- 18 3月, 2016 4 次提交
-
-
由 Vladimir Davydov 提交于
Show how much memory is allocated to kernel stacks. Signed-off-by: NVladimir Davydov <vdavydov@virtuozzo.com> Acked-by: NJohannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@kernel.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Vladimir Davydov 提交于
Show how much memory is used for storing reclaimable and unreclaimable in-kernel data structures allocated from slab caches. Signed-off-by: NVladimir Davydov <vdavydov@virtuozzo.com> Acked-by: NJohannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@kernel.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Vladimir Davydov 提交于
Currently, tree_{stat,events} helpers can only get one stat index at a time, so when there are a lot of stats to be reported one has to call it over and over again (see memory_stat_show). This is neither effective, nor does it look good. Instead, let's make these helpers take a snapshot of all available counters. Signed-off-by: NVladimir Davydov <vdavydov@virtuozzo.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@kernel.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Vladimir Davydov 提交于
Slab pages are charged in two steps. First, an appropriate per memcg cache is selected (see memcg_kmem_get_cache) basing on the current context, then the new slab page is charged to the memory cgroup which the selected cache was created for (see memcg_charge_slab -> __memcg_kmem_charge_memcg). It is OK to bypass kmemcg charge at step 1, but if step 1 succeeded and we successfully allocated a new slab page, step 2 must be performed, otherwise we would get a per memcg kmem cache which contains a slab that does not hold a reference to the memory cgroup owning the cache. Since per memcg kmem caches are destroyed on memcg css free, this could result in freeing a cache while there are still active objects in it. However, currently we will bypass slab page charge if the memory cgroup owning the cache is offline (see __memcg_kmem_charge_memcg). This is very unlikely to occur in practice, because for this to happen a process must be migrated to a different cgroup and the old cgroup must be removed while the process is in kmalloc somewhere between steps 1 and 2 (e.g. trying to allocate a new page). Nevertheless, it's still better to eliminate such a possibility. Signed-off-by: NVladimir Davydov <vdavydov@virtuozzo.com> Acked-by: NJohannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@kernel.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 16 3月, 2016 5 次提交
-
-
由 Johannes Weiner 提交于
Migration accounting in the memory controller used to have to handle both oldpage and newpage being on the LRU already; fuse's page cache replacement used to pass a recycled newpage that had been uncharged but not freed and removed from the LRU, and the memcg migration code used to uncharge oldpage to "pass on" the existing charge to newpage. Nowadays, pages are no longer uncharged when truncated from the page cache, but rather only at free time, so if a LRU page is recycled in page cache replacement it'll also still be charged. And we bail out of the charge transfer altogether in that case. Tell commit_charge() that we know newpage is not on the LRU, to avoid taking the zone->lru_lock unnecessarily from the migration path. But also, oldpage is no longer uncharged inside migration. We only use oldpage for its page->mem_cgroup and page size, so we don't care about its LRU state anymore either. Remove any mention from the kernel doc. Signed-off-by: NJohannes Weiner <hannes@cmpxchg.org> Suggested-by: NHugh Dickins <hughd@google.com> Acked-by: NVladimir Davydov <vdavydov@virtuozzo.com> Acked-by: NMichal Hocko <mhocko@suse.com> Cc: Mateusz Guzik <mguzik@redhat.com> Cc: Sergey Senozhatsky <sergey.senozhatsky.work@gmail.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Johannes Weiner 提交于
Now that migration doesn't clear page->mem_cgroup of live pages anymore, it's safe to make lock_page_memcg() and the memcg stat functions take pages, and spare the callers from memcg objects. [akpm@linux-foundation.org: fix warnings] Signed-off-by: NJohannes Weiner <hannes@cmpxchg.org> Suggested-by: NVladimir Davydov <vdavydov@virtuozzo.com> Acked-by: NVladimir Davydov <vdavydov@virtuozzo.com> Cc: Michal Hocko <mhocko@suse.cz> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Johannes Weiner 提交于
Changing a page's memcg association complicates dealing with the page, so we want to limit this as much as possible. Page migration e.g. does not have to do that. Just like page cache replacement, it can forcibly charge a replacement page, and then uncharge the old page when it gets freed. Temporarily overcharging the cgroup by a single page is not an issue in practice, and charging is so cheap nowadays that this is much preferrable to the headache of messing with live pages. The only place that still changes the page->mem_cgroup binding of live pages is when pages move along with a task to another cgroup. But that path isolates the page from the LRU, takes the page lock, and the move lock (lock_page_memcg()). That means page->mem_cgroup is always stable in callers that have the page isolated from the LRU or locked. Lighter unlocked paths, like writeback accounting, can use lock_page_memcg(). [akpm@linux-foundation.org: fix build] [vdavydov@virtuozzo.com: fix lockdep splat] Signed-off-by: NJohannes Weiner <hannes@cmpxchg.org> Acked-by: NVladimir Davydov <vdavydov@virtuozzo.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Greg Thelen <gthelen@google.com> Cc: Hugh Dickins <hughd@google.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Johannes Weiner 提交于
Cache thrash detection (see a528910e "mm: thrash detection-based file cache sizing" for details) currently only works on the system level, not inside cgroups. Worse, as the refaults are compared to the global number of active cache, cgroups might wrongfully get all their refaults activated when their pages are hotter than those of others. Move the refault machinery from the zone to the lruvec, and then tag eviction entries with the memcg ID. This makes the thrash detection work correctly inside cgroups. [sergey.senozhatsky@gmail.com: do not return from workingset_activation() with locked rcu and page] Signed-off-by: NJohannes Weiner <hannes@cmpxchg.org> Signed-off-by: NSergey Senozhatsky <sergey.senozhatsky@gmail.com> Reviewed-by: NVladimir Davydov <vdavydov@virtuozzo.com> Cc: Michal Hocko <mhocko@suse.cz> Cc: David Rientjes <rientjes@google.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Johannes Weiner 提交于
These patches tag the page cache radix tree eviction entries with the memcg an evicted page belonged to, thus making per-cgroup LRU reclaim work properly and be as adaptive to new cache workingsets as global reclaim already is. This should have been part of the original thrash detection patch series, but was deferred due to the complexity of those patches. This patch (of 5): So far the only sites that needed to exclude charge migration to stabilize page->mem_cgroup have been per-cgroup page statistics, hence the name mem_cgroup_begin_page_stat(). But per-cgroup thrash detection will add another site that needs to ensure page->mem_cgroup lifetime. Rename these locking functions to the more generic lock_page_memcg() and unlock_page_memcg(). Since charge migration is a cgroup1 feature only, we might be able to delete it at some point, and these now easy to identify locking sites along with it. Signed-off-by: NJohannes Weiner <hannes@cmpxchg.org> Suggested-by: NVladimir Davydov <vdavydov@virtuozzo.com> Acked-by: NVladimir Davydov <vdavydov@virtuozzo.com> Cc: Michal Hocko <mhocko@suse.cz> Cc: David Rientjes <rientjes@google.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 22 1月, 2016 1 次提交
-
-
由 Kirill A. Shutemov 提交于
After THP refcounting rework we have only two possible return values from pmd_trans_huge_lock(): success and failure. Return-by-pointer for ptl doesn't make much sense in this case. Let's convert pmd_trans_huge_lock() to return ptl on success and NULL on failure. Signed-off-by: NKirill A. Shutemov <kirill.shutemov@linux.intel.com> Suggested-by: NLinus Torvalds <torvalds@linux-foundation.org> Cc: Minchan Kim <minchan@kernel.org> Acked-by: NMichal Hocko <mhocko@suse.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 21 1月, 2016 19 次提交
-
-
由 Johannes Weiner 提交于
Provide statistics on how much of a cgroup's memory footprint is made up of socket buffers from network connections owned by the group. Signed-off-by: NJohannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Vladimir Davydov <vdavydov@virtuozzo.com> Cc: Tejun Heo <tj@kernel.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Johannes Weiner 提交于
Provide a cgroup2 memory.stat that provides statistics on LRU memory and fault event counters. More consumers and breakdowns will follow. Signed-off-by: NJohannes Weiner <hannes@cmpxchg.org> Acked-by: NVladimir Davydov <vdavydov@virtuozzo.com> Cc: Michal Hocko <mhocko@suse.cz> Cc: Tejun Heo <tj@kernel.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Johannes Weiner 提交于
Changing page->mem_cgroup of a live page is tricky and fragile. In particular, the memcg writeback code relies on that mapping being stable and users of mem_cgroup_replace_page() not overlapping with dirtyable inodes. Page cache replacement doesn't have to do that, though. Instead of being clever and transferring the charge from the old page to the new, force-charge the new page and leave the old page alone. A temporary overcharge won't matter in practice, and the old page is going to be freed shortly after this anyway. And this is not performance critical. Signed-off-by: NJohannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Vladimir Davydov <vdavydov@virtuozzo.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Vladimir Davydov 提交于
Swap cache pages are freed aggressively if swap is nearly full (>50% currently), because otherwise we are likely to stop scanning anonymous when we near the swap limit even if there is plenty of freeable swap cache pages. We should follow the same trend in case of memory cgroup, which has its own swap limit. Signed-off-by: NVladimir Davydov <vdavydov@virtuozzo.com> Acked-by: NJohannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@kernel.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Vladimir Davydov 提交于
We don't scan anonymous memory if we ran out of swap, neither should we do it in case memcg swap limit is hit, because swap out is impossible anyway. Signed-off-by: NVladimir Davydov <vdavydov@virtuozzo.com> Acked-by: NJohannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@kernel.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Vladimir Davydov 提交于
This patchset introduces swap accounting to cgroup2. This patch (of 7): In the legacy hierarchy we charge memsw, which is dubious, because: - memsw.limit must be >= memory.limit, so it is impossible to limit swap usage less than memory usage. Taking into account the fact that the primary limiting mechanism in the unified hierarchy is memory.high while memory.limit is either left unset or set to a very large value, moving memsw.limit knob to the unified hierarchy would effectively make it impossible to limit swap usage according to the user preference. - memsw.usage != memory.usage + swap.usage, because a page occupying both swap entry and a swap cache page is charged only once to memsw counter. As a result, it is possible to effectively eat up to memory.limit of memory pages *and* memsw.limit of swap entries, which looks unexpected. That said, we should provide a different swap limiting mechanism for cgroup2. This patch adds mem_cgroup->swap counter, which charges the actual number of swap entries used by a cgroup. It is only charged in the unified hierarchy, while the legacy hierarchy memsw logic is left intact. The swap usage can be monitored using new memory.swap.current file and limited using memory.swap.max. Note, to charge swap resource properly in the unified hierarchy, we have to make swap_entry_free uncharge swap only when ->usage reaches zero, not just ->count, i.e. when all references to a swap entry, including the one taken by swap cache, are gone. This is necessary, because otherwise swap-in could result in uncharging swap even if the page is still in swap cache and hence still occupies a swap entry. At the same time, this shouldn't break memsw counter logic, where a page is never charged twice for using both memory and swap, because in case of legacy hierarchy we uncharge swap on commit (see mem_cgroup_commit_charge). Signed-off-by: NVladimir Davydov <vdavydov@virtuozzo.com> Acked-by: NJohannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@kernel.org> Cc: Tejun Heo <tj@kernel.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Johannes Weiner 提交于
The creation and teardown of struct mem_cgroup is fairly messy and that has attracted mistakes and subtle bugs before. The main cause for this is that there is no clear model about what needs to happen when, and that attracts more chaos. So create one: 1. mem_cgroup_alloc() should allocate struct mem_cgroup and its auxiliary members and initialize work items, locks etc. so that the object it returns is fully initialized and in a neutral state. 2. mem_cgroup_css_alloc() will use mem_cgroup_alloc() to obtain a new memcg object and configure it and the system according to the role of the new memory-controlled cgroup in the hierarchy. 3. mem_cgroup_css_online() is no longer needed to synchronize with iterators, but it verifies css->id which isn't available earlier. 4. mem_cgroup_css_offline() implements stuff that needs to happen upon the user-visible destruction of a cgroup, which includes stopping all user interfacing as well as releasing certain structures when continued memory consumption would be unexpected at that point. 5. mem_cgroup_css_free() prepares the system and the memcg object for the object's disappearance, neutralizes its state, and then gives it back to mem_cgroup_free(). 6. mem_cgroup_free() releases struct mem_cgroup and auxiliary memory. [arnd@arndb.de: fix SLOB build regression] Signed-off-by: NJohannes Weiner <hannes@cmpxchg.org> Acked-by: NVladimir Davydov <vdavydov@virtuozzo.com> Cc: Michal Hocko <mhocko@suse.cz> Signed-off-by: NArnd Bergmann <arnd@arndb.de> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Johannes Weiner 提交于
There are no more external users of struct cg_proto, flatten the structure into struct mem_cgroup. Since using those struct members doesn't stand out as much anymore, add cgroup2 static branches to make it clearer which code is legacy. Suggested-by: NVladimir Davydov <vdavydov@virtuozzo.com> Signed-off-by: NJohannes Weiner <hannes@cmpxchg.org> Acked-by: NVladimir Davydov <vdavydov@virtuozzo.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Johannes Weiner 提交于
What CONFIG_INET and CONFIG_LEGACY_KMEM guard inside the memory controller code is insignificant, having these conditionals is not worth the complication and fragility that comes with them. [akpm@linux-foundation.org: rework mem_cgroup_css_free() statement ordering] Signed-off-by: NJohannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.cz> Acked-by: NVladimir Davydov <vdavydov@virtuozzo.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Vladimir Davydov 提交于
tcp_memcontrol.c only contains legacy memory.tcp.kmem.* file definitions and mem_cgroup->tcp_mem init/destroy stuff. This doesn't belong to network subsys. Let's move it to memcontrol.c. This also allows us to reuse generic code for handling legacy memcg files. Signed-off-by: NVladimir Davydov <vdavydov@virtuozzo.com> Acked-by: NJohannes Weiner <hannes@cmpxchg.org> Cc: "David S. Miller" <davem@davemloft.net> Acked-by: NMichal Hocko <mhocko@suse.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Johannes Weiner 提交于
Let the user know that CONFIG_MEMCG_KMEM does not apply to the cgroup2 interface. This also makes legacy-only code sections stand out better. [arnd@arndb.de: mm: memcontrol: only manage socket pressure for CONFIG_INET] Signed-off-by: NJohannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Tejun Heo <tj@kernel.org> Acked-by: NVladimir Davydov <vdavydov@virtuozzo.com> Signed-off-by: NArnd Bergmann <arnd@arndb.de> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Vladimir Davydov 提交于
Kmem accounting might incur overhead that some users can't put up with. Besides, the implementation is still considered unstable. So let's provide a way to disable it for those users who aren't happy with it. To disable kmem accounting for cgroup2, pass cgroup.memory=nokmem at boot time. Signed-off-by: NVladimir Davydov <vdavydov@virtuozzo.com> Acked-by: NJohannes Weiner <hannes@cmpxchg.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Johannes Weiner 提交于
The original cgroup memory controller has an extension to account slab memory (and other "kernel memory" consumers) in a separate "kmem" counter, once the user set an explicit limit on that "kmem" pool. However, this includes various consumers whose sizes are directly linked to userspace activity. Accounting them as an optional "kmem" extension is problematic for several reasons: 1. It leaves the main memory interface with incomplete semantics. A user who puts their workload into a cgroup and configures a memory limit does not expect us to leave holes in the containment as big as the dentry and inode cache, or the kernel stack pages. 2. If the limit set on this random historical subgroup of consumers is reached, subsequent allocations will fail even when the main memory pool available to the cgroup is not yet exhausted and/or has reclaimable memory in it. 3. Calling it 'kernel memory' is misleading. The dentry and inode caches are no more 'kernel' (or no less 'user') memory than the page cache itself. Treating these consumers as different classes is a historical implementation detail that should not leak to users. So, in addition to page cache, anonymous memory, and network socket memory, account the following memory consumers per default in the cgroup2 memory controller: - threadinfo - task_struct - task_delay_info - pid - cred - mm_struct - vm_area_struct and vm_region (nommu) - anon_vma and anon_vma_chain - signal_struct - sighand_struct - fs_struct - files_struct - fdtable and fdtable->full_fds_bits - dentry and external_name - inode for all filesystems. This should give us reasonable memory isolation for most common workloads out of the box. Signed-off-by: NJohannes Weiner <hannes@cmpxchg.org> Acked-by: NMichal Hocko <mhocko@suse.com> Cc: Tejun Heo <tj@kernel.org> Acked-by: NVladimir Davydov <vdavydov@virtuozzo.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Johannes Weiner 提交于
The cgroup2 memory controller will account important in-kernel memory consumers per default. Move all necessary components to CONFIG_MEMCG. Signed-off-by: NJohannes Weiner <hannes@cmpxchg.org> Acked-by: NVladimir Davydov <vdavydov@virtuozzo.com> Cc: Michal Hocko <mhocko@suse.cz> Cc: Arnd Bergmann <arnd@arndb.de> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Johannes Weiner 提交于
The cgroup2 memory controller will include important in-kernel memory consumers per default, including socket memory, but it will no longer carry the historic tcp control interface. Separate the kmem state init from the tcp control interface init in preparation for that. Signed-off-by: NJohannes Weiner <hannes@cmpxchg.org> Acked-by: NMichal Hocko <mhocko@suse.com> Cc: Tejun Heo <tj@kernel.org> Acked-by: NVladimir Davydov <vdavydov@virtuozzo.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Johannes Weiner 提交于
Put all the related code to setup and teardown the kmem accounting state into the same location. No functional change intended. Signed-off-by: NJohannes Weiner <hannes@cmpxchg.org> Acked-by: NMichal Hocko <mhocko@suse.com> Cc: Tejun Heo <tj@kernel.org> Acked-by: NVladimir Davydov <vdavydov@virtuozzo.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Johannes Weiner 提交于
On any given memcg, the kmem accounting feature has three separate states: not initialized, structures allocated, and actively accounting slab memory. These are represented through a combination of the kmem_acct_activated and kmem_acct_active flags, which is confusing. Convert to a kmem_state enum with the states NONE, ALLOCATED, and ONLINE. Then rename the functions to modify the state accordingly. This follows the nomenclature of css object states more closely. Signed-off-by: NJohannes Weiner <hannes@cmpxchg.org> Acked-by: NMichal Hocko <mhocko@suse.com> Cc: Tejun Heo <tj@kernel.org> Acked-by: NVladimir Davydov <vdavydov@virtuozzo.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Johannes Weiner 提交于
The kmem page_counter's limit is initialized to PAGE_COUNTER_MAX inside mem_cgroup_css_online(). There is no need to repeat this from memcg_propagate_kmem(). Signed-off-by: NJohannes Weiner <hannes@cmpxchg.org> Acked-by: NMichal Hocko <mhocko@suse.com> Cc: Tejun Heo <tj@kernel.org> Acked-by: NVladimir Davydov <vdavydov@virtuozzo.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Johannes Weiner 提交于
This series adds accounting of the historical "kmem" memory consumers to the cgroup2 memory controller. These consumers include the dentry cache, the inode cache, kernel stack pages, and a few others that are pointed out in patch 7/8. The footprint of these consumers is directly tied to userspace activity in common workloads, and so they have to be part of the minimally viable configuration in order to present a complete feature to our users. The cgroup2 interface of the memory controller is far from complete, but this series, along with the socket memory accounting series, provides the final semantic changes for the existing memory knobs in the cgroup2 interface, which is scheduled for initial release in the next merge window. This patch (of 8): Remove unused css argument frmo memcg_init_kmem() Signed-off-by: NJohannes Weiner <hannes@cmpxchg.org> Acked-by: NMichal Hocko <mhocko@suse.com> Cc: Tejun Heo <tj@kernel.org> Acked-by: NVladimir Davydov <vdavydov@virtuozzo.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 16 1月, 2016 6 次提交
-
-
由 Martijn Coenen 提交于
A spare array holding mem cgroup threshold events is kept around to make sure we can always safely deregister an event and have an array to store the new set of events in. In the scenario where we're going from 1 to 0 registered events, the pointer to the primary array containing 1 event is copied to the spare slot, and then the spare slot is freed because no events are left. However, it is freed before calling synchronize_rcu(), which means readers may still be accessing threshold->primary after it is freed. Fixed by only freeing after synchronize_rcu(). Signed-off-by: NMartijn Coenen <maco@google.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Acked-by: NMichal Hocko <mhocko@suse.com> Cc: Vladimir Davydov <vdavydov@virtuozzo.com> Cc: <stable@vger.kernel.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Tejun Heo 提交于
In earlier versions, mem_cgroup_css_from_page() could return non-root css on a legacy hierarchy which can go away and required rcu locking; however, the eventual version simply returns the root cgroup if memcg is on a legacy hierarchy and thus doesn't need rcu locking around or in it. Remove spurious rcu lockings. Signed-off-by: NTejun Heo <tj@kernel.org> Reported-by: NJohannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@kernel.org> Cc: Vladimir Davydov <vdavydov@virtuozzo.com> Cc: Jens Axboe <axboe@kernel.dk> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Kirill A. Shutemov 提交于
We're going to allow mapping of individual 4k pages of THP compound. It means we need to track mapcount on per small page basis. Straight-forward approach is to use ->_mapcount in all subpages to track how many time this subpage is mapped with PMDs or PTEs combined. But this is rather expensive: mapping or unmapping of a THP page with PMD would require HPAGE_PMD_NR atomic operations instead of single we have now. The idea is to store separately how many times the page was mapped as whole -- compound_mapcount. This frees up ->_mapcount in subpages to track PTE mapcount. We use the same approach as with compound page destructor and compound order to store compound_mapcount: use space in first tail page, ->mapping this time. Any time we map/unmap whole compound page (THP or hugetlb) -- we increment/decrement compound_mapcount. When we map part of compound page with PTE we operate on ->_mapcount of the subpage. page_mapcount() counts both: PTE and PMD mappings of the page. Basically, we have mapcount for a subpage spread over two counters. It makes tricky to detect when last mapcount for a page goes away. We introduced PageDoubleMap() for this. When we split THP PMD for the first time and there's other PMD mapping left we offset up ->_mapcount in all subpages by one and set PG_double_map on the compound page. These additional references go away with last compound_mapcount. This approach provides a way to detect when last mapcount goes away on per small page basis without introducing new overhead for most common cases. [akpm@linux-foundation.org: fix typo in comment] [mhocko@suse.com: ignore partial THP when moving task] Signed-off-by: NKirill A. Shutemov <kirill.shutemov@linux.intel.com> Tested-by: NAneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Acked-by: NJerome Marchand <jmarchan@redhat.com> Cc: Sasha Levin <sasha.levin@oracle.com> Cc: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Cc: Jerome Marchand <jmarchan@redhat.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Rik van Riel <riel@redhat.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Steve Capper <steve.capper@linaro.org> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Christoph Lameter <cl@linux.com> Cc: David Rientjes <rientjes@google.com> Signed-off-by: NMichal Hocko <mhocko@suse.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Kirill A. Shutemov 提交于
With new refcounting we don't need to mark PMDs splitting. Let's drop code to handle this. Signed-off-by: NKirill A. Shutemov <kirill.shutemov@linux.intel.com> Tested-by: NSasha Levin <sasha.levin@oracle.com> Tested-by: NAneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Acked-by: NVlastimil Babka <vbabka@suse.cz> Acked-by: NJerome Marchand <jmarchan@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Rik van Riel <riel@redhat.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Steve Capper <steve.capper@linaro.org> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Christoph Lameter <cl@linux.com> Cc: David Rientjes <rientjes@google.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Kirill A. Shutemov 提交于
We are going to use migration entries to stabilize page counts. It means we don't need compound_lock() for that. Signed-off-by: NKirill A. Shutemov <kirill.shutemov@linux.intel.com> Tested-by: NSasha Levin <sasha.levin@oracle.com> Tested-by: NAneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Acked-by: NVlastimil Babka <vbabka@suse.cz> Acked-by: NJerome Marchand <jmarchan@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Rik van Riel <riel@redhat.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Steve Capper <steve.capper@linaro.org> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Christoph Lameter <cl@linux.com> Cc: David Rientjes <rientjes@google.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Kirill A. Shutemov 提交于
As with rmap, with new refcounting we cannot rely on PageTransHuge() to check if we need to charge size of huge page form the cgroup. We need to get information from caller to know whether it was mapped with PMD or PTE. We do uncharge when last reference on the page gone. At that point if we see PageTransHuge() it means we need to unchange whole huge page. The tricky part is partial unmap -- when we try to unmap part of huge page. We don't do a special handing of this situation, meaning we don't uncharge the part of huge page unless last user is gone or split_huge_page() is triggered. In case of cgroup memory pressure happens the partial unmapped page will be split through shrinker. This should be good enough. Signed-off-by: NKirill A. Shutemov <kirill.shutemov@linux.intel.com> Tested-by: NSasha Levin <sasha.levin@oracle.com> Tested-by: NAneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Acked-by: NVlastimil Babka <vbabka@suse.cz> Acked-by: NJerome Marchand <jmarchan@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Rik van Riel <riel@redhat.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Steve Capper <steve.capper@linaro.org> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Christoph Lameter <cl@linux.com> Cc: David Rientjes <rientjes@google.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 15 1月, 2016 5 次提交
-
-
由 Johannes Weiner 提交于
According to <linux/jump_label.h> the direct use of struct static_key is deprecated. Update the socket and slab accounting code accordingly. Signed-off-by: NJohannes Weiner <hannes@cmpxchg.org> Acked-by: NDavid S. Miller <davem@davemloft.net> Reported-by: NJason Baron <jbaron@akamai.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Johannes Weiner 提交于
Let the networking stack know when a memcg is under reclaim pressure so that it can clamp its transmit windows accordingly. Whenever the reclaim efficiency of a cgroup's LRU lists drops low enough for a MEDIUM or HIGH vmpressure event to occur, assert a pressure state in the socket and tcp memory code that tells it to curb consumption growth from sockets associated with said control group. Traditionally, vmpressure reports for the entire subtree of a memcg under pressure, which drops useful information on the individual groups reclaimed. However, it's too late to change the userinterface, so add a second reporting mode that reports on the level of reclaim instead of at the level of pressure, and use that report for sockets. vmpressure events are naturally edge triggered, so for hysteresis assert socket pressure for a second to allow for subsequent vmpressure events to occur before letting the socket code return to normal. This will likely need finetuning for a wider variety of workloads, but for now stick to the vmpressure presets and keep hysteresis simple. Signed-off-by: NJohannes Weiner <hannes@cmpxchg.org> Acked-by: NDavid S. Miller <davem@davemloft.net> Reviewed-by: NVladimir Davydov <vdavydov@virtuozzo.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Johannes Weiner 提交于
Socket memory can be a significant share of overall memory consumed by common workloads. In order to provide reasonable resource isolation in the unified hierarchy, this type of memory needs to be included in the tracking/accounting of a cgroup under active memory resource control. Overhead is only incurred when a non-root control group is created AND the memory controller is instructed to track and account the memory footprint of that group. cgroup.memory=nosocket can be specified on the boot commandline to override any runtime configuration and forcibly exclude socket memory from active memory resource control. Signed-off-by: NJohannes Weiner <hannes@cmpxchg.org> Acked-by: NDavid S. Miller <davem@davemloft.net> Reviewed-by: NVladimir Davydov <vdavydov@virtuozzo.com> Acked-by: NMichal Hocko <mhocko@suse.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Johannes Weiner 提交于
The unified hierarchy memory controller will account socket memory. Move the infrastructure functions accordingly. Signed-off-by: NJohannes Weiner <hannes@cmpxchg.org> Acked-by: NMichal Hocko <mhocko@suse.com> Reviewed-by: NVladimir Davydov <vdavydov@virtuozzo.com> Acked-by: NDavid S. Miller <davem@davemloft.net> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Johannes Weiner 提交于
The unified hierarchy memory controller doesn't expose the memory+swap counter to userspace, but its accounting is hardcoded in all charge paths right now, including the per-cpu charge cache ("the stock"). To avoid adding yet more pointless memory+swap accounting with the socket memory support in unified hierarchy, disable the counter altogether when in unified hierarchy mode. Signed-off-by: NJohannes Weiner <hannes@cmpxchg.org> Acked-by: NMichal Hocko <mhocko@suse.com> Reviewed-by: NVladimir Davydov <vdavydov@virtuozzo.com> Acked-by: NDavid S. Miller <davem@davemloft.net> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-