entry_64.S 41.3 KB
Newer Older
1
/* SPDX-License-Identifier: GPL-2.0 */
L
Linus Torvalds 已提交
2 3 4 5 6 7
/*
 *  linux/arch/x86_64/entry.S
 *
 *  Copyright (C) 1991, 1992  Linus Torvalds
 *  Copyright (C) 2000, 2001, 2002  Andi Kleen SuSE Labs
 *  Copyright (C) 2000  Pavel Machek <pavel@suse.cz>
8
 *
L
Linus Torvalds 已提交
9 10
 * entry.S contains the system-call and fault low-level handling routines.
 *
11
 * Some of this is documented in Documentation/x86/entry_64.rst
12
 *
13
 * A note on terminology:
14 15
 * - iret frame:	Architecture defined interrupt frame from SS to RIP
 *			at the top of the kernel process stack.
16 17
 *
 * Some macro usage:
18
 * - SYM_FUNC_START/END:Define functions in the symbol table.
19 20
 * - TRACE_IRQ_*:	Trace hardirq state for lock debugging.
 * - idtentry:		Define exception entry points.
L
Linus Torvalds 已提交
21 22 23 24 25
 */
#include <linux/linkage.h>
#include <asm/segment.h>
#include <asm/cache.h>
#include <asm/errno.h>
26
#include <asm/asm-offsets.h>
L
Linus Torvalds 已提交
27 28 29 30
#include <asm/msr.h>
#include <asm/unistd.h>
#include <asm/thread_info.h>
#include <asm/hw_irq.h>
31
#include <asm/page_types.h>
32
#include <asm/irqflags.h>
33
#include <asm/paravirt.h>
34
#include <asm/percpu.h>
35
#include <asm/asm.h>
36
#include <asm/smap.h>
37
#include <asm/pgtable_types.h>
38
#include <asm/export.h>
39
#include <asm/frame.h>
T
Thomas Gleixner 已提交
40
#include <asm/trapnr.h>
41
#include <asm/nospec-branch.h>
42
#include <linux/err.h>
L
Linus Torvalds 已提交
43

44 45
#include "calling.h"

46 47
.code64
.section .entry.text, "ax"
48

49
#ifdef CONFIG_PARAVIRT
50
SYM_CODE_START(native_usergs_sysret64)
51
	UNWIND_HINT_EMPTY
52 53
	swapgs
	sysretq
54
SYM_CODE_END(native_usergs_sysret64)
55 56
#endif /* CONFIG_PARAVIRT */

57
.macro TRACE_IRQS_FLAGS flags:req
58
#ifdef CONFIG_TRACE_IRQFLAGS
59
	btl	$9, \flags		/* interrupts off? */
60
	jnc	1f
61 62 63 64 65
	TRACE_IRQS_ON
1:
#endif
.endm

66 67 68 69
.macro TRACE_IRQS_IRETQ
	TRACE_IRQS_FLAGS EFLAGS(%rsp)
.endm

70 71 72 73 74 75 76 77 78 79 80 81 82 83
/*
 * When dynamic function tracer is enabled it will add a breakpoint
 * to all locations that it is about to modify, sync CPUs, update
 * all the code, sync CPUs, then remove the breakpoints. In this time
 * if lockdep is enabled, it might jump back into the debug handler
 * outside the updating of the IST protection. (TRACE_IRQS_ON/OFF).
 *
 * We need to change the IDT table before calling TRACE_IRQS_ON/OFF to
 * make sure the stack pointer does not get reset back to the top
 * of the debug stack, and instead just reuses the current stack.
 */
#if defined(CONFIG_DYNAMIC_FTRACE) && defined(CONFIG_TRACE_IRQFLAGS)

.macro TRACE_IRQS_OFF_DEBUG
84
	call	debug_stack_set_zero
85
	TRACE_IRQS_OFF
86
	call	debug_stack_reset
87 88 89
.endm

.macro TRACE_IRQS_ON_DEBUG
90
	call	debug_stack_set_zero
91
	TRACE_IRQS_ON
92
	call	debug_stack_reset
93 94
.endm

95
.macro TRACE_IRQS_IRETQ_DEBUG
96
	btl	$9, EFLAGS(%rsp)		/* interrupts off? */
97
	jnc	1f
98 99 100 101 102
	TRACE_IRQS_ON_DEBUG
1:
.endm

#else
103 104 105
# define TRACE_IRQS_OFF_DEBUG			TRACE_IRQS_OFF
# define TRACE_IRQS_ON_DEBUG			TRACE_IRQS_ON
# define TRACE_IRQS_IRETQ_DEBUG			TRACE_IRQS_IRETQ
106 107
#endif

L
Linus Torvalds 已提交
108
/*
109
 * 64-bit SYSCALL instruction entry. Up to 6 arguments in registers.
L
Linus Torvalds 已提交
110
 *
111 112 113 114 115 116 117 118 119 120
 * This is the only entry point used for 64-bit system calls.  The
 * hardware interface is reasonably well designed and the register to
 * argument mapping Linux uses fits well with the registers that are
 * available when SYSCALL is used.
 *
 * SYSCALL instructions can be found inlined in libc implementations as
 * well as some other programs and libraries.  There are also a handful
 * of SYSCALL instructions in the vDSO used, for example, as a
 * clock_gettimeofday fallback.
 *
121
 * 64-bit SYSCALL saves rip to rcx, clears rflags.RF, then saves rflags to r11,
122 123 124 125 126 127
 * then loads new ss, cs, and rip from previously programmed MSRs.
 * rflags gets masked by a value from another MSR (so CLD and CLAC
 * are not needed). SYSCALL does not save anything on the stack
 * and does not change rsp.
 *
 * Registers on entry:
L
Linus Torvalds 已提交
128
 * rax  system call number
129 130
 * rcx  return address
 * r11  saved rflags (note: r11 is callee-clobbered register in C ABI)
L
Linus Torvalds 已提交
131 132
 * rdi  arg0
 * rsi  arg1
133
 * rdx  arg2
134
 * r10  arg3 (needs to be moved to rcx to conform to C ABI)
L
Linus Torvalds 已提交
135 136
 * r8   arg4
 * r9   arg5
137
 * (note: r12-r15, rbp, rbx are callee-preserved in C ABI)
138
 *
L
Linus Torvalds 已提交
139 140
 * Only called from user space.
 *
141
 * When user can change pt_regs->foo always force IRET. That is because
142 143
 * it deals with uncanonical addresses better. SYSRET has trouble
 * with them due to bugs in both AMD and Intel CPUs.
144
 */
L
Linus Torvalds 已提交
145

146
SYM_CODE_START(entry_SYSCALL_64)
147
	UNWIND_HINT_EMPTY
148 149 150 151 152
	/*
	 * Interrupts are off on entry.
	 * We do not frame this tiny irq-off block with TRACE_IRQS_OFF/ON,
	 * it is too small to ever cause noticeable irq latency.
	 */
153

154
	swapgs
155
	/* tss.sp2 is scratch space. */
156
	movq	%rsp, PER_CPU_VAR(cpu_tss_rw + TSS_sp2)
157
	SWITCH_TO_KERNEL_CR3 scratch_reg=%rsp
158
	movq	PER_CPU_VAR(cpu_current_top_of_stack), %rsp
159 160

	/* Construct struct pt_regs on stack */
161 162 163 164 165
	pushq	$__USER_DS				/* pt_regs->ss */
	pushq	PER_CPU_VAR(cpu_tss_rw + TSS_sp2)	/* pt_regs->sp */
	pushq	%r11					/* pt_regs->flags */
	pushq	$__USER_CS				/* pt_regs->cs */
	pushq	%rcx					/* pt_regs->ip */
166
SYM_INNER_LABEL(entry_SYSCALL_64_after_hwframe, SYM_L_GLOBAL)
167
	pushq	%rax					/* pt_regs->orig_ax */
168 169

	PUSH_AND_CLEAR_REGS rax=$-ENOSYS
170

171
	/* IRQs are off. */
172 173
	movq	%rax, %rdi
	movq	%rsp, %rsi
174 175
	call	do_syscall_64		/* returns with IRQs disabled */

176 177
	/*
	 * Try to use SYSRET instead of IRET if we're returning to
178 179
	 * a completely clean 64-bit userspace context.  If we're not,
	 * go to the slow exit path.
180
	 */
181 182
	movq	RCX(%rsp), %rcx
	movq	RIP(%rsp), %r11
183 184 185

	cmpq	%rcx, %r11	/* SYSRET requires RCX == RIP */
	jne	swapgs_restore_regs_and_return_to_usermode
186 187 188 189

	/*
	 * On Intel CPUs, SYSRET with non-canonical RCX/RIP will #GP
	 * in kernel space.  This essentially lets the user take over
190
	 * the kernel, since userspace controls RSP.
191
	 *
192
	 * If width of "canonical tail" ever becomes variable, this will need
193
	 * to be updated to remain correct on both old and new CPUs.
194
	 *
195 196
	 * Change top bits to match most significant bit (47th or 56th bit
	 * depending on paging mode) in the address.
197
	 */
198
#ifdef CONFIG_X86_5LEVEL
199 200
	ALTERNATIVE "shl $(64 - 48), %rcx; sar $(64 - 48), %rcx", \
		"shl $(64 - 57), %rcx; sar $(64 - 57), %rcx", X86_FEATURE_LA57
201
#else
202 203
	shl	$(64 - (__VIRTUAL_MASK_SHIFT+1)), %rcx
	sar	$(64 - (__VIRTUAL_MASK_SHIFT+1)), %rcx
204
#endif
205

206 207
	/* If this changed %rcx, it was not canonical */
	cmpq	%rcx, %r11
208
	jne	swapgs_restore_regs_and_return_to_usermode
209

210
	cmpq	$__USER_CS, CS(%rsp)		/* CS must match SYSRET */
211
	jne	swapgs_restore_regs_and_return_to_usermode
212

213 214
	movq	R11(%rsp), %r11
	cmpq	%r11, EFLAGS(%rsp)		/* R11 == RFLAGS */
215
	jne	swapgs_restore_regs_and_return_to_usermode
216 217

	/*
218 219 220 221 222 223 224 225 226
	 * SYSCALL clears RF when it saves RFLAGS in R11 and SYSRET cannot
	 * restore RF properly. If the slowpath sets it for whatever reason, we
	 * need to restore it correctly.
	 *
	 * SYSRET can restore TF, but unlike IRET, restoring TF results in a
	 * trap from userspace immediately after SYSRET.  This would cause an
	 * infinite loop whenever #DB happens with register state that satisfies
	 * the opportunistic SYSRET conditions.  For example, single-stepping
	 * this user code:
227
	 *
228
	 *           movq	$stuck_here, %rcx
229 230 231 232 233 234
	 *           pushfq
	 *           popq %r11
	 *   stuck_here:
	 *
	 * would never get past 'stuck_here'.
	 */
235
	testq	$(X86_EFLAGS_RF|X86_EFLAGS_TF), %r11
236
	jnz	swapgs_restore_regs_and_return_to_usermode
237 238 239

	/* nothing to check for RSP */

240
	cmpq	$__USER_DS, SS(%rsp)		/* SS must match SYSRET */
241
	jne	swapgs_restore_regs_and_return_to_usermode
242 243

	/*
244 245
	 * We win! This label is here just for ease of understanding
	 * perf profiles. Nothing jumps here.
246 247
	 */
syscall_return_via_sysret:
248
	/* rcx and r11 are already restored (see code above) */
249
	POP_REGS pop_rdi=0 skip_r11rcx=1
250 251 252 253 254 255

	/*
	 * Now all regs are restored except RSP and RDI.
	 * Save old stack pointer and switch to trampoline stack.
	 */
	movq	%rsp, %rdi
256
	movq	PER_CPU_VAR(cpu_tss_rw + TSS_sp0), %rsp
257
	UNWIND_HINT_EMPTY
258 259 260 261 262 263 264 265

	pushq	RSP-RDI(%rdi)	/* RSP */
	pushq	(%rdi)		/* RDI */

	/*
	 * We are on the trampoline stack.  All regs except RDI are live.
	 * We can do future final exit work right here.
	 */
266 267
	STACKLEAK_ERASE_NOCLOBBER

268
	SWITCH_TO_USER_CR3_STACK scratch_reg=%rdi
269

270
	popq	%rdi
271
	popq	%rsp
272
	USERGS_SYSRET64
273
SYM_CODE_END(entry_SYSCALL_64)
274

275 276 277 278
/*
 * %rdi: prev task
 * %rsi: next task
 */
279
.pushsection .text, "ax"
280
SYM_FUNC_START(__switch_to_asm)
281 282 283 284 285 286 287 288 289 290 291 292 293 294 295
	/*
	 * Save callee-saved registers
	 * This must match the order in inactive_task_frame
	 */
	pushq	%rbp
	pushq	%rbx
	pushq	%r12
	pushq	%r13
	pushq	%r14
	pushq	%r15

	/* switch stack */
	movq	%rsp, TASK_threadsp(%rdi)
	movq	TASK_threadsp(%rsi), %rsp

296
#ifdef CONFIG_STACKPROTECTOR
297
	movq	TASK_stack_canary(%rsi), %rbx
298
	movq	%rbx, PER_CPU_VAR(fixed_percpu_data) + stack_canary_offset
299 300
#endif

301 302 303 304 305 306 307 308
#ifdef CONFIG_RETPOLINE
	/*
	 * When switching from a shallower to a deeper call stack
	 * the RSB may either underflow or use entries populated
	 * with userspace addresses. On CPUs where those concerns
	 * exist, overwrite the RSB with entries which capture
	 * speculative execution to prevent attack.
	 */
309
	FILL_RETURN_BUFFER %r12, RSB_CLEAR_LOOPS, X86_FEATURE_RSB_CTXSW
310 311
#endif

312 313 314 315 316 317 318 319 320
	/* restore callee-saved registers */
	popq	%r15
	popq	%r14
	popq	%r13
	popq	%r12
	popq	%rbx
	popq	%rbp

	jmp	__switch_to
321
SYM_FUNC_END(__switch_to_asm)
322
.popsection
323

324 325 326
/*
 * A newly forked process directly context switches into this address.
 *
327
 * rax: prev task we switched from
328 329
 * rbx: kernel thread func (NULL for user thread)
 * r12: kernel thread arg
330
 */
331
.pushsection .text, "ax"
332
SYM_CODE_START(ret_from_fork)
333
	UNWIND_HINT_EMPTY
334
	movq	%rax, %rdi
335
	call	schedule_tail			/* rdi: 'prev' task parameter */
336

337 338
	testq	%rbx, %rbx			/* from kernel_thread? */
	jnz	1f				/* kernel threads are uncommon */
339

340
2:
341
	UNWIND_HINT_REGS
342
	movq	%rsp, %rdi
343
	call	syscall_return_slowpath	/* returns with IRQs disabled */
344
	jmp	swapgs_restore_regs_and_return_to_usermode
345 346 347

1:
	/* kernel thread */
348
	UNWIND_HINT_EMPTY
349
	movq	%r12, %rdi
350
	CALL_NOSPEC rbx
351 352 353 354 355 356 357
	/*
	 * A kernel thread is allowed to return here after successfully
	 * calling do_execve().  Exit to userspace to complete the execve()
	 * syscall.
	 */
	movq	$0, RAX(%rsp)
	jmp	2b
358
SYM_CODE_END(ret_from_fork)
359
.popsection
360

361 362
.macro DEBUG_ENTRY_ASSERT_IRQS_OFF
#ifdef CONFIG_DEBUG_ENTRY
363 364 365
	pushq %rax
	SAVE_FLAGS(CLBR_RAX)
	testl $X86_EFLAGS_IF, %eax
366 367 368
	jz .Lokay_\@
	ud2
.Lokay_\@:
369
	popq %rax
370 371 372 373 374 375 376 377 378 379
#endif
.endm

/*
 * Enters the IRQ stack if we're not already using it.  NMI-safe.  Clobbers
 * flags and puts old RSP into old_rsp, and leaves all other GPRs alone.
 * Requires kernel GSBASE.
 *
 * The invariant is that, if irq_count != -1, then the IRQ stack is in use.
 */
380
.macro ENTER_IRQ_STACK regs=1 old_rsp save_ret=0
381
	DEBUG_ENTRY_ASSERT_IRQS_OFF
382 383 384 385 386 387 388 389 390

	.if \save_ret
	/*
	 * If save_ret is set, the original stack contains one additional
	 * entry -- the return address. Therefore, move the address one
	 * entry below %rsp to \old_rsp.
	 */
	leaq	8(%rsp), \old_rsp
	.else
391
	movq	%rsp, \old_rsp
392
	.endif
393 394 395 396 397

	.if \regs
	UNWIND_HINT_REGS base=\old_rsp
	.endif

398
	incl	PER_CPU_VAR(irq_count)
399
	jnz	.Lirq_stack_push_old_rsp_\@
400 401 402 403 404 405 406 407 408

	/*
	 * Right now, if we just incremented irq_count to zero, we've
	 * claimed the IRQ stack but we haven't switched to it yet.
	 *
	 * If anything is added that can interrupt us here without using IST,
	 * it must be *extremely* careful to limit its stack usage.  This
	 * could include kprobes and a hypothetical future IST-less #DB
	 * handler.
409 410 411 412 413 414 415
	 *
	 * The OOPS unwinder relies on the word at the top of the IRQ
	 * stack linking back to the previous RSP for the entire time we're
	 * on the IRQ stack.  For this to work reliably, we need to write
	 * it before we actually move ourselves to the IRQ stack.
	 */

416
	movq	\old_rsp, PER_CPU_VAR(irq_stack_backing_store + IRQ_STACK_SIZE - 8)
417
	movq	PER_CPU_VAR(hardirq_stack_ptr), %rsp
418 419 420 421 422 423 424

#ifdef CONFIG_DEBUG_ENTRY
	/*
	 * If the first movq above becomes wrong due to IRQ stack layout
	 * changes, the only way we'll notice is if we try to unwind right
	 * here.  Assert that we set up the stack right to catch this type
	 * of bug quickly.
425
	 */
426 427 428 429 430
	cmpq	-8(%rsp), \old_rsp
	je	.Lirq_stack_okay\@
	ud2
	.Lirq_stack_okay\@:
#endif
431

432
.Lirq_stack_push_old_rsp_\@:
433
	pushq	\old_rsp
434 435 436 437

	.if \regs
	UNWIND_HINT_REGS indirect=1
	.endif
438 439 440 441 442 443 444 445 446

	.if \save_ret
	/*
	 * Push the return address to the stack. This return address can
	 * be found at the "real" original RSP, which was offset by 8 at
	 * the beginning of this macro.
	 */
	pushq	-8(\old_rsp)
	.endif
447 448 449 450 451
.endm

/*
 * Undoes ENTER_IRQ_STACK.
 */
452
.macro LEAVE_IRQ_STACK regs=1
453 454 455 456
	DEBUG_ENTRY_ASSERT_IRQS_OFF
	/* We need to be off the IRQ stack before decrementing irq_count. */
	popq	%rsp

457 458 459 460
	.if \regs
	UNWIND_HINT_REGS
	.endif

461 462 463 464 465 466 467 468
	/*
	 * As in ENTER_IRQ_STACK, irq_count == 0, we are still claiming
	 * the irq stack but we're not on it.
	 */

	decl	PER_CPU_VAR(irq_count)
.endm

T
Thomas Gleixner 已提交
469 470 471 472 473
/**
 * idtentry_body - Macro to emit code calling the C function
 * @cfunc:		C function to be called
 * @has_error_code:	Hardware pushed error code on stack
 */
474
.macro idtentry_body cfunc has_error_code:req
T
Thomas Gleixner 已提交
475 476 477 478 479 480 481 482 483 484 485 486 487

	call	error_entry
	UNWIND_HINT_REGS

	movq	%rsp, %rdi			/* pt_regs pointer into 1st argument*/

	.if \has_error_code == 1
		movq	ORIG_RAX(%rsp), %rsi	/* get error code into 2nd argument*/
		movq	$-1, ORIG_RAX(%rsp)	/* no syscall to restart */
	.endif

	call	\cfunc

488
	jmp	error_return
T
Thomas Gleixner 已提交
489 490 491 492 493 494 495 496 497 498 499 500
.endm

/**
 * idtentry - Macro to generate entry stubs for simple IDT entries
 * @vector:		Vector number
 * @asmsym:		ASM symbol for the entry point
 * @cfunc:		C function to be called
 * @has_error_code:	Hardware pushed error code on stack
 *
 * The macro emits code to set up the kernel context for straight forward
 * and simple IDT entries. No IST stack, no paranoid entry checks.
 */
501
.macro idtentry vector asmsym cfunc has_error_code:req
T
Thomas Gleixner 已提交
502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523
SYM_CODE_START(\asmsym)
	UNWIND_HINT_IRET_REGS offset=\has_error_code*8
	ASM_CLAC

	.if \has_error_code == 0
		pushq	$-1			/* ORIG_RAX: no syscall to restart */
	.endif

	.if \vector == X86_TRAP_BP
		/*
		 * If coming from kernel space, create a 6-word gap to allow the
		 * int3 handler to emulate a call instruction.
		 */
		testb	$3, CS-ORIG_RAX(%rsp)
		jnz	.Lfrom_usermode_no_gap_\@
		.rept	6
		pushq	5*8(%rsp)
		.endr
		UNWIND_HINT_IRET_REGS offset=8
.Lfrom_usermode_no_gap_\@:
	.endif

524
	idtentry_body \cfunc \has_error_code
T
Thomas Gleixner 已提交
525 526 527 528 529

_ASM_NOKPROBE(\asmsym)
SYM_CODE_END(\asmsym)
.endm

530 531 532 533 534 535 536 537 538 539 540 541 542 543
/*
 * Interrupt entry/exit.
 *
 + The interrupt stubs push (vector) onto the stack, which is the error_code
 * position of idtentry exceptions, and jump to one of the two idtentry points
 * (common/spurious).
 *
 * common_interrupt is a hotpath, align it to a cache line
 */
.macro idtentry_irq vector cfunc
	.p2align CONFIG_X86_L1_CACHE_SHIFT
	idtentry \vector asm_\cfunc \cfunc has_error_code=1
.endm

544 545 546 547 548 549 550 551
/*
 * System vectors which invoke their handlers directly and are not
 * going through the regular common device interrupt handling code.
 */
.macro idtentry_sysvec vector cfunc
	idtentry \vector asm_\cfunc \cfunc has_error_code=0
.endm

T
Thomas Gleixner 已提交
552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620
/*
 * MCE and DB exceptions
 */
#define CPU_TSS_IST(x) PER_CPU_VAR(cpu_tss_rw) + (TSS_ist + (x) * 8)

/**
 * idtentry_mce_db - Macro to generate entry stubs for #MC and #DB
 * @vector:		Vector number
 * @asmsym:		ASM symbol for the entry point
 * @cfunc:		C function to be called
 *
 * The macro emits code to set up the kernel context for #MC and #DB
 *
 * If the entry comes from user space it uses the normal entry path
 * including the return to user space work and preemption checks on
 * exit.
 *
 * If hits in kernel mode then it needs to go through the paranoid
 * entry as the exception can hit any random state. No preemption
 * check on exit to keep the paranoid path simple.
 *
 * If the trap is #DB then the interrupt stack entry in the IST is
 * moved to the second stack, so a potential recursion will have a
 * fresh IST.
 */
.macro idtentry_mce_db vector asmsym cfunc
SYM_CODE_START(\asmsym)
	UNWIND_HINT_IRET_REGS
	ASM_CLAC

	pushq	$-1			/* ORIG_RAX: no syscall to restart */

	/*
	 * If the entry is from userspace, switch stacks and treat it as
	 * a normal entry.
	 */
	testb	$3, CS-ORIG_RAX(%rsp)
	jnz	.Lfrom_usermode_switch_stack_\@

	/*
	 * paranoid_entry returns SWAPGS flag for paranoid_exit in EBX.
	 * EBX == 0 -> SWAPGS, EBX == 1 -> no SWAPGS
	 */
	call	paranoid_entry

	UNWIND_HINT_REGS

	.if \vector == X86_TRAP_DB
		TRACE_IRQS_OFF_DEBUG
	.else
		TRACE_IRQS_OFF
	.endif

	movq	%rsp, %rdi		/* pt_regs pointer */

	.if \vector == X86_TRAP_DB
		subq	$DB_STACK_OFFSET, CPU_TSS_IST(IST_INDEX_DB)
	.endif

	call	\cfunc

	.if \vector == X86_TRAP_DB
		addq	$DB_STACK_OFFSET, CPU_TSS_IST(IST_INDEX_DB)
	.endif

	jmp	paranoid_exit

	/* Switch to the regular task stack and use the noist entry point */
.Lfrom_usermode_switch_stack_\@:
621
	idtentry_body noist_\cfunc, has_error_code=0
T
Thomas Gleixner 已提交
622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654

_ASM_NOKPROBE(\asmsym)
SYM_CODE_END(\asmsym)
.endm

/*
 * Double fault entry. Straight paranoid. No checks from which context
 * this comes because for the espfix induced #DF this would do the wrong
 * thing.
 */
.macro idtentry_df vector asmsym cfunc
SYM_CODE_START(\asmsym)
	UNWIND_HINT_IRET_REGS offset=8
	ASM_CLAC

	/*
	 * paranoid_entry returns SWAPGS flag for paranoid_exit in EBX.
	 * EBX == 0 -> SWAPGS, EBX == 1 -> no SWAPGS
	 */
	call	paranoid_entry
	UNWIND_HINT_REGS

	movq	%rsp, %rdi		/* pt_regs pointer into first argument */
	movq	ORIG_RAX(%rsp), %rsi	/* get error code into 2nd argument*/
	movq	$-1, ORIG_RAX(%rsp)	/* no syscall to restart */
	call	\cfunc

	jmp	paranoid_exit

_ASM_NOKPROBE(\asmsym)
SYM_CODE_END(\asmsym)
.endm

655 656 657 658 659 660
/*
 * Include the defines which emit the idt entries which are shared
 * shared between 32 and 64 bit.
 */
#include <asm/idtentry.h>

661
SYM_CODE_START_LOCAL(common_interrupt_return)
662
SYM_INNER_LABEL(swapgs_restore_regs_and_return_to_usermode, SYM_L_GLOBAL)
663 664
#ifdef CONFIG_DEBUG_ENTRY
	/* Assert that pt_regs indicates user mode. */
665
	testb	$3, CS(%rsp)
666 667 668 669
	jnz	1f
	ud2
1:
#endif
670
	POP_REGS pop_rdi=0
671 672 673 674 675 676

	/*
	 * The stack is now user RDI, orig_ax, RIP, CS, EFLAGS, RSP, SS.
	 * Save old stack pointer and switch to trampoline stack.
	 */
	movq	%rsp, %rdi
677
	movq	PER_CPU_VAR(cpu_tss_rw + TSS_sp0), %rsp
678
	UNWIND_HINT_EMPTY
679 680 681 682 683 684 685 686 687 688 689 690 691 692 693

	/* Copy the IRET frame to the trampoline stack. */
	pushq	6*8(%rdi)	/* SS */
	pushq	5*8(%rdi)	/* RSP */
	pushq	4*8(%rdi)	/* EFLAGS */
	pushq	3*8(%rdi)	/* CS */
	pushq	2*8(%rdi)	/* RIP */

	/* Push user RDI on the trampoline stack. */
	pushq	(%rdi)

	/*
	 * We are on the trampoline stack.  All regs except RDI are live.
	 * We can do future final exit work right here.
	 */
694
	STACKLEAK_ERASE_NOCLOBBER
695

696
	SWITCH_TO_USER_CR3_STACK scratch_reg=%rdi
697

698 699 700
	/* Restore RDI. */
	popq	%rdi
	SWAPGS
701 702
	INTERRUPT_RETURN

703

704
SYM_INNER_LABEL(restore_regs_and_return_to_kernel, SYM_L_GLOBAL)
705 706
#ifdef CONFIG_DEBUG_ENTRY
	/* Assert that pt_regs indicates kernel mode. */
707
	testb	$3, CS(%rsp)
708 709 710 711
	jz	1f
	ud2
1:
#endif
712
	POP_REGS
713
	addq	$8, %rsp	/* skip regs->orig_ax */
714 715 716 717
	/*
	 * ARCH_HAS_MEMBARRIER_SYNC_CORE rely on IRET core serialization
	 * when returning from IPI handler.
	 */
718 719
	INTERRUPT_RETURN

720
SYM_INNER_LABEL_ALIGN(native_iret, SYM_L_GLOBAL)
721
	UNWIND_HINT_IRET_REGS
722 723 724 725
	/*
	 * Are we returning to a stack segment from the LDT?  Note: in
	 * 64-bit mode SS:RSP on the exception stack is always valid.
	 */
726
#ifdef CONFIG_X86_ESPFIX64
727 728
	testb	$4, (SS-RIP)(%rsp)
	jnz	native_irq_return_ldt
729
#endif
730

731
SYM_INNER_LABEL(native_irq_return_iret, SYM_L_GLOBAL)
A
Andy Lutomirski 已提交
732 733 734
	/*
	 * This may fault.  Non-paranoid faults on return to userspace are
	 * handled by fixup_bad_iret.  These include #SS, #GP, and #NP.
735
	 * Double-faults due to espfix64 are handled in exc_double_fault.
A
Andy Lutomirski 已提交
736 737
	 * Other faults here are fatal.
	 */
L
Linus Torvalds 已提交
738
	iretq
I
Ingo Molnar 已提交
739

740
#ifdef CONFIG_X86_ESPFIX64
741
native_irq_return_ldt:
742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763
	/*
	 * We are running with user GSBASE.  All GPRs contain their user
	 * values.  We have a percpu ESPFIX stack that is eight slots
	 * long (see ESPFIX_STACK_SIZE).  espfix_waddr points to the bottom
	 * of the ESPFIX stack.
	 *
	 * We clobber RAX and RDI in this code.  We stash RDI on the
	 * normal stack and RAX on the ESPFIX stack.
	 *
	 * The ESPFIX stack layout we set up looks like this:
	 *
	 * --- top of ESPFIX stack ---
	 * SS
	 * RSP
	 * RFLAGS
	 * CS
	 * RIP  <-- RSP points here when we're done
	 * RAX  <-- espfix_waddr points here
	 * --- bottom of ESPFIX stack ---
	 */

	pushq	%rdi				/* Stash user RDI */
764 765 766
	SWAPGS					/* to kernel GS */
	SWITCH_TO_KERNEL_CR3 scratch_reg=%rdi	/* to kernel CR3 */

767
	movq	PER_CPU_VAR(espfix_waddr), %rdi
768 769
	movq	%rax, (0*8)(%rdi)		/* user RAX */
	movq	(1*8)(%rsp), %rax		/* user RIP */
770
	movq	%rax, (1*8)(%rdi)
771
	movq	(2*8)(%rsp), %rax		/* user CS */
772
	movq	%rax, (2*8)(%rdi)
773
	movq	(3*8)(%rsp), %rax		/* user RFLAGS */
774
	movq	%rax, (3*8)(%rdi)
775
	movq	(5*8)(%rsp), %rax		/* user SS */
776
	movq	%rax, (5*8)(%rdi)
777
	movq	(4*8)(%rsp), %rax		/* user RSP */
778
	movq	%rax, (4*8)(%rdi)
779 780 781 782 783 784 785 786 787 788 789 790
	/* Now RAX == RSP. */

	andl	$0xffff0000, %eax		/* RAX = (RSP & 0xffff0000) */

	/*
	 * espfix_stack[31:16] == 0.  The page tables are set up such that
	 * (espfix_stack | (X & 0xffff0000)) points to a read-only alias of
	 * espfix_waddr for any X.  That is, there are 65536 RO aliases of
	 * the same page.  Set up RSP so that RSP[31:16] contains the
	 * respective 16 bits of the /userspace/ RSP and RSP nonetheless
	 * still points to an RO alias of the ESPFIX stack.
	 */
791
	orq	PER_CPU_VAR(espfix_stack), %rax
792

793
	SWITCH_TO_USER_CR3_STACK scratch_reg=%rdi
794 795 796
	SWAPGS					/* to user GS */
	popq	%rdi				/* Restore user RDI */

797
	movq	%rax, %rsp
798
	UNWIND_HINT_IRET_REGS offset=8
799 800 801 802 803 804 805 806 807 808 809 810

	/*
	 * At this point, we cannot write to the stack any more, but we can
	 * still read.
	 */
	popq	%rax				/* Restore user RAX */

	/*
	 * RSP now points to an ordinary IRET frame, except that the page
	 * is read-only and RSP[31:16] are preloaded with the userspace
	 * values.  We can now IRET back to userspace.
	 */
811
	jmp	native_irq_return_iret
812
#endif
813 814
SYM_CODE_END(common_interrupt_return)
_ASM_NOKPROBE(common_interrupt_return)
815

816 817 818 819 820 821
/*
 * Reload gs selector with exception handling
 * edi:  new selector
 *
 * Is in entry.text as it shouldn't be instrumented.
 */
822
SYM_FUNC_START(asm_load_gs_index)
823
	FRAME_BEGIN
824
	swapgs
825
.Lgs_change:
826
	movl	%edi, %gs
827
2:	ALTERNATIVE "", "mfence", X86_BUG_SWAPGS_FENCE
828
	swapgs
829
	FRAME_END
830
	ret
831 832
SYM_FUNC_END(asm_load_gs_index)
EXPORT_SYMBOL(asm_load_gs_index)
833

834
	_ASM_EXTABLE(.Lgs_change, .Lbad_gs)
835
	.section .fixup, "ax"
L
Linus Torvalds 已提交
836
	/* running with kernelgs */
837
SYM_CODE_START_LOCAL_NOALIGN(.Lbad_gs)
838
	swapgs					/* switch back to user gs */
839 840 841 842 843 844
.macro ZAP_GS
	/* This can't be a string because the preprocessor needs to see it. */
	movl $__USER_DS, %eax
	movl %eax, %gs
.endm
	ALTERNATIVE "", "ZAP_GS", X86_BUG_NULL_SEG
845 846 847
	xorl	%eax, %eax
	movl	%eax, %gs
	jmp	2b
848
SYM_CODE_END(.Lbad_gs)
849
	.previous
850

851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889
/*
 * rdi: New stack pointer points to the top word of the stack
 * rsi: Function pointer
 * rdx: Function argument (can be NULL if none)
 */
SYM_FUNC_START(asm_call_on_stack)
	/*
	 * Save the frame pointer unconditionally. This allows the ORC
	 * unwinder to handle the stack switch.
	 */
	pushq		%rbp
	mov		%rsp, %rbp

	/*
	 * The unwinder relies on the word at the top of the new stack
	 * page linking back to the previous RSP.
	 */
	mov		%rsp, (%rdi)
	mov		%rdi, %rsp
	/* Move the argument to the right place */
	mov		%rdx, %rdi

1:
	.pushsection .discard.instr_begin
	.long 1b - .
	.popsection

	CALL_NOSPEC	rsi

2:
	.pushsection .discard.instr_end
	.long 2b - .
	.popsection

	/* Restore the previous stack pointer from RBP. */
	leaveq
	ret
SYM_FUNC_END(asm_call_on_stack)

890
#ifdef CONFIG_XEN_PV
891
/*
892 893 894 895 896 897 898 899 900 901 902
 * A note on the "critical region" in our callback handler.
 * We want to avoid stacking callback handlers due to events occurring
 * during handling of the last event. To do this, we keep events disabled
 * until we've done all processing. HOWEVER, we must enable events before
 * popping the stack frame (can't be done atomically) and so it would still
 * be possible to get enough handler activations to overflow the stack.
 * Although unlikely, bugs of that kind are hard to track down, so we'd
 * like to avoid the possibility.
 * So, on entry to the handler we detect whether we interrupted an
 * existing activation in its critical region -- if so, we pop the current
 * activation and restart the handler using the previous one.
903 904
 *
 * C calling convention: exc_xen_hypervisor_callback(struct *pt_regs)
905
 */
906
SYM_CODE_START_LOCAL(exc_xen_hypervisor_callback)
907

908 909 910 911
/*
 * Since we don't modify %rdi, evtchn_do_upall(struct *pt_regs) will
 * see the correct pointer to the pt_regs
 */
912
	UNWIND_HINT_FUNC
913
	movq	%rdi, %rsp			/* we don't return, adjust the stack frame */
914
	UNWIND_HINT_REGS
915

916
	call	xen_pv_evtchn_do_upcall
917

918 919
	jmp	error_return
SYM_CODE_END(exc_xen_hypervisor_callback)
920 921

/*
922 923 924 925 926 927 928 929 930 931 932 933
 * Hypervisor uses this for application faults while it executes.
 * We get here for two reasons:
 *  1. Fault while reloading DS, ES, FS or GS
 *  2. Fault while executing IRET
 * Category 1 we do not need to fix up as Xen has already reloaded all segment
 * registers that could be reloaded and zeroed the others.
 * Category 2 we fix up by killing the current process. We cannot use the
 * normal Linux return path in this case because if we use the IRET hypercall
 * to pop the stack frame we end up in an infinite loop of failsafe callbacks.
 * We distinguish between categories by comparing each saved segment register
 * with its current contents: any discrepancy means we in category 1.
 */
934
SYM_CODE_START(xen_failsafe_callback)
935
	UNWIND_HINT_EMPTY
936 937 938 939 940 941 942 943 944 945 946 947
	movl	%ds, %ecx
	cmpw	%cx, 0x10(%rsp)
	jne	1f
	movl	%es, %ecx
	cmpw	%cx, 0x18(%rsp)
	jne	1f
	movl	%fs, %ecx
	cmpw	%cx, 0x20(%rsp)
	jne	1f
	movl	%gs, %ecx
	cmpw	%cx, 0x28(%rsp)
	jne	1f
948
	/* All segments match their saved values => Category 2 (Bad IRET). */
949 950 951 952
	movq	(%rsp), %rcx
	movq	8(%rsp), %r11
	addq	$0x30, %rsp
	pushq	$0				/* RIP */
953
	UNWIND_HINT_IRET_REGS offset=8
954
	jmp	asm_exc_general_protection
955
1:	/* Segment mismatch => Category 1 (Bad segment). Retry the IRET. */
956 957 958
	movq	(%rsp), %rcx
	movq	8(%rsp), %r11
	addq	$0x30, %rsp
959
	UNWIND_HINT_IRET_REGS
960
	pushq	$-1 /* orig_ax = -1 => not a system call */
961
	PUSH_AND_CLEAR_REGS
962
	ENCODE_FRAME_POINTER
963
	jmp	error_return
964
SYM_CODE_END(xen_failsafe_callback)
965
#endif /* CONFIG_XEN_PV */
966

967
/*
968
 * Save all registers in pt_regs, and switch gs if needed.
969 970 971
 * Use slow, but surefire "are we in kernel?" check.
 * Return: ebx=0: need swapgs on exit, ebx=1: otherwise
 */
J
Jiri Slaby 已提交
972
SYM_CODE_START_LOCAL(paranoid_entry)
973
	UNWIND_HINT_FUNC
974
	cld
975 976
	PUSH_AND_CLEAR_REGS save_ret=1
	ENCODE_FRAME_POINTER 8
977 978
	movl	$1, %ebx
	movl	$MSR_GS_BASE, %ecx
979
	rdmsr
980 981
	testl	%edx, %edx
	js	1f				/* negative -> in kernel */
982
	SWAPGS
983
	xorl	%ebx, %ebx
984 985

1:
986 987
	/*
	 * Always stash CR3 in %r14.  This value will be restored,
988 989 990
	 * verbatim, at exit.  Needed if paranoid_entry interrupted
	 * another entry that already switched to the user CR3 value
	 * but has not yet returned to userspace.
991 992 993
	 *
	 * This is also why CS (stashed in the "iret frame" by the
	 * hardware at entry) can not be used: this may be a return
994
	 * to kernel code, but with a user CR3 value.
995
	 */
996 997
	SAVE_AND_SWITCH_TO_KERNEL_CR3 scratch_reg=%rax save_reg=%r14

998 999 1000 1001 1002 1003 1004
	/*
	 * The above SAVE_AND_SWITCH_TO_KERNEL_CR3 macro doesn't do an
	 * unconditional CR3 write, even in the PTI case.  So do an lfence
	 * to prevent GS speculation, regardless of whether PTI is enabled.
	 */
	FENCE_SWAPGS_KERNEL_ENTRY

1005
	ret
J
Jiri Slaby 已提交
1006
SYM_CODE_END(paranoid_entry)
1007

1008 1009 1010 1011 1012 1013 1014 1015 1016
/*
 * "Paranoid" exit path from exception stack.  This is invoked
 * only on return from non-NMI IST interrupts that came
 * from kernel space.
 *
 * We may be returning to very strange contexts (e.g. very early
 * in syscall entry), so checking for preemption here would
 * be complicated.  Fortunately, we there's no good reason
 * to try to handle preemption here.
1017 1018
 *
 * On entry, ebx is "no swapgs" flag (1: don't need swapgs, 0: need it)
1019
 */
J
Jiri Slaby 已提交
1020
SYM_CODE_START_LOCAL(paranoid_exit)
1021
	UNWIND_HINT_REGS
1022
	DISABLE_INTERRUPTS(CLBR_ANY)
1023
	TRACE_IRQS_OFF_DEBUG
1024
	testl	%ebx, %ebx			/* swapgs needed? */
1025
	jnz	.Lparanoid_exit_no_swapgs
1026
	TRACE_IRQS_IRETQ
1027
	/* Always restore stashed CR3 value (see paranoid_entry) */
P
Peter Zijlstra 已提交
1028
	RESTORE_CR3	scratch_reg=%rbx save_reg=%r14
1029
	SWAPGS_UNSAFE_STACK
1030
	jmp	restore_regs_and_return_to_kernel
1031
.Lparanoid_exit_no_swapgs:
1032
	TRACE_IRQS_IRETQ_DEBUG
1033
	/* Always restore stashed CR3 value (see paranoid_entry) */
1034
	RESTORE_CR3	scratch_reg=%rbx save_reg=%r14
1035
	jmp restore_regs_and_return_to_kernel
J
Jiri Slaby 已提交
1036
SYM_CODE_END(paranoid_exit)
1037 1038

/*
1039
 * Save all registers in pt_regs, and switch GS if needed.
1040
 */
J
Jiri Slaby 已提交
1041
SYM_CODE_START_LOCAL(error_entry)
1042
	UNWIND_HINT_FUNC
1043
	cld
1044 1045
	PUSH_AND_CLEAR_REGS save_ret=1
	ENCODE_FRAME_POINTER 8
1046
	testb	$3, CS+8(%rsp)
1047
	jz	.Lerror_kernelspace
1048

1049 1050 1051 1052
	/*
	 * We entered from user mode or we're pretending to have entered
	 * from user mode due to an IRET fault.
	 */
1053
	SWAPGS
1054
	FENCE_SWAPGS_USER_ENTRY
1055 1056
	/* We have user CR3.  Change to kernel CR3. */
	SWITCH_TO_KERNEL_CR3 scratch_reg=%rax
1057

1058
.Lerror_entry_from_usermode_after_swapgs:
1059 1060 1061 1062 1063 1064 1065
	/* Put us onto the real thread stack. */
	popq	%r12				/* save return addr in %12 */
	movq	%rsp, %rdi			/* arg0 = pt_regs pointer */
	call	sync_regs
	movq	%rax, %rsp			/* switch stack */
	ENCODE_FRAME_POINTER
	pushq	%r12
1066
	ret
1067

1068 1069
.Lerror_entry_done_lfence:
	FENCE_SWAPGS_KERNEL_ENTRY
1070
.Lerror_entry_done:
1071 1072
	ret

1073 1074 1075 1076 1077 1078
	/*
	 * There are two places in the kernel that can potentially fault with
	 * usergs. Handle them here.  B stepping K8s sometimes report a
	 * truncated RIP for IRET exceptions returning to compat mode. Check
	 * for these here too.
	 */
1079
.Lerror_kernelspace:
1080 1081
	leaq	native_irq_return_iret(%rip), %rcx
	cmpq	%rcx, RIP+8(%rsp)
1082
	je	.Lerror_bad_iret
1083 1084
	movl	%ecx, %eax			/* zero extend */
	cmpq	%rax, RIP+8(%rsp)
1085
	je	.Lbstep_iret
1086
	cmpq	$.Lgs_change, RIP+8(%rsp)
1087
	jne	.Lerror_entry_done_lfence
1088 1089

	/*
1090
	 * hack: .Lgs_change can fail with user gsbase.  If this happens, fix up
1091
	 * gsbase and proceed.  We'll fix up the exception and land in
1092
	 * .Lgs_change's error handler with kernel gsbase.
1093
	 */
1094
	SWAPGS
1095
	FENCE_SWAPGS_USER_ENTRY
1096
	jmp .Lerror_entry_done
1097

1098
.Lbstep_iret:
1099
	/* Fix truncated RIP */
1100
	movq	%rcx, RIP+8(%rsp)
A
Andy Lutomirski 已提交
1101 1102
	/* fall through */

1103
.Lerror_bad_iret:
1104
	/*
1105 1106
	 * We came from an IRET to user mode, so we have user
	 * gsbase and CR3.  Switch to kernel gsbase and CR3:
1107
	 */
A
Andy Lutomirski 已提交
1108
	SWAPGS
1109
	FENCE_SWAPGS_USER_ENTRY
1110
	SWITCH_TO_KERNEL_CR3 scratch_reg=%rax
1111 1112 1113

	/*
	 * Pretend that the exception came from user mode: set up pt_regs
1114
	 * as if we faulted immediately after IRET.
1115
	 */
1116 1117 1118
	mov	%rsp, %rdi
	call	fixup_bad_iret
	mov	%rax, %rsp
1119
	jmp	.Lerror_entry_from_usermode_after_swapgs
J
Jiri Slaby 已提交
1120
SYM_CODE_END(error_entry)
1121

1122 1123 1124 1125 1126 1127 1128 1129
SYM_CODE_START_LOCAL(error_return)
	UNWIND_HINT_REGS
	DEBUG_ENTRY_ASSERT_IRQS_OFF
	testb	$3, CS(%rsp)
	jz	restore_regs_and_return_to_kernel
	jmp	swapgs_restore_regs_and_return_to_usermode
SYM_CODE_END(error_return)

1130 1131 1132
/*
 * Runs on exception stack.  Xen PV does not go through this path at all,
 * so we can use real assembly here.
1133 1134 1135 1136
 *
 * Registers:
 *	%r14: Used to save/restore the CR3 of the interrupted context
 *	      when PAGE_TABLE_ISOLATION is in use.  Do not clobber.
1137
 */
1138
SYM_CODE_START(asm_exc_nmi)
1139
	UNWIND_HINT_IRET_REGS
1140

1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157
	/*
	 * We allow breakpoints in NMIs. If a breakpoint occurs, then
	 * the iretq it performs will take us out of NMI context.
	 * This means that we can have nested NMIs where the next
	 * NMI is using the top of the stack of the previous NMI. We
	 * can't let it execute because the nested NMI will corrupt the
	 * stack of the previous NMI. NMI handlers are not re-entrant
	 * anyway.
	 *
	 * To handle this case we do the following:
	 *  Check the a special location on the stack that contains
	 *  a variable that is set when NMIs are executing.
	 *  The interrupted task's stack is also checked to see if it
	 *  is an NMI stack.
	 *  If the variable is not set and the stack is not the NMI
	 *  stack then:
	 *    o Set the special variable on the stack
1158 1159 1160
	 *    o Copy the interrupt frame into an "outermost" location on the
	 *      stack
	 *    o Copy the interrupt frame into an "iret" location on the stack
1161 1162
	 *    o Continue processing the NMI
	 *  If the variable is set or the previous stack is the NMI stack:
1163
	 *    o Modify the "iret" location to jump to the repeat_nmi
1164 1165 1166 1167 1168 1169 1170 1171
	 *    o return back to the first NMI
	 *
	 * Now on exit of the first NMI, we first clear the stack variable
	 * The NMI stack will tell any nested NMIs at that point that it is
	 * nested. Then we pop the stack normally with iret, and if there was
	 * a nested NMI that updated the copy interrupt stack frame, a
	 * jump will be made to the repeat_nmi code that will handle the second
	 * NMI.
1172 1173 1174 1175 1176
	 *
	 * However, espfix prevents us from directly returning to userspace
	 * with a single IRET instruction.  Similarly, IRET to user mode
	 * can fault.  We therefore handle NMIs from user space like
	 * other IST entries.
1177 1178
	 */

1179 1180
	ASM_CLAC

1181
	/* Use %rdx as our temp variable throughout */
1182
	pushq	%rdx
1183

1184 1185 1186 1187 1188 1189 1190 1191 1192
	testb	$3, CS-RIP+8(%rsp)
	jz	.Lnmi_from_kernel

	/*
	 * NMI from user mode.  We need to run on the thread stack, but we
	 * can't go through the normal entry paths: NMIs are masked, and
	 * we don't want to enable interrupts, because then we'll end
	 * up in an awkward situation in which IRQs are on but NMIs
	 * are off.
1193 1194 1195
	 *
	 * We also must not push anything to the stack before switching
	 * stacks lest we corrupt the "NMI executing" variable.
1196 1197
	 */

1198
	swapgs
1199
	cld
1200
	FENCE_SWAPGS_USER_ENTRY
1201
	SWITCH_TO_KERNEL_CR3 scratch_reg=%rdx
1202 1203
	movq	%rsp, %rdx
	movq	PER_CPU_VAR(cpu_current_top_of_stack), %rsp
1204
	UNWIND_HINT_IRET_REGS base=%rdx offset=8
1205 1206 1207 1208 1209
	pushq	5*8(%rdx)	/* pt_regs->ss */
	pushq	4*8(%rdx)	/* pt_regs->rsp */
	pushq	3*8(%rdx)	/* pt_regs->flags */
	pushq	2*8(%rdx)	/* pt_regs->cs */
	pushq	1*8(%rdx)	/* pt_regs->rip */
1210
	UNWIND_HINT_IRET_REGS
1211
	pushq   $-1		/* pt_regs->orig_ax */
1212
	PUSH_AND_CLEAR_REGS rdx=(%rdx)
1213
	ENCODE_FRAME_POINTER
1214 1215 1216 1217 1218 1219 1220 1221 1222

	/*
	 * At this point we no longer need to worry about stack damage
	 * due to nesting -- we're on the normal thread stack and we're
	 * done with the NMI stack.
	 */

	movq	%rsp, %rdi
	movq	$-1, %rsi
1223
	call	exc_nmi
1224

1225
	/*
1226
	 * Return back to user mode.  We must *not* do the normal exit
1227
	 * work, because we don't want to enable interrupts.
1228
	 */
1229
	jmp	swapgs_restore_regs_and_return_to_usermode
1230

1231
.Lnmi_from_kernel:
1232
	/*
1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272
	 * Here's what our stack frame will look like:
	 * +---------------------------------------------------------+
	 * | original SS                                             |
	 * | original Return RSP                                     |
	 * | original RFLAGS                                         |
	 * | original CS                                             |
	 * | original RIP                                            |
	 * +---------------------------------------------------------+
	 * | temp storage for rdx                                    |
	 * +---------------------------------------------------------+
	 * | "NMI executing" variable                                |
	 * +---------------------------------------------------------+
	 * | iret SS          } Copied from "outermost" frame        |
	 * | iret Return RSP  } on each loop iteration; overwritten  |
	 * | iret RFLAGS      } by a nested NMI to force another     |
	 * | iret CS          } iteration if needed.                 |
	 * | iret RIP         }                                      |
	 * +---------------------------------------------------------+
	 * | outermost SS          } initialized in first_nmi;       |
	 * | outermost Return RSP  } will not be changed before      |
	 * | outermost RFLAGS      } NMI processing is done.         |
	 * | outermost CS          } Copied to "iret" frame on each  |
	 * | outermost RIP         } iteration.                      |
	 * +---------------------------------------------------------+
	 * | pt_regs                                                 |
	 * +---------------------------------------------------------+
	 *
	 * The "original" frame is used by hardware.  Before re-enabling
	 * NMIs, we need to be done with it, and we need to leave enough
	 * space for the asm code here.
	 *
	 * We return by executing IRET while RSP points to the "iret" frame.
	 * That will either return for real or it will loop back into NMI
	 * processing.
	 *
	 * The "outermost" frame is copied to the "iret" frame on each
	 * iteration of the loop, so each iteration starts with the "iret"
	 * frame pointing to the final return target.
	 */

1273
	/*
1274 1275
	 * Determine whether we're a nested NMI.
	 *
1276 1277 1278 1279
	 * If we interrupted kernel code between repeat_nmi and
	 * end_repeat_nmi, then we are a nested NMI.  We must not
	 * modify the "iret" frame because it's being written by
	 * the outer NMI.  That's okay; the outer NMI handler is
1280
	 * about to about to call exc_nmi() anyway, so we can just
1281
	 * resume the outer NMI.
1282
	 */
1283 1284 1285 1286 1287 1288 1289 1290

	movq	$repeat_nmi, %rdx
	cmpq	8(%rsp), %rdx
	ja	1f
	movq	$end_repeat_nmi, %rdx
	cmpq	8(%rsp), %rdx
	ja	nested_nmi_out
1:
1291

1292
	/*
1293
	 * Now check "NMI executing".  If it's set, then we're nested.
1294 1295
	 * This will not detect if we interrupted an outer NMI just
	 * before IRET.
1296
	 */
1297 1298
	cmpl	$1, -8(%rsp)
	je	nested_nmi
1299 1300

	/*
1301 1302
	 * Now test if the previous stack was an NMI stack.  This covers
	 * the case where we interrupt an outer NMI after it clears
1303 1304 1305 1306 1307 1308 1309 1310
	 * "NMI executing" but before IRET.  We need to be careful, though:
	 * there is one case in which RSP could point to the NMI stack
	 * despite there being no NMI active: naughty userspace controls
	 * RSP at the very beginning of the SYSCALL targets.  We can
	 * pull a fast one on naughty userspace, though: we program
	 * SYSCALL to mask DF, so userspace cannot cause DF to be set
	 * if it controls the kernel's RSP.  We set DF before we clear
	 * "NMI executing".
1311
	 */
1312 1313 1314 1315 1316
	lea	6*8(%rsp), %rdx
	/* Compare the NMI stack (rdx) with the stack we came from (4*8(%rsp)) */
	cmpq	%rdx, 4*8(%rsp)
	/* If the stack pointer is above the NMI stack, this is a normal NMI */
	ja	first_nmi
1317

1318 1319 1320 1321
	subq	$EXCEPTION_STKSZ, %rdx
	cmpq	%rdx, 4*8(%rsp)
	/* If it is below the NMI stack, it is a normal NMI */
	jb	first_nmi
1322 1323 1324 1325 1326 1327 1328

	/* Ah, it is within the NMI stack. */

	testb	$(X86_EFLAGS_DF >> 8), (3*8 + 1)(%rsp)
	jz	first_nmi	/* RSP was user controlled. */

	/* This is a nested NMI. */
1329

1330 1331
nested_nmi:
	/*
1332 1333
	 * Modify the "iret" frame to point to repeat_nmi, forcing another
	 * iteration of NMI handling.
1334
	 */
1335
	subq	$8, %rsp
1336 1337 1338
	leaq	-10*8(%rsp), %rdx
	pushq	$__KERNEL_DS
	pushq	%rdx
1339
	pushfq
1340 1341
	pushq	$__KERNEL_CS
	pushq	$repeat_nmi
1342 1343

	/* Put stack back */
1344
	addq	$(6*8), %rsp
1345 1346

nested_nmi_out:
1347
	popq	%rdx
1348

1349
	/* We are returning to kernel mode, so this cannot result in a fault. */
1350
	iretq
1351 1352

first_nmi:
1353
	/* Restore rdx. */
1354
	movq	(%rsp), %rdx
1355

1356 1357
	/* Make room for "NMI executing". */
	pushq	$0
1358

1359
	/* Leave room for the "iret" frame */
1360
	subq	$(5*8), %rsp
1361

1362
	/* Copy the "original" frame to the "outermost" frame */
1363
	.rept 5
1364
	pushq	11*8(%rsp)
1365
	.endr
1366
	UNWIND_HINT_IRET_REGS
1367

1368 1369
	/* Everything up to here is safe from nested NMIs */

1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380
#ifdef CONFIG_DEBUG_ENTRY
	/*
	 * For ease of testing, unmask NMIs right away.  Disabled by
	 * default because IRET is very expensive.
	 */
	pushq	$0		/* SS */
	pushq	%rsp		/* RSP (minus 8 because of the previous push) */
	addq	$8, (%rsp)	/* Fix up RSP */
	pushfq			/* RFLAGS */
	pushq	$__KERNEL_CS	/* CS */
	pushq	$1f		/* RIP */
1381
	iretq			/* continues at repeat_nmi below */
1382
	UNWIND_HINT_IRET_REGS
1383 1384 1385
1:
#endif

1386
repeat_nmi:
1387 1388 1389 1390 1391 1392 1393 1394
	/*
	 * If there was a nested NMI, the first NMI's iret will return
	 * here. But NMIs are still enabled and we can take another
	 * nested NMI. The nested NMI checks the interrupted RIP to see
	 * if it is between repeat_nmi and end_repeat_nmi, and if so
	 * it will just return, as we are about to repeat an NMI anyway.
	 * This makes it safe to copy to the stack frame that a nested
	 * NMI will update.
1395 1396 1397 1398
	 *
	 * RSP is pointing to "outermost RIP".  gsbase is unknown, but, if
	 * we're repeating an NMI, gsbase has the same value that it had on
	 * the first iteration.  paranoid_entry will load the kernel
1399
	 * gsbase if needed before we call exc_nmi().  "NMI executing"
1400
	 * is zero.
1401
	 */
1402
	movq	$1, 10*8(%rsp)		/* Set "NMI executing". */
1403

1404
	/*
1405 1406 1407
	 * Copy the "outermost" frame to the "iret" frame.  NMIs that nest
	 * here must not modify the "iret" frame while we're writing to
	 * it or it will end up containing garbage.
1408
	 */
1409
	addq	$(10*8), %rsp
1410
	.rept 5
1411
	pushq	-6*8(%rsp)
1412
	.endr
1413
	subq	$(5*8), %rsp
1414
end_repeat_nmi:
1415 1416

	/*
1417 1418 1419
	 * Everything below this point can be preempted by a nested NMI.
	 * If this happens, then the inner NMI will change the "iret"
	 * frame to point back to repeat_nmi.
1420
	 */
1421
	pushq	$-1				/* ORIG_RAX: no syscall to restart */
1422

1423
	/*
1424
	 * Use paranoid_entry to handle SWAPGS, but no need to use paranoid_exit
1425 1426 1427 1428 1429
	 * as we should not be calling schedule in NMI context.
	 * Even with normal interrupts enabled. An NMI should not be
	 * setting NEED_RESCHED or anything that normal interrupts and
	 * exceptions might do.
	 */
1430
	call	paranoid_entry
1431
	UNWIND_HINT_REGS
1432

1433
	/* paranoidentry exc_nmi(), 0; without TRACE_IRQS_OFF */
1434 1435
	movq	%rsp, %rdi
	movq	$-1, %rsi
1436
	call	exc_nmi
1437

1438
	/* Always restore stashed CR3 value (see paranoid_entry) */
P
Peter Zijlstra 已提交
1439
	RESTORE_CR3 scratch_reg=%r15 save_reg=%r14
1440

1441 1442
	testl	%ebx, %ebx			/* swapgs needed? */
	jnz	nmi_restore
1443 1444 1445
nmi_swapgs:
	SWAPGS_UNSAFE_STACK
nmi_restore:
1446
	POP_REGS
1447

1448 1449 1450 1451 1452
	/*
	 * Skip orig_ax and the "outermost" frame to point RSP at the "iret"
	 * at the "iret" frame.
	 */
	addq	$6*8, %rsp
1453

1454 1455 1456
	/*
	 * Clear "NMI executing".  Set DF first so that we can easily
	 * distinguish the remaining code between here and IRET from
1457 1458 1459 1460 1461
	 * the SYSCALL entry and exit paths.
	 *
	 * We arguably should just inspect RIP instead, but I (Andy) wrote
	 * this code when I had the misapprehension that Xen PV supported
	 * NMIs, and Xen PV would break that approach.
1462 1463 1464
	 */
	std
	movq	$0, 5*8(%rsp)		/* clear "NMI executing" */
1465 1466

	/*
1467 1468 1469 1470
	 * iretq reads the "iret" frame and exits the NMI stack in a
	 * single instruction.  We are returning to kernel mode, so this
	 * cannot result in a fault.  Similarly, we don't need to worry
	 * about espfix64 on the way back to kernel mode.
1471
	 */
1472
	iretq
1473
SYM_CODE_END(asm_exc_nmi)
1474

1475 1476 1477 1478 1479
#ifndef CONFIG_IA32_EMULATION
/*
 * This handles SYSCALL from 32-bit code.  There is no way to program
 * MSRs to fully disable 32-bit SYSCALL.
 */
1480
SYM_CODE_START(ignore_sysret)
1481
	UNWIND_HINT_EMPTY
1482
	mov	$-ENOSYS, %eax
1483
	sysretl
1484
SYM_CODE_END(ignore_sysret)
1485
#endif
1486

1487
.pushsection .text, "ax"
1488
SYM_CODE_START(rewind_stack_do_exit)
1489
	UNWIND_HINT_FUNC
1490 1491 1492 1493
	/* Prevent any naive code from trying to unwind to our caller. */
	xorl	%ebp, %ebp

	movq	PER_CPU_VAR(cpu_current_top_of_stack), %rax
1494
	leaq	-PTREGS_SIZE(%rax), %rsp
1495
	UNWIND_HINT_REGS
1496 1497

	call	do_exit
1498
SYM_CODE_END(rewind_stack_do_exit)
1499
.popsection