arm.c 45.1 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-only
2 3 4 5 6
/*
 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
 * Author: Christoffer Dall <c.dall@virtualopensystems.com>
 */

7
#include <linux/bug.h>
8
#include <linux/cpu_pm.h>
9 10 11
#include <linux/errno.h>
#include <linux/err.h>
#include <linux/kvm_host.h>
12
#include <linux/list.h>
13 14 15 16 17
#include <linux/module.h>
#include <linux/vmalloc.h>
#include <linux/fs.h>
#include <linux/mman.h>
#include <linux/sched.h>
18
#include <linux/kvm.h>
19 20
#include <linux/kvm_irqfd.h>
#include <linux/irqbypass.h>
21
#include <linux/sched/stat.h>
22
#include <linux/psci.h>
23 24 25
#include <trace/events/kvm.h>

#define CREATE_TRACE_POINTS
26
#include "trace_arm.h"
27

28
#include <linux/uaccess.h>
29 30
#include <asm/ptrace.h>
#include <asm/mman.h>
31
#include <asm/tlbflush.h>
32
#include <asm/cacheflush.h>
33
#include <asm/cpufeature.h>
34 35 36 37
#include <asm/virt.h>
#include <asm/kvm_arm.h>
#include <asm/kvm_asm.h>
#include <asm/kvm_mmu.h>
38
#include <asm/kvm_emulate.h>
39
#include <asm/sections.h>
40

41 42 43 44
#include <kvm/arm_hypercalls.h>
#include <kvm/arm_pmu.h>
#include <kvm/arm_psci.h>

45 46 47 48
#ifdef REQUIRES_VIRT
__asm__(".arch_extension	virt");
#endif

49
static enum kvm_mode kvm_mode = KVM_MODE_DEFAULT;
50
DEFINE_STATIC_KEY_FALSE(kvm_protected_mode_initialized);
51

52 53
DECLARE_KVM_HYP_PER_CPU(unsigned long, kvm_hyp_vector);

54
static DEFINE_PER_CPU(unsigned long, kvm_arm_hyp_stack_page);
55
unsigned long kvm_arm_hyp_percpu_base[NR_CPUS];
56
DECLARE_KVM_NVHE_PER_CPU(struct kvm_nvhe_init_params, kvm_init_params);
57

58 59
/* The VMID used in the VTTBR */
static atomic64_t kvm_vmid_gen = ATOMIC64_INIT(1);
60
static u32 kvm_next_vmid;
61
static DEFINE_SPINLOCK(kvm_vmid_lock);
62

63 64
static bool vgic_present;

65
static DEFINE_PER_CPU(unsigned char, kvm_arm_hardware_enabled);
66 67
DEFINE_STATIC_KEY_FALSE(userspace_irqchip_in_use);

68 69 70 71 72
int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
{
	return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
}

73
int kvm_arch_hardware_setup(void *opaque)
74 75 76 77
{
	return 0;
}

78
int kvm_arch_check_processor_compat(void *opaque)
79
{
80
	return 0;
81 82
}

83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102
int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
			    struct kvm_enable_cap *cap)
{
	int r;

	if (cap->flags)
		return -EINVAL;

	switch (cap->cap) {
	case KVM_CAP_ARM_NISV_TO_USER:
		r = 0;
		kvm->arch.return_nisv_io_abort_to_user = true;
		break;
	default:
		r = -EINVAL;
		break;
	}

	return r;
}
103

104 105 106 107 108
static int kvm_arm_default_max_vcpus(void)
{
	return vgic_present ? kvm_vgic_get_max_vcpus() : KVM_MAX_VCPUS;
}

109
static void set_default_spectre(struct kvm *kvm)
110 111 112 113 114 115 116 117 118 119 120
{
	/*
	 * The default is to expose CSV2 == 1 if the HW isn't affected.
	 * Although this is a per-CPU feature, we make it global because
	 * asymmetric systems are just a nuisance.
	 *
	 * Userspace can override this as long as it doesn't promise
	 * the impossible.
	 */
	if (arm64_get_spectre_v2_state() == SPECTRE_UNAFFECTED)
		kvm->arch.pfr0_csv2 = 1;
121 122
	if (arm64_get_meltdown_state() == SPECTRE_UNAFFECTED)
		kvm->arch.pfr0_csv3 = 1;
123 124
}

125 126 127 128
/**
 * kvm_arch_init_vm - initializes a VM data structure
 * @kvm:	pointer to the KVM struct
 */
129 130
int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
{
131
	int ret;
132

133
	ret = kvm_arm_setup_stage2(kvm, type);
134 135
	if (ret)
		return ret;
136

137
	ret = kvm_init_stage2_mmu(kvm, &kvm->arch.mmu);
138
	if (ret)
139
		return ret;
140

141
	ret = create_hyp_mappings(kvm, kvm + 1, PAGE_HYP);
142 143 144
	if (ret)
		goto out_free_stage2_pgd;

145
	kvm_vgic_early_init(kvm);
146

147
	/* The maximum number of VCPUs is limited by the host's GIC model */
148
	kvm->arch.max_vcpus = kvm_arm_default_max_vcpus();
149

150
	set_default_spectre(kvm);
151

152 153
	return ret;
out_free_stage2_pgd:
154
	kvm_free_stage2_pgd(&kvm->arch.mmu);
155
	return ret;
156 157
}

158
vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
159 160 161 162 163
{
	return VM_FAULT_SIGBUS;
}


164 165 166 167
/**
 * kvm_arch_destroy_vm - destroy the VM data structure
 * @kvm:	pointer to the KVM struct
 */
168 169 170 171
void kvm_arch_destroy_vm(struct kvm *kvm)
{
	int i;

172 173
	bitmap_free(kvm->arch.pmu_filter);

174 175
	kvm_vgic_destroy(kvm);

176 177
	for (i = 0; i < KVM_MAX_VCPUS; ++i) {
		if (kvm->vcpus[i]) {
178
			kvm_vcpu_destroy(kvm->vcpus[i]);
179 180 181
			kvm->vcpus[i] = NULL;
		}
	}
182
	atomic_set(&kvm->online_vcpus, 0);
183 184
}

185
int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
186 187 188
{
	int r;
	switch (ext) {
189
	case KVM_CAP_IRQCHIP:
190 191
		r = vgic_present;
		break;
192
	case KVM_CAP_IOEVENTFD:
193
	case KVM_CAP_DEVICE_CTRL:
194 195 196 197
	case KVM_CAP_USER_MEMORY:
	case KVM_CAP_SYNC_MMU:
	case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
	case KVM_CAP_ONE_REG:
198
	case KVM_CAP_ARM_PSCI:
199
	case KVM_CAP_ARM_PSCI_0_2:
200
	case KVM_CAP_READONLY_MEM:
201
	case KVM_CAP_MP_STATE:
202
	case KVM_CAP_IMMEDIATE_EXIT:
203
	case KVM_CAP_VCPU_EVENTS:
204
	case KVM_CAP_ARM_IRQ_LINE_LAYOUT_2:
205
	case KVM_CAP_ARM_NISV_TO_USER:
206
	case KVM_CAP_ARM_INJECT_EXT_DABT:
207 208
	case KVM_CAP_SET_GUEST_DEBUG:
	case KVM_CAP_VCPU_ATTRIBUTES:
209 210
		r = 1;
		break;
211 212
	case KVM_CAP_ARM_SET_DEVICE_ADDR:
		r = 1;
213
		break;
214 215 216 217
	case KVM_CAP_NR_VCPUS:
		r = num_online_cpus();
		break;
	case KVM_CAP_MAX_VCPUS:
218
	case KVM_CAP_MAX_VCPU_ID:
219 220 221 222
		if (kvm)
			r = kvm->arch.max_vcpus;
		else
			r = kvm_arm_default_max_vcpus();
223
		break;
V
Vladimir Murzin 已提交
224 225 226 227 228 229
	case KVM_CAP_MSI_DEVID:
		if (!kvm)
			r = -EINVAL;
		else
			r = kvm->arch.vgic.msis_require_devid;
		break;
230 231 232 233 234 235 236
	case KVM_CAP_ARM_USER_IRQ:
		/*
		 * 1: EL1_VTIMER, EL1_PTIMER, and PMU.
		 * (bump this number if adding more devices)
		 */
		r = 1;
		break;
237 238 239
	case KVM_CAP_STEAL_TIME:
		r = kvm_arm_pvtime_supported();
		break;
240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256
	case KVM_CAP_ARM_EL1_32BIT:
		r = cpus_have_const_cap(ARM64_HAS_32BIT_EL1);
		break;
	case KVM_CAP_GUEST_DEBUG_HW_BPS:
		r = get_num_brps();
		break;
	case KVM_CAP_GUEST_DEBUG_HW_WPS:
		r = get_num_wrps();
		break;
	case KVM_CAP_ARM_PMU_V3:
		r = kvm_arm_support_pmu_v3();
		break;
	case KVM_CAP_ARM_INJECT_SERROR_ESR:
		r = cpus_have_const_cap(ARM64_HAS_RAS_EXTN);
		break;
	case KVM_CAP_ARM_VM_IPA_SIZE:
		r = get_kvm_ipa_limit();
257
		break;
258 259 260 261 262 263 264 265 266
	case KVM_CAP_ARM_SVE:
		r = system_supports_sve();
		break;
	case KVM_CAP_ARM_PTRAUTH_ADDRESS:
	case KVM_CAP_ARM_PTRAUTH_GENERIC:
		r = system_has_full_ptr_auth();
		break;
	default:
		r = 0;
267
	}
268

269 270 271 272 273 274 275 276 277
	return r;
}

long kvm_arch_dev_ioctl(struct file *filp,
			unsigned int ioctl, unsigned long arg)
{
	return -EINVAL;
}

278 279 280 281 282 283 284 285 286 287 288 289 290 291 292
struct kvm *kvm_arch_alloc_vm(void)
{
	if (!has_vhe())
		return kzalloc(sizeof(struct kvm), GFP_KERNEL);

	return vzalloc(sizeof(struct kvm));
}

void kvm_arch_free_vm(struct kvm *kvm)
{
	if (!has_vhe())
		kfree(kvm);
	else
		vfree(kvm);
}
293

294 295 296 297 298 299 300 301 302 303 304
int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id)
{
	if (irqchip_in_kernel(kvm) && vgic_initialized(kvm))
		return -EBUSY;

	if (id >= kvm->arch.max_vcpus)
		return -EINVAL;

	return 0;
}

305
int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu)
306
{
307 308 309 310 311 312
	int err;

	/* Force users to call KVM_ARM_VCPU_INIT */
	vcpu->arch.target = -1;
	bitmap_zero(vcpu->arch.features, KVM_VCPU_MAX_FEATURES);

313 314
	vcpu->arch.mmu_page_cache.gfp_zero = __GFP_ZERO;

315 316 317 318 319 320 321 322 323
	/* Set up the timer */
	kvm_timer_vcpu_init(vcpu);

	kvm_pmu_vcpu_init(vcpu);

	kvm_arm_reset_debug_ptr(vcpu);

	kvm_arm_pvtime_vcpu_init(&vcpu->arch);

324 325
	vcpu->arch.hw_mmu = &vcpu->kvm->arch.mmu;

326 327 328 329
	err = kvm_vgic_vcpu_init(vcpu);
	if (err)
		return err;

330
	return create_hyp_mappings(vcpu, vcpu + 1, PAGE_HYP);
331 332
}

333
void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
334 335 336
{
}

337
void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
338
{
339 340 341
	if (vcpu->arch.has_run_once && unlikely(!irqchip_in_kernel(vcpu->kvm)))
		static_branch_dec(&userspace_irqchip_in_use);

342
	kvm_mmu_free_memory_cache(&vcpu->arch.mmu_page_cache);
343
	kvm_timer_vcpu_terminate(vcpu);
344
	kvm_pmu_vcpu_destroy(vcpu);
345 346

	kvm_arm_vcpu_destroy(vcpu);
347 348 349 350
}

int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
{
351
	return kvm_timer_is_pending(vcpu);
352 353
}

354 355
void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu)
{
356 357 358
	/*
	 * If we're about to block (most likely because we've just hit a
	 * WFI), we need to sync back the state of the GIC CPU interface
359
	 * so that we have the latest PMR and group enables. This ensures
360 361
	 * that kvm_arch_vcpu_runnable has up-to-date data to decide
	 * whether we have pending interrupts.
362 363 364
	 *
	 * For the same reason, we want to tell GICv4 that we need
	 * doorbells to be signalled, should an interrupt become pending.
365 366 367
	 */
	preempt_disable();
	kvm_vgic_vmcr_sync(vcpu);
368
	vgic_v4_put(vcpu, true);
369
	preempt_enable();
370 371 372 373
}

void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu)
{
374 375 376
	preempt_disable();
	vgic_v4_load(vcpu);
	preempt_enable();
377 378
}

379 380
void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
{
381
	struct kvm_s2_mmu *mmu;
382 383
	int *last_ran;

384 385
	mmu = vcpu->arch.hw_mmu;
	last_ran = this_cpu_ptr(mmu->last_vcpu_ran);
386 387 388 389 390 391

	/*
	 * We might get preempted before the vCPU actually runs, but
	 * over-invalidation doesn't affect correctness.
	 */
	if (*last_ran != vcpu->vcpu_id) {
392
		kvm_call_hyp(__kvm_tlb_flush_local_vmid, mmu);
393 394 395
		*last_ran = vcpu->vcpu_id;
	}

396
	vcpu->cpu = cpu;
397

398
	kvm_vgic_load(vcpu);
399
	kvm_timer_vcpu_load(vcpu);
400 401
	if (has_vhe())
		kvm_vcpu_load_sysregs_vhe(vcpu);
402
	kvm_arch_vcpu_load_fp(vcpu);
403
	kvm_vcpu_pmu_restore_guest(vcpu);
404 405
	if (kvm_arm_is_pvtime_enabled(&vcpu->arch))
		kvm_make_request(KVM_REQ_RECORD_STEAL, vcpu);
406 407

	if (single_task_running())
408
		vcpu_clear_wfx_traps(vcpu);
409
	else
410
		vcpu_set_wfx_traps(vcpu);
411

412
	if (vcpu_has_ptrauth(vcpu))
413
		vcpu_ptrauth_disable(vcpu);
414 415 416 417
}

void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
{
418
	kvm_arch_vcpu_put_fp(vcpu);
419 420
	if (has_vhe())
		kvm_vcpu_put_sysregs_vhe(vcpu);
421
	kvm_timer_vcpu_put(vcpu);
422
	kvm_vgic_put(vcpu);
423
	kvm_vcpu_pmu_restore_host(vcpu);
424

425
	vcpu->cpu = -1;
426 427
}

A
Andrew Jones 已提交
428 429 430
static void vcpu_power_off(struct kvm_vcpu *vcpu)
{
	vcpu->arch.power_off = true;
431
	kvm_make_request(KVM_REQ_SLEEP, vcpu);
A
Andrew Jones 已提交
432 433 434
	kvm_vcpu_kick(vcpu);
}

435 436 437
int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
				    struct kvm_mp_state *mp_state)
{
438
	if (vcpu->arch.power_off)
439 440 441 442 443
		mp_state->mp_state = KVM_MP_STATE_STOPPED;
	else
		mp_state->mp_state = KVM_MP_STATE_RUNNABLE;

	return 0;
444 445 446 447 448
}

int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
				    struct kvm_mp_state *mp_state)
{
449 450
	int ret = 0;

451 452
	switch (mp_state->mp_state) {
	case KVM_MP_STATE_RUNNABLE:
453
		vcpu->arch.power_off = false;
454 455
		break;
	case KVM_MP_STATE_STOPPED:
A
Andrew Jones 已提交
456
		vcpu_power_off(vcpu);
457 458
		break;
	default:
459
		ret = -EINVAL;
460 461
	}

462
	return ret;
463 464
}

465 466 467 468 469 470 471
/**
 * kvm_arch_vcpu_runnable - determine if the vcpu can be scheduled
 * @v:		The VCPU pointer
 *
 * If the guest CPU is not waiting for interrupts or an interrupt line is
 * asserted, the CPU is by definition runnable.
 */
472 473
int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
{
474 475
	bool irq_lines = *vcpu_hcr(v) & (HCR_VI | HCR_VF);
	return ((irq_lines || kvm_vgic_vcpu_pending_irq(v))
476
		&& !v->arch.power_off && !v->arch.pause);
477 478
}

479 480
bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
{
481
	return vcpu_mode_priv(vcpu);
482 483
}

484 485 486 487 488 489 490
/* Just ensure a guest exit from a particular CPU */
static void exit_vm_noop(void *info)
{
}

void force_vm_exit(const cpumask_t *mask)
{
491
	preempt_disable();
492
	smp_call_function_many(mask, exit_vm_noop, NULL, true);
493
	preempt_enable();
494 495 496 497
}

/**
 * need_new_vmid_gen - check that the VMID is still valid
498
 * @vmid: The VMID to check
499 500 501
 *
 * return true if there is a new generation of VMIDs being used
 *
502 503
 * The hardware supports a limited set of values with the value zero reserved
 * for the host, so we check if an assigned value belongs to a previous
F
Fuad Tabba 已提交
504 505 506
 * generation, which requires us to assign a new value. If we're the first to
 * use a VMID for the new generation, we must flush necessary caches and TLBs
 * on all CPUs.
507
 */
508
static bool need_new_vmid_gen(struct kvm_vmid *vmid)
509
{
510 511
	u64 current_vmid_gen = atomic64_read(&kvm_vmid_gen);
	smp_rmb(); /* Orders read of kvm_vmid_gen and kvm->arch.vmid */
512
	return unlikely(READ_ONCE(vmid->vmid_gen) != current_vmid_gen);
513 514 515
}

/**
516 517
 * update_vmid - Update the vmid with a valid VMID for the current generation
 * @vmid: The stage-2 VMID information struct
518
 */
519
static void update_vmid(struct kvm_vmid *vmid)
520
{
521
	if (!need_new_vmid_gen(vmid))
522 523
		return;

524
	spin_lock(&kvm_vmid_lock);
525 526 527 528 529 530

	/*
	 * We need to re-check the vmid_gen here to ensure that if another vcpu
	 * already allocated a valid vmid for this vm, then this vcpu should
	 * use the same vmid.
	 */
531
	if (!need_new_vmid_gen(vmid)) {
532
		spin_unlock(&kvm_vmid_lock);
533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554
		return;
	}

	/* First user of a new VMID generation? */
	if (unlikely(kvm_next_vmid == 0)) {
		atomic64_inc(&kvm_vmid_gen);
		kvm_next_vmid = 1;

		/*
		 * On SMP we know no other CPUs can use this CPU's or each
		 * other's VMID after force_vm_exit returns since the
		 * kvm_vmid_lock blocks them from reentry to the guest.
		 */
		force_vm_exit(cpu_all_mask);
		/*
		 * Now broadcast TLB + ICACHE invalidation over the inner
		 * shareable domain to make sure all data structures are
		 * clean.
		 */
		kvm_call_hyp(__kvm_flush_vm_context);
	}

555
	vmid->vmid = kvm_next_vmid;
556
	kvm_next_vmid++;
557
	kvm_next_vmid &= (1 << kvm_get_vmid_bits()) - 1;
558

559
	smp_wmb();
560
	WRITE_ONCE(vmid->vmid_gen, atomic64_read(&kvm_vmid_gen));
561 562

	spin_unlock(&kvm_vmid_lock);
563 564 565 566
}

static int kvm_vcpu_first_run_init(struct kvm_vcpu *vcpu)
{
567
	struct kvm *kvm = vcpu->kvm;
568
	int ret = 0;
569

570 571 572
	if (likely(vcpu->arch.has_run_once))
		return 0;

573 574 575
	if (!kvm_arm_vcpu_is_finalized(vcpu))
		return -EPERM;

576
	vcpu->arch.has_run_once = true;
577

578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593
	if (likely(irqchip_in_kernel(kvm))) {
		/*
		 * Map the VGIC hardware resources before running a vcpu the
		 * first time on this VM.
		 */
		if (unlikely(!vgic_ready(kvm))) {
			ret = kvm_vgic_map_resources(kvm);
			if (ret)
				return ret;
		}
	} else {
		/*
		 * Tell the rest of the code that there are userspace irqchip
		 * VMs in the wild.
		 */
		static_branch_inc(&userspace_irqchip_in_use);
594 595
	}

596
	ret = kvm_timer_enable(vcpu);
597 598 599 600
	if (ret)
		return ret;

	ret = kvm_arm_pmu_v3_enable(vcpu);
601

602
	return ret;
603 604
}

605 606 607 608 609
bool kvm_arch_intc_initialized(struct kvm *kvm)
{
	return vgic_initialized(kvm);
}

610
void kvm_arm_halt_guest(struct kvm *kvm)
611 612 613 614 615 616
{
	int i;
	struct kvm_vcpu *vcpu;

	kvm_for_each_vcpu(i, vcpu, kvm)
		vcpu->arch.pause = true;
617
	kvm_make_all_cpus_request(kvm, KVM_REQ_SLEEP);
618 619
}

620
void kvm_arm_resume_guest(struct kvm *kvm)
621 622 623 624
{
	int i;
	struct kvm_vcpu *vcpu;

625 626
	kvm_for_each_vcpu(i, vcpu, kvm) {
		vcpu->arch.pause = false;
627
		rcuwait_wake_up(kvm_arch_vcpu_get_wait(vcpu));
628
	}
629 630
}

631
static void vcpu_req_sleep(struct kvm_vcpu *vcpu)
632
{
633
	struct rcuwait *wait = kvm_arch_vcpu_get_wait(vcpu);
634

635 636 637
	rcuwait_wait_event(wait,
			   (!vcpu->arch.power_off) &&(!vcpu->arch.pause),
			   TASK_INTERRUPTIBLE);
638

A
Andrew Jones 已提交
639
	if (vcpu->arch.power_off || vcpu->arch.pause) {
640
		/* Awaken to handle a signal, request we sleep again later. */
641
		kvm_make_request(KVM_REQ_SLEEP, vcpu);
642
	}
643 644 645 646 647 648 649

	/*
	 * Make sure we will observe a potential reset request if we've
	 * observed a change to the power state. Pairs with the smp_wmb() in
	 * kvm_psci_vcpu_on().
	 */
	smp_rmb();
650 651
}

652 653 654 655 656
static int kvm_vcpu_initialized(struct kvm_vcpu *vcpu)
{
	return vcpu->arch.target >= 0;
}

657 658 659
static void check_vcpu_requests(struct kvm_vcpu *vcpu)
{
	if (kvm_request_pending(vcpu)) {
660 661
		if (kvm_check_request(KVM_REQ_SLEEP, vcpu))
			vcpu_req_sleep(vcpu);
662

663 664 665
		if (kvm_check_request(KVM_REQ_VCPU_RESET, vcpu))
			kvm_reset_vcpu(vcpu);

666 667 668 669 670
		/*
		 * Clear IRQ_PENDING requests that were made to guarantee
		 * that a VCPU sees new virtual interrupts.
		 */
		kvm_check_request(KVM_REQ_IRQ_PENDING, vcpu);
671 672 673

		if (kvm_check_request(KVM_REQ_RECORD_STEAL, vcpu))
			kvm_update_stolen_time(vcpu);
674 675 676 677 678 679 680 681

		if (kvm_check_request(KVM_REQ_RELOAD_GICv4, vcpu)) {
			/* The distributor enable bits were changed */
			preempt_disable();
			vgic_v4_put(vcpu, false);
			vgic_v4_load(vcpu);
			preempt_enable();
		}
682 683 684
	}
}

685 686 687 688 689 690 691 692 693 694
/**
 * kvm_arch_vcpu_ioctl_run - the main VCPU run function to execute guest code
 * @vcpu:	The VCPU pointer
 *
 * This function is called through the VCPU_RUN ioctl called from user space. It
 * will execute VM code in a loop until the time slice for the process is used
 * or some emulation is needed from user space in which case the function will
 * return with return value 0 and with the kvm_run structure filled in with the
 * required data for the requested emulation.
 */
695
int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu)
696
{
697
	struct kvm_run *run = vcpu->run;
698 699
	int ret;

700
	if (unlikely(!kvm_vcpu_initialized(vcpu)))
701 702 703 704
		return -ENOEXEC;

	ret = kvm_vcpu_first_run_init(vcpu);
	if (ret)
705
		return ret;
706

C
Christoffer Dall 已提交
707
	if (run->exit_reason == KVM_EXIT_MMIO) {
708
		ret = kvm_handle_mmio_return(vcpu);
C
Christoffer Dall 已提交
709
		if (ret)
710
			return ret;
C
Christoffer Dall 已提交
711 712
	}

713 714 715 716
	if (run->immediate_exit)
		return -EINTR;

	vcpu_load(vcpu);
717

718
	kvm_sigset_activate(vcpu);
719 720 721 722 723 724 725 726 727

	ret = 1;
	run->exit_reason = KVM_EXIT_UNKNOWN;
	while (ret > 0) {
		/*
		 * Check conditions before entering the guest
		 */
		cond_resched();

728
		update_vmid(&vcpu->arch.hw_mmu->vmid);
729

730 731
		check_vcpu_requests(vcpu);

732 733 734 735 736
		/*
		 * Preparing the interrupts to be injected also
		 * involves poking the GIC, which must be done in a
		 * non-preemptible context.
		 */
737
		preempt_disable();
738

739
		kvm_pmu_flush_hwstate(vcpu);
740

741 742
		local_irq_disable();

743 744
		kvm_vgic_flush_hwstate(vcpu);

745
		/*
746 747
		 * Exit if we have a signal pending so that we can deliver the
		 * signal to user space.
748
		 */
749
		if (signal_pending(current)) {
750 751 752 753
			ret = -EINTR;
			run->exit_reason = KVM_EXIT_INTR;
		}

754 755 756 757 758 759 760 761 762 763 764 765 766 767 768
		/*
		 * If we're using a userspace irqchip, then check if we need
		 * to tell a userspace irqchip about timer or PMU level
		 * changes and if so, exit to userspace (the actual level
		 * state gets updated in kvm_timer_update_run and
		 * kvm_pmu_update_run below).
		 */
		if (static_branch_unlikely(&userspace_irqchip_in_use)) {
			if (kvm_timer_should_notify_user(vcpu) ||
			    kvm_pmu_should_notify_user(vcpu)) {
				ret = -EINTR;
				run->exit_reason = KVM_EXIT_INTR;
			}
		}

769 770 771 772
		/*
		 * Ensure we set mode to IN_GUEST_MODE after we disable
		 * interrupts and before the final VCPU requests check.
		 * See the comment in kvm_vcpu_exiting_guest_mode() and
773
		 * Documentation/virt/kvm/vcpu-requests.rst
774 775 776
		 */
		smp_store_mb(vcpu->mode, IN_GUEST_MODE);

777
		if (ret <= 0 || need_new_vmid_gen(&vcpu->arch.hw_mmu->vmid) ||
A
Andrew Jones 已提交
778
		    kvm_request_pending(vcpu)) {
779
			vcpu->mode = OUTSIDE_GUEST_MODE;
780
			isb(); /* Ensure work in x_flush_hwstate is committed */
781
			kvm_pmu_sync_hwstate(vcpu);
782
			if (static_branch_unlikely(&userspace_irqchip_in_use))
783
				kvm_timer_sync_user(vcpu);
784
			kvm_vgic_sync_hwstate(vcpu);
785
			local_irq_enable();
786
			preempt_enable();
787 788 789
			continue;
		}

790 791
		kvm_arm_setup_debug(vcpu);

792 793 794 795
		/**************************************************************
		 * Enter the guest
		 */
		trace_kvm_entry(*vcpu_pc(vcpu));
796
		guest_enter_irqoff();
797

798
		ret = kvm_call_hyp_ret(__kvm_vcpu_run, vcpu);
799

800
		vcpu->mode = OUTSIDE_GUEST_MODE;
801
		vcpu->stat.exits++;
802 803 804 805
		/*
		 * Back from guest
		 *************************************************************/

806 807
		kvm_arm_clear_debug(vcpu);

808
		/*
809
		 * We must sync the PMU state before the vgic state so
810 811 812 813 814
		 * that the vgic can properly sample the updated state of the
		 * interrupt line.
		 */
		kvm_pmu_sync_hwstate(vcpu);

815 816 817 818 819
		/*
		 * Sync the vgic state before syncing the timer state because
		 * the timer code needs to know if the virtual timer
		 * interrupts are active.
		 */
820 821
		kvm_vgic_sync_hwstate(vcpu);

822 823 824 825 826
		/*
		 * Sync the timer hardware state before enabling interrupts as
		 * we don't want vtimer interrupts to race with syncing the
		 * timer virtual interrupt state.
		 */
827
		if (static_branch_unlikely(&userspace_irqchip_in_use))
828
			kvm_timer_sync_user(vcpu);
829

830 831
		kvm_arch_vcpu_ctxsync_fp(vcpu);

832 833 834 835 836 837 838 839 840 841 842 843 844
		/*
		 * We may have taken a host interrupt in HYP mode (ie
		 * while executing the guest). This interrupt is still
		 * pending, as we haven't serviced it yet!
		 *
		 * We're now back in SVC mode, with interrupts
		 * disabled.  Enabling the interrupts now will have
		 * the effect of taking the interrupt again, in SVC
		 * mode this time.
		 */
		local_irq_enable();

		/*
845
		 * We do local_irq_enable() before calling guest_exit() so
846 847
		 * that if a timer interrupt hits while running the guest we
		 * account that tick as being spent in the guest.  We enable
848
		 * preemption after calling guest_exit() so that if we get
849 850 851
		 * preempted we make sure ticks after that is not counted as
		 * guest time.
		 */
852
		guest_exit();
853
		trace_kvm_exit(ret, kvm_vcpu_trap_get_class(vcpu), *vcpu_pc(vcpu));
854

855
		/* Exit types that need handling before we can be preempted */
856
		handle_exit_early(vcpu, ret);
857

858 859
		preempt_enable();

860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878
		/*
		 * The ARMv8 architecture doesn't give the hypervisor
		 * a mechanism to prevent a guest from dropping to AArch32 EL0
		 * if implemented by the CPU. If we spot the guest in such
		 * state and that we decided it wasn't supposed to do so (like
		 * with the asymmetric AArch32 case), return to userspace with
		 * a fatal error.
		 */
		if (!system_supports_32bit_el0() && vcpu_mode_is_32bit(vcpu)) {
			/*
			 * As we have caught the guest red-handed, decide that
			 * it isn't fit for purpose anymore by making the vcpu
			 * invalid. The VMM can try and fix it by issuing  a
			 * KVM_ARM_VCPU_INIT if it really wants to.
			 */
			vcpu->arch.target = -1;
			ret = ARM_EXCEPTION_IL;
		}

879
		ret = handle_exit(vcpu, ret);
880 881
	}

882
	/* Tell userspace about in-kernel device output levels */
883 884 885 886
	if (unlikely(!irqchip_in_kernel(vcpu->kvm))) {
		kvm_timer_update_run(vcpu);
		kvm_pmu_update_run(vcpu);
	}
887

888 889
	kvm_sigset_deactivate(vcpu);

890
	vcpu_put(vcpu);
891
	return ret;
892 893
}

894 895 896 897
static int vcpu_interrupt_line(struct kvm_vcpu *vcpu, int number, bool level)
{
	int bit_index;
	bool set;
898
	unsigned long *hcr;
899 900 901 902 903 904

	if (number == KVM_ARM_IRQ_CPU_IRQ)
		bit_index = __ffs(HCR_VI);
	else /* KVM_ARM_IRQ_CPU_FIQ */
		bit_index = __ffs(HCR_VF);

905
	hcr = vcpu_hcr(vcpu);
906
	if (level)
907
		set = test_and_set_bit(bit_index, hcr);
908
	else
909
		set = test_and_clear_bit(bit_index, hcr);
910 911 912 913 914 915 916 917 918 919 920 921

	/*
	 * If we didn't change anything, no need to wake up or kick other CPUs
	 */
	if (set == level)
		return 0;

	/*
	 * The vcpu irq_lines field was updated, wake up sleeping VCPUs and
	 * trigger a world-switch round on the running physical CPU to set the
	 * virtual IRQ/FIQ fields in the HCR appropriately.
	 */
922
	kvm_make_request(KVM_REQ_IRQ_PENDING, vcpu);
923 924 925 926 927
	kvm_vcpu_kick(vcpu);

	return 0;
}

928 929
int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level,
			  bool line_status)
930 931 932 933 934 935 936 937 938
{
	u32 irq = irq_level->irq;
	unsigned int irq_type, vcpu_idx, irq_num;
	int nrcpus = atomic_read(&kvm->online_vcpus);
	struct kvm_vcpu *vcpu = NULL;
	bool level = irq_level->level;

	irq_type = (irq >> KVM_ARM_IRQ_TYPE_SHIFT) & KVM_ARM_IRQ_TYPE_MASK;
	vcpu_idx = (irq >> KVM_ARM_IRQ_VCPU_SHIFT) & KVM_ARM_IRQ_VCPU_MASK;
939
	vcpu_idx += ((irq >> KVM_ARM_IRQ_VCPU2_SHIFT) & KVM_ARM_IRQ_VCPU2_MASK) * (KVM_ARM_IRQ_VCPU_MASK + 1);
940 941 942 943
	irq_num = (irq >> KVM_ARM_IRQ_NUM_SHIFT) & KVM_ARM_IRQ_NUM_MASK;

	trace_kvm_irq_line(irq_type, vcpu_idx, irq_num, irq_level->level);

944 945 946 947
	switch (irq_type) {
	case KVM_ARM_IRQ_TYPE_CPU:
		if (irqchip_in_kernel(kvm))
			return -ENXIO;
948

949 950
		if (vcpu_idx >= nrcpus)
			return -EINVAL;
951

952 953 954
		vcpu = kvm_get_vcpu(kvm, vcpu_idx);
		if (!vcpu)
			return -EINVAL;
955

956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972
		if (irq_num > KVM_ARM_IRQ_CPU_FIQ)
			return -EINVAL;

		return vcpu_interrupt_line(vcpu, irq_num, level);
	case KVM_ARM_IRQ_TYPE_PPI:
		if (!irqchip_in_kernel(kvm))
			return -ENXIO;

		if (vcpu_idx >= nrcpus)
			return -EINVAL;

		vcpu = kvm_get_vcpu(kvm, vcpu_idx);
		if (!vcpu)
			return -EINVAL;

		if (irq_num < VGIC_NR_SGIS || irq_num >= VGIC_NR_PRIVATE_IRQS)
			return -EINVAL;
973

974
		return kvm_vgic_inject_irq(kvm, vcpu->vcpu_id, irq_num, level, NULL);
975 976 977 978
	case KVM_ARM_IRQ_TYPE_SPI:
		if (!irqchip_in_kernel(kvm))
			return -ENXIO;

979
		if (irq_num < VGIC_NR_PRIVATE_IRQS)
980 981
			return -EINVAL;

982
		return kvm_vgic_inject_irq(kvm, 0, irq_num, level, NULL);
983 984 985
	}

	return -EINVAL;
986 987
}

988 989 990
static int kvm_vcpu_set_target(struct kvm_vcpu *vcpu,
			       const struct kvm_vcpu_init *init)
{
991
	unsigned int i, ret;
992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025
	int phys_target = kvm_target_cpu();

	if (init->target != phys_target)
		return -EINVAL;

	/*
	 * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
	 * use the same target.
	 */
	if (vcpu->arch.target != -1 && vcpu->arch.target != init->target)
		return -EINVAL;

	/* -ENOENT for unknown features, -EINVAL for invalid combinations. */
	for (i = 0; i < sizeof(init->features) * 8; i++) {
		bool set = (init->features[i / 32] & (1 << (i % 32)));

		if (set && i >= KVM_VCPU_MAX_FEATURES)
			return -ENOENT;

		/*
		 * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
		 * use the same feature set.
		 */
		if (vcpu->arch.target != -1 && i < KVM_VCPU_MAX_FEATURES &&
		    test_bit(i, vcpu->arch.features) != set)
			return -EINVAL;

		if (set)
			set_bit(i, vcpu->arch.features);
	}

	vcpu->arch.target = phys_target;

	/* Now we know what it is, we can reset it. */
1026 1027 1028 1029 1030
	ret = kvm_reset_vcpu(vcpu);
	if (ret) {
		vcpu->arch.target = -1;
		bitmap_zero(vcpu->arch.features, KVM_VCPU_MAX_FEATURES);
	}
1031

1032 1033
	return ret;
}
1034

1035 1036 1037 1038 1039 1040 1041 1042 1043
static int kvm_arch_vcpu_ioctl_vcpu_init(struct kvm_vcpu *vcpu,
					 struct kvm_vcpu_init *init)
{
	int ret;

	ret = kvm_vcpu_set_target(vcpu, init);
	if (ret)
		return ret;

1044 1045 1046
	/*
	 * Ensure a rebooted VM will fault in RAM pages and detect if the
	 * guest MMU is turned off and flush the caches as needed.
1047
	 *
1048 1049 1050 1051
	 * S2FWB enforces all memory accesses to RAM being cacheable,
	 * ensuring that the data side is always coherent. We still
	 * need to invalidate the I-cache though, as FWB does *not*
	 * imply CTR_EL0.DIC.
1052
	 */
1053 1054 1055 1056 1057 1058
	if (vcpu->arch.has_run_once) {
		if (!cpus_have_final_cap(ARM64_HAS_STAGE2_FWB))
			stage2_unmap_vm(vcpu->kvm);
		else
			__flush_icache_all();
	}
1059

1060 1061
	vcpu_reset_hcr(vcpu);

1062
	/*
1063
	 * Handle the "start in power-off" case.
1064
	 */
1065
	if (test_bit(KVM_ARM_VCPU_POWER_OFF, vcpu->arch.features))
A
Andrew Jones 已提交
1066
		vcpu_power_off(vcpu);
1067
	else
1068
		vcpu->arch.power_off = false;
1069 1070 1071 1072

	return 0;
}

1073 1074 1075 1076 1077 1078 1079
static int kvm_arm_vcpu_set_attr(struct kvm_vcpu *vcpu,
				 struct kvm_device_attr *attr)
{
	int ret = -ENXIO;

	switch (attr->group) {
	default:
1080
		ret = kvm_arm_vcpu_arch_set_attr(vcpu, attr);
1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093
		break;
	}

	return ret;
}

static int kvm_arm_vcpu_get_attr(struct kvm_vcpu *vcpu,
				 struct kvm_device_attr *attr)
{
	int ret = -ENXIO;

	switch (attr->group) {
	default:
1094
		ret = kvm_arm_vcpu_arch_get_attr(vcpu, attr);
1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107
		break;
	}

	return ret;
}

static int kvm_arm_vcpu_has_attr(struct kvm_vcpu *vcpu,
				 struct kvm_device_attr *attr)
{
	int ret = -ENXIO;

	switch (attr->group) {
	default:
1108
		ret = kvm_arm_vcpu_arch_has_attr(vcpu, attr);
1109 1110 1111 1112 1113 1114
		break;
	}

	return ret;
}

1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140
static int kvm_arm_vcpu_get_events(struct kvm_vcpu *vcpu,
				   struct kvm_vcpu_events *events)
{
	memset(events, 0, sizeof(*events));

	return __kvm_arm_vcpu_get_events(vcpu, events);
}

static int kvm_arm_vcpu_set_events(struct kvm_vcpu *vcpu,
				   struct kvm_vcpu_events *events)
{
	int i;

	/* check whether the reserved field is zero */
	for (i = 0; i < ARRAY_SIZE(events->reserved); i++)
		if (events->reserved[i])
			return -EINVAL;

	/* check whether the pad field is zero */
	for (i = 0; i < ARRAY_SIZE(events->exception.pad); i++)
		if (events->exception.pad[i])
			return -EINVAL;

	return __kvm_arm_vcpu_set_events(vcpu, events);
}

1141 1142 1143 1144 1145
long kvm_arch_vcpu_ioctl(struct file *filp,
			 unsigned int ioctl, unsigned long arg)
{
	struct kvm_vcpu *vcpu = filp->private_data;
	void __user *argp = (void __user *)arg;
1146
	struct kvm_device_attr attr;
1147 1148
	long r;

1149 1150 1151 1152
	switch (ioctl) {
	case KVM_ARM_VCPU_INIT: {
		struct kvm_vcpu_init init;

1153
		r = -EFAULT;
1154
		if (copy_from_user(&init, argp, sizeof(init)))
1155
			break;
1156

1157 1158
		r = kvm_arch_vcpu_ioctl_vcpu_init(vcpu, &init);
		break;
1159 1160 1161 1162
	}
	case KVM_SET_ONE_REG:
	case KVM_GET_ONE_REG: {
		struct kvm_one_reg reg;
1163

1164
		r = -ENOEXEC;
1165
		if (unlikely(!kvm_vcpu_initialized(vcpu)))
1166
			break;
1167

1168
		r = -EFAULT;
1169
		if (copy_from_user(&reg, argp, sizeof(reg)))
1170 1171
			break;

1172
		if (ioctl == KVM_SET_ONE_REG)
1173
			r = kvm_arm_set_reg(vcpu, &reg);
1174
		else
1175 1176
			r = kvm_arm_get_reg(vcpu, &reg);
		break;
1177 1178 1179 1180 1181 1182
	}
	case KVM_GET_REG_LIST: {
		struct kvm_reg_list __user *user_list = argp;
		struct kvm_reg_list reg_list;
		unsigned n;

1183
		r = -ENOEXEC;
1184
		if (unlikely(!kvm_vcpu_initialized(vcpu)))
1185
			break;
1186

1187 1188 1189 1190
		r = -EPERM;
		if (!kvm_arm_vcpu_is_finalized(vcpu))
			break;

1191
		r = -EFAULT;
1192
		if (copy_from_user(&reg_list, user_list, sizeof(reg_list)))
1193
			break;
1194 1195 1196
		n = reg_list.n;
		reg_list.n = kvm_arm_num_regs(vcpu);
		if (copy_to_user(user_list, &reg_list, sizeof(reg_list)))
1197 1198
			break;
		r = -E2BIG;
1199
		if (n < reg_list.n)
1200 1201 1202
			break;
		r = kvm_arm_copy_reg_indices(vcpu, user_list->reg);
		break;
1203
	}
1204
	case KVM_SET_DEVICE_ATTR: {
1205
		r = -EFAULT;
1206
		if (copy_from_user(&attr, argp, sizeof(attr)))
1207 1208 1209
			break;
		r = kvm_arm_vcpu_set_attr(vcpu, &attr);
		break;
1210 1211
	}
	case KVM_GET_DEVICE_ATTR: {
1212
		r = -EFAULT;
1213
		if (copy_from_user(&attr, argp, sizeof(attr)))
1214 1215 1216
			break;
		r = kvm_arm_vcpu_get_attr(vcpu, &attr);
		break;
1217 1218
	}
	case KVM_HAS_DEVICE_ATTR: {
1219
		r = -EFAULT;
1220
		if (copy_from_user(&attr, argp, sizeof(attr)))
1221 1222 1223
			break;
		r = kvm_arm_vcpu_has_attr(vcpu, &attr);
		break;
1224
	}
1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243
	case KVM_GET_VCPU_EVENTS: {
		struct kvm_vcpu_events events;

		if (kvm_arm_vcpu_get_events(vcpu, &events))
			return -EINVAL;

		if (copy_to_user(argp, &events, sizeof(events)))
			return -EFAULT;

		return 0;
	}
	case KVM_SET_VCPU_EVENTS: {
		struct kvm_vcpu_events events;

		if (copy_from_user(&events, argp, sizeof(events)))
			return -EFAULT;

		return kvm_arm_vcpu_set_events(vcpu, &events);
	}
1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254
	case KVM_ARM_VCPU_FINALIZE: {
		int what;

		if (!kvm_vcpu_initialized(vcpu))
			return -ENOEXEC;

		if (get_user(what, (const int __user *)argp))
			return -EFAULT;

		return kvm_arm_vcpu_finalize(vcpu, what);
	}
1255
	default:
1256
		r = -EINVAL;
1257
	}
1258 1259

	return r;
1260 1261
}

1262
void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot)
1263
{
1264

1265 1266
}

1267 1268
void kvm_arch_flush_remote_tlbs_memslot(struct kvm *kvm,
					struct kvm_memory_slot *memslot)
1269
{
1270
	kvm_flush_remote_tlbs(kvm);
1271 1272
}

1273 1274 1275
static int kvm_vm_ioctl_set_device_addr(struct kvm *kvm,
					struct kvm_arm_device_addr *dev_addr)
{
1276 1277 1278 1279 1280 1281 1282 1283 1284
	unsigned long dev_id, type;

	dev_id = (dev_addr->id & KVM_ARM_DEVICE_ID_MASK) >>
		KVM_ARM_DEVICE_ID_SHIFT;
	type = (dev_addr->id & KVM_ARM_DEVICE_TYPE_MASK) >>
		KVM_ARM_DEVICE_TYPE_SHIFT;

	switch (dev_id) {
	case KVM_ARM_DEVICE_VGIC_V2:
1285 1286
		if (!vgic_present)
			return -ENXIO;
1287
		return kvm_vgic_addr(kvm, type, &dev_addr->addr, true);
1288 1289 1290
	default:
		return -ENODEV;
	}
1291 1292
}

1293 1294 1295
long kvm_arch_vm_ioctl(struct file *filp,
		       unsigned int ioctl, unsigned long arg)
{
1296 1297 1298 1299
	struct kvm *kvm = filp->private_data;
	void __user *argp = (void __user *)arg;

	switch (ioctl) {
1300
	case KVM_CREATE_IRQCHIP: {
1301
		int ret;
1302 1303
		if (!vgic_present)
			return -ENXIO;
1304 1305 1306 1307
		mutex_lock(&kvm->lock);
		ret = kvm_vgic_create(kvm, KVM_DEV_TYPE_ARM_VGIC_V2);
		mutex_unlock(&kvm->lock);
		return ret;
1308
	}
1309 1310 1311 1312 1313 1314 1315
	case KVM_ARM_SET_DEVICE_ADDR: {
		struct kvm_arm_device_addr dev_addr;

		if (copy_from_user(&dev_addr, argp, sizeof(dev_addr)))
			return -EFAULT;
		return kvm_vm_ioctl_set_device_addr(kvm, &dev_addr);
	}
1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328
	case KVM_ARM_PREFERRED_TARGET: {
		int err;
		struct kvm_vcpu_init init;

		err = kvm_vcpu_preferred_target(&init);
		if (err)
			return err;

		if (copy_to_user(argp, &init, sizeof(init)))
			return -EFAULT;

		return 0;
	}
1329 1330 1331
	default:
		return -EINVAL;
	}
1332 1333
}

1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346
static unsigned long nvhe_percpu_size(void)
{
	return (unsigned long)CHOOSE_NVHE_SYM(__per_cpu_end) -
		(unsigned long)CHOOSE_NVHE_SYM(__per_cpu_start);
}

static unsigned long nvhe_percpu_order(void)
{
	unsigned long size = nvhe_percpu_size();

	return size ? get_order(size) : 0;
}

1347 1348 1349
/* A lookup table holding the hypervisor VA for each vector slot */
static void *hyp_spectre_vector_selector[BP_HARDEN_EL2_SLOTS];

1350
static int __kvm_vector_slot2idx(enum arm64_hyp_spectre_vector slot)
1351
{
1352 1353
	return slot - (slot != HYP_VECTOR_DIRECT);
}
1354

1355
static void kvm_init_vector_slot(void *base, enum arm64_hyp_spectre_vector slot)
1356
{
1357
	int idx = __kvm_vector_slot2idx(slot);
1358

1359
	hyp_spectre_vector_selector[slot] = base + (idx * SZ_2K);
1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371
}

static int kvm_init_vector_slots(void)
{
	int err;
	void *base;

	base = kern_hyp_va(kvm_ksym_ref(__kvm_hyp_vector));
	kvm_init_vector_slot(base, HYP_VECTOR_DIRECT);

	base = kern_hyp_va(kvm_ksym_ref(__bp_harden_hyp_vecs));
	kvm_init_vector_slot(base, HYP_VECTOR_SPECTRE_DIRECT);
W
Will Deacon 已提交
1372

1373
	if (!cpus_have_const_cap(ARM64_SPECTRE_V3A))
W
Will Deacon 已提交
1374
		return 0;
1375

1376 1377 1378 1379 1380
	if (!has_vhe()) {
		err = create_hyp_exec_mappings(__pa_symbol(__bp_harden_hyp_vecs),
					       __BP_HARDEN_HYP_VECS_SZ, &base);
		if (err)
			return err;
1381 1382
	}

1383 1384
	kvm_init_vector_slot(base, HYP_VECTOR_INDIRECT);
	kvm_init_vector_slot(base, HYP_VECTOR_SPECTRE_INDIRECT);
1385 1386 1387
	return 0;
}

1388
static void cpu_init_hyp_mode(void)
1389
{
1390
	struct kvm_nvhe_init_params *params = this_cpu_ptr_nvhe_sym(kvm_init_params);
1391
	struct arm_smccc_res res;
1392
	unsigned long tcr;
1393 1394

	/* Switch from the HYP stub to our own HYP init vector */
1395
	__hyp_set_vectors(kvm_get_idmap_vector());
1396

1397 1398 1399 1400 1401
	/*
	 * Calculate the raw per-cpu offset without a translation from the
	 * kernel's mapping to the linear mapping, and store it in tpidr_el2
	 * so that we can use adr_l to access per-cpu variables in EL2.
	 */
1402 1403
	params->tpidr_el2 = (unsigned long)this_cpu_ptr_nvhe_sym(__per_cpu_start) -
			    (unsigned long)kvm_ksym_ref(CHOOSE_NVHE_SYM(__per_cpu_start));
1404

1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425
	params->mair_el2 = read_sysreg(mair_el1);

	/*
	 * The ID map may be configured to use an extended virtual address
	 * range. This is only the case if system RAM is out of range for the
	 * currently configured page size and VA_BITS, in which case we will
	 * also need the extended virtual range for the HYP ID map, or we won't
	 * be able to enable the EL2 MMU.
	 *
	 * However, at EL2, there is only one TTBR register, and we can't switch
	 * between translation tables *and* update TCR_EL2.T0SZ at the same
	 * time. Bottom line: we need to use the extended range with *both* our
	 * translation tables.
	 *
	 * So use the same T0SZ value we use for the ID map.
	 */
	tcr = (read_sysreg(tcr_el1) & TCR_EL2_MASK) | TCR_EL2_RES1;
	tcr &= ~TCR_T0SZ_MASK;
	tcr |= (idmap_t0sz & GENMASK(TCR_TxSZ_WIDTH - 1, 0)) << TCR_T0SZ_OFFSET;
	params->tcr_el2 = tcr;

1426 1427
	params->stack_hyp_va = kern_hyp_va(__this_cpu_read(kvm_arm_hyp_stack_page) + PAGE_SIZE);
	params->pgd_pa = kvm_mmu_get_httbr();
1428

1429 1430 1431 1432 1433
	/*
	 * Flush the init params from the data cache because the struct will
	 * be read while the MMU is off.
	 */
	kvm_flush_dcache_to_poc(params, sizeof(*params));
1434

1435 1436 1437 1438 1439 1440 1441
	/*
	 * Call initialization code, and switch to the full blown HYP code.
	 * If the cpucaps haven't been finalized yet, something has gone very
	 * wrong, and hyp will crash and burn when it uses any
	 * cpus_have_const_cap() wrapper.
	 */
	BUG_ON(!system_capabilities_finalized());
1442
	arm_smccc_1_1_hvc(KVM_HOST_SMCCC_FUNC(__kvm_hyp_init), virt_to_phys(params), &res);
1443
	WARN_ON(res.a0 != SMCCC_RET_SUCCESS);
1444 1445 1446 1447 1448 1449

	/*
	 * Disabling SSBD on a non-VHE system requires us to enable SSBS
	 * at EL2.
	 */
	if (this_cpu_has_cap(ARM64_SSBS) &&
1450
	    arm64_get_spectre_v4_state() == SPECTRE_VULNERABLE) {
1451
		kvm_call_hyp_nvhe(__kvm_enable_ssbs);
1452
	}
1453 1454
}

1455 1456 1457 1458 1459 1460
static void cpu_hyp_reset(void)
{
	if (!is_kernel_in_hyp_mode())
		__hyp_reset_vectors();
}

1461 1462 1463 1464 1465 1466 1467 1468
/*
 * EL2 vectors can be mapped and rerouted in a number of ways,
 * depending on the kernel configuration and CPU present:
 *
 * - If the CPU is affected by Spectre-v2, the hardening sequence is
 *   placed in one of the vector slots, which is executed before jumping
 *   to the real vectors.
 *
1469
 * - If the CPU also has the ARM64_SPECTRE_V3A cap, the slot
1470 1471 1472
 *   containing the hardening sequence is mapped next to the idmap page,
 *   and executed before jumping to the real vectors.
 *
1473
 * - If the CPU only has the ARM64_SPECTRE_V3A cap, then an
1474 1475 1476
 *   empty slot is selected, mapped next to the idmap page, and
 *   executed before jumping to the real vectors.
 *
1477
 * Note that ARM64_SPECTRE_V3A is somewhat incompatible with
1478 1479 1480 1481 1482
 * VHE, as we don't have hypervisor-specific mappings. If the system
 * is VHE and yet selects this capability, it will be ignored.
 */
static void cpu_set_hyp_vector(void)
{
1483
	struct bp_hardening_data *data = this_cpu_ptr(&bp_hardening_data);
1484
	void *vector = hyp_spectre_vector_selector[data->slot];
1485

1486
	*this_cpu_ptr_hyp_sym(kvm_hyp_vector) = (unsigned long)vector;
1487 1488
}

1489 1490
static void cpu_hyp_reinit(void)
{
1491
	kvm_init_host_cpu_context(&this_cpu_ptr_hyp_sym(kvm_host_data)->host_ctxt);
1492

1493
	cpu_hyp_reset();
1494
	cpu_set_hyp_vector();
1495

1496
	if (is_kernel_in_hyp_mode())
1497
		kvm_timer_init_vhe();
1498
	else
1499
		cpu_init_hyp_mode();
1500

1501
	kvm_arm_init_debug();
1502 1503 1504

	if (vgic_present)
		kvm_vgic_init_cpu_hardware();
1505 1506
}

1507 1508 1509
static void _kvm_arch_hardware_enable(void *discard)
{
	if (!__this_cpu_read(kvm_arm_hardware_enabled)) {
1510
		cpu_hyp_reinit();
1511
		__this_cpu_write(kvm_arm_hardware_enabled, 1);
1512
	}
1513
}
1514

1515 1516 1517 1518
int kvm_arch_hardware_enable(void)
{
	_kvm_arch_hardware_enable(NULL);
	return 0;
1519 1520
}

1521 1522 1523 1524 1525 1526 1527 1528 1529 1530
static void _kvm_arch_hardware_disable(void *discard)
{
	if (__this_cpu_read(kvm_arm_hardware_enabled)) {
		cpu_hyp_reset();
		__this_cpu_write(kvm_arm_hardware_enabled, 0);
	}
}

void kvm_arch_hardware_disable(void)
{
1531 1532
	if (!is_protected_kvm_enabled())
		_kvm_arch_hardware_disable(NULL);
1533
}
1534

1535 1536 1537 1538 1539
#ifdef CONFIG_CPU_PM
static int hyp_init_cpu_pm_notifier(struct notifier_block *self,
				    unsigned long cmd,
				    void *v)
{
1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554
	/*
	 * kvm_arm_hardware_enabled is left with its old value over
	 * PM_ENTER->PM_EXIT. It is used to indicate PM_EXIT should
	 * re-enable hyp.
	 */
	switch (cmd) {
	case CPU_PM_ENTER:
		if (__this_cpu_read(kvm_arm_hardware_enabled))
			/*
			 * don't update kvm_arm_hardware_enabled here
			 * so that the hardware will be re-enabled
			 * when we resume. See below.
			 */
			cpu_hyp_reset();

1555
		return NOTIFY_OK;
1556
	case CPU_PM_ENTER_FAILED:
1557 1558 1559 1560
	case CPU_PM_EXIT:
		if (__this_cpu_read(kvm_arm_hardware_enabled))
			/* The hardware was enabled before suspend. */
			cpu_hyp_reinit();
1561

1562 1563 1564 1565 1566
		return NOTIFY_OK;

	default:
		return NOTIFY_DONE;
	}
1567 1568 1569 1570 1571 1572 1573 1574
}

static struct notifier_block hyp_init_cpu_pm_nb = {
	.notifier_call = hyp_init_cpu_pm_notifier,
};

static void __init hyp_cpu_pm_init(void)
{
1575 1576
	if (!is_protected_kvm_enabled())
		cpu_pm_register_notifier(&hyp_init_cpu_pm_nb);
1577
}
1578 1579
static void __init hyp_cpu_pm_exit(void)
{
1580 1581
	if (!is_protected_kvm_enabled())
		cpu_pm_unregister_notifier(&hyp_init_cpu_pm_nb);
1582
}
1583 1584 1585 1586
#else
static inline void hyp_cpu_pm_init(void)
{
}
1587 1588 1589
static inline void hyp_cpu_pm_exit(void)
{
}
1590 1591
#endif

1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602
static void init_cpu_logical_map(void)
{
	unsigned int cpu;

	/*
	 * Copy the MPIDR <-> logical CPU ID mapping to hyp.
	 * Only copy the set of online CPUs whose features have been chacked
	 * against the finalized system capabilities. The hypervisor will not
	 * allow any other CPUs from the `possible` set to boot.
	 */
	for_each_online_cpu(cpu)
1603
		hyp_cpu_logical_map[cpu] = cpu_logical_map(cpu);
1604 1605
}

1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616
static bool init_psci_relay(void)
{
	/*
	 * If PSCI has not been initialized, protected KVM cannot install
	 * itself on newly booted CPUs.
	 */
	if (!psci_ops.get_version) {
		kvm_err("Cannot initialize protected mode without PSCI\n");
		return false;
	}

1617 1618 1619 1620 1621 1622 1623 1624 1625 1626
	kvm_host_psci_config.version = psci_ops.get_version();

	if (kvm_host_psci_config.version == PSCI_VERSION(0, 1)) {
		kvm_host_psci_config.function_ids_0_1 = get_psci_0_1_function_ids();
		kvm_host_psci_config.enabled_functions_0_1 =
			(psci_ops.cpu_suspend ? KVM_HOST_PSCI_0_1_CPU_SUSPEND : 0) |
			(psci_ops.cpu_off ? KVM_HOST_PSCI_0_1_CPU_OFF : 0) |
			(psci_ops.cpu_on ? KVM_HOST_PSCI_0_1_CPU_ON : 0) |
			(psci_ops.migrate ? KVM_HOST_PSCI_0_1_MIGRATE : 0);
	}
1627 1628 1629
	return true;
}

1630 1631
static int init_common_resources(void)
{
1632
	return kvm_set_ipa_limit();
1633 1634 1635 1636
}

static int init_subsystems(void)
{
1637
	int err = 0;
1638

1639
	/*
1640
	 * Enable hardware so that subsystem initialisation can access EL2.
1641
	 */
1642
	on_each_cpu(_kvm_arch_hardware_enable, NULL, 1);
1643 1644 1645 1646 1647 1648

	/*
	 * Register CPU lower-power notifier
	 */
	hyp_cpu_pm_init();

1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659
	/*
	 * Init HYP view of VGIC
	 */
	err = kvm_vgic_hyp_init();
	switch (err) {
	case 0:
		vgic_present = true;
		break;
	case -ENODEV:
	case -ENXIO:
		vgic_present = false;
1660
		err = 0;
1661 1662
		break;
	default:
1663
		goto out;
1664 1665 1666 1667 1668
	}

	/*
	 * Init HYP architected timer support
	 */
1669
	err = kvm_timer_hyp_init(vgic_present);
1670
	if (err)
1671
		goto out;
1672 1673

	kvm_perf_init();
M
Marc Zyngier 已提交
1674
	kvm_sys_reg_table_init();
1675

1676
out:
1677 1678
	if (err || !is_protected_kvm_enabled())
		on_each_cpu(_kvm_arch_hardware_disable, NULL, 1);
1679 1680

	return err;
1681 1682 1683 1684 1685 1686 1687
}

static void teardown_hyp_mode(void)
{
	int cpu;

	free_hyp_pgds();
1688
	for_each_possible_cpu(cpu) {
1689
		free_page(per_cpu(kvm_arm_hyp_stack_page, cpu));
1690 1691
		free_pages(kvm_arm_hyp_percpu_base[cpu], nvhe_percpu_order());
	}
1692 1693
}

1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717
/**
 * Inits Hyp-mode on all online CPUs
 */
static int init_hyp_mode(void)
{
	int cpu;
	int err = 0;

	/*
	 * Allocate Hyp PGD and setup Hyp identity mapping
	 */
	err = kvm_mmu_init();
	if (err)
		goto out_err;

	/*
	 * Allocate stack pages for Hypervisor-mode
	 */
	for_each_possible_cpu(cpu) {
		unsigned long stack_page;

		stack_page = __get_free_page(GFP_KERNEL);
		if (!stack_page) {
			err = -ENOMEM;
1718
			goto out_err;
1719 1720 1721 1722 1723
		}

		per_cpu(kvm_arm_hyp_stack_page, cpu) = stack_page;
	}

1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741
	/*
	 * Allocate and initialize pages for Hypervisor-mode percpu regions.
	 */
	for_each_possible_cpu(cpu) {
		struct page *page;
		void *page_addr;

		page = alloc_pages(GFP_KERNEL, nvhe_percpu_order());
		if (!page) {
			err = -ENOMEM;
			goto out_err;
		}

		page_addr = page_address(page);
		memcpy(page_addr, CHOOSE_NVHE_SYM(__per_cpu_start), nvhe_percpu_size());
		kvm_arm_hyp_percpu_base[cpu] = (unsigned long)page_addr;
	}

1742 1743 1744
	/*
	 * Map the Hyp-code called directly from the host
	 */
1745
	err = create_hyp_mappings(kvm_ksym_ref(__hyp_text_start),
1746
				  kvm_ksym_ref(__hyp_text_end), PAGE_HYP_EXEC);
1747 1748
	if (err) {
		kvm_err("Cannot map world-switch code\n");
1749
		goto out_err;
1750 1751
	}

1752 1753 1754 1755 1756 1757 1758 1759
	err = create_hyp_mappings(kvm_ksym_ref(__hyp_data_ro_after_init_start),
				  kvm_ksym_ref(__hyp_data_ro_after_init_end),
				  PAGE_HYP_RO);
	if (err) {
		kvm_err("Cannot map .hyp.data..ro_after_init section\n");
		goto out_err;
	}

1760
	err = create_hyp_mappings(kvm_ksym_ref(__start_rodata),
1761
				  kvm_ksym_ref(__end_rodata), PAGE_HYP_RO);
1762 1763
	if (err) {
		kvm_err("Cannot map rodata section\n");
M
Marc Zyngier 已提交
1764 1765 1766 1767 1768 1769 1770
		goto out_err;
	}

	err = create_hyp_mappings(kvm_ksym_ref(__bss_start),
				  kvm_ksym_ref(__bss_stop), PAGE_HYP_RO);
	if (err) {
		kvm_err("Cannot map bss section\n");
1771
		goto out_err;
1772 1773
	}

1774 1775 1776 1777 1778
	/*
	 * Map the Hyp stack pages
	 */
	for_each_possible_cpu(cpu) {
		char *stack_page = (char *)per_cpu(kvm_arm_hyp_stack_page, cpu);
1779 1780
		err = create_hyp_mappings(stack_page, stack_page + PAGE_SIZE,
					  PAGE_HYP);
1781 1782 1783

		if (err) {
			kvm_err("Cannot map hyp stack\n");
1784
			goto out_err;
1785 1786 1787
		}
	}

1788 1789 1790
	/*
	 * Map Hyp percpu pages
	 */
1791
	for_each_possible_cpu(cpu) {
1792 1793
		char *percpu_begin = (char *)kvm_arm_hyp_percpu_base[cpu];
		char *percpu_end = percpu_begin + nvhe_percpu_size();
1794

1795
		err = create_hyp_mappings(percpu_begin, percpu_end, PAGE_HYP);
1796 1797

		if (err) {
1798
			kvm_err("Cannot map hyp percpu region\n");
1799 1800
			goto out_err;
		}
1801 1802
	}

1803
	if (is_protected_kvm_enabled()) {
1804 1805
		init_cpu_logical_map();

1806 1807 1808 1809
		if (!init_psci_relay())
			goto out_err;
	}

1810
	return 0;
1811

1812
out_err:
1813
	teardown_hyp_mode();
1814 1815 1816 1817
	kvm_err("error initializing Hyp mode: %d\n", err);
	return err;
}

1818 1819 1820 1821 1822
static void check_kvm_target_cpu(void *ret)
{
	*(int *)ret = kvm_target_cpu();
}

1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835
struct kvm_vcpu *kvm_mpidr_to_vcpu(struct kvm *kvm, unsigned long mpidr)
{
	struct kvm_vcpu *vcpu;
	int i;

	mpidr &= MPIDR_HWID_BITMASK;
	kvm_for_each_vcpu(i, vcpu, kvm) {
		if (mpidr == kvm_vcpu_get_mpidr_aff(vcpu))
			return vcpu;
	}
	return NULL;
}

1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846
bool kvm_arch_has_irq_bypass(void)
{
	return true;
}

int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
				      struct irq_bypass_producer *prod)
{
	struct kvm_kernel_irqfd *irqfd =
		container_of(cons, struct kvm_kernel_irqfd, consumer);

1847 1848
	return kvm_vgic_v4_set_forwarding(irqfd->kvm, prod->irq,
					  &irqfd->irq_entry);
1849 1850 1851 1852 1853 1854 1855
}
void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
				      struct irq_bypass_producer *prod)
{
	struct kvm_kernel_irqfd *irqfd =
		container_of(cons, struct kvm_kernel_irqfd, consumer);

1856 1857
	kvm_vgic_v4_unset_forwarding(irqfd->kvm, prod->irq,
				     &irqfd->irq_entry);
1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875
}

void kvm_arch_irq_bypass_stop(struct irq_bypass_consumer *cons)
{
	struct kvm_kernel_irqfd *irqfd =
		container_of(cons, struct kvm_kernel_irqfd, consumer);

	kvm_arm_halt_guest(irqfd->kvm);
}

void kvm_arch_irq_bypass_start(struct irq_bypass_consumer *cons)
{
	struct kvm_kernel_irqfd *irqfd =
		container_of(cons, struct kvm_kernel_irqfd, consumer);

	kvm_arm_resume_guest(irqfd->kvm);
}

1876 1877 1878
/**
 * Initialize Hyp-mode and memory mappings on all CPUs.
 */
1879 1880
int kvm_arch_init(void *opaque)
{
1881
	int err;
1882
	int ret, cpu;
1883
	bool in_hyp_mode;
1884 1885

	if (!is_hyp_mode_available()) {
1886
		kvm_info("HYP mode not available\n");
1887 1888 1889
		return -ENODEV;
	}

1890 1891 1892 1893
	in_hyp_mode = is_kernel_in_hyp_mode();

	if (!in_hyp_mode && kvm_arch_requires_vhe()) {
		kvm_pr_unimpl("CPU unsupported in non-VHE mode, not initializing\n");
1894 1895 1896
		return -ENODEV;
	}

1897 1898
	if (cpus_have_final_cap(ARM64_WORKAROUND_DEVICE_LOAD_ACQUIRE) ||
	    cpus_have_final_cap(ARM64_WORKAROUND_1508412))
1899 1900 1901
		kvm_info("Guests without required CPU erratum workarounds can deadlock system!\n" \
			 "Only trusted guests should be used on this system.\n");

1902 1903 1904 1905 1906 1907
	for_each_online_cpu(cpu) {
		smp_call_function_single(cpu, check_kvm_target_cpu, &ret, 1);
		if (ret < 0) {
			kvm_err("Error, CPU %d not supported!\n", cpu);
			return -ENODEV;
		}
1908 1909
	}

1910
	err = init_common_resources();
1911
	if (err)
1912
		return err;
1913

1914
	err = kvm_arm_init_sve();
1915 1916 1917
	if (err)
		return err;

1918
	if (!in_hyp_mode) {
1919
		err = init_hyp_mode();
1920 1921 1922
		if (err)
			goto out_err;
	}
1923

1924 1925 1926 1927 1928 1929
	err = kvm_init_vector_slots();
	if (err) {
		kvm_err("Cannot initialise vector slots\n");
		goto out_err;
	}

1930 1931 1932
	err = init_subsystems();
	if (err)
		goto out_hyp;
1933

1934 1935
	if (is_protected_kvm_enabled()) {
		static_branch_enable(&kvm_protected_mode_initialized);
1936
		kvm_info("Protected nVHE mode initialized successfully\n");
1937
	} else if (in_hyp_mode) {
1938
		kvm_info("VHE mode initialized successfully\n");
1939
	} else {
1940
		kvm_info("Hyp mode initialized successfully\n");
1941
	}
1942

1943
	return 0;
1944 1945

out_hyp:
1946
	hyp_cpu_pm_exit();
1947 1948
	if (!in_hyp_mode)
		teardown_hyp_mode();
1949 1950
out_err:
	return err;
1951 1952 1953 1954 1955
}

/* NOP: Compiling as a module not supported */
void kvm_arch_exit(void)
{
1956
	kvm_perf_teardown();
1957 1958
}

1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972
static int __init early_kvm_mode_cfg(char *arg)
{
	if (!arg)
		return -EINVAL;

	if (strcmp(arg, "protected") == 0) {
		kvm_mode = KVM_MODE_PROTECTED;
		return 0;
	}

	return -EINVAL;
}
early_param("kvm-arm.mode", early_kvm_mode_cfg);

1973 1974 1975 1976 1977
enum kvm_mode kvm_get_mode(void)
{
	return kvm_mode;
}

1978 1979 1980 1981 1982 1983 1984
static int arm_init(void)
{
	int rc = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
	return rc;
}

module_init(arm_init);