scrub.c 122.3 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
A
Arne Jansen 已提交
2
/*
3
 * Copyright (C) 2011, 2012 STRATO.  All rights reserved.
A
Arne Jansen 已提交
4 5 6
 */

#include <linux/blkdev.h>
7
#include <linux/ratelimit.h>
8
#include <linux/sched/mm.h>
A
Arne Jansen 已提交
9 10 11 12
#include "ctree.h"
#include "volumes.h"
#include "disk-io.h"
#include "ordered-data.h"
13
#include "transaction.h"
14
#include "backref.h"
15
#include "extent_io.h"
16
#include "dev-replace.h"
17
#include "check-integrity.h"
18
#include "rcu-string.h"
D
David Woodhouse 已提交
19
#include "raid56.h"
A
Arne Jansen 已提交
20 21 22 23 24 25 26 27 28 29 30 31 32 33

/*
 * This is only the first step towards a full-features scrub. It reads all
 * extent and super block and verifies the checksums. In case a bad checksum
 * is found or the extent cannot be read, good data will be written back if
 * any can be found.
 *
 * Future enhancements:
 *  - In case an unrepairable extent is encountered, track which files are
 *    affected and report them
 *  - track and record media errors, throw out bad devices
 *  - add a mode to also read unallocated space
 */

34
struct scrub_block;
35
struct scrub_ctx;
A
Arne Jansen 已提交
36

37 38 39 40 41 42 43 44 45
/*
 * the following three values only influence the performance.
 * The last one configures the number of parallel and outstanding I/O
 * operations. The first two values configure an upper limit for the number
 * of (dynamically allocated) pages that are added to a bio.
 */
#define SCRUB_PAGES_PER_RD_BIO	32	/* 128k per bio */
#define SCRUB_PAGES_PER_WR_BIO	32	/* 128k per bio */
#define SCRUB_BIOS_PER_SCTX	64	/* 8MB per device in flight */
46 47 48 49 50 51

/*
 * the following value times PAGE_SIZE needs to be large enough to match the
 * largest node/leaf/sector size that shall be supported.
 * Values larger than BTRFS_STRIPE_LEN are not supported.
 */
52
#define SCRUB_MAX_PAGES_PER_BLOCK	16	/* 64k per node/leaf/sector */
A
Arne Jansen 已提交
53

54
struct scrub_recover {
55
	refcount_t		refs;
56 57 58 59
	struct btrfs_bio	*bbio;
	u64			map_length;
};

A
Arne Jansen 已提交
60
struct scrub_page {
61 62
	struct scrub_block	*sblock;
	struct page		*page;
63
	struct btrfs_device	*dev;
64
	struct list_head	list;
A
Arne Jansen 已提交
65 66
	u64			flags;  /* extent flags */
	u64			generation;
67 68
	u64			logical;
	u64			physical;
69
	u64			physical_for_dev_replace;
70
	atomic_t		refs;
71 72 73 74 75
	struct {
		unsigned int	mirror_num:8;
		unsigned int	have_csum:1;
		unsigned int	io_error:1;
	};
A
Arne Jansen 已提交
76
	u8			csum[BTRFS_CSUM_SIZE];
77 78

	struct scrub_recover	*recover;
A
Arne Jansen 已提交
79 80 81 82
};

struct scrub_bio {
	int			index;
83
	struct scrub_ctx	*sctx;
84
	struct btrfs_device	*dev;
A
Arne Jansen 已提交
85
	struct bio		*bio;
86
	blk_status_t		status;
A
Arne Jansen 已提交
87 88
	u64			logical;
	u64			physical;
89 90 91 92 93
#if SCRUB_PAGES_PER_WR_BIO >= SCRUB_PAGES_PER_RD_BIO
	struct scrub_page	*pagev[SCRUB_PAGES_PER_WR_BIO];
#else
	struct scrub_page	*pagev[SCRUB_PAGES_PER_RD_BIO];
#endif
94
	int			page_count;
A
Arne Jansen 已提交
95 96 97 98
	int			next_free;
	struct btrfs_work	work;
};

99
struct scrub_block {
100
	struct scrub_page	*pagev[SCRUB_MAX_PAGES_PER_BLOCK];
101 102
	int			page_count;
	atomic_t		outstanding_pages;
103
	refcount_t		refs; /* free mem on transition to zero */
104
	struct scrub_ctx	*sctx;
105
	struct scrub_parity	*sparity;
106 107 108 109
	struct {
		unsigned int	header_error:1;
		unsigned int	checksum_error:1;
		unsigned int	no_io_error_seen:1;
110
		unsigned int	generation_error:1; /* also sets header_error */
111 112 113 114

		/* The following is for the data used to check parity */
		/* It is for the data with checksum */
		unsigned int	data_corrected:1;
115
	};
116
	struct btrfs_work	work;
117 118
};

119 120 121 122 123 124 125 126 127 128 129 130
/* Used for the chunks with parity stripe such RAID5/6 */
struct scrub_parity {
	struct scrub_ctx	*sctx;

	struct btrfs_device	*scrub_dev;

	u64			logic_start;

	u64			logic_end;

	int			nsectors;

131
	u64			stripe_len;
132

133
	refcount_t		refs;
134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151

	struct list_head	spages;

	/* Work of parity check and repair */
	struct btrfs_work	work;

	/* Mark the parity blocks which have data */
	unsigned long		*dbitmap;

	/*
	 * Mark the parity blocks which have data, but errors happen when
	 * read data or check data
	 */
	unsigned long		*ebitmap;

	unsigned long		bitmap[0];
};

152
struct scrub_ctx {
153
	struct scrub_bio	*bios[SCRUB_BIOS_PER_SCTX];
154
	struct btrfs_fs_info	*fs_info;
A
Arne Jansen 已提交
155 156
	int			first_free;
	int			curr;
157 158
	atomic_t		bios_in_flight;
	atomic_t		workers_pending;
A
Arne Jansen 已提交
159 160 161 162 163
	spinlock_t		list_lock;
	wait_queue_head_t	list_wait;
	u16			csum_size;
	struct list_head	csum_list;
	atomic_t		cancel_req;
A
Arne Jansen 已提交
164
	int			readonly;
165
	int			pages_per_rd_bio;
166 167

	int			is_dev_replace;
168 169 170 171 172

	struct scrub_bio        *wr_curr_bio;
	struct mutex            wr_lock;
	int                     pages_per_wr_bio; /* <= SCRUB_PAGES_PER_WR_BIO */
	struct btrfs_device     *wr_tgtdev;
173
	bool                    flush_all_writes;
174

A
Arne Jansen 已提交
175 176 177 178 179
	/*
	 * statistics
	 */
	struct btrfs_scrub_progress stat;
	spinlock_t		stat_lock;
180 181 182 183 184 185 186 187

	/*
	 * Use a ref counter to avoid use-after-free issues. Scrub workers
	 * decrement bios_in_flight and workers_pending and then do a wakeup
	 * on the list_wait wait queue. We must ensure the main scrub task
	 * doesn't free the scrub context before or while the workers are
	 * doing the wakeup() call.
	 */
188
	refcount_t              refs;
A
Arne Jansen 已提交
189 190
};

191
struct scrub_fixup_nodatasum {
192
	struct scrub_ctx	*sctx;
193
	struct btrfs_device	*dev;
194 195 196 197 198 199
	u64			logical;
	struct btrfs_root	*root;
	struct btrfs_work	work;
	int			mirror_num;
};

200 201 202 203 204 205 206
struct scrub_nocow_inode {
	u64			inum;
	u64			offset;
	u64			root;
	struct list_head	list;
};

207 208 209 210 211 212
struct scrub_copy_nocow_ctx {
	struct scrub_ctx	*sctx;
	u64			logical;
	u64			len;
	int			mirror_num;
	u64			physical_for_dev_replace;
213
	struct list_head	inodes;
214 215 216
	struct btrfs_work	work;
};

217 218 219 220
struct scrub_warning {
	struct btrfs_path	*path;
	u64			extent_item_size;
	const char		*errstr;
D
David Sterba 已提交
221
	u64			physical;
222 223 224 225
	u64			logical;
	struct btrfs_device	*dev;
};

226 227 228 229 230 231 232
struct full_stripe_lock {
	struct rb_node node;
	u64 logical;
	u64 refs;
	struct mutex mutex;
};

233 234 235 236
static void scrub_pending_bio_inc(struct scrub_ctx *sctx);
static void scrub_pending_bio_dec(struct scrub_ctx *sctx);
static void scrub_pending_trans_workers_inc(struct scrub_ctx *sctx);
static void scrub_pending_trans_workers_dec(struct scrub_ctx *sctx);
237
static int scrub_handle_errored_block(struct scrub_block *sblock_to_check);
238
static int scrub_setup_recheck_block(struct scrub_block *original_sblock,
239
				     struct scrub_block *sblocks_for_recheck);
240
static void scrub_recheck_block(struct btrfs_fs_info *fs_info,
241 242
				struct scrub_block *sblock,
				int retry_failed_mirror);
243
static void scrub_recheck_block_checksum(struct scrub_block *sblock);
244
static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
245
					     struct scrub_block *sblock_good);
246 247 248
static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad,
					    struct scrub_block *sblock_good,
					    int page_num, int force_write);
249 250 251
static void scrub_write_block_to_dev_replace(struct scrub_block *sblock);
static int scrub_write_page_to_dev_replace(struct scrub_block *sblock,
					   int page_num);
252 253 254 255 256
static int scrub_checksum_data(struct scrub_block *sblock);
static int scrub_checksum_tree_block(struct scrub_block *sblock);
static int scrub_checksum_super(struct scrub_block *sblock);
static void scrub_block_get(struct scrub_block *sblock);
static void scrub_block_put(struct scrub_block *sblock);
257 258
static void scrub_page_get(struct scrub_page *spage);
static void scrub_page_put(struct scrub_page *spage);
259 260
static void scrub_parity_get(struct scrub_parity *sparity);
static void scrub_parity_put(struct scrub_parity *sparity);
261 262
static int scrub_add_page_to_rd_bio(struct scrub_ctx *sctx,
				    struct scrub_page *spage);
263
static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
264
		       u64 physical, struct btrfs_device *dev, u64 flags,
265 266
		       u64 gen, int mirror_num, u8 *csum, int force,
		       u64 physical_for_dev_replace);
267
static void scrub_bio_end_io(struct bio *bio);
268 269
static void scrub_bio_end_io_worker(struct btrfs_work *work);
static void scrub_block_complete(struct scrub_block *sblock);
270 271 272 273 274 275 276 277
static void scrub_remap_extent(struct btrfs_fs_info *fs_info,
			       u64 extent_logical, u64 extent_len,
			       u64 *extent_physical,
			       struct btrfs_device **extent_dev,
			       int *extent_mirror_num);
static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx,
				    struct scrub_page *spage);
static void scrub_wr_submit(struct scrub_ctx *sctx);
278
static void scrub_wr_bio_end_io(struct bio *bio);
279 280 281 282
static void scrub_wr_bio_end_io_worker(struct btrfs_work *work);
static int write_page_nocow(struct scrub_ctx *sctx,
			    u64 physical_for_dev_replace, struct page *page);
static int copy_nocow_pages_for_inode(u64 inum, u64 offset, u64 root,
283
				      struct scrub_copy_nocow_ctx *ctx);
284 285 286
static int copy_nocow_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
			    int mirror_num, u64 physical_for_dev_replace);
static void copy_nocow_pages_worker(struct btrfs_work *work);
287
static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info);
288
static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info);
289
static void scrub_put_ctx(struct scrub_ctx *sctx);
S
Stefan Behrens 已提交
290

291 292 293 294 295
static inline int scrub_is_page_on_raid56(struct scrub_page *page)
{
	return page->recover &&
	       (page->recover->bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK);
}
S
Stefan Behrens 已提交
296

297 298
static void scrub_pending_bio_inc(struct scrub_ctx *sctx)
{
299
	refcount_inc(&sctx->refs);
300 301 302 303 304 305 306
	atomic_inc(&sctx->bios_in_flight);
}

static void scrub_pending_bio_dec(struct scrub_ctx *sctx)
{
	atomic_dec(&sctx->bios_in_flight);
	wake_up(&sctx->list_wait);
307
	scrub_put_ctx(sctx);
308 309
}

310
static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
311 312 313 314 315 316 317 318 319
{
	while (atomic_read(&fs_info->scrub_pause_req)) {
		mutex_unlock(&fs_info->scrub_lock);
		wait_event(fs_info->scrub_pause_wait,
		   atomic_read(&fs_info->scrub_pause_req) == 0);
		mutex_lock(&fs_info->scrub_lock);
	}
}

320
static void scrub_pause_on(struct btrfs_fs_info *fs_info)
321 322 323
{
	atomic_inc(&fs_info->scrubs_paused);
	wake_up(&fs_info->scrub_pause_wait);
324
}
325

326 327
static void scrub_pause_off(struct btrfs_fs_info *fs_info)
{
328 329 330 331 332 333 334 335
	mutex_lock(&fs_info->scrub_lock);
	__scrub_blocked_if_needed(fs_info);
	atomic_dec(&fs_info->scrubs_paused);
	mutex_unlock(&fs_info->scrub_lock);

	wake_up(&fs_info->scrub_pause_wait);
}

336 337 338 339 340 341
static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
{
	scrub_pause_on(fs_info);
	scrub_pause_off(fs_info);
}

342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360
/*
 * Insert new full stripe lock into full stripe locks tree
 *
 * Return pointer to existing or newly inserted full_stripe_lock structure if
 * everything works well.
 * Return ERR_PTR(-ENOMEM) if we failed to allocate memory
 *
 * NOTE: caller must hold full_stripe_locks_root->lock before calling this
 * function
 */
static struct full_stripe_lock *insert_full_stripe_lock(
		struct btrfs_full_stripe_locks_tree *locks_root,
		u64 fstripe_logical)
{
	struct rb_node **p;
	struct rb_node *parent = NULL;
	struct full_stripe_lock *entry;
	struct full_stripe_lock *ret;

361
	lockdep_assert_held(&locks_root->lock);
362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402

	p = &locks_root->root.rb_node;
	while (*p) {
		parent = *p;
		entry = rb_entry(parent, struct full_stripe_lock, node);
		if (fstripe_logical < entry->logical) {
			p = &(*p)->rb_left;
		} else if (fstripe_logical > entry->logical) {
			p = &(*p)->rb_right;
		} else {
			entry->refs++;
			return entry;
		}
	}

	/* Insert new lock */
	ret = kmalloc(sizeof(*ret), GFP_KERNEL);
	if (!ret)
		return ERR_PTR(-ENOMEM);
	ret->logical = fstripe_logical;
	ret->refs = 1;
	mutex_init(&ret->mutex);

	rb_link_node(&ret->node, parent, p);
	rb_insert_color(&ret->node, &locks_root->root);
	return ret;
}

/*
 * Search for a full stripe lock of a block group
 *
 * Return pointer to existing full stripe lock if found
 * Return NULL if not found
 */
static struct full_stripe_lock *search_full_stripe_lock(
		struct btrfs_full_stripe_locks_tree *locks_root,
		u64 fstripe_logical)
{
	struct rb_node *node;
	struct full_stripe_lock *entry;

403
	lockdep_assert_held(&locks_root->lock);
404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557

	node = locks_root->root.rb_node;
	while (node) {
		entry = rb_entry(node, struct full_stripe_lock, node);
		if (fstripe_logical < entry->logical)
			node = node->rb_left;
		else if (fstripe_logical > entry->logical)
			node = node->rb_right;
		else
			return entry;
	}
	return NULL;
}

/*
 * Helper to get full stripe logical from a normal bytenr.
 *
 * Caller must ensure @cache is a RAID56 block group.
 */
static u64 get_full_stripe_logical(struct btrfs_block_group_cache *cache,
				   u64 bytenr)
{
	u64 ret;

	/*
	 * Due to chunk item size limit, full stripe length should not be
	 * larger than U32_MAX. Just a sanity check here.
	 */
	WARN_ON_ONCE(cache->full_stripe_len >= U32_MAX);

	/*
	 * round_down() can only handle power of 2, while RAID56 full
	 * stripe length can be 64KiB * n, so we need to manually round down.
	 */
	ret = div64_u64(bytenr - cache->key.objectid, cache->full_stripe_len) *
		cache->full_stripe_len + cache->key.objectid;
	return ret;
}

/*
 * Lock a full stripe to avoid concurrency of recovery and read
 *
 * It's only used for profiles with parities (RAID5/6), for other profiles it
 * does nothing.
 *
 * Return 0 if we locked full stripe covering @bytenr, with a mutex held.
 * So caller must call unlock_full_stripe() at the same context.
 *
 * Return <0 if encounters error.
 */
static int lock_full_stripe(struct btrfs_fs_info *fs_info, u64 bytenr,
			    bool *locked_ret)
{
	struct btrfs_block_group_cache *bg_cache;
	struct btrfs_full_stripe_locks_tree *locks_root;
	struct full_stripe_lock *existing;
	u64 fstripe_start;
	int ret = 0;

	*locked_ret = false;
	bg_cache = btrfs_lookup_block_group(fs_info, bytenr);
	if (!bg_cache) {
		ASSERT(0);
		return -ENOENT;
	}

	/* Profiles not based on parity don't need full stripe lock */
	if (!(bg_cache->flags & BTRFS_BLOCK_GROUP_RAID56_MASK))
		goto out;
	locks_root = &bg_cache->full_stripe_locks_root;

	fstripe_start = get_full_stripe_logical(bg_cache, bytenr);

	/* Now insert the full stripe lock */
	mutex_lock(&locks_root->lock);
	existing = insert_full_stripe_lock(locks_root, fstripe_start);
	mutex_unlock(&locks_root->lock);
	if (IS_ERR(existing)) {
		ret = PTR_ERR(existing);
		goto out;
	}
	mutex_lock(&existing->mutex);
	*locked_ret = true;
out:
	btrfs_put_block_group(bg_cache);
	return ret;
}

/*
 * Unlock a full stripe.
 *
 * NOTE: Caller must ensure it's the same context calling corresponding
 * lock_full_stripe().
 *
 * Return 0 if we unlock full stripe without problem.
 * Return <0 for error
 */
static int unlock_full_stripe(struct btrfs_fs_info *fs_info, u64 bytenr,
			      bool locked)
{
	struct btrfs_block_group_cache *bg_cache;
	struct btrfs_full_stripe_locks_tree *locks_root;
	struct full_stripe_lock *fstripe_lock;
	u64 fstripe_start;
	bool freeit = false;
	int ret = 0;

	/* If we didn't acquire full stripe lock, no need to continue */
	if (!locked)
		return 0;

	bg_cache = btrfs_lookup_block_group(fs_info, bytenr);
	if (!bg_cache) {
		ASSERT(0);
		return -ENOENT;
	}
	if (!(bg_cache->flags & BTRFS_BLOCK_GROUP_RAID56_MASK))
		goto out;

	locks_root = &bg_cache->full_stripe_locks_root;
	fstripe_start = get_full_stripe_logical(bg_cache, bytenr);

	mutex_lock(&locks_root->lock);
	fstripe_lock = search_full_stripe_lock(locks_root, fstripe_start);
	/* Unpaired unlock_full_stripe() detected */
	if (!fstripe_lock) {
		WARN_ON(1);
		ret = -ENOENT;
		mutex_unlock(&locks_root->lock);
		goto out;
	}

	if (fstripe_lock->refs == 0) {
		WARN_ON(1);
		btrfs_warn(fs_info, "full stripe lock at %llu refcount underflow",
			fstripe_lock->logical);
	} else {
		fstripe_lock->refs--;
	}

	if (fstripe_lock->refs == 0) {
		rb_erase(&fstripe_lock->node, &locks_root->root);
		freeit = true;
	}
	mutex_unlock(&locks_root->lock);

	mutex_unlock(&fstripe_lock->mutex);
	if (freeit)
		kfree(fstripe_lock);
out:
	btrfs_put_block_group(bg_cache);
	return ret;
}

558 559 560 561 562 563
/*
 * used for workers that require transaction commits (i.e., for the
 * NOCOW case)
 */
static void scrub_pending_trans_workers_inc(struct scrub_ctx *sctx)
{
564
	struct btrfs_fs_info *fs_info = sctx->fs_info;
565

566
	refcount_inc(&sctx->refs);
567 568 569 570 571 572 573 574 575 576 577 578 579
	/*
	 * increment scrubs_running to prevent cancel requests from
	 * completing as long as a worker is running. we must also
	 * increment scrubs_paused to prevent deadlocking on pause
	 * requests used for transactions commits (as the worker uses a
	 * transaction context). it is safe to regard the worker
	 * as paused for all matters practical. effectively, we only
	 * avoid cancellation requests from completing.
	 */
	mutex_lock(&fs_info->scrub_lock);
	atomic_inc(&fs_info->scrubs_running);
	atomic_inc(&fs_info->scrubs_paused);
	mutex_unlock(&fs_info->scrub_lock);
580 581 582 583 584 585 586 587 588 589

	/*
	 * check if @scrubs_running=@scrubs_paused condition
	 * inside wait_event() is not an atomic operation.
	 * which means we may inc/dec @scrub_running/paused
	 * at any time. Let's wake up @scrub_pause_wait as
	 * much as we can to let commit transaction blocked less.
	 */
	wake_up(&fs_info->scrub_pause_wait);

590 591 592 593 594 595
	atomic_inc(&sctx->workers_pending);
}

/* used for workers that require transaction commits */
static void scrub_pending_trans_workers_dec(struct scrub_ctx *sctx)
{
596
	struct btrfs_fs_info *fs_info = sctx->fs_info;
597 598 599 600 601 602 603 604 605 606 607 608

	/*
	 * see scrub_pending_trans_workers_inc() why we're pretending
	 * to be paused in the scrub counters
	 */
	mutex_lock(&fs_info->scrub_lock);
	atomic_dec(&fs_info->scrubs_running);
	atomic_dec(&fs_info->scrubs_paused);
	mutex_unlock(&fs_info->scrub_lock);
	atomic_dec(&sctx->workers_pending);
	wake_up(&fs_info->scrub_pause_wait);
	wake_up(&sctx->list_wait);
609
	scrub_put_ctx(sctx);
610 611
}

612
static void scrub_free_csums(struct scrub_ctx *sctx)
A
Arne Jansen 已提交
613
{
614
	while (!list_empty(&sctx->csum_list)) {
A
Arne Jansen 已提交
615
		struct btrfs_ordered_sum *sum;
616
		sum = list_first_entry(&sctx->csum_list,
A
Arne Jansen 已提交
617 618 619 620 621 622
				       struct btrfs_ordered_sum, list);
		list_del(&sum->list);
		kfree(sum);
	}
}

623
static noinline_for_stack void scrub_free_ctx(struct scrub_ctx *sctx)
A
Arne Jansen 已提交
624 625 626
{
	int i;

627
	if (!sctx)
A
Arne Jansen 已提交
628 629
		return;

630
	/* this can happen when scrub is cancelled */
631 632
	if (sctx->curr != -1) {
		struct scrub_bio *sbio = sctx->bios[sctx->curr];
633 634

		for (i = 0; i < sbio->page_count; i++) {
635
			WARN_ON(!sbio->pagev[i]->page);
636 637 638 639 640
			scrub_block_put(sbio->pagev[i]->sblock);
		}
		bio_put(sbio->bio);
	}

641
	for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) {
642
		struct scrub_bio *sbio = sctx->bios[i];
A
Arne Jansen 已提交
643 644 645 646 647 648

		if (!sbio)
			break;
		kfree(sbio);
	}

649
	kfree(sctx->wr_curr_bio);
650 651
	scrub_free_csums(sctx);
	kfree(sctx);
A
Arne Jansen 已提交
652 653
}

654 655
static void scrub_put_ctx(struct scrub_ctx *sctx)
{
656
	if (refcount_dec_and_test(&sctx->refs))
657 658 659
		scrub_free_ctx(sctx);
}

A
Arne Jansen 已提交
660
static noinline_for_stack
661
struct scrub_ctx *scrub_setup_ctx(struct btrfs_device *dev, int is_dev_replace)
A
Arne Jansen 已提交
662
{
663
	struct scrub_ctx *sctx;
A
Arne Jansen 已提交
664
	int		i;
665
	struct btrfs_fs_info *fs_info = dev->fs_info;
A
Arne Jansen 已提交
666

667
	sctx = kzalloc(sizeof(*sctx), GFP_KERNEL);
668
	if (!sctx)
A
Arne Jansen 已提交
669
		goto nomem;
670
	refcount_set(&sctx->refs, 1);
671
	sctx->is_dev_replace = is_dev_replace;
672
	sctx->pages_per_rd_bio = SCRUB_PAGES_PER_RD_BIO;
673
	sctx->curr = -1;
674
	sctx->fs_info = dev->fs_info;
675
	for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) {
A
Arne Jansen 已提交
676 677
		struct scrub_bio *sbio;

678
		sbio = kzalloc(sizeof(*sbio), GFP_KERNEL);
A
Arne Jansen 已提交
679 680
		if (!sbio)
			goto nomem;
681
		sctx->bios[i] = sbio;
A
Arne Jansen 已提交
682 683

		sbio->index = i;
684
		sbio->sctx = sctx;
685
		sbio->page_count = 0;
686 687
		btrfs_init_work(&sbio->work, btrfs_scrub_helper,
				scrub_bio_end_io_worker, NULL, NULL);
A
Arne Jansen 已提交
688

689
		if (i != SCRUB_BIOS_PER_SCTX - 1)
690
			sctx->bios[i]->next_free = i + 1;
691
		else
692 693 694
			sctx->bios[i]->next_free = -1;
	}
	sctx->first_free = 0;
695 696
	atomic_set(&sctx->bios_in_flight, 0);
	atomic_set(&sctx->workers_pending, 0);
697 698 699 700 701 702 703
	atomic_set(&sctx->cancel_req, 0);
	sctx->csum_size = btrfs_super_csum_size(fs_info->super_copy);
	INIT_LIST_HEAD(&sctx->csum_list);

	spin_lock_init(&sctx->list_lock);
	spin_lock_init(&sctx->stat_lock);
	init_waitqueue_head(&sctx->list_wait);
704

705 706 707
	WARN_ON(sctx->wr_curr_bio != NULL);
	mutex_init(&sctx->wr_lock);
	sctx->wr_curr_bio = NULL;
708
	if (is_dev_replace) {
709
		WARN_ON(!fs_info->dev_replace.tgtdev);
710
		sctx->pages_per_wr_bio = SCRUB_PAGES_PER_WR_BIO;
711
		sctx->wr_tgtdev = fs_info->dev_replace.tgtdev;
712
		sctx->flush_all_writes = false;
713
	}
714

715
	return sctx;
A
Arne Jansen 已提交
716 717

nomem:
718
	scrub_free_ctx(sctx);
A
Arne Jansen 已提交
719 720 721
	return ERR_PTR(-ENOMEM);
}

722 723
static int scrub_print_warning_inode(u64 inum, u64 offset, u64 root,
				     void *warn_ctx)
724 725 726 727 728
{
	u64 isize;
	u32 nlink;
	int ret;
	int i;
729
	unsigned nofs_flag;
730 731
	struct extent_buffer *eb;
	struct btrfs_inode_item *inode_item;
732
	struct scrub_warning *swarn = warn_ctx;
733
	struct btrfs_fs_info *fs_info = swarn->dev->fs_info;
734 735 736
	struct inode_fs_paths *ipath = NULL;
	struct btrfs_root *local_root;
	struct btrfs_key root_key;
737
	struct btrfs_key key;
738 739 740 741 742 743 744 745 746 747

	root_key.objectid = root;
	root_key.type = BTRFS_ROOT_ITEM_KEY;
	root_key.offset = (u64)-1;
	local_root = btrfs_read_fs_root_no_name(fs_info, &root_key);
	if (IS_ERR(local_root)) {
		ret = PTR_ERR(local_root);
		goto err;
	}

748 749 750
	/*
	 * this makes the path point to (inum INODE_ITEM ioff)
	 */
751 752 753 754 755
	key.objectid = inum;
	key.type = BTRFS_INODE_ITEM_KEY;
	key.offset = 0;

	ret = btrfs_search_slot(NULL, local_root, &key, swarn->path, 0, 0);
756 757 758 759 760 761 762 763 764 765 766 767
	if (ret) {
		btrfs_release_path(swarn->path);
		goto err;
	}

	eb = swarn->path->nodes[0];
	inode_item = btrfs_item_ptr(eb, swarn->path->slots[0],
					struct btrfs_inode_item);
	isize = btrfs_inode_size(eb, inode_item);
	nlink = btrfs_inode_nlink(eb, inode_item);
	btrfs_release_path(swarn->path);

768 769 770 771 772 773
	/*
	 * init_path might indirectly call vmalloc, or use GFP_KERNEL. Scrub
	 * uses GFP_NOFS in this context, so we keep it consistent but it does
	 * not seem to be strictly necessary.
	 */
	nofs_flag = memalloc_nofs_save();
774
	ipath = init_ipath(4096, local_root, swarn->path);
775
	memalloc_nofs_restore(nofs_flag);
776 777 778 779 780
	if (IS_ERR(ipath)) {
		ret = PTR_ERR(ipath);
		ipath = NULL;
		goto err;
	}
781 782 783 784 785 786 787 788 789 790
	ret = paths_from_inode(inum, ipath);

	if (ret < 0)
		goto err;

	/*
	 * we deliberately ignore the bit ipath might have been too small to
	 * hold all of the paths here
	 */
	for (i = 0; i < ipath->fspath->elem_cnt; ++i)
J
Jeff Mahoney 已提交
791
		btrfs_warn_in_rcu(fs_info,
D
David Sterba 已提交
792
"%s at logical %llu on dev %s, physical %llu, root %llu, inode %llu, offset %llu, length %llu, links %u (path: %s)",
J
Jeff Mahoney 已提交
793 794
				  swarn->errstr, swarn->logical,
				  rcu_str_deref(swarn->dev->name),
D
David Sterba 已提交
795
				  swarn->physical,
J
Jeff Mahoney 已提交
796 797 798
				  root, inum, offset,
				  min(isize - offset, (u64)PAGE_SIZE), nlink,
				  (char *)(unsigned long)ipath->fspath->val[i]);
799 800 801 802 803

	free_ipath(ipath);
	return 0;

err:
J
Jeff Mahoney 已提交
804
	btrfs_warn_in_rcu(fs_info,
D
David Sterba 已提交
805
			  "%s at logical %llu on dev %s, physical %llu, root %llu, inode %llu, offset %llu: path resolving failed with ret=%d",
J
Jeff Mahoney 已提交
806 807
			  swarn->errstr, swarn->logical,
			  rcu_str_deref(swarn->dev->name),
D
David Sterba 已提交
808
			  swarn->physical,
J
Jeff Mahoney 已提交
809
			  root, inum, offset, ret);
810 811 812 813 814

	free_ipath(ipath);
	return 0;
}

815
static void scrub_print_warning(const char *errstr, struct scrub_block *sblock)
816
{
817 818
	struct btrfs_device *dev;
	struct btrfs_fs_info *fs_info;
819 820 821 822 823
	struct btrfs_path *path;
	struct btrfs_key found_key;
	struct extent_buffer *eb;
	struct btrfs_extent_item *ei;
	struct scrub_warning swarn;
824 825 826
	unsigned long ptr = 0;
	u64 extent_item_pos;
	u64 flags = 0;
827
	u64 ref_root;
828
	u32 item_size;
829
	u8 ref_level = 0;
830
	int ret;
831

832
	WARN_ON(sblock->page_count < 1);
833
	dev = sblock->pagev[0]->dev;
834
	fs_info = sblock->sctx->fs_info;
835

836
	path = btrfs_alloc_path();
837 838
	if (!path)
		return;
839

D
David Sterba 已提交
840
	swarn.physical = sblock->pagev[0]->physical;
841
	swarn.logical = sblock->pagev[0]->logical;
842
	swarn.errstr = errstr;
843
	swarn.dev = NULL;
844

845 846
	ret = extent_from_logical(fs_info, swarn.logical, path, &found_key,
				  &flags);
847 848 849
	if (ret < 0)
		goto out;

J
Jan Schmidt 已提交
850
	extent_item_pos = swarn.logical - found_key.objectid;
851 852 853 854 855 856
	swarn.extent_item_size = found_key.offset;

	eb = path->nodes[0];
	ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
	item_size = btrfs_item_size_nr(eb, path->slots[0]);

857
	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
858
		do {
859 860 861
			ret = tree_backref_for_extent(&ptr, eb, &found_key, ei,
						      item_size, &ref_root,
						      &ref_level);
862
			btrfs_warn_in_rcu(fs_info,
D
David Sterba 已提交
863
"%s at logical %llu on dev %s, physical %llu: metadata %s (level %d) in tree %llu",
J
Jeff Mahoney 已提交
864
				errstr, swarn.logical,
865
				rcu_str_deref(dev->name),
D
David Sterba 已提交
866
				swarn.physical,
867 868 869 870
				ref_level ? "node" : "leaf",
				ret < 0 ? -1 : ref_level,
				ret < 0 ? -1 : ref_root);
		} while (ret != 1);
871
		btrfs_release_path(path);
872
	} else {
873
		btrfs_release_path(path);
874
		swarn.path = path;
875
		swarn.dev = dev;
876 877
		iterate_extent_inodes(fs_info, found_key.objectid,
					extent_item_pos, 1,
878
					scrub_print_warning_inode, &swarn, false);
879 880 881 882 883 884
	}

out:
	btrfs_free_path(path);
}

885
static int scrub_fixup_readpage(u64 inum, u64 offset, u64 root, void *fixup_ctx)
886
{
887
	struct page *page = NULL;
888
	unsigned long index;
889
	struct scrub_fixup_nodatasum *fixup = fixup_ctx;
890
	int ret;
891
	int corrected = 0;
892
	struct btrfs_key key;
893
	struct inode *inode = NULL;
894
	struct btrfs_fs_info *fs_info;
895 896
	u64 end = offset + PAGE_SIZE - 1;
	struct btrfs_root *local_root;
897
	int srcu_index;
898 899 900 901

	key.objectid = root;
	key.type = BTRFS_ROOT_ITEM_KEY;
	key.offset = (u64)-1;
902 903 904 905 906 907 908

	fs_info = fixup->root->fs_info;
	srcu_index = srcu_read_lock(&fs_info->subvol_srcu);

	local_root = btrfs_read_fs_root_no_name(fs_info, &key);
	if (IS_ERR(local_root)) {
		srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
909
		return PTR_ERR(local_root);
910
	}
911 912 913 914

	key.type = BTRFS_INODE_ITEM_KEY;
	key.objectid = inum;
	key.offset = 0;
915 916
	inode = btrfs_iget(fs_info->sb, &key, local_root, NULL);
	srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
917 918 919
	if (IS_ERR(inode))
		return PTR_ERR(inode);

920
	index = offset >> PAGE_SHIFT;
921 922

	page = find_or_create_page(inode->i_mapping, index, GFP_NOFS);
923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948
	if (!page) {
		ret = -ENOMEM;
		goto out;
	}

	if (PageUptodate(page)) {
		if (PageDirty(page)) {
			/*
			 * we need to write the data to the defect sector. the
			 * data that was in that sector is not in memory,
			 * because the page was modified. we must not write the
			 * modified page to that sector.
			 *
			 * TODO: what could be done here: wait for the delalloc
			 *       runner to write out that page (might involve
			 *       COW) and see whether the sector is still
			 *       referenced afterwards.
			 *
			 * For the meantime, we'll treat this error
			 * incorrectable, although there is a chance that a
			 * later scrub will find the bad sector again and that
			 * there's no dirty page in memory, then.
			 */
			ret = -EIO;
			goto out;
		}
949
		ret = repair_io_failure(fs_info, inum, offset, PAGE_SIZE,
950
					fixup->logical, page,
951
					offset - page_offset(page),
952 953 954 955 956 957 958 959 960 961
					fixup->mirror_num);
		unlock_page(page);
		corrected = !ret;
	} else {
		/*
		 * we need to get good data first. the general readpage path
		 * will call repair_io_failure for us, we just have to make
		 * sure we read the bad mirror.
		 */
		ret = set_extent_bits(&BTRFS_I(inode)->io_tree, offset, end,
962
					EXTENT_DAMAGED);
963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979
		if (ret) {
			/* set_extent_bits should give proper error */
			WARN_ON(ret > 0);
			if (ret > 0)
				ret = -EFAULT;
			goto out;
		}

		ret = extent_read_full_page(&BTRFS_I(inode)->io_tree, page,
						btrfs_get_extent,
						fixup->mirror_num);
		wait_on_page_locked(page);

		corrected = !test_range_bit(&BTRFS_I(inode)->io_tree, offset,
						end, EXTENT_DAMAGED, 0, NULL);
		if (!corrected)
			clear_extent_bits(&BTRFS_I(inode)->io_tree, offset, end,
980
						EXTENT_DAMAGED);
981 982 983 984 985
	}

out:
	if (page)
		put_page(page);
986 987

	iput(inode);
988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004

	if (ret < 0)
		return ret;

	if (ret == 0 && corrected) {
		/*
		 * we only need to call readpage for one of the inodes belonging
		 * to this extent. so make iterate_extent_inodes stop
		 */
		return 1;
	}

	return -EIO;
}

static void scrub_fixup_nodatasum(struct btrfs_work *work)
{
1005
	struct btrfs_fs_info *fs_info;
1006 1007
	int ret;
	struct scrub_fixup_nodatasum *fixup;
1008
	struct scrub_ctx *sctx;
1009 1010 1011 1012 1013
	struct btrfs_trans_handle *trans = NULL;
	struct btrfs_path *path;
	int uncorrectable = 0;

	fixup = container_of(work, struct scrub_fixup_nodatasum, work);
1014
	sctx = fixup->sctx;
1015
	fs_info = fixup->root->fs_info;
1016 1017 1018

	path = btrfs_alloc_path();
	if (!path) {
1019 1020 1021
		spin_lock(&sctx->stat_lock);
		++sctx->stat.malloc_errors;
		spin_unlock(&sctx->stat_lock);
1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040
		uncorrectable = 1;
		goto out;
	}

	trans = btrfs_join_transaction(fixup->root);
	if (IS_ERR(trans)) {
		uncorrectable = 1;
		goto out;
	}

	/*
	 * the idea is to trigger a regular read through the standard path. we
	 * read a page from the (failed) logical address by specifying the
	 * corresponding copynum of the failed sector. thus, that readpage is
	 * expected to fail.
	 * that is the point where on-the-fly error correction will kick in
	 * (once it's finished) and rewrite the failed sector if a good copy
	 * can be found.
	 */
1041
	ret = iterate_inodes_from_logical(fixup->logical, fs_info, path,
1042
					  scrub_fixup_readpage, fixup, false);
1043 1044 1045 1046 1047 1048
	if (ret < 0) {
		uncorrectable = 1;
		goto out;
	}
	WARN_ON(ret != 1);

1049 1050 1051
	spin_lock(&sctx->stat_lock);
	++sctx->stat.corrected_errors;
	spin_unlock(&sctx->stat_lock);
1052 1053 1054

out:
	if (trans && !IS_ERR(trans))
1055
		btrfs_end_transaction(trans);
1056
	if (uncorrectable) {
1057 1058 1059
		spin_lock(&sctx->stat_lock);
		++sctx->stat.uncorrectable_errors;
		spin_unlock(&sctx->stat_lock);
1060
		btrfs_dev_replace_stats_inc(
1061 1062
			&fs_info->dev_replace.num_uncorrectable_read_errors);
		btrfs_err_rl_in_rcu(fs_info,
1063
		    "unable to fixup (nodatasum) error at logical %llu on dev %s",
1064
			fixup->logical, rcu_str_deref(fixup->dev->name));
1065 1066 1067 1068 1069
	}

	btrfs_free_path(path);
	kfree(fixup);

1070
	scrub_pending_trans_workers_dec(sctx);
1071 1072
}

1073 1074
static inline void scrub_get_recover(struct scrub_recover *recover)
{
1075
	refcount_inc(&recover->refs);
1076 1077
}

1078 1079
static inline void scrub_put_recover(struct btrfs_fs_info *fs_info,
				     struct scrub_recover *recover)
1080
{
1081
	if (refcount_dec_and_test(&recover->refs)) {
1082
		btrfs_bio_counter_dec(fs_info);
1083
		btrfs_put_bbio(recover->bbio);
1084 1085 1086 1087
		kfree(recover);
	}
}

A
Arne Jansen 已提交
1088
/*
1089 1090 1091 1092 1093 1094
 * scrub_handle_errored_block gets called when either verification of the
 * pages failed or the bio failed to read, e.g. with EIO. In the latter
 * case, this function handles all pages in the bio, even though only one
 * may be bad.
 * The goal of this function is to repair the errored block by using the
 * contents of one of the mirrors.
A
Arne Jansen 已提交
1095
 */
1096
static int scrub_handle_errored_block(struct scrub_block *sblock_to_check)
A
Arne Jansen 已提交
1097
{
1098
	struct scrub_ctx *sctx = sblock_to_check->sctx;
1099
	struct btrfs_device *dev;
1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110
	struct btrfs_fs_info *fs_info;
	u64 logical;
	unsigned int failed_mirror_index;
	unsigned int is_metadata;
	unsigned int have_csum;
	struct scrub_block *sblocks_for_recheck; /* holds one for each mirror */
	struct scrub_block *sblock_bad;
	int ret;
	int mirror_index;
	int page_num;
	int success;
1111
	bool full_stripe_locked;
1112
	static DEFINE_RATELIMIT_STATE(_rs, DEFAULT_RATELIMIT_INTERVAL,
1113 1114 1115
				      DEFAULT_RATELIMIT_BURST);

	BUG_ON(sblock_to_check->page_count < 1);
1116
	fs_info = sctx->fs_info;
1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127
	if (sblock_to_check->pagev[0]->flags & BTRFS_EXTENT_FLAG_SUPER) {
		/*
		 * if we find an error in a super block, we just report it.
		 * They will get written with the next transaction commit
		 * anyway
		 */
		spin_lock(&sctx->stat_lock);
		++sctx->stat.super_errors;
		spin_unlock(&sctx->stat_lock);
		return 0;
	}
1128 1129 1130 1131
	logical = sblock_to_check->pagev[0]->logical;
	BUG_ON(sblock_to_check->pagev[0]->mirror_num < 1);
	failed_mirror_index = sblock_to_check->pagev[0]->mirror_num - 1;
	is_metadata = !(sblock_to_check->pagev[0]->flags &
1132
			BTRFS_EXTENT_FLAG_DATA);
1133 1134
	have_csum = sblock_to_check->pagev[0]->have_csum;
	dev = sblock_to_check->pagev[0]->dev;
1135

1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153
	/*
	 * For RAID5/6, race can happen for a different device scrub thread.
	 * For data corruption, Parity and Data threads will both try
	 * to recovery the data.
	 * Race can lead to doubly added csum error, or even unrecoverable
	 * error.
	 */
	ret = lock_full_stripe(fs_info, logical, &full_stripe_locked);
	if (ret < 0) {
		spin_lock(&sctx->stat_lock);
		if (ret == -ENOMEM)
			sctx->stat.malloc_errors++;
		sctx->stat.read_errors++;
		sctx->stat.uncorrectable_errors++;
		spin_unlock(&sctx->stat_lock);
		return ret;
	}

1154 1155 1156 1157 1158
	if (sctx->is_dev_replace && !is_metadata && !have_csum) {
		sblocks_for_recheck = NULL;
		goto nodatasum_case;
	}

1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187
	/*
	 * read all mirrors one after the other. This includes to
	 * re-read the extent or metadata block that failed (that was
	 * the cause that this fixup code is called) another time,
	 * page by page this time in order to know which pages
	 * caused I/O errors and which ones are good (for all mirrors).
	 * It is the goal to handle the situation when more than one
	 * mirror contains I/O errors, but the errors do not
	 * overlap, i.e. the data can be repaired by selecting the
	 * pages from those mirrors without I/O error on the
	 * particular pages. One example (with blocks >= 2 * PAGE_SIZE)
	 * would be that mirror #1 has an I/O error on the first page,
	 * the second page is good, and mirror #2 has an I/O error on
	 * the second page, but the first page is good.
	 * Then the first page of the first mirror can be repaired by
	 * taking the first page of the second mirror, and the
	 * second page of the second mirror can be repaired by
	 * copying the contents of the 2nd page of the 1st mirror.
	 * One more note: if the pages of one mirror contain I/O
	 * errors, the checksum cannot be verified. In order to get
	 * the best data for repairing, the first attempt is to find
	 * a mirror without I/O errors and with a validated checksum.
	 * Only if this is not possible, the pages are picked from
	 * mirrors with I/O errors without considering the checksum.
	 * If the latter is the case, at the end, the checksum of the
	 * repaired area is verified in order to correctly maintain
	 * the statistics.
	 */

1188 1189
	sblocks_for_recheck = kcalloc(BTRFS_MAX_MIRRORS,
				      sizeof(*sblocks_for_recheck), GFP_NOFS);
1190
	if (!sblocks_for_recheck) {
1191 1192 1193 1194 1195
		spin_lock(&sctx->stat_lock);
		sctx->stat.malloc_errors++;
		sctx->stat.read_errors++;
		sctx->stat.uncorrectable_errors++;
		spin_unlock(&sctx->stat_lock);
1196
		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
1197
		goto out;
A
Arne Jansen 已提交
1198 1199
	}

1200
	/* setup the context, map the logical blocks and alloc the pages */
1201
	ret = scrub_setup_recheck_block(sblock_to_check, sblocks_for_recheck);
1202
	if (ret) {
1203 1204 1205 1206
		spin_lock(&sctx->stat_lock);
		sctx->stat.read_errors++;
		sctx->stat.uncorrectable_errors++;
		spin_unlock(&sctx->stat_lock);
1207
		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
1208 1209 1210 1211
		goto out;
	}
	BUG_ON(failed_mirror_index >= BTRFS_MAX_MIRRORS);
	sblock_bad = sblocks_for_recheck + failed_mirror_index;
1212

1213
	/* build and submit the bios for the failed mirror, check checksums */
1214
	scrub_recheck_block(fs_info, sblock_bad, 1);
A
Arne Jansen 已提交
1215

1216 1217 1218 1219 1220 1221 1222 1223 1224 1225
	if (!sblock_bad->header_error && !sblock_bad->checksum_error &&
	    sblock_bad->no_io_error_seen) {
		/*
		 * the error disappeared after reading page by page, or
		 * the area was part of a huge bio and other parts of the
		 * bio caused I/O errors, or the block layer merged several
		 * read requests into one and the error is caused by a
		 * different bio (usually one of the two latter cases is
		 * the cause)
		 */
1226 1227
		spin_lock(&sctx->stat_lock);
		sctx->stat.unverified_errors++;
1228
		sblock_to_check->data_corrected = 1;
1229
		spin_unlock(&sctx->stat_lock);
A
Arne Jansen 已提交
1230

1231 1232
		if (sctx->is_dev_replace)
			scrub_write_block_to_dev_replace(sblock_bad);
1233
		goto out;
A
Arne Jansen 已提交
1234 1235
	}

1236
	if (!sblock_bad->no_io_error_seen) {
1237 1238 1239
		spin_lock(&sctx->stat_lock);
		sctx->stat.read_errors++;
		spin_unlock(&sctx->stat_lock);
1240 1241
		if (__ratelimit(&_rs))
			scrub_print_warning("i/o error", sblock_to_check);
1242
		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
1243
	} else if (sblock_bad->checksum_error) {
1244 1245 1246
		spin_lock(&sctx->stat_lock);
		sctx->stat.csum_errors++;
		spin_unlock(&sctx->stat_lock);
1247 1248
		if (__ratelimit(&_rs))
			scrub_print_warning("checksum error", sblock_to_check);
1249
		btrfs_dev_stat_inc_and_print(dev,
1250
					     BTRFS_DEV_STAT_CORRUPTION_ERRS);
1251
	} else if (sblock_bad->header_error) {
1252 1253 1254
		spin_lock(&sctx->stat_lock);
		sctx->stat.verify_errors++;
		spin_unlock(&sctx->stat_lock);
1255 1256 1257
		if (__ratelimit(&_rs))
			scrub_print_warning("checksum/header error",
					    sblock_to_check);
1258
		if (sblock_bad->generation_error)
1259
			btrfs_dev_stat_inc_and_print(dev,
1260 1261
				BTRFS_DEV_STAT_GENERATION_ERRS);
		else
1262
			btrfs_dev_stat_inc_and_print(dev,
1263
				BTRFS_DEV_STAT_CORRUPTION_ERRS);
1264
	}
A
Arne Jansen 已提交
1265

1266 1267 1268 1269
	if (sctx->readonly) {
		ASSERT(!sctx->is_dev_replace);
		goto out;
	}
A
Arne Jansen 已提交
1270

1271 1272
	if (!is_metadata && !have_csum) {
		struct scrub_fixup_nodatasum *fixup_nodatasum;
A
Arne Jansen 已提交
1273

1274 1275
		WARN_ON(sctx->is_dev_replace);

1276 1277
nodatasum_case:

1278 1279
		/*
		 * !is_metadata and !have_csum, this means that the data
1280
		 * might not be COWed, that it might be modified
1281 1282 1283 1284 1285 1286 1287
		 * concurrently. The general strategy to work on the
		 * commit root does not help in the case when COW is not
		 * used.
		 */
		fixup_nodatasum = kzalloc(sizeof(*fixup_nodatasum), GFP_NOFS);
		if (!fixup_nodatasum)
			goto did_not_correct_error;
1288
		fixup_nodatasum->sctx = sctx;
1289
		fixup_nodatasum->dev = dev;
1290 1291 1292
		fixup_nodatasum->logical = logical;
		fixup_nodatasum->root = fs_info->extent_root;
		fixup_nodatasum->mirror_num = failed_mirror_index + 1;
1293
		scrub_pending_trans_workers_inc(sctx);
1294 1295
		btrfs_init_work(&fixup_nodatasum->work, btrfs_scrub_helper,
				scrub_fixup_nodatasum, NULL, NULL);
1296 1297
		btrfs_queue_work(fs_info->scrub_workers,
				 &fixup_nodatasum->work);
1298
		goto out;
A
Arne Jansen 已提交
1299 1300
	}

1301 1302
	/*
	 * now build and submit the bios for the other mirrors, check
1303 1304
	 * checksums.
	 * First try to pick the mirror which is completely without I/O
1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315
	 * errors and also does not have a checksum error.
	 * If one is found, and if a checksum is present, the full block
	 * that is known to contain an error is rewritten. Afterwards
	 * the block is known to be corrected.
	 * If a mirror is found which is completely correct, and no
	 * checksum is present, only those pages are rewritten that had
	 * an I/O error in the block to be repaired, since it cannot be
	 * determined, which copy of the other pages is better (and it
	 * could happen otherwise that a correct page would be
	 * overwritten by a bad one).
	 */
1316
	for (mirror_index = 0; ;mirror_index++) {
1317
		struct scrub_block *sblock_other;
1318

1319 1320
		if (mirror_index == failed_mirror_index)
			continue;
1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343

		/* raid56's mirror can be more than BTRFS_MAX_MIRRORS */
		if (!scrub_is_page_on_raid56(sblock_bad->pagev[0])) {
			if (mirror_index >= BTRFS_MAX_MIRRORS)
				break;
			if (!sblocks_for_recheck[mirror_index].page_count)
				break;

			sblock_other = sblocks_for_recheck + mirror_index;
		} else {
			struct scrub_recover *r = sblock_bad->pagev[0]->recover;
			int max_allowed = r->bbio->num_stripes -
						r->bbio->num_tgtdevs;

			if (mirror_index >= max_allowed)
				break;
			if (!sblocks_for_recheck[1].page_count)
				break;

			ASSERT(failed_mirror_index == 0);
			sblock_other = sblocks_for_recheck + 1;
			sblock_other->pagev[0]->mirror_num = 1 + mirror_index;
		}
1344 1345

		/* build and submit the bios, check checksums */
1346
		scrub_recheck_block(fs_info, sblock_other, 0);
1347 1348

		if (!sblock_other->header_error &&
1349 1350
		    !sblock_other->checksum_error &&
		    sblock_other->no_io_error_seen) {
1351 1352
			if (sctx->is_dev_replace) {
				scrub_write_block_to_dev_replace(sblock_other);
1353
				goto corrected_error;
1354 1355
			} else {
				ret = scrub_repair_block_from_good_copy(
1356 1357 1358
						sblock_bad, sblock_other);
				if (!ret)
					goto corrected_error;
1359
			}
1360 1361
		}
	}
A
Arne Jansen 已提交
1362

1363 1364
	if (sblock_bad->no_io_error_seen && !sctx->is_dev_replace)
		goto did_not_correct_error;
1365 1366 1367

	/*
	 * In case of I/O errors in the area that is supposed to be
1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379
	 * repaired, continue by picking good copies of those pages.
	 * Select the good pages from mirrors to rewrite bad pages from
	 * the area to fix. Afterwards verify the checksum of the block
	 * that is supposed to be repaired. This verification step is
	 * only done for the purpose of statistic counting and for the
	 * final scrub report, whether errors remain.
	 * A perfect algorithm could make use of the checksum and try
	 * all possible combinations of pages from the different mirrors
	 * until the checksum verification succeeds. For example, when
	 * the 2nd page of mirror #1 faces I/O errors, and the 2nd page
	 * of mirror #2 is readable but the final checksum test fails,
	 * then the 2nd page of mirror #3 could be tried, whether now
1380
	 * the final checksum succeeds. But this would be a rare
1381 1382 1383 1384 1385 1386 1387 1388
	 * exception and is therefore not implemented. At least it is
	 * avoided that the good copy is overwritten.
	 * A more useful improvement would be to pick the sectors
	 * without I/O error based on sector sizes (512 bytes on legacy
	 * disks) instead of on PAGE_SIZE. Then maybe 512 byte of one
	 * mirror could be repaired by taking 512 byte of a different
	 * mirror, even if other 512 byte sectors in the same PAGE_SIZE
	 * area are unreadable.
A
Arne Jansen 已提交
1389
	 */
1390
	success = 1;
1391 1392
	for (page_num = 0; page_num < sblock_bad->page_count;
	     page_num++) {
1393
		struct scrub_page *page_bad = sblock_bad->pagev[page_num];
1394
		struct scrub_block *sblock_other = NULL;
1395

1396 1397
		/* skip no-io-error page in scrub */
		if (!page_bad->io_error && !sctx->is_dev_replace)
A
Arne Jansen 已提交
1398
			continue;
1399

1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410
		if (scrub_is_page_on_raid56(sblock_bad->pagev[0])) {
			/*
			 * In case of dev replace, if raid56 rebuild process
			 * didn't work out correct data, then copy the content
			 * in sblock_bad to make sure target device is identical
			 * to source device, instead of writing garbage data in
			 * sblock_for_recheck array to target device.
			 */
			sblock_other = NULL;
		} else if (page_bad->io_error) {
			/* try to find no-io-error page in mirrors */
1411 1412 1413 1414 1415 1416 1417 1418 1419
			for (mirror_index = 0;
			     mirror_index < BTRFS_MAX_MIRRORS &&
			     sblocks_for_recheck[mirror_index].page_count > 0;
			     mirror_index++) {
				if (!sblocks_for_recheck[mirror_index].
				    pagev[page_num]->io_error) {
					sblock_other = sblocks_for_recheck +
						       mirror_index;
					break;
1420 1421
				}
			}
1422 1423
			if (!sblock_other)
				success = 0;
I
Ilya Dryomov 已提交
1424
		}
A
Arne Jansen 已提交
1425

1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439
		if (sctx->is_dev_replace) {
			/*
			 * did not find a mirror to fetch the page
			 * from. scrub_write_page_to_dev_replace()
			 * handles this case (page->io_error), by
			 * filling the block with zeros before
			 * submitting the write request
			 */
			if (!sblock_other)
				sblock_other = sblock_bad;

			if (scrub_write_page_to_dev_replace(sblock_other,
							    page_num) != 0) {
				btrfs_dev_replace_stats_inc(
1440
					&fs_info->dev_replace.num_write_errors);
1441 1442 1443 1444 1445 1446 1447 1448 1449 1450
				success = 0;
			}
		} else if (sblock_other) {
			ret = scrub_repair_page_from_good_copy(sblock_bad,
							       sblock_other,
							       page_num, 0);
			if (0 == ret)
				page_bad->io_error = 0;
			else
				success = 0;
1451
		}
A
Arne Jansen 已提交
1452 1453
	}

1454
	if (success && !sctx->is_dev_replace) {
1455 1456 1457 1458 1459 1460 1461 1462 1463 1464
		if (is_metadata || have_csum) {
			/*
			 * need to verify the checksum now that all
			 * sectors on disk are repaired (the write
			 * request for data to be repaired is on its way).
			 * Just be lazy and use scrub_recheck_block()
			 * which re-reads the data before the checksum
			 * is verified, but most likely the data comes out
			 * of the page cache.
			 */
1465
			scrub_recheck_block(fs_info, sblock_bad, 1);
1466
			if (!sblock_bad->header_error &&
1467 1468 1469 1470 1471 1472 1473
			    !sblock_bad->checksum_error &&
			    sblock_bad->no_io_error_seen)
				goto corrected_error;
			else
				goto did_not_correct_error;
		} else {
corrected_error:
1474 1475
			spin_lock(&sctx->stat_lock);
			sctx->stat.corrected_errors++;
1476
			sblock_to_check->data_corrected = 1;
1477
			spin_unlock(&sctx->stat_lock);
1478 1479
			btrfs_err_rl_in_rcu(fs_info,
				"fixed up error at logical %llu on dev %s",
1480
				logical, rcu_str_deref(dev->name));
A
Arne Jansen 已提交
1481
		}
1482 1483
	} else {
did_not_correct_error:
1484 1485 1486
		spin_lock(&sctx->stat_lock);
		sctx->stat.uncorrectable_errors++;
		spin_unlock(&sctx->stat_lock);
1487 1488
		btrfs_err_rl_in_rcu(fs_info,
			"unable to fixup (regular) error at logical %llu on dev %s",
1489
			logical, rcu_str_deref(dev->name));
I
Ilya Dryomov 已提交
1490
	}
A
Arne Jansen 已提交
1491

1492 1493 1494 1495 1496 1497
out:
	if (sblocks_for_recheck) {
		for (mirror_index = 0; mirror_index < BTRFS_MAX_MIRRORS;
		     mirror_index++) {
			struct scrub_block *sblock = sblocks_for_recheck +
						     mirror_index;
1498
			struct scrub_recover *recover;
1499 1500
			int page_index;

1501 1502 1503
			for (page_index = 0; page_index < sblock->page_count;
			     page_index++) {
				sblock->pagev[page_index]->sblock = NULL;
1504 1505
				recover = sblock->pagev[page_index]->recover;
				if (recover) {
1506
					scrub_put_recover(fs_info, recover);
1507 1508 1509
					sblock->pagev[page_index]->recover =
									NULL;
				}
1510 1511
				scrub_page_put(sblock->pagev[page_index]);
			}
1512 1513 1514
		}
		kfree(sblocks_for_recheck);
	}
A
Arne Jansen 已提交
1515

1516 1517 1518
	ret = unlock_full_stripe(fs_info, logical, full_stripe_locked);
	if (ret < 0)
		return ret;
1519 1520
	return 0;
}
A
Arne Jansen 已提交
1521

1522
static inline int scrub_nr_raid_mirrors(struct btrfs_bio *bbio)
1523
{
Z
Zhao Lei 已提交
1524 1525 1526 1527 1528
	if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID5)
		return 2;
	else if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID6)
		return 3;
	else
1529 1530 1531
		return (int)bbio->num_stripes;
}

Z
Zhao Lei 已提交
1532 1533
static inline void scrub_stripe_index_and_offset(u64 logical, u64 map_type,
						 u64 *raid_map,
1534 1535 1536 1537 1538 1539 1540
						 u64 mapped_length,
						 int nstripes, int mirror,
						 int *stripe_index,
						 u64 *stripe_offset)
{
	int i;

1541
	if (map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561
		/* RAID5/6 */
		for (i = 0; i < nstripes; i++) {
			if (raid_map[i] == RAID6_Q_STRIPE ||
			    raid_map[i] == RAID5_P_STRIPE)
				continue;

			if (logical >= raid_map[i] &&
			    logical < raid_map[i] + mapped_length)
				break;
		}

		*stripe_index = i;
		*stripe_offset = logical - raid_map[i];
	} else {
		/* The other RAID type */
		*stripe_index = mirror;
		*stripe_offset = 0;
	}
}

1562
static int scrub_setup_recheck_block(struct scrub_block *original_sblock,
1563 1564
				     struct scrub_block *sblocks_for_recheck)
{
1565
	struct scrub_ctx *sctx = original_sblock->sctx;
1566
	struct btrfs_fs_info *fs_info = sctx->fs_info;
1567 1568
	u64 length = original_sblock->page_count * PAGE_SIZE;
	u64 logical = original_sblock->pagev[0]->logical;
1569 1570 1571
	u64 generation = original_sblock->pagev[0]->generation;
	u64 flags = original_sblock->pagev[0]->flags;
	u64 have_csum = original_sblock->pagev[0]->have_csum;
1572 1573 1574 1575 1576 1577
	struct scrub_recover *recover;
	struct btrfs_bio *bbio;
	u64 sublen;
	u64 mapped_length;
	u64 stripe_offset;
	int stripe_index;
1578
	int page_index = 0;
1579
	int mirror_index;
1580
	int nmirrors;
1581 1582 1583
	int ret;

	/*
1584
	 * note: the two members refs and outstanding_pages
1585 1586 1587 1588 1589
	 * are not used (and not set) in the blocks that are used for
	 * the recheck procedure
	 */

	while (length > 0) {
1590 1591 1592
		sublen = min_t(u64, length, PAGE_SIZE);
		mapped_length = sublen;
		bbio = NULL;
A
Arne Jansen 已提交
1593

1594 1595 1596 1597
		/*
		 * with a length of PAGE_SIZE, each returned stripe
		 * represents one mirror
		 */
1598
		btrfs_bio_counter_inc_blocked(fs_info);
1599
		ret = btrfs_map_sblock(fs_info, BTRFS_MAP_GET_READ_MIRRORS,
1600
				logical, &mapped_length, &bbio);
1601
		if (ret || !bbio || mapped_length < sublen) {
1602
			btrfs_put_bbio(bbio);
1603
			btrfs_bio_counter_dec(fs_info);
1604 1605
			return -EIO;
		}
A
Arne Jansen 已提交
1606

1607 1608
		recover = kzalloc(sizeof(struct scrub_recover), GFP_NOFS);
		if (!recover) {
1609
			btrfs_put_bbio(bbio);
1610
			btrfs_bio_counter_dec(fs_info);
1611 1612 1613
			return -ENOMEM;
		}

1614
		refcount_set(&recover->refs, 1);
1615 1616 1617
		recover->bbio = bbio;
		recover->map_length = mapped_length;

1618
		BUG_ON(page_index >= SCRUB_MAX_PAGES_PER_BLOCK);
1619

1620
		nmirrors = min(scrub_nr_raid_mirrors(bbio), BTRFS_MAX_MIRRORS);
Z
Zhao Lei 已提交
1621

1622
		for (mirror_index = 0; mirror_index < nmirrors;
1623 1624 1625 1626 1627
		     mirror_index++) {
			struct scrub_block *sblock;
			struct scrub_page *page;

			sblock = sblocks_for_recheck + mirror_index;
1628
			sblock->sctx = sctx;
1629

1630 1631 1632
			page = kzalloc(sizeof(*page), GFP_NOFS);
			if (!page) {
leave_nomem:
1633 1634 1635
				spin_lock(&sctx->stat_lock);
				sctx->stat.malloc_errors++;
				spin_unlock(&sctx->stat_lock);
1636
				scrub_put_recover(fs_info, recover);
1637 1638
				return -ENOMEM;
			}
1639 1640
			scrub_page_get(page);
			sblock->pagev[page_index] = page;
1641 1642 1643
			page->sblock = sblock;
			page->flags = flags;
			page->generation = generation;
1644
			page->logical = logical;
1645 1646 1647 1648 1649
			page->have_csum = have_csum;
			if (have_csum)
				memcpy(page->csum,
				       original_sblock->pagev[0]->csum,
				       sctx->csum_size);
1650

Z
Zhao Lei 已提交
1651 1652 1653
			scrub_stripe_index_and_offset(logical,
						      bbio->map_type,
						      bbio->raid_map,
1654
						      mapped_length,
1655 1656
						      bbio->num_stripes -
						      bbio->num_tgtdevs,
1657 1658 1659 1660 1661 1662 1663
						      mirror_index,
						      &stripe_index,
						      &stripe_offset);
			page->physical = bbio->stripes[stripe_index].physical +
					 stripe_offset;
			page->dev = bbio->stripes[stripe_index].dev;

1664 1665 1666 1667
			BUG_ON(page_index >= original_sblock->page_count);
			page->physical_for_dev_replace =
				original_sblock->pagev[page_index]->
				physical_for_dev_replace;
1668 1669
			/* for missing devices, dev->bdev is NULL */
			page->mirror_num = mirror_index + 1;
1670
			sblock->page_count++;
1671 1672 1673
			page->page = alloc_page(GFP_NOFS);
			if (!page->page)
				goto leave_nomem;
1674 1675 1676

			scrub_get_recover(recover);
			page->recover = recover;
1677
		}
1678
		scrub_put_recover(fs_info, recover);
1679 1680 1681 1682 1683 1684
		length -= sublen;
		logical += sublen;
		page_index++;
	}

	return 0;
I
Ilya Dryomov 已提交
1685 1686
}

1687
static void scrub_bio_wait_endio(struct bio *bio)
1688
{
1689
	complete(bio->bi_private);
1690 1691 1692 1693 1694 1695
}

static int scrub_submit_raid56_bio_wait(struct btrfs_fs_info *fs_info,
					struct bio *bio,
					struct scrub_page *page)
{
1696
	DECLARE_COMPLETION_ONSTACK(done);
1697
	int ret;
1698
	int mirror_num;
1699 1700 1701 1702 1703

	bio->bi_iter.bi_sector = page->logical >> 9;
	bio->bi_private = &done;
	bio->bi_end_io = scrub_bio_wait_endio;

1704
	mirror_num = page->sblock->pagev[0]->mirror_num;
1705
	ret = raid56_parity_recover(fs_info, bio, page->recover->bbio,
1706
				    page->recover->map_length,
1707
				    mirror_num, 0);
1708 1709 1710
	if (ret)
		return ret;

1711 1712
	wait_for_completion_io(&done);
	return blk_status_to_errno(bio->bi_status);
1713 1714
}

L
Liu Bo 已提交
1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753
static void scrub_recheck_block_on_raid56(struct btrfs_fs_info *fs_info,
					  struct scrub_block *sblock)
{
	struct scrub_page *first_page = sblock->pagev[0];
	struct bio *bio;
	int page_num;

	/* All pages in sblock belong to the same stripe on the same device. */
	ASSERT(first_page->dev);
	if (!first_page->dev->bdev)
		goto out;

	bio = btrfs_io_bio_alloc(BIO_MAX_PAGES);
	bio_set_dev(bio, first_page->dev->bdev);

	for (page_num = 0; page_num < sblock->page_count; page_num++) {
		struct scrub_page *page = sblock->pagev[page_num];

		WARN_ON(!page->page);
		bio_add_page(bio, page->page, PAGE_SIZE, 0);
	}

	if (scrub_submit_raid56_bio_wait(fs_info, bio, first_page)) {
		bio_put(bio);
		goto out;
	}

	bio_put(bio);

	scrub_recheck_block_checksum(sblock);

	return;
out:
	for (page_num = 0; page_num < sblock->page_count; page_num++)
		sblock->pagev[page_num]->io_error = 1;

	sblock->no_io_error_seen = 0;
}

1754 1755 1756 1757 1758 1759 1760
/*
 * this function will check the on disk data for checksum errors, header
 * errors and read I/O errors. If any I/O errors happen, the exact pages
 * which are errored are marked as being bad. The goal is to enable scrub
 * to take those pages that are not errored from all the mirrors so that
 * the pages that are errored in the just handled mirror can be repaired.
 */
1761
static void scrub_recheck_block(struct btrfs_fs_info *fs_info,
1762 1763
				struct scrub_block *sblock,
				int retry_failed_mirror)
I
Ilya Dryomov 已提交
1764
{
1765
	int page_num;
I
Ilya Dryomov 已提交
1766

1767
	sblock->no_io_error_seen = 1;
I
Ilya Dryomov 已提交
1768

L
Liu Bo 已提交
1769 1770 1771 1772
	/* short cut for raid56 */
	if (!retry_failed_mirror && scrub_is_page_on_raid56(sblock->pagev[0]))
		return scrub_recheck_block_on_raid56(fs_info, sblock);

1773 1774
	for (page_num = 0; page_num < sblock->page_count; page_num++) {
		struct bio *bio;
1775
		struct scrub_page *page = sblock->pagev[page_num];
1776

1777
		if (page->dev->bdev == NULL) {
1778 1779 1780 1781 1782
			page->io_error = 1;
			sblock->no_io_error_seen = 0;
			continue;
		}

1783
		WARN_ON(!page->page);
1784
		bio = btrfs_io_bio_alloc(1);
1785
		bio_set_dev(bio, page->dev->bdev);
1786

1787
		bio_add_page(bio, page->page, PAGE_SIZE, 0);
L
Liu Bo 已提交
1788 1789
		bio->bi_iter.bi_sector = page->physical >> 9;
		bio->bi_opf = REQ_OP_READ;
1790

L
Liu Bo 已提交
1791 1792 1793
		if (btrfsic_submit_bio_wait(bio)) {
			page->io_error = 1;
			sblock->no_io_error_seen = 0;
1794
		}
1795

1796 1797
		bio_put(bio);
	}
I
Ilya Dryomov 已提交
1798

1799
	if (sblock->no_io_error_seen)
1800
		scrub_recheck_block_checksum(sblock);
A
Arne Jansen 已提交
1801 1802
}

M
Miao Xie 已提交
1803 1804 1805 1806 1807 1808
static inline int scrub_check_fsid(u8 fsid[],
				   struct scrub_page *spage)
{
	struct btrfs_fs_devices *fs_devices = spage->dev->fs_devices;
	int ret;

1809
	ret = memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
M
Miao Xie 已提交
1810 1811 1812
	return !ret;
}

1813
static void scrub_recheck_block_checksum(struct scrub_block *sblock)
A
Arne Jansen 已提交
1814
{
1815 1816 1817
	sblock->header_error = 0;
	sblock->checksum_error = 0;
	sblock->generation_error = 0;
1818

1819 1820 1821 1822
	if (sblock->pagev[0]->flags & BTRFS_EXTENT_FLAG_DATA)
		scrub_checksum_data(sblock);
	else
		scrub_checksum_tree_block(sblock);
A
Arne Jansen 已提交
1823 1824
}

1825
static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
1826
					     struct scrub_block *sblock_good)
1827 1828 1829
{
	int page_num;
	int ret = 0;
I
Ilya Dryomov 已提交
1830

1831 1832
	for (page_num = 0; page_num < sblock_bad->page_count; page_num++) {
		int ret_sub;
I
Ilya Dryomov 已提交
1833

1834 1835
		ret_sub = scrub_repair_page_from_good_copy(sblock_bad,
							   sblock_good,
1836
							   page_num, 1);
1837 1838
		if (ret_sub)
			ret = ret_sub;
A
Arne Jansen 已提交
1839
	}
1840 1841 1842 1843 1844 1845 1846 1847

	return ret;
}

static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad,
					    struct scrub_block *sblock_good,
					    int page_num, int force_write)
{
1848 1849
	struct scrub_page *page_bad = sblock_bad->pagev[page_num];
	struct scrub_page *page_good = sblock_good->pagev[page_num];
1850
	struct btrfs_fs_info *fs_info = sblock_bad->sctx->fs_info;
1851

1852 1853
	BUG_ON(page_bad->page == NULL);
	BUG_ON(page_good->page == NULL);
1854 1855 1856 1857 1858
	if (force_write || sblock_bad->header_error ||
	    sblock_bad->checksum_error || page_bad->io_error) {
		struct bio *bio;
		int ret;

1859
		if (!page_bad->dev->bdev) {
1860
			btrfs_warn_rl(fs_info,
J
Jeff Mahoney 已提交
1861
				"scrub_repair_page_from_good_copy(bdev == NULL) is unexpected");
1862 1863 1864
			return -EIO;
		}

1865
		bio = btrfs_io_bio_alloc(1);
1866
		bio_set_dev(bio, page_bad->dev->bdev);
1867
		bio->bi_iter.bi_sector = page_bad->physical >> 9;
M
Mike Christie 已提交
1868
		bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
1869 1870 1871 1872 1873

		ret = bio_add_page(bio, page_good->page, PAGE_SIZE, 0);
		if (PAGE_SIZE != ret) {
			bio_put(bio);
			return -EIO;
1874
		}
1875

1876
		if (btrfsic_submit_bio_wait(bio)) {
1877 1878
			btrfs_dev_stat_inc_and_print(page_bad->dev,
				BTRFS_DEV_STAT_WRITE_ERRS);
1879
			btrfs_dev_replace_stats_inc(
1880
				&fs_info->dev_replace.num_write_errors);
1881 1882 1883
			bio_put(bio);
			return -EIO;
		}
1884
		bio_put(bio);
A
Arne Jansen 已提交
1885 1886
	}

1887 1888 1889
	return 0;
}

1890 1891
static void scrub_write_block_to_dev_replace(struct scrub_block *sblock)
{
1892
	struct btrfs_fs_info *fs_info = sblock->sctx->fs_info;
1893 1894
	int page_num;

1895 1896 1897 1898 1899 1900 1901
	/*
	 * This block is used for the check of the parity on the source device,
	 * so the data needn't be written into the destination device.
	 */
	if (sblock->sparity)
		return;

1902 1903 1904 1905 1906 1907
	for (page_num = 0; page_num < sblock->page_count; page_num++) {
		int ret;

		ret = scrub_write_page_to_dev_replace(sblock, page_num);
		if (ret)
			btrfs_dev_replace_stats_inc(
1908
				&fs_info->dev_replace.num_write_errors);
1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920
	}
}

static int scrub_write_page_to_dev_replace(struct scrub_block *sblock,
					   int page_num)
{
	struct scrub_page *spage = sblock->pagev[page_num];

	BUG_ON(spage->page == NULL);
	if (spage->io_error) {
		void *mapped_buffer = kmap_atomic(spage->page);

1921
		clear_page(mapped_buffer);
1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933
		flush_dcache_page(spage->page);
		kunmap_atomic(mapped_buffer);
	}
	return scrub_add_page_to_wr_bio(sblock->sctx, spage);
}

static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx,
				    struct scrub_page *spage)
{
	struct scrub_bio *sbio;
	int ret;

1934
	mutex_lock(&sctx->wr_lock);
1935
again:
1936 1937
	if (!sctx->wr_curr_bio) {
		sctx->wr_curr_bio = kzalloc(sizeof(*sctx->wr_curr_bio),
1938
					      GFP_KERNEL);
1939 1940
		if (!sctx->wr_curr_bio) {
			mutex_unlock(&sctx->wr_lock);
1941 1942
			return -ENOMEM;
		}
1943 1944
		sctx->wr_curr_bio->sctx = sctx;
		sctx->wr_curr_bio->page_count = 0;
1945
	}
1946
	sbio = sctx->wr_curr_bio;
1947 1948 1949 1950 1951
	if (sbio->page_count == 0) {
		struct bio *bio;

		sbio->physical = spage->physical_for_dev_replace;
		sbio->logical = spage->logical;
1952
		sbio->dev = sctx->wr_tgtdev;
1953 1954
		bio = sbio->bio;
		if (!bio) {
1955
			bio = btrfs_io_bio_alloc(sctx->pages_per_wr_bio);
1956 1957 1958 1959 1960
			sbio->bio = bio;
		}

		bio->bi_private = sbio;
		bio->bi_end_io = scrub_wr_bio_end_io;
1961
		bio_set_dev(bio, sbio->dev->bdev);
1962
		bio->bi_iter.bi_sector = sbio->physical >> 9;
M
Mike Christie 已提交
1963
		bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
1964
		sbio->status = 0;
1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977
	} else if (sbio->physical + sbio->page_count * PAGE_SIZE !=
		   spage->physical_for_dev_replace ||
		   sbio->logical + sbio->page_count * PAGE_SIZE !=
		   spage->logical) {
		scrub_wr_submit(sctx);
		goto again;
	}

	ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0);
	if (ret != PAGE_SIZE) {
		if (sbio->page_count < 1) {
			bio_put(sbio->bio);
			sbio->bio = NULL;
1978
			mutex_unlock(&sctx->wr_lock);
1979 1980 1981 1982 1983 1984 1985 1986 1987
			return -EIO;
		}
		scrub_wr_submit(sctx);
		goto again;
	}

	sbio->pagev[sbio->page_count] = spage;
	scrub_page_get(spage);
	sbio->page_count++;
1988
	if (sbio->page_count == sctx->pages_per_wr_bio)
1989
		scrub_wr_submit(sctx);
1990
	mutex_unlock(&sctx->wr_lock);
1991 1992 1993 1994 1995 1996 1997 1998

	return 0;
}

static void scrub_wr_submit(struct scrub_ctx *sctx)
{
	struct scrub_bio *sbio;

1999
	if (!sctx->wr_curr_bio)
2000 2001
		return;

2002 2003
	sbio = sctx->wr_curr_bio;
	sctx->wr_curr_bio = NULL;
2004
	WARN_ON(!sbio->bio->bi_disk);
2005 2006 2007 2008 2009
	scrub_pending_bio_inc(sctx);
	/* process all writes in a single worker thread. Then the block layer
	 * orders the requests before sending them to the driver which
	 * doubled the write performance on spinning disks when measured
	 * with Linux 3.5 */
2010
	btrfsic_submit_bio(sbio->bio);
2011 2012
}

2013
static void scrub_wr_bio_end_io(struct bio *bio)
2014 2015
{
	struct scrub_bio *sbio = bio->bi_private;
2016
	struct btrfs_fs_info *fs_info = sbio->dev->fs_info;
2017

2018
	sbio->status = bio->bi_status;
2019 2020
	sbio->bio = bio;

2021 2022
	btrfs_init_work(&sbio->work, btrfs_scrubwrc_helper,
			 scrub_wr_bio_end_io_worker, NULL, NULL);
2023
	btrfs_queue_work(fs_info->scrub_wr_completion_workers, &sbio->work);
2024 2025 2026 2027 2028 2029 2030 2031 2032
}

static void scrub_wr_bio_end_io_worker(struct btrfs_work *work)
{
	struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
	struct scrub_ctx *sctx = sbio->sctx;
	int i;

	WARN_ON(sbio->page_count > SCRUB_PAGES_PER_WR_BIO);
2033
	if (sbio->status) {
2034
		struct btrfs_dev_replace *dev_replace =
2035
			&sbio->sctx->fs_info->dev_replace;
2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054

		for (i = 0; i < sbio->page_count; i++) {
			struct scrub_page *spage = sbio->pagev[i];

			spage->io_error = 1;
			btrfs_dev_replace_stats_inc(&dev_replace->
						    num_write_errors);
		}
	}

	for (i = 0; i < sbio->page_count; i++)
		scrub_page_put(sbio->pagev[i]);

	bio_put(sbio->bio);
	kfree(sbio);
	scrub_pending_bio_dec(sctx);
}

static int scrub_checksum(struct scrub_block *sblock)
2055 2056 2057 2058
{
	u64 flags;
	int ret;

2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070
	/*
	 * No need to initialize these stats currently,
	 * because this function only use return value
	 * instead of these stats value.
	 *
	 * Todo:
	 * always use stats
	 */
	sblock->header_error = 0;
	sblock->generation_error = 0;
	sblock->checksum_error = 0;

2071 2072
	WARN_ON(sblock->page_count < 1);
	flags = sblock->pagev[0]->flags;
2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083
	ret = 0;
	if (flags & BTRFS_EXTENT_FLAG_DATA)
		ret = scrub_checksum_data(sblock);
	else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
		ret = scrub_checksum_tree_block(sblock);
	else if (flags & BTRFS_EXTENT_FLAG_SUPER)
		(void)scrub_checksum_super(sblock);
	else
		WARN_ON(1);
	if (ret)
		scrub_handle_errored_block(sblock);
2084 2085

	return ret;
A
Arne Jansen 已提交
2086 2087
}

2088
static int scrub_checksum_data(struct scrub_block *sblock)
A
Arne Jansen 已提交
2089
{
2090
	struct scrub_ctx *sctx = sblock->sctx;
A
Arne Jansen 已提交
2091
	u8 csum[BTRFS_CSUM_SIZE];
2092 2093 2094
	u8 *on_disk_csum;
	struct page *page;
	void *buffer;
A
Arne Jansen 已提交
2095
	u32 crc = ~(u32)0;
2096 2097
	u64 len;
	int index;
A
Arne Jansen 已提交
2098

2099
	BUG_ON(sblock->page_count < 1);
2100
	if (!sblock->pagev[0]->have_csum)
A
Arne Jansen 已提交
2101 2102
		return 0;

2103 2104
	on_disk_csum = sblock->pagev[0]->csum;
	page = sblock->pagev[0]->page;
2105
	buffer = kmap_atomic(page);
2106

2107
	len = sctx->fs_info->sectorsize;
2108 2109 2110 2111
	index = 0;
	for (;;) {
		u64 l = min_t(u64, len, PAGE_SIZE);

2112
		crc = btrfs_csum_data(buffer, crc, l);
2113
		kunmap_atomic(buffer);
2114 2115 2116 2117 2118
		len -= l;
		if (len == 0)
			break;
		index++;
		BUG_ON(index >= sblock->page_count);
2119 2120
		BUG_ON(!sblock->pagev[index]->page);
		page = sblock->pagev[index]->page;
2121
		buffer = kmap_atomic(page);
2122 2123
	}

A
Arne Jansen 已提交
2124
	btrfs_csum_final(crc, csum);
2125
	if (memcmp(csum, on_disk_csum, sctx->csum_size))
2126
		sblock->checksum_error = 1;
A
Arne Jansen 已提交
2127

2128
	return sblock->checksum_error;
A
Arne Jansen 已提交
2129 2130
}

2131
static int scrub_checksum_tree_block(struct scrub_block *sblock)
A
Arne Jansen 已提交
2132
{
2133
	struct scrub_ctx *sctx = sblock->sctx;
A
Arne Jansen 已提交
2134
	struct btrfs_header *h;
2135
	struct btrfs_fs_info *fs_info = sctx->fs_info;
2136 2137 2138 2139 2140 2141
	u8 calculated_csum[BTRFS_CSUM_SIZE];
	u8 on_disk_csum[BTRFS_CSUM_SIZE];
	struct page *page;
	void *mapped_buffer;
	u64 mapped_size;
	void *p;
A
Arne Jansen 已提交
2142
	u32 crc = ~(u32)0;
2143 2144 2145 2146
	u64 len;
	int index;

	BUG_ON(sblock->page_count < 1);
2147
	page = sblock->pagev[0]->page;
2148
	mapped_buffer = kmap_atomic(page);
2149
	h = (struct btrfs_header *)mapped_buffer;
2150
	memcpy(on_disk_csum, h->csum, sctx->csum_size);
A
Arne Jansen 已提交
2151 2152 2153 2154 2155 2156

	/*
	 * we don't use the getter functions here, as we
	 * a) don't have an extent buffer and
	 * b) the page is already kmapped
	 */
2157
	if (sblock->pagev[0]->logical != btrfs_stack_header_bytenr(h))
2158
		sblock->header_error = 1;
A
Arne Jansen 已提交
2159

2160 2161 2162 2163
	if (sblock->pagev[0]->generation != btrfs_stack_header_generation(h)) {
		sblock->header_error = 1;
		sblock->generation_error = 1;
	}
A
Arne Jansen 已提交
2164

M
Miao Xie 已提交
2165
	if (!scrub_check_fsid(h->fsid, sblock->pagev[0]))
2166
		sblock->header_error = 1;
A
Arne Jansen 已提交
2167 2168 2169

	if (memcmp(h->chunk_tree_uuid, fs_info->chunk_tree_uuid,
		   BTRFS_UUID_SIZE))
2170
		sblock->header_error = 1;
A
Arne Jansen 已提交
2171

2172
	len = sctx->fs_info->nodesize - BTRFS_CSUM_SIZE;
2173 2174 2175 2176 2177 2178
	mapped_size = PAGE_SIZE - BTRFS_CSUM_SIZE;
	p = ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE;
	index = 0;
	for (;;) {
		u64 l = min_t(u64, len, mapped_size);

2179
		crc = btrfs_csum_data(p, crc, l);
2180
		kunmap_atomic(mapped_buffer);
2181 2182 2183 2184 2185
		len -= l;
		if (len == 0)
			break;
		index++;
		BUG_ON(index >= sblock->page_count);
2186 2187
		BUG_ON(!sblock->pagev[index]->page);
		page = sblock->pagev[index]->page;
2188
		mapped_buffer = kmap_atomic(page);
2189 2190 2191 2192 2193
		mapped_size = PAGE_SIZE;
		p = mapped_buffer;
	}

	btrfs_csum_final(crc, calculated_csum);
2194
	if (memcmp(calculated_csum, on_disk_csum, sctx->csum_size))
2195
		sblock->checksum_error = 1;
A
Arne Jansen 已提交
2196

2197
	return sblock->header_error || sblock->checksum_error;
A
Arne Jansen 已提交
2198 2199
}

2200
static int scrub_checksum_super(struct scrub_block *sblock)
A
Arne Jansen 已提交
2201 2202
{
	struct btrfs_super_block *s;
2203
	struct scrub_ctx *sctx = sblock->sctx;
2204 2205 2206 2207 2208 2209
	u8 calculated_csum[BTRFS_CSUM_SIZE];
	u8 on_disk_csum[BTRFS_CSUM_SIZE];
	struct page *page;
	void *mapped_buffer;
	u64 mapped_size;
	void *p;
A
Arne Jansen 已提交
2210
	u32 crc = ~(u32)0;
2211 2212
	int fail_gen = 0;
	int fail_cor = 0;
2213 2214
	u64 len;
	int index;
A
Arne Jansen 已提交
2215

2216
	BUG_ON(sblock->page_count < 1);
2217
	page = sblock->pagev[0]->page;
2218
	mapped_buffer = kmap_atomic(page);
2219
	s = (struct btrfs_super_block *)mapped_buffer;
2220
	memcpy(on_disk_csum, s->csum, sctx->csum_size);
A
Arne Jansen 已提交
2221

2222
	if (sblock->pagev[0]->logical != btrfs_super_bytenr(s))
2223
		++fail_cor;
A
Arne Jansen 已提交
2224

2225
	if (sblock->pagev[0]->generation != btrfs_super_generation(s))
2226
		++fail_gen;
A
Arne Jansen 已提交
2227

M
Miao Xie 已提交
2228
	if (!scrub_check_fsid(s->fsid, sblock->pagev[0]))
2229
		++fail_cor;
A
Arne Jansen 已提交
2230

2231 2232 2233 2234 2235 2236 2237
	len = BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE;
	mapped_size = PAGE_SIZE - BTRFS_CSUM_SIZE;
	p = ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE;
	index = 0;
	for (;;) {
		u64 l = min_t(u64, len, mapped_size);

2238
		crc = btrfs_csum_data(p, crc, l);
2239
		kunmap_atomic(mapped_buffer);
2240 2241 2242 2243 2244
		len -= l;
		if (len == 0)
			break;
		index++;
		BUG_ON(index >= sblock->page_count);
2245 2246
		BUG_ON(!sblock->pagev[index]->page);
		page = sblock->pagev[index]->page;
2247
		mapped_buffer = kmap_atomic(page);
2248 2249 2250 2251 2252
		mapped_size = PAGE_SIZE;
		p = mapped_buffer;
	}

	btrfs_csum_final(crc, calculated_csum);
2253
	if (memcmp(calculated_csum, on_disk_csum, sctx->csum_size))
2254
		++fail_cor;
A
Arne Jansen 已提交
2255

2256
	if (fail_cor + fail_gen) {
A
Arne Jansen 已提交
2257 2258 2259 2260 2261
		/*
		 * if we find an error in a super block, we just report it.
		 * They will get written with the next transaction commit
		 * anyway
		 */
2262 2263 2264
		spin_lock(&sctx->stat_lock);
		++sctx->stat.super_errors;
		spin_unlock(&sctx->stat_lock);
2265
		if (fail_cor)
2266
			btrfs_dev_stat_inc_and_print(sblock->pagev[0]->dev,
2267 2268
				BTRFS_DEV_STAT_CORRUPTION_ERRS);
		else
2269
			btrfs_dev_stat_inc_and_print(sblock->pagev[0]->dev,
2270
				BTRFS_DEV_STAT_GENERATION_ERRS);
A
Arne Jansen 已提交
2271 2272
	}

2273
	return fail_cor + fail_gen;
A
Arne Jansen 已提交
2274 2275
}

2276 2277
static void scrub_block_get(struct scrub_block *sblock)
{
2278
	refcount_inc(&sblock->refs);
2279 2280 2281 2282
}

static void scrub_block_put(struct scrub_block *sblock)
{
2283
	if (refcount_dec_and_test(&sblock->refs)) {
2284 2285
		int i;

2286 2287 2288
		if (sblock->sparity)
			scrub_parity_put(sblock->sparity);

2289
		for (i = 0; i < sblock->page_count; i++)
2290
			scrub_page_put(sblock->pagev[i]);
2291 2292 2293 2294
		kfree(sblock);
	}
}

2295 2296
static void scrub_page_get(struct scrub_page *spage)
{
2297
	atomic_inc(&spage->refs);
2298 2299 2300 2301
}

static void scrub_page_put(struct scrub_page *spage)
{
2302
	if (atomic_dec_and_test(&spage->refs)) {
2303 2304 2305 2306 2307 2308
		if (spage->page)
			__free_page(spage->page);
		kfree(spage);
	}
}

2309
static void scrub_submit(struct scrub_ctx *sctx)
A
Arne Jansen 已提交
2310 2311 2312
{
	struct scrub_bio *sbio;

2313
	if (sctx->curr == -1)
S
Stefan Behrens 已提交
2314
		return;
A
Arne Jansen 已提交
2315

2316 2317
	sbio = sctx->bios[sctx->curr];
	sctx->curr = -1;
2318
	scrub_pending_bio_inc(sctx);
2319
	btrfsic_submit_bio(sbio->bio);
A
Arne Jansen 已提交
2320 2321
}

2322 2323
static int scrub_add_page_to_rd_bio(struct scrub_ctx *sctx,
				    struct scrub_page *spage)
A
Arne Jansen 已提交
2324
{
2325
	struct scrub_block *sblock = spage->sblock;
A
Arne Jansen 已提交
2326
	struct scrub_bio *sbio;
2327
	int ret;
A
Arne Jansen 已提交
2328 2329 2330 2331 2332

again:
	/*
	 * grab a fresh bio or wait for one to become available
	 */
2333 2334 2335 2336 2337 2338 2339 2340
	while (sctx->curr == -1) {
		spin_lock(&sctx->list_lock);
		sctx->curr = sctx->first_free;
		if (sctx->curr != -1) {
			sctx->first_free = sctx->bios[sctx->curr]->next_free;
			sctx->bios[sctx->curr]->next_free = -1;
			sctx->bios[sctx->curr]->page_count = 0;
			spin_unlock(&sctx->list_lock);
A
Arne Jansen 已提交
2341
		} else {
2342 2343
			spin_unlock(&sctx->list_lock);
			wait_event(sctx->list_wait, sctx->first_free != -1);
A
Arne Jansen 已提交
2344 2345
		}
	}
2346
	sbio = sctx->bios[sctx->curr];
2347
	if (sbio->page_count == 0) {
2348 2349
		struct bio *bio;

2350 2351
		sbio->physical = spage->physical;
		sbio->logical = spage->logical;
2352
		sbio->dev = spage->dev;
2353 2354
		bio = sbio->bio;
		if (!bio) {
2355
			bio = btrfs_io_bio_alloc(sctx->pages_per_rd_bio);
2356 2357
			sbio->bio = bio;
		}
2358 2359 2360

		bio->bi_private = sbio;
		bio->bi_end_io = scrub_bio_end_io;
2361
		bio_set_dev(bio, sbio->dev->bdev);
2362
		bio->bi_iter.bi_sector = sbio->physical >> 9;
M
Mike Christie 已提交
2363
		bio_set_op_attrs(bio, REQ_OP_READ, 0);
2364
		sbio->status = 0;
2365 2366 2367
	} else if (sbio->physical + sbio->page_count * PAGE_SIZE !=
		   spage->physical ||
		   sbio->logical + sbio->page_count * PAGE_SIZE !=
2368 2369
		   spage->logical ||
		   sbio->dev != spage->dev) {
2370
		scrub_submit(sctx);
A
Arne Jansen 已提交
2371 2372
		goto again;
	}
2373

2374 2375 2376 2377 2378 2379 2380 2381
	sbio->pagev[sbio->page_count] = spage;
	ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0);
	if (ret != PAGE_SIZE) {
		if (sbio->page_count < 1) {
			bio_put(sbio->bio);
			sbio->bio = NULL;
			return -EIO;
		}
2382
		scrub_submit(sctx);
2383 2384 2385
		goto again;
	}

2386
	scrub_block_get(sblock); /* one for the page added to the bio */
2387 2388
	atomic_inc(&sblock->outstanding_pages);
	sbio->page_count++;
2389
	if (sbio->page_count == sctx->pages_per_rd_bio)
2390
		scrub_submit(sctx);
2391 2392 2393 2394

	return 0;
}

2395
static void scrub_missing_raid56_end_io(struct bio *bio)
2396 2397
{
	struct scrub_block *sblock = bio->bi_private;
2398
	struct btrfs_fs_info *fs_info = sblock->sctx->fs_info;
2399

2400
	if (bio->bi_status)
2401 2402
		sblock->no_io_error_seen = 0;

2403 2404
	bio_put(bio);

2405 2406 2407 2408 2409 2410 2411
	btrfs_queue_work(fs_info->scrub_workers, &sblock->work);
}

static void scrub_missing_raid56_worker(struct btrfs_work *work)
{
	struct scrub_block *sblock = container_of(work, struct scrub_block, work);
	struct scrub_ctx *sctx = sblock->sctx;
2412
	struct btrfs_fs_info *fs_info = sctx->fs_info;
2413 2414 2415 2416 2417 2418
	u64 logical;
	struct btrfs_device *dev;

	logical = sblock->pagev[0]->logical;
	dev = sblock->pagev[0]->dev;

2419
	if (sblock->no_io_error_seen)
2420
		scrub_recheck_block_checksum(sblock);
2421 2422 2423 2424 2425

	if (!sblock->no_io_error_seen) {
		spin_lock(&sctx->stat_lock);
		sctx->stat.read_errors++;
		spin_unlock(&sctx->stat_lock);
2426
		btrfs_err_rl_in_rcu(fs_info,
2427
			"IO error rebuilding logical %llu for dev %s",
2428 2429 2430 2431 2432
			logical, rcu_str_deref(dev->name));
	} else if (sblock->header_error || sblock->checksum_error) {
		spin_lock(&sctx->stat_lock);
		sctx->stat.uncorrectable_errors++;
		spin_unlock(&sctx->stat_lock);
2433
		btrfs_err_rl_in_rcu(fs_info,
2434
			"failed to rebuild valid logical %llu for dev %s",
2435 2436 2437 2438 2439 2440 2441
			logical, rcu_str_deref(dev->name));
	} else {
		scrub_write_block_to_dev_replace(sblock);
	}

	scrub_block_put(sblock);

2442
	if (sctx->is_dev_replace && sctx->flush_all_writes) {
2443
		mutex_lock(&sctx->wr_lock);
2444
		scrub_wr_submit(sctx);
2445
		mutex_unlock(&sctx->wr_lock);
2446 2447 2448 2449 2450 2451 2452 2453
	}

	scrub_pending_bio_dec(sctx);
}

static void scrub_missing_raid56_pages(struct scrub_block *sblock)
{
	struct scrub_ctx *sctx = sblock->sctx;
2454
	struct btrfs_fs_info *fs_info = sctx->fs_info;
2455 2456
	u64 length = sblock->page_count * PAGE_SIZE;
	u64 logical = sblock->pagev[0]->logical;
2457
	struct btrfs_bio *bbio = NULL;
2458 2459 2460 2461 2462
	struct bio *bio;
	struct btrfs_raid_bio *rbio;
	int ret;
	int i;

2463
	btrfs_bio_counter_inc_blocked(fs_info);
2464
	ret = btrfs_map_sblock(fs_info, BTRFS_MAP_GET_READ_MIRRORS, logical,
2465
			&length, &bbio);
2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479
	if (ret || !bbio || !bbio->raid_map)
		goto bbio_out;

	if (WARN_ON(!sctx->is_dev_replace ||
		    !(bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK))) {
		/*
		 * We shouldn't be scrubbing a missing device. Even for dev
		 * replace, we should only get here for RAID 5/6. We either
		 * managed to mount something with no mirrors remaining or
		 * there's a bug in scrub_remap_extent()/btrfs_map_block().
		 */
		goto bbio_out;
	}

2480
	bio = btrfs_io_bio_alloc(0);
2481 2482 2483 2484
	bio->bi_iter.bi_sector = logical >> 9;
	bio->bi_private = sblock;
	bio->bi_end_io = scrub_missing_raid56_end_io;

2485
	rbio = raid56_alloc_missing_rbio(fs_info, bio, bbio, length);
2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504
	if (!rbio)
		goto rbio_out;

	for (i = 0; i < sblock->page_count; i++) {
		struct scrub_page *spage = sblock->pagev[i];

		raid56_add_scrub_pages(rbio, spage->page, spage->logical);
	}

	btrfs_init_work(&sblock->work, btrfs_scrub_helper,
			scrub_missing_raid56_worker, NULL, NULL);
	scrub_block_get(sblock);
	scrub_pending_bio_inc(sctx);
	raid56_submit_missing_rbio(rbio);
	return;

rbio_out:
	bio_put(bio);
bbio_out:
2505
	btrfs_bio_counter_dec(fs_info);
2506 2507 2508 2509 2510 2511
	btrfs_put_bbio(bbio);
	spin_lock(&sctx->stat_lock);
	sctx->stat.malloc_errors++;
	spin_unlock(&sctx->stat_lock);
}

2512
static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
2513
		       u64 physical, struct btrfs_device *dev, u64 flags,
2514 2515
		       u64 gen, int mirror_num, u8 *csum, int force,
		       u64 physical_for_dev_replace)
2516 2517 2518 2519
{
	struct scrub_block *sblock;
	int index;

2520
	sblock = kzalloc(sizeof(*sblock), GFP_KERNEL);
2521
	if (!sblock) {
2522 2523 2524
		spin_lock(&sctx->stat_lock);
		sctx->stat.malloc_errors++;
		spin_unlock(&sctx->stat_lock);
2525
		return -ENOMEM;
A
Arne Jansen 已提交
2526
	}
2527

2528 2529
	/* one ref inside this function, plus one for each page added to
	 * a bio later on */
2530
	refcount_set(&sblock->refs, 1);
2531
	sblock->sctx = sctx;
2532 2533 2534
	sblock->no_io_error_seen = 1;

	for (index = 0; len > 0; index++) {
2535
		struct scrub_page *spage;
2536 2537
		u64 l = min_t(u64, len, PAGE_SIZE);

2538
		spage = kzalloc(sizeof(*spage), GFP_KERNEL);
2539 2540
		if (!spage) {
leave_nomem:
2541 2542 2543
			spin_lock(&sctx->stat_lock);
			sctx->stat.malloc_errors++;
			spin_unlock(&sctx->stat_lock);
2544
			scrub_block_put(sblock);
2545 2546
			return -ENOMEM;
		}
2547 2548 2549
		BUG_ON(index >= SCRUB_MAX_PAGES_PER_BLOCK);
		scrub_page_get(spage);
		sblock->pagev[index] = spage;
2550
		spage->sblock = sblock;
2551
		spage->dev = dev;
2552 2553 2554 2555
		spage->flags = flags;
		spage->generation = gen;
		spage->logical = logical;
		spage->physical = physical;
2556
		spage->physical_for_dev_replace = physical_for_dev_replace;
2557 2558 2559
		spage->mirror_num = mirror_num;
		if (csum) {
			spage->have_csum = 1;
2560
			memcpy(spage->csum, csum, sctx->csum_size);
2561 2562 2563 2564
		} else {
			spage->have_csum = 0;
		}
		sblock->page_count++;
2565
		spage->page = alloc_page(GFP_KERNEL);
2566 2567
		if (!spage->page)
			goto leave_nomem;
2568 2569 2570
		len -= l;
		logical += l;
		physical += l;
2571
		physical_for_dev_replace += l;
2572 2573
	}

2574
	WARN_ON(sblock->page_count == 0);
2575
	if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) {
2576 2577 2578 2579 2580 2581 2582 2583 2584
		/*
		 * This case should only be hit for RAID 5/6 device replace. See
		 * the comment in scrub_missing_raid56_pages() for details.
		 */
		scrub_missing_raid56_pages(sblock);
	} else {
		for (index = 0; index < sblock->page_count; index++) {
			struct scrub_page *spage = sblock->pagev[index];
			int ret;
2585

2586 2587 2588 2589 2590
			ret = scrub_add_page_to_rd_bio(sctx, spage);
			if (ret) {
				scrub_block_put(sblock);
				return ret;
			}
2591
		}
A
Arne Jansen 已提交
2592

2593 2594 2595
		if (force)
			scrub_submit(sctx);
	}
A
Arne Jansen 已提交
2596

2597 2598
	/* last one frees, either here or in bio completion for last page */
	scrub_block_put(sblock);
A
Arne Jansen 已提交
2599 2600 2601
	return 0;
}

2602
static void scrub_bio_end_io(struct bio *bio)
2603 2604
{
	struct scrub_bio *sbio = bio->bi_private;
2605
	struct btrfs_fs_info *fs_info = sbio->dev->fs_info;
2606

2607
	sbio->status = bio->bi_status;
2608 2609
	sbio->bio = bio;

2610
	btrfs_queue_work(fs_info->scrub_workers, &sbio->work);
2611 2612 2613 2614 2615
}

static void scrub_bio_end_io_worker(struct btrfs_work *work)
{
	struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
2616
	struct scrub_ctx *sctx = sbio->sctx;
2617 2618
	int i;

2619
	BUG_ON(sbio->page_count > SCRUB_PAGES_PER_RD_BIO);
2620
	if (sbio->status) {
2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640
		for (i = 0; i < sbio->page_count; i++) {
			struct scrub_page *spage = sbio->pagev[i];

			spage->io_error = 1;
			spage->sblock->no_io_error_seen = 0;
		}
	}

	/* now complete the scrub_block items that have all pages completed */
	for (i = 0; i < sbio->page_count; i++) {
		struct scrub_page *spage = sbio->pagev[i];
		struct scrub_block *sblock = spage->sblock;

		if (atomic_dec_and_test(&sblock->outstanding_pages))
			scrub_block_complete(sblock);
		scrub_block_put(sblock);
	}

	bio_put(sbio->bio);
	sbio->bio = NULL;
2641 2642 2643 2644
	spin_lock(&sctx->list_lock);
	sbio->next_free = sctx->first_free;
	sctx->first_free = sbio->index;
	spin_unlock(&sctx->list_lock);
2645

2646
	if (sctx->is_dev_replace && sctx->flush_all_writes) {
2647
		mutex_lock(&sctx->wr_lock);
2648
		scrub_wr_submit(sctx);
2649
		mutex_unlock(&sctx->wr_lock);
2650 2651
	}

2652
	scrub_pending_bio_dec(sctx);
2653 2654
}

2655 2656 2657 2658
static inline void __scrub_mark_bitmap(struct scrub_parity *sparity,
				       unsigned long *bitmap,
				       u64 start, u64 len)
{
2659
	u64 offset;
2660 2661
	u64 nsectors64;
	u32 nsectors;
2662
	int sectorsize = sparity->sctx->fs_info->sectorsize;
2663 2664 2665 2666 2667 2668 2669

	if (len >= sparity->stripe_len) {
		bitmap_set(bitmap, 0, sparity->nsectors);
		return;
	}

	start -= sparity->logic_start;
2670 2671
	start = div64_u64_rem(start, sparity->stripe_len, &offset);
	offset = div_u64(offset, sectorsize);
2672 2673 2674 2675
	nsectors64 = div_u64(len, sectorsize);

	ASSERT(nsectors64 < UINT_MAX);
	nsectors = (u32)nsectors64;
2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697

	if (offset + nsectors <= sparity->nsectors) {
		bitmap_set(bitmap, offset, nsectors);
		return;
	}

	bitmap_set(bitmap, offset, sparity->nsectors - offset);
	bitmap_set(bitmap, 0, nsectors - (sparity->nsectors - offset));
}

static inline void scrub_parity_mark_sectors_error(struct scrub_parity *sparity,
						   u64 start, u64 len)
{
	__scrub_mark_bitmap(sparity, sparity->ebitmap, start, len);
}

static inline void scrub_parity_mark_sectors_data(struct scrub_parity *sparity,
						  u64 start, u64 len)
{
	__scrub_mark_bitmap(sparity, sparity->dbitmap, start, len);
}

2698 2699
static void scrub_block_complete(struct scrub_block *sblock)
{
2700 2701
	int corrupted = 0;

2702
	if (!sblock->no_io_error_seen) {
2703
		corrupted = 1;
2704
		scrub_handle_errored_block(sblock);
2705 2706 2707 2708 2709 2710
	} else {
		/*
		 * if has checksum error, write via repair mechanism in
		 * dev replace case, otherwise write here in dev replace
		 * case.
		 */
2711 2712
		corrupted = scrub_checksum(sblock);
		if (!corrupted && sblock->sctx->is_dev_replace)
2713 2714
			scrub_write_block_to_dev_replace(sblock);
	}
2715 2716 2717 2718 2719 2720 2721 2722 2723

	if (sblock->sparity && corrupted && !sblock->data_corrected) {
		u64 start = sblock->pagev[0]->logical;
		u64 end = sblock->pagev[sblock->page_count - 1]->logical +
			  PAGE_SIZE;

		scrub_parity_mark_sectors_error(sblock->sparity,
						start, end - start);
	}
2724 2725
}

2726
static int scrub_find_csum(struct scrub_ctx *sctx, u64 logical, u8 *csum)
A
Arne Jansen 已提交
2727 2728
{
	struct btrfs_ordered_sum *sum = NULL;
2729
	unsigned long index;
A
Arne Jansen 已提交
2730 2731
	unsigned long num_sectors;

2732 2733
	while (!list_empty(&sctx->csum_list)) {
		sum = list_first_entry(&sctx->csum_list,
A
Arne Jansen 已提交
2734 2735 2736 2737 2738 2739
				       struct btrfs_ordered_sum, list);
		if (sum->bytenr > logical)
			return 0;
		if (sum->bytenr + sum->len > logical)
			break;

2740
		++sctx->stat.csum_discards;
A
Arne Jansen 已提交
2741 2742 2743 2744 2745 2746 2747
		list_del(&sum->list);
		kfree(sum);
		sum = NULL;
	}
	if (!sum)
		return 0;

2748 2749 2750
	index = div_u64(logical - sum->bytenr, sctx->fs_info->sectorsize);
	ASSERT(index < UINT_MAX);

2751
	num_sectors = sum->len / sctx->fs_info->sectorsize;
2752 2753
	memcpy(csum, sum->sums + index, sctx->csum_size);
	if (index == num_sectors - 1) {
A
Arne Jansen 已提交
2754 2755 2756
		list_del(&sum->list);
		kfree(sum);
	}
2757
	return 1;
A
Arne Jansen 已提交
2758 2759 2760
}

/* scrub extent tries to collect up to 64 kB for each bio */
L
Liu Bo 已提交
2761 2762
static int scrub_extent(struct scrub_ctx *sctx, struct map_lookup *map,
			u64 logical, u64 len,
2763
			u64 physical, struct btrfs_device *dev, u64 flags,
2764
			u64 gen, int mirror_num, u64 physical_for_dev_replace)
A
Arne Jansen 已提交
2765 2766 2767
{
	int ret;
	u8 csum[BTRFS_CSUM_SIZE];
2768 2769 2770
	u32 blocksize;

	if (flags & BTRFS_EXTENT_FLAG_DATA) {
L
Liu Bo 已提交
2771 2772 2773 2774
		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
			blocksize = map->stripe_len;
		else
			blocksize = sctx->fs_info->sectorsize;
2775 2776 2777 2778
		spin_lock(&sctx->stat_lock);
		sctx->stat.data_extents_scrubbed++;
		sctx->stat.data_bytes_scrubbed += len;
		spin_unlock(&sctx->stat_lock);
2779
	} else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
L
Liu Bo 已提交
2780 2781 2782 2783
		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
			blocksize = map->stripe_len;
		else
			blocksize = sctx->fs_info->nodesize;
2784 2785 2786 2787
		spin_lock(&sctx->stat_lock);
		sctx->stat.tree_extents_scrubbed++;
		sctx->stat.tree_bytes_scrubbed += len;
		spin_unlock(&sctx->stat_lock);
2788
	} else {
2789
		blocksize = sctx->fs_info->sectorsize;
2790
		WARN_ON(1);
2791
	}
A
Arne Jansen 已提交
2792 2793

	while (len) {
2794
		u64 l = min_t(u64, len, blocksize);
A
Arne Jansen 已提交
2795 2796 2797 2798
		int have_csum = 0;

		if (flags & BTRFS_EXTENT_FLAG_DATA) {
			/* push csums to sbio */
2799
			have_csum = scrub_find_csum(sctx, logical, csum);
A
Arne Jansen 已提交
2800
			if (have_csum == 0)
2801
				++sctx->stat.no_csum;
2802
			if (0 && sctx->is_dev_replace && !have_csum) {
2803 2804 2805 2806 2807
				ret = copy_nocow_pages(sctx, logical, l,
						       mirror_num,
						      physical_for_dev_replace);
				goto behind_scrub_pages;
			}
A
Arne Jansen 已提交
2808
		}
2809
		ret = scrub_pages(sctx, logical, l, physical, dev, flags, gen,
2810 2811 2812
				  mirror_num, have_csum ? csum : NULL, 0,
				  physical_for_dev_replace);
behind_scrub_pages:
A
Arne Jansen 已提交
2813 2814 2815 2816 2817
		if (ret)
			return ret;
		len -= l;
		logical += l;
		physical += l;
2818
		physical_for_dev_replace += l;
A
Arne Jansen 已提交
2819 2820 2821 2822
	}
	return 0;
}

2823 2824 2825 2826 2827 2828 2829 2830 2831
static int scrub_pages_for_parity(struct scrub_parity *sparity,
				  u64 logical, u64 len,
				  u64 physical, struct btrfs_device *dev,
				  u64 flags, u64 gen, int mirror_num, u8 *csum)
{
	struct scrub_ctx *sctx = sparity->sctx;
	struct scrub_block *sblock;
	int index;

2832
	sblock = kzalloc(sizeof(*sblock), GFP_KERNEL);
2833 2834 2835 2836 2837 2838 2839 2840 2841
	if (!sblock) {
		spin_lock(&sctx->stat_lock);
		sctx->stat.malloc_errors++;
		spin_unlock(&sctx->stat_lock);
		return -ENOMEM;
	}

	/* one ref inside this function, plus one for each page added to
	 * a bio later on */
2842
	refcount_set(&sblock->refs, 1);
2843 2844 2845 2846 2847 2848 2849 2850 2851
	sblock->sctx = sctx;
	sblock->no_io_error_seen = 1;
	sblock->sparity = sparity;
	scrub_parity_get(sparity);

	for (index = 0; len > 0; index++) {
		struct scrub_page *spage;
		u64 l = min_t(u64, len, PAGE_SIZE);

2852
		spage = kzalloc(sizeof(*spage), GFP_KERNEL);
2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881
		if (!spage) {
leave_nomem:
			spin_lock(&sctx->stat_lock);
			sctx->stat.malloc_errors++;
			spin_unlock(&sctx->stat_lock);
			scrub_block_put(sblock);
			return -ENOMEM;
		}
		BUG_ON(index >= SCRUB_MAX_PAGES_PER_BLOCK);
		/* For scrub block */
		scrub_page_get(spage);
		sblock->pagev[index] = spage;
		/* For scrub parity */
		scrub_page_get(spage);
		list_add_tail(&spage->list, &sparity->spages);
		spage->sblock = sblock;
		spage->dev = dev;
		spage->flags = flags;
		spage->generation = gen;
		spage->logical = logical;
		spage->physical = physical;
		spage->mirror_num = mirror_num;
		if (csum) {
			spage->have_csum = 1;
			memcpy(spage->csum, csum, sctx->csum_size);
		} else {
			spage->have_csum = 0;
		}
		sblock->page_count++;
2882
		spage->page = alloc_page(GFP_KERNEL);
2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916
		if (!spage->page)
			goto leave_nomem;
		len -= l;
		logical += l;
		physical += l;
	}

	WARN_ON(sblock->page_count == 0);
	for (index = 0; index < sblock->page_count; index++) {
		struct scrub_page *spage = sblock->pagev[index];
		int ret;

		ret = scrub_add_page_to_rd_bio(sctx, spage);
		if (ret) {
			scrub_block_put(sblock);
			return ret;
		}
	}

	/* last one frees, either here or in bio completion for last page */
	scrub_block_put(sblock);
	return 0;
}

static int scrub_extent_for_parity(struct scrub_parity *sparity,
				   u64 logical, u64 len,
				   u64 physical, struct btrfs_device *dev,
				   u64 flags, u64 gen, int mirror_num)
{
	struct scrub_ctx *sctx = sparity->sctx;
	int ret;
	u8 csum[BTRFS_CSUM_SIZE];
	u32 blocksize;

2917
	if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) {
2918 2919 2920 2921
		scrub_parity_mark_sectors_error(sparity, logical, len);
		return 0;
	}

2922
	if (flags & BTRFS_EXTENT_FLAG_DATA) {
L
Liu Bo 已提交
2923
		blocksize = sparity->stripe_len;
2924
	} else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
L
Liu Bo 已提交
2925
		blocksize = sparity->stripe_len;
2926
	} else {
2927
		blocksize = sctx->fs_info->sectorsize;
2928 2929 2930 2931 2932 2933 2934 2935 2936
		WARN_ON(1);
	}

	while (len) {
		u64 l = min_t(u64, len, blocksize);
		int have_csum = 0;

		if (flags & BTRFS_EXTENT_FLAG_DATA) {
			/* push csums to sbio */
2937
			have_csum = scrub_find_csum(sctx, logical, csum);
2938 2939 2940 2941 2942 2943 2944 2945
			if (have_csum == 0)
				goto skip;
		}
		ret = scrub_pages_for_parity(sparity, logical, l, physical, dev,
					     flags, gen, mirror_num,
					     have_csum ? csum : NULL);
		if (ret)
			return ret;
2946
skip:
2947 2948 2949 2950 2951 2952 2953
		len -= l;
		logical += l;
		physical += l;
	}
	return 0;
}

2954 2955 2956 2957 2958 2959 2960 2961
/*
 * Given a physical address, this will calculate it's
 * logical offset. if this is a parity stripe, it will return
 * the most left data stripe's logical offset.
 *
 * return 0 if it is a data stripe, 1 means parity stripe.
 */
static int get_raid56_logic_offset(u64 physical, int num,
2962 2963
				   struct map_lookup *map, u64 *offset,
				   u64 *stripe_start)
2964 2965 2966 2967 2968
{
	int i;
	int j = 0;
	u64 stripe_nr;
	u64 last_offset;
2969 2970
	u32 stripe_index;
	u32 rot;
2971 2972 2973

	last_offset = (physical - map->stripes[num].physical) *
		      nr_data_stripes(map);
2974 2975 2976
	if (stripe_start)
		*stripe_start = last_offset;

2977 2978 2979 2980
	*offset = last_offset;
	for (i = 0; i < nr_data_stripes(map); i++) {
		*offset = last_offset + i * map->stripe_len;

2981
		stripe_nr = div64_u64(*offset, map->stripe_len);
2982
		stripe_nr = div_u64(stripe_nr, nr_data_stripes(map));
2983 2984

		/* Work out the disk rotation on this stripe-set */
2985
		stripe_nr = div_u64_rem(stripe_nr, map->num_stripes, &rot);
2986 2987
		/* calculate which stripe this data locates */
		rot += i;
2988
		stripe_index = rot % map->num_stripes;
2989 2990 2991 2992 2993 2994 2995 2996 2997
		if (stripe_index == num)
			return 0;
		if (stripe_index < num)
			j++;
	}
	*offset = last_offset + j * map->stripe_len;
	return 1;
}

2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019
static void scrub_free_parity(struct scrub_parity *sparity)
{
	struct scrub_ctx *sctx = sparity->sctx;
	struct scrub_page *curr, *next;
	int nbits;

	nbits = bitmap_weight(sparity->ebitmap, sparity->nsectors);
	if (nbits) {
		spin_lock(&sctx->stat_lock);
		sctx->stat.read_errors += nbits;
		sctx->stat.uncorrectable_errors += nbits;
		spin_unlock(&sctx->stat_lock);
	}

	list_for_each_entry_safe(curr, next, &sparity->spages, list) {
		list_del_init(&curr->list);
		scrub_page_put(curr);
	}

	kfree(sparity);
}

3020 3021 3022 3023 3024 3025 3026 3027 3028 3029
static void scrub_parity_bio_endio_worker(struct btrfs_work *work)
{
	struct scrub_parity *sparity = container_of(work, struct scrub_parity,
						    work);
	struct scrub_ctx *sctx = sparity->sctx;

	scrub_free_parity(sparity);
	scrub_pending_bio_dec(sctx);
}

3030
static void scrub_parity_bio_endio(struct bio *bio)
3031 3032
{
	struct scrub_parity *sparity = (struct scrub_parity *)bio->bi_private;
3033
	struct btrfs_fs_info *fs_info = sparity->sctx->fs_info;
3034

3035
	if (bio->bi_status)
3036 3037 3038 3039
		bitmap_or(sparity->ebitmap, sparity->ebitmap, sparity->dbitmap,
			  sparity->nsectors);

	bio_put(bio);
3040 3041 3042

	btrfs_init_work(&sparity->work, btrfs_scrubparity_helper,
			scrub_parity_bio_endio_worker, NULL, NULL);
3043
	btrfs_queue_work(fs_info->scrub_parity_workers, &sparity->work);
3044 3045 3046 3047 3048
}

static void scrub_parity_check_and_repair(struct scrub_parity *sparity)
{
	struct scrub_ctx *sctx = sparity->sctx;
3049
	struct btrfs_fs_info *fs_info = sctx->fs_info;
3050 3051 3052 3053 3054 3055 3056 3057 3058 3059
	struct bio *bio;
	struct btrfs_raid_bio *rbio;
	struct btrfs_bio *bbio = NULL;
	u64 length;
	int ret;

	if (!bitmap_andnot(sparity->dbitmap, sparity->dbitmap, sparity->ebitmap,
			   sparity->nsectors))
		goto out;

3060
	length = sparity->logic_end - sparity->logic_start;
3061 3062

	btrfs_bio_counter_inc_blocked(fs_info);
3063
	ret = btrfs_map_sblock(fs_info, BTRFS_MAP_WRITE, sparity->logic_start,
3064
			       &length, &bbio);
3065
	if (ret || !bbio || !bbio->raid_map)
3066 3067
		goto bbio_out;

3068
	bio = btrfs_io_bio_alloc(0);
3069 3070 3071 3072
	bio->bi_iter.bi_sector = sparity->logic_start >> 9;
	bio->bi_private = sparity;
	bio->bi_end_io = scrub_parity_bio_endio;

3073
	rbio = raid56_parity_alloc_scrub_rbio(fs_info, bio, bbio,
3074
					      length, sparity->scrub_dev,
3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086
					      sparity->dbitmap,
					      sparity->nsectors);
	if (!rbio)
		goto rbio_out;

	scrub_pending_bio_inc(sctx);
	raid56_parity_submit_scrub_rbio(rbio);
	return;

rbio_out:
	bio_put(bio);
bbio_out:
3087
	btrfs_bio_counter_dec(fs_info);
3088
	btrfs_put_bbio(bbio);
3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099
	bitmap_or(sparity->ebitmap, sparity->ebitmap, sparity->dbitmap,
		  sparity->nsectors);
	spin_lock(&sctx->stat_lock);
	sctx->stat.malloc_errors++;
	spin_unlock(&sctx->stat_lock);
out:
	scrub_free_parity(sparity);
}

static inline int scrub_calc_parity_bitmap_len(int nsectors)
{
3100
	return DIV_ROUND_UP(nsectors, BITS_PER_LONG) * sizeof(long);
3101 3102 3103 3104
}

static void scrub_parity_get(struct scrub_parity *sparity)
{
3105
	refcount_inc(&sparity->refs);
3106 3107 3108 3109
}

static void scrub_parity_put(struct scrub_parity *sparity)
{
3110
	if (!refcount_dec_and_test(&sparity->refs))
3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122
		return;

	scrub_parity_check_and_repair(sparity);
}

static noinline_for_stack int scrub_raid56_parity(struct scrub_ctx *sctx,
						  struct map_lookup *map,
						  struct btrfs_device *sdev,
						  struct btrfs_path *path,
						  u64 logic_start,
						  u64 logic_end)
{
3123
	struct btrfs_fs_info *fs_info = sctx->fs_info;
3124 3125 3126
	struct btrfs_root *root = fs_info->extent_root;
	struct btrfs_root *csum_root = fs_info->csum_root;
	struct btrfs_extent_item *extent;
3127
	struct btrfs_bio *bbio = NULL;
3128 3129 3130 3131 3132 3133 3134 3135 3136
	u64 flags;
	int ret;
	int slot;
	struct extent_buffer *l;
	struct btrfs_key key;
	u64 generation;
	u64 extent_logical;
	u64 extent_physical;
	u64 extent_len;
3137
	u64 mapped_length;
3138 3139 3140 3141 3142 3143 3144
	struct btrfs_device *extent_dev;
	struct scrub_parity *sparity;
	int nsectors;
	int bitmap_len;
	int extent_mirror_num;
	int stop_loop = 0;

3145
	nsectors = div_u64(map->stripe_len, fs_info->sectorsize);
3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161
	bitmap_len = scrub_calc_parity_bitmap_len(nsectors);
	sparity = kzalloc(sizeof(struct scrub_parity) + 2 * bitmap_len,
			  GFP_NOFS);
	if (!sparity) {
		spin_lock(&sctx->stat_lock);
		sctx->stat.malloc_errors++;
		spin_unlock(&sctx->stat_lock);
		return -ENOMEM;
	}

	sparity->stripe_len = map->stripe_len;
	sparity->nsectors = nsectors;
	sparity->sctx = sctx;
	sparity->scrub_dev = sdev;
	sparity->logic_start = logic_start;
	sparity->logic_end = logic_end;
3162
	refcount_set(&sparity->refs, 1);
3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210
	INIT_LIST_HEAD(&sparity->spages);
	sparity->dbitmap = sparity->bitmap;
	sparity->ebitmap = (void *)sparity->bitmap + bitmap_len;

	ret = 0;
	while (logic_start < logic_end) {
		if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
			key.type = BTRFS_METADATA_ITEM_KEY;
		else
			key.type = BTRFS_EXTENT_ITEM_KEY;
		key.objectid = logic_start;
		key.offset = (u64)-1;

		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
		if (ret < 0)
			goto out;

		if (ret > 0) {
			ret = btrfs_previous_extent_item(root, path, 0);
			if (ret < 0)
				goto out;
			if (ret > 0) {
				btrfs_release_path(path);
				ret = btrfs_search_slot(NULL, root, &key,
							path, 0, 0);
				if (ret < 0)
					goto out;
			}
		}

		stop_loop = 0;
		while (1) {
			u64 bytes;

			l = path->nodes[0];
			slot = path->slots[0];
			if (slot >= btrfs_header_nritems(l)) {
				ret = btrfs_next_leaf(root, path);
				if (ret == 0)
					continue;
				if (ret < 0)
					goto out;

				stop_loop = 1;
				break;
			}
			btrfs_item_key_to_cpu(l, &key, slot);

3211 3212 3213 3214
			if (key.type != BTRFS_EXTENT_ITEM_KEY &&
			    key.type != BTRFS_METADATA_ITEM_KEY)
				goto next;

3215
			if (key.type == BTRFS_METADATA_ITEM_KEY)
3216
				bytes = fs_info->nodesize;
3217 3218 3219 3220 3221 3222
			else
				bytes = key.offset;

			if (key.objectid + bytes <= logic_start)
				goto next;

3223
			if (key.objectid >= logic_end) {
3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235
				stop_loop = 1;
				break;
			}

			while (key.objectid >= logic_start + map->stripe_len)
				logic_start += map->stripe_len;

			extent = btrfs_item_ptr(l, slot,
						struct btrfs_extent_item);
			flags = btrfs_extent_flags(l, extent);
			generation = btrfs_extent_generation(l, extent);

3236 3237 3238 3239
			if ((flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) &&
			    (key.objectid < logic_start ||
			     key.objectid + bytes >
			     logic_start + map->stripe_len)) {
J
Jeff Mahoney 已提交
3240 3241
				btrfs_err(fs_info,
					  "scrub: tree block %llu spanning stripes, ignored. logical=%llu",
3242
					  key.objectid, logic_start);
3243 3244 3245
				spin_lock(&sctx->stat_lock);
				sctx->stat.uncorrectable_errors++;
				spin_unlock(&sctx->stat_lock);
3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264
				goto next;
			}
again:
			extent_logical = key.objectid;
			extent_len = bytes;

			if (extent_logical < logic_start) {
				extent_len -= logic_start - extent_logical;
				extent_logical = logic_start;
			}

			if (extent_logical + extent_len >
			    logic_start + map->stripe_len)
				extent_len = logic_start + map->stripe_len -
					     extent_logical;

			scrub_parity_mark_sectors_data(sparity, extent_logical,
						       extent_len);

3265
			mapped_length = extent_len;
3266
			bbio = NULL;
3267 3268 3269
			ret = btrfs_map_block(fs_info, BTRFS_MAP_READ,
					extent_logical, &mapped_length, &bbio,
					0);
3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281
			if (!ret) {
				if (!bbio || mapped_length < extent_len)
					ret = -EIO;
			}
			if (ret) {
				btrfs_put_bbio(bbio);
				goto out;
			}
			extent_physical = bbio->stripes[0].physical;
			extent_mirror_num = bbio->mirror_num;
			extent_dev = bbio->stripes[0].dev;
			btrfs_put_bbio(bbio);
3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295

			ret = btrfs_lookup_csums_range(csum_root,
						extent_logical,
						extent_logical + extent_len - 1,
						&sctx->csum_list, 1);
			if (ret)
				goto out;

			ret = scrub_extent_for_parity(sparity, extent_logical,
						      extent_len,
						      extent_physical,
						      extent_dev, flags,
						      generation,
						      extent_mirror_num);
3296 3297 3298

			scrub_free_csums(sctx);

3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329
			if (ret)
				goto out;

			if (extent_logical + extent_len <
			    key.objectid + bytes) {
				logic_start += map->stripe_len;

				if (logic_start >= logic_end) {
					stop_loop = 1;
					break;
				}

				if (logic_start < key.objectid + bytes) {
					cond_resched();
					goto again;
				}
			}
next:
			path->slots[0]++;
		}

		btrfs_release_path(path);

		if (stop_loop)
			break;

		logic_start += map->stripe_len;
	}
out:
	if (ret < 0)
		scrub_parity_mark_sectors_error(sparity, logic_start,
3330
						logic_end - logic_start);
3331 3332
	scrub_parity_put(sparity);
	scrub_submit(sctx);
3333
	mutex_lock(&sctx->wr_lock);
3334
	scrub_wr_submit(sctx);
3335
	mutex_unlock(&sctx->wr_lock);
3336 3337 3338 3339 3340

	btrfs_release_path(path);
	return ret < 0 ? ret : 0;
}

3341
static noinline_for_stack int scrub_stripe(struct scrub_ctx *sctx,
3342 3343
					   struct map_lookup *map,
					   struct btrfs_device *scrub_dev,
3344 3345
					   int num, u64 base, u64 length,
					   int is_dev_replace)
A
Arne Jansen 已提交
3346
{
3347
	struct btrfs_path *path, *ppath;
3348
	struct btrfs_fs_info *fs_info = sctx->fs_info;
A
Arne Jansen 已提交
3349 3350 3351
	struct btrfs_root *root = fs_info->extent_root;
	struct btrfs_root *csum_root = fs_info->csum_root;
	struct btrfs_extent_item *extent;
3352
	struct blk_plug plug;
A
Arne Jansen 已提交
3353 3354 3355 3356 3357 3358 3359
	u64 flags;
	int ret;
	int slot;
	u64 nstripes;
	struct extent_buffer *l;
	u64 physical;
	u64 logical;
L
Liu Bo 已提交
3360
	u64 logic_end;
3361
	u64 physical_end;
A
Arne Jansen 已提交
3362
	u64 generation;
3363
	int mirror_num;
A
Arne Jansen 已提交
3364 3365
	struct reada_control *reada1;
	struct reada_control *reada2;
3366
	struct btrfs_key key;
A
Arne Jansen 已提交
3367
	struct btrfs_key key_end;
A
Arne Jansen 已提交
3368 3369
	u64 increment = map->stripe_len;
	u64 offset;
3370 3371 3372
	u64 extent_logical;
	u64 extent_physical;
	u64 extent_len;
3373 3374
	u64 stripe_logical;
	u64 stripe_end;
3375 3376
	struct btrfs_device *extent_dev;
	int extent_mirror_num;
3377
	int stop_loop = 0;
D
David Woodhouse 已提交
3378

3379
	physical = map->stripes[num].physical;
A
Arne Jansen 已提交
3380
	offset = 0;
3381
	nstripes = div64_u64(length, map->stripe_len);
A
Arne Jansen 已提交
3382 3383 3384
	if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
		offset = map->stripe_len * num;
		increment = map->stripe_len * map->num_stripes;
3385
		mirror_num = 1;
A
Arne Jansen 已提交
3386 3387 3388 3389
	} else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
		int factor = map->num_stripes / map->sub_stripes;
		offset = map->stripe_len * (num / map->sub_stripes);
		increment = map->stripe_len * factor;
3390
		mirror_num = num % map->sub_stripes + 1;
A
Arne Jansen 已提交
3391 3392
	} else if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
		increment = map->stripe_len;
3393
		mirror_num = num % map->num_stripes + 1;
A
Arne Jansen 已提交
3394 3395
	} else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
		increment = map->stripe_len;
3396
		mirror_num = num % map->num_stripes + 1;
3397
	} else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3398
		get_raid56_logic_offset(physical, num, map, &offset, NULL);
3399 3400
		increment = map->stripe_len * nr_data_stripes(map);
		mirror_num = 1;
A
Arne Jansen 已提交
3401 3402
	} else {
		increment = map->stripe_len;
3403
		mirror_num = 1;
A
Arne Jansen 已提交
3404 3405 3406 3407 3408 3409
	}

	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;

3410 3411
	ppath = btrfs_alloc_path();
	if (!ppath) {
3412
		btrfs_free_path(path);
3413 3414 3415
		return -ENOMEM;
	}

3416 3417 3418 3419 3420
	/*
	 * work on commit root. The related disk blocks are static as
	 * long as COW is applied. This means, it is save to rewrite
	 * them to repair disk errors without any race conditions
	 */
A
Arne Jansen 已提交
3421 3422 3423
	path->search_commit_root = 1;
	path->skip_locking = 1;

3424 3425
	ppath->search_commit_root = 1;
	ppath->skip_locking = 1;
A
Arne Jansen 已提交
3426
	/*
A
Arne Jansen 已提交
3427 3428 3429
	 * trigger the readahead for extent tree csum tree and wait for
	 * completion. During readahead, the scrub is officially paused
	 * to not hold off transaction commits
A
Arne Jansen 已提交
3430 3431
	 */
	logical = base + offset;
3432
	physical_end = physical + nstripes * map->stripe_len;
3433
	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3434
		get_raid56_logic_offset(physical_end, num,
3435
					map, &logic_end, NULL);
3436 3437 3438 3439
		logic_end += base;
	} else {
		logic_end = logical + increment * nstripes;
	}
3440
	wait_event(sctx->list_wait,
3441
		   atomic_read(&sctx->bios_in_flight) == 0);
3442
	scrub_blocked_if_needed(fs_info);
A
Arne Jansen 已提交
3443 3444

	/* FIXME it might be better to start readahead at commit root */
3445 3446 3447
	key.objectid = logical;
	key.type = BTRFS_EXTENT_ITEM_KEY;
	key.offset = (u64)0;
3448
	key_end.objectid = logic_end;
3449 3450
	key_end.type = BTRFS_METADATA_ITEM_KEY;
	key_end.offset = (u64)-1;
3451
	reada1 = btrfs_reada_add(root, &key, &key_end);
A
Arne Jansen 已提交
3452

3453 3454 3455
	key.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
	key.type = BTRFS_EXTENT_CSUM_KEY;
	key.offset = logical;
A
Arne Jansen 已提交
3456 3457
	key_end.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
	key_end.type = BTRFS_EXTENT_CSUM_KEY;
3458
	key_end.offset = logic_end;
3459
	reada2 = btrfs_reada_add(csum_root, &key, &key_end);
A
Arne Jansen 已提交
3460 3461 3462 3463 3464 3465

	if (!IS_ERR(reada1))
		btrfs_reada_wait(reada1);
	if (!IS_ERR(reada2))
		btrfs_reada_wait(reada2);

A
Arne Jansen 已提交
3466 3467 3468 3469 3470

	/*
	 * collect all data csums for the stripe to avoid seeking during
	 * the scrub. This might currently (crc32) end up to be about 1MB
	 */
3471
	blk_start_plug(&plug);
A
Arne Jansen 已提交
3472 3473 3474 3475 3476

	/*
	 * now find all extents for each stripe and scrub them
	 */
	ret = 0;
3477
	while (physical < physical_end) {
A
Arne Jansen 已提交
3478 3479 3480 3481
		/*
		 * canceled?
		 */
		if (atomic_read(&fs_info->scrub_cancel_req) ||
3482
		    atomic_read(&sctx->cancel_req)) {
A
Arne Jansen 已提交
3483 3484 3485 3486 3487 3488 3489 3490
			ret = -ECANCELED;
			goto out;
		}
		/*
		 * check to see if we have to pause
		 */
		if (atomic_read(&fs_info->scrub_pause_req)) {
			/* push queued extents */
3491
			sctx->flush_all_writes = true;
3492
			scrub_submit(sctx);
3493
			mutex_lock(&sctx->wr_lock);
3494
			scrub_wr_submit(sctx);
3495
			mutex_unlock(&sctx->wr_lock);
3496
			wait_event(sctx->list_wait,
3497
				   atomic_read(&sctx->bios_in_flight) == 0);
3498
			sctx->flush_all_writes = false;
3499
			scrub_blocked_if_needed(fs_info);
A
Arne Jansen 已提交
3500 3501
		}

3502 3503 3504 3505 3506 3507
		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
			ret = get_raid56_logic_offset(physical, num, map,
						      &logical,
						      &stripe_logical);
			logical += base;
			if (ret) {
3508
				/* it is parity strip */
3509
				stripe_logical += base;
3510
				stripe_end = stripe_logical + increment;
3511 3512 3513 3514 3515 3516 3517 3518 3519
				ret = scrub_raid56_parity(sctx, map, scrub_dev,
							  ppath, stripe_logical,
							  stripe_end);
				if (ret)
					goto out;
				goto skip;
			}
		}

3520 3521 3522 3523
		if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
			key.type = BTRFS_METADATA_ITEM_KEY;
		else
			key.type = BTRFS_EXTENT_ITEM_KEY;
A
Arne Jansen 已提交
3524
		key.objectid = logical;
L
Liu Bo 已提交
3525
		key.offset = (u64)-1;
A
Arne Jansen 已提交
3526 3527 3528 3529

		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
		if (ret < 0)
			goto out;
3530

3531
		if (ret > 0) {
3532
			ret = btrfs_previous_extent_item(root, path, 0);
A
Arne Jansen 已提交
3533 3534
			if (ret < 0)
				goto out;
3535 3536 3537 3538 3539 3540 3541 3542 3543
			if (ret > 0) {
				/* there's no smaller item, so stick with the
				 * larger one */
				btrfs_release_path(path);
				ret = btrfs_search_slot(NULL, root, &key,
							path, 0, 0);
				if (ret < 0)
					goto out;
			}
A
Arne Jansen 已提交
3544 3545
		}

L
Liu Bo 已提交
3546
		stop_loop = 0;
A
Arne Jansen 已提交
3547
		while (1) {
3548 3549
			u64 bytes;

A
Arne Jansen 已提交
3550 3551 3552 3553 3554 3555 3556 3557 3558
			l = path->nodes[0];
			slot = path->slots[0];
			if (slot >= btrfs_header_nritems(l)) {
				ret = btrfs_next_leaf(root, path);
				if (ret == 0)
					continue;
				if (ret < 0)
					goto out;

L
Liu Bo 已提交
3559
				stop_loop = 1;
A
Arne Jansen 已提交
3560 3561 3562 3563
				break;
			}
			btrfs_item_key_to_cpu(l, &key, slot);

3564 3565 3566 3567
			if (key.type != BTRFS_EXTENT_ITEM_KEY &&
			    key.type != BTRFS_METADATA_ITEM_KEY)
				goto next;

3568
			if (key.type == BTRFS_METADATA_ITEM_KEY)
3569
				bytes = fs_info->nodesize;
3570 3571 3572 3573
			else
				bytes = key.offset;

			if (key.objectid + bytes <= logical)
A
Arne Jansen 已提交
3574 3575
				goto next;

L
Liu Bo 已提交
3576 3577 3578 3579 3580 3581
			if (key.objectid >= logical + map->stripe_len) {
				/* out of this device extent */
				if (key.objectid >= logic_end)
					stop_loop = 1;
				break;
			}
A
Arne Jansen 已提交
3582 3583 3584 3585 3586 3587

			extent = btrfs_item_ptr(l, slot,
						struct btrfs_extent_item);
			flags = btrfs_extent_flags(l, extent);
			generation = btrfs_extent_generation(l, extent);

3588 3589 3590 3591
			if ((flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) &&
			    (key.objectid < logical ||
			     key.objectid + bytes >
			     logical + map->stripe_len)) {
3592
				btrfs_err(fs_info,
J
Jeff Mahoney 已提交
3593
					   "scrub: tree block %llu spanning stripes, ignored. logical=%llu",
3594
				       key.objectid, logical);
3595 3596 3597
				spin_lock(&sctx->stat_lock);
				sctx->stat.uncorrectable_errors++;
				spin_unlock(&sctx->stat_lock);
A
Arne Jansen 已提交
3598 3599 3600
				goto next;
			}

L
Liu Bo 已提交
3601 3602 3603 3604
again:
			extent_logical = key.objectid;
			extent_len = bytes;

A
Arne Jansen 已提交
3605 3606 3607
			/*
			 * trim extent to this stripe
			 */
L
Liu Bo 已提交
3608 3609 3610
			if (extent_logical < logical) {
				extent_len -= logical - extent_logical;
				extent_logical = logical;
A
Arne Jansen 已提交
3611
			}
L
Liu Bo 已提交
3612
			if (extent_logical + extent_len >
A
Arne Jansen 已提交
3613
			    logical + map->stripe_len) {
L
Liu Bo 已提交
3614 3615
				extent_len = logical + map->stripe_len -
					     extent_logical;
A
Arne Jansen 已提交
3616 3617
			}

L
Liu Bo 已提交
3618
			extent_physical = extent_logical - logical + physical;
3619 3620 3621 3622 3623 3624 3625
			extent_dev = scrub_dev;
			extent_mirror_num = mirror_num;
			if (is_dev_replace)
				scrub_remap_extent(fs_info, extent_logical,
						   extent_len, &extent_physical,
						   &extent_dev,
						   &extent_mirror_num);
L
Liu Bo 已提交
3626

3627 3628 3629 3630 3631
			ret = btrfs_lookup_csums_range(csum_root,
						       extent_logical,
						       extent_logical +
						       extent_len - 1,
						       &sctx->csum_list, 1);
L
Liu Bo 已提交
3632 3633 3634
			if (ret)
				goto out;

L
Liu Bo 已提交
3635
			ret = scrub_extent(sctx, map, extent_logical, extent_len,
3636 3637
					   extent_physical, extent_dev, flags,
					   generation, extent_mirror_num,
3638
					   extent_logical - logical + physical);
3639 3640 3641

			scrub_free_csums(sctx);

A
Arne Jansen 已提交
3642 3643 3644
			if (ret)
				goto out;

L
Liu Bo 已提交
3645 3646
			if (extent_logical + extent_len <
			    key.objectid + bytes) {
3647
				if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3648 3649 3650 3651
					/*
					 * loop until we find next data stripe
					 * or we have finished all stripes.
					 */
3652 3653 3654 3655 3656 3657 3658 3659 3660 3661
loop:
					physical += map->stripe_len;
					ret = get_raid56_logic_offset(physical,
							num, map, &logical,
							&stripe_logical);
					logical += base;

					if (ret && physical < physical_end) {
						stripe_logical += base;
						stripe_end = stripe_logical +
3662
								increment;
3663 3664 3665 3666 3667 3668 3669 3670
						ret = scrub_raid56_parity(sctx,
							map, scrub_dev, ppath,
							stripe_logical,
							stripe_end);
						if (ret)
							goto out;
						goto loop;
					}
3671 3672 3673 3674
				} else {
					physical += map->stripe_len;
					logical += increment;
				}
L
Liu Bo 已提交
3675 3676 3677 3678 3679
				if (logical < key.objectid + bytes) {
					cond_resched();
					goto again;
				}

3680
				if (physical >= physical_end) {
L
Liu Bo 已提交
3681 3682 3683 3684
					stop_loop = 1;
					break;
				}
			}
A
Arne Jansen 已提交
3685 3686 3687
next:
			path->slots[0]++;
		}
C
Chris Mason 已提交
3688
		btrfs_release_path(path);
3689
skip:
A
Arne Jansen 已提交
3690 3691
		logical += increment;
		physical += map->stripe_len;
3692
		spin_lock(&sctx->stat_lock);
L
Liu Bo 已提交
3693 3694 3695 3696 3697
		if (stop_loop)
			sctx->stat.last_physical = map->stripes[num].physical +
						   length;
		else
			sctx->stat.last_physical = physical;
3698
		spin_unlock(&sctx->stat_lock);
L
Liu Bo 已提交
3699 3700
		if (stop_loop)
			break;
A
Arne Jansen 已提交
3701
	}
3702
out:
A
Arne Jansen 已提交
3703
	/* push queued extents */
3704
	scrub_submit(sctx);
3705
	mutex_lock(&sctx->wr_lock);
3706
	scrub_wr_submit(sctx);
3707
	mutex_unlock(&sctx->wr_lock);
A
Arne Jansen 已提交
3708

3709
	blk_finish_plug(&plug);
A
Arne Jansen 已提交
3710
	btrfs_free_path(path);
3711
	btrfs_free_path(ppath);
A
Arne Jansen 已提交
3712 3713 3714
	return ret < 0 ? ret : 0;
}

3715
static noinline_for_stack int scrub_chunk(struct scrub_ctx *sctx,
3716 3717
					  struct btrfs_device *scrub_dev,
					  u64 chunk_offset, u64 length,
3718 3719 3720
					  u64 dev_offset,
					  struct btrfs_block_group_cache *cache,
					  int is_dev_replace)
A
Arne Jansen 已提交
3721
{
3722 3723
	struct btrfs_fs_info *fs_info = sctx->fs_info;
	struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
A
Arne Jansen 已提交
3724 3725 3726
	struct map_lookup *map;
	struct extent_map *em;
	int i;
3727
	int ret = 0;
A
Arne Jansen 已提交
3728 3729 3730 3731 3732

	read_lock(&map_tree->map_tree.lock);
	em = lookup_extent_mapping(&map_tree->map_tree, chunk_offset, 1);
	read_unlock(&map_tree->map_tree.lock);

3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744
	if (!em) {
		/*
		 * Might have been an unused block group deleted by the cleaner
		 * kthread or relocation.
		 */
		spin_lock(&cache->lock);
		if (!cache->removed)
			ret = -EINVAL;
		spin_unlock(&cache->lock);

		return ret;
	}
A
Arne Jansen 已提交
3745

3746
	map = em->map_lookup;
A
Arne Jansen 已提交
3747 3748 3749 3750 3751 3752 3753
	if (em->start != chunk_offset)
		goto out;

	if (em->len < length)
		goto out;

	for (i = 0; i < map->num_stripes; ++i) {
3754
		if (map->stripes[i].dev->bdev == scrub_dev->bdev &&
3755
		    map->stripes[i].physical == dev_offset) {
3756
			ret = scrub_stripe(sctx, map, scrub_dev, i,
3757 3758
					   chunk_offset, length,
					   is_dev_replace);
A
Arne Jansen 已提交
3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769
			if (ret)
				goto out;
		}
	}
out:
	free_extent_map(em);

	return ret;
}

static noinline_for_stack
3770
int scrub_enumerate_chunks(struct scrub_ctx *sctx,
3771 3772
			   struct btrfs_device *scrub_dev, u64 start, u64 end,
			   int is_dev_replace)
A
Arne Jansen 已提交
3773 3774 3775
{
	struct btrfs_dev_extent *dev_extent = NULL;
	struct btrfs_path *path;
3776 3777
	struct btrfs_fs_info *fs_info = sctx->fs_info;
	struct btrfs_root *root = fs_info->dev_root;
A
Arne Jansen 已提交
3778 3779
	u64 length;
	u64 chunk_offset;
3780
	int ret = 0;
3781
	int ro_set;
A
Arne Jansen 已提交
3782 3783 3784 3785 3786
	int slot;
	struct extent_buffer *l;
	struct btrfs_key key;
	struct btrfs_key found_key;
	struct btrfs_block_group_cache *cache;
3787
	struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
A
Arne Jansen 已提交
3788 3789 3790 3791 3792

	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;

3793
	path->reada = READA_FORWARD;
A
Arne Jansen 已提交
3794 3795 3796
	path->search_commit_root = 1;
	path->skip_locking = 1;

3797
	key.objectid = scrub_dev->devid;
A
Arne Jansen 已提交
3798 3799 3800 3801 3802 3803
	key.offset = 0ull;
	key.type = BTRFS_DEV_EXTENT_KEY;

	while (1) {
		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
		if (ret < 0)
3804 3805 3806 3807 3808
			break;
		if (ret > 0) {
			if (path->slots[0] >=
			    btrfs_header_nritems(path->nodes[0])) {
				ret = btrfs_next_leaf(root, path);
3809 3810 3811 3812
				if (ret < 0)
					break;
				if (ret > 0) {
					ret = 0;
3813
					break;
3814 3815 3816
				}
			} else {
				ret = 0;
3817 3818
			}
		}
A
Arne Jansen 已提交
3819 3820 3821 3822 3823 3824

		l = path->nodes[0];
		slot = path->slots[0];

		btrfs_item_key_to_cpu(l, &found_key, slot);

3825
		if (found_key.objectid != scrub_dev->devid)
A
Arne Jansen 已提交
3826 3827
			break;

3828
		if (found_key.type != BTRFS_DEV_EXTENT_KEY)
A
Arne Jansen 已提交
3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839
			break;

		if (found_key.offset >= end)
			break;

		if (found_key.offset < key.offset)
			break;

		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
		length = btrfs_dev_extent_length(l, dev_extent);

3840 3841
		if (found_key.offset + length <= start)
			goto skip;
A
Arne Jansen 已提交
3842 3843 3844 3845 3846 3847 3848 3849

		chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);

		/*
		 * get a reference on the corresponding block group to prevent
		 * the chunk from going away while we scrub it
		 */
		cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3850 3851 3852 3853 3854 3855

		/* some chunks are removed but not committed to disk yet,
		 * continue scrubbing */
		if (!cache)
			goto skip;

3856 3857 3858 3859 3860 3861 3862 3863 3864
		/*
		 * we need call btrfs_inc_block_group_ro() with scrubs_paused,
		 * to avoid deadlock caused by:
		 * btrfs_inc_block_group_ro()
		 * -> btrfs_wait_for_commit()
		 * -> btrfs_commit_transaction()
		 * -> btrfs_scrub_pause()
		 */
		scrub_pause_on(fs_info);
3865
		ret = btrfs_inc_block_group_ro(fs_info, cache);
3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886
		if (!ret && is_dev_replace) {
			/*
			 * If we are doing a device replace wait for any tasks
			 * that started dellaloc right before we set the block
			 * group to RO mode, as they might have just allocated
			 * an extent from it or decided they could do a nocow
			 * write. And if any such tasks did that, wait for their
			 * ordered extents to complete and then commit the
			 * current transaction, so that we can later see the new
			 * extent items in the extent tree - the ordered extents
			 * create delayed data references (for cow writes) when
			 * they complete, which will be run and insert the
			 * corresponding extent items into the extent tree when
			 * we commit the transaction they used when running
			 * inode.c:btrfs_finish_ordered_io(). We later use
			 * the commit root of the extent tree to find extents
			 * to copy from the srcdev into the tgtdev, and we don't
			 * want to miss any new extents.
			 */
			btrfs_wait_block_group_reservations(cache);
			btrfs_wait_nocow_writers(cache);
3887
			ret = btrfs_wait_ordered_roots(fs_info, U64_MAX,
3888 3889 3890 3891 3892 3893 3894 3895 3896
						       cache->key.objectid,
						       cache->key.offset);
			if (ret > 0) {
				struct btrfs_trans_handle *trans;

				trans = btrfs_join_transaction(root);
				if (IS_ERR(trans))
					ret = PTR_ERR(trans);
				else
3897
					ret = btrfs_commit_transaction(trans);
3898 3899 3900 3901 3902 3903 3904
				if (ret) {
					scrub_pause_off(fs_info);
					btrfs_put_block_group(cache);
					break;
				}
			}
		}
3905
		scrub_pause_off(fs_info);
3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918

		if (ret == 0) {
			ro_set = 1;
		} else if (ret == -ENOSPC) {
			/*
			 * btrfs_inc_block_group_ro return -ENOSPC when it
			 * failed in creating new chunk for metadata.
			 * It is not a problem for scrub/replace, because
			 * metadata are always cowed, and our scrub paused
			 * commit_transactions.
			 */
			ro_set = 0;
		} else {
J
Jeff Mahoney 已提交
3919
			btrfs_warn(fs_info,
3920
				   "failed setting block group ro: %d", ret);
3921 3922 3923 3924
			btrfs_put_block_group(cache);
			break;
		}

3925
		btrfs_dev_replace_write_lock(&fs_info->dev_replace);
3926 3927 3928
		dev_replace->cursor_right = found_key.offset + length;
		dev_replace->cursor_left = found_key.offset;
		dev_replace->item_needs_writeback = 1;
3929
		btrfs_dev_replace_write_unlock(&fs_info->dev_replace);
3930
		ret = scrub_chunk(sctx, scrub_dev, chunk_offset, length,
3931
				  found_key.offset, cache, is_dev_replace);
3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942

		/*
		 * flush, submit all pending read and write bios, afterwards
		 * wait for them.
		 * Note that in the dev replace case, a read request causes
		 * write requests that are submitted in the read completion
		 * worker. Therefore in the current situation, it is required
		 * that all write requests are flushed, so that all read and
		 * write requests are really completed when bios_in_flight
		 * changes to 0.
		 */
3943
		sctx->flush_all_writes = true;
3944
		scrub_submit(sctx);
3945
		mutex_lock(&sctx->wr_lock);
3946
		scrub_wr_submit(sctx);
3947
		mutex_unlock(&sctx->wr_lock);
3948 3949 3950

		wait_event(sctx->list_wait,
			   atomic_read(&sctx->bios_in_flight) == 0);
3951 3952

		scrub_pause_on(fs_info);
3953 3954 3955 3956 3957 3958

		/*
		 * must be called before we decrease @scrub_paused.
		 * make sure we don't block transaction commit while
		 * we are waiting pending workers finished.
		 */
3959 3960
		wait_event(sctx->list_wait,
			   atomic_read(&sctx->workers_pending) == 0);
3961
		sctx->flush_all_writes = false;
3962

3963
		scrub_pause_off(fs_info);
3964

3965
		btrfs_dev_replace_write_lock(&fs_info->dev_replace);
3966 3967
		dev_replace->cursor_left = dev_replace->cursor_right;
		dev_replace->item_needs_writeback = 1;
3968
		btrfs_dev_replace_write_unlock(&fs_info->dev_replace);
3969

3970
		if (ro_set)
3971
			btrfs_dec_block_group_ro(cache);
3972

3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986
		/*
		 * We might have prevented the cleaner kthread from deleting
		 * this block group if it was already unused because we raced
		 * and set it to RO mode first. So add it back to the unused
		 * list, otherwise it might not ever be deleted unless a manual
		 * balance is triggered or it becomes used and unused again.
		 */
		spin_lock(&cache->lock);
		if (!cache->removed && !cache->ro && cache->reserved == 0 &&
		    btrfs_block_group_used(&cache->item) == 0) {
			spin_unlock(&cache->lock);
			spin_lock(&fs_info->unused_bgs_lock);
			if (list_empty(&cache->bg_list)) {
				btrfs_get_block_group(cache);
3987
				trace_btrfs_add_unused_block_group(cache);
3988 3989 3990 3991 3992 3993 3994 3995
				list_add_tail(&cache->bg_list,
					      &fs_info->unused_bgs);
			}
			spin_unlock(&fs_info->unused_bgs_lock);
		} else {
			spin_unlock(&cache->lock);
		}

A
Arne Jansen 已提交
3996 3997 3998
		btrfs_put_block_group(cache);
		if (ret)
			break;
3999 4000
		if (is_dev_replace &&
		    atomic64_read(&dev_replace->num_write_errors) > 0) {
4001 4002 4003 4004 4005 4006 4007
			ret = -EIO;
			break;
		}
		if (sctx->stat.malloc_errors > 0) {
			ret = -ENOMEM;
			break;
		}
4008
skip:
A
Arne Jansen 已提交
4009
		key.offset = found_key.offset + length;
C
Chris Mason 已提交
4010
		btrfs_release_path(path);
A
Arne Jansen 已提交
4011 4012 4013
	}

	btrfs_free_path(path);
4014

4015
	return ret;
A
Arne Jansen 已提交
4016 4017
}

4018 4019
static noinline_for_stack int scrub_supers(struct scrub_ctx *sctx,
					   struct btrfs_device *scrub_dev)
A
Arne Jansen 已提交
4020 4021 4022 4023 4024
{
	int	i;
	u64	bytenr;
	u64	gen;
	int	ret;
4025
	struct btrfs_fs_info *fs_info = sctx->fs_info;
A
Arne Jansen 已提交
4026

4027
	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
4028 4029
		return -EIO;

4030
	/* Seed devices of a new filesystem has their own generation. */
4031
	if (scrub_dev->fs_devices != fs_info->fs_devices)
4032 4033
		gen = scrub_dev->generation;
	else
4034
		gen = fs_info->last_trans_committed;
A
Arne Jansen 已提交
4035 4036 4037

	for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
		bytenr = btrfs_sb_offset(i);
4038 4039
		if (bytenr + BTRFS_SUPER_INFO_SIZE >
		    scrub_dev->commit_total_bytes)
A
Arne Jansen 已提交
4040 4041
			break;

4042
		ret = scrub_pages(sctx, bytenr, BTRFS_SUPER_INFO_SIZE, bytenr,
4043
				  scrub_dev, BTRFS_EXTENT_FLAG_SUPER, gen, i,
4044
				  NULL, 1, bytenr);
A
Arne Jansen 已提交
4045 4046 4047
		if (ret)
			return ret;
	}
4048
	wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
A
Arne Jansen 已提交
4049 4050 4051 4052 4053 4054 4055

	return 0;
}

/*
 * get a reference count on fs_info->scrub_workers. start worker if necessary
 */
4056 4057
static noinline_for_stack int scrub_workers_get(struct btrfs_fs_info *fs_info,
						int is_dev_replace)
A
Arne Jansen 已提交
4058
{
4059
	unsigned int flags = WQ_FREEZABLE | WQ_UNBOUND;
4060
	int max_active = fs_info->thread_pool_size;
A
Arne Jansen 已提交
4061

A
Arne Jansen 已提交
4062
	if (fs_info->scrub_workers_refcnt == 0) {
4063 4064
		fs_info->scrub_workers = btrfs_alloc_workqueue(fs_info, "scrub",
				flags, is_dev_replace ? 1 : max_active, 4);
4065 4066 4067
		if (!fs_info->scrub_workers)
			goto fail_scrub_workers;

4068
		fs_info->scrub_wr_completion_workers =
4069
			btrfs_alloc_workqueue(fs_info, "scrubwrc", flags,
4070
					      max_active, 2);
4071 4072 4073
		if (!fs_info->scrub_wr_completion_workers)
			goto fail_scrub_wr_completion_workers;

4074
		fs_info->scrub_nocow_workers =
4075
			btrfs_alloc_workqueue(fs_info, "scrubnc", flags, 1, 0);
4076 4077
		if (!fs_info->scrub_nocow_workers)
			goto fail_scrub_nocow_workers;
4078
		fs_info->scrub_parity_workers =
4079
			btrfs_alloc_workqueue(fs_info, "scrubparity", flags,
4080
					      max_active, 2);
4081 4082
		if (!fs_info->scrub_parity_workers)
			goto fail_scrub_parity_workers;
A
Arne Jansen 已提交
4083
	}
A
Arne Jansen 已提交
4084
	++fs_info->scrub_workers_refcnt;
4085 4086 4087 4088 4089 4090 4091 4092 4093 4094
	return 0;

fail_scrub_parity_workers:
	btrfs_destroy_workqueue(fs_info->scrub_nocow_workers);
fail_scrub_nocow_workers:
	btrfs_destroy_workqueue(fs_info->scrub_wr_completion_workers);
fail_scrub_wr_completion_workers:
	btrfs_destroy_workqueue(fs_info->scrub_workers);
fail_scrub_workers:
	return -ENOMEM;
A
Arne Jansen 已提交
4095 4096
}

4097
static noinline_for_stack void scrub_workers_put(struct btrfs_fs_info *fs_info)
A
Arne Jansen 已提交
4098
{
4099
	if (--fs_info->scrub_workers_refcnt == 0) {
4100 4101 4102
		btrfs_destroy_workqueue(fs_info->scrub_workers);
		btrfs_destroy_workqueue(fs_info->scrub_wr_completion_workers);
		btrfs_destroy_workqueue(fs_info->scrub_nocow_workers);
4103
		btrfs_destroy_workqueue(fs_info->scrub_parity_workers);
4104
	}
A
Arne Jansen 已提交
4105 4106 4107
	WARN_ON(fs_info->scrub_workers_refcnt < 0);
}

4108 4109
int btrfs_scrub_dev(struct btrfs_fs_info *fs_info, u64 devid, u64 start,
		    u64 end, struct btrfs_scrub_progress *progress,
4110
		    int readonly, int is_dev_replace)
A
Arne Jansen 已提交
4111
{
4112
	struct scrub_ctx *sctx;
A
Arne Jansen 已提交
4113 4114
	int ret;
	struct btrfs_device *dev;
4115
	struct rcu_string *name;
A
Arne Jansen 已提交
4116

4117
	if (btrfs_fs_closing(fs_info))
A
Arne Jansen 已提交
4118 4119
		return -EINVAL;

4120
	if (fs_info->nodesize > BTRFS_STRIPE_LEN) {
4121 4122 4123 4124 4125
		/*
		 * in this case scrub is unable to calculate the checksum
		 * the way scrub is implemented. Do not handle this
		 * situation at all because it won't ever happen.
		 */
4126 4127
		btrfs_err(fs_info,
			   "scrub: size assumption nodesize <= BTRFS_STRIPE_LEN (%d <= %d) fails",
4128 4129
		       fs_info->nodesize,
		       BTRFS_STRIPE_LEN);
4130 4131 4132
		return -EINVAL;
	}

4133
	if (fs_info->sectorsize != PAGE_SIZE) {
4134
		/* not supported for data w/o checksums */
4135
		btrfs_err_rl(fs_info,
J
Jeff Mahoney 已提交
4136
			   "scrub: size assumption sectorsize != PAGE_SIZE (%d != %lu) fails",
4137
		       fs_info->sectorsize, PAGE_SIZE);
A
Arne Jansen 已提交
4138 4139 4140
		return -EINVAL;
	}

4141
	if (fs_info->nodesize >
4142
	    PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK ||
4143
	    fs_info->sectorsize > PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK) {
4144 4145 4146 4147
		/*
		 * would exhaust the array bounds of pagev member in
		 * struct scrub_block
		 */
J
Jeff Mahoney 已提交
4148 4149
		btrfs_err(fs_info,
			  "scrub: size assumption nodesize and sectorsize <= SCRUB_MAX_PAGES_PER_BLOCK (%d <= %d && %d <= %d) fails",
4150
		       fs_info->nodesize,
4151
		       SCRUB_MAX_PAGES_PER_BLOCK,
4152
		       fs_info->sectorsize,
4153 4154 4155 4156
		       SCRUB_MAX_PAGES_PER_BLOCK);
		return -EINVAL;
	}

A
Arne Jansen 已提交
4157

4158 4159
	mutex_lock(&fs_info->fs_devices->device_list_mutex);
	dev = btrfs_find_device(fs_info, devid, NULL, NULL);
4160 4161
	if (!dev || (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) &&
		     !is_dev_replace)) {
4162
		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
A
Arne Jansen 已提交
4163 4164 4165
		return -ENODEV;
	}

4166 4167
	if (!is_dev_replace && !readonly &&
	    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) {
4168 4169 4170 4171 4172 4173 4174 4175 4176
		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
		rcu_read_lock();
		name = rcu_dereference(dev->name);
		btrfs_err(fs_info, "scrub: device %s is not writable",
			  name->str);
		rcu_read_unlock();
		return -EROFS;
	}

4177
	mutex_lock(&fs_info->scrub_lock);
4178
	if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
4179
	    test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &dev->dev_state)) {
A
Arne Jansen 已提交
4180
		mutex_unlock(&fs_info->scrub_lock);
4181 4182
		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
		return -EIO;
A
Arne Jansen 已提交
4183 4184
	}

4185
	btrfs_dev_replace_read_lock(&fs_info->dev_replace);
4186
	if (dev->scrub_ctx ||
4187 4188
	    (!is_dev_replace &&
	     btrfs_dev_replace_is_ongoing(&fs_info->dev_replace))) {
4189
		btrfs_dev_replace_read_unlock(&fs_info->dev_replace);
A
Arne Jansen 已提交
4190
		mutex_unlock(&fs_info->scrub_lock);
4191
		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
A
Arne Jansen 已提交
4192 4193
		return -EINPROGRESS;
	}
4194
	btrfs_dev_replace_read_unlock(&fs_info->dev_replace);
4195 4196 4197 4198 4199 4200 4201 4202

	ret = scrub_workers_get(fs_info, is_dev_replace);
	if (ret) {
		mutex_unlock(&fs_info->scrub_lock);
		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
		return ret;
	}

4203
	sctx = scrub_setup_ctx(dev, is_dev_replace);
4204
	if (IS_ERR(sctx)) {
A
Arne Jansen 已提交
4205
		mutex_unlock(&fs_info->scrub_lock);
4206 4207
		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
		scrub_workers_put(fs_info);
4208
		return PTR_ERR(sctx);
A
Arne Jansen 已提交
4209
	}
4210
	sctx->readonly = readonly;
4211
	dev->scrub_ctx = sctx;
4212
	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
A
Arne Jansen 已提交
4213

4214 4215 4216 4217
	/*
	 * checking @scrub_pause_req here, we can avoid
	 * race between committing transaction and scrubbing.
	 */
4218
	__scrub_blocked_if_needed(fs_info);
A
Arne Jansen 已提交
4219 4220 4221
	atomic_inc(&fs_info->scrubs_running);
	mutex_unlock(&fs_info->scrub_lock);

4222
	if (!is_dev_replace) {
4223 4224 4225 4226
		/*
		 * by holding device list mutex, we can
		 * kick off writing super in log tree sync.
		 */
4227
		mutex_lock(&fs_info->fs_devices->device_list_mutex);
4228
		ret = scrub_supers(sctx, dev);
4229
		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4230
	}
A
Arne Jansen 已提交
4231 4232

	if (!ret)
4233 4234
		ret = scrub_enumerate_chunks(sctx, dev, start, end,
					     is_dev_replace);
A
Arne Jansen 已提交
4235

4236
	wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
A
Arne Jansen 已提交
4237 4238 4239
	atomic_dec(&fs_info->scrubs_running);
	wake_up(&fs_info->scrub_pause_wait);

4240
	wait_event(sctx->list_wait, atomic_read(&sctx->workers_pending) == 0);
4241

A
Arne Jansen 已提交
4242
	if (progress)
4243
		memcpy(progress, &sctx->stat, sizeof(*progress));
A
Arne Jansen 已提交
4244 4245

	mutex_lock(&fs_info->scrub_lock);
4246
	dev->scrub_ctx = NULL;
4247
	scrub_workers_put(fs_info);
A
Arne Jansen 已提交
4248 4249
	mutex_unlock(&fs_info->scrub_lock);

4250
	scrub_put_ctx(sctx);
A
Arne Jansen 已提交
4251 4252 4253 4254

	return ret;
}

4255
void btrfs_scrub_pause(struct btrfs_fs_info *fs_info)
A
Arne Jansen 已提交
4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269
{
	mutex_lock(&fs_info->scrub_lock);
	atomic_inc(&fs_info->scrub_pause_req);
	while (atomic_read(&fs_info->scrubs_paused) !=
	       atomic_read(&fs_info->scrubs_running)) {
		mutex_unlock(&fs_info->scrub_lock);
		wait_event(fs_info->scrub_pause_wait,
			   atomic_read(&fs_info->scrubs_paused) ==
			   atomic_read(&fs_info->scrubs_running));
		mutex_lock(&fs_info->scrub_lock);
	}
	mutex_unlock(&fs_info->scrub_lock);
}

4270
void btrfs_scrub_continue(struct btrfs_fs_info *fs_info)
A
Arne Jansen 已提交
4271 4272 4273 4274 4275
{
	atomic_dec(&fs_info->scrub_pause_req);
	wake_up(&fs_info->scrub_pause_wait);
}

4276
int btrfs_scrub_cancel(struct btrfs_fs_info *fs_info)
A
Arne Jansen 已提交
4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296
{
	mutex_lock(&fs_info->scrub_lock);
	if (!atomic_read(&fs_info->scrubs_running)) {
		mutex_unlock(&fs_info->scrub_lock);
		return -ENOTCONN;
	}

	atomic_inc(&fs_info->scrub_cancel_req);
	while (atomic_read(&fs_info->scrubs_running)) {
		mutex_unlock(&fs_info->scrub_lock);
		wait_event(fs_info->scrub_pause_wait,
			   atomic_read(&fs_info->scrubs_running) == 0);
		mutex_lock(&fs_info->scrub_lock);
	}
	atomic_dec(&fs_info->scrub_cancel_req);
	mutex_unlock(&fs_info->scrub_lock);

	return 0;
}

4297 4298
int btrfs_scrub_cancel_dev(struct btrfs_fs_info *fs_info,
			   struct btrfs_device *dev)
4299
{
4300
	struct scrub_ctx *sctx;
A
Arne Jansen 已提交
4301 4302

	mutex_lock(&fs_info->scrub_lock);
4303
	sctx = dev->scrub_ctx;
4304
	if (!sctx) {
A
Arne Jansen 已提交
4305 4306 4307
		mutex_unlock(&fs_info->scrub_lock);
		return -ENOTCONN;
	}
4308
	atomic_inc(&sctx->cancel_req);
4309
	while (dev->scrub_ctx) {
A
Arne Jansen 已提交
4310 4311
		mutex_unlock(&fs_info->scrub_lock);
		wait_event(fs_info->scrub_pause_wait,
4312
			   dev->scrub_ctx == NULL);
A
Arne Jansen 已提交
4313 4314 4315 4316 4317 4318
		mutex_lock(&fs_info->scrub_lock);
	}
	mutex_unlock(&fs_info->scrub_lock);

	return 0;
}
S
Stefan Behrens 已提交
4319

4320
int btrfs_scrub_progress(struct btrfs_fs_info *fs_info, u64 devid,
A
Arne Jansen 已提交
4321 4322 4323
			 struct btrfs_scrub_progress *progress)
{
	struct btrfs_device *dev;
4324
	struct scrub_ctx *sctx = NULL;
A
Arne Jansen 已提交
4325

4326 4327
	mutex_lock(&fs_info->fs_devices->device_list_mutex);
	dev = btrfs_find_device(fs_info, devid, NULL, NULL);
A
Arne Jansen 已提交
4328
	if (dev)
4329
		sctx = dev->scrub_ctx;
4330 4331
	if (sctx)
		memcpy(progress, &sctx->stat, sizeof(*progress));
4332
	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
A
Arne Jansen 已提交
4333

4334
	return dev ? (sctx ? 0 : -ENOTCONN) : -ENODEV;
A
Arne Jansen 已提交
4335
}
4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347

static void scrub_remap_extent(struct btrfs_fs_info *fs_info,
			       u64 extent_logical, u64 extent_len,
			       u64 *extent_physical,
			       struct btrfs_device **extent_dev,
			       int *extent_mirror_num)
{
	u64 mapped_length;
	struct btrfs_bio *bbio = NULL;
	int ret;

	mapped_length = extent_len;
4348
	ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, extent_logical,
4349 4350 4351
			      &mapped_length, &bbio, 0);
	if (ret || !bbio || mapped_length < extent_len ||
	    !bbio->stripes[0].dev->bdev) {
4352
		btrfs_put_bbio(bbio);
4353 4354 4355 4356 4357 4358
		return;
	}

	*extent_physical = bbio->stripes[0].physical;
	*extent_mirror_num = bbio->mirror_num;
	*extent_dev = bbio->stripes[0].dev;
4359
	btrfs_put_bbio(bbio);
4360 4361 4362 4363 4364 4365
}

static int copy_nocow_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
			    int mirror_num, u64 physical_for_dev_replace)
{
	struct scrub_copy_nocow_ctx *nocow_ctx;
4366
	struct btrfs_fs_info *fs_info = sctx->fs_info;
4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382

	nocow_ctx = kzalloc(sizeof(*nocow_ctx), GFP_NOFS);
	if (!nocow_ctx) {
		spin_lock(&sctx->stat_lock);
		sctx->stat.malloc_errors++;
		spin_unlock(&sctx->stat_lock);
		return -ENOMEM;
	}

	scrub_pending_trans_workers_inc(sctx);

	nocow_ctx->sctx = sctx;
	nocow_ctx->logical = logical;
	nocow_ctx->len = len;
	nocow_ctx->mirror_num = mirror_num;
	nocow_ctx->physical_for_dev_replace = physical_for_dev_replace;
4383 4384
	btrfs_init_work(&nocow_ctx->work, btrfs_scrubnc_helper,
			copy_nocow_pages_worker, NULL, NULL);
4385
	INIT_LIST_HEAD(&nocow_ctx->inodes);
4386 4387
	btrfs_queue_work(fs_info->scrub_nocow_workers,
			 &nocow_ctx->work);
4388 4389 4390 4391

	return 0;
}

4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408
static int record_inode_for_nocow(u64 inum, u64 offset, u64 root, void *ctx)
{
	struct scrub_copy_nocow_ctx *nocow_ctx = ctx;
	struct scrub_nocow_inode *nocow_inode;

	nocow_inode = kzalloc(sizeof(*nocow_inode), GFP_NOFS);
	if (!nocow_inode)
		return -ENOMEM;
	nocow_inode->inum = inum;
	nocow_inode->offset = offset;
	nocow_inode->root = root;
	list_add_tail(&nocow_inode->list, &nocow_ctx->inodes);
	return 0;
}

#define COPY_COMPLETE 1

4409 4410 4411 4412 4413
static void copy_nocow_pages_worker(struct btrfs_work *work)
{
	struct scrub_copy_nocow_ctx *nocow_ctx =
		container_of(work, struct scrub_copy_nocow_ctx, work);
	struct scrub_ctx *sctx = nocow_ctx->sctx;
4414 4415
	struct btrfs_fs_info *fs_info = sctx->fs_info;
	struct btrfs_root *root = fs_info->extent_root;
4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440
	u64 logical = nocow_ctx->logical;
	u64 len = nocow_ctx->len;
	int mirror_num = nocow_ctx->mirror_num;
	u64 physical_for_dev_replace = nocow_ctx->physical_for_dev_replace;
	int ret;
	struct btrfs_trans_handle *trans = NULL;
	struct btrfs_path *path;
	int not_written = 0;

	path = btrfs_alloc_path();
	if (!path) {
		spin_lock(&sctx->stat_lock);
		sctx->stat.malloc_errors++;
		spin_unlock(&sctx->stat_lock);
		not_written = 1;
		goto out;
	}

	trans = btrfs_join_transaction(root);
	if (IS_ERR(trans)) {
		not_written = 1;
		goto out;
	}

	ret = iterate_inodes_from_logical(logical, fs_info, path,
4441
			record_inode_for_nocow, nocow_ctx, false);
4442
	if (ret != 0 && ret != -ENOENT) {
J
Jeff Mahoney 已提交
4443 4444 4445 4446
		btrfs_warn(fs_info,
			   "iterate_inodes_from_logical() failed: log %llu, phys %llu, len %llu, mir %u, ret %d",
			   logical, physical_for_dev_replace, len, mirror_num,
			   ret);
4447 4448 4449 4450
		not_written = 1;
		goto out;
	}

4451
	btrfs_end_transaction(trans);
4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468
	trans = NULL;
	while (!list_empty(&nocow_ctx->inodes)) {
		struct scrub_nocow_inode *entry;
		entry = list_first_entry(&nocow_ctx->inodes,
					 struct scrub_nocow_inode,
					 list);
		list_del_init(&entry->list);
		ret = copy_nocow_pages_for_inode(entry->inum, entry->offset,
						 entry->root, nocow_ctx);
		kfree(entry);
		if (ret == COPY_COMPLETE) {
			ret = 0;
			break;
		} else if (ret) {
			break;
		}
	}
4469
out:
4470 4471 4472 4473 4474 4475 4476 4477
	while (!list_empty(&nocow_ctx->inodes)) {
		struct scrub_nocow_inode *entry;
		entry = list_first_entry(&nocow_ctx->inodes,
					 struct scrub_nocow_inode,
					 list);
		list_del_init(&entry->list);
		kfree(entry);
	}
4478
	if (trans && !IS_ERR(trans))
4479
		btrfs_end_transaction(trans);
4480 4481 4482 4483 4484 4485 4486 4487 4488 4489
	if (not_written)
		btrfs_dev_replace_stats_inc(&fs_info->dev_replace.
					    num_uncorrectable_read_errors);

	btrfs_free_path(path);
	kfree(nocow_ctx);

	scrub_pending_trans_workers_dec(sctx);
}

4490
static int check_extent_to_block(struct btrfs_inode *inode, u64 start, u64 len,
4491 4492 4493 4494 4495 4496 4497 4498 4499
				 u64 logical)
{
	struct extent_state *cached_state = NULL;
	struct btrfs_ordered_extent *ordered;
	struct extent_io_tree *io_tree;
	struct extent_map *em;
	u64 lockstart = start, lockend = start + len - 1;
	int ret = 0;

4500
	io_tree = &inode->io_tree;
4501

4502
	lock_extent_bits(io_tree, lockstart, lockend, &cached_state);
4503
	ordered = btrfs_lookup_ordered_range(inode, lockstart, len);
4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520
	if (ordered) {
		btrfs_put_ordered_extent(ordered);
		ret = 1;
		goto out_unlock;
	}

	em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
	if (IS_ERR(em)) {
		ret = PTR_ERR(em);
		goto out_unlock;
	}

	/*
	 * This extent does not actually cover the logical extent anymore,
	 * move on to the next inode.
	 */
	if (em->block_start > logical ||
4521 4522
	    em->block_start + em->block_len < logical + len ||
	    test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
4523 4524 4525 4526 4527 4528 4529
		free_extent_map(em);
		ret = 1;
		goto out_unlock;
	}
	free_extent_map(em);

out_unlock:
4530
	unlock_extent_cached(io_tree, lockstart, lockend, &cached_state);
4531 4532 4533
	return ret;
}

4534 4535
static int copy_nocow_pages_for_inode(u64 inum, u64 offset, u64 root,
				      struct scrub_copy_nocow_ctx *nocow_ctx)
4536
{
4537
	struct btrfs_fs_info *fs_info = nocow_ctx->sctx->fs_info;
4538
	struct btrfs_key key;
4539 4540
	struct inode *inode;
	struct page *page;
4541
	struct btrfs_root *local_root;
4542
	struct extent_io_tree *io_tree;
4543
	u64 physical_for_dev_replace;
4544
	u64 nocow_ctx_logical;
4545
	u64 len = nocow_ctx->len;
4546
	unsigned long index;
4547
	int srcu_index;
4548 4549
	int ret = 0;
	int err = 0;
4550 4551 4552 4553

	key.objectid = root;
	key.type = BTRFS_ROOT_ITEM_KEY;
	key.offset = (u64)-1;
4554 4555 4556

	srcu_index = srcu_read_lock(&fs_info->subvol_srcu);

4557
	local_root = btrfs_read_fs_root_no_name(fs_info, &key);
4558 4559
	if (IS_ERR(local_root)) {
		srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
4560
		return PTR_ERR(local_root);
4561
	}
4562 4563 4564 4565 4566

	key.type = BTRFS_INODE_ITEM_KEY;
	key.objectid = inum;
	key.offset = 0;
	inode = btrfs_iget(fs_info->sb, &key, local_root, NULL);
4567
	srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
4568 4569 4570
	if (IS_ERR(inode))
		return PTR_ERR(inode);

4571
	/* Avoid truncate/dio/punch hole.. */
A
Al Viro 已提交
4572
	inode_lock(inode);
4573 4574
	inode_dio_wait(inode);

4575
	physical_for_dev_replace = nocow_ctx->physical_for_dev_replace;
4576
	io_tree = &BTRFS_I(inode)->io_tree;
4577
	nocow_ctx_logical = nocow_ctx->logical;
4578

4579 4580
	ret = check_extent_to_block(BTRFS_I(inode), offset, len,
			nocow_ctx_logical);
4581 4582 4583
	if (ret) {
		ret = ret > 0 ? 0 : ret;
		goto out;
4584 4585
	}

4586 4587
	while (len >= PAGE_SIZE) {
		index = offset >> PAGE_SHIFT;
4588
again:
4589 4590
		page = find_or_create_page(inode->i_mapping, index, GFP_NOFS);
		if (!page) {
4591
			btrfs_err(fs_info, "find_or_create_page() failed");
4592
			ret = -ENOMEM;
4593
			goto out;
4594 4595 4596 4597 4598 4599 4600
		}

		if (PageUptodate(page)) {
			if (PageDirty(page))
				goto next_page;
		} else {
			ClearPageError(page);
4601
			err = extent_read_full_page(io_tree, page,
4602 4603
							   btrfs_get_extent,
							   nocow_ctx->mirror_num);
4604 4605
			if (err) {
				ret = err;
4606 4607
				goto next_page;
			}
4608

4609
			lock_page(page);
4610 4611 4612 4613 4614 4615 4616
			/*
			 * If the page has been remove from the page cache,
			 * the data on it is meaningless, because it may be
			 * old one, the new data may be written into the new
			 * page in the page cache.
			 */
			if (page->mapping != inode->i_mapping) {
4617
				unlock_page(page);
4618
				put_page(page);
4619 4620
				goto again;
			}
4621 4622 4623 4624 4625
			if (!PageUptodate(page)) {
				ret = -EIO;
				goto next_page;
			}
		}
4626

4627
		ret = check_extent_to_block(BTRFS_I(inode), offset, len,
4628 4629 4630 4631 4632 4633
					    nocow_ctx_logical);
		if (ret) {
			ret = ret > 0 ? 0 : ret;
			goto next_page;
		}

4634 4635 4636 4637
		err = write_page_nocow(nocow_ctx->sctx,
				       physical_for_dev_replace, page);
		if (err)
			ret = err;
4638
next_page:
4639
		unlock_page(page);
4640
		put_page(page);
4641 4642 4643 4644

		if (ret)
			break;

4645 4646 4647 4648
		offset += PAGE_SIZE;
		physical_for_dev_replace += PAGE_SIZE;
		nocow_ctx_logical += PAGE_SIZE;
		len -= PAGE_SIZE;
4649
	}
4650
	ret = COPY_COMPLETE;
4651
out:
A
Al Viro 已提交
4652
	inode_unlock(inode);
4653
	iput(inode);
4654 4655 4656 4657 4658 4659 4660 4661 4662
	return ret;
}

static int write_page_nocow(struct scrub_ctx *sctx,
			    u64 physical_for_dev_replace, struct page *page)
{
	struct bio *bio;
	struct btrfs_device *dev;

4663
	dev = sctx->wr_tgtdev;
4664 4665 4666
	if (!dev)
		return -EIO;
	if (!dev->bdev) {
4667
		btrfs_warn_rl(dev->fs_info,
4668
			"scrub write_page_nocow(bdev == NULL) is unexpected");
4669 4670
		return -EIO;
	}
4671
	bio = btrfs_io_bio_alloc(1);
4672 4673
	bio->bi_iter.bi_size = 0;
	bio->bi_iter.bi_sector = physical_for_dev_replace >> 9;
4674
	bio_set_dev(bio, dev->bdev);
4675
	bio->bi_opf = REQ_OP_WRITE | REQ_SYNC;
4676 4677 4678 4679
	/* bio_add_page won't fail on a freshly allocated bio */
	bio_add_page(bio, page, PAGE_SIZE, 0);

	if (btrfsic_submit_bio_wait(bio)) {
4680 4681 4682 4683 4684 4685 4686 4687
		bio_put(bio);
		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
		return -EIO;
	}

	bio_put(bio);
	return 0;
}