huge_memory.c 82.0 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-only
2 3 4 5
/*
 *  Copyright (C) 2009  Red Hat, Inc.
 */

6 7
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

8 9
#include <linux/mm.h>
#include <linux/sched.h>
10
#include <linux/sched/coredump.h>
11
#include <linux/sched/numa_balancing.h>
12 13 14 15 16
#include <linux/highmem.h>
#include <linux/hugetlb.h>
#include <linux/mmu_notifier.h>
#include <linux/rmap.h>
#include <linux/swap.h>
17
#include <linux/shrinker.h>
A
Andrea Arcangeli 已提交
18
#include <linux/mm_inline.h>
19
#include <linux/swapops.h>
M
Matthew Wilcox 已提交
20
#include <linux/dax.h>
A
Andrea Arcangeli 已提交
21
#include <linux/khugepaged.h>
22
#include <linux/freezer.h>
23
#include <linux/pfn_t.h>
A
Andrea Arcangeli 已提交
24
#include <linux/mman.h>
25
#include <linux/memremap.h>
R
Ralf Baechle 已提交
26
#include <linux/pagemap.h>
27
#include <linux/debugfs.h>
28
#include <linux/migrate.h>
29
#include <linux/hashtable.h>
30
#include <linux/userfaultfd_k.h>
31
#include <linux/page_idle.h>
32
#include <linux/shmem_fs.h>
33
#include <linux/oom.h>
34
#include <linux/numa.h>
35
#include <linux/page_owner.h>
36

37 38 39 40
#include <asm/tlb.h>
#include <asm/pgalloc.h>
#include "internal.h"

A
Andrea Arcangeli 已提交
41
/*
42 43 44 45
 * By default, transparent hugepage support is disabled in order to avoid
 * risking an increased memory footprint for applications that are not
 * guaranteed to benefit from it. When transparent hugepage support is
 * enabled, it is for all mappings, and khugepaged scans all mappings.
46 47
 * Defrag is invoked by khugepaged hugepage allocations and by page faults
 * for all hugepage allocations.
A
Andrea Arcangeli 已提交
48
 */
49
unsigned long transparent_hugepage_flags __read_mostly =
50
#ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
A
Andrea Arcangeli 已提交
51
	(1<<TRANSPARENT_HUGEPAGE_FLAG)|
52 53 54 55
#endif
#ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
	(1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
#endif
56
	(1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG)|
57 58
	(1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
	(1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
A
Andrea Arcangeli 已提交
59

60
static struct shrinker deferred_split_shrinker;
61

62
static atomic_t huge_zero_refcount;
63
struct page *huge_zero_page __read_mostly;
64

65 66
bool transparent_hugepage_enabled(struct vm_area_struct *vma)
{
67 68 69 70 71
	/* The addr is used to check if the vma size fits */
	unsigned long addr = (vma->vm_end & HPAGE_PMD_MASK) - HPAGE_PMD_SIZE;

	if (!transhuge_vma_suitable(vma, addr))
		return false;
72 73
	if (vma_is_anonymous(vma))
		return __transparent_hugepage_enabled(vma);
74 75
	if (vma_is_shmem(vma))
		return shmem_huge_enabled(vma);
76 77 78 79

	return false;
}

80
static struct page *get_huge_zero_page(void)
81 82 83 84
{
	struct page *zero_page;
retry:
	if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
85
		return READ_ONCE(huge_zero_page);
86 87

	zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
88
			HPAGE_PMD_ORDER);
89 90
	if (!zero_page) {
		count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
91
		return NULL;
92 93
	}
	count_vm_event(THP_ZERO_PAGE_ALLOC);
94
	preempt_disable();
95
	if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
96
		preempt_enable();
97
		__free_pages(zero_page, compound_order(zero_page));
98 99 100 101 102 103
		goto retry;
	}

	/* We take additional reference here. It will be put back by shrinker */
	atomic_set(&huge_zero_refcount, 2);
	preempt_enable();
104
	return READ_ONCE(huge_zero_page);
105 106
}

107
static void put_huge_zero_page(void)
108
{
109 110 111 112 113
	/*
	 * Counter should never go to zero here. Only shrinker can put
	 * last reference.
	 */
	BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
114 115
}

116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135
struct page *mm_get_huge_zero_page(struct mm_struct *mm)
{
	if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
		return READ_ONCE(huge_zero_page);

	if (!get_huge_zero_page())
		return NULL;

	if (test_and_set_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
		put_huge_zero_page();

	return READ_ONCE(huge_zero_page);
}

void mm_put_huge_zero_page(struct mm_struct *mm)
{
	if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
		put_huge_zero_page();
}

136 137
static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
					struct shrink_control *sc)
138
{
139 140 141
	/* we can free zero page only if last reference remains */
	return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
}
142

143 144 145
static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
				       struct shrink_control *sc)
{
146
	if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
147 148
		struct page *zero_page = xchg(&huge_zero_page, NULL);
		BUG_ON(zero_page == NULL);
149
		__free_pages(zero_page, compound_order(zero_page));
150
		return HPAGE_PMD_NR;
151 152 153
	}

	return 0;
154 155
}

156
static struct shrinker huge_zero_page_shrinker = {
157 158
	.count_objects = shrink_huge_zero_page_count,
	.scan_objects = shrink_huge_zero_page_scan,
159 160 161
	.seeks = DEFAULT_SEEKS,
};

162 163 164 165
#ifdef CONFIG_SYSFS
static ssize_t enabled_show(struct kobject *kobj,
			    struct kobj_attribute *attr, char *buf)
{
166 167 168 169 170 171
	if (test_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags))
		return sprintf(buf, "[always] madvise never\n");
	else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags))
		return sprintf(buf, "always [madvise] never\n");
	else
		return sprintf(buf, "always madvise [never]\n");
172
}
173

174 175 176 177
static ssize_t enabled_store(struct kobject *kobj,
			     struct kobj_attribute *attr,
			     const char *buf, size_t count)
{
178
	ssize_t ret = count;
A
Andrea Arcangeli 已提交
179

180
	if (sysfs_streq(buf, "always")) {
181 182
		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
		set_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
183
	} else if (sysfs_streq(buf, "madvise")) {
184 185
		clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
		set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
186
	} else if (sysfs_streq(buf, "never")) {
187 188 189 190
		clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
	} else
		ret = -EINVAL;
A
Andrea Arcangeli 已提交
191 192

	if (ret > 0) {
193
		int err = start_stop_khugepaged();
A
Andrea Arcangeli 已提交
194 195 196 197
		if (err)
			ret = err;
	}
	return ret;
198 199 200 201
}
static struct kobj_attribute enabled_attr =
	__ATTR(enabled, 0644, enabled_show, enabled_store);

202
ssize_t single_hugepage_flag_show(struct kobject *kobj,
203 204 205
				struct kobj_attribute *attr, char *buf,
				enum transparent_hugepage_flag flag)
{
206 207
	return sprintf(buf, "%d\n",
		       !!test_bit(flag, &transparent_hugepage_flags));
208
}
209

210
ssize_t single_hugepage_flag_store(struct kobject *kobj,
211 212 213 214
				 struct kobj_attribute *attr,
				 const char *buf, size_t count,
				 enum transparent_hugepage_flag flag)
{
215 216 217 218 219 220 221 222 223 224
	unsigned long value;
	int ret;

	ret = kstrtoul(buf, 10, &value);
	if (ret < 0)
		return ret;
	if (value > 1)
		return -EINVAL;

	if (value)
225
		set_bit(flag, &transparent_hugepage_flags);
226
	else
227 228 229 230 231 232 233 234
		clear_bit(flag, &transparent_hugepage_flags);

	return count;
}

static ssize_t defrag_show(struct kobject *kobj,
			   struct kobj_attribute *attr, char *buf)
{
235
	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
236
		return sprintf(buf, "[always] defer defer+madvise madvise never\n");
237
	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
238 239 240 241 242 243
		return sprintf(buf, "always [defer] defer+madvise madvise never\n");
	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
		return sprintf(buf, "always defer [defer+madvise] madvise never\n");
	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
		return sprintf(buf, "always defer defer+madvise [madvise] never\n");
	return sprintf(buf, "always defer defer+madvise madvise [never]\n");
244
}
245

246 247 248 249
static ssize_t defrag_store(struct kobject *kobj,
			    struct kobj_attribute *attr,
			    const char *buf, size_t count)
{
250
	if (sysfs_streq(buf, "always")) {
251 252 253 254
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
255
	} else if (sysfs_streq(buf, "defer+madvise")) {
256 257 258 259
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
260
	} else if (sysfs_streq(buf, "defer")) {
261 262 263 264
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
265
	} else if (sysfs_streq(buf, "madvise")) {
266 267 268 269
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
270
	} else if (sysfs_streq(buf, "never")) {
271 272 273 274 275 276 277 278
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
	} else
		return -EINVAL;

	return count;
279 280 281 282
}
static struct kobj_attribute defrag_attr =
	__ATTR(defrag, 0644, defrag_show, defrag_store);

283 284 285
static ssize_t use_zero_page_show(struct kobject *kobj,
		struct kobj_attribute *attr, char *buf)
{
286
	return single_hugepage_flag_show(kobj, attr, buf,
287 288 289 290 291
				TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
}
static ssize_t use_zero_page_store(struct kobject *kobj,
		struct kobj_attribute *attr, const char *buf, size_t count)
{
292
	return single_hugepage_flag_store(kobj, attr, buf, count,
293 294 295 296
				 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
}
static struct kobj_attribute use_zero_page_attr =
	__ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
297 298 299 300 301 302 303 304 305

static ssize_t hpage_pmd_size_show(struct kobject *kobj,
		struct kobj_attribute *attr, char *buf)
{
	return sprintf(buf, "%lu\n", HPAGE_PMD_SIZE);
}
static struct kobj_attribute hpage_pmd_size_attr =
	__ATTR_RO(hpage_pmd_size);

306 307 308
static struct attribute *hugepage_attr[] = {
	&enabled_attr.attr,
	&defrag_attr.attr,
309
	&use_zero_page_attr.attr,
310
	&hpage_pmd_size_attr.attr,
311
#ifdef CONFIG_SHMEM
312
	&shmem_enabled_attr.attr,
313 314 315 316
#endif
	NULL,
};

317
static const struct attribute_group hugepage_attr_group = {
318
	.attrs = hugepage_attr,
A
Andrea Arcangeli 已提交
319 320
};

S
Shaohua Li 已提交
321
static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
322 323 324
{
	int err;

S
Shaohua Li 已提交
325 326
	*hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
	if (unlikely(!*hugepage_kobj)) {
327
		pr_err("failed to create transparent hugepage kobject\n");
S
Shaohua Li 已提交
328
		return -ENOMEM;
A
Andrea Arcangeli 已提交
329 330
	}

S
Shaohua Li 已提交
331
	err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
A
Andrea Arcangeli 已提交
332
	if (err) {
333
		pr_err("failed to register transparent hugepage group\n");
S
Shaohua Li 已提交
334
		goto delete_obj;
A
Andrea Arcangeli 已提交
335 336
	}

S
Shaohua Li 已提交
337
	err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
A
Andrea Arcangeli 已提交
338
	if (err) {
339
		pr_err("failed to register transparent hugepage group\n");
S
Shaohua Li 已提交
340
		goto remove_hp_group;
A
Andrea Arcangeli 已提交
341
	}
S
Shaohua Li 已提交
342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378

	return 0;

remove_hp_group:
	sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
delete_obj:
	kobject_put(*hugepage_kobj);
	return err;
}

static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
{
	sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
	sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
	kobject_put(hugepage_kobj);
}
#else
static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
{
	return 0;
}

static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
{
}
#endif /* CONFIG_SYSFS */

static int __init hugepage_init(void)
{
	int err;
	struct kobject *hugepage_kobj;

	if (!has_transparent_hugepage()) {
		transparent_hugepage_flags = 0;
		return -EINVAL;
	}

379 380 381 382 383 384 385 386 387 388
	/*
	 * hugepages can't be allocated by the buddy allocator
	 */
	MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER >= MAX_ORDER);
	/*
	 * we use page->mapping and page->index in second tail page
	 * as list_head: assuming THP order >= 2
	 */
	MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER < 2);

S
Shaohua Li 已提交
389 390
	err = hugepage_init_sysfs(&hugepage_kobj);
	if (err)
391
		goto err_sysfs;
A
Andrea Arcangeli 已提交
392

393
	err = khugepaged_init();
A
Andrea Arcangeli 已提交
394
	if (err)
395
		goto err_slab;
A
Andrea Arcangeli 已提交
396

397 398 399
	err = register_shrinker(&huge_zero_page_shrinker);
	if (err)
		goto err_hzp_shrinker;
400 401 402
	err = register_shrinker(&deferred_split_shrinker);
	if (err)
		goto err_split_shrinker;
403

404 405 406 407 408
	/*
	 * By default disable transparent hugepages on smaller systems,
	 * where the extra memory used could hurt more than TLB overhead
	 * is likely to save.  The admin can still enable it through /sys.
	 */
409
	if (totalram_pages() < (512 << (20 - PAGE_SHIFT))) {
410
		transparent_hugepage_flags = 0;
411 412
		return 0;
	}
413

414
	err = start_stop_khugepaged();
415 416
	if (err)
		goto err_khugepaged;
A
Andrea Arcangeli 已提交
417

S
Shaohua Li 已提交
418
	return 0;
419
err_khugepaged:
420 421
	unregister_shrinker(&deferred_split_shrinker);
err_split_shrinker:
422 423
	unregister_shrinker(&huge_zero_page_shrinker);
err_hzp_shrinker:
424
	khugepaged_destroy();
425
err_slab:
S
Shaohua Li 已提交
426
	hugepage_exit_sysfs(hugepage_kobj);
427
err_sysfs:
A
Andrea Arcangeli 已提交
428
	return err;
429
}
430
subsys_initcall(hugepage_init);
431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457

static int __init setup_transparent_hugepage(char *str)
{
	int ret = 0;
	if (!str)
		goto out;
	if (!strcmp(str, "always")) {
		set_bit(TRANSPARENT_HUGEPAGE_FLAG,
			&transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
			  &transparent_hugepage_flags);
		ret = 1;
	} else if (!strcmp(str, "madvise")) {
		clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
			  &transparent_hugepage_flags);
		set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
			&transparent_hugepage_flags);
		ret = 1;
	} else if (!strcmp(str, "never")) {
		clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
			  &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
			  &transparent_hugepage_flags);
		ret = 1;
	}
out:
	if (!ret)
458
		pr_warn("transparent_hugepage= cannot parse, ignored\n");
459 460 461 462
	return ret;
}
__setup("transparent_hugepage=", setup_transparent_hugepage);

463
pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
464
{
465
	if (likely(vma->vm_flags & VM_WRITE))
466 467 468 469
		pmd = pmd_mkwrite(pmd);
	return pmd;
}

470 471
#ifdef CONFIG_MEMCG
static inline struct deferred_split *get_deferred_split_queue(struct page *page)
472
{
473 474 475 476 477 478 479
	struct mem_cgroup *memcg = compound_head(page)->mem_cgroup;
	struct pglist_data *pgdat = NODE_DATA(page_to_nid(page));

	if (memcg)
		return &memcg->deferred_split_queue;
	else
		return &pgdat->deferred_split_queue;
480
}
481 482 483 484 485 486 487 488
#else
static inline struct deferred_split *get_deferred_split_queue(struct page *page)
{
	struct pglist_data *pgdat = NODE_DATA(page_to_nid(page));

	return &pgdat->deferred_split_queue;
}
#endif
489 490 491 492 493 494 495 496 497 498 499 500

void prep_transhuge_page(struct page *page)
{
	/*
	 * we use page->mapping and page->indexlru in second tail page
	 * as list_head: assuming THP order >= 2
	 */

	INIT_LIST_HEAD(page_deferred_list(page));
	set_compound_page_dtor(page, TRANSHUGE_PAGE_DTOR);
}

501 502 503
bool is_transparent_hugepage(struct page *page)
{
	if (!PageCompound(page))
Z
Zou Wei 已提交
504
		return false;
505 506 507 508 509 510 511

	page = compound_head(page);
	return is_huge_zero_page(page) ||
	       page[1].compound_dtor == TRANSHUGE_PAGE_DTOR;
}
EXPORT_SYMBOL_GPL(is_transparent_hugepage);

512 513
static unsigned long __thp_get_unmapped_area(struct file *filp,
		unsigned long addr, unsigned long len,
514 515 516 517
		loff_t off, unsigned long flags, unsigned long size)
{
	loff_t off_end = off + len;
	loff_t off_align = round_up(off, size);
518
	unsigned long len_pad, ret;
519 520 521 522 523 524 525 526

	if (off_end <= off_align || (off_end - off_align) < size)
		return 0;

	len_pad = len + size;
	if (len_pad < len || (off + len_pad) < off)
		return 0;

527
	ret = current->mm->get_unmapped_area(filp, addr, len_pad,
528
					      off >> PAGE_SHIFT, flags);
529 530 531 532 533 534

	/*
	 * The failure might be due to length padding. The caller will retry
	 * without the padding.
	 */
	if (IS_ERR_VALUE(ret))
535 536
		return 0;

537 538 539 540 541 542 543 544 545
	/*
	 * Do not try to align to THP boundary if allocation at the address
	 * hint succeeds.
	 */
	if (ret == addr)
		return addr;

	ret += (off - ret) & (size - 1);
	return ret;
546 547 548 549 550
}

unsigned long thp_get_unmapped_area(struct file *filp, unsigned long addr,
		unsigned long len, unsigned long pgoff, unsigned long flags)
{
551
	unsigned long ret;
552 553 554 555 556
	loff_t off = (loff_t)pgoff << PAGE_SHIFT;

	if (!IS_DAX(filp->f_mapping->host) || !IS_ENABLED(CONFIG_FS_DAX_PMD))
		goto out;

557 558 559 560
	ret = __thp_get_unmapped_area(filp, addr, len, off, flags, PMD_SIZE);
	if (ret)
		return ret;
out:
561 562 563 564
	return current->mm->get_unmapped_area(filp, addr, len, pgoff, flags);
}
EXPORT_SYMBOL_GPL(thp_get_unmapped_area);

565 566
static vm_fault_t __do_huge_pmd_anonymous_page(struct vm_fault *vmf,
			struct page *page, gfp_t gfp)
567
{
J
Jan Kara 已提交
568
	struct vm_area_struct *vma = vmf->vma;
569
	pgtable_t pgtable;
J
Jan Kara 已提交
570
	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
571
	vm_fault_t ret = 0;
572

573
	VM_BUG_ON_PAGE(!PageCompound(page), page);
574

575
	if (mem_cgroup_charge(page, vma->vm_mm, gfp)) {
576 577
		put_page(page);
		count_vm_event(THP_FAULT_FALLBACK);
578
		count_vm_event(THP_FAULT_FALLBACK_CHARGE);
579 580
		return VM_FAULT_FALLBACK;
	}
581
	cgroup_throttle_swaprate(page, gfp);
582

583
	pgtable = pte_alloc_one(vma->vm_mm);
584
	if (unlikely(!pgtable)) {
585 586
		ret = VM_FAULT_OOM;
		goto release;
587
	}
588

589
	clear_huge_page(page, vmf->address, HPAGE_PMD_NR);
590 591 592 593 594
	/*
	 * The memory barrier inside __SetPageUptodate makes sure that
	 * clear_huge_page writes become visible before the set_pmd_at()
	 * write.
	 */
595 596
	__SetPageUptodate(page);

J
Jan Kara 已提交
597 598
	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
	if (unlikely(!pmd_none(*vmf->pmd))) {
599
		goto unlock_release;
600 601
	} else {
		pmd_t entry;
602

603 604 605 606
		ret = check_stable_address_space(vma->vm_mm);
		if (ret)
			goto unlock_release;

607 608
		/* Deliver the page fault to userland */
		if (userfaultfd_missing(vma)) {
609
			vm_fault_t ret2;
610

J
Jan Kara 已提交
611
			spin_unlock(vmf->ptl);
612
			put_page(page);
K
Kirill A. Shutemov 已提交
613
			pte_free(vma->vm_mm, pgtable);
614 615 616
			ret2 = handle_userfault(vmf, VM_UFFD_MISSING);
			VM_BUG_ON(ret2 & VM_FAULT_FALLBACK);
			return ret2;
617 618
		}

619
		entry = mk_huge_pmd(page, vma->vm_page_prot);
620
		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
621
		page_add_new_anon_rmap(page, vma, haddr, true);
622
		lru_cache_add_inactive_or_unevictable(page, vma);
J
Jan Kara 已提交
623 624
		pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable);
		set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
K
Kirill A. Shutemov 已提交
625
		add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
626
		mm_inc_nr_ptes(vma->vm_mm);
J
Jan Kara 已提交
627
		spin_unlock(vmf->ptl);
628
		count_vm_event(THP_FAULT_ALLOC);
629
		count_memcg_event_mm(vma->vm_mm, THP_FAULT_ALLOC);
630 631
	}

632
	return 0;
633 634 635 636 637 638 639 640
unlock_release:
	spin_unlock(vmf->ptl);
release:
	if (pgtable)
		pte_free(vma->vm_mm, pgtable);
	put_page(page);
	return ret;

641 642
}

643
/*
644 645 646 647 648 649 650
 * always: directly stall for all thp allocations
 * defer: wake kswapd and fail if not immediately available
 * defer+madvise: wake kswapd and directly stall for MADV_HUGEPAGE, otherwise
 *		  fail if not immediately available
 * madvise: directly stall for MADV_HUGEPAGE, otherwise fail if not immediately
 *	    available
 * never: never stall for any thp allocation
651
 */
652
static inline gfp_t alloc_hugepage_direct_gfpmask(struct vm_area_struct *vma)
653
{
654
	const bool vma_madvised = !!(vma->vm_flags & VM_HUGEPAGE);
655

656
	/* Always do synchronous compaction */
657 658
	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
		return GFP_TRANSHUGE | (vma_madvised ? 0 : __GFP_NORETRY);
659 660

	/* Kick kcompactd and fail quickly */
661
	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
662
		return GFP_TRANSHUGE_LIGHT | __GFP_KSWAPD_RECLAIM;
663 664

	/* Synchronous compaction if madvised, otherwise kick kcompactd */
665
	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
666 667 668
		return GFP_TRANSHUGE_LIGHT |
			(vma_madvised ? __GFP_DIRECT_RECLAIM :
					__GFP_KSWAPD_RECLAIM);
669 670

	/* Only do synchronous compaction if madvised */
671
	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
672 673
		return GFP_TRANSHUGE_LIGHT |
		       (vma_madvised ? __GFP_DIRECT_RECLAIM : 0);
674

675
	return GFP_TRANSHUGE_LIGHT;
676 677
}

678
/* Caller must hold page table lock. */
679
static bool set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
680
		struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
681
		struct page *zero_page)
682 683
{
	pmd_t entry;
A
Andrew Morton 已提交
684 685
	if (!pmd_none(*pmd))
		return false;
686
	entry = mk_pmd(zero_page, vma->vm_page_prot);
687
	entry = pmd_mkhuge(entry);
688 689
	if (pgtable)
		pgtable_trans_huge_deposit(mm, pmd, pgtable);
690
	set_pmd_at(mm, haddr, pmd, entry);
691
	mm_inc_nr_ptes(mm);
A
Andrew Morton 已提交
692
	return true;
693 694
}

695
vm_fault_t do_huge_pmd_anonymous_page(struct vm_fault *vmf)
696
{
J
Jan Kara 已提交
697
	struct vm_area_struct *vma = vmf->vma;
698
	gfp_t gfp;
699
	struct page *page;
J
Jan Kara 已提交
700
	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
701

702
	if (!transhuge_vma_suitable(vma, haddr))
703
		return VM_FAULT_FALLBACK;
704 705
	if (unlikely(anon_vma_prepare(vma)))
		return VM_FAULT_OOM;
706
	if (unlikely(khugepaged_enter(vma, vma->vm_flags)))
707
		return VM_FAULT_OOM;
J
Jan Kara 已提交
708
	if (!(vmf->flags & FAULT_FLAG_WRITE) &&
K
Kirill A. Shutemov 已提交
709
			!mm_forbids_zeropage(vma->vm_mm) &&
710 711 712 713
			transparent_hugepage_use_zero_page()) {
		pgtable_t pgtable;
		struct page *zero_page;
		bool set;
714
		vm_fault_t ret;
715
		pgtable = pte_alloc_one(vma->vm_mm);
716
		if (unlikely(!pgtable))
A
Andrea Arcangeli 已提交
717
			return VM_FAULT_OOM;
718
		zero_page = mm_get_huge_zero_page(vma->vm_mm);
719
		if (unlikely(!zero_page)) {
K
Kirill A. Shutemov 已提交
720
			pte_free(vma->vm_mm, pgtable);
721
			count_vm_event(THP_FAULT_FALLBACK);
722
			return VM_FAULT_FALLBACK;
A
Andrea Arcangeli 已提交
723
		}
J
Jan Kara 已提交
724
		vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
725 726
		ret = 0;
		set = false;
J
Jan Kara 已提交
727
		if (pmd_none(*vmf->pmd)) {
728 729 730 731
			ret = check_stable_address_space(vma->vm_mm);
			if (ret) {
				spin_unlock(vmf->ptl);
			} else if (userfaultfd_missing(vma)) {
J
Jan Kara 已提交
732 733
				spin_unlock(vmf->ptl);
				ret = handle_userfault(vmf, VM_UFFD_MISSING);
734 735
				VM_BUG_ON(ret & VM_FAULT_FALLBACK);
			} else {
K
Kirill A. Shutemov 已提交
736
				set_huge_zero_page(pgtable, vma->vm_mm, vma,
J
Jan Kara 已提交
737 738
						   haddr, vmf->pmd, zero_page);
				spin_unlock(vmf->ptl);
739 740 741
				set = true;
			}
		} else
J
Jan Kara 已提交
742
			spin_unlock(vmf->ptl);
743
		if (!set)
K
Kirill A. Shutemov 已提交
744
			pte_free(vma->vm_mm, pgtable);
745
		return ret;
746
	}
747 748
	gfp = alloc_hugepage_direct_gfpmask(vma);
	page = alloc_hugepage_vma(gfp, vma, haddr, HPAGE_PMD_ORDER);
749 750
	if (unlikely(!page)) {
		count_vm_event(THP_FAULT_FALLBACK);
751
		return VM_FAULT_FALLBACK;
752
	}
753
	prep_transhuge_page(page);
J
Jan Kara 已提交
754
	return __do_huge_pmd_anonymous_page(vmf, page, gfp);
755 756
}

757
static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
758 759
		pmd_t *pmd, pfn_t pfn, pgprot_t prot, bool write,
		pgtable_t pgtable)
M
Matthew Wilcox 已提交
760 761 762 763 764 765
{
	struct mm_struct *mm = vma->vm_mm;
	pmd_t entry;
	spinlock_t *ptl;

	ptl = pmd_lock(mm, pmd);
766 767 768 769 770 771 772 773 774 775 776 777 778 779 780
	if (!pmd_none(*pmd)) {
		if (write) {
			if (pmd_pfn(*pmd) != pfn_t_to_pfn(pfn)) {
				WARN_ON_ONCE(!is_huge_zero_pmd(*pmd));
				goto out_unlock;
			}
			entry = pmd_mkyoung(*pmd);
			entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
			if (pmdp_set_access_flags(vma, addr, pmd, entry, 1))
				update_mmu_cache_pmd(vma, addr, pmd);
		}

		goto out_unlock;
	}

781 782 783
	entry = pmd_mkhuge(pfn_t_pmd(pfn, prot));
	if (pfn_t_devmap(pfn))
		entry = pmd_mkdevmap(entry);
784
	if (write) {
785 786
		entry = pmd_mkyoung(pmd_mkdirty(entry));
		entry = maybe_pmd_mkwrite(entry, vma);
M
Matthew Wilcox 已提交
787
	}
788 789 790

	if (pgtable) {
		pgtable_trans_huge_deposit(mm, pmd, pgtable);
791
		mm_inc_nr_ptes(mm);
792
		pgtable = NULL;
793 794
	}

795 796
	set_pmd_at(mm, addr, pmd, entry);
	update_mmu_cache_pmd(vma, addr, pmd);
797 798

out_unlock:
M
Matthew Wilcox 已提交
799
	spin_unlock(ptl);
800 801
	if (pgtable)
		pte_free(mm, pgtable);
M
Matthew Wilcox 已提交
802 803
}

804 805 806 807 808 809 810 811 812 813 814 815 816 817 818
/**
 * vmf_insert_pfn_pmd_prot - insert a pmd size pfn
 * @vmf: Structure describing the fault
 * @pfn: pfn to insert
 * @pgprot: page protection to use
 * @write: whether it's a write fault
 *
 * Insert a pmd size pfn. See vmf_insert_pfn() for additional info and
 * also consult the vmf_insert_mixed_prot() documentation when
 * @pgprot != @vmf->vma->vm_page_prot.
 *
 * Return: vm_fault_t value.
 */
vm_fault_t vmf_insert_pfn_pmd_prot(struct vm_fault *vmf, pfn_t pfn,
				   pgprot_t pgprot, bool write)
M
Matthew Wilcox 已提交
819
{
820 821
	unsigned long addr = vmf->address & PMD_MASK;
	struct vm_area_struct *vma = vmf->vma;
822
	pgtable_t pgtable = NULL;
823

M
Matthew Wilcox 已提交
824 825 826 827 828
	/*
	 * If we had pmd_special, we could avoid all these restrictions,
	 * but we need to be consistent with PTEs and architectures that
	 * can't support a 'special' bit.
	 */
829 830
	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
			!pfn_t_devmap(pfn));
M
Matthew Wilcox 已提交
831 832 833 834 835 836
	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
						(VM_PFNMAP|VM_MIXEDMAP));
	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));

	if (addr < vma->vm_start || addr >= vma->vm_end)
		return VM_FAULT_SIGBUS;
837

838
	if (arch_needs_pgtable_deposit()) {
839
		pgtable = pte_alloc_one(vma->vm_mm);
840 841 842 843
		if (!pgtable)
			return VM_FAULT_OOM;
	}

844 845
	track_pfn_insert(vma, &pgprot, pfn);

846
	insert_pfn_pmd(vma, addr, vmf->pmd, pfn, pgprot, write, pgtable);
847
	return VM_FAULT_NOPAGE;
M
Matthew Wilcox 已提交
848
}
849
EXPORT_SYMBOL_GPL(vmf_insert_pfn_pmd_prot);
M
Matthew Wilcox 已提交
850

851
#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
852
static pud_t maybe_pud_mkwrite(pud_t pud, struct vm_area_struct *vma)
853
{
854
	if (likely(vma->vm_flags & VM_WRITE))
855 856 857 858 859 860 861 862 863 864 865 866
		pud = pud_mkwrite(pud);
	return pud;
}

static void insert_pfn_pud(struct vm_area_struct *vma, unsigned long addr,
		pud_t *pud, pfn_t pfn, pgprot_t prot, bool write)
{
	struct mm_struct *mm = vma->vm_mm;
	pud_t entry;
	spinlock_t *ptl;

	ptl = pud_lock(mm, pud);
867 868 869 870 871 872 873 874 875 876 877 878 879 880
	if (!pud_none(*pud)) {
		if (write) {
			if (pud_pfn(*pud) != pfn_t_to_pfn(pfn)) {
				WARN_ON_ONCE(!is_huge_zero_pud(*pud));
				goto out_unlock;
			}
			entry = pud_mkyoung(*pud);
			entry = maybe_pud_mkwrite(pud_mkdirty(entry), vma);
			if (pudp_set_access_flags(vma, addr, pud, entry, 1))
				update_mmu_cache_pud(vma, addr, pud);
		}
		goto out_unlock;
	}

881 882 883 884
	entry = pud_mkhuge(pfn_t_pud(pfn, prot));
	if (pfn_t_devmap(pfn))
		entry = pud_mkdevmap(entry);
	if (write) {
885 886
		entry = pud_mkyoung(pud_mkdirty(entry));
		entry = maybe_pud_mkwrite(entry, vma);
887 888 889
	}
	set_pud_at(mm, addr, pud, entry);
	update_mmu_cache_pud(vma, addr, pud);
890 891

out_unlock:
892 893 894
	spin_unlock(ptl);
}

895 896 897 898 899 900 901 902 903 904 905 906 907 908 909
/**
 * vmf_insert_pfn_pud_prot - insert a pud size pfn
 * @vmf: Structure describing the fault
 * @pfn: pfn to insert
 * @pgprot: page protection to use
 * @write: whether it's a write fault
 *
 * Insert a pud size pfn. See vmf_insert_pfn() for additional info and
 * also consult the vmf_insert_mixed_prot() documentation when
 * @pgprot != @vmf->vma->vm_page_prot.
 *
 * Return: vm_fault_t value.
 */
vm_fault_t vmf_insert_pfn_pud_prot(struct vm_fault *vmf, pfn_t pfn,
				   pgprot_t pgprot, bool write)
910
{
911 912 913
	unsigned long addr = vmf->address & PUD_MASK;
	struct vm_area_struct *vma = vmf->vma;

914 915 916 917 918
	/*
	 * If we had pud_special, we could avoid all these restrictions,
	 * but we need to be consistent with PTEs and architectures that
	 * can't support a 'special' bit.
	 */
919 920
	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
			!pfn_t_devmap(pfn));
921 922 923 924 925 926 927 928 929
	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
						(VM_PFNMAP|VM_MIXEDMAP));
	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));

	if (addr < vma->vm_start || addr >= vma->vm_end)
		return VM_FAULT_SIGBUS;

	track_pfn_insert(vma, &pgprot, pfn);

930
	insert_pfn_pud(vma, addr, vmf->pud, pfn, pgprot, write);
931 932
	return VM_FAULT_NOPAGE;
}
933
EXPORT_SYMBOL_GPL(vmf_insert_pfn_pud_prot);
934 935
#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */

936
static void touch_pmd(struct vm_area_struct *vma, unsigned long addr,
937
		pmd_t *pmd, int flags)
938 939 940
{
	pmd_t _pmd;

941 942 943
	_pmd = pmd_mkyoung(*pmd);
	if (flags & FOLL_WRITE)
		_pmd = pmd_mkdirty(_pmd);
944
	if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
945
				pmd, _pmd, flags & FOLL_WRITE))
946 947 948 949
		update_mmu_cache_pmd(vma, addr, pmd);
}

struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr,
950
		pmd_t *pmd, int flags, struct dev_pagemap **pgmap)
951 952 953 954 955 956 957
{
	unsigned long pfn = pmd_pfn(*pmd);
	struct mm_struct *mm = vma->vm_mm;
	struct page *page;

	assert_spin_locked(pmd_lockptr(mm, pmd));

958 959 960 961 962 963
	/*
	 * When we COW a devmap PMD entry, we split it into PTEs, so we should
	 * not be in this function with `flags & FOLL_COW` set.
	 */
	WARN_ONCE(flags & FOLL_COW, "mm: In follow_devmap_pmd with FOLL_COW set");

J
John Hubbard 已提交
964 965 966 967 968
	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
	if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
			 (FOLL_PIN | FOLL_GET)))
		return NULL;

969
	if (flags & FOLL_WRITE && !pmd_write(*pmd))
970 971 972 973 974 975 976 977
		return NULL;

	if (pmd_present(*pmd) && pmd_devmap(*pmd))
		/* pass */;
	else
		return NULL;

	if (flags & FOLL_TOUCH)
978
		touch_pmd(vma, addr, pmd, flags);
979 980 981 982 983

	/*
	 * device mapped pages can only be returned if the
	 * caller will manage the page reference count.
	 */
J
John Hubbard 已提交
984
	if (!(flags & (FOLL_GET | FOLL_PIN)))
985 986 987
		return ERR_PTR(-EEXIST);

	pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT;
988 989
	*pgmap = get_dev_pagemap(pfn, *pgmap);
	if (!*pgmap)
990 991
		return ERR_PTR(-EFAULT);
	page = pfn_to_page(pfn);
J
John Hubbard 已提交
992 993
	if (!try_grab_page(page, flags))
		page = ERR_PTR(-ENOMEM);
994 995 996 997

	return page;
}

998 999 1000 1001
int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
		  pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
		  struct vm_area_struct *vma)
{
1002
	spinlock_t *dst_ptl, *src_ptl;
1003 1004
	struct page *src_page;
	pmd_t pmd;
1005
	pgtable_t pgtable = NULL;
1006
	int ret = -ENOMEM;
1007

1008 1009 1010 1011
	/* Skip if can be re-fill on fault */
	if (!vma_is_anonymous(vma))
		return 0;

1012
	pgtable = pte_alloc_one(dst_mm);
1013 1014
	if (unlikely(!pgtable))
		goto out;
1015

1016 1017 1018
	dst_ptl = pmd_lock(dst_mm, dst_pmd);
	src_ptl = pmd_lockptr(src_mm, src_pmd);
	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1019 1020 1021

	ret = -EAGAIN;
	pmd = *src_pmd;
1022

1023 1024 1025 1026 1027 1028 1029 1030
	/*
	 * Make sure the _PAGE_UFFD_WP bit is cleared if the new VMA
	 * does not have the VM_UFFD_WP, which means that the uffd
	 * fork event is not enabled.
	 */
	if (!(vma->vm_flags & VM_UFFD_WP))
		pmd = pmd_clear_uffd_wp(pmd);

1031 1032 1033 1034 1035 1036 1037 1038
#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
	if (unlikely(is_swap_pmd(pmd))) {
		swp_entry_t entry = pmd_to_swp_entry(pmd);

		VM_BUG_ON(!is_pmd_migration_entry(pmd));
		if (is_write_migration_entry(entry)) {
			make_migration_entry_read(&entry);
			pmd = swp_entry_to_pmd(entry);
1039 1040
			if (pmd_swp_soft_dirty(*src_pmd))
				pmd = pmd_swp_mksoft_dirty(pmd);
1041 1042
			set_pmd_at(src_mm, addr, src_pmd, pmd);
		}
1043
		add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1044
		mm_inc_nr_ptes(dst_mm);
1045
		pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
1046 1047 1048 1049 1050 1051
		set_pmd_at(dst_mm, addr, dst_pmd, pmd);
		ret = 0;
		goto out_unlock;
	}
#endif

1052
	if (unlikely(!pmd_trans_huge(pmd))) {
1053 1054 1055
		pte_free(dst_mm, pgtable);
		goto out_unlock;
	}
1056
	/*
1057
	 * When page table lock is held, the huge zero pmd should not be
1058 1059 1060 1061
	 * under splitting since we don't split the page itself, only pmd to
	 * a page table.
	 */
	if (is_huge_zero_pmd(pmd)) {
1062
		struct page *zero_page;
1063 1064 1065 1066 1067
		/*
		 * get_huge_zero_page() will never allocate a new page here,
		 * since we already have a zero page to copy. It just takes a
		 * reference.
		 */
1068
		zero_page = mm_get_huge_zero_page(dst_mm);
1069
		set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd,
1070
				zero_page);
1071 1072 1073
		ret = 0;
		goto out_unlock;
	}
1074

1075 1076
	src_page = pmd_page(pmd);
	VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094

	/*
	 * If this page is a potentially pinned page, split and retry the fault
	 * with smaller page size.  Normally this should not happen because the
	 * userspace should use MADV_DONTFORK upon pinned regions.  This is a
	 * best effort that the pinned pages won't be replaced by another
	 * random page during the coming copy-on-write.
	 */
	if (unlikely(is_cow_mapping(vma->vm_flags) &&
		     atomic_read(&src_mm->has_pinned) &&
		     page_maybe_dma_pinned(src_page))) {
		pte_free(dst_mm, pgtable);
		spin_unlock(src_ptl);
		spin_unlock(dst_ptl);
		__split_huge_pmd(vma, src_pmd, addr, false, NULL);
		return -EAGAIN;
	}

1095 1096 1097
	get_page(src_page);
	page_dup_rmap(src_page, true);
	add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1098
	mm_inc_nr_ptes(dst_mm);
1099
	pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
1100 1101 1102 1103 1104 1105 1106

	pmdp_set_wrprotect(src_mm, addr, src_pmd);
	pmd = pmd_mkold(pmd_wrprotect(pmd));
	set_pmd_at(dst_mm, addr, dst_pmd, pmd);

	ret = 0;
out_unlock:
1107 1108
	spin_unlock(src_ptl);
	spin_unlock(dst_ptl);
1109 1110 1111 1112
out:
	return ret;
}

1113 1114
#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
static void touch_pud(struct vm_area_struct *vma, unsigned long addr,
1115
		pud_t *pud, int flags)
1116 1117 1118
{
	pud_t _pud;

1119 1120 1121
	_pud = pud_mkyoung(*pud);
	if (flags & FOLL_WRITE)
		_pud = pud_mkdirty(_pud);
1122
	if (pudp_set_access_flags(vma, addr & HPAGE_PUD_MASK,
1123
				pud, _pud, flags & FOLL_WRITE))
1124 1125 1126 1127
		update_mmu_cache_pud(vma, addr, pud);
}

struct page *follow_devmap_pud(struct vm_area_struct *vma, unsigned long addr,
1128
		pud_t *pud, int flags, struct dev_pagemap **pgmap)
1129 1130 1131 1132 1133 1134 1135
{
	unsigned long pfn = pud_pfn(*pud);
	struct mm_struct *mm = vma->vm_mm;
	struct page *page;

	assert_spin_locked(pud_lockptr(mm, pud));

1136
	if (flags & FOLL_WRITE && !pud_write(*pud))
1137 1138
		return NULL;

J
John Hubbard 已提交
1139 1140 1141 1142 1143
	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
	if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
			 (FOLL_PIN | FOLL_GET)))
		return NULL;

1144 1145 1146 1147 1148 1149
	if (pud_present(*pud) && pud_devmap(*pud))
		/* pass */;
	else
		return NULL;

	if (flags & FOLL_TOUCH)
1150
		touch_pud(vma, addr, pud, flags);
1151 1152 1153 1154

	/*
	 * device mapped pages can only be returned if the
	 * caller will manage the page reference count.
J
John Hubbard 已提交
1155 1156
	 *
	 * At least one of FOLL_GET | FOLL_PIN must be set, so assert that here:
1157
	 */
J
John Hubbard 已提交
1158
	if (!(flags & (FOLL_GET | FOLL_PIN)))
1159 1160 1161
		return ERR_PTR(-EEXIST);

	pfn += (addr & ~PUD_MASK) >> PAGE_SHIFT;
1162 1163
	*pgmap = get_dev_pagemap(pfn, *pgmap);
	if (!*pgmap)
1164 1165
		return ERR_PTR(-EFAULT);
	page = pfn_to_page(pfn);
J
John Hubbard 已提交
1166 1167
	if (!try_grab_page(page, flags))
		page = ERR_PTR(-ENOMEM);
1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197

	return page;
}

int copy_huge_pud(struct mm_struct *dst_mm, struct mm_struct *src_mm,
		  pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
		  struct vm_area_struct *vma)
{
	spinlock_t *dst_ptl, *src_ptl;
	pud_t pud;
	int ret;

	dst_ptl = pud_lock(dst_mm, dst_pud);
	src_ptl = pud_lockptr(src_mm, src_pud);
	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);

	ret = -EAGAIN;
	pud = *src_pud;
	if (unlikely(!pud_trans_huge(pud) && !pud_devmap(pud)))
		goto out_unlock;

	/*
	 * When page table lock is held, the huge zero pud should not be
	 * under splitting since we don't split the page itself, only pud to
	 * a page table.
	 */
	if (is_huge_zero_pud(pud)) {
		/* No huge zero pud yet */
	}

1198 1199 1200 1201 1202 1203 1204 1205 1206 1207
	/* Please refer to comments in copy_huge_pmd() */
	if (unlikely(is_cow_mapping(vma->vm_flags) &&
		     atomic_read(&src_mm->has_pinned) &&
		     page_maybe_dma_pinned(pud_page(pud)))) {
		spin_unlock(src_ptl);
		spin_unlock(dst_ptl);
		__split_huge_pud(vma, src_pud, addr);
		return -EAGAIN;
	}

1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240
	pudp_set_wrprotect(src_mm, addr, src_pud);
	pud = pud_mkold(pud_wrprotect(pud));
	set_pud_at(dst_mm, addr, dst_pud, pud);

	ret = 0;
out_unlock:
	spin_unlock(src_ptl);
	spin_unlock(dst_ptl);
	return ret;
}

void huge_pud_set_accessed(struct vm_fault *vmf, pud_t orig_pud)
{
	pud_t entry;
	unsigned long haddr;
	bool write = vmf->flags & FAULT_FLAG_WRITE;

	vmf->ptl = pud_lock(vmf->vma->vm_mm, vmf->pud);
	if (unlikely(!pud_same(*vmf->pud, orig_pud)))
		goto unlock;

	entry = pud_mkyoung(orig_pud);
	if (write)
		entry = pud_mkdirty(entry);
	haddr = vmf->address & HPAGE_PUD_MASK;
	if (pudp_set_access_flags(vmf->vma, haddr, vmf->pud, entry, write))
		update_mmu_cache_pud(vmf->vma, vmf->address, vmf->pud);

unlock:
	spin_unlock(vmf->ptl);
}
#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */

J
Jan Kara 已提交
1241
void huge_pmd_set_accessed(struct vm_fault *vmf, pmd_t orig_pmd)
1242 1243 1244
{
	pmd_t entry;
	unsigned long haddr;
1245
	bool write = vmf->flags & FAULT_FLAG_WRITE;
1246

J
Jan Kara 已提交
1247 1248
	vmf->ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
	if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
1249 1250 1251
		goto unlock;

	entry = pmd_mkyoung(orig_pmd);
1252 1253
	if (write)
		entry = pmd_mkdirty(entry);
J
Jan Kara 已提交
1254
	haddr = vmf->address & HPAGE_PMD_MASK;
1255
	if (pmdp_set_access_flags(vmf->vma, haddr, vmf->pmd, entry, write))
J
Jan Kara 已提交
1256
		update_mmu_cache_pmd(vmf->vma, vmf->address, vmf->pmd);
1257 1258

unlock:
J
Jan Kara 已提交
1259
	spin_unlock(vmf->ptl);
1260 1261
}

1262
vm_fault_t do_huge_pmd_wp_page(struct vm_fault *vmf, pmd_t orig_pmd)
1263
{
J
Jan Kara 已提交
1264
	struct vm_area_struct *vma = vmf->vma;
1265
	struct page *page;
J
Jan Kara 已提交
1266
	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1267

J
Jan Kara 已提交
1268
	vmf->ptl = pmd_lockptr(vma->vm_mm, vmf->pmd);
1269
	VM_BUG_ON_VMA(!vma->anon_vma, vma);
1270

1271
	if (is_huge_zero_pmd(orig_pmd))
1272 1273
		goto fallback;

J
Jan Kara 已提交
1274
	spin_lock(vmf->ptl);
1275 1276 1277 1278 1279

	if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
		spin_unlock(vmf->ptl);
		return 0;
	}
1280 1281

	page = pmd_page(orig_pmd);
1282
	VM_BUG_ON_PAGE(!PageCompound(page) || !PageHead(page), page);
1283 1284

	/* Lock page for reuse_swap_page() */
1285 1286 1287 1288 1289 1290
	if (!trylock_page(page)) {
		get_page(page);
		spin_unlock(vmf->ptl);
		lock_page(page);
		spin_lock(vmf->ptl);
		if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1291
			spin_unlock(vmf->ptl);
1292 1293
			unlock_page(page);
			put_page(page);
1294
			return 0;
1295 1296 1297
		}
		put_page(page);
	}
1298 1299 1300 1301 1302

	/*
	 * We can only reuse the page if nobody else maps the huge page or it's
	 * part.
	 */
1303
	if (reuse_swap_page(page, NULL)) {
1304 1305
		pmd_t entry;
		entry = pmd_mkyoung(orig_pmd);
1306
		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1307
		if (pmdp_set_access_flags(vma, haddr, vmf->pmd, entry, 1))
J
Jan Kara 已提交
1308
			update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1309
		unlock_page(page);
J
Jan Kara 已提交
1310
		spin_unlock(vmf->ptl);
1311
		return VM_FAULT_WRITE;
1312
	}
1313 1314

	unlock_page(page);
J
Jan Kara 已提交
1315
	spin_unlock(vmf->ptl);
1316 1317 1318
fallback:
	__split_huge_pmd(vma, vmf->pmd, vmf->address, false, NULL);
	return VM_FAULT_FALLBACK;
1319 1320
}

1321
/*
1322 1323
 * FOLL_FORCE can write to even unwritable pmd's, but only
 * after we've gone through a COW cycle and they are dirty.
1324 1325 1326
 */
static inline bool can_follow_write_pmd(pmd_t pmd, unsigned int flags)
{
1327 1328
	return pmd_write(pmd) ||
	       ((flags & FOLL_FORCE) && (flags & FOLL_COW) && pmd_dirty(pmd));
1329 1330
}

1331
struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
1332 1333 1334 1335
				   unsigned long addr,
				   pmd_t *pmd,
				   unsigned int flags)
{
1336
	struct mm_struct *mm = vma->vm_mm;
1337 1338
	struct page *page = NULL;

1339
	assert_spin_locked(pmd_lockptr(mm, pmd));
1340

1341
	if (flags & FOLL_WRITE && !can_follow_write_pmd(*pmd, flags))
1342 1343
		goto out;

1344 1345 1346 1347
	/* Avoid dumping huge zero page */
	if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
		return ERR_PTR(-EFAULT);

1348
	/* Full NUMA hinting faults to serialise migration in fault paths */
1349
	if ((flags & FOLL_NUMA) && pmd_protnone(*pmd))
1350 1351
		goto out;

1352
	page = pmd_page(*pmd);
1353
	VM_BUG_ON_PAGE(!PageHead(page) && !is_zone_device_page(page), page);
J
John Hubbard 已提交
1354 1355 1356 1357

	if (!try_grab_page(page, flags))
		return ERR_PTR(-ENOMEM);

1358
	if (flags & FOLL_TOUCH)
1359
		touch_pmd(vma, addr, pmd, flags);
J
John Hubbard 已提交
1360

E
Eric B Munson 已提交
1361
	if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
1362 1363 1364 1365
		/*
		 * We don't mlock() pte-mapped THPs. This way we can avoid
		 * leaking mlocked pages into non-VM_LOCKED VMAs.
		 *
1366 1367
		 * For anon THP:
		 *
1368 1369 1370 1371 1372 1373 1374
		 * In most cases the pmd is the only mapping of the page as we
		 * break COW for the mlock() -- see gup_flags |= FOLL_WRITE for
		 * writable private mappings in populate_vma_page_range().
		 *
		 * The only scenario when we have the page shared here is if we
		 * mlocking read-only mapping shared over fork(). We skip
		 * mlocking such pages.
1375 1376 1377 1378 1379 1380
		 *
		 * For file THP:
		 *
		 * We can expect PageDoubleMap() to be stable under page lock:
		 * for file pages we set it in page_add_file_rmap(), which
		 * requires page to be locked.
1381
		 */
1382 1383 1384 1385 1386 1387 1388 1389 1390 1391

		if (PageAnon(page) && compound_mapcount(page) != 1)
			goto skip_mlock;
		if (PageDoubleMap(page) || !page->mapping)
			goto skip_mlock;
		if (!trylock_page(page))
			goto skip_mlock;
		if (page->mapping && !PageDoubleMap(page))
			mlock_vma_page(page);
		unlock_page(page);
1392
	}
1393
skip_mlock:
1394
	page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
1395
	VM_BUG_ON_PAGE(!PageCompound(page) && !is_zone_device_page(page), page);
1396 1397 1398 1399 1400

out:
	return page;
}

1401
/* NUMA hinting page fault entry point for trans huge pmds */
1402
vm_fault_t do_huge_pmd_numa_page(struct vm_fault *vmf, pmd_t pmd)
1403
{
J
Jan Kara 已提交
1404
	struct vm_area_struct *vma = vmf->vma;
1405
	struct anon_vma *anon_vma = NULL;
1406
	struct page *page;
J
Jan Kara 已提交
1407
	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1408
	int page_nid = NUMA_NO_NODE, this_nid = numa_node_id();
1409
	int target_nid, last_cpupid = -1;
1410 1411
	bool page_locked;
	bool migrated = false;
1412
	bool was_writable;
1413
	int flags = 0;
1414

J
Jan Kara 已提交
1415 1416
	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
	if (unlikely(!pmd_same(pmd, *vmf->pmd)))
1417 1418
		goto out_unlock;

1419 1420 1421 1422 1423
	/*
	 * If there are potential migrations, wait for completion and retry
	 * without disrupting NUMA hinting information. Do not relock and
	 * check_same as the page may no longer be mapped.
	 */
J
Jan Kara 已提交
1424 1425
	if (unlikely(pmd_trans_migrating(*vmf->pmd))) {
		page = pmd_page(*vmf->pmd);
1426 1427
		if (!get_page_unless_zero(page))
			goto out_unlock;
J
Jan Kara 已提交
1428
		spin_unlock(vmf->ptl);
1429
		put_and_wait_on_page_locked(page);
1430 1431 1432
		goto out;
	}

1433
	page = pmd_page(pmd);
1434
	BUG_ON(is_huge_zero_page(page));
1435
	page_nid = page_to_nid(page);
1436
	last_cpupid = page_cpupid_last(page);
1437
	count_vm_numa_event(NUMA_HINT_FAULTS);
1438
	if (page_nid == this_nid) {
1439
		count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
1440 1441
		flags |= TNF_FAULT_LOCAL;
	}
1442

1443
	/* See similar comment in do_numa_page for explanation */
1444
	if (!pmd_savedwrite(pmd))
1445 1446
		flags |= TNF_NO_GROUP;

1447 1448 1449 1450
	/*
	 * Acquire the page lock to serialise THP migrations but avoid dropping
	 * page_table_lock if at all possible
	 */
1451 1452
	page_locked = trylock_page(page);
	target_nid = mpol_misplaced(page, vma, haddr);
1453
	if (target_nid == NUMA_NO_NODE) {
1454
		/* If the page was locked, there are no parallel migrations */
1455
		if (page_locked)
1456
			goto clear_pmdnuma;
1457
	}
1458

1459
	/* Migration could have started since the pmd_trans_migrating check */
1460
	if (!page_locked) {
1461
		page_nid = NUMA_NO_NODE;
1462 1463
		if (!get_page_unless_zero(page))
			goto out_unlock;
J
Jan Kara 已提交
1464
		spin_unlock(vmf->ptl);
1465
		put_and_wait_on_page_locked(page);
1466 1467 1468
		goto out;
	}

1469 1470 1471 1472
	/*
	 * Page is misplaced. Page lock serialises migrations. Acquire anon_vma
	 * to serialises splits
	 */
1473
	get_page(page);
J
Jan Kara 已提交
1474
	spin_unlock(vmf->ptl);
1475
	anon_vma = page_lock_anon_vma_read(page);
1476

P
Peter Zijlstra 已提交
1477
	/* Confirm the PMD did not change while page_table_lock was released */
J
Jan Kara 已提交
1478 1479
	spin_lock(vmf->ptl);
	if (unlikely(!pmd_same(pmd, *vmf->pmd))) {
1480 1481
		unlock_page(page);
		put_page(page);
1482
		page_nid = NUMA_NO_NODE;
1483
		goto out_unlock;
1484
	}
1485

1486 1487 1488
	/* Bail if we fail to protect against THP splits for any reason */
	if (unlikely(!anon_vma)) {
		put_page(page);
1489
		page_nid = NUMA_NO_NODE;
1490 1491 1492
		goto clear_pmdnuma;
	}

1493 1494 1495 1496 1497 1498
	/*
	 * Since we took the NUMA fault, we must have observed the !accessible
	 * bit. Make sure all other CPUs agree with that, to avoid them
	 * modifying the page we're about to migrate.
	 *
	 * Must be done under PTL such that we'll observe the relevant
1499 1500 1501 1502
	 * inc_tlb_flush_pending().
	 *
	 * We are not sure a pending tlb flush here is for a huge page
	 * mapping or not. Hence use the tlb range variant
1503
	 */
1504
	if (mm_tlb_flush_pending(vma->vm_mm)) {
1505
		flush_tlb_range(vma, haddr, haddr + HPAGE_PMD_SIZE);
1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517
		/*
		 * change_huge_pmd() released the pmd lock before
		 * invalidating the secondary MMUs sharing the primary
		 * MMU pagetables (with ->invalidate_range()). The
		 * mmu_notifier_invalidate_range_end() (which
		 * internally calls ->invalidate_range()) in
		 * change_pmd_range() will run after us, so we can't
		 * rely on it here and we need an explicit invalidate.
		 */
		mmu_notifier_invalidate_range(vma->vm_mm, haddr,
					      haddr + HPAGE_PMD_SIZE);
	}
1518

1519 1520
	/*
	 * Migrate the THP to the requested node, returns with page unlocked
1521
	 * and access rights restored.
1522
	 */
J
Jan Kara 已提交
1523
	spin_unlock(vmf->ptl);
1524

K
Kirill A. Shutemov 已提交
1525
	migrated = migrate_misplaced_transhuge_page(vma->vm_mm, vma,
J
Jan Kara 已提交
1526
				vmf->pmd, pmd, vmf->address, page, target_nid);
1527 1528
	if (migrated) {
		flags |= TNF_MIGRATED;
1529
		page_nid = target_nid;
1530 1531
	} else
		flags |= TNF_MIGRATE_FAIL;
1532

1533
	goto out;
1534
clear_pmdnuma:
1535
	BUG_ON(!PageLocked(page));
1536
	was_writable = pmd_savedwrite(pmd);
1537
	pmd = pmd_modify(pmd, vma->vm_page_prot);
1538
	pmd = pmd_mkyoung(pmd);
1539 1540
	if (was_writable)
		pmd = pmd_mkwrite(pmd);
J
Jan Kara 已提交
1541 1542
	set_pmd_at(vma->vm_mm, haddr, vmf->pmd, pmd);
	update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1543
	unlock_page(page);
1544
out_unlock:
J
Jan Kara 已提交
1545
	spin_unlock(vmf->ptl);
1546 1547 1548 1549 1550

out:
	if (anon_vma)
		page_unlock_anon_vma_read(anon_vma);

1551
	if (page_nid != NUMA_NO_NODE)
J
Jan Kara 已提交
1552
		task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR,
1553
				flags);
1554

1555 1556 1557
	return 0;
}

1558 1559 1560 1561 1562
/*
 * Return true if we do MADV_FREE successfully on entire pmd page.
 * Otherwise, return false.
 */
bool madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1563 1564 1565 1566 1567 1568
		pmd_t *pmd, unsigned long addr, unsigned long next)
{
	spinlock_t *ptl;
	pmd_t orig_pmd;
	struct page *page;
	struct mm_struct *mm = tlb->mm;
1569
	bool ret = false;
1570

1571
	tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
1572

1573 1574
	ptl = pmd_trans_huge_lock(pmd, vma);
	if (!ptl)
1575
		goto out_unlocked;
1576 1577

	orig_pmd = *pmd;
1578
	if (is_huge_zero_pmd(orig_pmd))
1579 1580
		goto out;

1581 1582 1583 1584 1585 1586
	if (unlikely(!pmd_present(orig_pmd))) {
		VM_BUG_ON(thp_migration_supported() &&
				  !is_pmd_migration_entry(orig_pmd));
		goto out;
	}

1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604
	page = pmd_page(orig_pmd);
	/*
	 * If other processes are mapping this page, we couldn't discard
	 * the page unless they all do MADV_FREE so let's skip the page.
	 */
	if (page_mapcount(page) != 1)
		goto out;

	if (!trylock_page(page))
		goto out;

	/*
	 * If user want to discard part-pages of THP, split it so MADV_FREE
	 * will deactivate only them.
	 */
	if (next - addr != HPAGE_PMD_SIZE) {
		get_page(page);
		spin_unlock(ptl);
1605
		split_huge_page(page);
1606
		unlock_page(page);
1607
		put_page(page);
1608 1609 1610 1611 1612 1613 1614 1615
		goto out_unlocked;
	}

	if (PageDirty(page))
		ClearPageDirty(page);
	unlock_page(page);

	if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) {
1616
		pmdp_invalidate(vma, addr, pmd);
1617 1618 1619 1620 1621 1622
		orig_pmd = pmd_mkold(orig_pmd);
		orig_pmd = pmd_mkclean(orig_pmd);

		set_pmd_at(mm, addr, pmd, orig_pmd);
		tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
	}
S
Shaohua Li 已提交
1623 1624

	mark_page_lazyfree(page);
1625
	ret = true;
1626 1627 1628 1629 1630 1631
out:
	spin_unlock(ptl);
out_unlocked:
	return ret;
}

1632 1633 1634 1635 1636 1637
static inline void zap_deposited_table(struct mm_struct *mm, pmd_t *pmd)
{
	pgtable_t pgtable;

	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
	pte_free(mm, pgtable);
1638
	mm_dec_nr_ptes(mm);
1639 1640
}

1641
int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
S
Shaohua Li 已提交
1642
		 pmd_t *pmd, unsigned long addr)
1643
{
1644
	pmd_t orig_pmd;
1645
	spinlock_t *ptl;
1646

1647
	tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
1648

1649 1650
	ptl = __pmd_trans_huge_lock(pmd, vma);
	if (!ptl)
1651 1652 1653 1654 1655 1656 1657
		return 0;
	/*
	 * For architectures like ppc64 we look at deposited pgtable
	 * when calling pmdp_huge_get_and_clear. So do the
	 * pgtable_trans_huge_withdraw after finishing pmdp related
	 * operations.
	 */
1658 1659
	orig_pmd = pmdp_huge_get_and_clear_full(vma, addr, pmd,
						tlb->fullmm);
1660
	tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1661
	if (vma_is_special_huge(vma)) {
1662 1663
		if (arch_needs_pgtable_deposit())
			zap_deposited_table(tlb->mm, pmd);
1664 1665
		spin_unlock(ptl);
		if (is_huge_zero_pmd(orig_pmd))
1666
			tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE);
1667
	} else if (is_huge_zero_pmd(orig_pmd)) {
1668
		zap_deposited_table(tlb->mm, pmd);
1669
		spin_unlock(ptl);
1670
		tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE);
1671
	} else {
1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689
		struct page *page = NULL;
		int flush_needed = 1;

		if (pmd_present(orig_pmd)) {
			page = pmd_page(orig_pmd);
			page_remove_rmap(page, true);
			VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
			VM_BUG_ON_PAGE(!PageHead(page), page);
		} else if (thp_migration_supported()) {
			swp_entry_t entry;

			VM_BUG_ON(!is_pmd_migration_entry(orig_pmd));
			entry = pmd_to_swp_entry(orig_pmd);
			page = pfn_to_page(swp_offset(entry));
			flush_needed = 0;
		} else
			WARN_ONCE(1, "Non present huge pmd without pmd migration enabled!");

1690
		if (PageAnon(page)) {
1691
			zap_deposited_table(tlb->mm, pmd);
1692 1693
			add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
		} else {
1694 1695
			if (arch_needs_pgtable_deposit())
				zap_deposited_table(tlb->mm, pmd);
1696
			add_mm_counter(tlb->mm, mm_counter_file(page), -HPAGE_PMD_NR);
1697
		}
1698

1699
		spin_unlock(ptl);
1700 1701
		if (flush_needed)
			tlb_remove_page_size(tlb, page, HPAGE_PMD_SIZE);
1702
	}
1703
	return 1;
1704 1705
}

1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720
#ifndef pmd_move_must_withdraw
static inline int pmd_move_must_withdraw(spinlock_t *new_pmd_ptl,
					 spinlock_t *old_pmd_ptl,
					 struct vm_area_struct *vma)
{
	/*
	 * With split pmd lock we also need to move preallocated
	 * PTE page table if new_pmd is on different PMD page table.
	 *
	 * We also don't deposit and withdraw tables for file pages.
	 */
	return (new_pmd_ptl != old_pmd_ptl) && vma_is_anonymous(vma);
}
#endif

1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731
static pmd_t move_soft_dirty_pmd(pmd_t pmd)
{
#ifdef CONFIG_MEM_SOFT_DIRTY
	if (unlikely(is_pmd_migration_entry(pmd)))
		pmd = pmd_swp_mksoft_dirty(pmd);
	else if (pmd_present(pmd))
		pmd = pmd_mksoft_dirty(pmd);
#endif
	return pmd;
}

1732
bool move_huge_pmd(struct vm_area_struct *vma, unsigned long old_addr,
1733
		  unsigned long new_addr, pmd_t *old_pmd, pmd_t *new_pmd)
1734
{
1735
	spinlock_t *old_ptl, *new_ptl;
1736 1737
	pmd_t pmd;
	struct mm_struct *mm = vma->vm_mm;
1738
	bool force_flush = false;
1739 1740 1741 1742 1743 1744 1745

	/*
	 * The destination pmd shouldn't be established, free_pgtables()
	 * should have release it.
	 */
	if (WARN_ON(!pmd_none(*new_pmd))) {
		VM_BUG_ON(pmd_trans_huge(*new_pmd));
1746
		return false;
1747 1748
	}

1749 1750
	/*
	 * We don't have to worry about the ordering of src and dst
1751
	 * ptlocks because exclusive mmap_lock prevents deadlock.
1752
	 */
1753 1754
	old_ptl = __pmd_trans_huge_lock(old_pmd, vma);
	if (old_ptl) {
1755 1756 1757
		new_ptl = pmd_lockptr(mm, new_pmd);
		if (new_ptl != old_ptl)
			spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
1758
		pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd);
1759
		if (pmd_present(pmd))
1760
			force_flush = true;
1761
		VM_BUG_ON(!pmd_none(*new_pmd));
1762

1763
		if (pmd_move_must_withdraw(new_ptl, old_ptl, vma)) {
1764
			pgtable_t pgtable;
1765 1766 1767
			pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
			pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
		}
1768 1769
		pmd = move_soft_dirty_pmd(pmd);
		set_pmd_at(mm, new_addr, new_pmd, pmd);
1770 1771
		if (force_flush)
			flush_tlb_range(vma, old_addr, old_addr + PMD_SIZE);
1772 1773
		if (new_ptl != old_ptl)
			spin_unlock(new_ptl);
1774
		spin_unlock(old_ptl);
1775
		return true;
1776
	}
1777
	return false;
1778 1779
}

1780 1781 1782 1783 1784 1785
/*
 * Returns
 *  - 0 if PMD could not be locked
 *  - 1 if PMD was locked but protections unchange and TLB flush unnecessary
 *  - HPAGE_PMD_NR is protections changed and TLB flush necessary
 */
1786
int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1787
		unsigned long addr, pgprot_t newprot, unsigned long cp_flags)
1788 1789
{
	struct mm_struct *mm = vma->vm_mm;
1790
	spinlock_t *ptl;
1791 1792 1793
	pmd_t entry;
	bool preserve_write;
	int ret;
1794
	bool prot_numa = cp_flags & MM_CP_PROT_NUMA;
1795 1796
	bool uffd_wp = cp_flags & MM_CP_UFFD_WP;
	bool uffd_wp_resolve = cp_flags & MM_CP_UFFD_WP_RESOLVE;
1797

1798
	ptl = __pmd_trans_huge_lock(pmd, vma);
1799 1800
	if (!ptl)
		return 0;
1801

1802 1803
	preserve_write = prot_numa && pmd_write(*pmd);
	ret = 1;
1804

1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817
#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
	if (is_swap_pmd(*pmd)) {
		swp_entry_t entry = pmd_to_swp_entry(*pmd);

		VM_BUG_ON(!is_pmd_migration_entry(*pmd));
		if (is_write_migration_entry(entry)) {
			pmd_t newpmd;
			/*
			 * A protection check is difficult so
			 * just be safe and disable write
			 */
			make_migration_entry_read(&entry);
			newpmd = swp_entry_to_pmd(entry);
1818 1819
			if (pmd_swp_soft_dirty(*pmd))
				newpmd = pmd_swp_mksoft_dirty(newpmd);
1820 1821 1822 1823 1824 1825
			set_pmd_at(mm, addr, pmd, newpmd);
		}
		goto unlock;
	}
#endif

1826 1827 1828 1829 1830 1831 1832
	/*
	 * Avoid trapping faults against the zero page. The read-only
	 * data is likely to be read-cached on the local CPU and
	 * local/remote hits to the zero page are not interesting.
	 */
	if (prot_numa && is_huge_zero_pmd(*pmd))
		goto unlock;
1833

1834 1835 1836
	if (prot_numa && pmd_protnone(*pmd))
		goto unlock;

1837
	/*
1838
	 * In case prot_numa, we are under mmap_read_lock(mm). It's critical
1839
	 * to not clear pmd intermittently to avoid race with MADV_DONTNEED
1840
	 * which is also under mmap_read_lock(mm):
1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857
	 *
	 *	CPU0:				CPU1:
	 *				change_huge_pmd(prot_numa=1)
	 *				 pmdp_huge_get_and_clear_notify()
	 * madvise_dontneed()
	 *  zap_pmd_range()
	 *   pmd_trans_huge(*pmd) == 0 (without ptl)
	 *   // skip the pmd
	 *				 set_pmd_at();
	 *				 // pmd is re-established
	 *
	 * The race makes MADV_DONTNEED miss the huge pmd and don't clear it
	 * which may break userspace.
	 *
	 * pmdp_invalidate() is required to make sure we don't miss
	 * dirty/young flags set by hardware.
	 */
1858
	entry = pmdp_invalidate(vma, addr, pmd);
1859

1860 1861 1862
	entry = pmd_modify(entry, newprot);
	if (preserve_write)
		entry = pmd_mk_savedwrite(entry);
1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873
	if (uffd_wp) {
		entry = pmd_wrprotect(entry);
		entry = pmd_mkuffd_wp(entry);
	} else if (uffd_wp_resolve) {
		/*
		 * Leave the write bit to be handled by PF interrupt
		 * handler, then things like COW could be properly
		 * handled.
		 */
		entry = pmd_clear_uffd_wp(entry);
	}
1874 1875 1876 1877 1878
	ret = HPAGE_PMD_NR;
	set_pmd_at(mm, addr, pmd, entry);
	BUG_ON(vma_is_anonymous(vma) && !preserve_write && pmd_write(entry));
unlock:
	spin_unlock(ptl);
1879 1880 1881 1882
	return ret;
}

/*
1883
 * Returns page table lock pointer if a given pmd maps a thp, NULL otherwise.
1884
 *
1885 1886
 * Note that if it returns page table lock pointer, this routine returns without
 * unlocking page table lock. So callers must unlock it.
1887
 */
1888
spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
1889
{
1890 1891
	spinlock_t *ptl;
	ptl = pmd_lock(vma->vm_mm, pmd);
1892 1893
	if (likely(is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) ||
			pmd_devmap(*pmd)))
1894 1895 1896
		return ptl;
	spin_unlock(ptl);
	return NULL;
1897 1898
}

1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930
/*
 * Returns true if a given pud maps a thp, false otherwise.
 *
 * Note that if it returns true, this routine returns without unlocking page
 * table lock. So callers must unlock it.
 */
spinlock_t *__pud_trans_huge_lock(pud_t *pud, struct vm_area_struct *vma)
{
	spinlock_t *ptl;

	ptl = pud_lock(vma->vm_mm, pud);
	if (likely(pud_trans_huge(*pud) || pud_devmap(*pud)))
		return ptl;
	spin_unlock(ptl);
	return NULL;
}

#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
int zap_huge_pud(struct mmu_gather *tlb, struct vm_area_struct *vma,
		 pud_t *pud, unsigned long addr)
{
	spinlock_t *ptl;

	ptl = __pud_trans_huge_lock(pud, vma);
	if (!ptl)
		return 0;
	/*
	 * For architectures like ppc64 we look at deposited pgtable
	 * when calling pudp_huge_get_and_clear. So do the
	 * pgtable_trans_huge_withdraw after finishing pudp related
	 * operations.
	 */
1931
	pudp_huge_get_and_clear_full(tlb->mm, addr, pud, tlb->fullmm);
1932
	tlb_remove_pud_tlb_entry(tlb, pud, addr);
1933
	if (vma_is_special_huge(vma)) {
1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950
		spin_unlock(ptl);
		/* No zero page support yet */
	} else {
		/* No support for anonymous PUD pages yet */
		BUG();
	}
	return 1;
}

static void __split_huge_pud_locked(struct vm_area_struct *vma, pud_t *pud,
		unsigned long haddr)
{
	VM_BUG_ON(haddr & ~HPAGE_PUD_MASK);
	VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
	VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PUD_SIZE, vma);
	VM_BUG_ON(!pud_trans_huge(*pud) && !pud_devmap(*pud));

1951
	count_vm_event(THP_SPLIT_PUD);
1952 1953 1954 1955 1956 1957 1958 1959

	pudp_huge_clear_flush_notify(vma, haddr, pud);
}

void __split_huge_pud(struct vm_area_struct *vma, pud_t *pud,
		unsigned long address)
{
	spinlock_t *ptl;
1960
	struct mmu_notifier_range range;
1961

1962
	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1963
				address & HPAGE_PUD_MASK,
1964 1965 1966
				(address & HPAGE_PUD_MASK) + HPAGE_PUD_SIZE);
	mmu_notifier_invalidate_range_start(&range);
	ptl = pud_lock(vma->vm_mm, pud);
1967 1968
	if (unlikely(!pud_trans_huge(*pud) && !pud_devmap(*pud)))
		goto out;
1969
	__split_huge_pud_locked(vma, pud, range.start);
1970 1971 1972

out:
	spin_unlock(ptl);
1973 1974 1975 1976
	/*
	 * No need to double call mmu_notifier->invalidate_range() callback as
	 * the above pudp_huge_clear_flush_notify() did already call it.
	 */
1977
	mmu_notifier_invalidate_range_only_end(&range);
1978 1979 1980
}
#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */

1981 1982 1983 1984 1985 1986 1987 1988
static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
		unsigned long haddr, pmd_t *pmd)
{
	struct mm_struct *mm = vma->vm_mm;
	pgtable_t pgtable;
	pmd_t _pmd;
	int i;

1989 1990 1991 1992 1993 1994
	/*
	 * Leave pmd empty until pte is filled note that it is fine to delay
	 * notification until mmu_notifier_invalidate_range_end() as we are
	 * replacing a zero pmd write protected page with a zero pte write
	 * protected page.
	 *
1995
	 * See Documentation/vm/mmu_notifier.rst
1996 1997
	 */
	pmdp_huge_clear_flush(vma, haddr, pmd);
1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015

	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
	pmd_populate(mm, &_pmd, pgtable);

	for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
		pte_t *pte, entry;
		entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
		entry = pte_mkspecial(entry);
		pte = pte_offset_map(&_pmd, haddr);
		VM_BUG_ON(!pte_none(*pte));
		set_pte_at(mm, haddr, pte, entry);
		pte_unmap(pte);
	}
	smp_wmb(); /* make pte visible before pmd */
	pmd_populate(mm, pmd, pgtable);
}

static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd,
2016
		unsigned long haddr, bool freeze)
2017 2018 2019 2020
{
	struct mm_struct *mm = vma->vm_mm;
	struct page *page;
	pgtable_t pgtable;
2021
	pmd_t old_pmd, _pmd;
2022
	bool young, write, soft_dirty, pmd_migration = false, uffd_wp = false;
2023
	unsigned long addr;
2024 2025 2026 2027 2028
	int i;

	VM_BUG_ON(haddr & ~HPAGE_PMD_MASK);
	VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
	VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma);
2029 2030
	VM_BUG_ON(!is_pmd_migration_entry(*pmd) && !pmd_trans_huge(*pmd)
				&& !pmd_devmap(*pmd));
2031 2032 2033

	count_vm_event(THP_SPLIT_PMD);

2034 2035
	if (!vma_is_anonymous(vma)) {
		_pmd = pmdp_huge_clear_flush_notify(vma, haddr, pmd);
2036 2037 2038 2039 2040 2041
		/*
		 * We are going to unmap this huge page. So
		 * just go ahead and zap it
		 */
		if (arch_needs_pgtable_deposit())
			zap_deposited_table(mm, pmd);
2042
		if (vma_is_special_huge(vma))
2043 2044
			return;
		page = pmd_page(_pmd);
2045 2046
		if (!PageDirty(page) && pmd_dirty(_pmd))
			set_page_dirty(page);
2047 2048 2049 2050
		if (!PageReferenced(page) && pmd_young(_pmd))
			SetPageReferenced(page);
		page_remove_rmap(page, true);
		put_page(page);
2051
		add_mm_counter(mm, mm_counter_file(page), -HPAGE_PMD_NR);
2052
		return;
2053
	} else if (pmd_trans_huge(*pmd) && is_huge_zero_pmd(*pmd)) {
2054 2055 2056 2057 2058 2059 2060 2061 2062
		/*
		 * FIXME: Do we want to invalidate secondary mmu by calling
		 * mmu_notifier_invalidate_range() see comments below inside
		 * __split_huge_pmd() ?
		 *
		 * We are going from a zero huge page write protected to zero
		 * small page also write protected so it does not seems useful
		 * to invalidate secondary mmu at this time.
		 */
2063 2064 2065
		return __split_huge_zero_page_pmd(vma, haddr, pmd);
	}

2066 2067 2068 2069 2070 2071 2072 2073
	/*
	 * Up to this point the pmd is present and huge and userland has the
	 * whole access to the hugepage during the split (which happens in
	 * place). If we overwrite the pmd with the not-huge version pointing
	 * to the pte here (which of course we could if all CPUs were bug
	 * free), userland could trigger a small page size TLB miss on the
	 * small sized TLB while the hugepage TLB entry is still established in
	 * the huge TLB. Some CPU doesn't like that.
2074 2075
	 * See http://support.amd.com/TechDocs/41322_10h_Rev_Gd.pdf, Erratum
	 * 383 on page 105. Intel should be safe but is also warns that it's
2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088
	 * only safe if the permission and cache attributes of the two entries
	 * loaded in the two TLB is identical (which should be the case here).
	 * But it is generally safer to never allow small and huge TLB entries
	 * for the same virtual address to be loaded simultaneously. So instead
	 * of doing "pmd_populate(); flush_pmd_tlb_range();" we first mark the
	 * current pmd notpresent (atomically because here the pmd_trans_huge
	 * must remain set at all times on the pmd until the split is complete
	 * for this pmd), then we flush the SMP TLB and finally we write the
	 * non-huge version of the pmd entry with pmd_populate.
	 */
	old_pmd = pmdp_invalidate(vma, haddr, pmd);

	pmd_migration = is_pmd_migration_entry(old_pmd);
2089
	if (unlikely(pmd_migration)) {
2090 2091
		swp_entry_t entry;

2092
		entry = pmd_to_swp_entry(old_pmd);
2093
		page = pfn_to_page(swp_offset(entry));
2094 2095 2096
		write = is_write_migration_entry(entry);
		young = false;
		soft_dirty = pmd_swp_soft_dirty(old_pmd);
2097
		uffd_wp = pmd_swp_uffd_wp(old_pmd);
2098
	} else {
2099
		page = pmd_page(old_pmd);
2100 2101 2102 2103 2104
		if (pmd_dirty(old_pmd))
			SetPageDirty(page);
		write = pmd_write(old_pmd);
		young = pmd_young(old_pmd);
		soft_dirty = pmd_soft_dirty(old_pmd);
2105
		uffd_wp = pmd_uffd_wp(old_pmd);
2106
	}
2107
	VM_BUG_ON_PAGE(!page_count(page), page);
2108
	page_ref_add(page, HPAGE_PMD_NR - 1);
2109

2110 2111 2112 2113
	/*
	 * Withdraw the table only after we mark the pmd entry invalid.
	 * This's critical for some architectures (Power).
	 */
2114 2115 2116
	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
	pmd_populate(mm, &_pmd, pgtable);

2117
	for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) {
2118 2119 2120 2121 2122 2123
		pte_t entry, *pte;
		/*
		 * Note that NUMA hinting access restrictions are not
		 * transferred to avoid any possibility of altering
		 * permissions across VMAs.
		 */
2124
		if (freeze || pmd_migration) {
2125 2126 2127
			swp_entry_t swp_entry;
			swp_entry = make_migration_entry(page + i, write);
			entry = swp_entry_to_pte(swp_entry);
2128 2129
			if (soft_dirty)
				entry = pte_swp_mksoft_dirty(entry);
2130 2131
			if (uffd_wp)
				entry = pte_swp_mkuffd_wp(entry);
2132
		} else {
2133
			entry = mk_pte(page + i, READ_ONCE(vma->vm_page_prot));
2134
			entry = maybe_mkwrite(entry, vma);
2135 2136 2137 2138
			if (!write)
				entry = pte_wrprotect(entry);
			if (!young)
				entry = pte_mkold(entry);
2139 2140
			if (soft_dirty)
				entry = pte_mksoft_dirty(entry);
2141 2142
			if (uffd_wp)
				entry = pte_mkuffd_wp(entry);
2143
		}
2144
		pte = pte_offset_map(&_pmd, addr);
2145
		BUG_ON(!pte_none(*pte));
2146
		set_pte_at(mm, addr, pte, entry);
2147
		if (!pmd_migration)
2148
			atomic_inc(&page[i]._mapcount);
2149
		pte_unmap(pte);
2150 2151
	}

2152 2153 2154 2155 2156 2157 2158
	if (!pmd_migration) {
		/*
		 * Set PG_double_map before dropping compound_mapcount to avoid
		 * false-negative page_mapped().
		 */
		if (compound_mapcount(page) > 1 &&
		    !TestSetPageDoubleMap(page)) {
2159
			for (i = 0; i < HPAGE_PMD_NR; i++)
2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171
				atomic_inc(&page[i]._mapcount);
		}

		lock_page_memcg(page);
		if (atomic_add_negative(-1, compound_mapcount_ptr(page))) {
			/* Last compound_mapcount is gone. */
			__dec_lruvec_page_state(page, NR_ANON_THPS);
			if (TestClearPageDoubleMap(page)) {
				/* No need in mapcount reference anymore */
				for (i = 0; i < HPAGE_PMD_NR; i++)
					atomic_dec(&page[i]._mapcount);
			}
2172
		}
2173
		unlock_page_memcg(page);
2174 2175 2176 2177
	}

	smp_wmb(); /* make pte visible before pmd */
	pmd_populate(mm, pmd, pgtable);
2178 2179

	if (freeze) {
2180
		for (i = 0; i < HPAGE_PMD_NR; i++) {
2181 2182 2183 2184
			page_remove_rmap(page + i, false);
			put_page(page + i);
		}
	}
2185 2186 2187
}

void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
2188
		unsigned long address, bool freeze, struct page *page)
2189 2190
{
	spinlock_t *ptl;
2191
	struct mmu_notifier_range range;
2192 2193
	bool was_locked = false;
	pmd_t _pmd;
2194

2195
	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
2196
				address & HPAGE_PMD_MASK,
2197 2198 2199
				(address & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE);
	mmu_notifier_invalidate_range_start(&range);
	ptl = pmd_lock(vma->vm_mm, pmd);
2200 2201 2202 2203 2204 2205

	/*
	 * If caller asks to setup a migration entries, we need a page to check
	 * pmd against. Otherwise we can end up replacing wrong page.
	 */
	VM_BUG_ON(freeze && !page);
2206 2207 2208 2209 2210 2211
	if (page) {
		VM_WARN_ON_ONCE(!PageLocked(page));
		was_locked = true;
		if (page != pmd_page(*pmd))
			goto out;
	}
2212

2213
repeat:
2214
	if (pmd_trans_huge(*pmd)) {
2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231
		if (!page) {
			page = pmd_page(*pmd);
			if (unlikely(!trylock_page(page))) {
				get_page(page);
				_pmd = *pmd;
				spin_unlock(ptl);
				lock_page(page);
				spin_lock(ptl);
				if (unlikely(!pmd_same(*pmd, _pmd))) {
					unlock_page(page);
					put_page(page);
					page = NULL;
					goto repeat;
				}
				put_page(page);
			}
		}
2232
		if (PageMlocked(page))
2233
			clear_page_mlock(page);
2234
	} else if (!(pmd_devmap(*pmd) || is_pmd_migration_entry(*pmd)))
2235
		goto out;
2236
	__split_huge_pmd_locked(vma, pmd, range.start, freeze);
2237
out:
2238
	spin_unlock(ptl);
2239 2240
	if (!was_locked && page)
		unlock_page(page);
2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253
	/*
	 * No need to double call mmu_notifier->invalidate_range() callback.
	 * They are 3 cases to consider inside __split_huge_pmd_locked():
	 *  1) pmdp_huge_clear_flush_notify() call invalidate_range() obvious
	 *  2) __split_huge_zero_page_pmd() read only zero page and any write
	 *    fault will trigger a flush_notify before pointing to a new page
	 *    (it is fine if the secondary mmu keeps pointing to the old zero
	 *    page in the meantime)
	 *  3) Split a huge pmd into pte pointing to the same page. No need
	 *     to invalidate secondary tlb entry they are all still valid.
	 *     any further changes to individual pte will notify. So no need
	 *     to call mmu_notifier->invalidate_range()
	 */
2254
	mmu_notifier_invalidate_range_only_end(&range);
2255 2256
}

2257 2258
void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address,
		bool freeze, struct page *page)
2259
{
2260
	pgd_t *pgd;
2261
	p4d_t *p4d;
2262
	pud_t *pud;
2263 2264
	pmd_t *pmd;

2265
	pgd = pgd_offset(vma->vm_mm, address);
2266 2267 2268
	if (!pgd_present(*pgd))
		return;

2269 2270 2271 2272 2273
	p4d = p4d_offset(pgd, address);
	if (!p4d_present(*p4d))
		return;

	pud = pud_offset(p4d, address);
2274 2275 2276 2277
	if (!pud_present(*pud))
		return;

	pmd = pmd_offset(pud, address);
2278

2279
	__split_huge_pmd(vma, pmd, address, freeze, page);
2280 2281
}

2282
void vma_adjust_trans_huge(struct vm_area_struct *vma,
2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294
			     unsigned long start,
			     unsigned long end,
			     long adjust_next)
{
	/*
	 * If the new start address isn't hpage aligned and it could
	 * previously contain an hugepage: check if we need to split
	 * an huge pmd.
	 */
	if (start & ~HPAGE_PMD_MASK &&
	    (start & HPAGE_PMD_MASK) >= vma->vm_start &&
	    (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2295
		split_huge_pmd_address(vma, start, false, NULL);
2296 2297 2298 2299 2300 2301 2302 2303 2304

	/*
	 * If the new end address isn't hpage aligned and it could
	 * previously contain an hugepage: check if we need to split
	 * an huge pmd.
	 */
	if (end & ~HPAGE_PMD_MASK &&
	    (end & HPAGE_PMD_MASK) >= vma->vm_start &&
	    (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2305
		split_huge_pmd_address(vma, end, false, NULL);
2306 2307 2308

	/*
	 * If we're also updating the vma->vm_next->vm_start, if the new
2309
	 * vm_next->vm_start isn't hpage aligned and it could previously
2310 2311 2312 2313 2314
	 * contain an hugepage: check if we need to split an huge pmd.
	 */
	if (adjust_next > 0) {
		struct vm_area_struct *next = vma->vm_next;
		unsigned long nstart = next->vm_start;
2315
		nstart += adjust_next;
2316 2317 2318
		if (nstart & ~HPAGE_PMD_MASK &&
		    (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
		    (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
2319
			split_huge_pmd_address(next, nstart, false, NULL);
2320 2321
	}
}
2322

2323
static void unmap_page(struct page *page)
2324
{
2325
	enum ttu_flags ttu_flags = TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS |
2326
		TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD;
M
Minchan Kim 已提交
2327
	bool unmap_success;
2328 2329 2330

	VM_BUG_ON_PAGE(!PageHead(page), page);

2331
	if (PageAnon(page))
2332
		ttu_flags |= TTU_SPLIT_FREEZE;
2333

M
Minchan Kim 已提交
2334 2335
	unmap_success = try_to_unmap(page, ttu_flags);
	VM_BUG_ON_PAGE(!unmap_success, page);
2336 2337
}

2338
static void remap_page(struct page *page)
2339
{
2340
	int i;
2341 2342 2343 2344 2345 2346
	if (PageTransHuge(page)) {
		remove_migration_ptes(page, page, true);
	} else {
		for (i = 0; i < HPAGE_PMD_NR; i++)
			remove_migration_ptes(page + i, page + i, true);
	}
2347 2348
}

2349
static void __split_huge_page_tail(struct page *head, int tail,
2350 2351 2352 2353
		struct lruvec *lruvec, struct list_head *list)
{
	struct page *page_tail = head + tail;

2354
	VM_BUG_ON_PAGE(atomic_read(&page_tail->_mapcount) != -1, page_tail);
2355 2356

	/*
2357 2358 2359 2360
	 * Clone page flags before unfreezing refcount.
	 *
	 * After successful get_page_unless_zero() might follow flags change,
	 * for exmaple lock_page() which set PG_waiters.
2361 2362 2363 2364 2365
	 */
	page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
	page_tail->flags |= (head->flags &
			((1L << PG_referenced) |
			 (1L << PG_swapbacked) |
2366
			 (1L << PG_swapcache) |
2367 2368 2369
			 (1L << PG_mlocked) |
			 (1L << PG_uptodate) |
			 (1L << PG_active) |
2370
			 (1L << PG_workingset) |
2371
			 (1L << PG_locked) |
2372
			 (1L << PG_unevictable) |
2373 2374 2375
#ifdef CONFIG_64BIT
			 (1L << PG_arch_2) |
#endif
2376
			 (1L << PG_dirty)));
2377

2378 2379 2380 2381 2382 2383
	/* ->mapping in first tail page is compound_mapcount */
	VM_BUG_ON_PAGE(tail > 2 && page_tail->mapping != TAIL_MAPPING,
			page_tail);
	page_tail->mapping = head->mapping;
	page_tail->index = head->index + tail;

2384
	/* Page flags must be visible before we make the page non-compound. */
2385 2386
	smp_wmb();

2387 2388 2389 2390 2391 2392
	/*
	 * Clear PageTail before unfreezing page refcount.
	 *
	 * After successful get_page_unless_zero() might follow put_page()
	 * which needs correct compound_head().
	 */
2393 2394
	clear_compound_head(page_tail);

2395 2396 2397 2398
	/* Finally unfreeze refcount. Additional reference from page cache. */
	page_ref_unfreeze(page_tail, 1 + (!PageAnon(head) ||
					  PageSwapCache(head)));

2399 2400 2401 2402 2403 2404
	if (page_is_young(head))
		set_page_young(page_tail);
	if (page_is_idle(head))
		set_page_idle(page_tail);

	page_cpupid_xchg_last(page_tail, page_cpupid_last(head));
M
Michal Hocko 已提交
2405 2406 2407 2408 2409 2410

	/*
	 * always add to the tail because some iterators expect new
	 * pages to show after the currently processed elements - e.g.
	 * migrate_pages
	 */
2411 2412 2413
	lru_add_page_tail(head, page_tail, lruvec, list);
}

2414
static void __split_huge_page(struct page *page, struct list_head *list,
2415
		pgoff_t end, unsigned long flags)
2416 2417
{
	struct page *head = compound_head(page);
2418
	pg_data_t *pgdat = page_pgdat(head);
2419
	struct lruvec *lruvec;
2420 2421
	struct address_space *swap_cache = NULL;
	unsigned long offset = 0;
2422
	int i;
2423

2424
	lruvec = mem_cgroup_page_lruvec(head, pgdat);
2425 2426 2427 2428

	/* complete memcg works before add pages to LRU */
	mem_cgroup_split_huge_fixup(head);

2429 2430 2431 2432 2433 2434 2435 2436
	if (PageAnon(head) && PageSwapCache(head)) {
		swp_entry_t entry = { .val = page_private(head) };

		offset = swp_offset(entry);
		swap_cache = swap_address_space(entry);
		xa_lock(&swap_cache->i_pages);
	}

2437
	for (i = HPAGE_PMD_NR - 1; i >= 1; i--) {
2438
		__split_huge_page_tail(head, i, lruvec, list);
2439 2440
		/* Some pages can be beyond i_size: drop them from page cache */
		if (head[i].index >= end) {
2441
			ClearPageDirty(head + i);
2442
			__delete_from_page_cache(head + i, NULL);
2443 2444
			if (IS_ENABLED(CONFIG_SHMEM) && PageSwapBacked(head))
				shmem_uncharge(head->mapping->host, 1);
2445
			put_page(head + i);
2446 2447 2448 2449 2450 2451
		} else if (!PageAnon(page)) {
			__xa_store(&head->mapping->i_pages, head[i].index,
					head + i, 0);
		} else if (swap_cache) {
			__xa_store(&swap_cache->i_pages, offset + i,
					head + i, 0);
2452 2453
		}
	}
2454 2455

	ClearPageCompound(head);
2456

2457
	split_page_owner(head, HPAGE_PMD_NR);
2458

2459 2460
	/* See comment in __split_huge_page_tail() */
	if (PageAnon(head)) {
M
Matthew Wilcox 已提交
2461
		/* Additional pin to swap cache */
2462
		if (PageSwapCache(head)) {
2463
			page_ref_add(head, 2);
2464 2465
			xa_unlock(&swap_cache->i_pages);
		} else {
2466
			page_ref_inc(head);
2467
		}
2468
	} else {
M
Matthew Wilcox 已提交
2469
		/* Additional pin to page cache */
2470
		page_ref_add(head, 2);
M
Matthew Wilcox 已提交
2471
		xa_unlock(&head->mapping->i_pages);
2472 2473
	}

2474
	spin_unlock_irqrestore(&pgdat->lru_lock, flags);
2475

2476
	remap_page(head);
2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494

	for (i = 0; i < HPAGE_PMD_NR; i++) {
		struct page *subpage = head + i;
		if (subpage == page)
			continue;
		unlock_page(subpage);

		/*
		 * Subpages may be freed if there wasn't any mapping
		 * like if add_to_swap() is running on a lru page that
		 * had its mapping zapped. And freeing these pages
		 * requires taking the lru_lock so we do the put_page
		 * of the tail pages after the split is complete.
		 */
		put_page(subpage);
	}
}

2495 2496
int total_mapcount(struct page *page)
{
K
Kirill A. Shutemov 已提交
2497
	int i, compound, ret;
2498 2499 2500 2501 2502 2503

	VM_BUG_ON_PAGE(PageTail(page), page);

	if (likely(!PageCompound(page)))
		return atomic_read(&page->_mapcount) + 1;

K
Kirill A. Shutemov 已提交
2504
	compound = compound_mapcount(page);
2505
	if (PageHuge(page))
K
Kirill A. Shutemov 已提交
2506 2507
		return compound;
	ret = compound;
2508 2509
	for (i = 0; i < HPAGE_PMD_NR; i++)
		ret += atomic_read(&page[i]._mapcount) + 1;
K
Kirill A. Shutemov 已提交
2510 2511 2512
	/* File pages has compound_mapcount included in _mapcount */
	if (!PageAnon(page))
		return ret - compound * HPAGE_PMD_NR;
2513 2514 2515 2516 2517
	if (PageDoubleMap(page))
		ret -= HPAGE_PMD_NR;
	return ret;
}

2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575
/*
 * This calculates accurately how many mappings a transparent hugepage
 * has (unlike page_mapcount() which isn't fully accurate). This full
 * accuracy is primarily needed to know if copy-on-write faults can
 * reuse the page and change the mapping to read-write instead of
 * copying them. At the same time this returns the total_mapcount too.
 *
 * The function returns the highest mapcount any one of the subpages
 * has. If the return value is one, even if different processes are
 * mapping different subpages of the transparent hugepage, they can
 * all reuse it, because each process is reusing a different subpage.
 *
 * The total_mapcount is instead counting all virtual mappings of the
 * subpages. If the total_mapcount is equal to "one", it tells the
 * caller all mappings belong to the same "mm" and in turn the
 * anon_vma of the transparent hugepage can become the vma->anon_vma
 * local one as no other process may be mapping any of the subpages.
 *
 * It would be more accurate to replace page_mapcount() with
 * page_trans_huge_mapcount(), however we only use
 * page_trans_huge_mapcount() in the copy-on-write faults where we
 * need full accuracy to avoid breaking page pinning, because
 * page_trans_huge_mapcount() is slower than page_mapcount().
 */
int page_trans_huge_mapcount(struct page *page, int *total_mapcount)
{
	int i, ret, _total_mapcount, mapcount;

	/* hugetlbfs shouldn't call it */
	VM_BUG_ON_PAGE(PageHuge(page), page);

	if (likely(!PageTransCompound(page))) {
		mapcount = atomic_read(&page->_mapcount) + 1;
		if (total_mapcount)
			*total_mapcount = mapcount;
		return mapcount;
	}

	page = compound_head(page);

	_total_mapcount = ret = 0;
	for (i = 0; i < HPAGE_PMD_NR; i++) {
		mapcount = atomic_read(&page[i]._mapcount) + 1;
		ret = max(ret, mapcount);
		_total_mapcount += mapcount;
	}
	if (PageDoubleMap(page)) {
		ret -= 1;
		_total_mapcount -= HPAGE_PMD_NR;
	}
	mapcount = compound_mapcount(page);
	ret += mapcount;
	_total_mapcount += mapcount;
	if (total_mapcount)
		*total_mapcount = _total_mapcount;
	return ret;
}

2576 2577 2578 2579 2580
/* Racy check whether the huge page can be split */
bool can_split_huge_page(struct page *page, int *pextra_pins)
{
	int extra_pins;

M
Matthew Wilcox 已提交
2581
	/* Additional pins from page cache */
2582 2583 2584 2585 2586 2587 2588 2589 2590
	if (PageAnon(page))
		extra_pins = PageSwapCache(page) ? HPAGE_PMD_NR : 0;
	else
		extra_pins = HPAGE_PMD_NR;
	if (pextra_pins)
		*pextra_pins = extra_pins;
	return total_mapcount(page) == page_count(page) - extra_pins - 1;
}

2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612
/*
 * This function splits huge page into normal pages. @page can point to any
 * subpage of huge page to split. Split doesn't change the position of @page.
 *
 * Only caller must hold pin on the @page, otherwise split fails with -EBUSY.
 * The huge page must be locked.
 *
 * If @list is null, tail pages will be added to LRU list, otherwise, to @list.
 *
 * Both head page and tail pages will inherit mapping, flags, and so on from
 * the hugepage.
 *
 * GUP pin and PG_locked transferred to @page. Rest subpages can be freed if
 * they are not mapped.
 *
 * Returns 0 if the hugepage is split successfully.
 * Returns -EBUSY if the page is pinned or if anon_vma disappeared from under
 * us.
 */
int split_huge_page_to_list(struct page *page, struct list_head *list)
{
	struct page *head = compound_head(page);
2613
	struct pglist_data *pgdata = NODE_DATA(page_to_nid(head));
2614
	struct deferred_split *ds_queue = get_deferred_split_queue(head);
2615 2616 2617
	struct anon_vma *anon_vma = NULL;
	struct address_space *mapping = NULL;
	int count, mapcount, extra_pins, ret;
2618
	unsigned long flags;
2619
	pgoff_t end;
2620

2621
	VM_BUG_ON_PAGE(is_huge_zero_page(head), head);
2622 2623
	VM_BUG_ON_PAGE(!PageLocked(head), head);
	VM_BUG_ON_PAGE(!PageCompound(head), head);
2624

2625
	if (PageWriteback(head))
2626 2627
		return -EBUSY;

2628 2629
	if (PageAnon(head)) {
		/*
2630
		 * The caller does not necessarily hold an mmap_lock that would
2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641
		 * prevent the anon_vma disappearing so we first we take a
		 * reference to it and then lock the anon_vma for write. This
		 * is similar to page_lock_anon_vma_read except the write lock
		 * is taken to serialise against parallel split or collapse
		 * operations.
		 */
		anon_vma = page_get_anon_vma(head);
		if (!anon_vma) {
			ret = -EBUSY;
			goto out;
		}
2642
		end = -1;
2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655
		mapping = NULL;
		anon_vma_lock_write(anon_vma);
	} else {
		mapping = head->mapping;

		/* Truncated ? */
		if (!mapping) {
			ret = -EBUSY;
			goto out;
		}

		anon_vma = NULL;
		i_mmap_lock_read(mapping);
2656 2657 2658 2659 2660 2661 2662 2663 2664

		/*
		 *__split_huge_page() may need to trim off pages beyond EOF:
		 * but on 32-bit, i_size_read() takes an irq-unsafe seqlock,
		 * which cannot be nested inside the page tree lock. So note
		 * end now: i_size itself may be changed at any moment, but
		 * head page lock is good enough to serialize the trimming.
		 */
		end = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
2665 2666 2667
	}

	/*
2668
	 * Racy check if we can split the page, before unmap_page() will
2669 2670
	 * split PMDs
	 */
2671
	if (!can_split_huge_page(head, &extra_pins)) {
2672 2673 2674 2675
		ret = -EBUSY;
		goto out_unlock;
	}

2676
	unmap_page(head);
2677 2678
	VM_BUG_ON_PAGE(compound_mapcount(head), head);

2679
	/* prevent PageLRU to go away from under us, and freeze lru stats */
2680
	spin_lock_irqsave(&pgdata->lru_lock, flags);
2681 2682

	if (mapping) {
M
Matthew Wilcox 已提交
2683
		XA_STATE(xas, &mapping->i_pages, page_index(head));
2684 2685

		/*
M
Matthew Wilcox 已提交
2686
		 * Check if the head page is present in page cache.
2687 2688
		 * We assume all tail are present too, if head is there.
		 */
M
Matthew Wilcox 已提交
2689 2690
		xa_lock(&mapping->i_pages);
		if (xas_load(&xas) != head)
2691 2692 2693
			goto fail;
	}

2694
	/* Prevent deferred_split_scan() touching ->_refcount */
2695
	spin_lock(&ds_queue->split_queue_lock);
2696 2697
	count = page_count(head);
	mapcount = total_mapcount(head);
2698
	if (!mapcount && page_ref_freeze(head, 1 + extra_pins)) {
2699
		if (!list_empty(page_deferred_list(head))) {
2700
			ds_queue->split_queue_len--;
2701 2702
			list_del(page_deferred_list(head));
		}
2703
		spin_unlock(&ds_queue->split_queue_lock);
2704
		if (mapping) {
2705 2706
			if (PageSwapBacked(head))
				__dec_node_page_state(head, NR_SHMEM_THPS);
2707
			else
2708
				__dec_node_page_state(head, NR_FILE_THPS);
2709 2710
		}

2711
		__split_huge_page(page, list, end, flags);
2712 2713 2714 2715 2716 2717
		if (PageSwapCache(head)) {
			swp_entry_t entry = { .val = page_private(head) };

			ret = split_swap_cluster(entry);
		} else
			ret = 0;
2718
	} else {
2719 2720 2721 2722 2723 2724 2725 2726
		if (IS_ENABLED(CONFIG_DEBUG_VM) && mapcount) {
			pr_alert("total_mapcount: %u, page_count(): %u\n",
					mapcount, count);
			if (PageTail(page))
				dump_page(head, NULL);
			dump_page(page, "total_mapcount(head) > 0");
			BUG();
		}
2727
		spin_unlock(&ds_queue->split_queue_lock);
2728
fail:		if (mapping)
M
Matthew Wilcox 已提交
2729
			xa_unlock(&mapping->i_pages);
2730
		spin_unlock_irqrestore(&pgdata->lru_lock, flags);
2731
		remap_page(head);
2732 2733 2734 2735
		ret = -EBUSY;
	}

out_unlock:
2736 2737 2738 2739 2740 2741
	if (anon_vma) {
		anon_vma_unlock_write(anon_vma);
		put_anon_vma(anon_vma);
	}
	if (mapping)
		i_mmap_unlock_read(mapping);
2742 2743 2744 2745
out:
	count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED);
	return ret;
}
2746 2747 2748

void free_transhuge_page(struct page *page)
{
2749
	struct deferred_split *ds_queue = get_deferred_split_queue(page);
2750 2751
	unsigned long flags;

2752
	spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2753
	if (!list_empty(page_deferred_list(page))) {
2754
		ds_queue->split_queue_len--;
2755 2756
		list_del(page_deferred_list(page));
	}
2757
	spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2758 2759 2760 2761 2762
	free_compound_page(page);
}

void deferred_split_huge_page(struct page *page)
{
2763 2764 2765 2766
	struct deferred_split *ds_queue = get_deferred_split_queue(page);
#ifdef CONFIG_MEMCG
	struct mem_cgroup *memcg = compound_head(page)->mem_cgroup;
#endif
2767 2768 2769 2770
	unsigned long flags;

	VM_BUG_ON_PAGE(!PageTransHuge(page), page);

2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783
	/*
	 * The try_to_unmap() in page reclaim path might reach here too,
	 * this may cause a race condition to corrupt deferred split queue.
	 * And, if page reclaim is already handling the same page, it is
	 * unnecessary to handle it again in shrinker.
	 *
	 * Check PageSwapCache to determine if the page is being
	 * handled by page reclaim since THP swap would add the page into
	 * swap cache before calling try_to_unmap().
	 */
	if (PageSwapCache(page))
		return;

2784
	spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2785
	if (list_empty(page_deferred_list(page))) {
2786
		count_vm_event(THP_DEFERRED_SPLIT_PAGE);
2787 2788
		list_add_tail(page_deferred_list(page), &ds_queue->split_queue);
		ds_queue->split_queue_len++;
2789 2790 2791 2792 2793
#ifdef CONFIG_MEMCG
		if (memcg)
			memcg_set_shrinker_bit(memcg, page_to_nid(page),
					       deferred_split_shrinker.id);
#endif
2794
	}
2795
	spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2796 2797 2798 2799 2800
}

static unsigned long deferred_split_count(struct shrinker *shrink,
		struct shrink_control *sc)
{
2801
	struct pglist_data *pgdata = NODE_DATA(sc->nid);
2802
	struct deferred_split *ds_queue = &pgdata->deferred_split_queue;
2803 2804 2805 2806 2807

#ifdef CONFIG_MEMCG
	if (sc->memcg)
		ds_queue = &sc->memcg->deferred_split_queue;
#endif
2808
	return READ_ONCE(ds_queue->split_queue_len);
2809 2810 2811 2812 2813
}

static unsigned long deferred_split_scan(struct shrinker *shrink,
		struct shrink_control *sc)
{
2814
	struct pglist_data *pgdata = NODE_DATA(sc->nid);
2815
	struct deferred_split *ds_queue = &pgdata->deferred_split_queue;
2816 2817 2818 2819 2820
	unsigned long flags;
	LIST_HEAD(list), *pos, *next;
	struct page *page;
	int split = 0;

2821 2822 2823 2824 2825
#ifdef CONFIG_MEMCG
	if (sc->memcg)
		ds_queue = &sc->memcg->deferred_split_queue;
#endif

2826
	spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2827
	/* Take pin on all head pages to avoid freeing them under us */
2828
	list_for_each_safe(pos, next, &ds_queue->split_queue) {
2829 2830
		page = list_entry((void *)pos, struct page, mapping);
		page = compound_head(page);
2831 2832 2833 2834
		if (get_page_unless_zero(page)) {
			list_move(page_deferred_list(page), &list);
		} else {
			/* We lost race with put_compound_page() */
2835
			list_del_init(page_deferred_list(page));
2836
			ds_queue->split_queue_len--;
2837
		}
2838 2839
		if (!--sc->nr_to_scan)
			break;
2840
	}
2841
	spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2842 2843 2844

	list_for_each_safe(pos, next, &list) {
		page = list_entry((void *)pos, struct page, mapping);
2845 2846
		if (!trylock_page(page))
			goto next;
2847 2848 2849 2850
		/* split_huge_page() removes page from list on success */
		if (!split_huge_page(page))
			split++;
		unlock_page(page);
2851
next:
2852 2853 2854
		put_page(page);
	}

2855 2856 2857
	spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
	list_splice_tail(&list, &ds_queue->split_queue);
	spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2858

2859 2860 2861 2862
	/*
	 * Stop shrinker if we didn't split any page, but the queue is empty.
	 * This can happen if pages were freed under us.
	 */
2863
	if (!split && list_empty(&ds_queue->split_queue))
2864 2865
		return SHRINK_STOP;
	return split;
2866 2867 2868 2869 2870 2871
}

static struct shrinker deferred_split_shrinker = {
	.count_objects = deferred_split_count,
	.scan_objects = deferred_split_scan,
	.seeks = DEFAULT_SEEKS,
2872 2873
	.flags = SHRINKER_NUMA_AWARE | SHRINKER_MEMCG_AWARE |
		 SHRINKER_NONSLAB,
2874
};
2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899

#ifdef CONFIG_DEBUG_FS
static int split_huge_pages_set(void *data, u64 val)
{
	struct zone *zone;
	struct page *page;
	unsigned long pfn, max_zone_pfn;
	unsigned long total = 0, split = 0;

	if (val != 1)
		return -EINVAL;

	for_each_populated_zone(zone) {
		max_zone_pfn = zone_end_pfn(zone);
		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) {
			if (!pfn_valid(pfn))
				continue;

			page = pfn_to_page(pfn);
			if (!get_page_unless_zero(page))
				continue;

			if (zone != page_zone(page))
				goto next;

2900
			if (!PageHead(page) || PageHuge(page) || !PageLRU(page))
2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912
				goto next;

			total++;
			lock_page(page);
			if (!split_huge_page(page))
				split++;
			unlock_page(page);
next:
			put_page(page);
		}
	}

2913
	pr_info("%lu of %lu THP split\n", split, total);
2914 2915 2916

	return 0;
}
2917
DEFINE_DEBUGFS_ATTRIBUTE(split_huge_pages_fops, NULL, split_huge_pages_set,
2918 2919 2920 2921
		"%llu\n");

static int __init split_huge_pages_debugfs(void)
{
2922 2923
	debugfs_create_file("split_huge_pages", 0200, NULL, NULL,
			    &split_huge_pages_fops);
2924 2925 2926 2927
	return 0;
}
late_initcall(split_huge_pages_debugfs);
#endif
2928 2929 2930 2931 2932 2933 2934 2935 2936 2937

#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
void set_pmd_migration_entry(struct page_vma_mapped_walk *pvmw,
		struct page *page)
{
	struct vm_area_struct *vma = pvmw->vma;
	struct mm_struct *mm = vma->vm_mm;
	unsigned long address = pvmw->address;
	pmd_t pmdval;
	swp_entry_t entry;
2938
	pmd_t pmdswp;
2939 2940 2941 2942 2943

	if (!(pvmw->pmd && !pvmw->pte))
		return;

	flush_cache_range(vma, address, address + HPAGE_PMD_SIZE);
2944
	pmdval = pmdp_invalidate(vma, address, pvmw->pmd);
2945 2946 2947
	if (pmd_dirty(pmdval))
		set_page_dirty(page);
	entry = make_migration_entry(page, pmd_write(pmdval));
2948 2949 2950 2951
	pmdswp = swp_entry_to_pmd(entry);
	if (pmd_soft_dirty(pmdval))
		pmdswp = pmd_swp_mksoft_dirty(pmdswp);
	set_pmd_at(mm, address, pvmw->pmd, pmdswp);
2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970
	page_remove_rmap(page, true);
	put_page(page);
}

void remove_migration_pmd(struct page_vma_mapped_walk *pvmw, struct page *new)
{
	struct vm_area_struct *vma = pvmw->vma;
	struct mm_struct *mm = vma->vm_mm;
	unsigned long address = pvmw->address;
	unsigned long mmun_start = address & HPAGE_PMD_MASK;
	pmd_t pmde;
	swp_entry_t entry;

	if (!(pvmw->pmd && !pvmw->pte))
		return;

	entry = pmd_to_swp_entry(*pvmw->pmd);
	get_page(new);
	pmde = pmd_mkold(mk_huge_pmd(new, vma->vm_page_prot));
2971 2972
	if (pmd_swp_soft_dirty(*pvmw->pmd))
		pmde = pmd_mksoft_dirty(pmde);
2973
	if (is_write_migration_entry(entry))
2974
		pmde = maybe_pmd_mkwrite(pmde, vma);
2975 2976

	flush_cache_range(vma, mmun_start, mmun_start + HPAGE_PMD_SIZE);
2977 2978 2979 2980
	if (PageAnon(new))
		page_add_anon_rmap(new, vma, mmun_start, true);
	else
		page_add_file_rmap(new, true);
2981
	set_pmd_at(mm, mmun_start, pvmw->pmd, pmde);
2982
	if ((vma->vm_flags & VM_LOCKED) && !PageDoubleMap(new))
2983 2984 2985 2986
		mlock_vma_page(new);
	update_mmu_cache_pmd(vma, address, pvmw->pmd);
}
#endif