intel_pstate.c 67.5 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-only
2
/*
3
 * intel_pstate.c: Native P state management for Intel processors
4 5 6 7 8
 *
 * (C) Copyright 2012 Intel Corporation
 * Author: Dirk Brandewie <dirk.j.brandewie@intel.com>
 */

J
Joe Perches 已提交
9 10
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

11 12 13 14 15 16 17
#include <linux/kernel.h>
#include <linux/kernel_stat.h>
#include <linux/module.h>
#include <linux/ktime.h>
#include <linux/hrtimer.h>
#include <linux/tick.h>
#include <linux/slab.h>
18
#include <linux/sched/cpufreq.h>
19 20 21 22 23 24
#include <linux/list.h>
#include <linux/cpu.h>
#include <linux/cpufreq.h>
#include <linux/sysfs.h>
#include <linux/types.h>
#include <linux/fs.h>
25
#include <linux/acpi.h>
26
#include <linux/vmalloc.h>
27 28 29 30 31
#include <trace/events/power.h>

#include <asm/div64.h>
#include <asm/msr.h>
#include <asm/cpu_device_id.h>
32
#include <asm/cpufeature.h>
33
#include <asm/intel-family.h>
34

35
#define INTEL_PSTATE_SAMPLING_INTERVAL	(10 * NSEC_PER_MSEC)
36

37
#define INTEL_CPUFREQ_TRANSITION_LATENCY	20000
38
#define INTEL_CPUFREQ_TRANSITION_DELAY		500
39

40 41
#ifdef CONFIG_ACPI
#include <acpi/processor.h>
42
#include <acpi/cppc_acpi.h>
43 44
#endif

45
#define FRAC_BITS 8
46 47
#define int_tofp(X) ((int64_t)(X) << FRAC_BITS)
#define fp_toint(X) ((X) >> FRAC_BITS)
48

49 50
#define ONE_EIGHTH_FP ((int64_t)1 << (FRAC_BITS - 3))

51 52
#define EXT_BITS 6
#define EXT_FRAC_BITS (EXT_BITS + FRAC_BITS)
53 54
#define fp_ext_toint(X) ((X) >> EXT_FRAC_BITS)
#define int_ext_tofp(X) ((int64_t)(X) << EXT_FRAC_BITS)
55

56 57 58 59 60
static inline int32_t mul_fp(int32_t x, int32_t y)
{
	return ((int64_t)x * (int64_t)y) >> FRAC_BITS;
}

61
static inline int32_t div_fp(s64 x, s64 y)
62
{
63
	return div64_s64((int64_t)x << FRAC_BITS, y);
64 65
}

66 67 68 69 70 71 72 73 74 75 76
static inline int ceiling_fp(int32_t x)
{
	int mask, ret;

	ret = fp_toint(x);
	mask = (1 << FRAC_BITS) - 1;
	if (x & mask)
		ret += 1;
	return ret;
}

77 78 79 80 81
static inline int32_t percent_fp(int percent)
{
	return div_fp(percent, 100);
}

82 83 84 85 86 87 88 89 90 91
static inline u64 mul_ext_fp(u64 x, u64 y)
{
	return (x * y) >> EXT_FRAC_BITS;
}

static inline u64 div_ext_fp(u64 x, u64 y)
{
	return div64_u64(x << EXT_FRAC_BITS, y);
}

92 93 94 95 96
static inline int32_t percent_ext_fp(int percent)
{
	return div_ext_fp(percent, 100);
}

97 98
/**
 * struct sample -	Store performance sample
99
 * @core_avg_perf:	Ratio of APERF/MPERF which is the actual average
100 101
 *			performance during last sample period
 * @busy_scaled:	Scaled busy value which is used to calculate next
102
 *			P state. This can be different than core_avg_perf
103 104 105 106 107 108 109 110 111 112 113 114
 *			to account for cpu idle period
 * @aperf:		Difference of actual performance frequency clock count
 *			read from APERF MSR between last and current sample
 * @mperf:		Difference of maximum performance frequency clock count
 *			read from MPERF MSR between last and current sample
 * @tsc:		Difference of time stamp counter between last and
 *			current sample
 * @time:		Current time from scheduler
 *
 * This structure is used in the cpudata structure to store performance sample
 * data for choosing next P State.
 */
115
struct sample {
116
	int32_t core_avg_perf;
117
	int32_t busy_scaled;
118 119
	u64 aperf;
	u64 mperf;
120
	u64 tsc;
121
	u64 time;
122 123
};

124 125 126 127 128 129 130 131 132 133 134
/**
 * struct pstate_data - Store P state data
 * @current_pstate:	Current requested P state
 * @min_pstate:		Min P state possible for this platform
 * @max_pstate:		Max P state possible for this platform
 * @max_pstate_physical:This is physical Max P state for a processor
 *			This can be higher than the max_pstate which can
 *			be limited by platform thermal design power limits
 * @scaling:		Scaling factor to  convert frequency to cpufreq
 *			frequency units
 * @turbo_pstate:	Max Turbo P state possible for this platform
135 136
 * @max_freq:		@max_pstate frequency in cpufreq units
 * @turbo_freq:		@turbo_pstate frequency in cpufreq units
137 138 139
 *
 * Stores the per cpu model P state limits and current P state.
 */
140 141 142 143
struct pstate_data {
	int	current_pstate;
	int	min_pstate;
	int	max_pstate;
144
	int	max_pstate_physical;
145
	int	scaling;
146
	int	turbo_pstate;
147 148
	unsigned int max_freq;
	unsigned int turbo_freq;
149 150
};

151 152 153 154 155 156 157 158 159 160 161 162 163
/**
 * struct vid_data -	Stores voltage information data
 * @min:		VID data for this platform corresponding to
 *			the lowest P state
 * @max:		VID data corresponding to the highest P State.
 * @turbo:		VID data for turbo P state
 * @ratio:		Ratio of (vid max - vid min) /
 *			(max P state - Min P State)
 *
 * Stores the voltage data for DVFS (Dynamic Voltage and Frequency Scaling)
 * This data is used in Atom platforms, where in addition to target P state,
 * the voltage data needs to be specified to select next P State.
 */
164
struct vid_data {
165 166 167
	int min;
	int max;
	int turbo;
168 169 170
	int32_t ratio;
};

171 172 173 174 175 176 177
/**
 * struct global_params - Global parameters, mostly tunable via sysfs.
 * @no_turbo:		Whether or not to use turbo P-states.
 * @turbo_disabled:	Whethet or not turbo P-states are available at all,
 *			based on the MSR_IA32_MISC_ENABLE value and whether or
 *			not the maximum reported turbo P-state is different from
 *			the maximum reported non-turbo one.
178
 * @turbo_disabled_mf:	The @turbo_disabled value reflected by cpuinfo.max_freq.
179 180 181 182 183 184 185 186
 * @min_perf_pct:	Minimum capacity limit in percent of the maximum turbo
 *			P-state capacity.
 * @max_perf_pct:	Maximum capacity limit in percent of the maximum turbo
 *			P-state capacity.
 */
struct global_params {
	bool no_turbo;
	bool turbo_disabled;
187
	bool turbo_disabled_mf;
188 189
	int max_perf_pct;
	int min_perf_pct;
190 191
};

192 193 194
/**
 * struct cpudata -	Per CPU instance data storage
 * @cpu:		CPU number for this instance data
195
 * @policy:		CPUFreq policy value
196
 * @update_util:	CPUFreq utility callback information
197
 * @update_util_set:	CPUFreq utility callback is set
198 199
 * @iowait_boost:	iowait-related boost fraction
 * @last_update:	Time of the last update.
200 201 202
 * @pstate:		Stores P state limits for this CPU
 * @vid:		Stores VID limits for this CPU
 * @last_sample_time:	Last Sample time
203 204 205
 * @aperf_mperf_shift:	Number of clock cycles after aperf, merf is incremented
 *			This shift is a multiplier to mperf delta to
 *			calculate CPU busy.
206 207 208 209 210 211
 * @prev_aperf:		Last APERF value read from APERF MSR
 * @prev_mperf:		Last MPERF value read from MPERF MSR
 * @prev_tsc:		Last timestamp counter (TSC) value
 * @prev_cummulative_iowait: IO Wait time difference from last and
 *			current sample
 * @sample:		Storage for storing last Sample data
212 213
 * @min_perf_ratio:	Minimum capacity in terms of PERF or HWP ratios
 * @max_perf_ratio:	Maximum capacity in terms of PERF or HWP ratios
214 215
 * @acpi_perf_data:	Stores ACPI perf information read from _PSS
 * @valid_pss_table:	Set to true for valid ACPI _PSS entries found
216 217 218
 * @epp_powersave:	Last saved HWP energy performance preference
 *			(EPP) or energy performance bias (EPB),
 *			when policy switched to performance
219
 * @epp_policy:		Last saved policy used to set EPP/EPB
220 221 222 223
 * @epp_default:	Power on default HWP energy performance
 *			preference/bias
 * @epp_saved:		Saved EPP/EPB during system suspend or CPU offline
 *			operation
224 225
 * @hwp_req_cached:	Cached value of the last HWP Request MSR
 * @hwp_cap_cached:	Cached value of the last HWP Capabilities MSR
226 227
 * @last_io_update:	Last time when IO wake flag was set
 * @sched_flags:	Store scheduler flags for possible cross CPU update
228
 * @hwp_boost_min:	Last HWP boosted min performance
229 230 231
 *
 * This structure stores per CPU instance data for all CPUs.
 */
232 233 234
struct cpudata {
	int cpu;

235
	unsigned int policy;
236
	struct update_util_data update_util;
237
	bool   update_util_set;
238 239

	struct pstate_data pstate;
240
	struct vid_data vid;
241

242
	u64	last_update;
243
	u64	last_sample_time;
244
	u64	aperf_mperf_shift;
245 246
	u64	prev_aperf;
	u64	prev_mperf;
247
	u64	prev_tsc;
248
	u64	prev_cummulative_iowait;
249
	struct sample sample;
250 251
	int32_t	min_perf_ratio;
	int32_t	max_perf_ratio;
252 253 254 255
#ifdef CONFIG_ACPI
	struct acpi_processor_performance acpi_perf_data;
	bool valid_pss_table;
#endif
256
	unsigned int iowait_boost;
257
	s16 epp_powersave;
258
	s16 epp_policy;
259 260
	s16 epp_default;
	s16 epp_saved;
261 262
	u64 hwp_req_cached;
	u64 hwp_cap_cached;
263 264
	u64 last_io_update;
	unsigned int sched_flags;
265
	u32 hwp_boost_min;
266 267 268
};

static struct cpudata **all_cpu_data;
269 270 271 272 273 274 275 276 277 278 279 280 281 282

/**
 * struct pstate_funcs - Per CPU model specific callbacks
 * @get_max:		Callback to get maximum non turbo effective P state
 * @get_max_physical:	Callback to get maximum non turbo physical P state
 * @get_min:		Callback to get minimum P state
 * @get_turbo:		Callback to get turbo P state
 * @get_scaling:	Callback to get frequency scaling factor
 * @get_val:		Callback to convert P state to actual MSR write value
 * @get_vid:		Callback to get VID data for Atom platforms
 *
 * Core and Atom CPU models have different way to get P State limits. This
 * structure is used to store those callbacks.
 */
283 284
struct pstate_funcs {
	int (*get_max)(void);
285
	int (*get_max_physical)(void);
286 287
	int (*get_min)(void);
	int (*get_turbo)(void);
288
	int (*get_scaling)(void);
289
	int (*get_aperf_mperf_shift)(void);
290
	u64 (*get_val)(struct cpudata*, int pstate);
291
	void (*get_vid)(struct cpudata *);
292 293
};

294
static struct pstate_funcs pstate_funcs __read_mostly;
295

296
static int hwp_active __read_mostly;
297
static int hwp_mode_bdw __read_mostly;
298
static bool per_cpu_limits __read_mostly;
299
static bool hwp_boost __read_mostly;
300

301
static struct cpufreq_driver *intel_pstate_driver __read_mostly;
302

303 304 305
#ifdef CONFIG_ACPI
static bool acpi_ppc;
#endif
306

307
static struct global_params global;
308

309
static DEFINE_MUTEX(intel_pstate_driver_lock);
310 311
static DEFINE_MUTEX(intel_pstate_limits_lock);

312
#ifdef CONFIG_ACPI
313

314
static bool intel_pstate_acpi_pm_profile_server(void)
315 316 317 318 319
{
	if (acpi_gbl_FADT.preferred_profile == PM_ENTERPRISE_SERVER ||
	    acpi_gbl_FADT.preferred_profile == PM_PERFORMANCE_SERVER)
		return true;

320 321 322 323 324 325 326 327
	return false;
}

static bool intel_pstate_get_ppc_enable_status(void)
{
	if (intel_pstate_acpi_pm_profile_server())
		return true;

328 329 330
	return acpi_ppc;
}

331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375
#ifdef CONFIG_ACPI_CPPC_LIB

/* The work item is needed to avoid CPU hotplug locking issues */
static void intel_pstste_sched_itmt_work_fn(struct work_struct *work)
{
	sched_set_itmt_support();
}

static DECLARE_WORK(sched_itmt_work, intel_pstste_sched_itmt_work_fn);

static void intel_pstate_set_itmt_prio(int cpu)
{
	struct cppc_perf_caps cppc_perf;
	static u32 max_highest_perf = 0, min_highest_perf = U32_MAX;
	int ret;

	ret = cppc_get_perf_caps(cpu, &cppc_perf);
	if (ret)
		return;

	/*
	 * The priorities can be set regardless of whether or not
	 * sched_set_itmt_support(true) has been called and it is valid to
	 * update them at any time after it has been called.
	 */
	sched_set_itmt_core_prio(cppc_perf.highest_perf, cpu);

	if (max_highest_perf <= min_highest_perf) {
		if (cppc_perf.highest_perf > max_highest_perf)
			max_highest_perf = cppc_perf.highest_perf;

		if (cppc_perf.highest_perf < min_highest_perf)
			min_highest_perf = cppc_perf.highest_perf;

		if (max_highest_perf > min_highest_perf) {
			/*
			 * This code can be run during CPU online under the
			 * CPU hotplug locks, so sched_set_itmt_support()
			 * cannot be called from here.  Queue up a work item
			 * to invoke it.
			 */
			schedule_work(&sched_itmt_work);
		}
	}
}
376 377 378 379 380 381 382 383 384 385

static int intel_pstate_get_cppc_guranteed(int cpu)
{
	struct cppc_perf_caps cppc_perf;
	int ret;

	ret = cppc_get_perf_caps(cpu, &cppc_perf);
	if (ret)
		return ret;

386 387 388 389
	if (cppc_perf.guaranteed_perf)
		return cppc_perf.guaranteed_perf;

	return cppc_perf.nominal_perf;
390 391
}

392
#else /* CONFIG_ACPI_CPPC_LIB */
393 394 395
static void intel_pstate_set_itmt_prio(int cpu)
{
}
396
#endif /* CONFIG_ACPI_CPPC_LIB */
397

398 399 400 401 402 403
static void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
{
	struct cpudata *cpu;
	int ret;
	int i;

404 405
	if (hwp_active) {
		intel_pstate_set_itmt_prio(policy->cpu);
406
		return;
407
	}
408

409
	if (!intel_pstate_get_ppc_enable_status())
410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451
		return;

	cpu = all_cpu_data[policy->cpu];

	ret = acpi_processor_register_performance(&cpu->acpi_perf_data,
						  policy->cpu);
	if (ret)
		return;

	/*
	 * Check if the control value in _PSS is for PERF_CTL MSR, which should
	 * guarantee that the states returned by it map to the states in our
	 * list directly.
	 */
	if (cpu->acpi_perf_data.control_register.space_id !=
						ACPI_ADR_SPACE_FIXED_HARDWARE)
		goto err;

	/*
	 * If there is only one entry _PSS, simply ignore _PSS and continue as
	 * usual without taking _PSS into account
	 */
	if (cpu->acpi_perf_data.state_count < 2)
		goto err;

	pr_debug("CPU%u - ACPI _PSS perf data\n", policy->cpu);
	for (i = 0; i < cpu->acpi_perf_data.state_count; i++) {
		pr_debug("     %cP%d: %u MHz, %u mW, 0x%x\n",
			 (i == cpu->acpi_perf_data.state ? '*' : ' '), i,
			 (u32) cpu->acpi_perf_data.states[i].core_frequency,
			 (u32) cpu->acpi_perf_data.states[i].power,
			 (u32) cpu->acpi_perf_data.states[i].control);
	}

	/*
	 * The _PSS table doesn't contain whole turbo frequency range.
	 * This just contains +1 MHZ above the max non turbo frequency,
	 * with control value corresponding to max turbo ratio. But
	 * when cpufreq set policy is called, it will call with this
	 * max frequency, which will cause a reduced performance as
	 * this driver uses real max turbo frequency as the max
	 * frequency. So correct this frequency in _PSS table to
452
	 * correct max turbo frequency based on the turbo state.
453 454
	 * Also need to convert to MHz as _PSS freq is in MHz.
	 */
455
	if (!global.turbo_disabled)
456 457 458
		cpu->acpi_perf_data.states[0].core_frequency =
					policy->cpuinfo.max_freq / 1000;
	cpu->valid_pss_table = true;
459
	pr_debug("_PPC limits will be enforced\n");
460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477

	return;

 err:
	cpu->valid_pss_table = false;
	acpi_processor_unregister_performance(policy->cpu);
}

static void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
{
	struct cpudata *cpu;

	cpu = all_cpu_data[policy->cpu];
	if (!cpu->valid_pss_table)
		return;

	acpi_processor_unregister_performance(policy->cpu);
}
478
#else /* CONFIG_ACPI */
479
static inline void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
480 481 482
{
}

483
static inline void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
484 485
{
}
486 487 488 489 490

static inline bool intel_pstate_acpi_pm_profile_server(void)
{
	return false;
}
491 492 493 494 495 496 497 498
#endif /* CONFIG_ACPI */

#ifndef CONFIG_ACPI_CPPC_LIB
static int intel_pstate_get_cppc_guranteed(int cpu)
{
	return -ENOTSUPP;
}
#endif /* CONFIG_ACPI_CPPC_LIB */
499

500 501 502 503 504 505 506
static inline void update_turbo_state(void)
{
	u64 misc_en;
	struct cpudata *cpu;

	cpu = all_cpu_data[0];
	rdmsrl(MSR_IA32_MISC_ENABLE, misc_en);
507
	global.turbo_disabled =
508 509 510 511
		(misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE ||
		 cpu->pstate.max_pstate == cpu->pstate.turbo_pstate);
}

512 513 514
static int min_perf_pct_min(void)
{
	struct cpudata *cpu = all_cpu_data[0];
515
	int turbo_pstate = cpu->pstate.turbo_pstate;
516

517
	return turbo_pstate ?
518
		(cpu->pstate.min_pstate * 100 / turbo_pstate) : 0;
519 520
}

521 522 523 524 525
static s16 intel_pstate_get_epb(struct cpudata *cpu_data)
{
	u64 epb;
	int ret;

526
	if (!boot_cpu_has(X86_FEATURE_EPB))
527 528 529 530 531 532 533 534 535 536 537 538 539
		return -ENXIO;

	ret = rdmsrl_on_cpu(cpu_data->cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
	if (ret)
		return (s16)ret;

	return (s16)(epb & 0x0f);
}

static s16 intel_pstate_get_epp(struct cpudata *cpu_data, u64 hwp_req_data)
{
	s16 epp;

540
	if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
541 542 543 544 545 546 547 548 549 550
		/*
		 * When hwp_req_data is 0, means that caller didn't read
		 * MSR_HWP_REQUEST, so need to read and get EPP.
		 */
		if (!hwp_req_data) {
			epp = rdmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST,
					    &hwp_req_data);
			if (epp)
				return epp;
		}
551
		epp = (hwp_req_data >> 24) & 0xff;
552
	} else {
553 554
		/* When there is no EPP present, HWP uses EPB settings */
		epp = intel_pstate_get_epb(cpu_data);
555
	}
556 557 558 559

	return epp;
}

560
static int intel_pstate_set_epb(int cpu, s16 pref)
561 562
{
	u64 epb;
563
	int ret;
564

565
	if (!boot_cpu_has(X86_FEATURE_EPB))
566
		return -ENXIO;
567

568 569 570
	ret = rdmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
	if (ret)
		return ret;
571 572 573

	epb = (epb & ~0x0f) | pref;
	wrmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, epb);
574 575

	return 0;
576 577
}

578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596
/*
 * EPP/EPB display strings corresponding to EPP index in the
 * energy_perf_strings[]
 *	index		String
 *-------------------------------------
 *	0		default
 *	1		performance
 *	2		balance_performance
 *	3		balance_power
 *	4		power
 */
static const char * const energy_perf_strings[] = {
	"default",
	"performance",
	"balance_performance",
	"balance_power",
	"power",
	NULL
};
597 598 599 600 601 602
static const unsigned int epp_values[] = {
	HWP_EPP_PERFORMANCE,
	HWP_EPP_BALANCE_PERFORMANCE,
	HWP_EPP_BALANCE_POWERSAVE,
	HWP_EPP_POWERSAVE
};
603 604 605 606 607 608 609 610 611 612

static int intel_pstate_get_energy_pref_index(struct cpudata *cpu_data)
{
	s16 epp;
	int index = -EINVAL;

	epp = intel_pstate_get_epp(cpu_data, 0);
	if (epp < 0)
		return epp;

613
	if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
614 615 616 617 618 619 620 621
		if (epp == HWP_EPP_PERFORMANCE)
			return 1;
		if (epp <= HWP_EPP_BALANCE_PERFORMANCE)
			return 2;
		if (epp <= HWP_EPP_BALANCE_POWERSAVE)
			return 3;
		else
			return 4;
622
	} else if (boot_cpu_has(X86_FEATURE_EPB)) {
623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649
		/*
		 * Range:
		 *	0x00-0x03	:	Performance
		 *	0x04-0x07	:	Balance performance
		 *	0x08-0x0B	:	Balance power
		 *	0x0C-0x0F	:	Power
		 * The EPB is a 4 bit value, but our ranges restrict the
		 * value which can be set. Here only using top two bits
		 * effectively.
		 */
		index = (epp >> 2) + 1;
	}

	return index;
}

static int intel_pstate_set_energy_pref_index(struct cpudata *cpu_data,
					      int pref_index)
{
	int epp = -EINVAL;
	int ret;

	if (!pref_index)
		epp = cpu_data->epp_default;

	mutex_lock(&intel_pstate_limits_lock);

650
	if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
651 652 653 654 655 656 657 658 659
		u64 value;

		ret = rdmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST, &value);
		if (ret)
			goto return_pref;

		value &= ~GENMASK_ULL(31, 24);

		if (epp == -EINVAL)
660
			epp = epp_values[pref_index - 1];
661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695

		value |= (u64)epp << 24;
		ret = wrmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST, value);
	} else {
		if (epp == -EINVAL)
			epp = (pref_index - 1) << 2;
		ret = intel_pstate_set_epb(cpu_data->cpu, epp);
	}
return_pref:
	mutex_unlock(&intel_pstate_limits_lock);

	return ret;
}

static ssize_t show_energy_performance_available_preferences(
				struct cpufreq_policy *policy, char *buf)
{
	int i = 0;
	int ret = 0;

	while (energy_perf_strings[i] != NULL)
		ret += sprintf(&buf[ret], "%s ", energy_perf_strings[i++]);

	ret += sprintf(&buf[ret], "\n");

	return ret;
}

cpufreq_freq_attr_ro(energy_performance_available_preferences);

static ssize_t store_energy_performance_preference(
		struct cpufreq_policy *policy, const char *buf, size_t count)
{
	struct cpudata *cpu_data = all_cpu_data[policy->cpu];
	char str_preference[21];
696
	int ret;
697 698 699 700 701

	ret = sscanf(buf, "%20s", str_preference);
	if (ret != 1)
		return -EINVAL;

702 703 704
	ret = match_string(energy_perf_strings, -1, str_preference);
	if (ret < 0)
		return ret;
705

706 707
	intel_pstate_set_energy_pref_index(cpu_data, ret);
	return count;
708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724
}

static ssize_t show_energy_performance_preference(
				struct cpufreq_policy *policy, char *buf)
{
	struct cpudata *cpu_data = all_cpu_data[policy->cpu];
	int preference;

	preference = intel_pstate_get_energy_pref_index(cpu_data);
	if (preference < 0)
		return preference;

	return  sprintf(buf, "%s\n", energy_perf_strings[preference]);
}

cpufreq_freq_attr_rw(energy_performance_preference);

725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743
static ssize_t show_base_frequency(struct cpufreq_policy *policy, char *buf)
{
	struct cpudata *cpu;
	u64 cap;
	int ratio;

	ratio = intel_pstate_get_cppc_guranteed(policy->cpu);
	if (ratio <= 0) {
		rdmsrl_on_cpu(policy->cpu, MSR_HWP_CAPABILITIES, &cap);
		ratio = HWP_GUARANTEED_PERF(cap);
	}

	cpu = all_cpu_data[policy->cpu];

	return sprintf(buf, "%d\n", ratio * cpu->pstate.scaling);
}

cpufreq_freq_attr_ro(base_frequency);

744 745 746
static struct freq_attr *hwp_cpufreq_attrs[] = {
	&energy_performance_preference,
	&energy_performance_available_preferences,
747
	&base_frequency,
748 749 750
	NULL,
};

751 752
static void intel_pstate_get_hwp_max(unsigned int cpu, int *phy_max,
				     int *current_max)
D
Dirk Brandewie 已提交
753
{
754
	u64 cap;
755

756
	rdmsrl_on_cpu(cpu, MSR_HWP_CAPABILITIES, &cap);
757
	WRITE_ONCE(all_cpu_data[cpu]->hwp_cap_cached, cap);
758
	if (global.no_turbo)
759
		*current_max = HWP_GUARANTEED_PERF(cap);
760
	else
761 762 763 764 765 766 767 768 769 770 771 772 773 774
		*current_max = HWP_HIGHEST_PERF(cap);

	*phy_max = HWP_HIGHEST_PERF(cap);
}

static void intel_pstate_hwp_set(unsigned int cpu)
{
	struct cpudata *cpu_data = all_cpu_data[cpu];
	int max, min;
	u64 value;
	s16 epp;

	max = cpu_data->max_perf_ratio;
	min = cpu_data->min_perf_ratio;
775

776 777
	if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE)
		min = max;
778

779
	rdmsrl_on_cpu(cpu, MSR_HWP_REQUEST, &value);
D
Dirk Brandewie 已提交
780

781 782
	value &= ~HWP_MIN_PERF(~0L);
	value |= HWP_MIN_PERF(min);
783

784 785
	value &= ~HWP_MAX_PERF(~0L);
	value |= HWP_MAX_PERF(max);
786

787 788
	if (cpu_data->epp_policy == cpu_data->policy)
		goto skip_epp;
789

790
	cpu_data->epp_policy = cpu_data->policy;
791

792 793 794 795 796
	if (cpu_data->epp_saved >= 0) {
		epp = cpu_data->epp_saved;
		cpu_data->epp_saved = -EINVAL;
		goto update_epp;
	}
797

798 799 800 801 802 803
	if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE) {
		epp = intel_pstate_get_epp(cpu_data, value);
		cpu_data->epp_powersave = epp;
		/* If EPP read was failed, then don't try to write */
		if (epp < 0)
			goto skip_epp;
804

805 806 807 808 809
		epp = 0;
	} else {
		/* skip setting EPP, when saved value is invalid */
		if (cpu_data->epp_powersave < 0)
			goto skip_epp;
810

811 812 813 814 815 816 817 818 819 820
		/*
		 * No need to restore EPP when it is not zero. This
		 * means:
		 *  - Policy is not changed
		 *  - user has manually changed
		 *  - Error reading EPB
		 */
		epp = intel_pstate_get_epp(cpu_data, value);
		if (epp)
			goto skip_epp;
821

822 823
		epp = cpu_data->epp_powersave;
	}
824
update_epp:
825
	if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
826 827 828 829
		value &= ~GENMASK_ULL(31, 24);
		value |= (u64)epp << 24;
	} else {
		intel_pstate_set_epb(cpu, epp);
D
Dirk Brandewie 已提交
830
	}
831
skip_epp:
832
	WRITE_ONCE(cpu_data->hwp_req_cached, value);
833
	wrmsrl_on_cpu(cpu, MSR_HWP_REQUEST, value);
834
}
D
Dirk Brandewie 已提交
835

836 837 838 839 840 841 842 843 844 845 846 847 848 849
static void intel_pstate_hwp_force_min_perf(int cpu)
{
	u64 value;
	int min_perf;

	value = all_cpu_data[cpu]->hwp_req_cached;
	value &= ~GENMASK_ULL(31, 0);
	min_perf = HWP_LOWEST_PERF(all_cpu_data[cpu]->hwp_cap_cached);

	/* Set hwp_max = hwp_min */
	value |= HWP_MAX_PERF(min_perf);
	value |= HWP_MIN_PERF(min_perf);

	/* Set EPP/EPB to min */
850
	if (boot_cpu_has(X86_FEATURE_HWP_EPP))
851 852 853 854 855 856 857
		value |= HWP_ENERGY_PERF_PREFERENCE(HWP_EPP_POWERSAVE);
	else
		intel_pstate_set_epb(cpu, HWP_EPP_BALANCE_POWERSAVE);

	wrmsrl_on_cpu(cpu, MSR_HWP_REQUEST, value);
}

858 859 860 861 862 863 864 865 866 867 868 869
static int intel_pstate_hwp_save_state(struct cpufreq_policy *policy)
{
	struct cpudata *cpu_data = all_cpu_data[policy->cpu];

	if (!hwp_active)
		return 0;

	cpu_data->epp_saved = intel_pstate_get_epp(cpu_data, 0);

	return 0;
}

870 871
static void intel_pstate_hwp_enable(struct cpudata *cpudata);

872 873 874 875 876
static int intel_pstate_resume(struct cpufreq_policy *policy)
{
	if (!hwp_active)
		return 0;

877 878
	mutex_lock(&intel_pstate_limits_lock);

879 880 881
	if (policy->cpu == 0)
		intel_pstate_hwp_enable(all_cpu_data[policy->cpu]);

882
	all_cpu_data[policy->cpu]->epp_policy = 0;
883
	intel_pstate_hwp_set(policy->cpu);
884 885 886

	mutex_unlock(&intel_pstate_limits_lock);

887
	return 0;
888 889
}

890
static void intel_pstate_update_policies(void)
891
{
892 893 894 895
	int cpu;

	for_each_possible_cpu(cpu)
		cpufreq_update_policy(cpu);
D
Dirk Brandewie 已提交
896 897
}

898 899 900 901 902 903 904 905 906 907 908 909
static void intel_pstate_update_max_freq(unsigned int cpu)
{
	struct cpufreq_policy *policy = cpufreq_cpu_acquire(cpu);
	struct cpudata *cpudata;

	if (!policy)
		return;

	cpudata = all_cpu_data[cpu];
	policy->cpuinfo.max_freq = global.turbo_disabled_mf ?
			cpudata->pstate.max_freq : cpudata->pstate.turbo_freq;

910
	refresh_frequency_limits(policy);
911 912 913 914

	cpufreq_cpu_release(policy);
}

915 916 917 918 919 920 921 922 923
static void intel_pstate_update_limits(unsigned int cpu)
{
	mutex_lock(&intel_pstate_driver_lock);

	update_turbo_state();
	/*
	 * If turbo has been turned on or off globally, policy limits for
	 * all CPUs need to be updated to reflect that.
	 */
924 925 926 927
	if (global.turbo_disabled_mf != global.turbo_disabled) {
		global.turbo_disabled_mf = global.turbo_disabled;
		for_each_possible_cpu(cpu)
			intel_pstate_update_max_freq(cpu);
928 929 930 931 932 933 934
	} else {
		cpufreq_update_policy(cpu);
	}

	mutex_unlock(&intel_pstate_driver_lock);
}

935 936 937
/************************** sysfs begin ************************/
#define show_one(file_name, object)					\
	static ssize_t show_##file_name					\
938
	(struct kobject *kobj, struct kobj_attribute *attr, char *buf)	\
939
	{								\
940
		return sprintf(buf, "%u\n", global.object);		\
941 942
	}

943 944 945 946
static ssize_t intel_pstate_show_status(char *buf);
static int intel_pstate_update_status(const char *buf, size_t size);

static ssize_t show_status(struct kobject *kobj,
947
			   struct kobj_attribute *attr, char *buf)
948 949 950 951 952 953 954 955 956 957
{
	ssize_t ret;

	mutex_lock(&intel_pstate_driver_lock);
	ret = intel_pstate_show_status(buf);
	mutex_unlock(&intel_pstate_driver_lock);

	return ret;
}

958
static ssize_t store_status(struct kobject *a, struct kobj_attribute *b,
959 960 961 962 963 964 965 966 967 968 969 970
			    const char *buf, size_t count)
{
	char *p = memchr(buf, '\n', count);
	int ret;

	mutex_lock(&intel_pstate_driver_lock);
	ret = intel_pstate_update_status(buf, p ? p - buf : count);
	mutex_unlock(&intel_pstate_driver_lock);

	return ret < 0 ? ret : count;
}

971
static ssize_t show_turbo_pct(struct kobject *kobj,
972
				struct kobj_attribute *attr, char *buf)
973 974 975 976 977
{
	struct cpudata *cpu;
	int total, no_turbo, turbo_pct;
	uint32_t turbo_fp;

978 979
	mutex_lock(&intel_pstate_driver_lock);

980
	if (!intel_pstate_driver) {
981 982 983 984
		mutex_unlock(&intel_pstate_driver_lock);
		return -EAGAIN;
	}

985 986 987 988
	cpu = all_cpu_data[0];

	total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
	no_turbo = cpu->pstate.max_pstate - cpu->pstate.min_pstate + 1;
989
	turbo_fp = div_fp(no_turbo, total);
990
	turbo_pct = 100 - fp_toint(mul_fp(turbo_fp, int_tofp(100)));
991 992 993

	mutex_unlock(&intel_pstate_driver_lock);

994 995 996
	return sprintf(buf, "%u\n", turbo_pct);
}

997
static ssize_t show_num_pstates(struct kobject *kobj,
998
				struct kobj_attribute *attr, char *buf)
999 1000 1001 1002
{
	struct cpudata *cpu;
	int total;

1003 1004
	mutex_lock(&intel_pstate_driver_lock);

1005
	if (!intel_pstate_driver) {
1006 1007 1008 1009
		mutex_unlock(&intel_pstate_driver_lock);
		return -EAGAIN;
	}

1010 1011
	cpu = all_cpu_data[0];
	total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
1012 1013 1014

	mutex_unlock(&intel_pstate_driver_lock);

1015 1016 1017
	return sprintf(buf, "%u\n", total);
}

1018
static ssize_t show_no_turbo(struct kobject *kobj,
1019
			     struct kobj_attribute *attr, char *buf)
1020 1021 1022
{
	ssize_t ret;

1023 1024
	mutex_lock(&intel_pstate_driver_lock);

1025
	if (!intel_pstate_driver) {
1026 1027 1028 1029
		mutex_unlock(&intel_pstate_driver_lock);
		return -EAGAIN;
	}

1030
	update_turbo_state();
1031 1032
	if (global.turbo_disabled)
		ret = sprintf(buf, "%u\n", global.turbo_disabled);
1033
	else
1034
		ret = sprintf(buf, "%u\n", global.no_turbo);
1035

1036 1037
	mutex_unlock(&intel_pstate_driver_lock);

1038 1039 1040
	return ret;
}

1041
static ssize_t store_no_turbo(struct kobject *a, struct kobj_attribute *b,
1042
			      const char *buf, size_t count)
1043 1044 1045
{
	unsigned int input;
	int ret;
1046

1047 1048 1049
	ret = sscanf(buf, "%u", &input);
	if (ret != 1)
		return -EINVAL;
1050

1051 1052
	mutex_lock(&intel_pstate_driver_lock);

1053
	if (!intel_pstate_driver) {
1054 1055 1056 1057
		mutex_unlock(&intel_pstate_driver_lock);
		return -EAGAIN;
	}

1058 1059
	mutex_lock(&intel_pstate_limits_lock);

1060
	update_turbo_state();
1061
	if (global.turbo_disabled) {
J
Joe Perches 已提交
1062
		pr_warn("Turbo disabled by BIOS or unavailable on processor\n");
1063
		mutex_unlock(&intel_pstate_limits_lock);
1064
		mutex_unlock(&intel_pstate_driver_lock);
1065
		return -EPERM;
1066
	}
D
Dirk Brandewie 已提交
1067

1068
	global.no_turbo = clamp_t(int, input, 0, 1);
1069

1070 1071 1072 1073 1074 1075 1076 1077 1078
	if (global.no_turbo) {
		struct cpudata *cpu = all_cpu_data[0];
		int pct = cpu->pstate.max_pstate * 100 / cpu->pstate.turbo_pstate;

		/* Squash the global minimum into the permitted range. */
		if (global.min_perf_pct > pct)
			global.min_perf_pct = pct;
	}

1079 1080
	mutex_unlock(&intel_pstate_limits_lock);

1081 1082
	intel_pstate_update_policies();

1083 1084
	mutex_unlock(&intel_pstate_driver_lock);

1085 1086 1087
	return count;
}

1088
static ssize_t store_max_perf_pct(struct kobject *a, struct kobj_attribute *b,
1089
				  const char *buf, size_t count)
1090 1091 1092
{
	unsigned int input;
	int ret;
1093

1094 1095 1096 1097
	ret = sscanf(buf, "%u", &input);
	if (ret != 1)
		return -EINVAL;

1098 1099
	mutex_lock(&intel_pstate_driver_lock);

1100
	if (!intel_pstate_driver) {
1101 1102 1103 1104
		mutex_unlock(&intel_pstate_driver_lock);
		return -EAGAIN;
	}

1105 1106
	mutex_lock(&intel_pstate_limits_lock);

1107
	global.max_perf_pct = clamp_t(int, input, global.min_perf_pct, 100);
1108

1109 1110
	mutex_unlock(&intel_pstate_limits_lock);

1111 1112
	intel_pstate_update_policies();

1113 1114
	mutex_unlock(&intel_pstate_driver_lock);

1115 1116 1117
	return count;
}

1118
static ssize_t store_min_perf_pct(struct kobject *a, struct kobj_attribute *b,
1119
				  const char *buf, size_t count)
1120 1121 1122
{
	unsigned int input;
	int ret;
1123

1124 1125 1126
	ret = sscanf(buf, "%u", &input);
	if (ret != 1)
		return -EINVAL;
1127

1128 1129
	mutex_lock(&intel_pstate_driver_lock);

1130
	if (!intel_pstate_driver) {
1131 1132 1133 1134
		mutex_unlock(&intel_pstate_driver_lock);
		return -EAGAIN;
	}

1135 1136
	mutex_lock(&intel_pstate_limits_lock);

1137 1138
	global.min_perf_pct = clamp_t(int, input,
				      min_perf_pct_min(), global.max_perf_pct);
1139

1140 1141
	mutex_unlock(&intel_pstate_limits_lock);

1142 1143
	intel_pstate_update_policies();

1144 1145
	mutex_unlock(&intel_pstate_driver_lock);

1146 1147 1148
	return count;
}

1149
static ssize_t show_hwp_dynamic_boost(struct kobject *kobj,
1150
				struct kobj_attribute *attr, char *buf)
1151 1152 1153 1154
{
	return sprintf(buf, "%u\n", hwp_boost);
}

1155 1156
static ssize_t store_hwp_dynamic_boost(struct kobject *a,
				       struct kobj_attribute *b,
1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173
				       const char *buf, size_t count)
{
	unsigned int input;
	int ret;

	ret = kstrtouint(buf, 10, &input);
	if (ret)
		return ret;

	mutex_lock(&intel_pstate_driver_lock);
	hwp_boost = !!input;
	intel_pstate_update_policies();
	mutex_unlock(&intel_pstate_driver_lock);

	return count;
}

1174 1175 1176
show_one(max_perf_pct, max_perf_pct);
show_one(min_perf_pct, min_perf_pct);

1177
define_one_global_rw(status);
1178 1179 1180
define_one_global_rw(no_turbo);
define_one_global_rw(max_perf_pct);
define_one_global_rw(min_perf_pct);
1181
define_one_global_ro(turbo_pct);
1182
define_one_global_ro(num_pstates);
1183
define_one_global_rw(hwp_dynamic_boost);
1184 1185

static struct attribute *intel_pstate_attributes[] = {
1186
	&status.attr,
1187
	&no_turbo.attr,
1188
	&turbo_pct.attr,
1189
	&num_pstates.attr,
1190 1191 1192
	NULL
};

1193
static const struct attribute_group intel_pstate_attr_group = {
1194 1195 1196
	.attrs = intel_pstate_attributes,
};

1197
static void __init intel_pstate_sysfs_expose_params(void)
1198
{
1199
	struct kobject *intel_pstate_kobject;
1200 1201 1202 1203
	int rc;

	intel_pstate_kobject = kobject_create_and_add("intel_pstate",
						&cpu_subsys.dev_root->kobj);
1204 1205 1206
	if (WARN_ON(!intel_pstate_kobject))
		return;

1207
	rc = sysfs_create_group(intel_pstate_kobject, &intel_pstate_attr_group);
1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223
	if (WARN_ON(rc))
		return;

	/*
	 * If per cpu limits are enforced there are no global limits, so
	 * return without creating max/min_perf_pct attributes
	 */
	if (per_cpu_limits)
		return;

	rc = sysfs_create_file(intel_pstate_kobject, &max_perf_pct.attr);
	WARN_ON(rc);

	rc = sysfs_create_file(intel_pstate_kobject, &min_perf_pct.attr);
	WARN_ON(rc);

1224 1225 1226 1227 1228
	if (hwp_active) {
		rc = sysfs_create_file(intel_pstate_kobject,
				       &hwp_dynamic_boost.attr);
		WARN_ON(rc);
	}
1229 1230
}
/************************** sysfs end ************************/
D
Dirk Brandewie 已提交
1231

1232
static void intel_pstate_hwp_enable(struct cpudata *cpudata)
D
Dirk Brandewie 已提交
1233
{
1234
	/* First disable HWP notification interrupt as we don't process them */
1235
	if (boot_cpu_has(X86_FEATURE_HWP_NOTIFY))
1236
		wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, 0x00);
1237

1238
	wrmsrl_on_cpu(cpudata->cpu, MSR_PM_ENABLE, 0x1);
1239
	cpudata->epp_policy = 0;
1240 1241
	if (cpudata->epp_default == -EINVAL)
		cpudata->epp_default = intel_pstate_get_epp(cpudata, 0);
D
Dirk Brandewie 已提交
1242 1243
}

1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262
#define MSR_IA32_POWER_CTL_BIT_EE	19

/* Disable energy efficiency optimization */
static void intel_pstate_disable_ee(int cpu)
{
	u64 power_ctl;
	int ret;

	ret = rdmsrl_on_cpu(cpu, MSR_IA32_POWER_CTL, &power_ctl);
	if (ret)
		return;

	if (!(power_ctl & BIT(MSR_IA32_POWER_CTL_BIT_EE))) {
		pr_info("Disabling energy efficiency optimization\n");
		power_ctl |= BIT(MSR_IA32_POWER_CTL_BIT_EE);
		wrmsrl_on_cpu(cpu, MSR_IA32_POWER_CTL, power_ctl);
	}
}

1263
static int atom_get_min_pstate(void)
1264 1265
{
	u64 value;
1266

1267
	rdmsrl(MSR_ATOM_CORE_RATIOS, value);
D
Dirk Brandewie 已提交
1268
	return (value >> 8) & 0x7F;
1269 1270
}

1271
static int atom_get_max_pstate(void)
1272 1273
{
	u64 value;
1274

1275
	rdmsrl(MSR_ATOM_CORE_RATIOS, value);
D
Dirk Brandewie 已提交
1276
	return (value >> 16) & 0x7F;
1277
}
1278

1279
static int atom_get_turbo_pstate(void)
1280 1281
{
	u64 value;
1282

1283
	rdmsrl(MSR_ATOM_CORE_TURBO_RATIOS, value);
D
Dirk Brandewie 已提交
1284
	return value & 0x7F;
1285 1286
}

1287
static u64 atom_get_val(struct cpudata *cpudata, int pstate)
1288 1289 1290 1291 1292
{
	u64 val;
	int32_t vid_fp;
	u32 vid;

1293
	val = (u64)pstate << 8;
1294
	if (global.no_turbo && !global.turbo_disabled)
1295 1296 1297 1298 1299 1300 1301
		val |= (u64)1 << 32;

	vid_fp = cpudata->vid.min + mul_fp(
		int_tofp(pstate - cpudata->pstate.min_pstate),
		cpudata->vid.ratio);

	vid_fp = clamp_t(int32_t, vid_fp, cpudata->vid.min, cpudata->vid.max);
1302
	vid = ceiling_fp(vid_fp);
1303

1304 1305 1306
	if (pstate > cpudata->pstate.max_pstate)
		vid = cpudata->vid.turbo;

1307
	return val | vid;
1308 1309
}

1310
static int silvermont_get_scaling(void)
1311 1312 1313
{
	u64 value;
	int i;
1314 1315 1316
	/* Defined in Table 35-6 from SDM (Sept 2015) */
	static int silvermont_freq_table[] = {
		83300, 100000, 133300, 116700, 80000};
1317 1318

	rdmsrl(MSR_FSB_FREQ, value);
1319 1320
	i = value & 0x7;
	WARN_ON(i > 4);
1321

1322 1323
	return silvermont_freq_table[i];
}
1324

1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338
static int airmont_get_scaling(void)
{
	u64 value;
	int i;
	/* Defined in Table 35-10 from SDM (Sept 2015) */
	static int airmont_freq_table[] = {
		83300, 100000, 133300, 116700, 80000,
		93300, 90000, 88900, 87500};

	rdmsrl(MSR_FSB_FREQ, value);
	i = value & 0xF;
	WARN_ON(i > 8);

	return airmont_freq_table[i];
1339 1340
}

1341
static void atom_get_vid(struct cpudata *cpudata)
1342 1343 1344
{
	u64 value;

1345
	rdmsrl(MSR_ATOM_CORE_VIDS, value);
D
Dirk Brandewie 已提交
1346 1347
	cpudata->vid.min = int_tofp((value >> 8) & 0x7f);
	cpudata->vid.max = int_tofp((value >> 16) & 0x7f);
1348 1349 1350 1351
	cpudata->vid.ratio = div_fp(
		cpudata->vid.max - cpudata->vid.min,
		int_tofp(cpudata->pstate.max_pstate -
			cpudata->pstate.min_pstate));
1352

1353
	rdmsrl(MSR_ATOM_CORE_TURBO_VIDS, value);
1354
	cpudata->vid.turbo = value & 0x7f;
1355 1356
}

1357
static int core_get_min_pstate(void)
1358 1359
{
	u64 value;
1360

1361
	rdmsrl(MSR_PLATFORM_INFO, value);
1362 1363 1364
	return (value >> 40) & 0xFF;
}

1365
static int core_get_max_pstate_physical(void)
1366 1367
{
	u64 value;
1368

1369
	rdmsrl(MSR_PLATFORM_INFO, value);
1370 1371 1372
	return (value >> 8) & 0xFF;
}

1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405
static int core_get_tdp_ratio(u64 plat_info)
{
	/* Check how many TDP levels present */
	if (plat_info & 0x600000000) {
		u64 tdp_ctrl;
		u64 tdp_ratio;
		int tdp_msr;
		int err;

		/* Get the TDP level (0, 1, 2) to get ratios */
		err = rdmsrl_safe(MSR_CONFIG_TDP_CONTROL, &tdp_ctrl);
		if (err)
			return err;

		/* TDP MSR are continuous starting at 0x648 */
		tdp_msr = MSR_CONFIG_TDP_NOMINAL + (tdp_ctrl & 0x03);
		err = rdmsrl_safe(tdp_msr, &tdp_ratio);
		if (err)
			return err;

		/* For level 1 and 2, bits[23:16] contain the ratio */
		if (tdp_ctrl & 0x03)
			tdp_ratio >>= 16;

		tdp_ratio &= 0xff; /* ratios are only 8 bits long */
		pr_debug("tdp_ratio %x\n", (int)tdp_ratio);

		return (int)tdp_ratio;
	}

	return -ENXIO;
}

1406
static int core_get_max_pstate(void)
1407
{
1408 1409 1410
	u64 tar;
	u64 plat_info;
	int max_pstate;
1411
	int tdp_ratio;
1412 1413 1414 1415 1416
	int err;

	rdmsrl(MSR_PLATFORM_INFO, plat_info);
	max_pstate = (plat_info >> 8) & 0xFF;

1417 1418 1419 1420 1421 1422 1423 1424 1425
	tdp_ratio = core_get_tdp_ratio(plat_info);
	if (tdp_ratio <= 0)
		return max_pstate;

	if (hwp_active) {
		/* Turbo activation ratio is not used on HWP platforms */
		return tdp_ratio;
	}

1426 1427
	err = rdmsrl_safe(MSR_TURBO_ACTIVATION_RATIO, &tar);
	if (!err) {
1428 1429
		int tar_levels;

1430
		/* Do some sanity checking for safety */
1431 1432 1433 1434
		tar_levels = tar & 0xff;
		if (tdp_ratio - 1 == tar_levels) {
			max_pstate = tar_levels;
			pr_debug("max_pstate=TAC %x\n", max_pstate);
1435 1436
		}
	}
1437

1438
	return max_pstate;
1439 1440
}

1441
static int core_get_turbo_pstate(void)
1442 1443 1444
{
	u64 value;
	int nont, ret;
1445

1446
	rdmsrl(MSR_TURBO_RATIO_LIMIT, value);
1447
	nont = core_get_max_pstate();
1448
	ret = (value) & 255;
1449 1450 1451 1452 1453
	if (ret <= nont)
		ret = nont;
	return ret;
}

1454 1455 1456 1457 1458
static inline int core_get_scaling(void)
{
	return 100000;
}

1459
static u64 core_get_val(struct cpudata *cpudata, int pstate)
1460 1461 1462
{
	u64 val;

1463
	val = (u64)pstate << 8;
1464
	if (global.no_turbo && !global.turbo_disabled)
1465 1466
		val |= (u64)1 << 32;

1467
	return val;
1468 1469
}

1470 1471 1472 1473 1474
static int knl_get_aperf_mperf_shift(void)
{
	return 10;
}

1475 1476 1477 1478 1479
static int knl_get_turbo_pstate(void)
{
	u64 value;
	int nont, ret;

1480
	rdmsrl(MSR_TURBO_RATIO_LIMIT, value);
1481 1482 1483 1484 1485 1486 1487
	nont = core_get_max_pstate();
	ret = (((value) >> 8) & 0xFF);
	if (ret <= nont)
		ret = nont;
	return ret;
}

1488
static void intel_pstate_set_pstate(struct cpudata *cpu, int pstate)
1489
{
1490 1491
	trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu);
	cpu->pstate.current_pstate = pstate;
1492 1493 1494 1495 1496 1497 1498
	/*
	 * Generally, there is no guarantee that this code will always run on
	 * the CPU being updated, so force the register update to run on the
	 * right CPU.
	 */
	wrmsrl_on_cpu(cpu->cpu, MSR_IA32_PERF_CTL,
		      pstate_funcs.get_val(cpu, pstate));
1499 1500
}

1501 1502 1503 1504 1505 1506 1507
static void intel_pstate_set_min_pstate(struct cpudata *cpu)
{
	intel_pstate_set_pstate(cpu, cpu->pstate.min_pstate);
}

static void intel_pstate_max_within_limits(struct cpudata *cpu)
{
1508
	int pstate = max(cpu->pstate.min_pstate, cpu->max_perf_ratio);
1509 1510

	update_turbo_state();
1511
	intel_pstate_set_pstate(cpu, pstate);
1512 1513
}

1514 1515
static void intel_pstate_get_cpu_pstates(struct cpudata *cpu)
{
1516 1517
	cpu->pstate.min_pstate = pstate_funcs.get_min();
	cpu->pstate.max_pstate = pstate_funcs.get_max();
1518
	cpu->pstate.max_pstate_physical = pstate_funcs.get_max_physical();
1519
	cpu->pstate.turbo_pstate = pstate_funcs.get_turbo();
1520
	cpu->pstate.scaling = pstate_funcs.get_scaling();
1521
	cpu->pstate.max_freq = cpu->pstate.max_pstate * cpu->pstate.scaling;
1522 1523 1524 1525 1526 1527 1528 1529 1530

	if (hwp_active && !hwp_mode_bdw) {
		unsigned int phy_max, current_max;

		intel_pstate_get_hwp_max(cpu->cpu, &phy_max, &current_max);
		cpu->pstate.turbo_freq = phy_max * cpu->pstate.scaling;
	} else {
		cpu->pstate.turbo_freq = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
	}
1531

1532 1533 1534
	if (pstate_funcs.get_aperf_mperf_shift)
		cpu->aperf_mperf_shift = pstate_funcs.get_aperf_mperf_shift();

1535 1536
	if (pstate_funcs.get_vid)
		pstate_funcs.get_vid(cpu);
1537 1538

	intel_pstate_set_min_pstate(cpu);
1539 1540
}

1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610
/*
 * Long hold time will keep high perf limits for long time,
 * which negatively impacts perf/watt for some workloads,
 * like specpower. 3ms is based on experiements on some
 * workoads.
 */
static int hwp_boost_hold_time_ns = 3 * NSEC_PER_MSEC;

static inline void intel_pstate_hwp_boost_up(struct cpudata *cpu)
{
	u64 hwp_req = READ_ONCE(cpu->hwp_req_cached);
	u32 max_limit = (hwp_req & 0xff00) >> 8;
	u32 min_limit = (hwp_req & 0xff);
	u32 boost_level1;

	/*
	 * Cases to consider (User changes via sysfs or boot time):
	 * If, P0 (Turbo max) = P1 (Guaranteed max) = min:
	 *	No boost, return.
	 * If, P0 (Turbo max) > P1 (Guaranteed max) = min:
	 *     Should result in one level boost only for P0.
	 * If, P0 (Turbo max) = P1 (Guaranteed max) > min:
	 *     Should result in two level boost:
	 *         (min + p1)/2 and P1.
	 * If, P0 (Turbo max) > P1 (Guaranteed max) > min:
	 *     Should result in three level boost:
	 *        (min + p1)/2, P1 and P0.
	 */

	/* If max and min are equal or already at max, nothing to boost */
	if (max_limit == min_limit || cpu->hwp_boost_min >= max_limit)
		return;

	if (!cpu->hwp_boost_min)
		cpu->hwp_boost_min = min_limit;

	/* level at half way mark between min and guranteed */
	boost_level1 = (HWP_GUARANTEED_PERF(cpu->hwp_cap_cached) + min_limit) >> 1;

	if (cpu->hwp_boost_min < boost_level1)
		cpu->hwp_boost_min = boost_level1;
	else if (cpu->hwp_boost_min < HWP_GUARANTEED_PERF(cpu->hwp_cap_cached))
		cpu->hwp_boost_min = HWP_GUARANTEED_PERF(cpu->hwp_cap_cached);
	else if (cpu->hwp_boost_min == HWP_GUARANTEED_PERF(cpu->hwp_cap_cached) &&
		 max_limit != HWP_GUARANTEED_PERF(cpu->hwp_cap_cached))
		cpu->hwp_boost_min = max_limit;
	else
		return;

	hwp_req = (hwp_req & ~GENMASK_ULL(7, 0)) | cpu->hwp_boost_min;
	wrmsrl(MSR_HWP_REQUEST, hwp_req);
	cpu->last_update = cpu->sample.time;
}

static inline void intel_pstate_hwp_boost_down(struct cpudata *cpu)
{
	if (cpu->hwp_boost_min) {
		bool expired;

		/* Check if we are idle for hold time to boost down */
		expired = time_after64(cpu->sample.time, cpu->last_update +
				       hwp_boost_hold_time_ns);
		if (expired) {
			wrmsrl(MSR_HWP_REQUEST, cpu->hwp_req_cached);
			cpu->hwp_boost_min = 0;
		}
	}
	cpu->last_update = cpu->sample.time;
}

1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639
static inline void intel_pstate_update_util_hwp_local(struct cpudata *cpu,
						      u64 time)
{
	cpu->sample.time = time;

	if (cpu->sched_flags & SCHED_CPUFREQ_IOWAIT) {
		bool do_io = false;

		cpu->sched_flags = 0;
		/*
		 * Set iowait_boost flag and update time. Since IO WAIT flag
		 * is set all the time, we can't just conclude that there is
		 * some IO bound activity is scheduled on this CPU with just
		 * one occurrence. If we receive at least two in two
		 * consecutive ticks, then we treat as boost candidate.
		 */
		if (time_before64(time, cpu->last_io_update + 2 * TICK_NSEC))
			do_io = true;

		cpu->last_io_update = time;

		if (do_io)
			intel_pstate_hwp_boost_up(cpu);

	} else {
		intel_pstate_hwp_boost_down(cpu);
	}
}

1640 1641 1642
static inline void intel_pstate_update_util_hwp(struct update_util_data *data,
						u64 time, unsigned int flags)
{
1643 1644 1645 1646 1647 1648
	struct cpudata *cpu = container_of(data, struct cpudata, update_util);

	cpu->sched_flags |= flags;

	if (smp_processor_id() == cpu->cpu)
		intel_pstate_update_util_hwp_local(cpu, time);
1649 1650
}

1651
static inline void intel_pstate_calc_avg_perf(struct cpudata *cpu)
1652
{
1653
	struct sample *sample = &cpu->sample;
1654

1655
	sample->core_avg_perf = div_ext_fp(sample->aperf, sample->mperf);
1656 1657
}

1658
static inline bool intel_pstate_sample(struct cpudata *cpu, u64 time)
1659 1660
{
	u64 aperf, mperf;
1661
	unsigned long flags;
1662
	u64 tsc;
1663

1664
	local_irq_save(flags);
1665 1666
	rdmsrl(MSR_IA32_APERF, aperf);
	rdmsrl(MSR_IA32_MPERF, mperf);
1667
	tsc = rdtsc();
1668
	if (cpu->prev_mperf == mperf || cpu->prev_tsc == tsc) {
1669
		local_irq_restore(flags);
1670
		return false;
1671
	}
1672
	local_irq_restore(flags);
1673

1674
	cpu->last_sample_time = cpu->sample.time;
1675
	cpu->sample.time = time;
1676 1677
	cpu->sample.aperf = aperf;
	cpu->sample.mperf = mperf;
1678
	cpu->sample.tsc =  tsc;
1679 1680
	cpu->sample.aperf -= cpu->prev_aperf;
	cpu->sample.mperf -= cpu->prev_mperf;
1681
	cpu->sample.tsc -= cpu->prev_tsc;
1682

1683 1684
	cpu->prev_aperf = aperf;
	cpu->prev_mperf = mperf;
1685
	cpu->prev_tsc = tsc;
1686 1687 1688 1689 1690 1691 1692
	/*
	 * First time this function is invoked in a given cycle, all of the
	 * previous sample data fields are equal to zero or stale and they must
	 * be populated with meaningful numbers for things to work, so assume
	 * that sample.time will always be reset before setting the utilization
	 * update hook and make the caller skip the sample then.
	 */
1693 1694 1695 1696 1697
	if (cpu->last_sample_time) {
		intel_pstate_calc_avg_perf(cpu);
		return true;
	}
	return false;
1698 1699
}

1700 1701
static inline int32_t get_avg_frequency(struct cpudata *cpu)
{
1702
	return mul_ext_fp(cpu->sample.core_avg_perf, cpu_khz);
1703 1704
}

1705 1706
static inline int32_t get_avg_pstate(struct cpudata *cpu)
{
1707 1708
	return mul_ext_fp(cpu->pstate.max_pstate_physical,
			  cpu->sample.core_avg_perf);
1709 1710
}

1711
static inline int32_t get_target_pstate(struct cpudata *cpu)
1712 1713
{
	struct sample *sample = &cpu->sample;
1714
	int32_t busy_frac;
1715
	int target, avg_pstate;
1716

1717 1718
	busy_frac = div_fp(sample->mperf << cpu->aperf_mperf_shift,
			   sample->tsc);
1719

1720 1721
	if (busy_frac < cpu->iowait_boost)
		busy_frac = cpu->iowait_boost;
1722

1723
	sample->busy_scaled = busy_frac * 100;
1724

1725
	target = global.no_turbo || global.turbo_disabled ?
1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743
			cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
	target += target >> 2;
	target = mul_fp(target, busy_frac);
	if (target < cpu->pstate.min_pstate)
		target = cpu->pstate.min_pstate;

	/*
	 * If the average P-state during the previous cycle was higher than the
	 * current target, add 50% of the difference to the target to reduce
	 * possible performance oscillations and offset possible performance
	 * loss related to moving the workload from one CPU to another within
	 * a package/module.
	 */
	avg_pstate = get_avg_pstate(cpu);
	if (avg_pstate > target)
		target += (avg_pstate - target) >> 1;

	return target;
1744 1745
}

1746
static int intel_pstate_prepare_request(struct cpudata *cpu, int pstate)
1747
{
1748 1749
	int min_pstate = max(cpu->pstate.min_pstate, cpu->min_perf_ratio);
	int max_pstate = max(min_pstate, cpu->max_perf_ratio);
1750

1751
	return clamp_t(int, pstate, min_pstate, max_pstate);
1752 1753 1754 1755
}

static void intel_pstate_update_pstate(struct cpudata *cpu, int pstate)
{
1756 1757 1758
	if (pstate == cpu->pstate.current_pstate)
		return;

1759
	cpu->pstate.current_pstate = pstate;
1760 1761 1762
	wrmsrl(MSR_IA32_PERF_CTL, pstate_funcs.get_val(cpu, pstate));
}

1763
static void intel_pstate_adjust_pstate(struct cpudata *cpu)
1764
{
1765
	int from = cpu->pstate.current_pstate;
1766
	struct sample *sample;
1767
	int target_pstate;
1768

1769 1770
	update_turbo_state();

1771
	target_pstate = get_target_pstate(cpu);
1772 1773
	target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
	trace_cpu_frequency(target_pstate * cpu->pstate.scaling, cpu->cpu);
1774
	intel_pstate_update_pstate(cpu, target_pstate);
1775 1776

	sample = &cpu->sample;
1777
	trace_pstate_sample(mul_ext_fp(100, sample->core_avg_perf),
1778
		fp_toint(sample->busy_scaled),
1779 1780 1781 1782 1783
		from,
		cpu->pstate.current_pstate,
		sample->mperf,
		sample->aperf,
		sample->tsc,
1784 1785
		get_avg_frequency(cpu),
		fp_toint(cpu->iowait_boost * 100));
1786 1787
}

1788
static void intel_pstate_update_util(struct update_util_data *data, u64 time,
1789
				     unsigned int flags)
1790
{
1791
	struct cpudata *cpu = container_of(data, struct cpudata, update_util);
1792 1793
	u64 delta_ns;

1794 1795 1796 1797
	/* Don't allow remote callbacks */
	if (smp_processor_id() != cpu->cpu)
		return;

1798
	delta_ns = time - cpu->last_update;
1799
	if (flags & SCHED_CPUFREQ_IOWAIT) {
1800 1801 1802
		/* Start over if the CPU may have been idle. */
		if (delta_ns > TICK_NSEC) {
			cpu->iowait_boost = ONE_EIGHTH_FP;
1803
		} else if (cpu->iowait_boost >= ONE_EIGHTH_FP) {
1804 1805 1806 1807 1808 1809
			cpu->iowait_boost <<= 1;
			if (cpu->iowait_boost > int_tofp(1))
				cpu->iowait_boost = int_tofp(1);
		} else {
			cpu->iowait_boost = ONE_EIGHTH_FP;
		}
1810 1811 1812 1813
	} else if (cpu->iowait_boost) {
		/* Clear iowait_boost if the CPU may have been idle. */
		if (delta_ns > TICK_NSEC)
			cpu->iowait_boost = 0;
1814 1815
		else
			cpu->iowait_boost >>= 1;
1816
	}
1817
	cpu->last_update = time;
1818
	delta_ns = time - cpu->sample.time;
1819
	if ((s64)delta_ns < INTEL_PSTATE_SAMPLING_INTERVAL)
1820
		return;
1821

1822 1823
	if (intel_pstate_sample(cpu, time))
		intel_pstate_adjust_pstate(cpu);
1824
}
1825

1826 1827 1828 1829 1830 1831 1832
static struct pstate_funcs core_funcs = {
	.get_max = core_get_max_pstate,
	.get_max_physical = core_get_max_pstate_physical,
	.get_min = core_get_min_pstate,
	.get_turbo = core_get_turbo_pstate,
	.get_scaling = core_get_scaling,
	.get_val = core_get_val,
1833 1834
};

1835 1836 1837 1838 1839 1840 1841 1842
static const struct pstate_funcs silvermont_funcs = {
	.get_max = atom_get_max_pstate,
	.get_max_physical = atom_get_max_pstate,
	.get_min = atom_get_min_pstate,
	.get_turbo = atom_get_turbo_pstate,
	.get_val = atom_get_val,
	.get_scaling = silvermont_get_scaling,
	.get_vid = atom_get_vid,
1843 1844
};

1845 1846 1847 1848 1849 1850 1851 1852
static const struct pstate_funcs airmont_funcs = {
	.get_max = atom_get_max_pstate,
	.get_max_physical = atom_get_max_pstate,
	.get_min = atom_get_min_pstate,
	.get_turbo = atom_get_turbo_pstate,
	.get_val = atom_get_val,
	.get_scaling = airmont_get_scaling,
	.get_vid = atom_get_vid,
1853 1854
};

1855 1856 1857 1858 1859
static const struct pstate_funcs knl_funcs = {
	.get_max = core_get_max_pstate,
	.get_max_physical = core_get_max_pstate_physical,
	.get_min = core_get_min_pstate,
	.get_turbo = knl_get_turbo_pstate,
1860
	.get_aperf_mperf_shift = knl_get_aperf_mperf_shift,
1861 1862
	.get_scaling = core_get_scaling,
	.get_val = core_get_val,
1863 1864
};

1865
#define ICPU(model, policy) \
1866 1867
	{ X86_VENDOR_INTEL, 6, model, X86_FEATURE_APERFMPERF,\
			(unsigned long)&policy }
1868 1869

static const struct x86_cpu_id intel_pstate_cpu_ids[] = {
1870
	ICPU(INTEL_FAM6_SANDYBRIDGE,		core_funcs),
1871
	ICPU(INTEL_FAM6_SANDYBRIDGE_X,		core_funcs),
1872
	ICPU(INTEL_FAM6_ATOM_SILVERMONT,	silvermont_funcs),
1873
	ICPU(INTEL_FAM6_IVYBRIDGE,		core_funcs),
1874 1875
	ICPU(INTEL_FAM6_HASWELL,		core_funcs),
	ICPU(INTEL_FAM6_BROADWELL,		core_funcs),
1876 1877
	ICPU(INTEL_FAM6_IVYBRIDGE_X,		core_funcs),
	ICPU(INTEL_FAM6_HASWELL_X,		core_funcs),
1878
	ICPU(INTEL_FAM6_HASWELL_L,		core_funcs),
1879 1880 1881
	ICPU(INTEL_FAM6_HASWELL_GT3E,		core_funcs),
	ICPU(INTEL_FAM6_BROADWELL_GT3E,		core_funcs),
	ICPU(INTEL_FAM6_ATOM_AIRMONT,		airmont_funcs),
1882
	ICPU(INTEL_FAM6_SKYLAKE_L,		core_funcs),
1883
	ICPU(INTEL_FAM6_BROADWELL_X,		core_funcs),
1884
	ICPU(INTEL_FAM6_SKYLAKE,		core_funcs),
1885 1886 1887
	ICPU(INTEL_FAM6_BROADWELL_XEON_D,	core_funcs),
	ICPU(INTEL_FAM6_XEON_PHI_KNL,		knl_funcs),
	ICPU(INTEL_FAM6_XEON_PHI_KNM,		knl_funcs),
1888
	ICPU(INTEL_FAM6_ATOM_GOLDMONT,		core_funcs),
1889
	ICPU(INTEL_FAM6_ATOM_GOLDMONT_PLUS,     core_funcs),
1890
	ICPU(INTEL_FAM6_SKYLAKE_X,		core_funcs),
1891 1892 1893 1894
	{}
};
MODULE_DEVICE_TABLE(x86cpu, intel_pstate_cpu_ids);

1895
static const struct x86_cpu_id intel_pstate_cpu_oob_ids[] __initconst = {
1896 1897 1898
	ICPU(INTEL_FAM6_BROADWELL_XEON_D, core_funcs),
	ICPU(INTEL_FAM6_BROADWELL_X, core_funcs),
	ICPU(INTEL_FAM6_SKYLAKE_X, core_funcs),
D
Dirk Brandewie 已提交
1899 1900 1901
	{}
};

1902
static const struct x86_cpu_id intel_pstate_cpu_ee_disable_ids[] = {
1903
	ICPU(INTEL_FAM6_KABYLAKE, core_funcs),
1904 1905 1906
	{}
};

1907 1908
static const struct x86_cpu_id intel_pstate_hwp_boost_ids[] = {
	ICPU(INTEL_FAM6_SKYLAKE_X, core_funcs),
1909
	ICPU(INTEL_FAM6_SKYLAKE, core_funcs),
1910 1911 1912
	{}
};

1913 1914 1915 1916
static int intel_pstate_init_cpu(unsigned int cpunum)
{
	struct cpudata *cpu;

1917 1918 1919
	cpu = all_cpu_data[cpunum];

	if (!cpu) {
1920
		cpu = kzalloc(sizeof(*cpu), GFP_KERNEL);
1921 1922 1923 1924 1925
		if (!cpu)
			return -ENOMEM;

		all_cpu_data[cpunum] = cpu;

1926 1927 1928
		cpu->epp_default = -EINVAL;
		cpu->epp_powersave = -EINVAL;
		cpu->epp_saved = -EINVAL;
1929
	}
1930 1931 1932 1933

	cpu = all_cpu_data[cpunum];

	cpu->cpu = cpunum;
1934

1935
	if (hwp_active) {
1936 1937 1938 1939 1940 1941
		const struct x86_cpu_id *id;

		id = x86_match_cpu(intel_pstate_cpu_ee_disable_ids);
		if (id)
			intel_pstate_disable_ee(cpunum);

1942
		intel_pstate_hwp_enable(cpu);
1943 1944

		id = x86_match_cpu(intel_pstate_hwp_boost_ids);
1945
		if (id && intel_pstate_acpi_pm_profile_server())
1946
			hwp_boost = true;
1947
	}
1948

1949
	intel_pstate_get_cpu_pstates(cpu);
1950

J
Joe Perches 已提交
1951
	pr_debug("controlling: cpu %d\n", cpunum);
1952 1953 1954 1955

	return 0;
}

1956
static void intel_pstate_set_update_util_hook(unsigned int cpu_num)
1957
{
1958 1959
	struct cpudata *cpu = all_cpu_data[cpu_num];

1960
	if (hwp_active && !hwp_boost)
1961 1962
		return;

1963 1964 1965
	if (cpu->update_util_set)
		return;

1966 1967
	/* Prevent intel_pstate_update_util() from using stale data. */
	cpu->sample.time = 0;
1968
	cpufreq_add_update_util_hook(cpu_num, &cpu->update_util,
1969 1970 1971
				     (hwp_active ?
				      intel_pstate_update_util_hwp :
				      intel_pstate_update_util));
1972
	cpu->update_util_set = true;
1973 1974 1975 1976
}

static void intel_pstate_clear_update_util_hook(unsigned int cpu)
{
1977 1978 1979 1980 1981
	struct cpudata *cpu_data = all_cpu_data[cpu];

	if (!cpu_data->update_util_set)
		return;

1982
	cpufreq_remove_update_util_hook(cpu);
1983
	cpu_data->update_util_set = false;
1984
	synchronize_rcu();
1985 1986
}

1987 1988 1989 1990 1991 1992
static int intel_pstate_get_max_freq(struct cpudata *cpu)
{
	return global.turbo_disabled || global.no_turbo ?
			cpu->pstate.max_freq : cpu->pstate.turbo_freq;
}

1993
static void intel_pstate_update_perf_limits(struct cpufreq_policy *policy,
1994
					    struct cpudata *cpu)
1995
{
1996
	int max_freq = intel_pstate_get_max_freq(cpu);
1997
	int32_t max_policy_perf, min_policy_perf;
1998
	int max_state, turbo_max;
1999

2000 2001 2002 2003 2004 2005 2006 2007
	/*
	 * HWP needs some special consideration, because on BDX the
	 * HWP_REQUEST uses abstract value to represent performance
	 * rather than pure ratios.
	 */
	if (hwp_active) {
		intel_pstate_get_hwp_max(cpu->cpu, &turbo_max, &max_state);
	} else {
2008 2009
		max_state = global.no_turbo || global.turbo_disabled ?
			cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
2010 2011 2012 2013
		turbo_max = cpu->pstate.turbo_pstate;
	}

	max_policy_perf = max_state * policy->max / max_freq;
2014
	if (policy->max == policy->min) {
2015
		min_policy_perf = max_policy_perf;
2016
	} else {
2017
		min_policy_perf = max_state * policy->min / max_freq;
2018 2019
		min_policy_perf = clamp_t(int32_t, min_policy_perf,
					  0, max_policy_perf);
2020
	}
2021

2022 2023 2024 2025
	pr_debug("cpu:%d max_state %d min_policy_perf:%d max_policy_perf:%d\n",
		 policy->cpu, max_state,
		 min_policy_perf, max_policy_perf);

2026
	/* Normalize user input to [min_perf, max_perf] */
2027
	if (per_cpu_limits) {
2028 2029
		cpu->min_perf_ratio = min_policy_perf;
		cpu->max_perf_ratio = max_policy_perf;
2030 2031 2032 2033
	} else {
		int32_t global_min, global_max;

		/* Global limits are in percent of the maximum turbo P-state. */
2034 2035
		global_max = DIV_ROUND_UP(turbo_max * global.max_perf_pct, 100);
		global_min = DIV_ROUND_UP(turbo_max * global.min_perf_pct, 100);
2036
		global_min = clamp_t(int32_t, global_min, 0, global_max);
2037

2038 2039
		pr_debug("cpu:%d global_min:%d global_max:%d\n", policy->cpu,
			 global_min, global_max);
2040

2041 2042 2043 2044
		cpu->min_perf_ratio = max(min_policy_perf, global_min);
		cpu->min_perf_ratio = min(cpu->min_perf_ratio, max_policy_perf);
		cpu->max_perf_ratio = min(max_policy_perf, global_max);
		cpu->max_perf_ratio = max(min_policy_perf, cpu->max_perf_ratio);
2045

2046 2047 2048
		/* Make sure min_perf <= max_perf */
		cpu->min_perf_ratio = min(cpu->min_perf_ratio,
					  cpu->max_perf_ratio);
2049

2050 2051 2052 2053
	}
	pr_debug("cpu:%d max_perf_ratio:%d min_perf_ratio:%d\n", policy->cpu,
		 cpu->max_perf_ratio,
		 cpu->min_perf_ratio);
2054 2055
}

2056 2057
static int intel_pstate_set_policy(struct cpufreq_policy *policy)
{
2058 2059
	struct cpudata *cpu;

2060 2061 2062
	if (!policy->cpuinfo.max_freq)
		return -ENODEV;

2063 2064 2065
	pr_debug("set_policy cpuinfo.max %u policy->max %u\n",
		 policy->cpuinfo.max_freq, policy->max);

2066
	cpu = all_cpu_data[policy->cpu];
2067 2068
	cpu->policy = policy->policy;

2069 2070
	mutex_lock(&intel_pstate_limits_lock);

2071
	intel_pstate_update_perf_limits(policy, cpu);
2072

2073
	if (cpu->policy == CPUFREQ_POLICY_PERFORMANCE) {
2074 2075 2076 2077 2078 2079
		/*
		 * NOHZ_FULL CPUs need this as the governor callback may not
		 * be invoked on them.
		 */
		intel_pstate_clear_update_util_hook(policy->cpu);
		intel_pstate_max_within_limits(cpu);
2080 2081
	} else {
		intel_pstate_set_update_util_hook(policy->cpu);
2082 2083
	}

2084 2085 2086 2087 2088 2089 2090 2091
	if (hwp_active) {
		/*
		 * When hwp_boost was active before and dynamically it
		 * was turned off, in that case we need to clear the
		 * update util hook.
		 */
		if (!hwp_boost)
			intel_pstate_clear_update_util_hook(policy->cpu);
2092
		intel_pstate_hwp_set(policy->cpu);
2093
	}
D
Dirk Brandewie 已提交
2094

2095 2096
	mutex_unlock(&intel_pstate_limits_lock);

2097 2098 2099
	return 0;
}

2100 2101 2102
static void intel_pstate_adjust_policy_max(struct cpufreq_policy *policy,
					 struct cpudata *cpu)
{
2103 2104
	if (!hwp_active &&
	    cpu->pstate.max_pstate_physical > cpu->pstate.max_pstate &&
2105 2106 2107 2108 2109 2110 2111
	    policy->max < policy->cpuinfo.max_freq &&
	    policy->max > cpu->pstate.max_freq) {
		pr_debug("policy->max > max non turbo frequency\n");
		policy->max = policy->cpuinfo.max_freq;
	}
}

2112 2113
static int intel_pstate_verify_policy(struct cpufreq_policy *policy)
{
2114 2115 2116
	struct cpudata *cpu = all_cpu_data[policy->cpu];

	update_turbo_state();
2117 2118
	cpufreq_verify_within_limits(policy, policy->cpuinfo.min_freq,
				     intel_pstate_get_max_freq(cpu));
2119

2120
	if (policy->policy != CPUFREQ_POLICY_POWERSAVE &&
2121
	    policy->policy != CPUFREQ_POLICY_PERFORMANCE)
2122 2123
		return -EINVAL;

2124 2125
	intel_pstate_adjust_policy_max(policy, cpu);

2126 2127 2128
	return 0;
}

2129 2130 2131 2132 2133
static void intel_cpufreq_stop_cpu(struct cpufreq_policy *policy)
{
	intel_pstate_set_min_pstate(all_cpu_data[policy->cpu]);
}

2134
static void intel_pstate_stop_cpu(struct cpufreq_policy *policy)
2135
{
2136
	pr_debug("CPU %d exiting\n", policy->cpu);
2137

2138
	intel_pstate_clear_update_util_hook(policy->cpu);
2139
	if (hwp_active) {
2140
		intel_pstate_hwp_save_state(policy);
2141 2142
		intel_pstate_hwp_force_min_perf(policy->cpu);
	} else {
2143
		intel_cpufreq_stop_cpu(policy);
2144
	}
2145
}
2146

2147 2148 2149
static int intel_pstate_cpu_exit(struct cpufreq_policy *policy)
{
	intel_pstate_exit_perf_limits(policy);
2150

2151
	policy->fast_switch_possible = false;
D
Dirk Brandewie 已提交
2152

2153
	return 0;
2154 2155
}

2156
static int __intel_pstate_cpu_init(struct cpufreq_policy *policy)
2157 2158
{
	struct cpudata *cpu;
2159
	int rc;
2160 2161 2162 2163 2164 2165 2166

	rc = intel_pstate_init_cpu(policy->cpu);
	if (rc)
		return rc;

	cpu = all_cpu_data[policy->cpu];

2167 2168
	cpu->max_perf_ratio = 0xFF;
	cpu->min_perf_ratio = 0;
2169

2170 2171
	policy->min = cpu->pstate.min_pstate * cpu->pstate.scaling;
	policy->max = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
2172 2173

	/* cpuinfo and default policy values */
2174
	policy->cpuinfo.min_freq = cpu->pstate.min_pstate * cpu->pstate.scaling;
2175
	update_turbo_state();
2176
	global.turbo_disabled_mf = global.turbo_disabled;
2177
	policy->cpuinfo.max_freq = global.turbo_disabled ?
2178 2179 2180
			cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
	policy->cpuinfo.max_freq *= cpu->pstate.scaling;

2181 2182 2183 2184 2185 2186 2187 2188 2189
	if (hwp_active) {
		unsigned int max_freq;

		max_freq = global.turbo_disabled ?
			cpu->pstate.max_freq : cpu->pstate.turbo_freq;
		if (max_freq < policy->cpuinfo.max_freq)
			policy->cpuinfo.max_freq = max_freq;
	}

2190
	intel_pstate_init_acpi_perf_limits(policy);
2191

2192 2193
	policy->fast_switch_possible = true;

2194 2195 2196
	return 0;
}

2197
static int intel_pstate_cpu_init(struct cpufreq_policy *policy)
2198
{
2199 2200 2201 2202 2203
	int ret = __intel_pstate_cpu_init(policy);

	if (ret)
		return ret;

2204
	if (IS_ENABLED(CONFIG_CPU_FREQ_DEFAULT_GOV_PERFORMANCE))
2205 2206 2207
		policy->policy = CPUFREQ_POLICY_PERFORMANCE;
	else
		policy->policy = CPUFREQ_POLICY_POWERSAVE;
2208 2209 2210 2211

	return 0;
}

2212
static struct cpufreq_driver intel_pstate = {
2213 2214 2215
	.flags		= CPUFREQ_CONST_LOOPS,
	.verify		= intel_pstate_verify_policy,
	.setpolicy	= intel_pstate_set_policy,
2216
	.suspend	= intel_pstate_hwp_save_state,
2217
	.resume		= intel_pstate_resume,
2218
	.init		= intel_pstate_cpu_init,
2219
	.exit		= intel_pstate_cpu_exit,
2220
	.stop_cpu	= intel_pstate_stop_cpu,
2221
	.update_limits	= intel_pstate_update_limits,
2222 2223 2224
	.name		= "intel_pstate",
};

2225 2226 2227 2228 2229
static int intel_cpufreq_verify_policy(struct cpufreq_policy *policy)
{
	struct cpudata *cpu = all_cpu_data[policy->cpu];

	update_turbo_state();
2230 2231
	cpufreq_verify_within_limits(policy, policy->cpuinfo.min_freq,
				     intel_pstate_get_max_freq(cpu));
2232

2233
	intel_pstate_adjust_policy_max(policy, cpu);
2234

2235 2236
	intel_pstate_update_perf_limits(policy, cpu);

2237 2238 2239
	return 0;
}

2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277
/* Use of trace in passive mode:
 *
 * In passive mode the trace core_busy field (also known as the
 * performance field, and lablelled as such on the graphs; also known as
 * core_avg_perf) is not needed and so is re-assigned to indicate if the
 * driver call was via the normal or fast switch path. Various graphs
 * output from the intel_pstate_tracer.py utility that include core_busy
 * (or performance or core_avg_perf) have a fixed y-axis from 0 to 100%,
 * so we use 10 to indicate the the normal path through the driver, and
 * 90 to indicate the fast switch path through the driver.
 * The scaled_busy field is not used, and is set to 0.
 */

#define	INTEL_PSTATE_TRACE_TARGET 10
#define	INTEL_PSTATE_TRACE_FAST_SWITCH 90

static void intel_cpufreq_trace(struct cpudata *cpu, unsigned int trace_type, int old_pstate)
{
	struct sample *sample;

	if (!trace_pstate_sample_enabled())
		return;

	if (!intel_pstate_sample(cpu, ktime_get()))
		return;

	sample = &cpu->sample;
	trace_pstate_sample(trace_type,
		0,
		old_pstate,
		cpu->pstate.current_pstate,
		sample->mperf,
		sample->aperf,
		sample->tsc,
		get_avg_frequency(cpu),
		fp_toint(cpu->iowait_boost * 100));
}

2278 2279 2280 2281 2282 2283
static int intel_cpufreq_target(struct cpufreq_policy *policy,
				unsigned int target_freq,
				unsigned int relation)
{
	struct cpudata *cpu = all_cpu_data[policy->cpu];
	struct cpufreq_freqs freqs;
2284
	int target_pstate, old_pstate;
2285

2286 2287
	update_turbo_state();

2288
	freqs.old = policy->cur;
2289
	freqs.new = target_freq;
2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303

	cpufreq_freq_transition_begin(policy, &freqs);
	switch (relation) {
	case CPUFREQ_RELATION_L:
		target_pstate = DIV_ROUND_UP(freqs.new, cpu->pstate.scaling);
		break;
	case CPUFREQ_RELATION_H:
		target_pstate = freqs.new / cpu->pstate.scaling;
		break;
	default:
		target_pstate = DIV_ROUND_CLOSEST(freqs.new, cpu->pstate.scaling);
		break;
	}
	target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
2304
	old_pstate = cpu->pstate.current_pstate;
2305 2306 2307 2308 2309
	if (target_pstate != cpu->pstate.current_pstate) {
		cpu->pstate.current_pstate = target_pstate;
		wrmsrl_on_cpu(policy->cpu, MSR_IA32_PERF_CTL,
			      pstate_funcs.get_val(cpu, target_pstate));
	}
2310
	freqs.new = target_pstate * cpu->pstate.scaling;
2311
	intel_cpufreq_trace(cpu, INTEL_PSTATE_TRACE_TARGET, old_pstate);
2312 2313 2314 2315 2316 2317 2318 2319 2320
	cpufreq_freq_transition_end(policy, &freqs, false);

	return 0;
}

static unsigned int intel_cpufreq_fast_switch(struct cpufreq_policy *policy,
					      unsigned int target_freq)
{
	struct cpudata *cpu = all_cpu_data[policy->cpu];
2321
	int target_pstate, old_pstate;
2322

2323 2324
	update_turbo_state();

2325
	target_pstate = DIV_ROUND_UP(target_freq, cpu->pstate.scaling);
2326
	target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
2327
	old_pstate = cpu->pstate.current_pstate;
2328
	intel_pstate_update_pstate(cpu, target_pstate);
2329
	intel_cpufreq_trace(cpu, INTEL_PSTATE_TRACE_FAST_SWITCH, old_pstate);
2330
	return target_pstate * cpu->pstate.scaling;
2331 2332 2333 2334 2335 2336 2337 2338 2339 2340
}

static int intel_cpufreq_cpu_init(struct cpufreq_policy *policy)
{
	int ret = __intel_pstate_cpu_init(policy);

	if (ret)
		return ret;

	policy->cpuinfo.transition_latency = INTEL_CPUFREQ_TRANSITION_LATENCY;
2341
	policy->transition_delay_us = INTEL_CPUFREQ_TRANSITION_DELAY;
2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355
	/* This reflects the intel_pstate_get_cpu_pstates() setting. */
	policy->cur = policy->cpuinfo.min_freq;

	return 0;
}

static struct cpufreq_driver intel_cpufreq = {
	.flags		= CPUFREQ_CONST_LOOPS,
	.verify		= intel_cpufreq_verify_policy,
	.target		= intel_cpufreq_target,
	.fast_switch	= intel_cpufreq_fast_switch,
	.init		= intel_cpufreq_cpu_init,
	.exit		= intel_pstate_cpu_exit,
	.stop_cpu	= intel_cpufreq_stop_cpu,
2356
	.update_limits	= intel_pstate_update_limits,
2357 2358 2359
	.name		= "intel_cpufreq",
};

2360
static struct cpufreq_driver *default_driver = &intel_pstate;
2361

2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376
static void intel_pstate_driver_cleanup(void)
{
	unsigned int cpu;

	get_online_cpus();
	for_each_online_cpu(cpu) {
		if (all_cpu_data[cpu]) {
			if (intel_pstate_driver == &intel_pstate)
				intel_pstate_clear_update_util_hook(cpu);

			kfree(all_cpu_data[cpu]);
			all_cpu_data[cpu] = NULL;
		}
	}
	put_online_cpus();
2377
	intel_pstate_driver = NULL;
2378 2379
}

2380
static int intel_pstate_register_driver(struct cpufreq_driver *driver)
2381 2382 2383
{
	int ret;

2384 2385
	memset(&global, 0, sizeof(global));
	global.max_perf_pct = 100;
2386

2387
	intel_pstate_driver = driver;
2388 2389 2390 2391 2392 2393
	ret = cpufreq_register_driver(intel_pstate_driver);
	if (ret) {
		intel_pstate_driver_cleanup();
		return ret;
	}

2394 2395
	global.min_perf_pct = min_perf_pct_min();

2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411
	return 0;
}

static int intel_pstate_unregister_driver(void)
{
	if (hwp_active)
		return -EBUSY;

	cpufreq_unregister_driver(intel_pstate_driver);
	intel_pstate_driver_cleanup();

	return 0;
}

static ssize_t intel_pstate_show_status(char *buf)
{
2412
	if (!intel_pstate_driver)
2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423
		return sprintf(buf, "off\n");

	return sprintf(buf, "%s\n", intel_pstate_driver == &intel_pstate ?
					"active" : "passive");
}

static int intel_pstate_update_status(const char *buf, size_t size)
{
	int ret;

	if (size == 3 && !strncmp(buf, "off", size))
2424
		return intel_pstate_driver ?
2425 2426 2427
			intel_pstate_unregister_driver() : -EINVAL;

	if (size == 6 && !strncmp(buf, "active", size)) {
2428
		if (intel_pstate_driver) {
2429 2430 2431 2432 2433 2434 2435 2436
			if (intel_pstate_driver == &intel_pstate)
				return 0;

			ret = intel_pstate_unregister_driver();
			if (ret)
				return ret;
		}

2437
		return intel_pstate_register_driver(&intel_pstate);
2438 2439 2440
	}

	if (size == 7 && !strncmp(buf, "passive", size)) {
2441
		if (intel_pstate_driver) {
2442
			if (intel_pstate_driver == &intel_cpufreq)
2443 2444 2445 2446 2447 2448 2449
				return 0;

			ret = intel_pstate_unregister_driver();
			if (ret)
				return ret;
		}

2450
		return intel_pstate_register_driver(&intel_cpufreq);
2451 2452 2453 2454 2455
	}

	return -EINVAL;
}

2456 2457 2458
static int no_load __initdata;
static int no_hwp __initdata;
static int hwp_only __initdata;
2459
static unsigned int force_load __initdata;
2460

2461
static int __init intel_pstate_msrs_not_valid(void)
2462
{
2463
	if (!pstate_funcs.get_max() ||
2464 2465
	    !pstate_funcs.get_min() ||
	    !pstate_funcs.get_turbo())
2466 2467 2468 2469
		return -ENODEV;

	return 0;
}
2470

2471
static void __init copy_cpu_funcs(struct pstate_funcs *funcs)
2472 2473
{
	pstate_funcs.get_max   = funcs->get_max;
2474
	pstate_funcs.get_max_physical = funcs->get_max_physical;
2475 2476
	pstate_funcs.get_min   = funcs->get_min;
	pstate_funcs.get_turbo = funcs->get_turbo;
2477
	pstate_funcs.get_scaling = funcs->get_scaling;
2478
	pstate_funcs.get_val   = funcs->get_val;
2479
	pstate_funcs.get_vid   = funcs->get_vid;
2480
	pstate_funcs.get_aperf_mperf_shift = funcs->get_aperf_mperf_shift;
2481 2482
}

2483
#ifdef CONFIG_ACPI
2484

2485
static bool __init intel_pstate_no_acpi_pss(void)
2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510
{
	int i;

	for_each_possible_cpu(i) {
		acpi_status status;
		union acpi_object *pss;
		struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
		struct acpi_processor *pr = per_cpu(processors, i);

		if (!pr)
			continue;

		status = acpi_evaluate_object(pr->handle, "_PSS", NULL, &buffer);
		if (ACPI_FAILURE(status))
			continue;

		pss = buffer.pointer;
		if (pss && pss->type == ACPI_TYPE_PACKAGE) {
			kfree(pss);
			return false;
		}

		kfree(pss);
	}

2511
	pr_debug("ACPI _PSS not found\n");
2512 2513 2514
	return true;
}

2515 2516 2517 2518 2519 2520 2521
static bool __init intel_pstate_no_acpi_pcch(void)
{
	acpi_status status;
	acpi_handle handle;

	status = acpi_get_handle(NULL, "\\_SB", &handle);
	if (ACPI_FAILURE(status))
2522 2523 2524 2525
		goto not_found;

	if (acpi_has_method(handle, "PCCH"))
		return false;
2526

2527 2528 2529
not_found:
	pr_debug("ACPI PCCH not found\n");
	return true;
2530 2531
}

2532
static bool __init intel_pstate_has_acpi_ppc(void)
2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543
{
	int i;

	for_each_possible_cpu(i) {
		struct acpi_processor *pr = per_cpu(processors, i);

		if (!pr)
			continue;
		if (acpi_has_method(pr->handle, "_PPC"))
			return true;
	}
2544
	pr_debug("ACPI _PPC not found\n");
2545 2546 2547 2548 2549 2550 2551 2552
	return false;
}

enum {
	PSS,
	PPC,
};

2553
/* Hardware vendor-specific info that has its own power management modes */
2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570
static struct acpi_platform_list plat_info[] __initdata = {
	{"HP    ", "ProLiant", 0, ACPI_SIG_FADT, all_versions, 0, PSS},
	{"ORACLE", "X4-2    ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
	{"ORACLE", "X4-2L   ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
	{"ORACLE", "X4-2B   ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
	{"ORACLE", "X3-2    ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
	{"ORACLE", "X3-2L   ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
	{"ORACLE", "X3-2B   ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
	{"ORACLE", "X4470M2 ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
	{"ORACLE", "X4270M3 ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
	{"ORACLE", "X4270M2 ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
	{"ORACLE", "X4170M2 ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
	{"ORACLE", "X4170 M3", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
	{"ORACLE", "X4275 M3", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
	{"ORACLE", "X6-2    ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
	{"ORACLE", "Sudbury ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
	{ } /* End */
2571 2572
};

2573
static bool __init intel_pstate_platform_pwr_mgmt_exists(void)
2574
{
D
Dirk Brandewie 已提交
2575 2576
	const struct x86_cpu_id *id;
	u64 misc_pwr;
2577
	int idx;
D
Dirk Brandewie 已提交
2578 2579 2580 2581

	id = x86_match_cpu(intel_pstate_cpu_oob_ids);
	if (id) {
		rdmsrl(MSR_MISC_PWR_MGMT, misc_pwr);
2582 2583
		if (misc_pwr & (1 << 8)) {
			pr_debug("Bit 8 in the MISC_PWR_MGMT MSR set\n");
D
Dirk Brandewie 已提交
2584
			return true;
2585
		}
D
Dirk Brandewie 已提交
2586
	}
2587

2588 2589
	idx = acpi_match_platform_list(plat_info);
	if (idx < 0)
2590 2591
		return false;

2592 2593
	switch (plat_info[idx].data) {
	case PSS:
2594 2595 2596 2597
		if (!intel_pstate_no_acpi_pss())
			return false;

		return intel_pstate_no_acpi_pcch();
2598 2599
	case PPC:
		return intel_pstate_has_acpi_ppc() && !force_load;
2600 2601 2602 2603
	}

	return false;
}
2604 2605 2606 2607 2608 2609 2610 2611 2612 2613

static void intel_pstate_request_control_from_smm(void)
{
	/*
	 * It may be unsafe to request P-states control from SMM if _PPC support
	 * has not been enabled.
	 */
	if (acpi_ppc)
		acpi_processor_pstate_control();
}
2614 2615
#else /* CONFIG_ACPI not enabled */
static inline bool intel_pstate_platform_pwr_mgmt_exists(void) { return false; }
2616
static inline bool intel_pstate_has_acpi_ppc(void) { return false; }
2617
static inline void intel_pstate_request_control_from_smm(void) {}
2618 2619
#endif /* CONFIG_ACPI */

2620 2621 2622 2623 2624
#define INTEL_PSTATE_HWP_BROADWELL	0x01

#define ICPU_HWP(model, hwp_mode) \
	{ X86_VENDOR_INTEL, 6, model, X86_FEATURE_HWP, hwp_mode }

2625
static const struct x86_cpu_id hwp_support_ids[] __initconst = {
2626 2627 2628
	ICPU_HWP(INTEL_FAM6_BROADWELL_X, INTEL_PSTATE_HWP_BROADWELL),
	ICPU_HWP(INTEL_FAM6_BROADWELL_XEON_D, INTEL_PSTATE_HWP_BROADWELL),
	ICPU_HWP(X86_MODEL_ANY, 0),
2629 2630 2631
	{}
};

2632 2633
static int __init intel_pstate_init(void)
{
2634
	const struct x86_cpu_id *id;
2635
	int rc;
2636

2637 2638 2639
	if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
		return -ENODEV;

2640 2641 2642
	if (no_load)
		return -ENODEV;

2643 2644
	id = x86_match_cpu(hwp_support_ids);
	if (id) {
2645
		copy_cpu_funcs(&core_funcs);
2646
		if (!no_hwp) {
2647
			hwp_active++;
2648
			hwp_mode_bdw = id->driver_data;
2649 2650 2651 2652 2653
			intel_pstate.attr = hwp_cpufreq_attrs;
			goto hwp_cpu_matched;
		}
	} else {
		id = x86_match_cpu(intel_pstate_cpu_ids);
2654
		if (!id) {
2655
			pr_info("CPU model not supported\n");
2656
			return -ENODEV;
2657
		}
2658

2659
		copy_cpu_funcs((struct pstate_funcs *)id->driver_data);
2660
	}
2661

2662 2663
	if (intel_pstate_msrs_not_valid()) {
		pr_info("Invalid MSRs\n");
2664
		return -ENODEV;
2665
	}
2666

2667 2668 2669 2670 2671
hwp_cpu_matched:
	/*
	 * The Intel pstate driver will be ignored if the platform
	 * firmware has its own power management modes.
	 */
2672 2673
	if (intel_pstate_platform_pwr_mgmt_exists()) {
		pr_info("P-states controlled by the platform\n");
2674
		return -ENODEV;
2675
	}
2676

2677 2678 2679
	if (!hwp_active && hwp_only)
		return -ENOTSUPP;

J
Joe Perches 已提交
2680
	pr_info("Intel P-state driver initializing\n");
2681

2682
	all_cpu_data = vzalloc(array_size(sizeof(void *), num_possible_cpus()));
2683 2684 2685
	if (!all_cpu_data)
		return -ENOMEM;

2686 2687
	intel_pstate_request_control_from_smm();

2688
	intel_pstate_sysfs_expose_params();
2689

2690
	mutex_lock(&intel_pstate_driver_lock);
2691
	rc = intel_pstate_register_driver(default_driver);
2692
	mutex_unlock(&intel_pstate_driver_lock);
2693 2694
	if (rc)
		return rc;
2695

2696
	if (hwp_active)
J
Joe Perches 已提交
2697
		pr_info("HWP enabled\n");
2698

2699
	return 0;
2700 2701 2702
}
device_initcall(intel_pstate_init);

2703 2704 2705 2706 2707
static int __init intel_pstate_setup(char *str)
{
	if (!str)
		return -EINVAL;

2708
	if (!strcmp(str, "disable")) {
2709
		no_load = 1;
2710 2711
	} else if (!strcmp(str, "passive")) {
		pr_info("Passive mode enabled\n");
2712
		default_driver = &intel_cpufreq;
2713 2714
		no_hwp = 1;
	}
2715
	if (!strcmp(str, "no_hwp")) {
J
Joe Perches 已提交
2716
		pr_info("HWP disabled\n");
D
Dirk Brandewie 已提交
2717
		no_hwp = 1;
2718
	}
2719 2720
	if (!strcmp(str, "force"))
		force_load = 1;
2721 2722
	if (!strcmp(str, "hwp_only"))
		hwp_only = 1;
2723 2724
	if (!strcmp(str, "per_cpu_perf_limits"))
		per_cpu_limits = true;
2725 2726 2727 2728 2729 2730

#ifdef CONFIG_ACPI
	if (!strcmp(str, "support_acpi_ppc"))
		acpi_ppc = true;
#endif

2731 2732 2733 2734
	return 0;
}
early_param("intel_pstate", intel_pstate_setup);

2735 2736 2737
MODULE_AUTHOR("Dirk Brandewie <dirk.j.brandewie@intel.com>");
MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors");
MODULE_LICENSE("GPL");