scrub.c 86.4 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
A
Arne Jansen 已提交
2
/*
3
 * Copyright (C) 2011, 2012 STRATO.  All rights reserved.
A
Arne Jansen 已提交
4 5 6
 */

#include <linux/blkdev.h>
7
#include <linux/ratelimit.h>
8
#include <linux/sched/mm.h>
9
#include <crypto/hash.h>
A
Arne Jansen 已提交
10
#include "ctree.h"
11
#include "discard.h"
A
Arne Jansen 已提交
12 13 14
#include "volumes.h"
#include "disk-io.h"
#include "ordered-data.h"
15
#include "transaction.h"
16
#include "backref.h"
17
#include "extent_io.h"
18
#include "dev-replace.h"
19
#include "check-integrity.h"
D
David Woodhouse 已提交
20
#include "raid56.h"
21
#include "block-group.h"
22
#include "zoned.h"
23
#include "fs.h"
24
#include "accessors.h"
25
#include "file-item.h"
26
#include "scrub.h"
A
Arne Jansen 已提交
27 28 29 30 31 32 33 34 35 36 37 38 39 40

/*
 * This is only the first step towards a full-features scrub. It reads all
 * extent and super block and verifies the checksums. In case a bad checksum
 * is found or the extent cannot be read, good data will be written back if
 * any can be found.
 *
 * Future enhancements:
 *  - In case an unrepairable extent is encountered, track which files are
 *    affected and report them
 *  - track and record media errors, throw out bad devices
 *  - add a mode to also read unallocated space
 */

41
struct scrub_ctx;
A
Arne Jansen 已提交
42

43
/*
44
 * The following value only influences the performance.
45
 *
46
 * This determines the batch size for stripe submitted in one go.
47
 */
48
#define SCRUB_STRIPES_PER_SCTX	8	/* That would be 8 64K stripe per-device. */
49 50

/*
51
 * The following value times PAGE_SIZE needs to be large enough to match the
52 53
 * largest node/leaf/sector size that shall be supported.
 */
54
#define SCRUB_MAX_SECTORS_PER_BLOCK	(BTRFS_MAX_METADATA_BLOCKSIZE / SZ_4K)
A
Arne Jansen 已提交
55

56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82
/* Represent one sector and its needed info to verify the content. */
struct scrub_sector_verification {
	bool is_metadata;

	union {
		/*
		 * Csum pointer for data csum verification.  Should point to a
		 * sector csum inside scrub_stripe::csums.
		 *
		 * NULL if this data sector has no csum.
		 */
		u8 *csum;

		/*
		 * Extra info for metadata verification.  All sectors inside a
		 * tree block share the same generation.
		 */
		u64 generation;
	};
};

enum scrub_stripe_flags {
	/* Set when @mirror_num, @dev, @physical and @logical are set. */
	SCRUB_STRIPE_FLAG_INITIALIZED,

	/* Set when the read-repair is finished. */
	SCRUB_STRIPE_FLAG_REPAIR_DONE,
83 84 85 86 87 88 89

	/*
	 * Set for data stripes if it's triggered from P/Q stripe.
	 * During such scrub, we should not report errors in data stripes, nor
	 * update the accounting.
	 */
	SCRUB_STRIPE_FLAG_NO_REPORT,
90 91 92 93 94 95 96 97
};

#define SCRUB_STRIPE_PAGES		(BTRFS_STRIPE_LEN / PAGE_SIZE)

/*
 * Represent one contiguous range with a length of BTRFS_STRIPE_LEN.
 */
struct scrub_stripe {
98
	struct scrub_ctx *sctx;
99 100 101 102 103 104 105 106 107 108 109 110 111 112
	struct btrfs_block_group *bg;

	struct page *pages[SCRUB_STRIPE_PAGES];
	struct scrub_sector_verification *sectors;

	struct btrfs_device *dev;
	u64 logical;
	u64 physical;

	u16 mirror_num;

	/* Should be BTRFS_STRIPE_LEN / sectorsize. */
	u16 nr_sectors;

113 114 115 116 117 118 119
	/*
	 * How many data/meta extents are in this stripe.  Only for scrub status
	 * reporting purposes.
	 */
	u16 nr_data_extents;
	u16 nr_meta_extents;

120 121
	atomic_t pending_io;
	wait_queue_head_t io_wait;
122
	wait_queue_head_t repair_wait;
123 124 125 126 127 128 129 130 131 132 133 134 135 136

	/*
	 * Indicate the states of the stripe.  Bits are defined in
	 * scrub_stripe_flags enum.
	 */
	unsigned long state;

	/* Indicate which sectors are covered by extent items. */
	unsigned long extent_sector_bitmap;

	/*
	 * The errors hit during the initial read of the stripe.
	 *
	 * Would be utilized for error reporting and repair.
137 138 139
	 *
	 * The remaining init_nr_* records the number of errors hit, only used
	 * by error reporting.
140 141
	 */
	unsigned long init_error_bitmap;
142 143 144
	unsigned int init_nr_io_errors;
	unsigned int init_nr_csum_errors;
	unsigned int init_nr_meta_errors;
145 146 147 148 149 150 151 152 153 154 155 156 157 158

	/*
	 * The following error bitmaps are all for the current status.
	 * Every time we submit a new read, these bitmaps may be updated.
	 *
	 * error_bitmap = io_error_bitmap | csum_error_bitmap | meta_error_bitmap;
	 *
	 * IO and csum errors can happen for both metadata and data.
	 */
	unsigned long error_bitmap;
	unsigned long io_error_bitmap;
	unsigned long csum_error_bitmap;
	unsigned long meta_error_bitmap;

159 160 161 162 163 164
	/* For writeback (repair or replace) error reporting. */
	unsigned long write_error_bitmap;

	/* Writeback can be concurrent, thus we need to protect the bitmap. */
	spinlock_t write_error_lock;

165 166 167 168 169
	/*
	 * Checksum for the whole stripe if this stripe is inside a data block
	 * group.
	 */
	u8 *csums;
170 171

	struct work_struct work;
172 173
};

174
struct scrub_ctx {
175
	struct scrub_stripe	stripes[SCRUB_STRIPES_PER_SCTX];
176
	struct scrub_stripe	*raid56_data_stripes;
177
	struct btrfs_fs_info	*fs_info;
A
Arne Jansen 已提交
178
	int			first_free;
179
	int			cur_stripe;
A
Arne Jansen 已提交
180 181
	struct list_head	csum_list;
	atomic_t		cancel_req;
A
Arne Jansen 已提交
182
	int			readonly;
183
	int			sectors_per_bio;
184

185 186 187 188
	/* State of IO submission throttling affecting the associated device */
	ktime_t			throttle_deadline;
	u64			throttle_sent;

189
	int			is_dev_replace;
190
	u64			write_pointer;
191 192 193

	struct mutex            wr_lock;
	struct btrfs_device     *wr_tgtdev;
194

A
Arne Jansen 已提交
195 196 197 198 199
	/*
	 * statistics
	 */
	struct btrfs_scrub_progress stat;
	spinlock_t		stat_lock;
200 201 202 203 204 205 206 207

	/*
	 * Use a ref counter to avoid use-after-free issues. Scrub workers
	 * decrement bios_in_flight and workers_pending and then do a wakeup
	 * on the list_wait wait queue. We must ensure the main scrub task
	 * doesn't free the scrub context before or while the workers are
	 * doing the wakeup() call.
	 */
208
	refcount_t              refs;
A
Arne Jansen 已提交
209 210
};

211 212 213 214
struct scrub_warning {
	struct btrfs_path	*path;
	u64			extent_item_size;
	const char		*errstr;
D
David Sterba 已提交
215
	u64			physical;
216 217 218 219
	u64			logical;
	struct btrfs_device	*dev;
};

220 221 222 223 224 225 226 227 228 229 230 231 232 233
static void release_scrub_stripe(struct scrub_stripe *stripe)
{
	if (!stripe)
		return;

	for (int i = 0; i < SCRUB_STRIPE_PAGES; i++) {
		if (stripe->pages[i])
			__free_page(stripe->pages[i]);
		stripe->pages[i] = NULL;
	}
	kfree(stripe->sectors);
	kfree(stripe->csums);
	stripe->sectors = NULL;
	stripe->csums = NULL;
234
	stripe->sctx = NULL;
235 236 237
	stripe->state = 0;
}

238 239
static int init_scrub_stripe(struct btrfs_fs_info *fs_info,
			     struct scrub_stripe *stripe)
240 241 242 243 244 245 246 247 248
{
	int ret;

	memset(stripe, 0, sizeof(*stripe));

	stripe->nr_sectors = BTRFS_STRIPE_LEN >> fs_info->sectorsize_bits;
	stripe->state = 0;

	init_waitqueue_head(&stripe->io_wait);
249
	init_waitqueue_head(&stripe->repair_wait);
250
	atomic_set(&stripe->pending_io, 0);
251
	spin_lock_init(&stripe->write_error_lock);
252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272

	ret = btrfs_alloc_page_array(SCRUB_STRIPE_PAGES, stripe->pages);
	if (ret < 0)
		goto error;

	stripe->sectors = kcalloc(stripe->nr_sectors,
				  sizeof(struct scrub_sector_verification),
				  GFP_KERNEL);
	if (!stripe->sectors)
		goto error;

	stripe->csums = kcalloc(BTRFS_STRIPE_LEN >> fs_info->sectorsize_bits,
				fs_info->csum_size, GFP_KERNEL);
	if (!stripe->csums)
		goto error;
	return 0;
error:
	release_scrub_stripe(stripe);
	return -ENOMEM;
}

273
static void wait_scrub_stripe_io(struct scrub_stripe *stripe)
274 275 276 277
{
	wait_event(stripe->io_wait, atomic_read(&stripe->pending_io) == 0);
}

278
static void scrub_put_ctx(struct scrub_ctx *sctx);
S
Stefan Behrens 已提交
279

280
static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
281 282 283 284 285 286 287 288 289
{
	while (atomic_read(&fs_info->scrub_pause_req)) {
		mutex_unlock(&fs_info->scrub_lock);
		wait_event(fs_info->scrub_pause_wait,
		   atomic_read(&fs_info->scrub_pause_req) == 0);
		mutex_lock(&fs_info->scrub_lock);
	}
}

290
static void scrub_pause_on(struct btrfs_fs_info *fs_info)
291 292 293
{
	atomic_inc(&fs_info->scrubs_paused);
	wake_up(&fs_info->scrub_pause_wait);
294
}
295

296 297
static void scrub_pause_off(struct btrfs_fs_info *fs_info)
{
298 299 300 301 302 303 304 305
	mutex_lock(&fs_info->scrub_lock);
	__scrub_blocked_if_needed(fs_info);
	atomic_dec(&fs_info->scrubs_paused);
	mutex_unlock(&fs_info->scrub_lock);

	wake_up(&fs_info->scrub_pause_wait);
}

306 307 308 309 310 311
static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
{
	scrub_pause_on(fs_info);
	scrub_pause_off(fs_info);
}

312
static void scrub_free_csums(struct scrub_ctx *sctx)
A
Arne Jansen 已提交
313
{
314
	while (!list_empty(&sctx->csum_list)) {
A
Arne Jansen 已提交
315
		struct btrfs_ordered_sum *sum;
316
		sum = list_first_entry(&sctx->csum_list,
A
Arne Jansen 已提交
317 318 319 320 321 322
				       struct btrfs_ordered_sum, list);
		list_del(&sum->list);
		kfree(sum);
	}
}

323
static noinline_for_stack void scrub_free_ctx(struct scrub_ctx *sctx)
A
Arne Jansen 已提交
324 325 326
{
	int i;

327
	if (!sctx)
A
Arne Jansen 已提交
328 329
		return;

330 331 332
	for (i = 0; i < SCRUB_STRIPES_PER_SCTX; i++)
		release_scrub_stripe(&sctx->stripes[i]);

333 334
	scrub_free_csums(sctx);
	kfree(sctx);
A
Arne Jansen 已提交
335 336
}

337 338
static void scrub_put_ctx(struct scrub_ctx *sctx)
{
339
	if (refcount_dec_and_test(&sctx->refs))
340 341 342
		scrub_free_ctx(sctx);
}

343 344
static noinline_for_stack struct scrub_ctx *scrub_setup_ctx(
		struct btrfs_fs_info *fs_info, int is_dev_replace)
A
Arne Jansen 已提交
345
{
346
	struct scrub_ctx *sctx;
A
Arne Jansen 已提交
347 348
	int		i;

349
	sctx = kzalloc(sizeof(*sctx), GFP_KERNEL);
350
	if (!sctx)
A
Arne Jansen 已提交
351
		goto nomem;
352
	refcount_set(&sctx->refs, 1);
353
	sctx->is_dev_replace = is_dev_replace;
354
	sctx->fs_info = fs_info;
355
	INIT_LIST_HEAD(&sctx->csum_list);
356 357 358 359 360 361 362 363
	for (i = 0; i < SCRUB_STRIPES_PER_SCTX; i++) {
		int ret;

		ret = init_scrub_stripe(fs_info, &sctx->stripes[i]);
		if (ret < 0)
			goto nomem;
		sctx->stripes[i].sctx = sctx;
	}
364 365 366 367
	sctx->first_free = 0;
	atomic_set(&sctx->cancel_req, 0);

	spin_lock_init(&sctx->stat_lock);
368
	sctx->throttle_deadline = 0;
369

370
	mutex_init(&sctx->wr_lock);
371
	if (is_dev_replace) {
372 373
		WARN_ON(!fs_info->dev_replace.tgtdev);
		sctx->wr_tgtdev = fs_info->dev_replace.tgtdev;
374
	}
375

376
	return sctx;
A
Arne Jansen 已提交
377 378

nomem:
379
	scrub_free_ctx(sctx);
A
Arne Jansen 已提交
380 381 382
	return ERR_PTR(-ENOMEM);
}

383 384
static int scrub_print_warning_inode(u64 inum, u64 offset, u64 num_bytes,
				     u64 root, void *warn_ctx)
385 386 387 388
{
	u32 nlink;
	int ret;
	int i;
389
	unsigned nofs_flag;
390 391
	struct extent_buffer *eb;
	struct btrfs_inode_item *inode_item;
392
	struct scrub_warning *swarn = warn_ctx;
393
	struct btrfs_fs_info *fs_info = swarn->dev->fs_info;
394 395
	struct inode_fs_paths *ipath = NULL;
	struct btrfs_root *local_root;
396
	struct btrfs_key key;
397

D
David Sterba 已提交
398
	local_root = btrfs_get_fs_root(fs_info, root, true);
399 400 401 402 403
	if (IS_ERR(local_root)) {
		ret = PTR_ERR(local_root);
		goto err;
	}

404 405 406
	/*
	 * this makes the path point to (inum INODE_ITEM ioff)
	 */
407 408 409 410 411
	key.objectid = inum;
	key.type = BTRFS_INODE_ITEM_KEY;
	key.offset = 0;

	ret = btrfs_search_slot(NULL, local_root, &key, swarn->path, 0, 0);
412
	if (ret) {
413
		btrfs_put_root(local_root);
414 415 416 417 418 419 420 421 422 423
		btrfs_release_path(swarn->path);
		goto err;
	}

	eb = swarn->path->nodes[0];
	inode_item = btrfs_item_ptr(eb, swarn->path->slots[0],
					struct btrfs_inode_item);
	nlink = btrfs_inode_nlink(eb, inode_item);
	btrfs_release_path(swarn->path);

424 425 426 427 428 429
	/*
	 * init_path might indirectly call vmalloc, or use GFP_KERNEL. Scrub
	 * uses GFP_NOFS in this context, so we keep it consistent but it does
	 * not seem to be strictly necessary.
	 */
	nofs_flag = memalloc_nofs_save();
430
	ipath = init_ipath(4096, local_root, swarn->path);
431
	memalloc_nofs_restore(nofs_flag);
432
	if (IS_ERR(ipath)) {
433
		btrfs_put_root(local_root);
434 435 436 437
		ret = PTR_ERR(ipath);
		ipath = NULL;
		goto err;
	}
438 439 440 441 442 443 444 445 446 447
	ret = paths_from_inode(inum, ipath);

	if (ret < 0)
		goto err;

	/*
	 * we deliberately ignore the bit ipath might have been too small to
	 * hold all of the paths here
	 */
	for (i = 0; i < ipath->fspath->elem_cnt; ++i)
J
Jeff Mahoney 已提交
448
		btrfs_warn_in_rcu(fs_info,
449
"%s at logical %llu on dev %s, physical %llu, root %llu, inode %llu, offset %llu, length %u, links %u (path: %s)",
J
Jeff Mahoney 已提交
450
				  swarn->errstr, swarn->logical,
451
				  btrfs_dev_name(swarn->dev),
D
David Sterba 已提交
452
				  swarn->physical,
J
Jeff Mahoney 已提交
453
				  root, inum, offset,
454
				  fs_info->sectorsize, nlink,
J
Jeff Mahoney 已提交
455
				  (char *)(unsigned long)ipath->fspath->val[i]);
456

457
	btrfs_put_root(local_root);
458 459 460 461
	free_ipath(ipath);
	return 0;

err:
J
Jeff Mahoney 已提交
462
	btrfs_warn_in_rcu(fs_info,
D
David Sterba 已提交
463
			  "%s at logical %llu on dev %s, physical %llu, root %llu, inode %llu, offset %llu: path resolving failed with ret=%d",
J
Jeff Mahoney 已提交
464
			  swarn->errstr, swarn->logical,
465
			  btrfs_dev_name(swarn->dev),
D
David Sterba 已提交
466
			  swarn->physical,
J
Jeff Mahoney 已提交
467
			  root, inum, offset, ret);
468 469 470 471 472

	free_ipath(ipath);
	return 0;
}

473 474
static void scrub_print_common_warning(const char *errstr, struct btrfs_device *dev,
				       bool is_super, u64 logical, u64 physical)
475
{
476
	struct btrfs_fs_info *fs_info = dev->fs_info;
477 478 479 480 481
	struct btrfs_path *path;
	struct btrfs_key found_key;
	struct extent_buffer *eb;
	struct btrfs_extent_item *ei;
	struct scrub_warning swarn;
482 483
	unsigned long ptr = 0;
	u64 flags = 0;
484
	u64 ref_root;
485
	u32 item_size;
486
	u8 ref_level = 0;
487
	int ret;
488

489
	/* Super block error, no need to search extent tree. */
490
	if (is_super) {
491
		btrfs_warn_in_rcu(fs_info, "%s on device %s, physical %llu",
492
				  errstr, btrfs_dev_name(dev), physical);
493 494
		return;
	}
495
	path = btrfs_alloc_path();
496 497
	if (!path)
		return;
498

499 500
	swarn.physical = physical;
	swarn.logical = logical;
501
	swarn.errstr = errstr;
502
	swarn.dev = NULL;
503

504 505
	ret = extent_from_logical(fs_info, swarn.logical, path, &found_key,
				  &flags);
506 507 508 509 510 511 512
	if (ret < 0)
		goto out;

	swarn.extent_item_size = found_key.offset;

	eb = path->nodes[0];
	ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
513
	item_size = btrfs_item_size(eb, path->slots[0]);
514

515
	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
516
		do {
517 518 519
			ret = tree_backref_for_extent(&ptr, eb, &found_key, ei,
						      item_size, &ref_root,
						      &ref_level);
520
			btrfs_warn_in_rcu(fs_info,
D
David Sterba 已提交
521
"%s at logical %llu on dev %s, physical %llu: metadata %s (level %d) in tree %llu",
J
Jeff Mahoney 已提交
522
				errstr, swarn.logical,
523
				btrfs_dev_name(dev),
D
David Sterba 已提交
524
				swarn.physical,
525 526 527 528
				ref_level ? "node" : "leaf",
				ret < 0 ? -1 : ref_level,
				ret < 0 ? -1 : ref_root);
		} while (ret != 1);
529
		btrfs_release_path(path);
530
	} else {
531 532
		struct btrfs_backref_walk_ctx ctx = { 0 };

533
		btrfs_release_path(path);
534 535 536 537 538

		ctx.bytenr = found_key.objectid;
		ctx.extent_item_pos = swarn.logical - found_key.objectid;
		ctx.fs_info = fs_info;

539
		swarn.path = path;
540
		swarn.dev = dev;
541 542

		iterate_extent_inodes(&ctx, true, scrub_print_warning_inode, &swarn);
543 544 545 546 547 548
	}

out:
	btrfs_free_path(path);
}

549
static inline int scrub_nr_raid_mirrors(struct btrfs_io_context *bioc)
550
{
551
	if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID5)
Z
Zhao Lei 已提交
552
		return 2;
553
	else if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID6)
Z
Zhao Lei 已提交
554 555
		return 3;
	else
556
		return (int)bioc->num_stripes;
557 558
}

Z
Zhao Lei 已提交
559
static inline void scrub_stripe_index_and_offset(u64 logical, u64 map_type,
560
						 u64 full_stripe_logical,
561 562 563 564 565 566
						 int nstripes, int mirror,
						 int *stripe_index,
						 u64 *stripe_offset)
{
	int i;

567
	if (map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
568 569 570
		const int nr_data_stripes = (map_type & BTRFS_BLOCK_GROUP_RAID5) ?
					    nstripes - 1 : nstripes - 2;

571
		/* RAID5/6 */
572 573 574
		for (i = 0; i < nr_data_stripes; i++) {
			const u64 data_stripe_start = full_stripe_logical +
						(i * BTRFS_STRIPE_LEN);
575

576 577
			if (logical >= data_stripe_start &&
			    logical < data_stripe_start + BTRFS_STRIPE_LEN)
578 579 580 581
				break;
		}

		*stripe_index = i;
582 583
		*stripe_offset = (logical - full_stripe_logical) &
				 BTRFS_STRIPE_LEN_MASK;
584 585 586 587 588 589 590
	} else {
		/* The other RAID type */
		*stripe_index = mirror;
		*stripe_offset = 0;
	}
}

591 592 593 594 595 596 597 598
static int fill_writer_pointer_gap(struct scrub_ctx *sctx, u64 physical)
{
	int ret = 0;
	u64 length;

	if (!btrfs_is_zoned(sctx->fs_info))
		return 0;

599 600 601
	if (!btrfs_dev_is_sequential(sctx->wr_tgtdev, physical))
		return 0;

602 603 604 605 606 607 608 609 610 611 612
	if (sctx->write_pointer < physical) {
		length = physical - sctx->write_pointer;

		ret = btrfs_zoned_issue_zeroout(sctx->wr_tgtdev,
						sctx->write_pointer, length);
		if (!ret)
			sctx->write_pointer = physical;
	}
	return ret;
}

613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628
static struct page *scrub_stripe_get_page(struct scrub_stripe *stripe, int sector_nr)
{
	struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
	int page_index = (sector_nr << fs_info->sectorsize_bits) >> PAGE_SHIFT;

	return stripe->pages[page_index];
}

static unsigned int scrub_stripe_get_page_offset(struct scrub_stripe *stripe,
						 int sector_nr)
{
	struct btrfs_fs_info *fs_info = stripe->bg->fs_info;

	return offset_in_page(sector_nr << fs_info->sectorsize_bits);
}

629
static void scrub_verify_one_metadata(struct scrub_stripe *stripe, int sector_nr)
630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718
{
	struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
	const u32 sectors_per_tree = fs_info->nodesize >> fs_info->sectorsize_bits;
	const u64 logical = stripe->logical + (sector_nr << fs_info->sectorsize_bits);
	const struct page *first_page = scrub_stripe_get_page(stripe, sector_nr);
	const unsigned int first_off = scrub_stripe_get_page_offset(stripe, sector_nr);
	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
	u8 on_disk_csum[BTRFS_CSUM_SIZE];
	u8 calculated_csum[BTRFS_CSUM_SIZE];
	struct btrfs_header *header;

	/*
	 * Here we don't have a good way to attach the pages (and subpages)
	 * to a dummy extent buffer, thus we have to directly grab the members
	 * from pages.
	 */
	header = (struct btrfs_header *)(page_address(first_page) + first_off);
	memcpy(on_disk_csum, header->csum, fs_info->csum_size);

	if (logical != btrfs_stack_header_bytenr(header)) {
		bitmap_set(&stripe->csum_error_bitmap, sector_nr, sectors_per_tree);
		bitmap_set(&stripe->error_bitmap, sector_nr, sectors_per_tree);
		btrfs_warn_rl(fs_info,
		"tree block %llu mirror %u has bad bytenr, has %llu want %llu",
			      logical, stripe->mirror_num,
			      btrfs_stack_header_bytenr(header), logical);
		return;
	}
	if (memcmp(header->fsid, fs_info->fs_devices->fsid, BTRFS_FSID_SIZE) != 0) {
		bitmap_set(&stripe->meta_error_bitmap, sector_nr, sectors_per_tree);
		bitmap_set(&stripe->error_bitmap, sector_nr, sectors_per_tree);
		btrfs_warn_rl(fs_info,
		"tree block %llu mirror %u has bad fsid, has %pU want %pU",
			      logical, stripe->mirror_num,
			      header->fsid, fs_info->fs_devices->fsid);
		return;
	}
	if (memcmp(header->chunk_tree_uuid, fs_info->chunk_tree_uuid,
		   BTRFS_UUID_SIZE) != 0) {
		bitmap_set(&stripe->meta_error_bitmap, sector_nr, sectors_per_tree);
		bitmap_set(&stripe->error_bitmap, sector_nr, sectors_per_tree);
		btrfs_warn_rl(fs_info,
		"tree block %llu mirror %u has bad chunk tree uuid, has %pU want %pU",
			      logical, stripe->mirror_num,
			      header->chunk_tree_uuid, fs_info->chunk_tree_uuid);
		return;
	}

	/* Now check tree block csum. */
	shash->tfm = fs_info->csum_shash;
	crypto_shash_init(shash);
	crypto_shash_update(shash, page_address(first_page) + first_off +
			    BTRFS_CSUM_SIZE, fs_info->sectorsize - BTRFS_CSUM_SIZE);

	for (int i = sector_nr + 1; i < sector_nr + sectors_per_tree; i++) {
		struct page *page = scrub_stripe_get_page(stripe, i);
		unsigned int page_off = scrub_stripe_get_page_offset(stripe, i);

		crypto_shash_update(shash, page_address(page) + page_off,
				    fs_info->sectorsize);
	}

	crypto_shash_final(shash, calculated_csum);
	if (memcmp(calculated_csum, on_disk_csum, fs_info->csum_size) != 0) {
		bitmap_set(&stripe->meta_error_bitmap, sector_nr, sectors_per_tree);
		bitmap_set(&stripe->error_bitmap, sector_nr, sectors_per_tree);
		btrfs_warn_rl(fs_info,
		"tree block %llu mirror %u has bad csum, has " CSUM_FMT " want " CSUM_FMT,
			      logical, stripe->mirror_num,
			      CSUM_FMT_VALUE(fs_info->csum_size, on_disk_csum),
			      CSUM_FMT_VALUE(fs_info->csum_size, calculated_csum));
		return;
	}
	if (stripe->sectors[sector_nr].generation !=
	    btrfs_stack_header_generation(header)) {
		bitmap_set(&stripe->meta_error_bitmap, sector_nr, sectors_per_tree);
		bitmap_set(&stripe->error_bitmap, sector_nr, sectors_per_tree);
		btrfs_warn_rl(fs_info,
		"tree block %llu mirror %u has bad generation, has %llu want %llu",
			      logical, stripe->mirror_num,
			      btrfs_stack_header_generation(header),
			      stripe->sectors[sector_nr].generation);
		return;
	}
	bitmap_clear(&stripe->error_bitmap, sector_nr, sectors_per_tree);
	bitmap_clear(&stripe->csum_error_bitmap, sector_nr, sectors_per_tree);
	bitmap_clear(&stripe->meta_error_bitmap, sector_nr, sectors_per_tree);
}

719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780
static void scrub_verify_one_sector(struct scrub_stripe *stripe, int sector_nr)
{
	struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
	struct scrub_sector_verification *sector = &stripe->sectors[sector_nr];
	const u32 sectors_per_tree = fs_info->nodesize >> fs_info->sectorsize_bits;
	struct page *page = scrub_stripe_get_page(stripe, sector_nr);
	unsigned int pgoff = scrub_stripe_get_page_offset(stripe, sector_nr);
	u8 csum_buf[BTRFS_CSUM_SIZE];
	int ret;

	ASSERT(sector_nr >= 0 && sector_nr < stripe->nr_sectors);

	/* Sector not utilized, skip it. */
	if (!test_bit(sector_nr, &stripe->extent_sector_bitmap))
		return;

	/* IO error, no need to check. */
	if (test_bit(sector_nr, &stripe->io_error_bitmap))
		return;

	/* Metadata, verify the full tree block. */
	if (sector->is_metadata) {
		/*
		 * Check if the tree block crosses the stripe boudary.  If
		 * crossed the boundary, we cannot verify it but only give a
		 * warning.
		 *
		 * This can only happen on a very old filesystem where chunks
		 * are not ensured to be stripe aligned.
		 */
		if (unlikely(sector_nr + sectors_per_tree > stripe->nr_sectors)) {
			btrfs_warn_rl(fs_info,
			"tree block at %llu crosses stripe boundary %llu",
				      stripe->logical +
				      (sector_nr << fs_info->sectorsize_bits),
				      stripe->logical);
			return;
		}
		scrub_verify_one_metadata(stripe, sector_nr);
		return;
	}

	/*
	 * Data is easier, we just verify the data csum (if we have it).  For
	 * cases without csum, we have no other choice but to trust it.
	 */
	if (!sector->csum) {
		clear_bit(sector_nr, &stripe->error_bitmap);
		return;
	}

	ret = btrfs_check_sector_csum(fs_info, page, pgoff, csum_buf, sector->csum);
	if (ret < 0) {
		set_bit(sector_nr, &stripe->csum_error_bitmap);
		set_bit(sector_nr, &stripe->error_bitmap);
	} else {
		clear_bit(sector_nr, &stripe->csum_error_bitmap);
		clear_bit(sector_nr, &stripe->error_bitmap);
	}
}

/* Verify specified sectors of a stripe. */
781
static void scrub_verify_one_stripe(struct scrub_stripe *stripe, unsigned long bitmap)
782 783 784 785 786 787 788 789 790 791 792 793
{
	struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
	const u32 sectors_per_tree = fs_info->nodesize >> fs_info->sectorsize_bits;
	int sector_nr;

	for_each_set_bit(sector_nr, &bitmap, stripe->nr_sectors) {
		scrub_verify_one_sector(stripe, sector_nr);
		if (stripe->sectors[sector_nr].is_metadata)
			sector_nr += sectors_per_tree - 1;
	}
}

794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895
static int calc_sector_number(struct scrub_stripe *stripe, struct bio_vec *first_bvec)
{
	int i;

	for (i = 0; i < stripe->nr_sectors; i++) {
		if (scrub_stripe_get_page(stripe, i) == first_bvec->bv_page &&
		    scrub_stripe_get_page_offset(stripe, i) == first_bvec->bv_offset)
			break;
	}
	ASSERT(i < stripe->nr_sectors);
	return i;
}

/*
 * Repair read is different to the regular read:
 *
 * - Only reads the failed sectors
 * - May have extra blocksize limits
 */
static void scrub_repair_read_endio(struct btrfs_bio *bbio)
{
	struct scrub_stripe *stripe = bbio->private;
	struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
	struct bio_vec *bvec;
	int sector_nr = calc_sector_number(stripe, bio_first_bvec_all(&bbio->bio));
	u32 bio_size = 0;
	int i;

	ASSERT(sector_nr < stripe->nr_sectors);

	bio_for_each_bvec_all(bvec, &bbio->bio, i)
		bio_size += bvec->bv_len;

	if (bbio->bio.bi_status) {
		bitmap_set(&stripe->io_error_bitmap, sector_nr,
			   bio_size >> fs_info->sectorsize_bits);
		bitmap_set(&stripe->error_bitmap, sector_nr,
			   bio_size >> fs_info->sectorsize_bits);
	} else {
		bitmap_clear(&stripe->io_error_bitmap, sector_nr,
			     bio_size >> fs_info->sectorsize_bits);
	}
	bio_put(&bbio->bio);
	if (atomic_dec_and_test(&stripe->pending_io))
		wake_up(&stripe->io_wait);
}

static int calc_next_mirror(int mirror, int num_copies)
{
	ASSERT(mirror <= num_copies);
	return (mirror + 1 > num_copies) ? 1 : mirror + 1;
}

static void scrub_stripe_submit_repair_read(struct scrub_stripe *stripe,
					    int mirror, int blocksize, bool wait)
{
	struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
	struct btrfs_bio *bbio = NULL;
	const unsigned long old_error_bitmap = stripe->error_bitmap;
	int i;

	ASSERT(stripe->mirror_num >= 1);
	ASSERT(atomic_read(&stripe->pending_io) == 0);

	for_each_set_bit(i, &old_error_bitmap, stripe->nr_sectors) {
		struct page *page;
		int pgoff;
		int ret;

		page = scrub_stripe_get_page(stripe, i);
		pgoff = scrub_stripe_get_page_offset(stripe, i);

		/* The current sector cannot be merged, submit the bio. */
		if (bbio && ((i > 0 && !test_bit(i - 1, &stripe->error_bitmap)) ||
			     bbio->bio.bi_iter.bi_size >= blocksize)) {
			ASSERT(bbio->bio.bi_iter.bi_size);
			atomic_inc(&stripe->pending_io);
			btrfs_submit_bio(bbio, mirror);
			if (wait)
				wait_scrub_stripe_io(stripe);
			bbio = NULL;
		}

		if (!bbio) {
			bbio = btrfs_bio_alloc(stripe->nr_sectors, REQ_OP_READ,
				fs_info, scrub_repair_read_endio, stripe);
			bbio->bio.bi_iter.bi_sector = (stripe->logical +
				(i << fs_info->sectorsize_bits)) >> SECTOR_SHIFT;
		}

		ret = bio_add_page(&bbio->bio, page, fs_info->sectorsize, pgoff);
		ASSERT(ret == fs_info->sectorsize);
	}
	if (bbio) {
		ASSERT(bbio->bio.bi_iter.bi_size);
		atomic_inc(&stripe->pending_io);
		btrfs_submit_bio(bbio, mirror);
		if (wait)
			wait_scrub_stripe_io(stripe);
	}
}

896 897 898 899 900 901 902 903 904 905 906 907 908 909
static void scrub_stripe_report_errors(struct scrub_ctx *sctx,
				       struct scrub_stripe *stripe)
{
	static DEFINE_RATELIMIT_STATE(rs, DEFAULT_RATELIMIT_INTERVAL,
				      DEFAULT_RATELIMIT_BURST);
	struct btrfs_fs_info *fs_info = sctx->fs_info;
	struct btrfs_device *dev = NULL;
	u64 physical = 0;
	int nr_data_sectors = 0;
	int nr_meta_sectors = 0;
	int nr_nodatacsum_sectors = 0;
	int nr_repaired_sectors = 0;
	int sector_nr;

910 911 912
	if (test_bit(SCRUB_STRIPE_FLAG_NO_REPORT, &stripe->state))
		return;

913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011
	/*
	 * Init needed infos for error reporting.
	 *
	 * Although our scrub_stripe infrastucture is mostly based on btrfs_submit_bio()
	 * thus no need for dev/physical, error reporting still needs dev and physical.
	 */
	if (!bitmap_empty(&stripe->init_error_bitmap, stripe->nr_sectors)) {
		u64 mapped_len = fs_info->sectorsize;
		struct btrfs_io_context *bioc = NULL;
		int stripe_index = stripe->mirror_num - 1;
		int ret;

		/* For scrub, our mirror_num should always start at 1. */
		ASSERT(stripe->mirror_num >= 1);
		ret = btrfs_map_sblock(fs_info, BTRFS_MAP_GET_READ_MIRRORS,
				       stripe->logical, &mapped_len, &bioc);
		/*
		 * If we failed, dev will be NULL, and later detailed reports
		 * will just be skipped.
		 */
		if (ret < 0)
			goto skip;
		physical = bioc->stripes[stripe_index].physical;
		dev = bioc->stripes[stripe_index].dev;
		btrfs_put_bioc(bioc);
	}

skip:
	for_each_set_bit(sector_nr, &stripe->extent_sector_bitmap, stripe->nr_sectors) {
		bool repaired = false;

		if (stripe->sectors[sector_nr].is_metadata) {
			nr_meta_sectors++;
		} else {
			nr_data_sectors++;
			if (!stripe->sectors[sector_nr].csum)
				nr_nodatacsum_sectors++;
		}

		if (test_bit(sector_nr, &stripe->init_error_bitmap) &&
		    !test_bit(sector_nr, &stripe->error_bitmap)) {
			nr_repaired_sectors++;
			repaired = true;
		}

		/* Good sector from the beginning, nothing need to be done. */
		if (!test_bit(sector_nr, &stripe->init_error_bitmap))
			continue;

		/*
		 * Report error for the corrupted sectors.  If repaired, just
		 * output the message of repaired message.
		 */
		if (repaired) {
			if (dev) {
				btrfs_err_rl_in_rcu(fs_info,
			"fixed up error at logical %llu on dev %s physical %llu",
					    stripe->logical, btrfs_dev_name(dev),
					    physical);
			} else {
				btrfs_err_rl_in_rcu(fs_info,
			"fixed up error at logical %llu on mirror %u",
					    stripe->logical, stripe->mirror_num);
			}
			continue;
		}

		/* The remaining are all for unrepaired. */
		if (dev) {
			btrfs_err_rl_in_rcu(fs_info,
	"unable to fixup (regular) error at logical %llu on dev %s physical %llu",
					    stripe->logical, btrfs_dev_name(dev),
					    physical);
		} else {
			btrfs_err_rl_in_rcu(fs_info,
	"unable to fixup (regular) error at logical %llu on mirror %u",
					    stripe->logical, stripe->mirror_num);
		}

		if (test_bit(sector_nr, &stripe->io_error_bitmap))
			if (__ratelimit(&rs) && dev)
				scrub_print_common_warning("i/o error", dev, false,
						     stripe->logical, physical);
		if (test_bit(sector_nr, &stripe->csum_error_bitmap))
			if (__ratelimit(&rs) && dev)
				scrub_print_common_warning("checksum error", dev, false,
						     stripe->logical, physical);
		if (test_bit(sector_nr, &stripe->meta_error_bitmap))
			if (__ratelimit(&rs) && dev)
				scrub_print_common_warning("header error", dev, false,
						     stripe->logical, physical);
	}

	spin_lock(&sctx->stat_lock);
	sctx->stat.data_extents_scrubbed += stripe->nr_data_extents;
	sctx->stat.tree_extents_scrubbed += stripe->nr_meta_extents;
	sctx->stat.data_bytes_scrubbed += nr_data_sectors << fs_info->sectorsize_bits;
	sctx->stat.tree_bytes_scrubbed += nr_meta_sectors << fs_info->sectorsize_bits;
	sctx->stat.no_csum += nr_nodatacsum_sectors;
1012 1013 1014
	sctx->stat.read_errors += stripe->init_nr_io_errors;
	sctx->stat.csum_errors += stripe->init_nr_csum_errors;
	sctx->stat.verify_errors += stripe->init_nr_meta_errors;
1015 1016 1017 1018 1019 1020
	sctx->stat.uncorrectable_errors +=
		bitmap_weight(&stripe->error_bitmap, stripe->nr_sectors);
	sctx->stat.corrected_errors += nr_repaired_sectors;
	spin_unlock(&sctx->stat_lock);
}

1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046
/*
 * The main entrance for all read related scrub work, including:
 *
 * - Wait for the initial read to finish
 * - Verify and locate any bad sectors
 * - Go through the remaining mirrors and try to read as large blocksize as
 *   possible
 * - Go through all mirrors (including the failed mirror) sector-by-sector
 *
 * Writeback does not happen here, it needs extra synchronization.
 */
static void scrub_stripe_read_repair_worker(struct work_struct *work)
{
	struct scrub_stripe *stripe = container_of(work, struct scrub_stripe, work);
	struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
	int num_copies = btrfs_num_copies(fs_info, stripe->bg->start,
					  stripe->bg->length);
	int mirror;
	int i;

	ASSERT(stripe->mirror_num > 0);

	wait_scrub_stripe_io(stripe);
	scrub_verify_one_stripe(stripe, stripe->extent_sector_bitmap);
	/* Save the initial failed bitmap for later repair and report usage. */
	stripe->init_error_bitmap = stripe->error_bitmap;
1047 1048 1049 1050 1051 1052
	stripe->init_nr_io_errors = bitmap_weight(&stripe->io_error_bitmap,
						  stripe->nr_sectors);
	stripe->init_nr_csum_errors = bitmap_weight(&stripe->csum_error_bitmap,
						    stripe->nr_sectors);
	stripe->init_nr_meta_errors = bitmap_weight(&stripe->meta_error_bitmap,
						    stripe->nr_sectors);
1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099

	if (bitmap_empty(&stripe->init_error_bitmap, stripe->nr_sectors))
		goto out;

	/*
	 * Try all remaining mirrors.
	 *
	 * Here we still try to read as large block as possible, as this is
	 * faster and we have extra safety nets to rely on.
	 */
	for (mirror = calc_next_mirror(stripe->mirror_num, num_copies);
	     mirror != stripe->mirror_num;
	     mirror = calc_next_mirror(mirror, num_copies)) {
		const unsigned long old_error_bitmap = stripe->error_bitmap;

		scrub_stripe_submit_repair_read(stripe, mirror,
						BTRFS_STRIPE_LEN, false);
		wait_scrub_stripe_io(stripe);
		scrub_verify_one_stripe(stripe, old_error_bitmap);
		if (bitmap_empty(&stripe->error_bitmap, stripe->nr_sectors))
			goto out;
	}

	/*
	 * Last safety net, try re-checking all mirrors, including the failed
	 * one, sector-by-sector.
	 *
	 * As if one sector failed the drive's internal csum, the whole read
	 * containing the offending sector would be marked as error.
	 * Thus here we do sector-by-sector read.
	 *
	 * This can be slow, thus we only try it as the last resort.
	 */

	for (i = 0, mirror = stripe->mirror_num;
	     i < num_copies;
	     i++, mirror = calc_next_mirror(mirror, num_copies)) {
		const unsigned long old_error_bitmap = stripe->error_bitmap;

		scrub_stripe_submit_repair_read(stripe, mirror,
						fs_info->sectorsize, true);
		wait_scrub_stripe_io(stripe);
		scrub_verify_one_stripe(stripe, old_error_bitmap);
		if (bitmap_empty(&stripe->error_bitmap, stripe->nr_sectors))
			goto out;
	}
out:
1100
	scrub_stripe_report_errors(stripe->sctx, stripe);
1101 1102 1103 1104
	set_bit(SCRUB_STRIPE_FLAG_REPAIR_DONE, &stripe->state);
	wake_up(&stripe->repair_wait);
}

1105
static void scrub_read_endio(struct btrfs_bio *bbio)
1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122
{
	struct scrub_stripe *stripe = bbio->private;

	if (bbio->bio.bi_status) {
		bitmap_set(&stripe->io_error_bitmap, 0, stripe->nr_sectors);
		bitmap_set(&stripe->error_bitmap, 0, stripe->nr_sectors);
	} else {
		bitmap_clear(&stripe->io_error_bitmap, 0, stripe->nr_sectors);
	}
	bio_put(&bbio->bio);
	if (atomic_dec_and_test(&stripe->pending_io)) {
		wake_up(&stripe->io_wait);
		INIT_WORK(&stripe->work, scrub_stripe_read_repair_worker);
		queue_work(stripe->bg->fs_info->scrub_workers, &stripe->work);
	}
}

1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148
static void scrub_write_endio(struct btrfs_bio *bbio)
{
	struct scrub_stripe *stripe = bbio->private;
	struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
	struct bio_vec *bvec;
	int sector_nr = calc_sector_number(stripe, bio_first_bvec_all(&bbio->bio));
	u32 bio_size = 0;
	int i;

	bio_for_each_bvec_all(bvec, &bbio->bio, i)
		bio_size += bvec->bv_len;

	if (bbio->bio.bi_status) {
		unsigned long flags;

		spin_lock_irqsave(&stripe->write_error_lock, flags);
		bitmap_set(&stripe->write_error_bitmap, sector_nr,
			   bio_size >> fs_info->sectorsize_bits);
		spin_unlock_irqrestore(&stripe->write_error_lock, flags);
	}
	bio_put(&bbio->bio);

	if (atomic_dec_and_test(&stripe->pending_io))
		wake_up(&stripe->io_wait);
}

1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177
static void scrub_submit_write_bio(struct scrub_ctx *sctx,
				   struct scrub_stripe *stripe,
				   struct btrfs_bio *bbio, bool dev_replace)
{
	struct btrfs_fs_info *fs_info = sctx->fs_info;
	u32 bio_len = bbio->bio.bi_iter.bi_size;
	u32 bio_off = (bbio->bio.bi_iter.bi_sector << SECTOR_SHIFT) -
		      stripe->logical;

	fill_writer_pointer_gap(sctx, stripe->physical + bio_off);
	atomic_inc(&stripe->pending_io);
	btrfs_submit_repair_write(bbio, stripe->mirror_num, dev_replace);
	if (!btrfs_is_zoned(fs_info))
		return;
	/*
	 * For zoned writeback, queue depth must be 1, thus we must wait for
	 * the write to finish before the next write.
	 */
	wait_scrub_stripe_io(stripe);

	/*
	 * And also need to update the write pointer if write finished
	 * successfully.
	 */
	if (!test_bit(bio_off >> fs_info->sectorsize_bits,
		      &stripe->write_error_bitmap))
		sctx->write_pointer += bio_len;
}

1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190
/*
 * Submit the write bio(s) for the sectors specified by @write_bitmap.
 *
 * Here we utilize btrfs_submit_repair_write(), which has some extra benefits:
 *
 * - Only needs logical bytenr and mirror_num
 *   Just like the scrub read path
 *
 * - Would only result in writes to the specified mirror
 *   Unlike the regular writeback path, which would write back to all stripes
 *
 * - Handle dev-replace and read-repair writeback differently
 */
1191 1192
static void scrub_write_sectors(struct scrub_ctx *sctx, struct scrub_stripe *stripe,
				unsigned long write_bitmap, bool dev_replace)
1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207
{
	struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
	struct btrfs_bio *bbio = NULL;
	int sector_nr;

	for_each_set_bit(sector_nr, &write_bitmap, stripe->nr_sectors) {
		struct page *page = scrub_stripe_get_page(stripe, sector_nr);
		unsigned int pgoff = scrub_stripe_get_page_offset(stripe, sector_nr);
		int ret;

		/* We should only writeback sectors covered by an extent. */
		ASSERT(test_bit(sector_nr, &stripe->extent_sector_bitmap));

		/* Cannot merge with previous sector, submit the current one. */
		if (bbio && sector_nr && !test_bit(sector_nr - 1, &write_bitmap)) {
1208
			scrub_submit_write_bio(sctx, stripe, bbio, dev_replace);
1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220
			bbio = NULL;
		}
		if (!bbio) {
			bbio = btrfs_bio_alloc(stripe->nr_sectors, REQ_OP_WRITE,
					       fs_info, scrub_write_endio, stripe);
			bbio->bio.bi_iter.bi_sector = (stripe->logical +
				(sector_nr << fs_info->sectorsize_bits)) >>
				SECTOR_SHIFT;
		}
		ret = bio_add_page(&bbio->bio, page, fs_info->sectorsize, pgoff);
		ASSERT(ret == fs_info->sectorsize);
	}
1221 1222
	if (bbio)
		scrub_submit_write_bio(sctx, stripe, bbio, dev_replace);
1223 1224
}

1225 1226 1227 1228
/*
 * Throttling of IO submission, bandwidth-limit based, the timeslice is 1
 * second.  Limit can be set via /sys/fs/UUID/devinfo/devid/scrub_speed_max.
 */
1229 1230
static void scrub_throttle_dev_io(struct scrub_ctx *sctx, struct btrfs_device *device,
				  unsigned int bio_size)
1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258
{
	const int time_slice = 1000;
	s64 delta;
	ktime_t now;
	u32 div;
	u64 bwlimit;

	bwlimit = READ_ONCE(device->scrub_speed_max);
	if (bwlimit == 0)
		return;

	/*
	 * Slice is divided into intervals when the IO is submitted, adjust by
	 * bwlimit and maximum of 64 intervals.
	 */
	div = max_t(u32, 1, (u32)(bwlimit / (16 * 1024 * 1024)));
	div = min_t(u32, 64, div);

	/* Start new epoch, set deadline */
	now = ktime_get();
	if (sctx->throttle_deadline == 0) {
		sctx->throttle_deadline = ktime_add_ms(now, time_slice / div);
		sctx->throttle_sent = 0;
	}

	/* Still in the time to send? */
	if (ktime_before(now, sctx->throttle_deadline)) {
		/* If current bio is within the limit, send it */
1259
		sctx->throttle_sent += bio_size;
1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280
		if (sctx->throttle_sent <= div_u64(bwlimit, div))
			return;

		/* We're over the limit, sleep until the rest of the slice */
		delta = ktime_ms_delta(sctx->throttle_deadline, now);
	} else {
		/* New request after deadline, start new epoch */
		delta = 0;
	}

	if (delta) {
		long timeout;

		timeout = div_u64(delta * HZ, 1000);
		schedule_timeout_interruptible(timeout);
	}

	/* Next call will start the deadline period */
	sctx->throttle_deadline = 0;
}

1281 1282 1283 1284 1285 1286 1287 1288
/*
 * Given a physical address, this will calculate it's
 * logical offset. if this is a parity stripe, it will return
 * the most left data stripe's logical offset.
 *
 * return 0 if it is a data stripe, 1 means parity stripe.
 */
static int get_raid56_logic_offset(u64 physical, int num,
1289 1290
				   struct map_lookup *map, u64 *offset,
				   u64 *stripe_start)
1291 1292 1293 1294
{
	int i;
	int j = 0;
	u64 last_offset;
1295
	const int data_stripes = nr_data_stripes(map);
1296

1297
	last_offset = (physical - map->stripes[num].physical) * data_stripes;
1298 1299 1300
	if (stripe_start)
		*stripe_start = last_offset;

1301
	*offset = last_offset;
1302
	for (i = 0; i < data_stripes; i++) {
1303 1304 1305 1306
		u32 stripe_nr;
		u32 stripe_index;
		u32 rot;

1307
		*offset = last_offset + btrfs_stripe_nr_to_offset(i);
1308

1309
		stripe_nr = (u32)(*offset >> BTRFS_STRIPE_LEN_SHIFT) / data_stripes;
1310 1311

		/* Work out the disk rotation on this stripe-set */
1312 1313
		rot = stripe_nr % map->num_stripes;
		stripe_nr /= map->num_stripes;
1314 1315
		/* calculate which stripe this data locates */
		rot += i;
1316
		stripe_index = rot % map->num_stripes;
1317 1318 1319 1320 1321
		if (stripe_index == num)
			return 0;
		if (stripe_index < num)
			j++;
	}
1322
	*offset = last_offset + btrfs_stripe_nr_to_offset(j);
1323 1324 1325
	return 1;
}

1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432
/*
 * Return 0 if the extent item range covers any byte of the range.
 * Return <0 if the extent item is before @search_start.
 * Return >0 if the extent item is after @start_start + @search_len.
 */
static int compare_extent_item_range(struct btrfs_path *path,
				     u64 search_start, u64 search_len)
{
	struct btrfs_fs_info *fs_info = path->nodes[0]->fs_info;
	u64 len;
	struct btrfs_key key;

	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
	ASSERT(key.type == BTRFS_EXTENT_ITEM_KEY ||
	       key.type == BTRFS_METADATA_ITEM_KEY);
	if (key.type == BTRFS_METADATA_ITEM_KEY)
		len = fs_info->nodesize;
	else
		len = key.offset;

	if (key.objectid + len <= search_start)
		return -1;
	if (key.objectid >= search_start + search_len)
		return 1;
	return 0;
}

/*
 * Locate one extent item which covers any byte in range
 * [@search_start, @search_start + @search_length)
 *
 * If the path is not initialized, we will initialize the search by doing
 * a btrfs_search_slot().
 * If the path is already initialized, we will use the path as the initial
 * slot, to avoid duplicated btrfs_search_slot() calls.
 *
 * NOTE: If an extent item starts before @search_start, we will still
 * return the extent item. This is for data extent crossing stripe boundary.
 *
 * Return 0 if we found such extent item, and @path will point to the extent item.
 * Return >0 if no such extent item can be found, and @path will be released.
 * Return <0 if hit fatal error, and @path will be released.
 */
static int find_first_extent_item(struct btrfs_root *extent_root,
				  struct btrfs_path *path,
				  u64 search_start, u64 search_len)
{
	struct btrfs_fs_info *fs_info = extent_root->fs_info;
	struct btrfs_key key;
	int ret;

	/* Continue using the existing path */
	if (path->nodes[0])
		goto search_forward;

	if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
		key.type = BTRFS_METADATA_ITEM_KEY;
	else
		key.type = BTRFS_EXTENT_ITEM_KEY;
	key.objectid = search_start;
	key.offset = (u64)-1;

	ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
	if (ret < 0)
		return ret;

	ASSERT(ret > 0);
	/*
	 * Here we intentionally pass 0 as @min_objectid, as there could be
	 * an extent item starting before @search_start.
	 */
	ret = btrfs_previous_extent_item(extent_root, path, 0);
	if (ret < 0)
		return ret;
	/*
	 * No matter whether we have found an extent item, the next loop will
	 * properly do every check on the key.
	 */
search_forward:
	while (true) {
		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
		if (key.objectid >= search_start + search_len)
			break;
		if (key.type != BTRFS_METADATA_ITEM_KEY &&
		    key.type != BTRFS_EXTENT_ITEM_KEY)
			goto next;

		ret = compare_extent_item_range(path, search_start, search_len);
		if (ret == 0)
			return ret;
		if (ret > 0)
			break;
next:
		path->slots[0]++;
		if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
			ret = btrfs_next_leaf(extent_root, path);
			if (ret) {
				/* Either no more item or fatal error */
				btrfs_release_path(path);
				return ret;
			}
		}
	}
	btrfs_release_path(path);
	return 1;
}

1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451
static void get_extent_info(struct btrfs_path *path, u64 *extent_start_ret,
			    u64 *size_ret, u64 *flags_ret, u64 *generation_ret)
{
	struct btrfs_key key;
	struct btrfs_extent_item *ei;

	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
	ASSERT(key.type == BTRFS_METADATA_ITEM_KEY ||
	       key.type == BTRFS_EXTENT_ITEM_KEY);
	*extent_start_ret = key.objectid;
	if (key.type == BTRFS_METADATA_ITEM_KEY)
		*size_ret = path->nodes[0]->fs_info->nodesize;
	else
		*size_ret = key.offset;
	ei = btrfs_item_ptr(path->nodes[0], path->slots[0], struct btrfs_extent_item);
	*flags_ret = btrfs_extent_flags(path->nodes[0], ei);
	*generation_ret = btrfs_extent_generation(path->nodes[0], ei);
}

1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475
static int sync_write_pointer_for_zoned(struct scrub_ctx *sctx, u64 logical,
					u64 physical, u64 physical_end)
{
	struct btrfs_fs_info *fs_info = sctx->fs_info;
	int ret = 0;

	if (!btrfs_is_zoned(fs_info))
		return 0;

	mutex_lock(&sctx->wr_lock);
	if (sctx->write_pointer < physical_end) {
		ret = btrfs_sync_zone_write_pointer(sctx->wr_tgtdev, logical,
						    physical,
						    sctx->write_pointer);
		if (ret)
			btrfs_err(fs_info,
				  "zoned: failed to recover write pointer");
	}
	mutex_unlock(&sctx->wr_lock);
	btrfs_dev_clear_zone_empty(sctx->wr_tgtdev, physical);

	return ret;
}

1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501
static void fill_one_extent_info(struct btrfs_fs_info *fs_info,
				 struct scrub_stripe *stripe,
				 u64 extent_start, u64 extent_len,
				 u64 extent_flags, u64 extent_gen)
{
	for (u64 cur_logical = max(stripe->logical, extent_start);
	     cur_logical < min(stripe->logical + BTRFS_STRIPE_LEN,
			       extent_start + extent_len);
	     cur_logical += fs_info->sectorsize) {
		const int nr_sector = (cur_logical - stripe->logical) >>
				      fs_info->sectorsize_bits;
		struct scrub_sector_verification *sector =
						&stripe->sectors[nr_sector];

		set_bit(nr_sector, &stripe->extent_sector_bitmap);
		if (extent_flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
			sector->is_metadata = true;
			sector->generation = extent_gen;
		}
	}
}

static void scrub_stripe_reset_bitmaps(struct scrub_stripe *stripe)
{
	stripe->extent_sector_bitmap = 0;
	stripe->init_error_bitmap = 0;
1502 1503 1504
	stripe->init_nr_io_errors = 0;
	stripe->init_nr_csum_errors = 0;
	stripe->init_nr_meta_errors = 0;
1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517
	stripe->error_bitmap = 0;
	stripe->io_error_bitmap = 0;
	stripe->csum_error_bitmap = 0;
	stripe->meta_error_bitmap = 0;
}

/*
 * Locate one stripe which has at least one extent in its range.
 *
 * Return 0 if found such stripe, and store its info into @stripe.
 * Return >0 if there is no such stripe in the specified range.
 * Return <0 for error.
 */
1518 1519 1520 1521 1522
static int scrub_find_fill_first_stripe(struct btrfs_block_group *bg,
					struct btrfs_device *dev, u64 physical,
					int mirror_num, u64 logical_start,
					u32 logical_len,
					struct scrub_stripe *stripe)
1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551
{
	struct btrfs_fs_info *fs_info = bg->fs_info;
	struct btrfs_root *extent_root = btrfs_extent_root(fs_info, bg->start);
	struct btrfs_root *csum_root = btrfs_csum_root(fs_info, bg->start);
	const u64 logical_end = logical_start + logical_len;
	struct btrfs_path path = { 0 };
	u64 cur_logical = logical_start;
	u64 stripe_end;
	u64 extent_start;
	u64 extent_len;
	u64 extent_flags;
	u64 extent_gen;
	int ret;

	memset(stripe->sectors, 0, sizeof(struct scrub_sector_verification) *
				   stripe->nr_sectors);
	scrub_stripe_reset_bitmaps(stripe);

	/* The range must be inside the bg. */
	ASSERT(logical_start >= bg->start && logical_end <= bg->start + bg->length);

	path.search_commit_root = 1;
	path.skip_locking = 1;

	ret = find_first_extent_item(extent_root, &path, logical_start, logical_len);
	/* Either error or not found. */
	if (ret)
		goto out;
	get_extent_info(&path, &extent_start, &extent_len, &extent_flags, &extent_gen);
1552 1553 1554 1555
	if (extent_flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
		stripe->nr_meta_extents++;
	if (extent_flags & BTRFS_EXTENT_FLAG_DATA)
		stripe->nr_data_extents++;
1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588
	cur_logical = max(extent_start, cur_logical);

	/*
	 * Round down to stripe boundary.
	 *
	 * The extra calculation against bg->start is to handle block groups
	 * whose logical bytenr is not BTRFS_STRIPE_LEN aligned.
	 */
	stripe->logical = round_down(cur_logical - bg->start, BTRFS_STRIPE_LEN) +
			  bg->start;
	stripe->physical = physical + stripe->logical - logical_start;
	stripe->dev = dev;
	stripe->bg = bg;
	stripe->mirror_num = mirror_num;
	stripe_end = stripe->logical + BTRFS_STRIPE_LEN - 1;

	/* Fill the first extent info into stripe->sectors[] array. */
	fill_one_extent_info(fs_info, stripe, extent_start, extent_len,
			     extent_flags, extent_gen);
	cur_logical = extent_start + extent_len;

	/* Fill the extent info for the remaining sectors. */
	while (cur_logical <= stripe_end) {
		ret = find_first_extent_item(extent_root, &path, cur_logical,
					     stripe_end - cur_logical + 1);
		if (ret < 0)
			goto out;
		if (ret > 0) {
			ret = 0;
			break;
		}
		get_extent_info(&path, &extent_start, &extent_len,
				&extent_flags, &extent_gen);
1589 1590 1591 1592
		if (extent_flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
			stripe->nr_meta_extents++;
		if (extent_flags & BTRFS_EXTENT_FLAG_DATA)
			stripe->nr_data_extents++;
1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630
		fill_one_extent_info(fs_info, stripe, extent_start, extent_len,
				     extent_flags, extent_gen);
		cur_logical = extent_start + extent_len;
	}

	/* Now fill the data csum. */
	if (bg->flags & BTRFS_BLOCK_GROUP_DATA) {
		int sector_nr;
		unsigned long csum_bitmap = 0;

		/* Csum space should have already been allocated. */
		ASSERT(stripe->csums);

		/*
		 * Our csum bitmap should be large enough, as BTRFS_STRIPE_LEN
		 * should contain at most 16 sectors.
		 */
		ASSERT(BITS_PER_LONG >= BTRFS_STRIPE_LEN >> fs_info->sectorsize_bits);

		ret = btrfs_lookup_csums_bitmap(csum_root, stripe->logical,
						stripe_end, stripe->csums,
						&csum_bitmap, true);
		if (ret < 0)
			goto out;
		if (ret > 0)
			ret = 0;

		for_each_set_bit(sector_nr, &csum_bitmap, stripe->nr_sectors) {
			stripe->sectors[sector_nr].csum = stripe->csums +
				sector_nr * fs_info->csum_size;
		}
	}
	set_bit(SCRUB_STRIPE_FLAG_INITIALIZED, &stripe->state);
out:
	btrfs_release_path(&path);
	return ret;
}

1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686
static void scrub_reset_stripe(struct scrub_stripe *stripe)
{
	scrub_stripe_reset_bitmaps(stripe);

	stripe->nr_meta_extents = 0;
	stripe->nr_data_extents = 0;
	stripe->state = 0;

	for (int i = 0; i < stripe->nr_sectors; i++) {
		stripe->sectors[i].is_metadata = false;
		stripe->sectors[i].csum = NULL;
		stripe->sectors[i].generation = 0;
	}
}

static void scrub_submit_initial_read(struct scrub_ctx *sctx,
				      struct scrub_stripe *stripe)
{
	struct btrfs_fs_info *fs_info = sctx->fs_info;
	struct btrfs_bio *bbio;
	int mirror = stripe->mirror_num;

	ASSERT(stripe->bg);
	ASSERT(stripe->mirror_num > 0);
	ASSERT(test_bit(SCRUB_STRIPE_FLAG_INITIALIZED, &stripe->state));

	bbio = btrfs_bio_alloc(SCRUB_STRIPE_PAGES, REQ_OP_READ, fs_info,
			       scrub_read_endio, stripe);

	/* Read the whole stripe. */
	bbio->bio.bi_iter.bi_sector = stripe->logical >> SECTOR_SHIFT;
	for (int i = 0; i < BTRFS_STRIPE_LEN >> PAGE_SHIFT; i++) {
		int ret;

		ret = bio_add_page(&bbio->bio, stripe->pages[i], PAGE_SIZE, 0);
		/* We should have allocated enough bio vectors. */
		ASSERT(ret == PAGE_SIZE);
	}
	atomic_inc(&stripe->pending_io);

	/*
	 * For dev-replace, either user asks to avoid the source dev, or
	 * the device is missing, we try the next mirror instead.
	 */
	if (sctx->is_dev_replace &&
	    (fs_info->dev_replace.cont_reading_from_srcdev_mode ==
	     BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID ||
	     !stripe->dev->bdev)) {
		int num_copies = btrfs_num_copies(fs_info, stripe->bg->start,
						  stripe->bg->length);

		mirror = calc_next_mirror(mirror, num_copies);
	}
	btrfs_submit_bio(bbio, mirror);
}

1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705
static bool stripe_has_metadata_error(struct scrub_stripe *stripe)
{
	int i;

	for_each_set_bit(i, &stripe->error_bitmap, stripe->nr_sectors) {
		if (stripe->sectors[i].is_metadata) {
			struct btrfs_fs_info *fs_info = stripe->bg->fs_info;

			btrfs_err(fs_info,
			"stripe %llu has unrepaired metadata sector at %llu",
				  stripe->logical,
				  stripe->logical + (i << fs_info->sectorsize_bits));
			return true;
		}
	}
	return false;
}

static int flush_scrub_stripes(struct scrub_ctx *sctx)
1706 1707 1708 1709
{
	struct btrfs_fs_info *fs_info = sctx->fs_info;
	struct scrub_stripe *stripe;
	const int nr_stripes = sctx->cur_stripe;
1710
	int ret = 0;
1711 1712

	if (!nr_stripes)
1713
		return 0;
1714 1715

	ASSERT(test_bit(SCRUB_STRIPE_FLAG_INITIALIZED, &sctx->stripes[0].state));
1716 1717

	scrub_throttle_dev_io(sctx, sctx->stripes[0].dev,
1718
			      btrfs_stripe_nr_to_offset(nr_stripes));
1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744
	for (int i = 0; i < nr_stripes; i++) {
		stripe = &sctx->stripes[i];
		scrub_submit_initial_read(sctx, stripe);
	}

	for (int i = 0; i < nr_stripes; i++) {
		stripe = &sctx->stripes[i];

		wait_event(stripe->repair_wait,
			   test_bit(SCRUB_STRIPE_FLAG_REPAIR_DONE, &stripe->state));
	}

	/*
	 * Submit the repaired sectors.  For zoned case, we cannot do repair
	 * in-place, but queue the bg to be relocated.
	 */
	if (btrfs_is_zoned(fs_info)) {
		for (int i = 0; i < nr_stripes; i++) {
			stripe = &sctx->stripes[i];

			if (!bitmap_empty(&stripe->error_bitmap, stripe->nr_sectors)) {
				btrfs_repair_one_zone(fs_info,
						      sctx->stripes[0].bg->start);
				break;
			}
		}
1745
	} else if (!sctx->readonly) {
1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758
		for (int i = 0; i < nr_stripes; i++) {
			unsigned long repaired;

			stripe = &sctx->stripes[i];

			bitmap_andnot(&repaired, &stripe->init_error_bitmap,
				      &stripe->error_bitmap, stripe->nr_sectors);
			scrub_write_sectors(sctx, stripe, repaired, false);
		}
	}

	/* Submit for dev-replace. */
	if (sctx->is_dev_replace) {
1759 1760 1761 1762 1763 1764 1765 1766 1767 1768
		/*
		 * For dev-replace, if we know there is something wrong with
		 * metadata, we should immedately abort.
		 */
		for (int i = 0; i < nr_stripes; i++) {
			if (stripe_has_metadata_error(&sctx->stripes[i])) {
				ret = -EIO;
				goto out;
			}
		}
1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788
		for (int i = 0; i < nr_stripes; i++) {
			unsigned long good;

			stripe = &sctx->stripes[i];

			ASSERT(stripe->dev == fs_info->dev_replace.srcdev);

			bitmap_andnot(&good, &stripe->extent_sector_bitmap,
				      &stripe->error_bitmap, stripe->nr_sectors);
			scrub_write_sectors(sctx, stripe, good, true);
		}
	}

	/* Wait for the above writebacks to finish. */
	for (int i = 0; i < nr_stripes; i++) {
		stripe = &sctx->stripes[i];

		wait_scrub_stripe_io(stripe);
		scrub_reset_stripe(stripe);
	}
1789
out:
1790
	sctx->cur_stripe = 0;
1791
	return ret;
1792 1793
}

1794 1795 1796 1797 1798
static void raid56_scrub_wait_endio(struct bio *bio)
{
	complete(bio->bi_private);
}

1799 1800 1801
static int queue_scrub_stripe(struct scrub_ctx *sctx, struct btrfs_block_group *bg,
			      struct btrfs_device *dev, int mirror_num,
			      u64 logical, u32 length, u64 physical)
1802 1803 1804 1805 1806
{
	struct scrub_stripe *stripe;
	int ret;

	/* No available slot, submit all stripes and wait for them. */
1807 1808 1809 1810 1811
	if (sctx->cur_stripe >= SCRUB_STRIPES_PER_SCTX) {
		ret = flush_scrub_stripes(sctx);
		if (ret < 0)
			return ret;
	}
1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825

	stripe = &sctx->stripes[sctx->cur_stripe];

	/* We can queue one stripe using the remaining slot. */
	scrub_reset_stripe(stripe);
	ret = scrub_find_fill_first_stripe(bg, dev, physical, mirror_num,
					   logical, length, stripe);
	/* Either >0 as no more extents or <0 for error. */
	if (ret)
		return ret;
	sctx->cur_stripe++;
	return 0;
}

1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840
static int scrub_raid56_parity_stripe(struct scrub_ctx *sctx,
				      struct btrfs_device *scrub_dev,
				      struct btrfs_block_group *bg,
				      struct map_lookup *map,
				      u64 full_stripe_start)
{
	DECLARE_COMPLETION_ONSTACK(io_done);
	struct btrfs_fs_info *fs_info = sctx->fs_info;
	struct btrfs_raid_bio *rbio;
	struct btrfs_io_context *bioc = NULL;
	struct bio *bio;
	struct scrub_stripe *stripe;
	bool all_empty = true;
	const int data_stripes = nr_data_stripes(map);
	unsigned long extent_bitmap = 0;
1841
	u64 length = btrfs_stripe_nr_to_offset(data_stripes);
1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855
	int ret;

	ASSERT(sctx->raid56_data_stripes);

	for (int i = 0; i < data_stripes; i++) {
		int stripe_index;
		int rot;
		u64 physical;

		stripe = &sctx->raid56_data_stripes[i];
		rot = div_u64(full_stripe_start - bg->start,
			      data_stripes) >> BTRFS_STRIPE_LEN_SHIFT;
		stripe_index = (i + rot) % map->num_stripes;
		physical = map->stripes[stripe_index].physical +
1856
			   btrfs_stripe_nr_to_offset(rot);
1857 1858 1859 1860 1861

		scrub_reset_stripe(stripe);
		set_bit(SCRUB_STRIPE_FLAG_NO_REPORT, &stripe->state);
		ret = scrub_find_fill_first_stripe(bg,
				map->stripes[stripe_index].dev, physical, 1,
1862
				full_stripe_start + btrfs_stripe_nr_to_offset(i),
1863 1864 1865 1866 1867 1868 1869 1870 1871
				BTRFS_STRIPE_LEN, stripe);
		if (ret < 0)
			goto out;
		/*
		 * No extent in this data stripe, need to manually mark them
		 * initialized to make later read submission happy.
		 */
		if (ret > 0) {
			stripe->logical = full_stripe_start +
1872
					  btrfs_stripe_nr_to_offset(i);
1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984
			stripe->dev = map->stripes[stripe_index].dev;
			stripe->mirror_num = 1;
			set_bit(SCRUB_STRIPE_FLAG_INITIALIZED, &stripe->state);
		}
	}

	/* Check if all data stripes are empty. */
	for (int i = 0; i < data_stripes; i++) {
		stripe = &sctx->raid56_data_stripes[i];
		if (!bitmap_empty(&stripe->extent_sector_bitmap, stripe->nr_sectors)) {
			all_empty = false;
			break;
		}
	}
	if (all_empty) {
		ret = 0;
		goto out;
	}

	for (int i = 0; i < data_stripes; i++) {
		stripe = &sctx->raid56_data_stripes[i];
		scrub_submit_initial_read(sctx, stripe);
	}
	for (int i = 0; i < data_stripes; i++) {
		stripe = &sctx->raid56_data_stripes[i];

		wait_event(stripe->repair_wait,
			   test_bit(SCRUB_STRIPE_FLAG_REPAIR_DONE, &stripe->state));
	}
	/* For now, no zoned support for RAID56. */
	ASSERT(!btrfs_is_zoned(sctx->fs_info));

	/* Writeback for the repaired sectors. */
	for (int i = 0; i < data_stripes; i++) {
		unsigned long repaired;

		stripe = &sctx->raid56_data_stripes[i];

		bitmap_andnot(&repaired, &stripe->init_error_bitmap,
			      &stripe->error_bitmap, stripe->nr_sectors);
		scrub_write_sectors(sctx, stripe, repaired, false);
	}

	/* Wait for the above writebacks to finish. */
	for (int i = 0; i < data_stripes; i++) {
		stripe = &sctx->raid56_data_stripes[i];

		wait_scrub_stripe_io(stripe);
	}

	/*
	 * Now all data stripes are properly verified. Check if we have any
	 * unrepaired, if so abort immediately or we could further corrupt the
	 * P/Q stripes.
	 *
	 * During the loop, also populate extent_bitmap.
	 */
	for (int i = 0; i < data_stripes; i++) {
		unsigned long error;

		stripe = &sctx->raid56_data_stripes[i];

		/*
		 * We should only check the errors where there is an extent.
		 * As we may hit an empty data stripe while it's missing.
		 */
		bitmap_and(&error, &stripe->error_bitmap,
			   &stripe->extent_sector_bitmap, stripe->nr_sectors);
		if (!bitmap_empty(&error, stripe->nr_sectors)) {
			btrfs_err(fs_info,
"unrepaired sectors detected, full stripe %llu data stripe %u errors %*pbl",
				  full_stripe_start, i, stripe->nr_sectors,
				  &error);
			ret = -EIO;
			goto out;
		}
		bitmap_or(&extent_bitmap, &extent_bitmap,
			  &stripe->extent_sector_bitmap, stripe->nr_sectors);
	}

	/* Now we can check and regenerate the P/Q stripe. */
	bio = bio_alloc(NULL, 1, REQ_OP_READ, GFP_NOFS);
	bio->bi_iter.bi_sector = full_stripe_start >> SECTOR_SHIFT;
	bio->bi_private = &io_done;
	bio->bi_end_io = raid56_scrub_wait_endio;

	btrfs_bio_counter_inc_blocked(fs_info);
	ret = btrfs_map_sblock(fs_info, BTRFS_MAP_WRITE, full_stripe_start,
			       &length, &bioc);
	if (ret < 0) {
		btrfs_put_bioc(bioc);
		btrfs_bio_counter_dec(fs_info);
		goto out;
	}
	rbio = raid56_parity_alloc_scrub_rbio(bio, bioc, scrub_dev, &extent_bitmap,
				BTRFS_STRIPE_LEN >> fs_info->sectorsize_bits);
	btrfs_put_bioc(bioc);
	if (!rbio) {
		ret = -ENOMEM;
		btrfs_bio_counter_dec(fs_info);
		goto out;
	}
	raid56_parity_submit_scrub_rbio(rbio);
	wait_for_completion_io(&io_done);
	ret = blk_status_to_errno(bio->bi_status);
	bio_put(bio);
	btrfs_bio_counter_dec(fs_info);

out:
	return ret;
}

1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013
/*
 * Scrub one range which can only has simple mirror based profile.
 * (Including all range in SINGLE/DUP/RAID1/RAID1C*, and each stripe in
 *  RAID0/RAID10).
 *
 * Since we may need to handle a subset of block group, we need @logical_start
 * and @logical_length parameter.
 */
static int scrub_simple_mirror(struct scrub_ctx *sctx,
			       struct btrfs_block_group *bg,
			       struct map_lookup *map,
			       u64 logical_start, u64 logical_length,
			       struct btrfs_device *device,
			       u64 physical, int mirror_num)
{
	struct btrfs_fs_info *fs_info = sctx->fs_info;
	const u64 logical_end = logical_start + logical_length;
	/* An artificial limit, inherit from old scrub behavior */
	struct btrfs_path path = { 0 };
	u64 cur_logical = logical_start;
	int ret;

	/* The range must be inside the bg */
	ASSERT(logical_start >= bg->start && logical_end <= bg->start + bg->length);

	path.search_commit_root = 1;
	path.skip_locking = 1;
	/* Go through each extent items inside the logical range */
	while (cur_logical < logical_end) {
2014
		u64 cur_physical = physical + cur_logical - logical_start;
2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028

		/* Canceled? */
		if (atomic_read(&fs_info->scrub_cancel_req) ||
		    atomic_read(&sctx->cancel_req)) {
			ret = -ECANCELED;
			break;
		}
		/* Paused? */
		if (atomic_read(&fs_info->scrub_pause_req)) {
			/* Push queued extents */
			scrub_blocked_if_needed(fs_info);
		}
		/* Block group removed? */
		spin_lock(&bg->lock);
2029
		if (test_bit(BLOCK_GROUP_FLAG_REMOVED, &bg->runtime_flags)) {
2030 2031 2032 2033 2034 2035
			spin_unlock(&bg->lock);
			ret = 0;
			break;
		}
		spin_unlock(&bg->lock);

2036 2037 2038
		ret = queue_scrub_stripe(sctx, bg, device, mirror_num,
					 cur_logical, logical_end - cur_logical,
					 cur_physical);
2039 2040 2041 2042 2043 2044 2045 2046 2047
		if (ret > 0) {
			/* No more extent, just update the accounting */
			sctx->stat.last_physical = physical + logical_length;
			ret = 0;
			break;
		}
		if (ret < 0)
			break;

2048 2049 2050 2051
		ASSERT(sctx->cur_stripe > 0);
		cur_logical = sctx->stripes[sctx->cur_stripe - 1].logical
			      + BTRFS_STRIPE_LEN;

2052 2053 2054 2055 2056 2057 2058
		/* Don't hold CPU for too long time */
		cond_resched();
	}
	btrfs_release_path(&path);
	return ret;
}

2059 2060 2061 2062 2063 2064
/* Calculate the full stripe length for simple stripe based profiles */
static u64 simple_stripe_full_stripe_len(const struct map_lookup *map)
{
	ASSERT(map->type & (BTRFS_BLOCK_GROUP_RAID0 |
			    BTRFS_BLOCK_GROUP_RAID10));

2065
	return btrfs_stripe_nr_to_offset(map->num_stripes / map->sub_stripes);
2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080
}

/* Get the logical bytenr for the stripe */
static u64 simple_stripe_get_logical(struct map_lookup *map,
				     struct btrfs_block_group *bg,
				     int stripe_index)
{
	ASSERT(map->type & (BTRFS_BLOCK_GROUP_RAID0 |
			    BTRFS_BLOCK_GROUP_RAID10));
	ASSERT(stripe_index < map->num_stripes);

	/*
	 * (stripe_index / sub_stripes) gives how many data stripes we need to
	 * skip.
	 */
2081
	return btrfs_stripe_nr_to_offset(stripe_index / map->sub_stripes) +
2082
	       bg->start;
2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115
}

/* Get the mirror number for the stripe */
static int simple_stripe_mirror_num(struct map_lookup *map, int stripe_index)
{
	ASSERT(map->type & (BTRFS_BLOCK_GROUP_RAID0 |
			    BTRFS_BLOCK_GROUP_RAID10));
	ASSERT(stripe_index < map->num_stripes);

	/* For RAID0, it's fixed to 1, for RAID10 it's 0,1,0,1... */
	return stripe_index % map->sub_stripes + 1;
}

static int scrub_simple_stripe(struct scrub_ctx *sctx,
			       struct btrfs_block_group *bg,
			       struct map_lookup *map,
			       struct btrfs_device *device,
			       int stripe_index)
{
	const u64 logical_increment = simple_stripe_full_stripe_len(map);
	const u64 orig_logical = simple_stripe_get_logical(map, bg, stripe_index);
	const u64 orig_physical = map->stripes[stripe_index].physical;
	const int mirror_num = simple_stripe_mirror_num(map, stripe_index);
	u64 cur_logical = orig_logical;
	u64 cur_physical = orig_physical;
	int ret = 0;

	while (cur_logical < bg->start + bg->length) {
		/*
		 * Inside each stripe, RAID0 is just SINGLE, and RAID10 is
		 * just RAID1, so we can reuse scrub_simple_mirror() to scrub
		 * this stripe.
		 */
2116 2117 2118
		ret = scrub_simple_mirror(sctx, bg, map, cur_logical,
					  BTRFS_STRIPE_LEN, device, cur_physical,
					  mirror_num);
2119 2120 2121 2122 2123
		if (ret)
			return ret;
		/* Skip to next stripe which belongs to the target device */
		cur_logical += logical_increment;
		/* For physical offset, we just go to next stripe */
2124
		cur_physical += BTRFS_STRIPE_LEN;
2125 2126 2127 2128
	}
	return ret;
}

2129
static noinline_for_stack int scrub_stripe(struct scrub_ctx *sctx,
2130
					   struct btrfs_block_group *bg,
2131
					   struct extent_map *em,
2132
					   struct btrfs_device *scrub_dev,
2133
					   int stripe_index)
A
Arne Jansen 已提交
2134
{
2135
	struct btrfs_fs_info *fs_info = sctx->fs_info;
2136
	struct map_lookup *map = em->map_lookup;
2137
	const u64 profile = map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK;
2138
	const u64 chunk_logical = bg->start;
A
Arne Jansen 已提交
2139
	int ret;
2140
	int ret2;
2141
	u64 physical = map->stripes[stripe_index].physical;
2142 2143
	const u64 dev_stripe_len = btrfs_calc_stripe_length(em);
	const u64 physical_end = physical + dev_stripe_len;
A
Arne Jansen 已提交
2144
	u64 logical;
L
Liu Bo 已提交
2145
	u64 logic_end;
2146
	/* The logical increment after finishing one stripe */
2147
	u64 increment;
2148
	/* Offset inside the chunk */
A
Arne Jansen 已提交
2149
	u64 offset;
2150
	u64 stripe_logical;
2151
	int stop_loop = 0;
D
David Woodhouse 已提交
2152

2153
	scrub_blocked_if_needed(fs_info);
A
Arne Jansen 已提交
2154

2155 2156 2157 2158 2159 2160 2161
	if (sctx->is_dev_replace &&
	    btrfs_dev_is_sequential(sctx->wr_tgtdev, physical)) {
		mutex_lock(&sctx->wr_lock);
		sctx->write_pointer = physical;
		mutex_unlock(&sctx->wr_lock);
	}

2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181
	/* Prepare the extra data stripes used by RAID56. */
	if (profile & BTRFS_BLOCK_GROUP_RAID56_MASK) {
		ASSERT(sctx->raid56_data_stripes == NULL);

		sctx->raid56_data_stripes = kcalloc(nr_data_stripes(map),
						    sizeof(struct scrub_stripe),
						    GFP_KERNEL);
		if (!sctx->raid56_data_stripes) {
			ret = -ENOMEM;
			goto out;
		}
		for (int i = 0; i < nr_data_stripes(map); i++) {
			ret = init_scrub_stripe(fs_info,
						&sctx->raid56_data_stripes[i]);
			if (ret < 0)
				goto out;
			sctx->raid56_data_stripes[i].bg = bg;
			sctx->raid56_data_stripes[i].sctx = sctx;
		}
	}
2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198
	/*
	 * There used to be a big double loop to handle all profiles using the
	 * same routine, which grows larger and more gross over time.
	 *
	 * So here we handle each profile differently, so simpler profiles
	 * have simpler scrubbing function.
	 */
	if (!(profile & (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID10 |
			 BTRFS_BLOCK_GROUP_RAID56_MASK))) {
		/*
		 * Above check rules out all complex profile, the remaining
		 * profiles are SINGLE|DUP|RAID1|RAID1C*, which is simple
		 * mirrored duplication without stripe.
		 *
		 * Only @physical and @mirror_num needs to calculated using
		 * @stripe_index.
		 */
2199 2200
		ret = scrub_simple_mirror(sctx, bg, map, bg->start, bg->length,
				scrub_dev, map->stripes[stripe_index].physical,
2201
				stripe_index + 1);
2202
		offset = 0;
2203 2204
		goto out;
	}
2205
	if (profile & (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID10)) {
2206
		ret = scrub_simple_stripe(sctx, bg, map, scrub_dev, stripe_index);
2207
		offset = btrfs_stripe_nr_to_offset(stripe_index / map->sub_stripes);
2208 2209 2210 2211 2212
		goto out;
	}

	/* Only RAID56 goes through the old code */
	ASSERT(map->type & BTRFS_BLOCK_GROUP_RAID56_MASK);
A
Arne Jansen 已提交
2213
	ret = 0;
2214 2215 2216 2217 2218 2219 2220 2221

	/* Calculate the logical end of the stripe */
	get_raid56_logic_offset(physical_end, stripe_index,
				map, &logic_end, NULL);
	logic_end += chunk_logical;

	/* Initialize @offset in case we need to go to out: label */
	get_raid56_logic_offset(physical, stripe_index, map, &offset, NULL);
2222
	increment = btrfs_stripe_nr_to_offset(nr_data_stripes(map));
2223

2224 2225 2226 2227
	/*
	 * Due to the rotation, for RAID56 it's better to iterate each stripe
	 * using their physical offset.
	 */
2228
	while (physical < physical_end) {
2229 2230
		ret = get_raid56_logic_offset(physical, stripe_index, map,
					      &logical, &stripe_logical);
2231 2232 2233 2234
		logical += chunk_logical;
		if (ret) {
			/* it is parity strip */
			stripe_logical += chunk_logical;
2235 2236
			ret = scrub_raid56_parity_stripe(sctx, scrub_dev, bg,
							 map, stripe_logical);
2237 2238
			if (ret)
				goto out;
2239
			goto next;
2240 2241
		}

2242 2243 2244 2245 2246 2247 2248 2249
		/*
		 * Now we're at a data stripe, scrub each extents in the range.
		 *
		 * At this stage, if we ignore the repair part, inside each data
		 * stripe it is no different than SINGLE profile.
		 * We can reuse scrub_simple_mirror() here, as the repair part
		 * is still based on @mirror_num.
		 */
2250
		ret = scrub_simple_mirror(sctx, bg, map, logical, BTRFS_STRIPE_LEN,
2251
					  scrub_dev, physical, 1);
A
Arne Jansen 已提交
2252 2253 2254 2255
		if (ret < 0)
			goto out;
next:
		logical += increment;
2256
		physical += BTRFS_STRIPE_LEN;
2257
		spin_lock(&sctx->stat_lock);
L
Liu Bo 已提交
2258
		if (stop_loop)
2259 2260
			sctx->stat.last_physical =
				map->stripes[stripe_index].physical + dev_stripe_len;
L
Liu Bo 已提交
2261 2262
		else
			sctx->stat.last_physical = physical;
2263
		spin_unlock(&sctx->stat_lock);
L
Liu Bo 已提交
2264 2265
		if (stop_loop)
			break;
A
Arne Jansen 已提交
2266
	}
2267
out:
2268
	ret2 = flush_scrub_stripes(sctx);
2269
	if (!ret)
2270
		ret = ret2;
2271 2272 2273 2274 2275 2276
	if (sctx->raid56_data_stripes) {
		for (int i = 0; i < nr_data_stripes(map); i++)
			release_scrub_stripe(&sctx->raid56_data_stripes[i]);
		kfree(sctx->raid56_data_stripes);
		sctx->raid56_data_stripes = NULL;
	}
2277 2278 2279 2280

	if (sctx->is_dev_replace && ret >= 0) {
		int ret2;

2281 2282 2283 2284
		ret2 = sync_write_pointer_for_zoned(sctx,
				chunk_logical + offset,
				map->stripes[stripe_index].physical,
				physical_end);
2285 2286 2287 2288
		if (ret2)
			ret = ret2;
	}

A
Arne Jansen 已提交
2289 2290 2291
	return ret < 0 ? ret : 0;
}

2292
static noinline_for_stack int scrub_chunk(struct scrub_ctx *sctx,
2293
					  struct btrfs_block_group *bg,
2294
					  struct btrfs_device *scrub_dev,
2295
					  u64 dev_offset,
2296
					  u64 dev_extent_len)
A
Arne Jansen 已提交
2297
{
2298
	struct btrfs_fs_info *fs_info = sctx->fs_info;
2299
	struct extent_map_tree *map_tree = &fs_info->mapping_tree;
A
Arne Jansen 已提交
2300 2301 2302
	struct map_lookup *map;
	struct extent_map *em;
	int i;
2303
	int ret = 0;
A
Arne Jansen 已提交
2304

2305
	read_lock(&map_tree->lock);
2306
	em = lookup_extent_mapping(map_tree, bg->start, bg->length);
2307
	read_unlock(&map_tree->lock);
A
Arne Jansen 已提交
2308

2309 2310 2311 2312 2313
	if (!em) {
		/*
		 * Might have been an unused block group deleted by the cleaner
		 * kthread or relocation.
		 */
2314
		spin_lock(&bg->lock);
2315
		if (!test_bit(BLOCK_GROUP_FLAG_REMOVED, &bg->runtime_flags))
2316
			ret = -EINVAL;
2317
		spin_unlock(&bg->lock);
2318 2319 2320

		return ret;
	}
2321
	if (em->start != bg->start)
A
Arne Jansen 已提交
2322
		goto out;
2323
	if (em->len < dev_extent_len)
A
Arne Jansen 已提交
2324 2325
		goto out;

2326
	map = em->map_lookup;
A
Arne Jansen 已提交
2327
	for (i = 0; i < map->num_stripes; ++i) {
2328
		if (map->stripes[i].dev->bdev == scrub_dev->bdev &&
2329
		    map->stripes[i].physical == dev_offset) {
2330
			ret = scrub_stripe(sctx, bg, em, scrub_dev, i);
A
Arne Jansen 已提交
2331 2332 2333 2334 2335 2336 2337 2338 2339 2340
			if (ret)
				goto out;
		}
	}
out:
	free_extent_map(em);

	return ret;
}

2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359
static int finish_extent_writes_for_zoned(struct btrfs_root *root,
					  struct btrfs_block_group *cache)
{
	struct btrfs_fs_info *fs_info = cache->fs_info;
	struct btrfs_trans_handle *trans;

	if (!btrfs_is_zoned(fs_info))
		return 0;

	btrfs_wait_block_group_reservations(cache);
	btrfs_wait_nocow_writers(cache);
	btrfs_wait_ordered_roots(fs_info, U64_MAX, cache->start, cache->length);

	trans = btrfs_join_transaction(root);
	if (IS_ERR(trans))
		return PTR_ERR(trans);
	return btrfs_commit_transaction(trans);
}

A
Arne Jansen 已提交
2360
static noinline_for_stack
2361
int scrub_enumerate_chunks(struct scrub_ctx *sctx,
2362
			   struct btrfs_device *scrub_dev, u64 start, u64 end)
A
Arne Jansen 已提交
2363 2364 2365
{
	struct btrfs_dev_extent *dev_extent = NULL;
	struct btrfs_path *path;
2366 2367
	struct btrfs_fs_info *fs_info = sctx->fs_info;
	struct btrfs_root *root = fs_info->dev_root;
A
Arne Jansen 已提交
2368
	u64 chunk_offset;
2369
	int ret = 0;
2370
	int ro_set;
A
Arne Jansen 已提交
2371 2372 2373 2374
	int slot;
	struct extent_buffer *l;
	struct btrfs_key key;
	struct btrfs_key found_key;
2375
	struct btrfs_block_group *cache;
2376
	struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
A
Arne Jansen 已提交
2377 2378 2379 2380 2381

	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;

2382
	path->reada = READA_FORWARD;
A
Arne Jansen 已提交
2383 2384 2385
	path->search_commit_root = 1;
	path->skip_locking = 1;

2386
	key.objectid = scrub_dev->devid;
A
Arne Jansen 已提交
2387 2388 2389 2390
	key.offset = 0ull;
	key.type = BTRFS_DEV_EXTENT_KEY;

	while (1) {
2391 2392
		u64 dev_extent_len;

A
Arne Jansen 已提交
2393 2394
		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
		if (ret < 0)
2395 2396 2397 2398 2399
			break;
		if (ret > 0) {
			if (path->slots[0] >=
			    btrfs_header_nritems(path->nodes[0])) {
				ret = btrfs_next_leaf(root, path);
2400 2401 2402 2403
				if (ret < 0)
					break;
				if (ret > 0) {
					ret = 0;
2404
					break;
2405 2406 2407
				}
			} else {
				ret = 0;
2408 2409
			}
		}
A
Arne Jansen 已提交
2410 2411 2412 2413 2414 2415

		l = path->nodes[0];
		slot = path->slots[0];

		btrfs_item_key_to_cpu(l, &found_key, slot);

2416
		if (found_key.objectid != scrub_dev->devid)
A
Arne Jansen 已提交
2417 2418
			break;

2419
		if (found_key.type != BTRFS_DEV_EXTENT_KEY)
A
Arne Jansen 已提交
2420 2421 2422 2423 2424 2425 2426 2427 2428
			break;

		if (found_key.offset >= end)
			break;

		if (found_key.offset < key.offset)
			break;

		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
2429
		dev_extent_len = btrfs_dev_extent_length(l, dev_extent);
A
Arne Jansen 已提交
2430

2431
		if (found_key.offset + dev_extent_len <= start)
2432
			goto skip;
A
Arne Jansen 已提交
2433 2434 2435 2436 2437 2438 2439 2440

		chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);

		/*
		 * get a reference on the corresponding block group to prevent
		 * the chunk from going away while we scrub it
		 */
		cache = btrfs_lookup_block_group(fs_info, chunk_offset);
2441 2442 2443 2444 2445 2446

		/* some chunks are removed but not committed to disk yet,
		 * continue scrubbing */
		if (!cache)
			goto skip;

2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471
		ASSERT(cache->start <= chunk_offset);
		/*
		 * We are using the commit root to search for device extents, so
		 * that means we could have found a device extent item from a
		 * block group that was deleted in the current transaction. The
		 * logical start offset of the deleted block group, stored at
		 * @chunk_offset, might be part of the logical address range of
		 * a new block group (which uses different physical extents).
		 * In this case btrfs_lookup_block_group() has returned the new
		 * block group, and its start address is less than @chunk_offset.
		 *
		 * We skip such new block groups, because it's pointless to
		 * process them, as we won't find their extents because we search
		 * for them using the commit root of the extent tree. For a device
		 * replace it's also fine to skip it, we won't miss copying them
		 * to the target device because we have the write duplication
		 * setup through the regular write path (by btrfs_map_block()),
		 * and we have committed a transaction when we started the device
		 * replace, right after setting up the device replace state.
		 */
		if (cache->start < chunk_offset) {
			btrfs_put_block_group(cache);
			goto skip;
		}

2472
		if (sctx->is_dev_replace && btrfs_is_zoned(fs_info)) {
2473
			if (!test_bit(BLOCK_GROUP_FLAG_TO_COPY, &cache->runtime_flags)) {
2474 2475
				btrfs_put_block_group(cache);
				goto skip;
2476 2477 2478
			}
		}

2479 2480 2481 2482 2483 2484 2485 2486 2487
		/*
		 * Make sure that while we are scrubbing the corresponding block
		 * group doesn't get its logical address and its device extents
		 * reused for another block group, which can possibly be of a
		 * different type and different profile. We do this to prevent
		 * false error detections and crashes due to bogus attempts to
		 * repair extents.
		 */
		spin_lock(&cache->lock);
2488
		if (test_bit(BLOCK_GROUP_FLAG_REMOVED, &cache->runtime_flags)) {
2489 2490 2491 2492
			spin_unlock(&cache->lock);
			btrfs_put_block_group(cache);
			goto skip;
		}
2493
		btrfs_freeze_block_group(cache);
2494 2495
		spin_unlock(&cache->lock);

2496 2497 2498 2499 2500 2501 2502 2503 2504
		/*
		 * we need call btrfs_inc_block_group_ro() with scrubs_paused,
		 * to avoid deadlock caused by:
		 * btrfs_inc_block_group_ro()
		 * -> btrfs_wait_for_commit()
		 * -> btrfs_commit_transaction()
		 * -> btrfs_scrub_pause()
		 */
		scrub_pause_on(fs_info);
2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522

		/*
		 * Don't do chunk preallocation for scrub.
		 *
		 * This is especially important for SYSTEM bgs, or we can hit
		 * -EFBIG from btrfs_finish_chunk_alloc() like:
		 * 1. The only SYSTEM bg is marked RO.
		 *    Since SYSTEM bg is small, that's pretty common.
		 * 2. New SYSTEM bg will be allocated
		 *    Due to regular version will allocate new chunk.
		 * 3. New SYSTEM bg is empty and will get cleaned up
		 *    Before cleanup really happens, it's marked RO again.
		 * 4. Empty SYSTEM bg get scrubbed
		 *    We go back to 2.
		 *
		 * This can easily boost the amount of SYSTEM chunks if cleaner
		 * thread can't be triggered fast enough, and use up all space
		 * of btrfs_super_block::sys_chunk_array
2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534
		 *
		 * While for dev replace, we need to try our best to mark block
		 * group RO, to prevent race between:
		 * - Write duplication
		 *   Contains latest data
		 * - Scrub copy
		 *   Contains data from commit tree
		 *
		 * If target block group is not marked RO, nocow writes can
		 * be overwritten by scrub copy, causing data corruption.
		 * So for dev-replace, it's not allowed to continue if a block
		 * group is not RO.
2535
		 */
2536
		ret = btrfs_inc_block_group_ro(cache, sctx->is_dev_replace);
2537 2538 2539 2540 2541 2542 2543 2544 2545 2546
		if (!ret && sctx->is_dev_replace) {
			ret = finish_extent_writes_for_zoned(root, cache);
			if (ret) {
				btrfs_dec_block_group_ro(cache);
				scrub_pause_off(fs_info);
				btrfs_put_block_group(cache);
				break;
			}
		}

2547 2548
		if (ret == 0) {
			ro_set = 1;
2549 2550
		} else if (ret == -ENOSPC && !sctx->is_dev_replace &&
			   !(cache->flags & BTRFS_BLOCK_GROUP_RAID56_MASK)) {
2551 2552 2553
			/*
			 * btrfs_inc_block_group_ro return -ENOSPC when it
			 * failed in creating new chunk for metadata.
2554
			 * It is not a problem for scrub, because
2555 2556
			 * metadata are always cowed, and our scrub paused
			 * commit_transactions.
2557 2558 2559 2560 2561 2562
			 *
			 * For RAID56 chunks, we have to mark them read-only
			 * for scrub, as later we would use our own cache
			 * out of RAID56 realm.
			 * Thus we want the RAID56 bg to be marked RO to
			 * prevent RMW from screwing up out cache.
2563 2564
			 */
			ro_set = 0;
2565 2566 2567 2568 2569 2570 2571
		} else if (ret == -ETXTBSY) {
			btrfs_warn(fs_info,
		   "skipping scrub of block group %llu due to active swapfile",
				   cache->start);
			scrub_pause_off(fs_info);
			ret = 0;
			goto skip_unfreeze;
2572
		} else {
J
Jeff Mahoney 已提交
2573
			btrfs_warn(fs_info,
2574
				   "failed setting block group ro: %d", ret);
2575
			btrfs_unfreeze_block_group(cache);
2576
			btrfs_put_block_group(cache);
2577
			scrub_pause_off(fs_info);
2578 2579 2580
			break;
		}

2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592
		/*
		 * Now the target block is marked RO, wait for nocow writes to
		 * finish before dev-replace.
		 * COW is fine, as COW never overwrites extents in commit tree.
		 */
		if (sctx->is_dev_replace) {
			btrfs_wait_nocow_writers(cache);
			btrfs_wait_ordered_roots(fs_info, U64_MAX, cache->start,
					cache->length);
		}

		scrub_pause_off(fs_info);
2593
		down_write(&dev_replace->rwsem);
2594
		dev_replace->cursor_right = found_key.offset + dev_extent_len;
2595 2596
		dev_replace->cursor_left = found_key.offset;
		dev_replace->item_needs_writeback = 1;
2597 2598
		up_write(&dev_replace->rwsem);

2599 2600
		ret = scrub_chunk(sctx, cache, scrub_dev, found_key.offset,
				  dev_extent_len);
2601 2602 2603 2604 2605
		if (sctx->is_dev_replace &&
		    !btrfs_finish_block_group_to_copy(dev_replace->srcdev,
						      cache, found_key.offset))
			ro_set = 0;

2606
		down_write(&dev_replace->rwsem);
2607 2608
		dev_replace->cursor_left = dev_replace->cursor_right;
		dev_replace->item_needs_writeback = 1;
2609
		up_write(&dev_replace->rwsem);
2610

2611
		if (ro_set)
2612
			btrfs_dec_block_group_ro(cache);
2613

2614 2615 2616 2617 2618 2619 2620 2621
		/*
		 * We might have prevented the cleaner kthread from deleting
		 * this block group if it was already unused because we raced
		 * and set it to RO mode first. So add it back to the unused
		 * list, otherwise it might not ever be deleted unless a manual
		 * balance is triggered or it becomes used and unused again.
		 */
		spin_lock(&cache->lock);
2622 2623
		if (!test_bit(BLOCK_GROUP_FLAG_REMOVED, &cache->runtime_flags) &&
		    !cache->ro && cache->reserved == 0 && cache->used == 0) {
2624
			spin_unlock(&cache->lock);
2625 2626 2627 2628 2629
			if (btrfs_test_opt(fs_info, DISCARD_ASYNC))
				btrfs_discard_queue_work(&fs_info->discard_ctl,
							 cache);
			else
				btrfs_mark_bg_unused(cache);
2630 2631 2632
		} else {
			spin_unlock(&cache->lock);
		}
2633
skip_unfreeze:
2634
		btrfs_unfreeze_block_group(cache);
A
Arne Jansen 已提交
2635 2636 2637
		btrfs_put_block_group(cache);
		if (ret)
			break;
2638
		if (sctx->is_dev_replace &&
2639
		    atomic64_read(&dev_replace->num_write_errors) > 0) {
2640 2641 2642 2643 2644 2645 2646
			ret = -EIO;
			break;
		}
		if (sctx->stat.malloc_errors > 0) {
			ret = -ENOMEM;
			break;
		}
2647
skip:
2648
		key.offset = found_key.offset + dev_extent_len;
C
Chris Mason 已提交
2649
		btrfs_release_path(path);
A
Arne Jansen 已提交
2650 2651 2652
	}

	btrfs_free_path(path);
2653

2654
	return ret;
A
Arne Jansen 已提交
2655 2656
}

2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691
static int scrub_one_super(struct scrub_ctx *sctx, struct btrfs_device *dev,
			   struct page *page, u64 physical, u64 generation)
{
	struct btrfs_fs_info *fs_info = sctx->fs_info;
	struct bio_vec bvec;
	struct bio bio;
	struct btrfs_super_block *sb = page_address(page);
	int ret;

	bio_init(&bio, dev->bdev, &bvec, 1, REQ_OP_READ);
	bio.bi_iter.bi_sector = physical >> SECTOR_SHIFT;
	__bio_add_page(&bio, page, BTRFS_SUPER_INFO_SIZE, 0);
	ret = submit_bio_wait(&bio);
	bio_uninit(&bio);

	if (ret < 0)
		return ret;
	ret = btrfs_check_super_csum(fs_info, sb);
	if (ret != 0) {
		btrfs_err_rl(fs_info,
			"super block at physical %llu devid %llu has bad csum",
			physical, dev->devid);
		return -EIO;
	}
	if (btrfs_super_generation(sb) != generation) {
		btrfs_err_rl(fs_info,
"super block at physical %llu devid %llu has bad generation %llu expect %llu",
			     physical, dev->devid,
			     btrfs_super_generation(sb), generation);
		return -EUCLEAN;
	}

	return btrfs_validate_super(fs_info, sb, -1);
}

2692 2693
static noinline_for_stack int scrub_supers(struct scrub_ctx *sctx,
					   struct btrfs_device *scrub_dev)
A
Arne Jansen 已提交
2694 2695 2696 2697
{
	int	i;
	u64	bytenr;
	u64	gen;
2698 2699
	int ret = 0;
	struct page *page;
2700
	struct btrfs_fs_info *fs_info = sctx->fs_info;
A
Arne Jansen 已提交
2701

J
Josef Bacik 已提交
2702
	if (BTRFS_FS_ERROR(fs_info))
2703
		return -EROFS;
2704

2705 2706 2707 2708 2709 2710 2711 2712
	page = alloc_page(GFP_KERNEL);
	if (!page) {
		spin_lock(&sctx->stat_lock);
		sctx->stat.malloc_errors++;
		spin_unlock(&sctx->stat_lock);
		return -ENOMEM;
	}

2713
	/* Seed devices of a new filesystem has their own generation. */
2714
	if (scrub_dev->fs_devices != fs_info->fs_devices)
2715 2716
		gen = scrub_dev->generation;
	else
2717
		gen = fs_info->last_trans_committed;
A
Arne Jansen 已提交
2718 2719 2720

	for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
		bytenr = btrfs_sb_offset(i);
2721 2722
		if (bytenr + BTRFS_SUPER_INFO_SIZE >
		    scrub_dev->commit_total_bytes)
A
Arne Jansen 已提交
2723
			break;
2724 2725
		if (!btrfs_check_super_location(scrub_dev, bytenr))
			continue;
A
Arne Jansen 已提交
2726

2727 2728 2729 2730 2731 2732
		ret = scrub_one_super(sctx, scrub_dev, page, bytenr, gen);
		if (ret) {
			spin_lock(&sctx->stat_lock);
			sctx->stat.super_errors++;
			spin_unlock(&sctx->stat_lock);
		}
A
Arne Jansen 已提交
2733
	}
2734
	__free_page(page);
A
Arne Jansen 已提交
2735 2736 2737
	return 0;
}

2738 2739 2740 2741
static void scrub_workers_put(struct btrfs_fs_info *fs_info)
{
	if (refcount_dec_and_mutex_lock(&fs_info->scrub_workers_refcnt,
					&fs_info->scrub_lock)) {
2742 2743 2744
		struct workqueue_struct *scrub_workers = fs_info->scrub_workers;
		struct workqueue_struct *scrub_wr_comp =
						fs_info->scrub_wr_completion_workers;
2745 2746 2747 2748 2749

		fs_info->scrub_workers = NULL;
		fs_info->scrub_wr_completion_workers = NULL;
		mutex_unlock(&fs_info->scrub_lock);

2750 2751 2752 2753
		if (scrub_workers)
			destroy_workqueue(scrub_workers);
		if (scrub_wr_comp)
			destroy_workqueue(scrub_wr_comp);
2754 2755 2756
	}
}

A
Arne Jansen 已提交
2757 2758 2759
/*
 * get a reference count on fs_info->scrub_workers. start worker if necessary
 */
2760 2761
static noinline_for_stack int scrub_workers_get(struct btrfs_fs_info *fs_info,
						int is_dev_replace)
A
Arne Jansen 已提交
2762
{
2763 2764
	struct workqueue_struct *scrub_workers = NULL;
	struct workqueue_struct *scrub_wr_comp = NULL;
2765
	unsigned int flags = WQ_FREEZABLE | WQ_UNBOUND;
2766
	int max_active = fs_info->thread_pool_size;
2767
	int ret = -ENOMEM;
A
Arne Jansen 已提交
2768

2769 2770
	if (refcount_inc_not_zero(&fs_info->scrub_workers_refcnt))
		return 0;
2771

2772 2773
	scrub_workers = alloc_workqueue("btrfs-scrub", flags,
					is_dev_replace ? 1 : max_active);
2774 2775
	if (!scrub_workers)
		goto fail_scrub_workers;
2776

2777
	scrub_wr_comp = alloc_workqueue("btrfs-scrubwrc", flags, max_active);
2778 2779
	if (!scrub_wr_comp)
		goto fail_scrub_wr_completion_workers;
2780

2781 2782 2783
	mutex_lock(&fs_info->scrub_lock);
	if (refcount_read(&fs_info->scrub_workers_refcnt) == 0) {
		ASSERT(fs_info->scrub_workers == NULL &&
2784
		       fs_info->scrub_wr_completion_workers == NULL);
2785 2786
		fs_info->scrub_workers = scrub_workers;
		fs_info->scrub_wr_completion_workers = scrub_wr_comp;
2787
		refcount_set(&fs_info->scrub_workers_refcnt, 1);
2788 2789
		mutex_unlock(&fs_info->scrub_lock);
		return 0;
A
Arne Jansen 已提交
2790
	}
2791 2792 2793
	/* Other thread raced in and created the workers for us */
	refcount_inc(&fs_info->scrub_workers_refcnt);
	mutex_unlock(&fs_info->scrub_lock);
2794

2795
	ret = 0;
2796

2797
	destroy_workqueue(scrub_wr_comp);
2798
fail_scrub_wr_completion_workers:
2799
	destroy_workqueue(scrub_workers);
2800
fail_scrub_workers:
2801
	return ret;
A
Arne Jansen 已提交
2802 2803
}

2804 2805
int btrfs_scrub_dev(struct btrfs_fs_info *fs_info, u64 devid, u64 start,
		    u64 end, struct btrfs_scrub_progress *progress,
2806
		    int readonly, int is_dev_replace)
A
Arne Jansen 已提交
2807
{
2808
	struct btrfs_dev_lookup_args args = { .devid = devid };
2809
	struct scrub_ctx *sctx;
A
Arne Jansen 已提交
2810 2811
	int ret;
	struct btrfs_device *dev;
2812
	unsigned int nofs_flag;
2813
	bool need_commit = false;
A
Arne Jansen 已提交
2814

2815
	if (btrfs_fs_closing(fs_info))
2816
		return -EAGAIN;
A
Arne Jansen 已提交
2817

2818 2819
	/* At mount time we have ensured nodesize is in the range of [4K, 64K]. */
	ASSERT(fs_info->nodesize <= BTRFS_STRIPE_LEN);
2820

2821 2822 2823 2824 2825 2826 2827
	/*
	 * SCRUB_MAX_SECTORS_PER_BLOCK is calculated using the largest possible
	 * value (max nodesize / min sectorsize), thus nodesize should always
	 * be fine.
	 */
	ASSERT(fs_info->nodesize <=
	       SCRUB_MAX_SECTORS_PER_BLOCK << fs_info->sectorsize_bits);
2828

2829 2830 2831 2832
	/* Allocate outside of device_list_mutex */
	sctx = scrub_setup_ctx(fs_info, is_dev_replace);
	if (IS_ERR(sctx))
		return PTR_ERR(sctx);
A
Arne Jansen 已提交
2833

2834 2835 2836 2837
	ret = scrub_workers_get(fs_info, is_dev_replace);
	if (ret)
		goto out_free_ctx;

2838
	mutex_lock(&fs_info->fs_devices->device_list_mutex);
2839
	dev = btrfs_find_device(fs_info->fs_devices, &args);
2840 2841
	if (!dev || (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) &&
		     !is_dev_replace)) {
2842
		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2843
		ret = -ENODEV;
2844
		goto out;
A
Arne Jansen 已提交
2845 2846
	}

2847 2848
	if (!is_dev_replace && !readonly &&
	    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) {
2849
		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2850 2851
		btrfs_err_in_rcu(fs_info,
			"scrub on devid %llu: filesystem on %s is not writable",
2852
				 devid, btrfs_dev_name(dev));
2853
		ret = -EROFS;
2854
		goto out;
2855 2856
	}

2857
	mutex_lock(&fs_info->scrub_lock);
2858
	if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
2859
	    test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &dev->dev_state)) {
A
Arne Jansen 已提交
2860
		mutex_unlock(&fs_info->scrub_lock);
2861
		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2862
		ret = -EIO;
2863
		goto out;
A
Arne Jansen 已提交
2864 2865
	}

2866
	down_read(&fs_info->dev_replace.rwsem);
2867
	if (dev->scrub_ctx ||
2868 2869
	    (!is_dev_replace &&
	     btrfs_dev_replace_is_ongoing(&fs_info->dev_replace))) {
2870
		up_read(&fs_info->dev_replace.rwsem);
A
Arne Jansen 已提交
2871
		mutex_unlock(&fs_info->scrub_lock);
2872
		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2873
		ret = -EINPROGRESS;
2874
		goto out;
A
Arne Jansen 已提交
2875
	}
2876
	up_read(&fs_info->dev_replace.rwsem);
2877

2878
	sctx->readonly = readonly;
2879
	dev->scrub_ctx = sctx;
2880
	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
A
Arne Jansen 已提交
2881

2882 2883 2884 2885
	/*
	 * checking @scrub_pause_req here, we can avoid
	 * race between committing transaction and scrubbing.
	 */
2886
	__scrub_blocked_if_needed(fs_info);
A
Arne Jansen 已提交
2887 2888 2889
	atomic_inc(&fs_info->scrubs_running);
	mutex_unlock(&fs_info->scrub_lock);

2890 2891 2892
	/*
	 * In order to avoid deadlock with reclaim when there is a transaction
	 * trying to pause scrub, make sure we use GFP_NOFS for all the
2893
	 * allocations done at btrfs_scrub_sectors() and scrub_sectors_for_parity()
2894 2895 2896 2897 2898 2899
	 * invoked by our callees. The pausing request is done when the
	 * transaction commit starts, and it blocks the transaction until scrub
	 * is paused (done at specific points at scrub_stripe() or right above
	 * before incrementing fs_info->scrubs_running).
	 */
	nofs_flag = memalloc_nofs_save();
2900
	if (!is_dev_replace) {
2901 2902 2903 2904 2905 2906
		u64 old_super_errors;

		spin_lock(&sctx->stat_lock);
		old_super_errors = sctx->stat.super_errors;
		spin_unlock(&sctx->stat_lock);

2907
		btrfs_info(fs_info, "scrub: started on devid %llu", devid);
2908 2909 2910 2911
		/*
		 * by holding device list mutex, we can
		 * kick off writing super in log tree sync.
		 */
2912
		mutex_lock(&fs_info->fs_devices->device_list_mutex);
2913
		ret = scrub_supers(sctx, dev);
2914
		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2915 2916 2917 2918 2919 2920 2921 2922 2923 2924

		spin_lock(&sctx->stat_lock);
		/*
		 * Super block errors found, but we can not commit transaction
		 * at current context, since btrfs_commit_transaction() needs
		 * to pause the current running scrub (hold by ourselves).
		 */
		if (sctx->stat.super_errors > old_super_errors && !sctx->readonly)
			need_commit = true;
		spin_unlock(&sctx->stat_lock);
2925
	}
A
Arne Jansen 已提交
2926 2927

	if (!ret)
2928
		ret = scrub_enumerate_chunks(sctx, dev, start, end);
2929
	memalloc_nofs_restore(nofs_flag);
A
Arne Jansen 已提交
2930 2931 2932 2933 2934

	atomic_dec(&fs_info->scrubs_running);
	wake_up(&fs_info->scrub_pause_wait);

	if (progress)
2935
		memcpy(progress, &sctx->stat, sizeof(*progress));
A
Arne Jansen 已提交
2936

2937 2938 2939 2940
	if (!is_dev_replace)
		btrfs_info(fs_info, "scrub: %s on devid %llu with status: %d",
			ret ? "not finished" : "finished", devid, ret);

A
Arne Jansen 已提交
2941
	mutex_lock(&fs_info->scrub_lock);
2942
	dev->scrub_ctx = NULL;
A
Arne Jansen 已提交
2943 2944
	mutex_unlock(&fs_info->scrub_lock);

2945
	scrub_workers_put(fs_info);
2946
	scrub_put_ctx(sctx);
A
Arne Jansen 已提交
2947

2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966
	/*
	 * We found some super block errors before, now try to force a
	 * transaction commit, as scrub has finished.
	 */
	if (need_commit) {
		struct btrfs_trans_handle *trans;

		trans = btrfs_start_transaction(fs_info->tree_root, 0);
		if (IS_ERR(trans)) {
			ret = PTR_ERR(trans);
			btrfs_err(fs_info,
	"scrub: failed to start transaction to fix super block errors: %d", ret);
			return ret;
		}
		ret = btrfs_commit_transaction(trans);
		if (ret < 0)
			btrfs_err(fs_info,
	"scrub: failed to commit transaction to fix super block errors: %d", ret);
	}
2967
	return ret;
2968 2969
out:
	scrub_workers_put(fs_info);
2970 2971 2972
out_free_ctx:
	scrub_free_ctx(sctx);

A
Arne Jansen 已提交
2973 2974 2975
	return ret;
}

2976
void btrfs_scrub_pause(struct btrfs_fs_info *fs_info)
A
Arne Jansen 已提交
2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990
{
	mutex_lock(&fs_info->scrub_lock);
	atomic_inc(&fs_info->scrub_pause_req);
	while (atomic_read(&fs_info->scrubs_paused) !=
	       atomic_read(&fs_info->scrubs_running)) {
		mutex_unlock(&fs_info->scrub_lock);
		wait_event(fs_info->scrub_pause_wait,
			   atomic_read(&fs_info->scrubs_paused) ==
			   atomic_read(&fs_info->scrubs_running));
		mutex_lock(&fs_info->scrub_lock);
	}
	mutex_unlock(&fs_info->scrub_lock);
}

2991
void btrfs_scrub_continue(struct btrfs_fs_info *fs_info)
A
Arne Jansen 已提交
2992 2993 2994 2995 2996
{
	atomic_dec(&fs_info->scrub_pause_req);
	wake_up(&fs_info->scrub_pause_wait);
}

2997
int btrfs_scrub_cancel(struct btrfs_fs_info *fs_info)
A
Arne Jansen 已提交
2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017
{
	mutex_lock(&fs_info->scrub_lock);
	if (!atomic_read(&fs_info->scrubs_running)) {
		mutex_unlock(&fs_info->scrub_lock);
		return -ENOTCONN;
	}

	atomic_inc(&fs_info->scrub_cancel_req);
	while (atomic_read(&fs_info->scrubs_running)) {
		mutex_unlock(&fs_info->scrub_lock);
		wait_event(fs_info->scrub_pause_wait,
			   atomic_read(&fs_info->scrubs_running) == 0);
		mutex_lock(&fs_info->scrub_lock);
	}
	atomic_dec(&fs_info->scrub_cancel_req);
	mutex_unlock(&fs_info->scrub_lock);

	return 0;
}

3018
int btrfs_scrub_cancel_dev(struct btrfs_device *dev)
3019
{
3020
	struct btrfs_fs_info *fs_info = dev->fs_info;
3021
	struct scrub_ctx *sctx;
A
Arne Jansen 已提交
3022 3023

	mutex_lock(&fs_info->scrub_lock);
3024
	sctx = dev->scrub_ctx;
3025
	if (!sctx) {
A
Arne Jansen 已提交
3026 3027 3028
		mutex_unlock(&fs_info->scrub_lock);
		return -ENOTCONN;
	}
3029
	atomic_inc(&sctx->cancel_req);
3030
	while (dev->scrub_ctx) {
A
Arne Jansen 已提交
3031 3032
		mutex_unlock(&fs_info->scrub_lock);
		wait_event(fs_info->scrub_pause_wait,
3033
			   dev->scrub_ctx == NULL);
A
Arne Jansen 已提交
3034 3035 3036 3037 3038 3039
		mutex_lock(&fs_info->scrub_lock);
	}
	mutex_unlock(&fs_info->scrub_lock);

	return 0;
}
S
Stefan Behrens 已提交
3040

3041
int btrfs_scrub_progress(struct btrfs_fs_info *fs_info, u64 devid,
A
Arne Jansen 已提交
3042 3043
			 struct btrfs_scrub_progress *progress)
{
3044
	struct btrfs_dev_lookup_args args = { .devid = devid };
A
Arne Jansen 已提交
3045
	struct btrfs_device *dev;
3046
	struct scrub_ctx *sctx = NULL;
A
Arne Jansen 已提交
3047

3048
	mutex_lock(&fs_info->fs_devices->device_list_mutex);
3049
	dev = btrfs_find_device(fs_info->fs_devices, &args);
A
Arne Jansen 已提交
3050
	if (dev)
3051
		sctx = dev->scrub_ctx;
3052 3053
	if (sctx)
		memcpy(progress, &sctx->stat, sizeof(*progress));
3054
	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
A
Arne Jansen 已提交
3055

3056
	return dev ? (sctx ? 0 : -ENOTCONN) : -ENODEV;
A
Arne Jansen 已提交
3057
}