_ptr_offset(tm->move.dst_slot);
			memmove_extent_buffer(eb, o_dst, o_src,
J
Jan Schmidt 已提交
1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251
					      tm->move.nr_items * p_size);
			break;
		case MOD_LOG_ROOT_REPLACE:
			/*
			 * this operation is special. for roots, this must be
			 * handled explicitly before rewinding.
			 * for non-roots, this operation may exist if the node
			 * was a root: root A -> child B; then A gets empty and
			 * B is promoted to the new root. in the mod log, we'll
			 * have a root-replace operation for B, a tree block
			 * that is no root. we simply ignore that operation.
			 */
			break;
		}
		next = rb_next(&tm->node);
		if (!next)
			break;
1252
		tm = rb_entry(next, struct tree_mod_elem, node);
1253
		if (tm->logical != first_tm->logical)
J
Jan Schmidt 已提交
1254 1255
			break;
	}
1256
	read_unlock(&fs_info->tree_mod_log_lock);
J
Jan Schmidt 已提交
1257 1258 1259
	btrfs_set_header_nritems(eb, n);
}

1260
/*
1261
 * Called with eb read locked. If the buffer cannot be rewound, the same buffer
1262 1263 1264 1265 1266
 * is returned. If rewind operations happen, a fresh buffer is returned. The
 * returned buffer is always read-locked. If the returned buffer is not the
 * input buffer, the lock on the input buffer is released and the input buffer
 * is freed (its refcount is decremented).
 */
J
Jan Schmidt 已提交
1267
static struct extent_buffer *
1268 1269
tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct btrfs_path *path,
		    struct extent_buffer *eb, u64 time_seq)
J
Jan Schmidt 已提交
1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283
{
	struct extent_buffer *eb_rewin;
	struct tree_mod_elem *tm;

	if (!time_seq)
		return eb;

	if (btrfs_header_level(eb) == 0)
		return eb;

	tm = tree_mod_log_search(fs_info, eb->start, time_seq);
	if (!tm)
		return eb;

1284 1285 1286
	btrfs_set_path_blocking(path);
	btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);

J
Jan Schmidt 已提交
1287 1288
	if (tm->op == MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
		BUG_ON(tm->slot != 0);
1289
		eb_rewin = alloc_dummy_extent_buffer(fs_info, eb->start);
1290
		if (!eb_rewin) {
1291
			btrfs_tree_read_unlock_blocking(eb);
1292 1293 1294
			free_extent_buffer(eb);
			return NULL;
		}
J
Jan Schmidt 已提交
1295 1296 1297 1298
		btrfs_set_header_bytenr(eb_rewin, eb->start);
		btrfs_set_header_backref_rev(eb_rewin,
					     btrfs_header_backref_rev(eb));
		btrfs_set_header_owner(eb_rewin, btrfs_header_owner(eb));
1299
		btrfs_set_header_level(eb_rewin, btrfs_header_level(eb));
J
Jan Schmidt 已提交
1300 1301
	} else {
		eb_rewin = btrfs_clone_extent_buffer(eb);
1302
		if (!eb_rewin) {
1303
			btrfs_tree_read_unlock_blocking(eb);
1304 1305 1306
			free_extent_buffer(eb);
			return NULL;
		}
J
Jan Schmidt 已提交
1307 1308
	}

1309 1310
	btrfs_clear_path_blocking(path, NULL, BTRFS_READ_LOCK);
	btrfs_tree_read_unlock_blocking(eb);
J
Jan Schmidt 已提交
1311 1312
	free_extent_buffer(eb);

1313 1314
	extent_buffer_get(eb_rewin);
	btrfs_tree_read_lock(eb_rewin);
1315
	__tree_mod_log_rewind(fs_info, eb_rewin, time_seq, tm);
1316
	WARN_ON(btrfs_header_nritems(eb_rewin) >
1317
		BTRFS_NODEPTRS_PER_BLOCK(fs_info));
J
Jan Schmidt 已提交
1318 1319 1320 1321

	return eb_rewin;
}

1322 1323 1324 1325 1326 1327 1328
/*
 * get_old_root() rewinds the state of @root's root node to the given @time_seq
 * value. If there are no changes, the current root->root_node is returned. If
 * anything changed in between, there's a fresh buffer allocated on which the
 * rewind operations are done. In any case, the returned buffer is read locked.
 * Returns NULL on error (with no locks held).
 */
J
Jan Schmidt 已提交
1329 1330 1331
static inline struct extent_buffer *
get_old_root(struct btrfs_root *root, u64 time_seq)
{
1332
	struct btrfs_fs_info *fs_info = root->fs_info;
J
Jan Schmidt 已提交
1333
	struct tree_mod_elem *tm;
1334 1335
	struct extent_buffer *eb = NULL;
	struct extent_buffer *eb_root;
1336
	struct extent_buffer *old;
1337
	struct tree_mod_root *old_root = NULL;
1338
	u64 old_generation = 0;
1339
	u64 logical;
1340
	int level;
J
Jan Schmidt 已提交
1341

1342
	eb_root = btrfs_read_lock_root_node(root);
1343
	tm = __tree_mod_log_oldest_root(eb_root, time_seq);
J
Jan Schmidt 已提交
1344
	if (!tm)
1345
		return eb_root;
J
Jan Schmidt 已提交
1346

1347 1348 1349 1350
	if (tm->op == MOD_LOG_ROOT_REPLACE) {
		old_root = &tm->old_root;
		old_generation = tm->generation;
		logical = old_root->logical;
1351
		level = old_root->level;
1352
	} else {
1353
		logical = eb_root->start;
1354
		level = btrfs_header_level(eb_root);
1355
	}
J
Jan Schmidt 已提交
1356

1357
	tm = tree_mod_log_search(fs_info, logical, time_seq);
1358
	if (old_root && tm && tm->op != MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
1359 1360
		btrfs_tree_read_unlock(eb_root);
		free_extent_buffer(eb_root);
1361
		old = read_tree_block(fs_info, logical, 0, level, NULL);
1362 1363 1364
		if (WARN_ON(IS_ERR(old) || !extent_buffer_uptodate(old))) {
			if (!IS_ERR(old))
				free_extent_buffer(old);
1365 1366 1367
			btrfs_warn(fs_info,
				   "failed to read tree block %llu from get_old_root",
				   logical);
1368
		} else {
1369 1370
			eb = btrfs_clone_extent_buffer(old);
			free_extent_buffer(old);
1371 1372
		}
	} else if (old_root) {
1373 1374
		btrfs_tree_read_unlock(eb_root);
		free_extent_buffer(eb_root);
1375
		eb = alloc_dummy_extent_buffer(fs_info, logical);
1376
	} else {
1377
		btrfs_set_lock_blocking_rw(eb_root, BTRFS_READ_LOCK);
1378
		eb = btrfs_clone_extent_buffer(eb_root);
1379
		btrfs_tree_read_unlock_blocking(eb_root);
1380
		free_extent_buffer(eb_root);
1381 1382
	}

1383 1384
	if (!eb)
		return NULL;
1385
	extent_buffer_get(eb);
1386
	btrfs_tree_read_lock(eb);
1387
	if (old_root) {
J
Jan Schmidt 已提交
1388 1389
		btrfs_set_header_bytenr(eb, eb->start);
		btrfs_set_header_backref_rev(eb, BTRFS_MIXED_BACKREF_REV);
1390
		btrfs_set_header_owner(eb, btrfs_header_owner(eb_root));
1391 1392
		btrfs_set_header_level(eb, old_root->level);
		btrfs_set_header_generation(eb, old_generation);
J
Jan Schmidt 已提交
1393
	}
1394
	if (tm)
1395
		__tree_mod_log_rewind(fs_info, eb, time_seq, tm);
1396 1397
	else
		WARN_ON(btrfs_header_level(eb) != 0);
1398
	WARN_ON(btrfs_header_nritems(eb) > BTRFS_NODEPTRS_PER_BLOCK(fs_info));
J
Jan Schmidt 已提交
1399 1400 1401 1402

	return eb;
}

J
Jan Schmidt 已提交
1403 1404 1405 1406
int btrfs_old_root_level(struct btrfs_root *root, u64 time_seq)
{
	struct tree_mod_elem *tm;
	int level;
1407
	struct extent_buffer *eb_root = btrfs_root_node(root);
J
Jan Schmidt 已提交
1408

1409
	tm = __tree_mod_log_oldest_root(eb_root, time_seq);
J
Jan Schmidt 已提交
1410 1411 1412
	if (tm && tm->op == MOD_LOG_ROOT_REPLACE) {
		level = tm->old_root.level;
	} else {
1413
		level = btrfs_header_level(eb_root);
J
Jan Schmidt 已提交
1414
	}
1415
	free_extent_buffer(eb_root);
J
Jan Schmidt 已提交
1416 1417 1418 1419

	return level;
}

1420 1421 1422 1423
static inline int should_cow_block(struct btrfs_trans_handle *trans,
				   struct btrfs_root *root,
				   struct extent_buffer *buf)
{
1424
	if (btrfs_is_testing(root->fs_info))
1425
		return 0;
1426

1427 1428
	/* Ensure we can see the FORCE_COW bit */
	smp_mb__before_atomic();
1429 1430 1431 1432 1433 1434 1435 1436

	/*
	 * We do not need to cow a block if
	 * 1) this block is not created or changed in this transaction;
	 * 2) this block does not belong to TREE_RELOC tree;
	 * 3) the root is not forced COW.
	 *
	 * What is forced COW:
1437
	 *    when we create snapshot during committing the transaction,
1438 1439 1440
	 *    after we've finished coping src root, we must COW the shared
	 *    block to ensure the metadata consistency.
	 */
1441 1442 1443
	if (btrfs_header_generation(buf) == trans->transid &&
	    !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) &&
	    !(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
1444
	      btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)) &&
1445
	    !test_bit(BTRFS_ROOT_FORCE_COW, &root->state))
1446 1447 1448 1449
		return 0;
	return 1;
}

C
Chris Mason 已提交
1450 1451
/*
 * cows a single block, see __btrfs_cow_block for the real work.
1452
 * This version of it has extra checks so that a block isn't COWed more than
C
Chris Mason 已提交
1453 1454
 * once per transaction, as long as it hasn't been written yet
 */
C
Chris Mason 已提交
1455
noinline int btrfs_cow_block(struct btrfs_trans_handle *trans,
1456 1457
		    struct btrfs_root *root, struct extent_buffer *buf,
		    struct extent_buffer *parent, int parent_slot,
1458
		    struct extent_buffer **cow_ret)
1459
{
1460
	struct btrfs_fs_info *fs_info = root->fs_info;
1461
	u64 search_start;
1462
	int ret;
C
Chris Mason 已提交
1463

1464
	if (trans->transaction != fs_info->running_transaction)
J
Julia Lawall 已提交
1465
		WARN(1, KERN_CRIT "trans %llu running %llu\n",
1466
		       trans->transid,
1467
		       fs_info->running_transaction->transid);
J
Julia Lawall 已提交
1468

1469
	if (trans->transid != fs_info->generation)
J
Julia Lawall 已提交
1470
		WARN(1, KERN_CRIT "trans %llu running %llu\n",
1471
		       trans->transid, fs_info->generation);
C
Chris Mason 已提交
1472

1473
	if (!should_cow_block(trans, root, buf)) {
1474
		trans->dirty = true;
1475 1476 1477
		*cow_ret = buf;
		return 0;
	}
1478

1479
	search_start = buf->start & ~((u64)SZ_1G - 1);
1480 1481 1482 1483 1484

	if (parent)
		btrfs_set_lock_blocking(parent);
	btrfs_set_lock_blocking(buf);

1485
	ret = __btrfs_cow_block(trans, root, buf, parent,
1486
				 parent_slot, cow_ret, search_start, 0);
1487 1488 1489

	trace_btrfs_cow_block(root, buf, *cow_ret);

1490
	return ret;
1491 1492
}

C
Chris Mason 已提交
1493 1494 1495 1496
/*
 * helper function for defrag to decide if two blocks pointed to by a
 * node are actually close by
 */
1497
static int close_blocks(u64 blocknr, u64 other, u32 blocksize)
1498
{
1499
	if (blocknr < other && other - (blocknr + blocksize) < 32768)
1500
		return 1;
1501
	if (blocknr > other && blocknr - (other + blocksize) < 32768)
1502 1503 1504 1505
		return 1;
	return 0;
}

1506 1507 1508
/*
 * compare two keys in a memcmp fashion
 */
1509 1510
static int comp_keys(const struct btrfs_disk_key *disk,
		     const struct btrfs_key *k2)
1511 1512 1513 1514 1515
{
	struct btrfs_key k1;

	btrfs_disk_key_to_cpu(&k1, disk);

1516
	return btrfs_comp_cpu_keys(&k1, k2);
1517 1518
}

1519 1520 1521
/*
 * same as comp_keys only with two btrfs_key's
 */
1522
int btrfs_comp_cpu_keys(const struct btrfs_key *k1, const struct btrfs_key *k2)
1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537
{
	if (k1->objectid > k2->objectid)
		return 1;
	if (k1->objectid < k2->objectid)
		return -1;
	if (k1->type > k2->type)
		return 1;
	if (k1->type < k2->type)
		return -1;
	if (k1->offset > k2->offset)
		return 1;
	if (k1->offset < k2->offset)
		return -1;
	return 0;
}
1538

C
Chris Mason 已提交
1539 1540 1541 1542 1543
/*
 * this is used by the defrag code to go through all the
 * leaves pointed to by a node and reallocate them so that
 * disk order is close to key order
 */
1544
int btrfs_realloc_node(struct btrfs_trans_handle *trans,
1545
		       struct btrfs_root *root, struct extent_buffer *parent,
1546
		       int start_slot, u64 *last_ret,
1547
		       struct btrfs_key *progress)
1548
{
1549
	struct btrfs_fs_info *fs_info = root->fs_info;
1550
	struct extent_buffer *cur;
1551
	u64 blocknr;
1552
	u64 gen;
1553 1554
	u64 search_start = *last_ret;
	u64 last_block = 0;
1555 1556 1557 1558 1559
	u64 other;
	u32 parent_nritems;
	int end_slot;
	int i;
	int err = 0;
1560
	int parent_level;
1561 1562
	int uptodate;
	u32 blocksize;
1563 1564
	int progress_passed = 0;
	struct btrfs_disk_key disk_key;
1565

1566 1567
	parent_level = btrfs_header_level(parent);

1568 1569
	WARN_ON(trans->transaction != fs_info->running_transaction);
	WARN_ON(trans->transid != fs_info->generation);
1570

1571
	parent_nritems = btrfs_header_nritems(parent);
1572
	blocksize = fs_info->nodesize;
1573
	end_slot = parent_nritems - 1;
1574

1575
	if (parent_nritems <= 1)
1576 1577
		return 0;

1578 1579
	btrfs_set_lock_blocking(parent);

1580
	for (i = start_slot; i <= end_slot; i++) {
1581
		struct btrfs_key first_key;
1582
		int close = 1;
1583

1584 1585 1586 1587 1588
		btrfs_node_key(parent, &disk_key, i);
		if (!progress_passed && comp_keys(&disk_key, progress) < 0)
			continue;

		progress_passed = 1;
1589
		blocknr = btrfs_node_blockptr(parent, i);
1590
		gen = btrfs_node_ptr_generation(parent, i);
1591
		btrfs_node_key_to_cpu(parent, &first_key, i);
1592 1593
		if (last_block == 0)
			last_block = blocknr;
1594

1595
		if (i > 0) {
1596 1597
			other = btrfs_node_blockptr(parent, i - 1);
			close = close_blocks(blocknr, other, blocksize);
1598
		}
1599
		if (!close && i < end_slot) {
1600 1601
			other = btrfs_node_blockptr(parent, i + 1);
			close = close_blocks(blocknr, other, blocksize);
1602
		}
1603 1604
		if (close) {
			last_block = blocknr;
1605
			continue;
1606
		}
1607

1608
		cur = find_extent_buffer(fs_info, blocknr);
1609
		if (cur)
1610
			uptodate = btrfs_buffer_uptodate(cur, gen, 0);
1611 1612
		else
			uptodate = 0;
1613
		if (!cur || !uptodate) {
1614
			if (!cur) {
1615 1616 1617
				cur = read_tree_block(fs_info, blocknr, gen,
						      parent_level - 1,
						      &first_key);
1618 1619 1620
				if (IS_ERR(cur)) {
					return PTR_ERR(cur);
				} else if (!extent_buffer_uptodate(cur)) {
1621
					free_extent_buffer(cur);
1622
					return -EIO;
1623
				}
1624
			} else if (!uptodate) {
1625 1626
				err = btrfs_read_buffer(cur, gen,
						parent_level - 1,&first_key);
1627 1628 1629 1630
				if (err) {
					free_extent_buffer(cur);
					return err;
				}
1631
			}
1632
		}
1633
		if (search_start == 0)
1634
			search_start = last_block;
1635

1636
		btrfs_tree_lock(cur);
1637
		btrfs_set_lock_blocking(cur);
1638
		err = __btrfs_cow_block(trans, root, cur, parent, i,
1639
					&cur, search_start,
1640
					min(16 * blocksize,
1641
					    (end_slot - i) * blocksize));
Y
Yan 已提交
1642
		if (err) {
1643
			btrfs_tree_unlock(cur);
1644
			free_extent_buffer(cur);
1645
			break;
Y
Yan 已提交
1646
		}
1647 1648
		search_start = cur->start;
		last_block = cur->start;
1649
		*last_ret = search_start;
1650 1651
		btrfs_tree_unlock(cur);
		free_extent_buffer(cur);
1652 1653 1654 1655
	}
	return err;
}

C
Chris Mason 已提交
1656
/*
1657 1658 1659
 * search for key in the extent_buffer.  The items start at offset p,
 * and they are item_size apart.  There are 'max' items in p.
 *
C
Chris Mason 已提交
1660 1661 1662 1663 1664 1665
 * the slot in the array is returned via slot, and it points to
 * the place where you would insert key if it is not found in
 * the array.
 *
 * slot may point to max if the key is bigger than all of the keys
 */
1666
static noinline int generic_bin_search(struct extent_buffer *eb,
1667 1668
				       unsigned long p, int item_size,
				       const struct btrfs_key *key,
1669
				       int max, int *slot)
1670 1671 1672 1673 1674
{
	int low = 0;
	int high = max;
	int mid;
	int ret;
1675
	struct btrfs_disk_key *tmp = NULL;
1676 1677 1678 1679 1680
	struct btrfs_disk_key unaligned;
	unsigned long offset;
	char *kaddr = NULL;
	unsigned long map_start = 0;
	unsigned long map_len = 0;
1681
	int err;
1682

1683 1684 1685 1686 1687 1688 1689 1690
	if (low > high) {
		btrfs_err(eb->fs_info,
		 "%s: low (%d) > high (%d) eb %llu owner %llu level %d",
			  __func__, low, high, eb->start,
			  btrfs_header_owner(eb), btrfs_header_level(eb));
		return -EINVAL;
	}

C
Chris Mason 已提交
1691
	while (low < high) {
1692
		mid = (low + high) / 2;
1693 1694
		offset = p + mid * item_size;

1695
		if (!kaddr || offset < map_start ||
1696 1697
		    (offset + sizeof(struct btrfs_disk_key)) >
		    map_start + map_len) {
1698 1699

			err = map_private_extent_buffer(eb, offset,
1700
						sizeof(struct btrfs_disk_key),
1701
						&kaddr, &map_start, &map_len);
1702 1703 1704 1705

			if (!err) {
				tmp = (struct btrfs_disk_key *)(kaddr + offset -
							map_start);
1706
			} else if (err == 1) {
1707 1708 1709
				read_extent_buffer(eb, &unaligned,
						   offset, sizeof(unaligned));
				tmp = &unaligned;
1710 1711
			} else {
				return err;
1712
			}
1713 1714 1715 1716 1717

		} else {
			tmp = (struct btrfs_disk_key *)(kaddr + offset -
							map_start);
		}
1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732
		ret = comp_keys(tmp, key);

		if (ret < 0)
			low = mid + 1;
		else if (ret > 0)
			high = mid;
		else {
			*slot = mid;
			return 0;
		}
	}
	*slot = low;
	return 1;
}

C
Chris Mason 已提交
1733 1734 1735 1736
/*
 * simple bin_search frontend that does the right thing for
 * leaves vs nodes
 */
1737 1738
int btrfs_bin_search(struct extent_buffer *eb, const struct btrfs_key *key,
		     int level, int *slot)
1739
{
1740
	if (level == 0)
1741 1742
		return generic_bin_search(eb,
					  offsetof(struct btrfs_leaf, items),
C
Chris Mason 已提交
1743
					  sizeof(struct btrfs_item),
1744
					  key, btrfs_header_nritems(eb),
1745
					  slot);
1746
	else
1747 1748
		return generic_bin_search(eb,
					  offsetof(struct btrfs_node, ptrs),
C
Chris Mason 已提交
1749
					  sizeof(struct btrfs_key_ptr),
1750
					  key, btrfs_header_nritems(eb),
1751
					  slot);
1752 1753
}

1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769
static void root_add_used(struct btrfs_root *root, u32 size)
{
	spin_lock(&root->accounting_lock);
	btrfs_set_root_used(&root->root_item,
			    btrfs_root_used(&root->root_item) + size);
	spin_unlock(&root->accounting_lock);
}

static void root_sub_used(struct btrfs_root *root, u32 size)
{
	spin_lock(&root->accounting_lock);
	btrfs_set_root_used(&root->root_item,
			    btrfs_root_used(&root->root_item) - size);
	spin_unlock(&root->accounting_lock);
}

C
Chris Mason 已提交
1770 1771 1772
/* given a node and slot number, this reads the blocks it points to.  The
 * extent buffer is returned with a reference taken (but unlocked).
 */
1773 1774 1775
static noinline struct extent_buffer *
read_node_slot(struct btrfs_fs_info *fs_info, struct extent_buffer *parent,
	       int slot)
1776
{
1777
	int level = btrfs_header_level(parent);
1778
	struct extent_buffer *eb;
1779
	struct btrfs_key first_key;
1780

1781 1782
	if (slot < 0 || slot >= btrfs_header_nritems(parent))
		return ERR_PTR(-ENOENT);
1783 1784 1785

	BUG_ON(level == 0);

1786
	btrfs_node_key_to_cpu(parent, &first_key, slot);
1787
	eb = read_tree_block(fs_info, btrfs_node_blockptr(parent, slot),
1788 1789
			     btrfs_node_ptr_generation(parent, slot),
			     level - 1, &first_key);
1790 1791 1792
	if (!IS_ERR(eb) && !extent_buffer_uptodate(eb)) {
		free_extent_buffer(eb);
		eb = ERR_PTR(-EIO);
1793 1794 1795
	}

	return eb;
1796 1797
}

C
Chris Mason 已提交
1798 1799 1800 1801 1802
/*
 * node level balancing, used to make sure nodes are in proper order for
 * item deletion.  We balance from the top down, so we have to make sure
 * that a deletion won't leave an node completely empty later on.
 */
1803
static noinline int balance_level(struct btrfs_trans_handle *trans,
1804 1805
			 struct btrfs_root *root,
			 struct btrfs_path *path, int level)
1806
{
1807
	struct btrfs_fs_info *fs_info = root->fs_info;
1808 1809 1810 1811
	struct extent_buffer *right = NULL;
	struct extent_buffer *mid;
	struct extent_buffer *left = NULL;
	struct extent_buffer *parent = NULL;
1812 1813 1814 1815
	int ret = 0;
	int wret;
	int pslot;
	int orig_slot = path->slots[level];
1816
	u64 orig_ptr;
1817 1818 1819 1820

	if (level == 0)
		return 0;

1821
	mid = path->nodes[level];
1822

1823 1824
	WARN_ON(path->locks[level] != BTRFS_WRITE_LOCK &&
		path->locks[level] != BTRFS_WRITE_LOCK_BLOCKING);
1825 1826
	WARN_ON(btrfs_header_generation(mid) != trans->transid);

1827
	orig_ptr = btrfs_node_blockptr(mid, orig_slot);
1828

L
Li Zefan 已提交
1829
	if (level < BTRFS_MAX_LEVEL - 1) {
1830
		parent = path->nodes[level + 1];
L
Li Zefan 已提交
1831 1832
		pslot = path->slots[level + 1];
	}
1833

C
Chris Mason 已提交
1834 1835 1836 1837
	/*
	 * deal with the case where there is only one pointer in the root
	 * by promoting the node below to a root
	 */
1838 1839
	if (!parent) {
		struct extent_buffer *child;
1840

1841
		if (btrfs_header_nritems(mid) != 1)
1842 1843 1844
			return 0;

		/* promote the child to a root */
1845
		child = read_node_slot(fs_info, mid, 0);
1846 1847
		if (IS_ERR(child)) {
			ret = PTR_ERR(child);
1848
			btrfs_handle_fs_error(fs_info, ret, NULL);
1849 1850 1851
			goto enospc;
		}

1852
		btrfs_tree_lock(child);
1853
		btrfs_set_lock_blocking(child);
1854
		ret = btrfs_cow_block(trans, root, child, mid, 0, &child);
1855 1856 1857 1858 1859
		if (ret) {
			btrfs_tree_unlock(child);
			free_extent_buffer(child);
			goto enospc;
		}
1860

1861 1862
		ret = tree_mod_log_insert_root(root->node, child, 1);
		BUG_ON(ret < 0);
1863
		rcu_assign_pointer(root->node, child);
1864

1865
		add_root_to_dirty_list(root);
1866
		btrfs_tree_unlock(child);
1867

1868
		path->locks[level] = 0;
1869
		path->nodes[level] = NULL;
1870
		clean_tree_block(fs_info, mid);
1871
		btrfs_tree_unlock(mid);
1872
		/* once for the path */
1873
		free_extent_buffer(mid);
1874 1875

		root_sub_used(root, mid->len);
1876
		btrfs_free_tree_block(trans, root, mid, 0, 1);
1877
		/* once for the root ptr */
1878
		free_extent_buffer_stale(mid);
1879
		return 0;
1880
	}
1881
	if (btrfs_header_nritems(mid) >
1882
	    BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 4)
1883 1884
		return 0;

1885
	left = read_node_slot(fs_info, parent, pslot - 1);
1886 1887 1888
	if (IS_ERR(left))
		left = NULL;

1889
	if (left) {
1890
		btrfs_tree_lock(left);
1891
		btrfs_set_lock_blocking(left);
1892
		wret = btrfs_cow_block(trans, root, left,
1893
				       parent, pslot - 1, &left);
1894 1895 1896 1897
		if (wret) {
			ret = wret;
			goto enospc;
		}
1898
	}
1899

1900
	right = read_node_slot(fs_info, parent, pslot + 1);
1901 1902 1903
	if (IS_ERR(right))
		right = NULL;

1904
	if (right) {
1905
		btrfs_tree_lock(right);
1906
		btrfs_set_lock_blocking(right);
1907
		wret = btrfs_cow_block(trans, root, right,
1908
				       parent, pslot + 1, &right);
1909 1910 1911 1912 1913 1914 1915
		if (wret) {
			ret = wret;
			goto enospc;
		}
	}

	/* first, try to make some room in the middle buffer */
1916 1917
	if (left) {
		orig_slot += btrfs_header_nritems(left);
1918
		wret = push_node_left(trans, fs_info, left, mid, 1);
1919 1920
		if (wret < 0)
			ret = wret;
1921
	}
1922 1923 1924 1925

	/*
	 * then try to empty the right most buffer into the middle
	 */
1926
	if (right) {
1927
		wret = push_node_left(trans, fs_info, mid, right, 1);
1928
		if (wret < 0 && wret != -ENOSPC)
1929
			ret = wret;
1930
		if (btrfs_header_nritems(right) == 0) {
1931
			clean_tree_block(fs_info, right);
1932
			btrfs_tree_unlock(right);
1933
			del_ptr(root, path, level + 1, pslot + 1);
1934
			root_sub_used(root, right->len);
1935
			btrfs_free_tree_block(trans, root, right, 0, 1);
1936
			free_extent_buffer_stale(right);
1937
			right = NULL;
1938
		} else {
1939 1940
			struct btrfs_disk_key right_key;
			btrfs_node_key(right, &right_key, 0);
1941 1942 1943
			ret = tree_mod_log_insert_key(parent, pslot + 1,
					MOD_LOG_KEY_REPLACE, GFP_NOFS);
			BUG_ON(ret < 0);
1944 1945
			btrfs_set_node_key(parent, &right_key, pslot + 1);
			btrfs_mark_buffer_dirty(parent);
1946 1947
		}
	}
1948
	if (btrfs_header_nritems(mid) == 1) {
1949 1950 1951 1952 1953 1954 1955 1956 1957
		/*
		 * we're not allowed to leave a node with one item in the
		 * tree during a delete.  A deletion from lower in the tree
		 * could try to delete the only pointer in this node.
		 * So, pull some keys from the left.
		 * There has to be a left pointer at this point because
		 * otherwise we would have pulled some pointers from the
		 * right
		 */
1958 1959
		if (!left) {
			ret = -EROFS;
1960
			btrfs_handle_fs_error(fs_info, ret, NULL);
1961 1962
			goto enospc;
		}
1963
		wret = balance_node_right(trans, fs_info, mid, left);
1964
		if (wret < 0) {
1965
			ret = wret;
1966 1967
			goto enospc;
		}
1968
		if (wret == 1) {
1969
			wret = push_node_left(trans, fs_info, left, mid, 1);
1970 1971 1972
			if (wret < 0)
				ret = wret;
		}
1973 1974
		BUG_ON(wret == 1);
	}
1975
	if (btrfs_header_nritems(mid) == 0) {
1976
		clean_tree_block(fs_info, mid);
1977
		btrfs_tree_unlock(mid);
1978
		del_ptr(root, path, level + 1, pslot);
1979
		root_sub_used(root, mid->len);
1980
		btrfs_free_tree_block(trans, root, mid, 0, 1);
1981
		free_extent_buffer_stale(mid);
1982
		mid = NULL;
1983 1984
	} else {
		/* update the parent key to reflect our changes */
1985 1986
		struct btrfs_disk_key mid_key;
		btrfs_node_key(mid, &mid_key, 0);
1987 1988 1989
		ret = tree_mod_log_insert_key(parent, pslot,
				MOD_LOG_KEY_REPLACE, GFP_NOFS);
		BUG_ON(ret < 0);
1990 1991
		btrfs_set_node_key(parent, &mid_key, pslot);
		btrfs_mark_buffer_dirty(parent);
1992
	}
1993

1994
	/* update the path */
1995 1996 1997
	if (left) {
		if (btrfs_header_nritems(left) > orig_slot) {
			extent_buffer_get(left);
1998
			/* left was locked after cow */
1999
			path->nodes[level] = left;
2000 2001
			path->slots[level + 1] -= 1;
			path->slots[level] = orig_slot;
2002 2003
			if (mid) {
				btrfs_tree_unlock(mid);
2004
				free_extent_buffer(mid);
2005
			}
2006
		} else {
2007
			orig_slot -= btrfs_header_nritems(left);
2008 2009 2010
			path->slots[level] = orig_slot;
		}
	}
2011
	/* double check we haven't messed things up */
C
Chris Mason 已提交
2012
	if (orig_ptr !=
2013
	    btrfs_node_blockptr(path->nodes[level], path->slots[level]))
2014
		BUG();
2015
enospc:
2016 2017
	if (right) {
		btrfs_tree_unlock(right);
2018
		free_extent_buffer(right);
2019 2020 2021 2022
	}
	if (left) {
		if (path->nodes[level] != left)
			btrfs_tree_unlock(left);
2023
		free_extent_buffer(left);
2024
	}
2025 2026 2027
	return ret;
}

C
Chris Mason 已提交
2028 2029 2030 2031
/* Node balancing for insertion.  Here we only split or push nodes around
 * when they are completely full.  This is also done top down, so we
 * have to be pessimistic.
 */
C
Chris Mason 已提交
2032
static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans,
2033 2034
					  struct btrfs_root *root,
					  struct btrfs_path *path, int level)
2035
{
2036
	struct btrfs_fs_info *fs_info = root->fs_info;
2037 2038 2039 2040
	struct extent_buffer *right = NULL;
	struct extent_buffer *mid;
	struct extent_buffer *left = NULL;
	struct extent_buffer *parent = NULL;
2041 2042 2043 2044 2045 2046 2047 2048
	int ret = 0;
	int wret;
	int pslot;
	int orig_slot = path->slots[level];

	if (level == 0)
		return 1;

2049
	mid = path->nodes[level];
2050
	WARN_ON(btrfs_header_generation(mid) != trans->transid);
2051

L
Li Zefan 已提交
2052
	if (level < BTRFS_MAX_LEVEL - 1) {
2053
		parent = path->nodes[level + 1];
L
Li Zefan 已提交
2054 2055
		pslot = path->slots[level + 1];
	}
2056

2057
	if (!parent)
2058 2059
		return 1;

2060
	left = read_node_slot(fs_info, parent, pslot - 1);
2061 2062
	if (IS_ERR(left))
		left = NULL;
2063 2064

	/* first, try to make some room in the middle buffer */
2065
	if (left) {
2066
		u32 left_nr;
2067 2068

		btrfs_tree_lock(left);
2069 2070
		btrfs_set_lock_blocking(left);

2071
		left_nr = btrfs_header_nritems(left);
2072
		if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) {
C
Chris Mason 已提交
2073 2074
			wret = 1;
		} else {
2075
			ret = btrfs_cow_block(trans, root, left, parent,
2076
					      pslot - 1, &left);
2077 2078 2079
			if (ret)
				wret = 1;
			else {
2080
				wret = push_node_left(trans, fs_info,
2081
						      left, mid, 0);
2082
			}
C
Chris Mason 已提交
2083
		}
2084 2085 2086
		if (wret < 0)
			ret = wret;
		if (wret == 0) {
2087
			struct btrfs_disk_key disk_key;
2088
			orig_slot += left_nr;
2089
			btrfs_node_key(mid, &disk_key, 0);
2090 2091 2092
			ret = tree_mod_log_insert_key(parent, pslot,
					MOD_LOG_KEY_REPLACE, GFP_NOFS);
			BUG_ON(ret < 0);
2093 2094 2095 2096
			btrfs_set_node_key(parent, &disk_key, pslot);
			btrfs_mark_buffer_dirty(parent);
			if (btrfs_header_nritems(left) > orig_slot) {
				path->nodes[level] = left;
2097 2098
				path->slots[level + 1] -= 1;
				path->slots[level] = orig_slot;
2099
				btrfs_tree_unlock(mid);
2100
				free_extent_buffer(mid);
2101 2102
			} else {
				orig_slot -=
2103
					btrfs_header_nritems(left);
2104
				path->slots[level] = orig_slot;
2105
				btrfs_tree_unlock(left);
2106
				free_extent_buffer(left);
2107 2108 2109
			}
			return 0;
		}
2110
		btrfs_tree_unlock(left);
2111
		free_extent_buffer(left);
2112
	}
2113
	right = read_node_slot(fs_info, parent, pslot + 1);
2114 2115
	if (IS_ERR(right))
		right = NULL;
2116 2117 2118 2119

	/*
	 * then try to empty the right most buffer into the middle
	 */
2120
	if (right) {
C
Chris Mason 已提交
2121
		u32 right_nr;
2122

2123
		btrfs_tree_lock(right);
2124 2125
		btrfs_set_lock_blocking(right);

2126
		right_nr = btrfs_header_nritems(right);
2127
		if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) {
C
Chris Mason 已提交
2128 2129
			wret = 1;
		} else {
2130 2131
			ret = btrfs_cow_block(trans, root, right,
					      parent, pslot + 1,
2132
					      &right);
2133 2134 2135
			if (ret)
				wret = 1;
			else {
2136
				wret = balance_node_right(trans, fs_info,
2137
							  right, mid);
2138
			}
C
Chris Mason 已提交
2139
		}
2140 2141 2142
		if (wret < 0)
			ret = wret;
		if (wret == 0) {
2143 2144 2145
			struct btrfs_disk_key disk_key;

			btrfs_node_key(right, &disk_key, 0);
2146 2147 2148
			ret = tree_mod_log_insert_key(parent, pslot + 1,
					MOD_LOG_KEY_REPLACE, GFP_NOFS);
			BUG_ON(ret < 0);
2149 2150 2151 2152 2153
			btrfs_set_node_key(parent, &disk_key, pslot + 1);
			btrfs_mark_buffer_dirty(parent);

			if (btrfs_header_nritems(mid) <= orig_slot) {
				path->nodes[level] = right;
2154 2155
				path->slots[level + 1] += 1;
				path->slots[level] = orig_slot -
2156
					btrfs_header_nritems(mid);
2157
				btrfs_tree_unlock(mid);
2158
				free_extent_buffer(mid);
2159
			} else {
2160
				btrfs_tree_unlock(right);
2161
				free_extent_buffer(right);
2162 2163 2164
			}
			return 0;
		}
2165
		btrfs_tree_unlock(right);
2166
		free_extent_buffer(right);
2167 2168 2169 2170
	}
	return 1;
}

2171
/*
C
Chris Mason 已提交
2172 2173
 * readahead one full node of leaves, finding things that are close
 * to the block in 'slot', and triggering ra on them.
2174
 */
2175
static void reada_for_search(struct btrfs_fs_info *fs_info,
2176 2177
			     struct btrfs_path *path,
			     int level, int slot, u64 objectid)
2178
{
2179
	struct extent_buffer *node;
2180
	struct btrfs_disk_key disk_key;
2181 2182
	u32 nritems;
	u64 search;
2183
	u64 target;
2184
	u64 nread = 0;
2185
	struct extent_buffer *eb;
2186 2187 2188
	u32 nr;
	u32 blocksize;
	u32 nscan = 0;
2189

2190
	if (level != 1)
2191 2192 2193
		return;

	if (!path->nodes[level])
2194 2195
		return;

2196
	node = path->nodes[level];
2197

2198
	search = btrfs_node_blockptr(node, slot);
2199 2200
	blocksize = fs_info->nodesize;
	eb = find_extent_buffer(fs_info, search);
2201 2202
	if (eb) {
		free_extent_buffer(eb);
2203 2204 2205
		return;
	}

2206
	target = search;
2207

2208
	nritems = btrfs_header_nritems(node);
2209
	nr = slot;
2210

C
Chris Mason 已提交
2211
	while (1) {
2212
		if (path->reada == READA_BACK) {
2213 2214 2215
			if (nr == 0)
				break;
			nr--;
2216
		} else if (path->reada == READA_FORWARD) {
2217 2218 2219
			nr++;
			if (nr >= nritems)
				break;
2220
		}
2221
		if (path->reada == READA_BACK && objectid) {
2222 2223 2224 2225
			btrfs_node_key(node, &disk_key, nr);
			if (btrfs_disk_key_objectid(&disk_key) != objectid)
				break;
		}
2226
		search = btrfs_node_blockptr(node, nr);
2227 2228
		if ((search <= target && target - search <= 65536) ||
		    (search > target && search - target <= 65536)) {
2229
			readahead_tree_block(fs_info, search);
2230 2231 2232
			nread += blocksize;
		}
		nscan++;
2233
		if ((nread > 65536 || nscan > 32))
2234
			break;
2235 2236
	}
}
2237

2238
static noinline void reada_for_balance(struct btrfs_fs_info *fs_info,
J
Josef Bacik 已提交
2239
				       struct btrfs_path *path, int level)
2240 2241 2242 2243 2244 2245 2246 2247 2248
{
	int slot;
	int nritems;
	struct extent_buffer *parent;
	struct extent_buffer *eb;
	u64 gen;
	u64 block1 = 0;
	u64 block2 = 0;

2249
	parent = path->nodes[level + 1];
2250
	if (!parent)
J
Josef Bacik 已提交
2251
		return;
2252 2253

	nritems = btrfs_header_nritems(parent);
2254
	slot = path->slots[level + 1];
2255 2256 2257 2258

	if (slot > 0) {
		block1 = btrfs_node_blockptr(parent, slot - 1);
		gen = btrfs_node_ptr_generation(parent, slot - 1);
2259
		eb = find_extent_buffer(fs_info, block1);
2260 2261 2262 2263 2264 2265
		/*
		 * if we get -eagain from btrfs_buffer_uptodate, we
		 * don't want to return eagain here.  That will loop
		 * forever
		 */
		if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
2266 2267 2268
			block1 = 0;
		free_extent_buffer(eb);
	}
2269
	if (slot + 1 < nritems) {
2270 2271
		block2 = btrfs_node_blockptr(parent, slot + 1);
		gen = btrfs_node_ptr_generation(parent, slot + 1);
2272
		eb = find_extent_buffer(fs_info, block2);
2273
		if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
2274 2275 2276
			block2 = 0;
		free_extent_buffer(eb);
	}
2277

J
Josef Bacik 已提交
2278
	if (block1)
2279
		readahead_tree_block(fs_info, block1);
J
Josef Bacik 已提交
2280
	if (block2)
2281
		readahead_tree_block(fs_info, block2);
2282 2283 2284
}


C
Chris Mason 已提交
2285
/*
C
Chris Mason 已提交
2286 2287 2288 2289
 * when we walk down the tree, it is usually safe to unlock the higher layers
 * in the tree.  The exceptions are when our path goes through slot 0, because
 * operations on the tree might require changing key pointers higher up in the
 * tree.
C
Chris Mason 已提交
2290
 *
C
Chris Mason 已提交
2291 2292 2293
 * callers might also have set path->keep_locks, which tells this code to keep
 * the lock if the path points to the last slot in the block.  This is part of
 * walking through the tree, and selecting the next slot in the higher block.
C
Chris Mason 已提交
2294
 *
C
Chris Mason 已提交
2295 2296
 * lowest_unlock sets the lowest level in the tree we're allowed to unlock.  so
 * if lowest_unlock is 1, level 0 won't be unlocked
C
Chris Mason 已提交
2297
 */
2298
static noinline void unlock_up(struct btrfs_path *path, int level,
2299 2300
			       int lowest_unlock, int min_write_lock_level,
			       int *write_lock_level)
2301 2302 2303
{
	int i;
	int skip_level = level;
2304
	int no_skips = 0;
2305 2306 2307 2308 2309 2310 2311
	struct extent_buffer *t;

	for (i = level; i < BTRFS_MAX_LEVEL; i++) {
		if (!path->nodes[i])
			break;
		if (!path->locks[i])
			break;
2312
		if (!no_skips && path->slots[i] == 0) {
2313 2314 2315
			skip_level = i + 1;
			continue;
		}
2316
		if (!no_skips && path->keep_locks) {
2317 2318 2319
			u32 nritems;
			t = path->nodes[i];
			nritems = btrfs_header_nritems(t);
2320
			if (nritems < 1 || path->slots[i] >= nritems - 1) {
2321 2322 2323 2324
				skip_level = i + 1;
				continue;
			}
		}
2325 2326 2327
		if (skip_level < i && i >= lowest_unlock)
			no_skips = 1;

2328
		t = path->nodes[i];
2329
		if (i >= lowest_unlock && i > skip_level) {
2330
			btrfs_tree_unlock_rw(t, path->locks[i]);
2331
			path->locks[i] = 0;
2332 2333 2334 2335 2336
			if (write_lock_level &&
			    i > min_write_lock_level &&
			    i <= *write_lock_level) {
				*write_lock_level = i - 1;
			}
2337 2338 2339 2340
		}
	}
}

2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353
/*
 * This releases any locks held in the path starting at level and
 * going all the way up to the root.
 *
 * btrfs_search_slot will keep the lock held on higher nodes in a few
 * corner cases, such as COW of the block at slot zero in the node.  This
 * ignores those rules, and it should only be called when there are no
 * more updates to be done higher up in the tree.
 */
noinline void btrfs_unlock_up_safe(struct btrfs_path *path, int level)
{
	int i;

J
Josef Bacik 已提交
2354
	if (path->keep_locks)
2355 2356 2357 2358
		return;

	for (i = level; i < BTRFS_MAX_LEVEL; i++) {
		if (!path->nodes[i])
2359
			continue;
2360
		if (!path->locks[i])
2361
			continue;
2362
		btrfs_tree_unlock_rw(path->nodes[i], path->locks[i]);
2363 2364 2365 2366
		path->locks[i] = 0;
	}
}

2367 2368 2369 2370 2371 2372 2373 2374 2375
/*
 * helper function for btrfs_search_slot.  The goal is to find a block
 * in cache without setting the path to blocking.  If we find the block
 * we return zero and the path is unchanged.
 *
 * If we can't find the block, we set the path blocking and do some
 * reada.  -EAGAIN is returned and the search must be repeated.
 */
static int
2376 2377
read_block_for_search(struct btrfs_root *root, struct btrfs_path *p,
		      struct extent_buffer **eb_ret, int level, int slot,
2378
		      const struct btrfs_key *key)
2379
{
2380
	struct btrfs_fs_info *fs_info = root->fs_info;
2381 2382 2383 2384
	u64 blocknr;
	u64 gen;
	struct extent_buffer *b = *eb_ret;
	struct extent_buffer *tmp;
2385
	struct btrfs_key first_key;
2386
	int ret;
2387
	int parent_level;
2388 2389 2390

	blocknr = btrfs_node_blockptr(b, slot);
	gen = btrfs_node_ptr_generation(b, slot);
2391 2392
	parent_level = btrfs_header_level(b);
	btrfs_node_key_to_cpu(b, &first_key, slot);
2393

2394
	tmp = find_extent_buffer(fs_info, blocknr);
2395
	if (tmp) {
2396
		/* first we do an atomic uptodate check */
2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410
		if (btrfs_buffer_uptodate(tmp, gen, 1) > 0) {
			*eb_ret = tmp;
			return 0;
		}

		/* the pages were up to date, but we failed
		 * the generation number check.  Do a full
		 * read for the generation number that is correct.
		 * We must do this without dropping locks so
		 * we can trust our generation number
		 */
		btrfs_set_path_blocking(p);

		/* now we're allowed to do a blocking uptodate check */
2411
		ret = btrfs_read_buffer(tmp, gen, parent_level - 1, &first_key);
2412 2413 2414
		if (!ret) {
			*eb_ret = tmp;
			return 0;
2415
		}
2416 2417 2418
		free_extent_buffer(tmp);
		btrfs_release_path(p);
		return -EIO;
2419 2420 2421 2422 2423
	}

	/*
	 * reduce lock contention at high levels
	 * of the btree by dropping locks before
2424 2425 2426
	 * we read.  Don't release the lock on the current
	 * level because we need to walk this node to figure
	 * out which blocks to read.
2427
	 */
2428 2429 2430
	btrfs_unlock_up_safe(p, level + 1);
	btrfs_set_path_blocking(p);

2431
	if (p->reada != READA_NONE)
2432
		reada_for_search(fs_info, p, level, slot, key->objectid);
2433

2434
	ret = -EAGAIN;
2435
	tmp = read_tree_block(fs_info, blocknr, gen, parent_level - 1,
2436
			      &first_key);
2437
	if (!IS_ERR(tmp)) {
2438 2439 2440 2441 2442 2443
		/*
		 * If the read above didn't mark this buffer up to date,
		 * it will never end up being up to date.  Set ret to EIO now
		 * and give up so that our caller doesn't loop forever
		 * on our EAGAINs.
		 */
2444
		if (!extent_buffer_uptodate(tmp))
2445
			ret = -EIO;
2446
		free_extent_buffer(tmp);
2447 2448
	} else {
		ret = PTR_ERR(tmp);
2449
	}
2450 2451

	btrfs_release_path(p);
2452
	return ret;
2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466
}

/*
 * helper function for btrfs_search_slot.  This does all of the checks
 * for node-level blocks and does any balancing required based on
 * the ins_len.
 *
 * If no extra work was required, zero is returned.  If we had to
 * drop the path, -EAGAIN is returned and btrfs_search_slot must
 * start over
 */
static int
setup_nodes_for_search(struct btrfs_trans_handle *trans,
		       struct btrfs_root *root, struct btrfs_path *p,
2467 2468
		       struct extent_buffer *b, int level, int ins_len,
		       int *write_lock_level)
2469
{
2470
	struct btrfs_fs_info *fs_info = root->fs_info;
2471
	int ret;
2472

2473
	if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >=
2474
	    BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3) {
2475 2476
		int sret;

2477 2478 2479 2480 2481 2482
		if (*write_lock_level < level + 1) {
			*write_lock_level = level + 1;
			btrfs_release_path(p);
			goto again;
		}

2483
		btrfs_set_path_blocking(p);
2484
		reada_for_balance(fs_info, p, level);
2485
		sret = split_node(trans, root, p, level);
2486
		btrfs_clear_path_blocking(p, NULL, 0);
2487 2488 2489 2490 2491 2492 2493 2494

		BUG_ON(sret > 0);
		if (sret) {
			ret = sret;
			goto done;
		}
		b = p->nodes[level];
	} else if (ins_len < 0 && btrfs_header_nritems(b) <
2495
		   BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 2) {
2496 2497
		int sret;

2498 2499 2500 2501 2502 2503
		if (*write_lock_level < level + 1) {
			*write_lock_level = level + 1;
			btrfs_release_path(p);
			goto again;
		}

2504
		btrfs_set_path_blocking(p);
2505
		reada_for_balance(fs_info, p, level);
2506
		sret = balance_level(trans, root, p, level);
2507
		btrfs_clear_path_blocking(p, NULL, 0);
2508 2509 2510 2511 2512 2513 2514

		if (sret) {
			ret = sret;
			goto done;
		}
		b = p->nodes[level];
		if (!b) {
2515
			btrfs_release_path(p);
2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527
			goto again;
		}
		BUG_ON(btrfs_header_nritems(b) == 1);
	}
	return 0;

again:
	ret = -EAGAIN;
done:
	return ret;
}

2528
static void key_search_validate(struct extent_buffer *b,
2529
				const struct btrfs_key *key,
2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547
				int level)
{
#ifdef CONFIG_BTRFS_ASSERT
	struct btrfs_disk_key disk_key;

	btrfs_cpu_key_to_disk(&disk_key, key);

	if (level == 0)
		ASSERT(!memcmp_extent_buffer(b, &disk_key,
		    offsetof(struct btrfs_leaf, items[0].key),
		    sizeof(disk_key)));
	else
		ASSERT(!memcmp_extent_buffer(b, &disk_key,
		    offsetof(struct btrfs_node, ptrs[0].key),
		    sizeof(disk_key)));
#endif
}

2548
static int key_search(struct extent_buffer *b, const struct btrfs_key *key,
2549 2550 2551
		      int level, int *prev_cmp, int *slot)
{
	if (*prev_cmp != 0) {
2552
		*prev_cmp = btrfs_bin_search(b, key, level, slot);
2553 2554 2555 2556 2557 2558 2559 2560 2561
		return *prev_cmp;
	}

	key_search_validate(b, key, level);
	*slot = 0;

	return 0;
}

2562
int btrfs_find_item(struct btrfs_root *fs_root, struct btrfs_path *path,
2563 2564 2565 2566 2567 2568
		u64 iobjectid, u64 ioff, u8 key_type,
		struct btrfs_key *found_key)
{
	int ret;
	struct btrfs_key key;
	struct extent_buffer *eb;
2569 2570

	ASSERT(path);
2571
	ASSERT(found_key);
2572 2573 2574 2575 2576 2577

	key.type = key_type;
	key.objectid = iobjectid;
	key.offset = ioff;

	ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0);
2578
	if (ret < 0)
2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596
		return ret;

	eb = path->nodes[0];
	if (ret && path->slots[0] >= btrfs_header_nritems(eb)) {
		ret = btrfs_next_leaf(fs_root, path);
		if (ret)
			return ret;
		eb = path->nodes[0];
	}

	btrfs_item_key_to_cpu(eb, found_key, path->slots[0]);
	if (found_key->type != key.type ||
			found_key->objectid != key.objectid)
		return 1;

	return 0;
}

2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617
static struct extent_buffer *btrfs_search_slot_get_root(struct btrfs_root *root,
							struct btrfs_path *p,
							int write_lock_level)
{
	struct btrfs_fs_info *fs_info = root->fs_info;
	struct extent_buffer *b;
	int root_lock;
	int level = 0;

	/* We try very hard to do read locks on the root */
	root_lock = BTRFS_READ_LOCK;

	if (p->search_commit_root) {
		/* The commit roots are read only so we always do read locks */
		if (p->need_commit_sem)
			down_read(&fs_info->commit_root_sem);
		b = root->commit_root;
		extent_buffer_get(b);
		level = btrfs_header_level(b);
		if (p->need_commit_sem)
			up_read(&fs_info->commit_root_sem);
2618 2619 2620 2621 2622
		/*
		 * Ensure that all callers have set skip_locking when
		 * p->search_commit_root = 1.
		 */
		ASSERT(p->skip_locking == 1);
2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633

		goto out;
	}

	if (p->skip_locking) {
		b = btrfs_root_node(root);
		level = btrfs_header_level(b);
		goto out;
	}

	/*
2634 2635
	 * If the level is set to maximum, we can skip trying to get the read
	 * lock.
2636
	 */
2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650
	if (write_lock_level < BTRFS_MAX_LEVEL) {
		/*
		 * We don't know the level of the root node until we actually
		 * have it read locked
		 */
		b = btrfs_read_lock_root_node(root);
		level = btrfs_header_level(b);
		if (level > write_lock_level)
			goto out;

		/* Whoops, must trade for write lock */
		btrfs_tree_read_unlock(b);
		free_extent_buffer(b);
	}
2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668

	b = btrfs_lock_root_node(root);
	root_lock = BTRFS_WRITE_LOCK;

	/* The level might have changed, check again */
	level = btrfs_header_level(b);

out:
	p->nodes[level] = b;
	if (!p->skip_locking)
		p->locks[level] = root_lock;
	/*
	 * Callers are responsible for dropping b's references.
	 */
	return b;
}


C
Chris Mason 已提交
2669
/*
2670 2671
 * btrfs_search_slot - look for a key in a tree and perform necessary
 * modifications to preserve tree invariants.
C
Chris Mason 已提交
2672
 *
2673 2674 2675 2676 2677 2678 2679 2680
 * @trans:	Handle of transaction, used when modifying the tree
 * @p:		Holds all btree nodes along the search path
 * @root:	The root node of the tree
 * @key:	The key we are looking for
 * @ins_len:	Indicates purpose of search, for inserts it is 1, for
 *		deletions it's -1. 0 for plain searches
 * @cow:	boolean should CoW operations be performed. Must always be 1
 *		when modifying the tree.
C
Chris Mason 已提交
2681
 *
2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692
 * If @ins_len > 0, nodes and leaves will be split as we walk down the tree.
 * If @ins_len < 0, nodes will be merged as we walk down the tree (if possible)
 *
 * If @key is found, 0 is returned and you can find the item in the leaf level
 * of the path (level 0)
 *
 * If @key isn't found, 1 is returned and the leaf level of the path (level 0)
 * points to the slot where it should be inserted
 *
 * If an error is encountered while searching the tree a negative error number
 * is returned
C
Chris Mason 已提交
2693
 */
2694 2695 2696
int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root *root,
		      const struct btrfs_key *key, struct btrfs_path *p,
		      int ins_len, int cow)
2697
{
2698
	struct btrfs_fs_info *fs_info = root->fs_info;
2699
	struct extent_buffer *b;
2700 2701
	int slot;
	int ret;
2702
	int err;
2703
	int level;
2704
	int lowest_unlock = 1;
2705 2706
	/* everything at write_lock_level or lower must be write locked */
	int write_lock_level = 0;
2707
	u8 lowest_level = 0;
2708
	int min_write_lock_level;
2709
	int prev_cmp;
2710

2711
	lowest_level = p->lowest_level;
2712
	WARN_ON(lowest_level && ins_len > 0);
C
Chris Mason 已提交
2713
	WARN_ON(p->nodes[0] != NULL);
2714
	BUG_ON(!cow && ins_len);
2715

2716
	if (ins_len < 0) {
2717
		lowest_unlock = 2;
2718

2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734
		/* when we are removing items, we might have to go up to level
		 * two as we update tree pointers  Make sure we keep write
		 * for those levels as well
		 */
		write_lock_level = 2;
	} else if (ins_len > 0) {
		/*
		 * for inserting items, make sure we have a write lock on
		 * level 1 so we can update keys
		 */
		write_lock_level = 1;
	}

	if (!cow)
		write_lock_level = -1;

J
Josef Bacik 已提交
2735
	if (cow && (p->keep_locks || p->lowest_level))
2736 2737
		write_lock_level = BTRFS_MAX_LEVEL;

2738 2739
	min_write_lock_level = write_lock_level;

2740
again:
2741
	prev_cmp = -1;
2742
	b = btrfs_search_slot_get_root(root, p, write_lock_level);
2743

2744
	while (b) {
2745
		level = btrfs_header_level(b);
2746 2747 2748 2749 2750

		/*
		 * setup the path here so we can release it under lock
		 * contention with the cow code
		 */
C
Chris Mason 已提交
2751
		if (cow) {
2752 2753
			bool last_level = (level == (BTRFS_MAX_LEVEL - 1));

2754 2755 2756 2757 2758
			/*
			 * if we don't really need to cow this block
			 * then we don't want to set the path blocking,
			 * so we test it here
			 */
2759 2760
			if (!should_cow_block(trans, root, b)) {
				trans->dirty = true;
2761
				goto cow_done;
2762
			}
2763

2764 2765 2766 2767
			/*
			 * must have write locks on this node and the
			 * parent
			 */
2768 2769 2770 2771
			if (level > write_lock_level ||
			    (level + 1 > write_lock_level &&
			    level + 1 < BTRFS_MAX_LEVEL &&
			    p->nodes[level + 1])) {
2772 2773 2774 2775 2776
				write_lock_level = level + 1;
				btrfs_release_path(p);
				goto again;
			}

2777
			btrfs_set_path_blocking(p);
2778 2779 2780 2781 2782 2783 2784
			if (last_level)
				err = btrfs_cow_block(trans, root, b, NULL, 0,
						      &b);
			else
				err = btrfs_cow_block(trans, root, b,
						      p->nodes[level + 1],
						      p->slots[level + 1], &b);
2785 2786
			if (err) {
				ret = err;
2787
				goto done;
2788
			}
C
Chris Mason 已提交
2789
		}
2790
cow_done:
2791
		p->nodes[level] = b;
2792
		btrfs_clear_path_blocking(p, NULL, 0);
2793 2794 2795 2796 2797 2798 2799

		/*
		 * we have a lock on b and as long as we aren't changing
		 * the tree, there is no way to for the items in b to change.
		 * It is safe to drop the lock on our parent before we
		 * go through the expensive btree search on b.
		 *
2800 2801 2802 2803
		 * If we're inserting or deleting (ins_len != 0), then we might
		 * be changing slot zero, which may require changing the parent.
		 * So, we can't drop the lock until after we know which slot
		 * we're operating on.
2804
		 */
2805 2806 2807 2808 2809 2810 2811 2812
		if (!ins_len && !p->keep_locks) {
			int u = level + 1;

			if (u < BTRFS_MAX_LEVEL && p->locks[u]) {
				btrfs_tree_unlock_rw(p->nodes[u], p->locks[u]);
				p->locks[u] = 0;
			}
		}
2813

2814
		ret = key_search(b, key, level, &prev_cmp, &slot);
2815 2816
		if (ret < 0)
			goto done;
2817

2818
		if (level != 0) {
2819 2820 2821
			int dec = 0;
			if (ret && slot > 0) {
				dec = 1;
2822
				slot -= 1;
2823
			}
2824
			p->slots[level] = slot;
2825
			err = setup_nodes_for_search(trans, root, p, b, level,
2826
					     ins_len, &write_lock_level);
2827
			if (err == -EAGAIN)
2828
				goto again;
2829 2830
			if (err) {
				ret = err;
2831
				goto done;
2832
			}
2833 2834
			b = p->nodes[level];
			slot = p->slots[level];
2835

2836 2837 2838 2839 2840 2841
			/*
			 * slot 0 is special, if we change the key
			 * we have to update the parent pointer
			 * which means we must have a write lock
			 * on the parent
			 */
2842
			if (slot == 0 && ins_len &&
2843 2844 2845 2846 2847 2848
			    write_lock_level < level + 1) {
				write_lock_level = level + 1;
				btrfs_release_path(p);
				goto again;
			}

2849 2850
			unlock_up(p, level, lowest_unlock,
				  min_write_lock_level, &write_lock_level);
2851

2852
			if (level == lowest_level) {
2853 2854
				if (dec)
					p->slots[level]++;
2855
				goto done;
2856
			}
2857

2858
			err = read_block_for_search(root, p, &b, level,
2859
						    slot, key);
2860
			if (err == -EAGAIN)
2861
				goto again;
2862 2863
			if (err) {
				ret = err;
2864
				goto done;
2865
			}
2866

2867
			if (!p->skip_locking) {
2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878
				level = btrfs_header_level(b);
				if (level <= write_lock_level) {
					err = btrfs_try_tree_write_lock(b);
					if (!err) {
						btrfs_set_path_blocking(p);
						btrfs_tree_lock(b);
						btrfs_clear_path_blocking(p, b,
								  BTRFS_WRITE_LOCK);
					}
					p->locks[level] = BTRFS_WRITE_LOCK;
				} else {
2879
					err = btrfs_tree_read_lock_atomic(b);
2880 2881 2882 2883 2884 2885 2886
					if (!err) {
						btrfs_set_path_blocking(p);
						btrfs_tree_read_lock(b);
						btrfs_clear_path_blocking(p, b,
								  BTRFS_READ_LOCK);
					}
					p->locks[level] = BTRFS_READ_LOCK;
2887
				}
2888
				p->nodes[level] = b;
2889
			}
2890 2891
		} else {
			p->slots[level] = slot;
2892
			if (ins_len > 0 &&
2893
			    btrfs_leaf_free_space(fs_info, b) < ins_len) {
2894 2895 2896 2897 2898 2899
				if (write_lock_level < 1) {
					write_lock_level = 1;
					btrfs_release_path(p);
					goto again;
				}

2900
				btrfs_set_path_blocking(p);
2901 2902
				err = split_leaf(trans, root, key,
						 p, ins_len, ret == 0);
2903
				btrfs_clear_path_blocking(p, NULL, 0);
2904

2905 2906 2907
				BUG_ON(err > 0);
				if (err) {
					ret = err;
2908 2909
					goto done;
				}
C
Chris Mason 已提交
2910
			}
2911
			if (!p->search_for_split)
2912 2913
				unlock_up(p, level, lowest_unlock,
					  min_write_lock_level, &write_lock_level);
2914
			goto done;
2915 2916
		}
	}
2917 2918
	ret = 1;
done:
2919 2920 2921 2922
	/*
	 * we don't really know what they plan on doing with the path
	 * from here on, so for now just mark it as blocking
	 */
2923 2924
	if (!p->leave_spinning)
		btrfs_set_path_blocking(p);
2925
	if (ret < 0 && !p->skip_release_on_error)
2926
		btrfs_release_path(p);
2927
	return ret;
2928 2929
}

J
Jan Schmidt 已提交
2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940
/*
 * Like btrfs_search_slot, this looks for a key in the given tree. It uses the
 * current state of the tree together with the operations recorded in the tree
 * modification log to search for the key in a previous version of this tree, as
 * denoted by the time_seq parameter.
 *
 * Naturally, there is no support for insert, delete or cow operations.
 *
 * The resulting path and return value will be set up as if we called
 * btrfs_search_slot at that point in time with ins_len and cow both set to 0.
 */
2941
int btrfs_search_old_slot(struct btrfs_root *root, const struct btrfs_key *key,
J
Jan Schmidt 已提交
2942 2943
			  struct btrfs_path *p, u64 time_seq)
{
2944
	struct btrfs_fs_info *fs_info = root->fs_info;
J
Jan Schmidt 已提交
2945 2946 2947 2948 2949 2950 2951
	struct extent_buffer *b;
	int slot;
	int ret;
	int err;
	int level;
	int lowest_unlock = 1;
	u8 lowest_level = 0;
2952
	int prev_cmp = -1;
J
Jan Schmidt 已提交
2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979

	lowest_level = p->lowest_level;
	WARN_ON(p->nodes[0] != NULL);

	if (p->search_commit_root) {
		BUG_ON(time_seq);
		return btrfs_search_slot(NULL, root, key, p, 0, 0);
	}

again:
	b = get_old_root(root, time_seq);
	level = btrfs_header_level(b);
	p->locks[level] = BTRFS_READ_LOCK;

	while (b) {
		level = btrfs_header_level(b);
		p->nodes[level] = b;
		btrfs_clear_path_blocking(p, NULL, 0);

		/*
		 * we have a lock on b and as long as we aren't changing
		 * the tree, there is no way to for the items in b to change.
		 * It is safe to drop the lock on our parent before we
		 * go through the expensive btree search on b.
		 */
		btrfs_unlock_up_safe(p, level + 1);

2980
		/*
2981
		 * Since we can unwind ebs we want to do a real search every
2982 2983 2984
		 * time.
		 */
		prev_cmp = -1;
2985
		ret = key_search(b, key, level, &prev_cmp, &slot);
J
Jan Schmidt 已提交
2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001

		if (level != 0) {
			int dec = 0;
			if (ret && slot > 0) {
				dec = 1;
				slot -= 1;
			}
			p->slots[level] = slot;
			unlock_up(p, level, lowest_unlock, 0, NULL);

			if (level == lowest_level) {
				if (dec)
					p->slots[level]++;
				goto done;
			}

3002
			err = read_block_for_search(root, p, &b, level,
3003
						    slot, key);
J
Jan Schmidt 已提交
3004 3005 3006 3007 3008 3009 3010 3011
			if (err == -EAGAIN)
				goto again;
			if (err) {
				ret = err;
				goto done;
			}

			level = btrfs_header_level(b);
3012
			err = btrfs_tree_read_lock_atomic(b);
J
Jan Schmidt 已提交
3013 3014 3015 3016 3017 3018
			if (!err) {
				btrfs_set_path_blocking(p);
				btrfs_tree_read_lock(b);
				btrfs_clear_path_blocking(p, b,
							  BTRFS_READ_LOCK);
			}
3019
			b = tree_mod_log_rewind(fs_info, p, b, time_seq);
3020 3021 3022 3023
			if (!b) {
				ret = -ENOMEM;
				goto done;
			}
J
Jan Schmidt 已提交
3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041
			p->locks[level] = BTRFS_READ_LOCK;
			p->nodes[level] = b;
		} else {
			p->slots[level] = slot;
			unlock_up(p, level, lowest_unlock, 0, NULL);
			goto done;
		}
	}
	ret = 1;
done:
	if (!p->leave_spinning)
		btrfs_set_path_blocking(p);
	if (ret < 0)
		btrfs_release_path(p);

	return ret;
}

3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054
/*
 * helper to use instead of search slot if no exact match is needed but
 * instead the next or previous item should be returned.
 * When find_higher is true, the next higher item is returned, the next lower
 * otherwise.
 * When return_any and find_higher are both true, and no higher item is found,
 * return the next lower instead.
 * When return_any is true and find_higher is false, and no lower item is found,
 * return the next higher instead.
 * It returns 0 if any item is found, 1 if none is found (tree empty), and
 * < 0 on error
 */
int btrfs_search_slot_for_read(struct btrfs_root *root,
3055 3056 3057
			       const struct btrfs_key *key,
			       struct btrfs_path *p, int find_higher,
			       int return_any)
3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091
{
	int ret;
	struct extent_buffer *leaf;

again:
	ret = btrfs_search_slot(NULL, root, key, p, 0, 0);
	if (ret <= 0)
		return ret;
	/*
	 * a return value of 1 means the path is at the position where the
	 * item should be inserted. Normally this is the next bigger item,
	 * but in case the previous item is the last in a leaf, path points
	 * to the first free slot in the previous leaf, i.e. at an invalid
	 * item.
	 */
	leaf = p->nodes[0];

	if (find_higher) {
		if (p->slots[0] >= btrfs_header_nritems(leaf)) {
			ret = btrfs_next_leaf(root, p);
			if (ret <= 0)
				return ret;
			if (!return_any)
				return 1;
			/*
			 * no higher item found, return the next
			 * lower instead
			 */
			return_any = 0;
			find_higher = 0;
			btrfs_release_path(p);
			goto again;
		}
	} else {
3092 3093 3094 3095 3096
		if (p->slots[0] == 0) {
			ret = btrfs_prev_leaf(root, p);
			if (ret < 0)
				return ret;
			if (!ret) {
3097 3098 3099
				leaf = p->nodes[0];
				if (p->slots[0] == btrfs_header_nritems(leaf))
					p->slots[0]--;
3100
				return 0;
3101
			}
3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112
			if (!return_any)
				return 1;
			/*
			 * no lower item found, return the next
			 * higher instead
			 */
			return_any = 0;
			find_higher = 1;
			btrfs_release_path(p);
			goto again;
		} else {
3113 3114 3115 3116 3117 3118
			--p->slots[0];
		}
	}
	return 0;
}

C
Chris Mason 已提交
3119 3120 3121 3122 3123 3124
/*
 * adjust the pointers going up the tree, starting at level
 * making sure the right key of each node is points to 'key'.
 * This is used after shifting pointers to the left, so it stops
 * fixing up pointers when a given leaf/node is not in slot 0 of the
 * higher levels
C
Chris Mason 已提交
3125
 *
C
Chris Mason 已提交
3126
 */
3127
static void fixup_low_keys(struct btrfs_path *path,
3128
			   struct btrfs_disk_key *key, int level)
3129 3130
{
	int i;
3131
	struct extent_buffer *t;
3132
	int ret;
3133

C
Chris Mason 已提交
3134
	for (i = level; i < BTRFS_MAX_LEVEL; i++) {
3135
		int tslot = path->slots[i];
3136

3137
		if (!path->nodes[i])
3138
			break;
3139
		t = path->nodes[i];
3140 3141 3142
		ret = tree_mod_log_insert_key(t, tslot, MOD_LOG_KEY_REPLACE,
				GFP_ATOMIC);
		BUG_ON(ret < 0);
3143
		btrfs_set_node_key(t, key, tslot);
C
Chris Mason 已提交
3144
		btrfs_mark_buffer_dirty(path->nodes[i]);
3145 3146 3147 3148 3149
		if (tslot != 0)
			break;
	}
}

Z
Zheng Yan 已提交
3150 3151 3152 3153 3154 3155
/*
 * update item key.
 *
 * This function isn't completely safe. It's the caller's responsibility
 * that the new key won't break the order
 */
3156 3157
void btrfs_set_item_key_safe(struct btrfs_fs_info *fs_info,
			     struct btrfs_path *path,
3158
			     const struct btrfs_key *new_key)
Z
Zheng Yan 已提交
3159 3160 3161 3162 3163 3164 3165 3166 3167
{
	struct btrfs_disk_key disk_key;
	struct extent_buffer *eb;
	int slot;

	eb = path->nodes[0];
	slot = path->slots[0];
	if (slot > 0) {
		btrfs_item_key(eb, &disk_key, slot - 1);
3168
		BUG_ON(comp_keys(&disk_key, new_key) >= 0);
Z
Zheng Yan 已提交
3169 3170 3171
	}
	if (slot < btrfs_header_nritems(eb) - 1) {
		btrfs_item_key(eb, &disk_key, slot + 1);
3172
		BUG_ON(comp_keys(&disk_key, new_key) <= 0);
Z
Zheng Yan 已提交
3173 3174 3175 3176 3177 3178
	}

	btrfs_cpu_key_to_disk(&disk_key, new_key);
	btrfs_set_item_key(eb, &disk_key, slot);
	btrfs_mark_buffer_dirty(eb);
	if (slot == 0)
3179
		fixup_low_keys(path, &disk_key, 1);
Z
Zheng Yan 已提交
3180 3181
}

C
Chris Mason 已提交
3182 3183
/*
 * try to push data from one node into the next node left in the
3184
 * tree.
C
Chris Mason 已提交
3185 3186 3187
 *
 * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
 * error, and > 0 if there was no room in the left hand block.
C
Chris Mason 已提交
3188
 */
3189
static int push_node_left(struct btrfs_trans_handle *trans,
3190 3191
			  struct btrfs_fs_info *fs_info,
			  struct extent_buffer *dst,
3192
			  struct extent_buffer *src, int empty)
3193 3194
{
	int push_items = 0;
3195 3196
	int src_nritems;
	int dst_nritems;
C
Chris Mason 已提交
3197
	int ret = 0;
3198

3199 3200
	src_nritems = btrfs_header_nritems(src);
	dst_nritems = btrfs_header_nritems(dst);
3201
	push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems;
3202 3203
	WARN_ON(btrfs_header_generation(src) != trans->transid);
	WARN_ON(btrfs_header_generation(dst) != trans->transid);
3204

3205
	if (!empty && src_nritems <= 8)
3206 3207
		return 1;

C
Chris Mason 已提交
3208
	if (push_items <= 0)
3209 3210
		return 1;

3211
	if (empty) {
3212
		push_items = min(src_nritems, push_items);
3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224
		if (push_items < src_nritems) {
			/* leave at least 8 pointers in the node if
			 * we aren't going to empty it
			 */
			if (src_nritems - push_items < 8) {
				if (push_items <= 8)
					return 1;
				push_items -= 8;
			}
		}
	} else
		push_items = min(src_nritems - 8, push_items);
3225

3226
	ret = tree_mod_log_eb_copy(fs_info, dst, src, dst_nritems, 0,
3227 3228
				   push_items);
	if (ret) {
3229
		btrfs_abort_transaction(trans, ret);
3230 3231
		return ret;
	}
3232 3233 3234
	copy_extent_buffer(dst, src,
			   btrfs_node_key_ptr_offset(dst_nritems),
			   btrfs_node_key_ptr_offset(0),
C
Chris Mason 已提交
3235
			   push_items * sizeof(struct btrfs_key_ptr));
3236

3237
	if (push_items < src_nritems) {
3238
		/*
3239 3240
		 * Don't call tree_mod_log_insert_move here, key removal was
		 * already fully logged by tree_mod_log_eb_copy above.
3241
		 */
3242 3243 3244 3245 3246 3247 3248 3249 3250
		memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0),
				      btrfs_node_key_ptr_offset(push_items),
				      (src_nritems - push_items) *
				      sizeof(struct btrfs_key_ptr));
	}
	btrfs_set_header_nritems(src, src_nritems - push_items);
	btrfs_set_header_nritems(dst, dst_nritems + push_items);
	btrfs_mark_buffer_dirty(src);
	btrfs_mark_buffer_dirty(dst);
Z
Zheng Yan 已提交
3251

3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263
	return ret;
}

/*
 * try to push data from one node into the next node right in the
 * tree.
 *
 * returns 0 if some ptrs were pushed, < 0 if there was some horrible
 * error, and > 0 if there was no room in the right hand block.
 *
 * this will  only push up to 1/2 the contents of the left node over
 */
3264
static int balance_node_right(struct btrfs_trans_handle *trans,
3265
			      struct btrfs_fs_info *fs_info,
3266 3267
			      struct extent_buffer *dst,
			      struct extent_buffer *src)
3268 3269 3270 3271 3272 3273 3274
{
	int push_items = 0;
	int max_push;
	int src_nritems;
	int dst_nritems;
	int ret = 0;

3275 3276 3277
	WARN_ON(btrfs_header_generation(src) != trans->transid);
	WARN_ON(btrfs_header_generation(dst) != trans->transid);

3278 3279
	src_nritems = btrfs_header_nritems(src);
	dst_nritems = btrfs_header_nritems(dst);
3280
	push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems;
C
Chris Mason 已提交
3281
	if (push_items <= 0)
3282
		return 1;
3283

C
Chris Mason 已提交
3284
	if (src_nritems < 4)
3285
		return 1;
3286 3287 3288

	max_push = src_nritems / 2 + 1;
	/* don't try to empty the node */
C
Chris Mason 已提交
3289
	if (max_push >= src_nritems)
3290
		return 1;
Y
Yan 已提交
3291

3292 3293 3294
	if (max_push < push_items)
		push_items = max_push;

3295 3296
	ret = tree_mod_log_insert_move(dst, push_items, 0, dst_nritems);
	BUG_ON(ret < 0);
3297 3298 3299 3300
	memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items),
				      btrfs_node_key_ptr_offset(0),
				      (dst_nritems) *
				      sizeof(struct btrfs_key_ptr));
C
Chris Mason 已提交
3301

3302
	ret = tree_mod_log_eb_copy(fs_info, dst, src, 0,
3303 3304
				   src_nritems - push_items, push_items);
	if (ret) {
3305
		btrfs_abort_transaction(trans, ret);
3306 3307
		return ret;
	}
3308 3309 3310
	copy_extent_buffer(dst, src,
			   btrfs_node_key_ptr_offset(0),
			   btrfs_node_key_ptr_offset(src_nritems - push_items),
C
Chris Mason 已提交
3311
			   push_items * sizeof(struct btrfs_key_ptr));
3312

3313 3314
	btrfs_set_header_nritems(src, src_nritems - push_items);
	btrfs_set_header_nritems(dst, dst_nritems + push_items);
3315

3316 3317
	btrfs_mark_buffer_dirty(src);
	btrfs_mark_buffer_dirty(dst);
Z
Zheng Yan 已提交
3318

C
Chris Mason 已提交
3319
	return ret;
3320 3321
}

C
Chris Mason 已提交
3322 3323 3324 3325
/*
 * helper function to insert a new root level in the tree.
 * A new node is allocated, and a single item is inserted to
 * point to the existing root
C
Chris Mason 已提交
3326 3327
 *
 * returns zero on success or < 0 on failure.
C
Chris Mason 已提交
3328
 */
C
Chris Mason 已提交
3329
static noinline int insert_new_root(struct btrfs_trans_handle *trans,
3330
			   struct btrfs_root *root,
3331
			   struct btrfs_path *path, int level)
C
Chris Mason 已提交
3332
{
3333
	struct btrfs_fs_info *fs_info = root->fs_info;
3334
	u64 lower_gen;
3335 3336
	struct extent_buffer *lower;
	struct extent_buffer *c;
3337
	struct extent_buffer *old;
3338
	struct btrfs_disk_key lower_key;
3339
	int ret;
C
Chris Mason 已提交
3340 3341 3342 3343

	BUG_ON(path->nodes[level]);
	BUG_ON(path->nodes[level-1] != root->node);

3344 3345 3346 3347 3348 3349
	lower = path->nodes[level-1];
	if (level == 1)
		btrfs_item_key(lower, &lower_key, 0);
	else
		btrfs_node_key(lower, &lower_key, 0);

3350 3351
	c = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
				   &lower_key, level, root->node->start, 0);
3352 3353
	if (IS_ERR(c))
		return PTR_ERR(c);
3354

3355
	root_add_used(root, fs_info->nodesize);
3356

3357 3358
	btrfs_set_header_nritems(c, 1);
	btrfs_set_node_key(c, &lower_key, 0);
3359
	btrfs_set_node_blockptr(c, 0, lower->start);
3360
	lower_gen = btrfs_header_generation(lower);
Z
Zheng Yan 已提交
3361
	WARN_ON(lower_gen != trans->transid);
3362 3363

	btrfs_set_node_ptr_generation(c, 0, lower_gen);
3364

3365
	btrfs_mark_buffer_dirty(c);
3366

3367
	old = root->node;
3368 3369
	ret = tree_mod_log_insert_root(root->node, c, 0);
	BUG_ON(ret < 0);
3370
	rcu_assign_pointer(root->node, c);
3371 3372 3373 3374

	/* the super has an extra ref to root->node */
	free_extent_buffer(old);

3375
	add_root_to_dirty_list(root);
3376 3377
	extent_buffer_get(c);
	path->nodes[level] = c;
3378
	path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
C
Chris Mason 已提交
3379 3380 3381 3382
	path->slots[level] = 0;
	return 0;
}

C
Chris Mason 已提交
3383 3384 3385
/*
 * worker function to insert a single pointer in a node.
 * the node should have enough room for the pointer already
C
Chris Mason 已提交
3386
 *
C
Chris Mason 已提交
3387 3388 3389
 * slot and level indicate where you want the key to go, and
 * blocknr is the block the key points to.
 */
3390
static void insert_ptr(struct btrfs_trans_handle *trans,
3391
		       struct btrfs_fs_info *fs_info, struct btrfs_path *path,
3392
		       struct btrfs_disk_key *key, u64 bytenr,
3393
		       int slot, int level)
C
Chris Mason 已提交
3394
{
3395
	struct extent_buffer *lower;
C
Chris Mason 已提交
3396
	int nritems;
3397
	int ret;
C
Chris Mason 已提交
3398 3399

	BUG_ON(!path->nodes[level]);
3400
	btrfs_assert_tree_locked(path->nodes[level]);
3401 3402
	lower = path->nodes[level];
	nritems = btrfs_header_nritems(lower);
S
Stoyan Gaydarov 已提交
3403
	BUG_ON(slot > nritems);
3404
	BUG_ON(nritems == BTRFS_NODEPTRS_PER_BLOCK(fs_info));
C
Chris Mason 已提交
3405
	if (slot != nritems) {
3406 3407
		if (level) {
			ret = tree_mod_log_insert_move(lower, slot + 1, slot,
3408
					nritems - slot);
3409 3410
			BUG_ON(ret < 0);
		}
3411 3412 3413
		memmove_extent_buffer(lower,
			      btrfs_node_key_ptr_offset(slot + 1),
			      btrfs_node_key_ptr_offset(slot),
C
Chris Mason 已提交
3414
			      (nritems - slot) * sizeof(struct btrfs_key_ptr));
C
Chris Mason 已提交
3415
	}
3416
	if (level) {
3417 3418
		ret = tree_mod_log_insert_key(lower, slot, MOD_LOG_KEY_ADD,
				GFP_NOFS);
3419 3420
		BUG_ON(ret < 0);
	}
3421
	btrfs_set_node_key(lower, key, slot);
3422
	btrfs_set_node_blockptr(lower, slot, bytenr);
3423 3424
	WARN_ON(trans->transid == 0);
	btrfs_set_node_ptr_generation(lower, slot, trans->transid);
3425 3426
	btrfs_set_header_nritems(lower, nritems + 1);
	btrfs_mark_buffer_dirty(lower);
C
Chris Mason 已提交
3427 3428
}

C
Chris Mason 已提交
3429 3430 3431 3432 3433 3434
/*
 * split the node at the specified level in path in two.
 * The path is corrected to point to the appropriate node after the split
 *
 * Before splitting this tries to make some room in the node by pushing
 * left and right, if either one works, it returns right away.
C
Chris Mason 已提交
3435 3436
 *
 * returns 0 on success and < 0 on failure
C
Chris Mason 已提交
3437
 */
3438 3439 3440
static noinline int split_node(struct btrfs_trans_handle *trans,
			       struct btrfs_root *root,
			       struct btrfs_path *path, int level)
3441
{
3442
	struct btrfs_fs_info *fs_info = root->fs_info;
3443 3444 3445
	struct extent_buffer *c;
	struct extent_buffer *split;
	struct btrfs_disk_key disk_key;
3446
	int mid;
C
Chris Mason 已提交
3447
	int ret;
3448
	u32 c_nritems;
3449

3450
	c = path->nodes[level];
3451
	WARN_ON(btrfs_header_generation(c) != trans->transid);
3452
	if (c == root->node) {
3453
		/*
3454 3455
		 * trying to split the root, lets make a new one
		 *
3456
		 * tree mod log: We don't log_removal old root in
3457 3458 3459 3460 3461
		 * insert_new_root, because that root buffer will be kept as a
		 * normal node. We are going to log removal of half of the
		 * elements below with tree_mod_log_eb_copy. We're holding a
		 * tree lock on the buffer, which is why we cannot race with
		 * other tree_mod_log users.
3462
		 */
3463
		ret = insert_new_root(trans, root, path, level + 1);
C
Chris Mason 已提交
3464 3465
		if (ret)
			return ret;
3466
	} else {
3467
		ret = push_nodes_for_insert(trans, root, path, level);
3468 3469
		c = path->nodes[level];
		if (!ret && btrfs_header_nritems(c) <
3470
		    BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3)
3471
			return 0;
3472 3473
		if (ret < 0)
			return ret;
3474
	}
3475

3476
	c_nritems = btrfs_header_nritems(c);
3477 3478
	mid = (c_nritems + 1) / 2;
	btrfs_node_key(c, &disk_key, mid);
3479

3480 3481
	split = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
			&disk_key, level, c->start, 0);
3482 3483 3484
	if (IS_ERR(split))
		return PTR_ERR(split);

3485
	root_add_used(root, fs_info->nodesize);
3486
	ASSERT(btrfs_header_level(c) == level);
3487

3488
	ret = tree_mod_log_eb_copy(fs_info, split, c, 0, mid, c_nritems - mid);
3489
	if (ret) {
3490
		btrfs_abort_transaction(trans, ret);
3491 3492
		return ret;
	}
3493 3494 3495 3496 3497 3498
	copy_extent_buffer(split, c,
			   btrfs_node_key_ptr_offset(0),
			   btrfs_node_key_ptr_offset(mid),
			   (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
	btrfs_set_header_nritems(split, c_nritems - mid);
	btrfs_set_header_nritems(c, mid);
C
Chris Mason 已提交
3499 3500
	ret = 0;

3501 3502 3503
	btrfs_mark_buffer_dirty(c);
	btrfs_mark_buffer_dirty(split);

3504
	insert_ptr(trans, fs_info, path, &disk_key, split->start,
3505
		   path->slots[level + 1] + 1, level + 1);
C
Chris Mason 已提交
3506

C
Chris Mason 已提交
3507
	if (path->slots[level] >= mid) {
C
Chris Mason 已提交
3508
		path->slots[level] -= mid;
3509
		btrfs_tree_unlock(c);
3510 3511
		free_extent_buffer(c);
		path->nodes[level] = split;
C
Chris Mason 已提交
3512 3513
		path->slots[level + 1] += 1;
	} else {
3514
		btrfs_tree_unlock(split);
3515
		free_extent_buffer(split);
3516
	}
C
Chris Mason 已提交
3517
	return ret;
3518 3519
}

C
Chris Mason 已提交
3520 3521 3522 3523 3524
/*
 * how many bytes are required to store the items in a leaf.  start
 * and nr indicate which items in the leaf to check.  This totals up the
 * space used both by the item structs and the item data
 */
3525
static int leaf_space_used(struct extent_buffer *l, int start, int nr)
3526
{
J
Josef Bacik 已提交
3527 3528 3529
	struct btrfs_item *start_item;
	struct btrfs_item *end_item;
	struct btrfs_map_token token;
3530
	int data_len;
3531
	int nritems = btrfs_header_nritems(l);
3532
	int end = min(nritems, start + nr) - 1;
3533 3534 3535

	if (!nr)
		return 0;
J
Josef Bacik 已提交
3536
	btrfs_init_map_token(&token);
3537 3538
	start_item = btrfs_item_nr(start);
	end_item = btrfs_item_nr(end);
J
Josef Bacik 已提交
3539 3540 3541
	data_len = btrfs_token_item_offset(l, start_item, &token) +
		btrfs_token_item_size(l, start_item, &token);
	data_len = data_len - btrfs_token_item_offset(l, end_item, &token);
C
Chris Mason 已提交
3542
	data_len += sizeof(struct btrfs_item) * nr;
3543
	WARN_ON(data_len < 0);
3544 3545 3546
	return data_len;
}

3547 3548 3549 3550 3551
/*
 * The space between the end of the leaf items and
 * the start of the leaf data.  IOW, how much room
 * the leaf has left for both items and data
 */
3552
noinline int btrfs_leaf_free_space(struct btrfs_fs_info *fs_info,
3553
				   struct extent_buffer *leaf)
3554
{
3555 3556
	int nritems = btrfs_header_nritems(leaf);
	int ret;
3557 3558

	ret = BTRFS_LEAF_DATA_SIZE(fs_info) - leaf_space_used(leaf, 0, nritems);
3559
	if (ret < 0) {
3560 3561 3562 3563 3564
		btrfs_crit(fs_info,
			   "leaf free space ret %d, leaf data size %lu, used %d nritems %d",
			   ret,
			   (unsigned long) BTRFS_LEAF_DATA_SIZE(fs_info),
			   leaf_space_used(leaf, 0, nritems), nritems);
3565 3566
	}
	return ret;
3567 3568
}

3569 3570 3571 3572
/*
 * min slot controls the lowest index we're willing to push to the
 * right.  We'll push up to and including min_slot, but no lower
 */
3573
static noinline int __push_leaf_right(struct btrfs_fs_info *fs_info,
3574 3575 3576
				      struct btrfs_path *path,
				      int data_size, int empty,
				      struct extent_buffer *right,
3577 3578
				      int free_space, u32 left_nritems,
				      u32 min_slot)
C
Chris Mason 已提交
3579
{
3580
	struct extent_buffer *left = path->nodes[0];
3581
	struct extent_buffer *upper = path->nodes[1];
3582
	struct btrfs_map_token token;
3583
	struct btrfs_disk_key disk_key;
C
Chris Mason 已提交
3584
	int slot;
3585
	u32 i;
C
Chris Mason 已提交
3586 3587
	int push_space = 0;
	int push_items = 0;
C
Chris Mason 已提交
3588
	struct btrfs_item *item;
3589
	u32 nr;
3590
	u32 right_nritems;
3591
	u32 data_end;
3592
	u32 this_item_size;
C
Chris Mason 已提交
3593

3594 3595
	btrfs_init_map_token(&token);

3596 3597 3598
	if (empty)
		nr = 0;
	else
3599
		nr = max_t(u32, 1, min_slot);
3600

Z
Zheng Yan 已提交
3601
	if (path->slots[0] >= left_nritems)
3602
		push_space += data_size;
Z
Zheng Yan 已提交
3603

3604
	slot = path->slots[1];
3605 3606
	i = left_nritems - 1;
	while (i >= nr) {
3607
		item = btrfs_item_nr(i);
3608

Z
Zheng Yan 已提交
3609 3610 3611 3612
		if (!empty && push_items > 0) {
			if (path->slots[0] > i)
				break;
			if (path->slots[0] == i) {
3613
				int space = btrfs_leaf_free_space(fs_info, left);
Z
Zheng Yan 已提交
3614 3615 3616 3617 3618
				if (space + push_space * 2 > free_space)
					break;
			}
		}

C
Chris Mason 已提交
3619
		if (path->slots[0] == i)
3620
			push_space += data_size;
3621 3622 3623

		this_item_size = btrfs_item_size(left, item);
		if (this_item_size + sizeof(*item) + push_space > free_space)
C
Chris Mason 已提交
3624
			break;
Z
Zheng Yan 已提交
3625

C
Chris Mason 已提交
3626
		push_items++;
3627
		push_space += this_item_size + sizeof(*item);
3628 3629 3630
		if (i == 0)
			break;
		i--;
3631
	}
3632

3633 3634
	if (push_items == 0)
		goto out_unlock;
3635

J
Julia Lawall 已提交
3636
	WARN_ON(!empty && push_items == left_nritems);
3637

C
Chris Mason 已提交
3638
	/* push left to right */
3639
	right_nritems = btrfs_header_nritems(right);
3640

3641
	push_space = btrfs_item_end_nr(left, left_nritems - push_items);
3642
	push_space -= leaf_data_end(fs_info, left);
3643

C
Chris Mason 已提交
3644
	/* make room in the right data area */
3645
	data_end = leaf_data_end(fs_info, right);
3646
	memmove_extent_buffer(right,
3647 3648
			      BTRFS_LEAF_DATA_OFFSET + data_end - push_space,
			      BTRFS_LEAF_DATA_OFFSET + data_end,
3649
			      BTRFS_LEAF_DATA_SIZE(fs_info) - data_end);
3650

C
Chris Mason 已提交
3651
	/* copy from the left data area */
3652
	copy_extent_buffer(right, left, BTRFS_LEAF_DATA_OFFSET +
3653
		     BTRFS_LEAF_DATA_SIZE(fs_info) - push_space,
3654
		     BTRFS_LEAF_DATA_OFFSET + leaf_data_end(fs_info, left),
C
Chris Mason 已提交
3655
		     push_space);
3656 3657 3658 3659 3660

	memmove_extent_buffer(right, btrfs_item_nr_offset(push_items),
			      btrfs_item_nr_offset(0),
			      right_nritems * sizeof(struct btrfs_item));

C
Chris Mason 已提交
3661
	/* copy the items from left to right */
3662 3663 3664
	copy_extent_buffer(right, left, btrfs_item_nr_offset(0),
		   btrfs_item_nr_offset(left_nritems - push_items),
		   push_items * sizeof(struct btrfs_item));
C
Chris Mason 已提交
3665 3666

	/* update the item pointers */
3667
	right_nritems += push_items;
3668
	btrfs_set_header_nritems(right, right_nritems);
3669
	push_space = BTRFS_LEAF_DATA_SIZE(fs_info);
3670
	for (i = 0; i < right_nritems; i++) {
3671
		item = btrfs_item_nr(i);
3672 3673
		push_space -= btrfs_token_item_size(right, item, &token);
		btrfs_set_token_item_offset(right, item, push_space, &token);
3674 3675
	}

3676
	left_nritems -= push_items;
3677
	btrfs_set_header_nritems(left, left_nritems);
C
Chris Mason 已提交
3678

3679 3680
	if (left_nritems)
		btrfs_mark_buffer_dirty(left);
3681
	else
3682
		clean_tree_block(fs_info, left);
3683

3684
	btrfs_mark_buffer_dirty(right);
3685

3686 3687
	btrfs_item_key(right, &disk_key, 0);
	btrfs_set_node_key(upper, &disk_key, slot + 1);
C
Chris Mason 已提交
3688
	btrfs_mark_buffer_dirty(upper);
C
Chris Mason 已提交
3689

C
Chris Mason 已提交
3690
	/* then fixup the leaf pointer in the path */
3691 3692
	if (path->slots[0] >= left_nritems) {
		path->slots[0] -= left_nritems;
3693
		if (btrfs_header_nritems(path->nodes[0]) == 0)
3694
			clean_tree_block(fs_info, path->nodes[0]);
3695
		btrfs_tree_unlock(path->nodes[0]);
3696 3697
		free_extent_buffer(path->nodes[0]);
		path->nodes[0] = right;
C
Chris Mason 已提交
3698 3699
		path->slots[1] += 1;
	} else {
3700
		btrfs_tree_unlock(right);
3701
		free_extent_buffer(right);
C
Chris Mason 已提交
3702 3703
	}
	return 0;
3704 3705 3706 3707 3708

out_unlock:
	btrfs_tree_unlock(right);
	free_extent_buffer(right);
	return 1;
C
Chris Mason 已提交
3709
}
3710

3711 3712 3713 3714 3715 3716
/*
 * push some data in the path leaf to the right, trying to free up at
 * least data_size bytes.  returns zero if the push worked, nonzero otherwise
 *
 * returns 1 if the push failed because the other node didn't have enough
 * room, 0 if everything worked out and < 0 if there were major errors.
3717 3718 3719
 *
 * this will push starting from min_slot to the end of the leaf.  It won't
 * push any slot lower than min_slot
3720 3721
 */
static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
3722 3723 3724
			   *root, struct btrfs_path *path,
			   int min_data_size, int data_size,
			   int empty, u32 min_slot)
3725
{
3726
	struct btrfs_fs_info *fs_info = root->fs_info;
3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744
	struct extent_buffer *left = path->nodes[0];
	struct extent_buffer *right;
	struct extent_buffer *upper;
	int slot;
	int free_space;
	u32 left_nritems;
	int ret;

	if (!path->nodes[1])
		return 1;

	slot = path->slots[1];
	upper = path->nodes[1];
	if (slot >= btrfs_header_nritems(upper) - 1)
		return 1;

	btrfs_assert_tree_locked(path->nodes[1]);

3745
	right = read_node_slot(fs_info, upper, slot + 1);
3746 3747 3748 3749 3750
	/*
	 * slot + 1 is not valid or we fail to read the right node,
	 * no big deal, just return.
	 */
	if (IS_ERR(right))
T
Tsutomu Itoh 已提交
3751 3752
		return 1;

3753 3754 3755
	btrfs_tree_lock(right);
	btrfs_set_lock_blocking(right);

3756
	free_space = btrfs_leaf_free_space(fs_info, right);
3757 3758 3759 3760 3761 3762 3763 3764 3765
	if (free_space < data_size)
		goto out_unlock;

	/* cow and double check */
	ret = btrfs_cow_block(trans, root, right, upper,
			      slot + 1, &right);
	if (ret)
		goto out_unlock;

3766
	free_space = btrfs_leaf_free_space(fs_info, right);
3767 3768 3769 3770 3771 3772 3773
	if (free_space < data_size)
		goto out_unlock;

	left_nritems = btrfs_header_nritems(left);
	if (left_nritems == 0)
		goto out_unlock;

3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786
	if (path->slots[0] == left_nritems && !empty) {
		/* Key greater than all keys in the leaf, right neighbor has
		 * enough room for it and we're not emptying our leaf to delete
		 * it, therefore use right neighbor to insert the new item and
		 * no need to touch/dirty our left leaft. */
		btrfs_tree_unlock(left);
		free_extent_buffer(left);
		path->nodes[0] = right;
		path->slots[0] = 0;
		path->slots[1]++;
		return 0;
	}

3787
	return __push_leaf_right(fs_info, path, min_data_size, empty,
3788
				right, free_space, left_nritems, min_slot);
3789 3790 3791 3792 3793 3794
out_unlock:
	btrfs_tree_unlock(right);
	free_extent_buffer(right);
	return 1;
}

C
Chris Mason 已提交
3795 3796 3797
/*
 * push some data in the path leaf to the left, trying to free up at
 * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3798 3799 3800 3801
 *
 * max_slot can put a limit on how far into the leaf we'll push items.  The
 * item at 'max_slot' won't be touched.  Use (u32)-1 to make us do all the
 * items
C
Chris Mason 已提交
3802
 */
3803
static noinline int __push_leaf_left(struct btrfs_fs_info *fs_info,
3804 3805
				     struct btrfs_path *path, int data_size,
				     int empty, struct extent_buffer *left,
3806 3807
				     int free_space, u32 right_nritems,
				     u32 max_slot)
3808
{
3809 3810
	struct btrfs_disk_key disk_key;
	struct extent_buffer *right = path->nodes[0];
3811 3812 3813
	int i;
	int push_space = 0;
	int push_items = 0;
C
Chris Mason 已提交
3814
	struct btrfs_item *item;
3815
	u32 old_left_nritems;
3816
	u32 nr;
C
Chris Mason 已提交
3817
	int ret = 0;
3818 3819
	u32 this_item_size;
	u32 old_left_item_size;
3820 3821 3822
	struct btrfs_map_token token;

	btrfs_init_map_token(&token);
3823

3824
	if (empty)
3825
		nr = min(right_nritems, max_slot);
3826
	else
3827
		nr = min(right_nritems - 1, max_slot);
3828 3829

	for (i = 0; i < nr; i++) {
3830
		item = btrfs_item_nr(i);
3831

Z
Zheng Yan 已提交
3832 3833 3834 3835
		if (!empty && push_items > 0) {
			if (path->slots[0] < i)
				break;
			if (path->slots[0] == i) {
3836
				int space = btrfs_leaf_free_space(fs_info, right);
Z
Zheng Yan 已提交
3837 3838 3839 3840 3841
				if (space + push_space * 2 > free_space)
					break;
			}
		}

3842
		if (path->slots[0] == i)
3843
			push_space += data_size;
3844 3845 3846

		this_item_size = btrfs_item_size(right, item);
		if (this_item_size + sizeof(*item) + push_space > free_space)
3847
			break;
3848

3849
		push_items++;
3850 3851 3852
		push_space += this_item_size + sizeof(*item);
	}

3853
	if (push_items == 0) {
3854 3855
		ret = 1;
		goto out;
3856
	}
3857
	WARN_ON(!empty && push_items == btrfs_header_nritems(right));
3858

3859
	/* push data from right to left */
3860 3861 3862 3863 3864
	copy_extent_buffer(left, right,
			   btrfs_item_nr_offset(btrfs_header_nritems(left)),
			   btrfs_item_nr_offset(0),
			   push_items * sizeof(struct btrfs_item));

3865
	push_space = BTRFS_LEAF_DATA_SIZE(fs_info) -
C
Chris Mason 已提交
3866
		     btrfs_item_offset_nr(right, push_items - 1);
3867

3868
	copy_extent_buffer(left, right, BTRFS_LEAF_DATA_OFFSET +
3869
		     leaf_data_end(fs_info, left) - push_space,
3870
		     BTRFS_LEAF_DATA_OFFSET +
3871
		     btrfs_item_offset_nr(right, push_items - 1),
C
Chris Mason 已提交
3872
		     push_space);
3873
	old_left_nritems = btrfs_header_nritems(left);
3874
	BUG_ON(old_left_nritems <= 0);
3875

3876
	old_left_item_size = btrfs_item_offset_nr(left, old_left_nritems - 1);
C
Chris Mason 已提交
3877
	for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
3878
		u32 ioff;
3879

3880
		item = btrfs_item_nr(i);
3881

3882 3883
		ioff = btrfs_token_item_offset(left, item, &token);
		btrfs_set_token_item_offset(left, item,
3884
		      ioff - (BTRFS_LEAF_DATA_SIZE(fs_info) - old_left_item_size),
3885
		      &token);
3886
	}
3887
	btrfs_set_header_nritems(left, old_left_nritems + push_items);
3888 3889

	/* fixup right node */
J
Julia Lawall 已提交
3890 3891
	if (push_items > right_nritems)
		WARN(1, KERN_CRIT "push items %d nr %u\n", push_items,
C
Chris Mason 已提交
3892
		       right_nritems);
3893 3894 3895

	if (push_items < right_nritems) {
		push_space = btrfs_item_offset_nr(right, push_items - 1) -
3896
						  leaf_data_end(fs_info, right);
3897
		memmove_extent_buffer(right, BTRFS_LEAF_DATA_OFFSET +
3898
				      BTRFS_LEAF_DATA_SIZE(fs_info) - push_space,
3899
				      BTRFS_LEAF_DATA_OFFSET +
3900
				      leaf_data_end(fs_info, right), push_space);
3901 3902

		memmove_extent_buffer(right, btrfs_item_nr_offset(0),
3903 3904 3905
			      btrfs_item_nr_offset(push_items),
			     (btrfs_header_nritems(right) - push_items) *
			     sizeof(struct btrfs_item));
3906
	}
3907 3908
	right_nritems -= push_items;
	btrfs_set_header_nritems(right, right_nritems);
3909
	push_space = BTRFS_LEAF_DATA_SIZE(fs_info);
3910
	for (i = 0; i < right_nritems; i++) {
3911
		item = btrfs_item_nr(i);
3912

3913 3914 3915
		push_space = push_space - btrfs_token_item_size(right,
								item, &token);
		btrfs_set_token_item_offset(right, item, push_space, &token);
3916
	}
3917

3918
	btrfs_mark_buffer_dirty(left);
3919 3920
	if (right_nritems)
		btrfs_mark_buffer_dirty(right);
3921
	else
3922
		clean_tree_block(fs_info, right);
3923

3924
	btrfs_item_key(right, &disk_key, 0);
3925
	fixup_low_keys(path, &disk_key, 1);
3926 3927 3928 3929

	/* then fixup the leaf pointer in the path */
	if (path->slots[0] < push_items) {
		path->slots[0] += old_left_nritems;
3930
		btrfs_tree_unlock(path->nodes[0]);
3931 3932
		free_extent_buffer(path->nodes[0]);
		path->nodes[0] = left;
3933 3934
		path->slots[1] -= 1;
	} else {
3935
		btrfs_tree_unlock(left);
3936
		free_extent_buffer(left);
3937 3938
		path->slots[0] -= push_items;
	}
3939
	BUG_ON(path->slots[0] < 0);
C
Chris Mason 已提交
3940
	return ret;
3941 3942 3943 3944
out:
	btrfs_tree_unlock(left);
	free_extent_buffer(left);
	return ret;
3945 3946
}

3947 3948 3949
/*
 * push some data in the path leaf to the left, trying to free up at
 * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3950 3951 3952 3953
 *
 * max_slot can put a limit on how far into the leaf we'll push items.  The
 * item at 'max_slot' won't be touched.  Use (u32)-1 to make us push all the
 * items
3954 3955
 */
static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
3956 3957
			  *root, struct btrfs_path *path, int min_data_size,
			  int data_size, int empty, u32 max_slot)
3958
{
3959
	struct btrfs_fs_info *fs_info = root->fs_info;
3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978
	struct extent_buffer *right = path->nodes[0];
	struct extent_buffer *left;
	int slot;
	int free_space;
	u32 right_nritems;
	int ret = 0;

	slot = path->slots[1];
	if (slot == 0)
		return 1;
	if (!path->nodes[1])
		return 1;

	right_nritems = btrfs_header_nritems(right);
	if (right_nritems == 0)
		return 1;

	btrfs_assert_tree_locked(path->nodes[1]);

3979
	left = read_node_slot(fs_info, path->nodes[1], slot - 1);
3980 3981 3982 3983 3984
	/*
	 * slot - 1 is not valid or we fail to read the left node,
	 * no big deal, just return.
	 */
	if (IS_ERR(left))
T
Tsutomu Itoh 已提交
3985 3986
		return 1;

3987 3988 3989
	btrfs_tree_lock(left);
	btrfs_set_lock_blocking(left);

3990
	free_space = btrfs_leaf_free_space(fs_info, left);
3991 3992 3993 3994 3995 3996 3997 3998 3999 4000
	if (free_space < data_size) {
		ret = 1;
		goto out;
	}

	/* cow and double check */
	ret = btrfs_cow_block(trans, root, left,
			      path->nodes[1], slot - 1, &left);
	if (ret) {
		/* we hit -ENOSPC, but it isn't fatal here */
4001 4002
		if (ret == -ENOSPC)
			ret = 1;
4003 4004 4005
		goto out;
	}

4006
	free_space = btrfs_leaf_free_space(fs_info, left);
4007 4008 4009 4010 4011
	if (free_space < data_size) {
		ret = 1;
		goto out;
	}

4012
	return __push_leaf_left(fs_info, path, min_data_size,
4013 4014
			       empty, left, free_space, right_nritems,
			       max_slot);
4015 4016 4017 4018 4019 4020 4021 4022 4023 4024
out:
	btrfs_tree_unlock(left);
	free_extent_buffer(left);
	return ret;
}

/*
 * split the path's leaf in two, making sure there is at least data_size
 * available for the resulting leaf level of the path.
 */
4025
static noinline void copy_for_split(struct btrfs_trans_handle *trans,
4026
				    struct btrfs_fs_info *fs_info,
4027 4028 4029 4030
				    struct btrfs_path *path,
				    struct extent_buffer *l,
				    struct extent_buffer *right,
				    int slot, int mid, int nritems)
4031 4032 4033 4034 4035
{
	int data_copy_size;
	int rt_data_off;
	int i;
	struct btrfs_disk_key disk_key;
4036 4037 4038
	struct btrfs_map_token token;

	btrfs_init_map_token(&token);
4039 4040 4041

	nritems = nritems - mid;
	btrfs_set_header_nritems(right, nritems);
4042
	data_copy_size = btrfs_item_end_nr(l, mid) - leaf_data_end(fs_info, l);
4043 4044 4045 4046 4047 4048

	copy_extent_buffer(right, l, btrfs_item_nr_offset(0),
			   btrfs_item_nr_offset(mid),
			   nritems * sizeof(struct btrfs_item));

	copy_extent_buffer(right, l,
4049 4050
		     BTRFS_LEAF_DATA_OFFSET + BTRFS_LEAF_DATA_SIZE(fs_info) -
		     data_copy_size, BTRFS_LEAF_DATA_OFFSET +
4051
		     leaf_data_end(fs_info, l), data_copy_size);
4052

4053
	rt_data_off = BTRFS_LEAF_DATA_SIZE(fs_info) - btrfs_item_end_nr(l, mid);
4054 4055

	for (i = 0; i < nritems; i++) {
4056
		struct btrfs_item *item = btrfs_item_nr(i);
4057 4058
		u32 ioff;

4059 4060 4061
		ioff = btrfs_token_item_offset(right, item, &token);
		btrfs_set_token_item_offset(right, item,
					    ioff + rt_data_off, &token);
4062 4063 4064 4065
	}

	btrfs_set_header_nritems(l, mid);
	btrfs_item_key(right, &disk_key, 0);
4066
	insert_ptr(trans, fs_info, path, &disk_key, right->start,
4067
		   path->slots[1] + 1, 1);
4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086

	btrfs_mark_buffer_dirty(right);
	btrfs_mark_buffer_dirty(l);
	BUG_ON(path->slots[0] != slot);

	if (mid <= slot) {
		btrfs_tree_unlock(path->nodes[0]);
		free_extent_buffer(path->nodes[0]);
		path->nodes[0] = right;
		path->slots[0] -= mid;
		path->slots[1] += 1;
	} else {
		btrfs_tree_unlock(right);
		free_extent_buffer(right);
	}

	BUG_ON(path->slots[0] < 0);
}

4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101
/*
 * double splits happen when we need to insert a big item in the middle
 * of a leaf.  A double split can leave us with 3 mostly empty leaves:
 * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ]
 *          A                 B                 C
 *
 * We avoid this by trying to push the items on either side of our target
 * into the adjacent leaves.  If all goes well we can avoid the double split
 * completely.
 */
static noinline int push_for_double_split(struct btrfs_trans_handle *trans,
					  struct btrfs_root *root,
					  struct btrfs_path *path,
					  int data_size)
{
4102
	struct btrfs_fs_info *fs_info = root->fs_info;
4103 4104 4105 4106
	int ret;
	int progress = 0;
	int slot;
	u32 nritems;
4107
	int space_needed = data_size;
4108 4109

	slot = path->slots[0];
4110
	if (slot < btrfs_header_nritems(path->nodes[0]))
4111
		space_needed -= btrfs_leaf_free_space(fs_info, path->nodes[0]);
4112 4113 4114 4115 4116

	/*
	 * try to push all the items after our slot into the
	 * right leaf
	 */
4117
	ret = push_leaf_right(trans, root, path, 1, space_needed, 0, slot);
4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131
	if (ret < 0)
		return ret;

	if (ret == 0)
		progress++;

	nritems = btrfs_header_nritems(path->nodes[0]);
	/*
	 * our goal is to get our slot at the start or end of a leaf.  If
	 * we've done so we're done
	 */
	if (path->slots[0] == 0 || path->slots[0] == nritems)
		return 0;

4132
	if (btrfs_leaf_free_space(fs_info, path->nodes[0]) >= data_size)
4133 4134 4135 4136
		return 0;

	/* try to push all the items before our slot into the next leaf */
	slot = path->slots[0];
4137 4138 4139
	space_needed = data_size;
	if (slot > 0)
		space_needed -= btrfs_leaf_free_space(fs_info, path->nodes[0]);
4140
	ret = push_leaf_left(trans, root, path, 1, space_needed, 0, slot);
4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151
	if (ret < 0)
		return ret;

	if (ret == 0)
		progress++;

	if (progress)
		return 0;
	return 1;
}

C
Chris Mason 已提交
4152 4153 4154
/*
 * split the path's leaf in two, making sure there is at least data_size
 * available for the resulting leaf level of the path.
C
Chris Mason 已提交
4155 4156
 *
 * returns 0 if all went well and < 0 on failure.
C
Chris Mason 已提交
4157
 */
4158 4159
static noinline int split_leaf(struct btrfs_trans_handle *trans,
			       struct btrfs_root *root,
4160
			       const struct btrfs_key *ins_key,
4161 4162
			       struct btrfs_path *path, int data_size,
			       int extend)
4163
{
4164
	struct btrfs_disk_key disk_key;
4165
	struct extent_buffer *l;
4166
	u32 nritems;
4167 4168
	int mid;
	int slot;
4169
	struct extent_buffer *right;
4170
	struct btrfs_fs_info *fs_info = root->fs_info;
4171
	int ret = 0;
C
Chris Mason 已提交
4172
	int wret;
4173
	int split;
4174
	int num_doubles = 0;
4175
	int tried_avoid_double = 0;
C
Chris Mason 已提交
4176

4177 4178 4179
	l = path->nodes[0];
	slot = path->slots[0];
	if (extend && data_size + btrfs_item_size_nr(l, slot) +
4180
	    sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(fs_info))
4181 4182
		return -EOVERFLOW;

C
Chris Mason 已提交
4183
	/* first try to make some room by pushing left and right */
4184
	if (data_size && path->nodes[1]) {
4185 4186 4187
		int space_needed = data_size;

		if (slot < btrfs_header_nritems(l))
4188
			space_needed -= btrfs_leaf_free_space(fs_info, l);
4189 4190 4191

		wret = push_leaf_right(trans, root, path, space_needed,
				       space_needed, 0, 0);
C
Chris Mason 已提交
4192
		if (wret < 0)
C
Chris Mason 已提交
4193
			return wret;
4194
		if (wret) {
4195 4196 4197 4198
			space_needed = data_size;
			if (slot > 0)
				space_needed -= btrfs_leaf_free_space(fs_info,
								      l);
4199 4200
			wret = push_leaf_left(trans, root, path, space_needed,
					      space_needed, 0, (u32)-1);
4201 4202 4203 4204
			if (wret < 0)
				return wret;
		}
		l = path->nodes[0];
C
Chris Mason 已提交
4205

4206
		/* did the pushes work? */
4207
		if (btrfs_leaf_free_space(fs_info, l) >= data_size)
4208
			return 0;
4209
	}
C
Chris Mason 已提交
4210

C
Chris Mason 已提交
4211
	if (!path->nodes[1]) {
4212
		ret = insert_new_root(trans, root, path, 1);
C
Chris Mason 已提交
4213 4214 4215
		if (ret)
			return ret;
	}
4216
again:
4217
	split = 1;
4218
	l = path->nodes[0];
4219
	slot = path->slots[0];
4220
	nritems = btrfs_header_nritems(l);
C
Chris Mason 已提交
4221
	mid = (nritems + 1) / 2;
4222

4223 4224 4225
	if (mid <= slot) {
		if (nritems == 1 ||
		    leaf_space_used(l, mid, nritems - mid) + data_size >
4226
			BTRFS_LEAF_DATA_SIZE(fs_info)) {
4227 4228 4229 4230 4231 4232
			if (slot >= nritems) {
				split = 0;
			} else {
				mid = slot;
				if (mid != nritems &&
				    leaf_space_used(l, mid, nritems - mid) +
4233
				    data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) {
4234 4235
					if (data_size && !tried_avoid_double)
						goto push_for_double;
4236 4237 4238 4239 4240 4241
					split = 2;
				}
			}
		}
	} else {
		if (leaf_space_used(l, 0, mid) + data_size >
4242
			BTRFS_LEAF_DATA_SIZE(fs_info)) {
4243 4244 4245 4246 4247 4248 4249 4250
			if (!extend && data_size && slot == 0) {
				split = 0;
			} else if ((extend || !data_size) && slot == 0) {
				mid = 1;
			} else {
				mid = slot;
				if (mid != nritems &&
				    leaf_space_used(l, mid, nritems - mid) +
4251
				    data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) {
4252 4253
					if (data_size && !tried_avoid_double)
						goto push_for_double;
4254
					split = 2;
4255 4256 4257 4258 4259 4260 4261 4262 4263 4264
				}
			}
		}
	}

	if (split == 0)
		btrfs_cpu_key_to_disk(&disk_key, ins_key);
	else
		btrfs_item_key(l, &disk_key, mid);

4265 4266
	right = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
			&disk_key, 0, l->start, 0);
4267
	if (IS_ERR(right))
4268
		return PTR_ERR(right);
4269

4270
	root_add_used(root, fs_info->nodesize);
4271

4272 4273 4274
	if (split == 0) {
		if (mid <= slot) {
			btrfs_set_header_nritems(right, 0);
4275 4276
			insert_ptr(trans, fs_info, path, &disk_key,
				   right->start, path->slots[1] + 1, 1);
4277 4278 4279 4280 4281 4282 4283
			btrfs_tree_unlock(path->nodes[0]);
			free_extent_buffer(path->nodes[0]);
			path->nodes[0] = right;
			path->slots[0] = 0;
			path->slots[1] += 1;
		} else {
			btrfs_set_header_nritems(right, 0);
4284 4285
			insert_ptr(trans, fs_info, path, &disk_key,
				   right->start, path->slots[1], 1);
4286 4287 4288 4289
			btrfs_tree_unlock(path->nodes[0]);
			free_extent_buffer(path->nodes[0]);
			path->nodes[0] = right;
			path->slots[0] = 0;
4290
			if (path->slots[1] == 0)
4291
				fixup_low_keys(path, &disk_key, 1);
4292
		}
4293 4294 4295 4296 4297
		/*
		 * We create a new leaf 'right' for the required ins_len and
		 * we'll do btrfs_mark_buffer_dirty() on this leaf after copying
		 * the content of ins_len to 'right'.
		 */
4298
		return ret;
4299
	}
C
Chris Mason 已提交
4300

4301
	copy_for_split(trans, fs_info, path, l, right, slot, mid, nritems);
Z
Zheng Yan 已提交
4302

4303
	if (split == 2) {
4304 4305 4306
		BUG_ON(num_doubles != 0);
		num_doubles++;
		goto again;
4307
	}
4308

4309
	return 0;
4310 4311 4312 4313

push_for_double:
	push_for_double_split(trans, root, path, data_size);
	tried_avoid_double = 1;
4314
	if (btrfs_leaf_free_space(fs_info, path->nodes[0]) >= data_size)
4315 4316
		return 0;
	goto again;
4317 4318
}

Y
Yan, Zheng 已提交
4319 4320 4321
static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans,
					 struct btrfs_root *root,
					 struct btrfs_path *path, int ins_len)
4322
{
4323
	struct btrfs_fs_info *fs_info = root->fs_info;
Y
Yan, Zheng 已提交
4324
	struct btrfs_key key;
4325
	struct extent_buffer *leaf;
Y
Yan, Zheng 已提交
4326 4327 4328 4329
	struct btrfs_file_extent_item *fi;
	u64 extent_len = 0;
	u32 item_size;
	int ret;
4330 4331

	leaf = path->nodes[0];
Y
Yan, Zheng 已提交
4332 4333 4334 4335 4336
	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);

	BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY &&
	       key.type != BTRFS_EXTENT_CSUM_KEY);

4337
	if (btrfs_leaf_free_space(fs_info, leaf) >= ins_len)
Y
Yan, Zheng 已提交
4338
		return 0;
4339 4340

	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
Y
Yan, Zheng 已提交
4341 4342 4343 4344 4345
	if (key.type == BTRFS_EXTENT_DATA_KEY) {
		fi = btrfs_item_ptr(leaf, path->slots[0],
				    struct btrfs_file_extent_item);
		extent_len = btrfs_file_extent_num_bytes(leaf, fi);
	}
4346
	btrfs_release_path(path);
4347 4348

	path->keep_locks = 1;
Y
Yan, Zheng 已提交
4349 4350
	path->search_for_split = 1;
	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
4351
	path->search_for_split = 0;
4352 4353
	if (ret > 0)
		ret = -EAGAIN;
Y
Yan, Zheng 已提交
4354 4355
	if (ret < 0)
		goto err;
4356

Y
Yan, Zheng 已提交
4357 4358
	ret = -EAGAIN;
	leaf = path->nodes[0];
4359 4360
	/* if our item isn't there, return now */
	if (item_size != btrfs_item_size_nr(leaf, path->slots[0]))
Y
Yan, Zheng 已提交
4361 4362
		goto err;

4363
	/* the leaf has  changed, it now has room.  return now */
4364
	if (btrfs_leaf_free_space(fs_info, path->nodes[0]) >= ins_len)
4365 4366
		goto err;

Y
Yan, Zheng 已提交
4367 4368 4369 4370 4371
	if (key.type == BTRFS_EXTENT_DATA_KEY) {
		fi = btrfs_item_ptr(leaf, path->slots[0],
				    struct btrfs_file_extent_item);
		if (extent_len != btrfs_file_extent_num_bytes(leaf, fi))
			goto err;
4372 4373
	}

4374
	btrfs_set_path_blocking(path);
Y
Yan, Zheng 已提交
4375
	ret = split_leaf(trans, root, &key, path, ins_len, 1);
4376 4377
	if (ret)
		goto err;
4378

Y
Yan, Zheng 已提交
4379
	path->keep_locks = 0;
4380
	btrfs_unlock_up_safe(path, 1);
Y
Yan, Zheng 已提交
4381 4382 4383 4384 4385 4386
	return 0;
err:
	path->keep_locks = 0;
	return ret;
}

4387
static noinline int split_item(struct btrfs_fs_info *fs_info,
Y
Yan, Zheng 已提交
4388
			       struct btrfs_path *path,
4389
			       const struct btrfs_key *new_key,
Y
Yan, Zheng 已提交
4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401
			       unsigned long split_offset)
{
	struct extent_buffer *leaf;
	struct btrfs_item *item;
	struct btrfs_item *new_item;
	int slot;
	char *buf;
	u32 nritems;
	u32 item_size;
	u32 orig_offset;
	struct btrfs_disk_key disk_key;

4402
	leaf = path->nodes[0];
4403
	BUG_ON(btrfs_leaf_free_space(fs_info, leaf) < sizeof(struct btrfs_item));
4404

4405 4406
	btrfs_set_path_blocking(path);

4407
	item = btrfs_item_nr(path->slots[0]);
4408 4409 4410 4411
	orig_offset = btrfs_item_offset(leaf, item);
	item_size = btrfs_item_size(leaf, item);

	buf = kmalloc(item_size, GFP_NOFS);
Y
Yan, Zheng 已提交
4412 4413 4414
	if (!buf)
		return -ENOMEM;

4415 4416 4417
	read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf,
			    path->slots[0]), item_size);

Y
Yan, Zheng 已提交
4418
	slot = path->slots[0] + 1;
4419 4420 4421 4422
	nritems = btrfs_header_nritems(leaf);
	if (slot != nritems) {
		/* shift the items */
		memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1),
Y
Yan, Zheng 已提交
4423 4424
				btrfs_item_nr_offset(slot),
				(nritems - slot) * sizeof(struct btrfs_item));
4425 4426 4427 4428 4429
	}

	btrfs_cpu_key_to_disk(&disk_key, new_key);
	btrfs_set_item_key(leaf, &disk_key, slot);

4430
	new_item = btrfs_item_nr(slot);
4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451

	btrfs_set_item_offset(leaf, new_item, orig_offset);
	btrfs_set_item_size(leaf, new_item, item_size - split_offset);

	btrfs_set_item_offset(leaf, item,
			      orig_offset + item_size - split_offset);
	btrfs_set_item_size(leaf, item, split_offset);

	btrfs_set_header_nritems(leaf, nritems + 1);

	/* write the data for the start of the original item */
	write_extent_buffer(leaf, buf,
			    btrfs_item_ptr_offset(leaf, path->slots[0]),
			    split_offset);

	/* write the data for the new item */
	write_extent_buffer(leaf, buf + split_offset,
			    btrfs_item_ptr_offset(leaf, slot),
			    item_size - split_offset);
	btrfs_mark_buffer_dirty(leaf);

4452
	BUG_ON(btrfs_leaf_free_space(fs_info, leaf) < 0);
4453
	kfree(buf);
Y
Yan, Zheng 已提交
4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474
	return 0;
}

/*
 * This function splits a single item into two items,
 * giving 'new_key' to the new item and splitting the
 * old one at split_offset (from the start of the item).
 *
 * The path may be released by this operation.  After
 * the split, the path is pointing to the old item.  The
 * new item is going to be in the same node as the old one.
 *
 * Note, the item being split must be smaller enough to live alone on
 * a tree block with room for one extra struct btrfs_item
 *
 * This allows us to split the item in place, keeping a lock on the
 * leaf the entire time.
 */
int btrfs_split_item(struct btrfs_trans_handle *trans,
		     struct btrfs_root *root,
		     struct btrfs_path *path,
4475
		     const struct btrfs_key *new_key,
Y
Yan, Zheng 已提交
4476 4477 4478 4479 4480 4481 4482 4483
		     unsigned long split_offset)
{
	int ret;
	ret = setup_leaf_for_split(trans, root, path,
				   sizeof(struct btrfs_item));
	if (ret)
		return ret;

4484
	ret = split_item(root->fs_info, path, new_key, split_offset);
4485 4486 4487
	return ret;
}

Y
Yan, Zheng 已提交
4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498
/*
 * This function duplicate a item, giving 'new_key' to the new item.
 * It guarantees both items live in the same tree leaf and the new item
 * is contiguous with the original item.
 *
 * This allows us to split file extent in place, keeping a lock on the
 * leaf the entire time.
 */
int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
			 struct btrfs_root *root,
			 struct btrfs_path *path,
4499
			 const struct btrfs_key *new_key)
Y
Yan, Zheng 已提交
4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512
{
	struct extent_buffer *leaf;
	int ret;
	u32 item_size;

	leaf = path->nodes[0];
	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
	ret = setup_leaf_for_split(trans, root, path,
				   item_size + sizeof(struct btrfs_item));
	if (ret)
		return ret;

	path->slots[0]++;
4513
	setup_items_for_insert(root, path, new_key, &item_size,
4514 4515
			       item_size, item_size +
			       sizeof(struct btrfs_item), 1);
Y
Yan, Zheng 已提交
4516 4517 4518 4519 4520 4521 4522 4523
	leaf = path->nodes[0];
	memcpy_extent_buffer(leaf,
			     btrfs_item_ptr_offset(leaf, path->slots[0]),
			     btrfs_item_ptr_offset(leaf, path->slots[0] - 1),
			     item_size);
	return 0;
}

C
Chris Mason 已提交
4524 4525 4526 4527 4528 4529
/*
 * make the item pointed to by the path smaller.  new_size indicates
 * how small to make it, and from_end tells us if we just chop bytes
 * off the end of the item or if we shift the item to chop bytes off
 * the front.
 */
4530 4531
void btrfs_truncate_item(struct btrfs_fs_info *fs_info,
			 struct btrfs_path *path, u32 new_size, int from_end)
C
Chris Mason 已提交
4532 4533
{
	int slot;
4534 4535
	struct extent_buffer *leaf;
	struct btrfs_item *item;
C
Chris Mason 已提交
4536 4537 4538 4539 4540 4541
	u32 nritems;
	unsigned int data_end;
	unsigned int old_data_start;
	unsigned int old_size;
	unsigned int size_diff;
	int i;
4542 4543 4544
	struct btrfs_map_token token;

	btrfs_init_map_token(&token);
C
Chris Mason 已提交
4545

4546
	leaf = path->nodes[0];
4547 4548 4549 4550
	slot = path->slots[0];

	old_size = btrfs_item_size_nr(leaf, slot);
	if (old_size == new_size)
4551
		return;
C
Chris Mason 已提交
4552

4553
	nritems = btrfs_header_nritems(leaf);
4554
	data_end = leaf_data_end(fs_info, leaf);
C
Chris Mason 已提交
4555

4556
	old_data_start = btrfs_item_offset_nr(leaf, slot);
4557

C
Chris Mason 已提交
4558 4559 4560 4561 4562 4563 4564 4565 4566 4567
	size_diff = old_size - new_size;

	BUG_ON(slot < 0);
	BUG_ON(slot >= nritems);

	/*
	 * item0..itemN ... dataN.offset..dataN.size .. data0.size
	 */
	/* first correct the data pointers */
	for (i = slot; i < nritems; i++) {
4568
		u32 ioff;
4569
		item = btrfs_item_nr(i);
4570

4571 4572 4573
		ioff = btrfs_token_item_offset(leaf, item, &token);
		btrfs_set_token_item_offset(leaf, item,
					    ioff + size_diff, &token);
C
Chris Mason 已提交
4574
	}
4575

C
Chris Mason 已提交
4576
	/* shift the data */
4577
	if (from_end) {
4578 4579
		memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
			      data_end + size_diff, BTRFS_LEAF_DATA_OFFSET +
4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599
			      data_end, old_data_start + new_size - data_end);
	} else {
		struct btrfs_disk_key disk_key;
		u64 offset;

		btrfs_item_key(leaf, &disk_key, slot);

		if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) {
			unsigned long ptr;
			struct btrfs_file_extent_item *fi;

			fi = btrfs_item_ptr(leaf, slot,
					    struct btrfs_file_extent_item);
			fi = (struct btrfs_file_extent_item *)(
			     (unsigned long)fi - size_diff);

			if (btrfs_file_extent_type(leaf, fi) ==
			    BTRFS_FILE_EXTENT_INLINE) {
				ptr = btrfs_item_ptr_offset(leaf, slot);
				memmove_extent_buffer(leaf, ptr,
C
Chris Mason 已提交
4600
				      (unsigned long)fi,
4601
				      BTRFS_FILE_EXTENT_INLINE_DATA_START);
4602 4603 4604
			}
		}

4605 4606
		memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
			      data_end + size_diff, BTRFS_LEAF_DATA_OFFSET +
4607 4608 4609 4610 4611 4612
			      data_end, old_data_start - data_end);

		offset = btrfs_disk_key_offset(&disk_key);
		btrfs_set_disk_key_offset(&disk_key, offset + size_diff);
		btrfs_set_item_key(leaf, &disk_key, slot);
		if (slot == 0)
4613
			fixup_low_keys(path, &disk_key, 1);
4614
	}
4615

4616
	item = btrfs_item_nr(slot);
4617 4618
	btrfs_set_item_size(leaf, item, new_size);
	btrfs_mark_buffer_dirty(leaf);
C
Chris Mason 已提交
4619

4620
	if (btrfs_leaf_free_space(fs_info, leaf) < 0) {
4621
		btrfs_print_leaf(leaf);
C
Chris Mason 已提交
4622
		BUG();
4623
	}
C
Chris Mason 已提交
4624 4625
}

C
Chris Mason 已提交
4626
/*
S
Stefan Behrens 已提交
4627
 * make the item pointed to by the path bigger, data_size is the added size.
C
Chris Mason 已提交
4628
 */
4629
void btrfs_extend_item(struct btrfs_fs_info *fs_info, struct btrfs_path *path,
4630
		       u32 data_size)
4631 4632
{
	int slot;
4633 4634
	struct extent_buffer *leaf;
	struct btrfs_item *item;
4635 4636 4637 4638 4639
	u32 nritems;
	unsigned int data_end;
	unsigned int old_data;
	unsigned int old_size;
	int i;
4640 4641 4642
	struct btrfs_map_token token;

	btrfs_init_map_token(&token);
4643

4644
	leaf = path->nodes[0];
4645

4646
	nritems = btrfs_header_nritems(leaf);
4647
	data_end = leaf_data_end(fs_info, leaf);
4648

4649
	if (btrfs_leaf_free_space(fs_info, leaf) < data_size) {
4650
		btrfs_print_leaf(leaf);
4651
		BUG();
4652
	}
4653
	slot = path->slots[0];
4654
	old_data = btrfs_item_end_nr(leaf, slot);
4655 4656

	BUG_ON(slot < 0);
4657
	if (slot >= nritems) {
4658
		btrfs_print_leaf(leaf);
4659 4660
		btrfs_crit(fs_info, "slot %d too large, nritems %d",
			   slot, nritems);
4661 4662
		BUG_ON(1);
	}
4663 4664 4665 4666 4667 4668

	/*
	 * item0..itemN ... dataN.offset..dataN.size .. data0.size
	 */
	/* first correct the data pointers */
	for (i = slot; i < nritems; i++) {
4669
		u32 ioff;
4670
		item = btrfs_item_nr(i);
4671

4672 4673 4674
		ioff = btrfs_token_item_offset(leaf, item, &token);
		btrfs_set_token_item_offset(leaf, item,
					    ioff - data_size, &token);
4675
	}
4676

4677
	/* shift the data */
4678 4679
	memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
		      data_end - data_size, BTRFS_LEAF_DATA_OFFSET +
4680
		      data_end, old_data - data_end);
4681

4682
	data_end = old_data;
4683
	old_size = btrfs_item_size_nr(leaf, slot);
4684
	item = btrfs_item_nr(slot);
4685 4686
	btrfs_set_item_size(leaf, item, old_size + data_size);
	btrfs_mark_buffer_dirty(leaf);
4687

4688
	if (btrfs_leaf_free_space(fs_info, leaf) < 0) {
4689
		btrfs_print_leaf(leaf);
4690
		BUG();
4691
	}
4692 4693
}

C
Chris Mason 已提交
4694
/*
4695 4696 4697
 * this is a helper for btrfs_insert_empty_items, the main goal here is
 * to save stack depth by doing the bulk of the work in a function
 * that doesn't call btrfs_search_slot
C
Chris Mason 已提交
4698
 */
4699
void setup_items_for_insert(struct btrfs_root *root, struct btrfs_path *path,
4700
			    const struct btrfs_key *cpu_key, u32 *data_size,
4701
			    u32 total_data, u32 total_size, int nr)
4702
{
4703
	struct btrfs_fs_info *fs_info = root->fs_info;
4704
	struct btrfs_item *item;
4705
	int i;
4706
	u32 nritems;
4707
	unsigned int data_end;
C
Chris Mason 已提交
4708
	struct btrfs_disk_key disk_key;
4709 4710
	struct extent_buffer *leaf;
	int slot;
4711 4712
	struct btrfs_map_token token;

4713 4714
	if (path->slots[0] == 0) {
		btrfs_cpu_key_to_disk(&disk_key, cpu_key);
4715
		fixup_low_keys(path, &disk_key, 1);
4716 4717 4718
	}
	btrfs_unlock_up_safe(path, 1);

4719
	btrfs_init_map_token(&token);
C
Chris Mason 已提交
4720

4721
	leaf = path->nodes[0];
4722
	slot = path->slots[0];
C
Chris Mason 已提交
4723

4724
	nritems = btrfs_header_nritems(leaf);
4725
	data_end = leaf_data_end(fs_info, leaf);
4726

4727
	if (btrfs_leaf_free_space(fs_info, leaf) < total_size) {
4728
		btrfs_print_leaf(leaf);
4729
		btrfs_crit(fs_info, "not enough freespace need %u have %d",
4730
			   total_size, btrfs_leaf_free_space(fs_info, leaf));
4731
		BUG();
4732
	}
4733

4734
	if (slot != nritems) {
4735
		unsigned int old_data = btrfs_item_end_nr(leaf, slot);
4736

4737
		if (old_data < data_end) {
4738
			btrfs_print_leaf(leaf);
4739
			btrfs_crit(fs_info, "slot %d old_data %d data_end %d",
J
Jeff Mahoney 已提交
4740
				   slot, old_data, data_end);
4741 4742
			BUG_ON(1);
		}
4743 4744 4745 4746
		/*
		 * item0..itemN ... dataN.offset..dataN.size .. data0.size
		 */
		/* first correct the data pointers */
C
Chris Mason 已提交
4747
		for (i = slot; i < nritems; i++) {
4748
			u32 ioff;
4749

4750
			item = btrfs_item_nr(i);
4751 4752 4753
			ioff = btrfs_token_item_offset(leaf, item, &token);
			btrfs_set_token_item_offset(leaf, item,
						    ioff - total_data, &token);
C
Chris Mason 已提交
4754
		}
4755
		/* shift the items */
4756
		memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
4757
			      btrfs_item_nr_offset(slot),
C
Chris Mason 已提交
4758
			      (nritems - slot) * sizeof(struct btrfs_item));
4759 4760

		/* shift the data */
4761 4762
		memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
			      data_end - total_data, BTRFS_LEAF_DATA_OFFSET +
C
Chris Mason 已提交
4763
			      data_end, old_data - data_end);
4764 4765
		data_end = old_data;
	}
4766

4767
	/* setup the item for the new data */
4768 4769 4770
	for (i = 0; i < nr; i++) {
		btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
		btrfs_set_item_key(leaf, &disk_key, slot + i);
4771
		item = btrfs_item_nr(slot + i);
4772 4773
		btrfs_set_token_item_offset(leaf, item,
					    data_end - data_size[i], &token);
4774
		data_end -= data_size[i];
4775
		btrfs_set_token_item_size(leaf, item, data_size[i], &token);
4776
	}
4777

4778
	btrfs_set_header_nritems(leaf, nritems + nr);
4779
	btrfs_mark_buffer_dirty(leaf);
C
Chris Mason 已提交
4780

4781
	if (btrfs_leaf_free_space(fs_info, leaf) < 0) {
4782
		btrfs_print_leaf(leaf);
4783
		BUG();
4784
	}
4785 4786 4787 4788 4789 4790 4791 4792 4793
}

/*
 * Given a key and some data, insert items into the tree.
 * This does all the path init required, making room in the tree if needed.
 */
int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
			    struct btrfs_root *root,
			    struct btrfs_path *path,
4794
			    const struct btrfs_key *cpu_key, u32 *data_size,
4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810
			    int nr)
{
	int ret = 0;
	int slot;
	int i;
	u32 total_size = 0;
	u32 total_data = 0;

	for (i = 0; i < nr; i++)
		total_data += data_size[i];

	total_size = total_data + (nr * sizeof(struct btrfs_item));
	ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
	if (ret == 0)
		return -EEXIST;
	if (ret < 0)
4811
		return ret;
4812 4813 4814 4815

	slot = path->slots[0];
	BUG_ON(slot < 0);

4816
	setup_items_for_insert(root, path, cpu_key, data_size,
4817
			       total_data, total_size, nr);
4818
	return 0;
4819 4820 4821 4822 4823 4824
}

/*
 * Given a key and some data, insert an item into the tree.
 * This does all the path init required, making room in the tree if needed.
 */
4825 4826 4827
int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root *root,
		      const struct btrfs_key *cpu_key, void *data,
		      u32 data_size)
4828 4829
{
	int ret = 0;
C
Chris Mason 已提交
4830
	struct btrfs_path *path;
4831 4832
	struct extent_buffer *leaf;
	unsigned long ptr;
4833

C
Chris Mason 已提交
4834
	path = btrfs_alloc_path();
T
Tsutomu Itoh 已提交
4835 4836
	if (!path)
		return -ENOMEM;
C
Chris Mason 已提交
4837
	ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
4838
	if (!ret) {
4839 4840 4841 4842
		leaf = path->nodes[0];
		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
		write_extent_buffer(leaf, data, ptr, data_size);
		btrfs_mark_buffer_dirty(leaf);
4843
	}
C
Chris Mason 已提交
4844
	btrfs_free_path(path);
C
Chris Mason 已提交
4845
	return ret;
4846 4847
}

C
Chris Mason 已提交
4848
/*
C
Chris Mason 已提交
4849
 * delete the pointer from a given node.
C
Chris Mason 已提交
4850
 *
C
Chris Mason 已提交
4851 4852
 * the tree should have been previously balanced so the deletion does not
 * empty a node.
C
Chris Mason 已提交
4853
 */
4854 4855
static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
		    int level, int slot)
4856
{
4857
	struct extent_buffer *parent = path->nodes[level];
4858
	u32 nritems;
4859
	int ret;
4860

4861
	nritems = btrfs_header_nritems(parent);
C
Chris Mason 已提交
4862
	if (slot != nritems - 1) {
4863 4864
		if (level) {
			ret = tree_mod_log_insert_move(parent, slot, slot + 1,
4865
					nritems - slot - 1);
4866 4867
			BUG_ON(ret < 0);
		}
4868 4869 4870
		memmove_extent_buffer(parent,
			      btrfs_node_key_ptr_offset(slot),
			      btrfs_node_key_ptr_offset(slot + 1),
C
Chris Mason 已提交
4871 4872
			      sizeof(struct btrfs_key_ptr) *
			      (nritems - slot - 1));
4873
	} else if (level) {
4874 4875
		ret = tree_mod_log_insert_key(parent, slot, MOD_LOG_KEY_REMOVE,
				GFP_NOFS);
4876
		BUG_ON(ret < 0);
4877
	}
4878

4879
	nritems--;
4880
	btrfs_set_header_nritems(parent, nritems);
4881
	if (nritems == 0 && parent == root->node) {
4882
		BUG_ON(btrfs_header_level(root->node) != 1);
4883
		/* just turn the root into a leaf and break */
4884
		btrfs_set_header_level(root->node, 0);
4885
	} else if (slot == 0) {
4886 4887 4888
		struct btrfs_disk_key disk_key;

		btrfs_node_key(parent, &disk_key, 0);
4889
		fixup_low_keys(path, &disk_key, level + 1);
4890
	}
C
Chris Mason 已提交
4891
	btrfs_mark_buffer_dirty(parent);
4892 4893
}

4894 4895
/*
 * a helper function to delete the leaf pointed to by path->slots[1] and
4896
 * path->nodes[1].
4897 4898 4899 4900 4901 4902 4903
 *
 * This deletes the pointer in path->nodes[1] and frees the leaf
 * block extent.  zero is returned if it all worked out, < 0 otherwise.
 *
 * The path must have already been setup for deleting the leaf, including
 * all the proper balancing.  path->nodes[1] must be locked.
 */
4904 4905 4906 4907
static noinline void btrfs_del_leaf(struct btrfs_trans_handle *trans,
				    struct btrfs_root *root,
				    struct btrfs_path *path,
				    struct extent_buffer *leaf)
4908
{
4909
	WARN_ON(btrfs_header_generation(leaf) != trans->transid);
4910
	del_ptr(root, path, 1, path->slots[1]);
4911

4912 4913 4914 4915 4916 4917
	/*
	 * btrfs_free_extent is expensive, we want to make sure we
	 * aren't holding any locks when we call it
	 */
	btrfs_unlock_up_safe(path, 0);

4918 4919
	root_sub_used(root, leaf->len);

4920
	extent_buffer_get(leaf);
4921
	btrfs_free_tree_block(trans, root, leaf, 0, 1);
4922
	free_extent_buffer_stale(leaf);
4923
}
C
Chris Mason 已提交
4924 4925 4926 4927
/*
 * delete the item at the leaf level in path.  If that empties
 * the leaf, remove it from the tree
 */
4928 4929
int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
		    struct btrfs_path *path, int slot, int nr)
4930
{
4931
	struct btrfs_fs_info *fs_info = root->fs_info;
4932 4933
	struct extent_buffer *leaf;
	struct btrfs_item *item;
4934 4935
	u32 last_off;
	u32 dsize = 0;
C
Chris Mason 已提交
4936 4937
	int ret = 0;
	int wret;
4938
	int i;
4939
	u32 nritems;
4940 4941 4942
	struct btrfs_map_token token;

	btrfs_init_map_token(&token);
4943

4944
	leaf = path->nodes[0];
4945 4946 4947 4948 4949
	last_off = btrfs_item_offset_nr(leaf, slot + nr - 1);

	for (i = 0; i < nr; i++)
		dsize += btrfs_item_size_nr(leaf, slot + i);

4950
	nritems = btrfs_header_nritems(leaf);
4951

4952
	if (slot + nr != nritems) {
4953
		int data_end = leaf_data_end(fs_info, leaf);
4954

4955
		memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
C
Chris Mason 已提交
4956
			      data_end + dsize,
4957
			      BTRFS_LEAF_DATA_OFFSET + data_end,
4958
			      last_off - data_end);
4959

4960
		for (i = slot + nr; i < nritems; i++) {
4961
			u32 ioff;
4962

4963
			item = btrfs_item_nr(i);
4964 4965 4966
			ioff = btrfs_token_item_offset(leaf, item, &token);
			btrfs_set_token_item_offset(leaf, item,
						    ioff + dsize, &token);
C
Chris Mason 已提交
4967
		}
4968

4969
		memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot),
4970
			      btrfs_item_nr_offset(slot + nr),
C
Chris Mason 已提交
4971
			      sizeof(struct btrfs_item) *
4972
			      (nritems - slot - nr));
4973
	}
4974 4975
	btrfs_set_header_nritems(leaf, nritems - nr);
	nritems -= nr;
4976

C
Chris Mason 已提交
4977
	/* delete the leaf if we've emptied it */
4978
	if (nritems == 0) {
4979 4980
		if (leaf == root->node) {
			btrfs_set_header_level(leaf, 0);
4981
		} else {
4982
			btrfs_set_path_blocking(path);
4983
			clean_tree_block(fs_info, leaf);
4984
			btrfs_del_leaf(trans, root, path, leaf);
4985
		}
4986
	} else {
4987
		int used = leaf_space_used(leaf, 0, nritems);
C
Chris Mason 已提交
4988
		if (slot == 0) {
4989 4990 4991
			struct btrfs_disk_key disk_key;

			btrfs_item_key(leaf, &disk_key, 0);
4992
			fixup_low_keys(path, &disk_key, 1);
C
Chris Mason 已提交
4993 4994
		}

C
Chris Mason 已提交
4995
		/* delete the leaf if it is mostly empty */
4996
		if (used < BTRFS_LEAF_DATA_SIZE(fs_info) / 3) {
4997 4998 4999 5000
			/* push_leaf_left fixes the path.
			 * make sure the path still points to our leaf
			 * for possible call to del_ptr below
			 */
5001
			slot = path->slots[1];
5002 5003
			extent_buffer_get(leaf);

5004
			btrfs_set_path_blocking(path);
5005 5006
			wret = push_leaf_left(trans, root, path, 1, 1,
					      1, (u32)-1);
5007
			if (wret < 0 && wret != -ENOSPC)
C
Chris Mason 已提交
5008
				ret = wret;
5009 5010 5011

			if (path->nodes[0] == leaf &&
			    btrfs_header_nritems(leaf)) {
5012 5013
				wret = push_leaf_right(trans, root, path, 1,
						       1, 1, 0);
5014
				if (wret < 0 && wret != -ENOSPC)
C
Chris Mason 已提交
5015 5016
					ret = wret;
			}
5017 5018

			if (btrfs_header_nritems(leaf) == 0) {
5019
				path->slots[1] = slot;
5020
				btrfs_del_leaf(trans, root, path, leaf);
5021
				free_extent_buffer(leaf);
5022
				ret = 0;
C
Chris Mason 已提交
5023
			} else {
5024 5025 5026 5027 5028 5029 5030
				/* if we're still in the path, make sure
				 * we're dirty.  Otherwise, one of the
				 * push_leaf functions must have already
				 * dirtied this buffer
				 */
				if (path->nodes[0] == leaf)
					btrfs_mark_buffer_dirty(leaf);
5031
				free_extent_buffer(leaf);
5032
			}
5033
		} else {
5034
			btrfs_mark_buffer_dirty(leaf);
5035 5036
		}
	}
C
Chris Mason 已提交
5037
	return ret;
5038 5039
}

5040
/*
5041
 * search the tree again to find a leaf with lesser keys
5042 5043
 * returns 0 if it found something or 1 if there are no lesser leaves.
 * returns < 0 on io errors.
C
Chris Mason 已提交
5044 5045 5046
 *
 * This may release the path, and so you may lose any locks held at the
 * time you call it.
5047
 */
5048
int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path)
5049
{
5050 5051 5052
	struct btrfs_key key;
	struct btrfs_disk_key found_key;
	int ret;
5053

5054
	btrfs_item_key_to_cpu(path->nodes[0], &key, 0);
5055

5056
	if (key.offset > 0) {
5057
		key.offset--;
5058
	} else if (key.type > 0) {
5059
		key.type--;
5060 5061
		key.offset = (u64)-1;
	} else if (key.objectid > 0) {
5062
		key.objectid--;
5063 5064 5065
		key.type = (u8)-1;
		key.offset = (u64)-1;
	} else {
5066
		return 1;
5067
	}
5068

5069
	btrfs_release_path(path);
5070 5071 5072 5073 5074
	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
	if (ret < 0)
		return ret;
	btrfs_item_key(path->nodes[0], &found_key, 0);
	ret = comp_keys(&found_key, &key);
5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085
	/*
	 * We might have had an item with the previous key in the tree right
	 * before we released our path. And after we released our path, that
	 * item might have been pushed to the first slot (0) of the leaf we
	 * were holding due to a tree balance. Alternatively, an item with the
	 * previous key can exist as the only element of a leaf (big fat item).
	 * Therefore account for these 2 cases, so that our callers (like
	 * btrfs_previous_item) don't miss an existing item with a key matching
	 * the previous key we computed above.
	 */
	if (ret <= 0)
5086 5087
		return 0;
	return 1;
5088 5089
}

5090 5091
/*
 * A helper function to walk down the tree starting at min_key, and looking
5092 5093
 * for nodes or leaves that are have a minimum transaction id.
 * This is used by the btree defrag code, and tree logging
5094 5095 5096 5097 5098 5099 5100 5101
 *
 * This does not cow, but it does stuff the starting key it finds back
 * into min_key, so you can call btrfs_search_slot with cow=1 on the
 * key and get a writable path.
 *
 * This honors path->lowest_level to prevent descent past a given level
 * of the tree.
 *
C
Chris Mason 已提交
5102 5103 5104 5105
 * min_trans indicates the oldest transaction that you are interested
 * in walking through.  Any nodes or leaves older than min_trans are
 * skipped over (without reading them).
 *
5106 5107 5108 5109
 * returns zero if something useful was found, < 0 on error and 1 if there
 * was nothing in the tree that matched the search criteria.
 */
int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
5110
			 struct btrfs_path *path,
5111 5112
			 u64 min_trans)
{
5113
	struct btrfs_fs_info *fs_info = root->fs_info;
5114 5115 5116
	struct extent_buffer *cur;
	struct btrfs_key found_key;
	int slot;
5117
	int sret;
5118 5119 5120
	u32 nritems;
	int level;
	int ret = 1;
5121
	int keep_locks = path->keep_locks;
5122

5123
	path->keep_locks = 1;
5124
again:
5125
	cur = btrfs_read_lock_root_node(root);
5126
	level = btrfs_header_level(cur);
5127
	WARN_ON(path->nodes[level]);
5128
	path->nodes[level] = cur;
5129
	path->locks[level] = BTRFS_READ_LOCK;
5130 5131 5132 5133 5134

	if (btrfs_header_generation(cur) < min_trans) {
		ret = 1;
		goto out;
	}
C
Chris Mason 已提交
5135
	while (1) {
5136 5137
		nritems = btrfs_header_nritems(cur);
		level = btrfs_header_level(cur);
5138
		sret = btrfs_bin_search(cur, min_key, level, &slot);
5139

5140 5141
		/* at the lowest level, we're done, setup the path and exit */
		if (level == path->lowest_level) {
5142 5143
			if (slot >= nritems)
				goto find_next_key;
5144 5145 5146 5147 5148
			ret = 0;
			path->slots[level] = slot;
			btrfs_item_key_to_cpu(cur, &found_key, slot);
			goto out;
		}
5149 5150
		if (sret && slot > 0)
			slot--;
5151
		/*
5152 5153
		 * check this node pointer against the min_trans parameters.
		 * If it is too old, old, skip to the next one.
5154
		 */
C
Chris Mason 已提交
5155
		while (slot < nritems) {
5156
			u64 gen;
5157

5158 5159 5160 5161 5162
			gen = btrfs_node_ptr_generation(cur, slot);
			if (gen < min_trans) {
				slot++;
				continue;
			}
5163
			break;
5164
		}
5165
find_next_key:
5166 5167 5168 5169 5170
		/*
		 * we didn't find a candidate key in this node, walk forward
		 * and find another one
		 */
		if (slot >= nritems) {
5171
			path->slots[level] = slot;
5172
			btrfs_set_path_blocking(path);
5173
			sret = btrfs_find_next_key(root, path, min_key, level,
5174
						  min_trans);
5175
			if (sret == 0) {
5176
				btrfs_release_path(path);
5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188
				goto again;
			} else {
				goto out;
			}
		}
		/* save our key for returning back */
		btrfs_node_key_to_cpu(cur, &found_key, slot);
		path->slots[level] = slot;
		if (level == path->lowest_level) {
			ret = 0;
			goto out;
		}
5189
		btrfs_set_path_blocking(path);
5190
		cur = read_node_slot(fs_info, cur, slot);
5191 5192 5193 5194
		if (IS_ERR(cur)) {
			ret = PTR_ERR(cur);
			goto out;
		}
5195

5196
		btrfs_tree_read_lock(cur);
5197

5198
		path->locks[level - 1] = BTRFS_READ_LOCK;
5199
		path->nodes[level - 1] = cur;
5200
		unlock_up(path, level, 1, 0, NULL);
5201
		btrfs_clear_path_blocking(path, NULL, 0);
5202 5203
	}
out:
5204 5205 5206 5207
	path->keep_locks = keep_locks;
	if (ret == 0) {
		btrfs_unlock_up_safe(path, path->lowest_level + 1);
		btrfs_set_path_blocking(path);
5208
		memcpy(min_key, &found_key, sizeof(found_key));
5209
	}
5210 5211 5212
	return ret;
}

5213
static int tree_move_down(struct btrfs_fs_info *fs_info,
5214
			   struct btrfs_path *path,
5215
			   int *level)
5216
{
5217 5218
	struct extent_buffer *eb;

5219
	BUG_ON(*level == 0);
5220
	eb = read_node_slot(fs_info, path->nodes[*level], path->slots[*level]);
5221 5222 5223 5224
	if (IS_ERR(eb))
		return PTR_ERR(eb);

	path->nodes[*level - 1] = eb;
5225 5226
	path->slots[*level - 1] = 0;
	(*level)--;
5227
	return 0;
5228 5229
}

5230
static int tree_move_next_or_upnext(struct btrfs_path *path,
5231 5232 5233 5234 5235 5236 5237 5238
				    int *level, int root_level)
{
	int ret = 0;
	int nritems;
	nritems = btrfs_header_nritems(path->nodes[*level]);

	path->slots[*level]++;

5239
	while (path->slots[*level] >= nritems) {
5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259
		if (*level == root_level)
			return -1;

		/* move upnext */
		path->slots[*level] = 0;
		free_extent_buffer(path->nodes[*level]);
		path->nodes[*level] = NULL;
		(*level)++;
		path->slots[*level]++;

		nritems = btrfs_header_nritems(path->nodes[*level]);
		ret = 1;
	}
	return ret;
}

/*
 * Returns 1 if it had to move up and next. 0 is returned if it moved only next
 * or down.
 */
5260
static int tree_advance(struct btrfs_fs_info *fs_info,
5261 5262 5263 5264 5265 5266 5267 5268
			struct btrfs_path *path,
			int *level, int root_level,
			int allow_down,
			struct btrfs_key *key)
{
	int ret;

	if (*level == 0 || !allow_down) {
5269
		ret = tree_move_next_or_upnext(path, level, root_level);
5270
	} else {
5271
		ret = tree_move_down(fs_info, path, level);
5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283
	}
	if (ret >= 0) {
		if (*level == 0)
			btrfs_item_key_to_cpu(path->nodes[*level], key,
					path->slots[*level]);
		else
			btrfs_node_key_to_cpu(path->nodes[*level], key,
					path->slots[*level]);
	}
	return ret;
}

5284
static int tree_compare_item(struct btrfs_path *left_path,
5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328
			     struct btrfs_path *right_path,
			     char *tmp_buf)
{
	int cmp;
	int len1, len2;
	unsigned long off1, off2;

	len1 = btrfs_item_size_nr(left_path->nodes[0], left_path->slots[0]);
	len2 = btrfs_item_size_nr(right_path->nodes[0], right_path->slots[0]);
	if (len1 != len2)
		return 1;

	off1 = btrfs_item_ptr_offset(left_path->nodes[0], left_path->slots[0]);
	off2 = btrfs_item_ptr_offset(right_path->nodes[0],
				right_path->slots[0]);

	read_extent_buffer(left_path->nodes[0], tmp_buf, off1, len1);

	cmp = memcmp_extent_buffer(right_path->nodes[0], tmp_buf, off2, len1);
	if (cmp)
		return 1;
	return 0;
}

#define ADVANCE 1
#define ADVANCE_ONLY_NEXT -1

/*
 * This function compares two trees and calls the provided callback for
 * every changed/new/deleted item it finds.
 * If shared tree blocks are encountered, whole subtrees are skipped, making
 * the compare pretty fast on snapshotted subvolumes.
 *
 * This currently works on commit roots only. As commit roots are read only,
 * we don't do any locking. The commit roots are protected with transactions.
 * Transactions are ended and rejoined when a commit is tried in between.
 *
 * This function checks for modifications done to the trees while comparing.
 * If it detects a change, it aborts immediately.
 */
int btrfs_compare_trees(struct btrfs_root *left_root,
			struct btrfs_root *right_root,
			btrfs_changed_cb_t changed_cb, void *ctx)
{
5329
	struct btrfs_fs_info *fs_info = left_root->fs_info;
5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346
	int ret;
	int cmp;
	struct btrfs_path *left_path = NULL;
	struct btrfs_path *right_path = NULL;
	struct btrfs_key left_key;
	struct btrfs_key right_key;
	char *tmp_buf = NULL;
	int left_root_level;
	int right_root_level;
	int left_level;
	int right_level;
	int left_end_reached;
	int right_end_reached;
	int advance_left;
	int advance_right;
	u64 left_blockptr;
	u64 right_blockptr;
5347 5348
	u64 left_gen;
	u64 right_gen;
5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360

	left_path = btrfs_alloc_path();
	if (!left_path) {
		ret = -ENOMEM;
		goto out;
	}
	right_path = btrfs_alloc_path();
	if (!right_path) {
		ret = -ENOMEM;
		goto out;
	}

5361
	tmp_buf = kvmalloc(fs_info->nodesize, GFP_KERNEL);
5362
	if (!tmp_buf) {
5363 5364
		ret = -ENOMEM;
		goto out;
5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407
	}

	left_path->search_commit_root = 1;
	left_path->skip_locking = 1;
	right_path->search_commit_root = 1;
	right_path->skip_locking = 1;

	/*
	 * Strategy: Go to the first items of both trees. Then do
	 *
	 * If both trees are at level 0
	 *   Compare keys of current items
	 *     If left < right treat left item as new, advance left tree
	 *       and repeat
	 *     If left > right treat right item as deleted, advance right tree
	 *       and repeat
	 *     If left == right do deep compare of items, treat as changed if
	 *       needed, advance both trees and repeat
	 * If both trees are at the same level but not at level 0
	 *   Compare keys of current nodes/leafs
	 *     If left < right advance left tree and repeat
	 *     If left > right advance right tree and repeat
	 *     If left == right compare blockptrs of the next nodes/leafs
	 *       If they match advance both trees but stay at the same level
	 *         and repeat
	 *       If they don't match advance both trees while allowing to go
	 *         deeper and repeat
	 * If tree levels are different
	 *   Advance the tree that needs it and repeat
	 *
	 * Advancing a tree means:
	 *   If we are at level 0, try to go to the next slot. If that's not
	 *   possible, go one level up and repeat. Stop when we found a level
	 *   where we could go to the next slot. We may at this point be on a
	 *   node or a leaf.
	 *
	 *   If we are not at level 0 and not on shared tree blocks, go one
	 *   level deeper.
	 *
	 *   If we are not at level 0 and on shared tree blocks, go one slot to
	 *   the right if possible or go up and right.
	 */

5408
	down_read(&fs_info->commit_root_sem);
5409 5410
	left_level = btrfs_header_level(left_root->commit_root);
	left_root_level = left_level;
5411 5412 5413 5414 5415 5416 5417
	left_path->nodes[left_level] =
			btrfs_clone_extent_buffer(left_root->commit_root);
	if (!left_path->nodes[left_level]) {
		up_read(&fs_info->commit_root_sem);
		ret = -ENOMEM;
		goto out;
	}
5418 5419 5420 5421
	extent_buffer_get(left_path->nodes[left_level]);

	right_level = btrfs_header_level(right_root->commit_root);
	right_root_level = right_level;
5422 5423 5424 5425 5426 5427 5428
	right_path->nodes[right_level] =
			btrfs_clone_extent_buffer(right_root->commit_root);
	if (!right_path->nodes[right_level]) {
		up_read(&fs_info->commit_root_sem);
		ret = -ENOMEM;
		goto out;
	}
5429
	extent_buffer_get(right_path->nodes[right_level]);
5430
	up_read(&fs_info->commit_root_sem);
5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449

	if (left_level == 0)
		btrfs_item_key_to_cpu(left_path->nodes[left_level],
				&left_key, left_path->slots[left_level]);
	else
		btrfs_node_key_to_cpu(left_path->nodes[left_level],
				&left_key, left_path->slots[left_level]);
	if (right_level == 0)
		btrfs_item_key_to_cpu(right_path->nodes[right_level],
				&right_key, right_path->slots[right_level]);
	else
		btrfs_node_key_to_cpu(right_path->nodes[right_level],
				&right_key, right_path->slots[right_level]);

	left_end_reached = right_end_reached = 0;
	advance_left = advance_right = 0;

	while (1) {
		if (advance_left && !left_end_reached) {
5450
			ret = tree_advance(fs_info, left_path, &left_level,
5451 5452 5453
					left_root_level,
					advance_left != ADVANCE_ONLY_NEXT,
					&left_key);
5454
			if (ret == -1)
5455
				left_end_reached = ADVANCE;
5456 5457
			else if (ret < 0)
				goto out;
5458 5459 5460
			advance_left = 0;
		}
		if (advance_right && !right_end_reached) {
5461
			ret = tree_advance(fs_info, right_path, &right_level,
5462 5463 5464
					right_root_level,
					advance_right != ADVANCE_ONLY_NEXT,
					&right_key);
5465
			if (ret == -1)
5466
				right_end_reached = ADVANCE;
5467 5468
			else if (ret < 0)
				goto out;
5469 5470 5471 5472 5473 5474 5475 5476
			advance_right = 0;
		}

		if (left_end_reached && right_end_reached) {
			ret = 0;
			goto out;
		} else if (left_end_reached) {
			if (right_level == 0) {
5477
				ret = changed_cb(left_path, right_path,
5478 5479 5480 5481 5482 5483 5484 5485 5486 5487
						&right_key,
						BTRFS_COMPARE_TREE_DELETED,
						ctx);
				if (ret < 0)
					goto out;
			}
			advance_right = ADVANCE;
			continue;
		} else if (right_end_reached) {
			if (left_level == 0) {
5488
				ret = changed_cb(left_path, right_path,
5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501
						&left_key,
						BTRFS_COMPARE_TREE_NEW,
						ctx);
				if (ret < 0)
					goto out;
			}
			advance_left = ADVANCE;
			continue;
		}

		if (left_level == 0 && right_level == 0) {
			cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
			if (cmp < 0) {
5502
				ret = changed_cb(left_path, right_path,
5503 5504 5505 5506 5507 5508 5509
						&left_key,
						BTRFS_COMPARE_TREE_NEW,
						ctx);
				if (ret < 0)
					goto out;
				advance_left = ADVANCE;
			} else if (cmp > 0) {
5510
				ret = changed_cb(left_path, right_path,
5511 5512 5513 5514 5515 5516 5517
						&right_key,
						BTRFS_COMPARE_TREE_DELETED,
						ctx);
				if (ret < 0)
					goto out;
				advance_right = ADVANCE;
			} else {
5518
				enum btrfs_compare_tree_result result;
5519

5520
				WARN_ON(!extent_buffer_uptodate(left_path->nodes[0]));
5521 5522
				ret = tree_compare_item(left_path, right_path,
							tmp_buf);
5523
				if (ret)
5524
					result = BTRFS_COMPARE_TREE_CHANGED;
5525
				else
5526
					result = BTRFS_COMPARE_TREE_SAME;
5527
				ret = changed_cb(left_path, right_path,
5528
						 &left_key, result, ctx);
5529 5530
				if (ret < 0)
					goto out;
5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546
				advance_left = ADVANCE;
				advance_right = ADVANCE;
			}
		} else if (left_level == right_level) {
			cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
			if (cmp < 0) {
				advance_left = ADVANCE;
			} else if (cmp > 0) {
				advance_right = ADVANCE;
			} else {
				left_blockptr = btrfs_node_blockptr(
						left_path->nodes[left_level],
						left_path->slots[left_level]);
				right_blockptr = btrfs_node_blockptr(
						right_path->nodes[right_level],
						right_path->slots[right_level]);
5547 5548 5549 5550 5551 5552 5553 5554
				left_gen = btrfs_node_ptr_generation(
						left_path->nodes[left_level],
						left_path->slots[left_level]);
				right_gen = btrfs_node_ptr_generation(
						right_path->nodes[right_level],
						right_path->slots[right_level]);
				if (left_blockptr == right_blockptr &&
				    left_gen == right_gen) {
5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575
					/*
					 * As we're on a shared block, don't
					 * allow to go deeper.
					 */
					advance_left = ADVANCE_ONLY_NEXT;
					advance_right = ADVANCE_ONLY_NEXT;
				} else {
					advance_left = ADVANCE;
					advance_right = ADVANCE;
				}
			}
		} else if (left_level < right_level) {
			advance_right = ADVANCE;
		} else {
			advance_left = ADVANCE;
		}
	}

out:
	btrfs_free_path(left_path);
	btrfs_free_path(right_path);
5576
	kvfree(tmp_buf);
5577 5578 5579
	return ret;
}

5580 5581 5582
/*
 * this is similar to btrfs_next_leaf, but does not try to preserve
 * and fixup the path.  It looks for and returns the next key in the
5583
 * tree based on the current path and the min_trans parameters.
5584 5585 5586 5587 5588 5589 5590
 *
 * 0 is returned if another key is found, < 0 if there are any errors
 * and 1 is returned if there are no higher keys in the tree
 *
 * path->keep_locks should be set to 1 on the search made before
 * calling this function.
 */
5591
int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
5592
			struct btrfs_key *key, int level, u64 min_trans)
5593 5594 5595 5596
{
	int slot;
	struct extent_buffer *c;

5597
	WARN_ON(!path->keep_locks);
C
Chris Mason 已提交
5598
	while (level < BTRFS_MAX_LEVEL) {
5599 5600 5601 5602 5603
		if (!path->nodes[level])
			return 1;

		slot = path->slots[level] + 1;
		c = path->nodes[level];
5604
next:
5605
		if (slot >= btrfs_header_nritems(c)) {
5606 5607 5608 5609 5610
			int ret;
			int orig_lowest;
			struct btrfs_key cur_key;
			if (level + 1 >= BTRFS_MAX_LEVEL ||
			    !path->nodes[level + 1])
5611
				return 1;
5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624

			if (path->locks[level + 1]) {
				level++;
				continue;
			}

			slot = btrfs_header_nritems(c) - 1;
			if (level == 0)
				btrfs_item_key_to_cpu(c, &cur_key, slot);
			else
				btrfs_node_key_to_cpu(c, &cur_key, slot);

			orig_lowest = path->lowest_level;
5625
			btrfs_release_path(path);
5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637
			path->lowest_level = level;
			ret = btrfs_search_slot(NULL, root, &cur_key, path,
						0, 0);
			path->lowest_level = orig_lowest;
			if (ret < 0)
				return ret;

			c = path->nodes[level];
			slot = path->slots[level];
			if (ret == 0)
				slot++;
			goto next;
5638
		}
5639

5640 5641
		if (level == 0)
			btrfs_item_key_to_cpu(c, key, slot);
5642 5643 5644 5645 5646 5647 5648
		else {
			u64 gen = btrfs_node_ptr_generation(c, slot);

			if (gen < min_trans) {
				slot++;
				goto next;
			}
5649
			btrfs_node_key_to_cpu(c, key, slot);
5650
		}
5651 5652 5653 5654 5655
		return 0;
	}
	return 1;
}

C
Chris Mason 已提交
5656
/*
5657
 * search the tree again to find a leaf with greater keys
C
Chris Mason 已提交
5658 5659
 * returns 0 if it found something or 1 if there are no greater leaves.
 * returns < 0 on io errors.
C
Chris Mason 已提交
5660
 */
C
Chris Mason 已提交
5661
int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path)
J
Jan Schmidt 已提交
5662 5663 5664 5665 5666 5667
{
	return btrfs_next_old_leaf(root, path, 0);
}

int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path,
			u64 time_seq)
5668 5669
{
	int slot;
5670
	int level;
5671
	struct extent_buffer *c;
5672
	struct extent_buffer *next;
5673 5674 5675
	struct btrfs_key key;
	u32 nritems;
	int ret;
5676
	int old_spinning = path->leave_spinning;
5677
	int next_rw_lock = 0;
5678 5679

	nritems = btrfs_header_nritems(path->nodes[0]);
C
Chris Mason 已提交
5680
	if (nritems == 0)
5681 5682
		return 1;

5683 5684 5685 5686
	btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1);
again:
	level = 1;
	next = NULL;
5687
	next_rw_lock = 0;
5688
	btrfs_release_path(path);
5689

5690
	path->keep_locks = 1;
5691
	path->leave_spinning = 1;
5692

J
Jan Schmidt 已提交
5693 5694 5695 5696
	if (time_seq)
		ret = btrfs_search_old_slot(root, &key, path, time_seq);
	else
		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5697 5698 5699 5700 5701
	path->keep_locks = 0;

	if (ret < 0)
		return ret;

5702
	nritems = btrfs_header_nritems(path->nodes[0]);
5703 5704 5705 5706 5707 5708
	/*
	 * by releasing the path above we dropped all our locks.  A balance
	 * could have added more items next to the key that used to be
	 * at the very end of the block.  So, check again here and
	 * advance the path if there are now more items available.
	 */
5709
	if (nritems > 0 && path->slots[0] < nritems - 1) {
5710 5711
		if (ret == 0)
			path->slots[0]++;
5712
		ret = 0;
5713 5714
		goto done;
	}
5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732
	/*
	 * So the above check misses one case:
	 * - after releasing the path above, someone has removed the item that
	 *   used to be at the very end of the block, and balance between leafs
	 *   gets another one with bigger key.offset to replace it.
	 *
	 * This one should be returned as well, or we can get leaf corruption
	 * later(esp. in __btrfs_drop_extents()).
	 *
	 * And a bit more explanation about this check,
	 * with ret > 0, the key isn't found, the path points to the slot
	 * where it should be inserted, so the path->slots[0] item must be the
	 * bigger one.
	 */
	if (nritems > 0 && ret > 0 && path->slots[0] == nritems - 1) {
		ret = 0;
		goto done;
	}
5733

C
Chris Mason 已提交
5734
	while (level < BTRFS_MAX_LEVEL) {
5735 5736 5737 5738
		if (!path->nodes[level]) {
			ret = 1;
			goto done;
		}
5739

5740 5741
		slot = path->slots[level] + 1;
		c = path->nodes[level];
5742
		if (slot >= btrfs_header_nritems(c)) {
5743
			level++;
5744 5745 5746 5747
			if (level == BTRFS_MAX_LEVEL) {
				ret = 1;
				goto done;
			}
5748 5749
			continue;
		}
5750

5751
		if (next) {
5752
			btrfs_tree_unlock_rw(next, next_rw_lock);
5753
			free_extent_buffer(next);
5754
		}
5755

5756
		next = c;
5757
		next_rw_lock = path->locks[level];
5758
		ret = read_block_for_search(root, path, &next, level,
5759
					    slot, &key);
5760 5761
		if (ret == -EAGAIN)
			goto again;
5762

5763
		if (ret < 0) {
5764
			btrfs_release_path(path);
5765 5766 5767
			goto done;
		}

5768
		if (!path->skip_locking) {
5769
			ret = btrfs_try_tree_read_lock(next);
5770 5771 5772 5773 5774 5775 5776 5777
			if (!ret && time_seq) {
				/*
				 * If we don't get the lock, we may be racing
				 * with push_leaf_left, holding that lock while
				 * itself waiting for the leaf we've currently
				 * locked. To solve this situation, we give up
				 * on our lock and cycle.
				 */
5778
				free_extent_buffer(next);
5779 5780 5781 5782
				btrfs_release_path(path);
				cond_resched();
				goto again;
			}
5783 5784
			if (!ret) {
				btrfs_set_path_blocking(path);
5785
				btrfs_tree_read_lock(next);
5786
				btrfs_clear_path_blocking(path, next,
5787
							  BTRFS_READ_LOCK);
5788
			}
5789
			next_rw_lock = BTRFS_READ_LOCK;
5790
		}
5791 5792 5793
		break;
	}
	path->slots[level] = slot;
C
Chris Mason 已提交
5794
	while (1) {
5795 5796
		level--;
		c = path->nodes[level];
5797
		if (path->locks[level])
5798
			btrfs_tree_unlock_rw(c, path->locks[level]);
5799

5800
		free_extent_buffer(c);
5801 5802
		path->nodes[level] = next;
		path->slots[level] = 0;
5803
		if (!path->skip_locking)
5804
			path->locks[level] = next_rw_lock;
5805 5806
		if (!level)
			break;
5807

5808
		ret = read_block_for_search(root, path, &next, level,
5809
					    0, &key);
5810 5811 5812
		if (ret == -EAGAIN)
			goto again;

5813
		if (ret < 0) {
5814
			btrfs_release_path(path);
5815 5816 5817
			goto done;
		}

5818
		if (!path->skip_locking) {
5819
			ret = btrfs_try_tree_read_lock(next);
5820 5821
			if (!ret) {
				btrfs_set_path_blocking(path);
5822
				btrfs_tree_read_lock(next);
5823
				btrfs_clear_path_blocking(path, next,
5824 5825
							  BTRFS_READ_LOCK);
			}
5826
			next_rw_lock = BTRFS_READ_LOCK;
5827
		}
5828
	}
5829
	ret = 0;
5830
done:
5831
	unlock_up(path, 0, 1, 0, NULL);
5832 5833 5834 5835 5836
	path->leave_spinning = old_spinning;
	if (!old_spinning)
		btrfs_set_path_blocking(path);

	return ret;
5837
}
5838

5839 5840 5841 5842 5843 5844
/*
 * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps
 * searching until it gets past min_objectid or finds an item of 'type'
 *
 * returns 0 if something is found, 1 if nothing was found and < 0 on error
 */
5845 5846 5847 5848 5849 5850
int btrfs_previous_item(struct btrfs_root *root,
			struct btrfs_path *path, u64 min_objectid,
			int type)
{
	struct btrfs_key found_key;
	struct extent_buffer *leaf;
5851
	u32 nritems;
5852 5853
	int ret;

C
Chris Mason 已提交
5854
	while (1) {
5855
		if (path->slots[0] == 0) {
5856
			btrfs_set_path_blocking(path);
5857 5858 5859 5860 5861 5862 5863
			ret = btrfs_prev_leaf(root, path);
			if (ret != 0)
				return ret;
		} else {
			path->slots[0]--;
		}
		leaf = path->nodes[0];
5864 5865 5866 5867 5868 5869
		nritems = btrfs_header_nritems(leaf);
		if (nritems == 0)
			return 1;
		if (path->slots[0] == nritems)
			path->slots[0]--;

5870
		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5871 5872
		if (found_key.objectid < min_objectid)
			break;
5873 5874
		if (found_key.type == type)
			return 0;
5875 5876 5877
		if (found_key.objectid == min_objectid &&
		    found_key.type < type)
			break;
5878 5879 5880
	}
	return 1;
}
5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923

/*
 * search in extent tree to find a previous Metadata/Data extent item with
 * min objecitd.
 *
 * returns 0 if something is found, 1 if nothing was found and < 0 on error
 */
int btrfs_previous_extent_item(struct btrfs_root *root,
			struct btrfs_path *path, u64 min_objectid)
{
	struct btrfs_key found_key;
	struct extent_buffer *leaf;
	u32 nritems;
	int ret;

	while (1) {
		if (path->slots[0] == 0) {
			btrfs_set_path_blocking(path);
			ret = btrfs_prev_leaf(root, path);
			if (ret != 0)
				return ret;
		} else {
			path->slots[0]--;
		}
		leaf = path->nodes[0];
		nritems = btrfs_header_nritems(leaf);
		if (nritems == 0)
			return 1;
		if (path->slots[0] == nritems)
			path->slots[0]--;

		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
		if (found_key.objectid < min_objectid)
			break;
		if (found_key.type == BTRFS_EXTENT_ITEM_KEY ||
		    found_key.type == BTRFS_METADATA_ITEM_KEY)
			return 0;
		if (found_key.objectid == min_objectid &&
		    found_key.type < BTRFS_EXTENT_ITEM_KEY)
			break;
	}
	return 1;
}