arm.c 45.4 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-only
2 3 4 5 6
/*
 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
 * Author: Christoffer Dall <c.dall@virtualopensystems.com>
 */

7
#include <linux/bug.h>
8
#include <linux/cpu_pm.h>
9 10 11
#include <linux/errno.h>
#include <linux/err.h>
#include <linux/kvm_host.h>
12
#include <linux/list.h>
13 14 15 16 17
#include <linux/module.h>
#include <linux/vmalloc.h>
#include <linux/fs.h>
#include <linux/mman.h>
#include <linux/sched.h>
18
#include <linux/kvm.h>
19 20
#include <linux/kvm_irqfd.h>
#include <linux/irqbypass.h>
21
#include <linux/sched/stat.h>
22
#include <linux/psci.h>
23 24 25
#include <trace/events/kvm.h>

#define CREATE_TRACE_POINTS
26
#include "trace_arm.h"
27

28
#include <linux/uaccess.h>
29 30
#include <asm/ptrace.h>
#include <asm/mman.h>
31
#include <asm/tlbflush.h>
32
#include <asm/cacheflush.h>
33
#include <asm/cpufeature.h>
34 35 36 37
#include <asm/virt.h>
#include <asm/kvm_arm.h>
#include <asm/kvm_asm.h>
#include <asm/kvm_mmu.h>
38
#include <asm/kvm_emulate.h>
39
#include <asm/sections.h>
40

41 42 43 44
#include <kvm/arm_hypercalls.h>
#include <kvm/arm_pmu.h>
#include <kvm/arm_psci.h>

45 46 47 48
#ifdef REQUIRES_VIRT
__asm__(".arch_extension	virt");
#endif

49
static enum kvm_mode kvm_mode = KVM_MODE_DEFAULT;
50
DEFINE_STATIC_KEY_FALSE(kvm_protected_mode_initialized);
51

52 53
DECLARE_KVM_HYP_PER_CPU(unsigned long, kvm_hyp_vector);

54
static DEFINE_PER_CPU(unsigned long, kvm_arm_hyp_stack_page);
55
unsigned long kvm_arm_hyp_percpu_base[NR_CPUS];
56
DECLARE_KVM_NVHE_PER_CPU(struct kvm_nvhe_init_params, kvm_init_params);
57

58 59
/* The VMID used in the VTTBR */
static atomic64_t kvm_vmid_gen = ATOMIC64_INIT(1);
60
static u32 kvm_next_vmid;
61
static DEFINE_SPINLOCK(kvm_vmid_lock);
62

63 64
static bool vgic_present;

65
static DEFINE_PER_CPU(unsigned char, kvm_arm_hardware_enabled);
66 67
DEFINE_STATIC_KEY_FALSE(userspace_irqchip_in_use);

68 69 70 71 72
int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
{
	return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
}

73
int kvm_arch_hardware_setup(void *opaque)
74 75 76 77
{
	return 0;
}

78
int kvm_arch_check_processor_compat(void *opaque)
79
{
80
	return 0;
81 82
}

83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102
int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
			    struct kvm_enable_cap *cap)
{
	int r;

	if (cap->flags)
		return -EINVAL;

	switch (cap->cap) {
	case KVM_CAP_ARM_NISV_TO_USER:
		r = 0;
		kvm->arch.return_nisv_io_abort_to_user = true;
		break;
	default:
		r = -EINVAL;
		break;
	}

	return r;
}
103

104 105 106 107 108
static int kvm_arm_default_max_vcpus(void)
{
	return vgic_present ? kvm_vgic_get_max_vcpus() : KVM_MAX_VCPUS;
}

109
static void set_default_spectre(struct kvm *kvm)
110 111 112 113 114 115 116 117 118 119 120
{
	/*
	 * The default is to expose CSV2 == 1 if the HW isn't affected.
	 * Although this is a per-CPU feature, we make it global because
	 * asymmetric systems are just a nuisance.
	 *
	 * Userspace can override this as long as it doesn't promise
	 * the impossible.
	 */
	if (arm64_get_spectre_v2_state() == SPECTRE_UNAFFECTED)
		kvm->arch.pfr0_csv2 = 1;
121 122
	if (arm64_get_meltdown_state() == SPECTRE_UNAFFECTED)
		kvm->arch.pfr0_csv3 = 1;
123 124
}

125 126 127 128
/**
 * kvm_arch_init_vm - initializes a VM data structure
 * @kvm:	pointer to the KVM struct
 */
129 130
int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
{
131
	int ret;
132

133
	ret = kvm_arm_setup_stage2(kvm, type);
134 135
	if (ret)
		return ret;
136

137
	ret = kvm_init_stage2_mmu(kvm, &kvm->arch.mmu);
138
	if (ret)
139
		return ret;
140

141
	ret = create_hyp_mappings(kvm, kvm + 1, PAGE_HYP);
142 143 144
	if (ret)
		goto out_free_stage2_pgd;

145
	kvm_vgic_early_init(kvm);
146

147
	/* The maximum number of VCPUs is limited by the host's GIC model */
148
	kvm->arch.max_vcpus = kvm_arm_default_max_vcpus();
149

150
	set_default_spectre(kvm);
151

152 153
	return ret;
out_free_stage2_pgd:
154
	kvm_free_stage2_pgd(&kvm->arch.mmu);
155
	return ret;
156 157
}

158
vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
159 160 161 162 163
{
	return VM_FAULT_SIGBUS;
}


164 165 166 167
/**
 * kvm_arch_destroy_vm - destroy the VM data structure
 * @kvm:	pointer to the KVM struct
 */
168 169 170 171
void kvm_arch_destroy_vm(struct kvm *kvm)
{
	int i;

172 173
	bitmap_free(kvm->arch.pmu_filter);

174 175
	kvm_vgic_destroy(kvm);

176 177
	for (i = 0; i < KVM_MAX_VCPUS; ++i) {
		if (kvm->vcpus[i]) {
178
			kvm_vcpu_destroy(kvm->vcpus[i]);
179 180 181
			kvm->vcpus[i] = NULL;
		}
	}
182
	atomic_set(&kvm->online_vcpus, 0);
183 184
}

185
int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
186 187 188
{
	int r;
	switch (ext) {
189
	case KVM_CAP_IRQCHIP:
190 191
		r = vgic_present;
		break;
192
	case KVM_CAP_IOEVENTFD:
193
	case KVM_CAP_DEVICE_CTRL:
194 195 196 197
	case KVM_CAP_USER_MEMORY:
	case KVM_CAP_SYNC_MMU:
	case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
	case KVM_CAP_ONE_REG:
198
	case KVM_CAP_ARM_PSCI:
199
	case KVM_CAP_ARM_PSCI_0_2:
200
	case KVM_CAP_READONLY_MEM:
201
	case KVM_CAP_MP_STATE:
202
	case KVM_CAP_IMMEDIATE_EXIT:
203
	case KVM_CAP_VCPU_EVENTS:
204
	case KVM_CAP_ARM_IRQ_LINE_LAYOUT_2:
205
	case KVM_CAP_ARM_NISV_TO_USER:
206
	case KVM_CAP_ARM_INJECT_EXT_DABT:
207 208
	case KVM_CAP_SET_GUEST_DEBUG:
	case KVM_CAP_VCPU_ATTRIBUTES:
209
	case KVM_CAP_PTP_KVM:
210 211
		r = 1;
		break;
212 213
	case KVM_CAP_ARM_SET_DEVICE_ADDR:
		r = 1;
214
		break;
215 216 217 218
	case KVM_CAP_NR_VCPUS:
		r = num_online_cpus();
		break;
	case KVM_CAP_MAX_VCPUS:
219
	case KVM_CAP_MAX_VCPU_ID:
220 221 222 223
		if (kvm)
			r = kvm->arch.max_vcpus;
		else
			r = kvm_arm_default_max_vcpus();
224
		break;
V
Vladimir Murzin 已提交
225 226 227 228 229 230
	case KVM_CAP_MSI_DEVID:
		if (!kvm)
			r = -EINVAL;
		else
			r = kvm->arch.vgic.msis_require_devid;
		break;
231 232 233 234 235 236 237
	case KVM_CAP_ARM_USER_IRQ:
		/*
		 * 1: EL1_VTIMER, EL1_PTIMER, and PMU.
		 * (bump this number if adding more devices)
		 */
		r = 1;
		break;
238 239 240
	case KVM_CAP_STEAL_TIME:
		r = kvm_arm_pvtime_supported();
		break;
241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257
	case KVM_CAP_ARM_EL1_32BIT:
		r = cpus_have_const_cap(ARM64_HAS_32BIT_EL1);
		break;
	case KVM_CAP_GUEST_DEBUG_HW_BPS:
		r = get_num_brps();
		break;
	case KVM_CAP_GUEST_DEBUG_HW_WPS:
		r = get_num_wrps();
		break;
	case KVM_CAP_ARM_PMU_V3:
		r = kvm_arm_support_pmu_v3();
		break;
	case KVM_CAP_ARM_INJECT_SERROR_ESR:
		r = cpus_have_const_cap(ARM64_HAS_RAS_EXTN);
		break;
	case KVM_CAP_ARM_VM_IPA_SIZE:
		r = get_kvm_ipa_limit();
258
		break;
259 260 261 262 263 264 265 266 267
	case KVM_CAP_ARM_SVE:
		r = system_supports_sve();
		break;
	case KVM_CAP_ARM_PTRAUTH_ADDRESS:
	case KVM_CAP_ARM_PTRAUTH_GENERIC:
		r = system_has_full_ptr_auth();
		break;
	default:
		r = 0;
268
	}
269

270 271 272 273 274 275 276 277 278
	return r;
}

long kvm_arch_dev_ioctl(struct file *filp,
			unsigned int ioctl, unsigned long arg)
{
	return -EINVAL;
}

279 280 281 282 283 284 285 286 287 288 289 290 291 292 293
struct kvm *kvm_arch_alloc_vm(void)
{
	if (!has_vhe())
		return kzalloc(sizeof(struct kvm), GFP_KERNEL);

	return vzalloc(sizeof(struct kvm));
}

void kvm_arch_free_vm(struct kvm *kvm)
{
	if (!has_vhe())
		kfree(kvm);
	else
		vfree(kvm);
}
294

295 296 297 298 299 300 301 302 303 304 305
int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id)
{
	if (irqchip_in_kernel(kvm) && vgic_initialized(kvm))
		return -EBUSY;

	if (id >= kvm->arch.max_vcpus)
		return -EINVAL;

	return 0;
}

306
int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu)
307
{
308 309 310 311 312 313
	int err;

	/* Force users to call KVM_ARM_VCPU_INIT */
	vcpu->arch.target = -1;
	bitmap_zero(vcpu->arch.features, KVM_VCPU_MAX_FEATURES);

314 315
	vcpu->arch.mmu_page_cache.gfp_zero = __GFP_ZERO;

316 317 318 319 320 321 322 323 324
	/* Set up the timer */
	kvm_timer_vcpu_init(vcpu);

	kvm_pmu_vcpu_init(vcpu);

	kvm_arm_reset_debug_ptr(vcpu);

	kvm_arm_pvtime_vcpu_init(&vcpu->arch);

325 326
	vcpu->arch.hw_mmu = &vcpu->kvm->arch.mmu;

327 328 329 330
	err = kvm_vgic_vcpu_init(vcpu);
	if (err)
		return err;

331
	return create_hyp_mappings(vcpu, vcpu + 1, PAGE_HYP);
332 333
}

334
void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
335 336 337
{
}

338
void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
339
{
340 341 342
	if (vcpu->arch.has_run_once && unlikely(!irqchip_in_kernel(vcpu->kvm)))
		static_branch_dec(&userspace_irqchip_in_use);

343
	kvm_mmu_free_memory_cache(&vcpu->arch.mmu_page_cache);
344
	kvm_timer_vcpu_terminate(vcpu);
345
	kvm_pmu_vcpu_destroy(vcpu);
346 347

	kvm_arm_vcpu_destroy(vcpu);
348 349 350 351
}

int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
{
352
	return kvm_timer_is_pending(vcpu);
353 354
}

355 356
void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu)
{
357 358 359
	/*
	 * If we're about to block (most likely because we've just hit a
	 * WFI), we need to sync back the state of the GIC CPU interface
360
	 * so that we have the latest PMR and group enables. This ensures
361 362
	 * that kvm_arch_vcpu_runnable has up-to-date data to decide
	 * whether we have pending interrupts.
363 364 365
	 *
	 * For the same reason, we want to tell GICv4 that we need
	 * doorbells to be signalled, should an interrupt become pending.
366 367 368
	 */
	preempt_disable();
	kvm_vgic_vmcr_sync(vcpu);
369
	vgic_v4_put(vcpu, true);
370
	preempt_enable();
371 372 373 374
}

void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu)
{
375 376 377
	preempt_disable();
	vgic_v4_load(vcpu);
	preempt_enable();
378 379
}

380 381
void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
{
382
	struct kvm_s2_mmu *mmu;
383 384
	int *last_ran;

385 386
	mmu = vcpu->arch.hw_mmu;
	last_ran = this_cpu_ptr(mmu->last_vcpu_ran);
387 388

	/*
389 390 391 392 393
	 * We guarantee that both TLBs and I-cache are private to each
	 * vcpu. If detecting that a vcpu from the same VM has
	 * previously run on the same physical CPU, call into the
	 * hypervisor code to nuke the relevant contexts.
	 *
394 395 396 397
	 * We might get preempted before the vCPU actually runs, but
	 * over-invalidation doesn't affect correctness.
	 */
	if (*last_ran != vcpu->vcpu_id) {
398
		kvm_call_hyp(__kvm_flush_cpu_context, mmu);
399 400 401
		*last_ran = vcpu->vcpu_id;
	}

402
	vcpu->cpu = cpu;
403

404
	kvm_vgic_load(vcpu);
405
	kvm_timer_vcpu_load(vcpu);
406 407
	if (has_vhe())
		kvm_vcpu_load_sysregs_vhe(vcpu);
408
	kvm_arch_vcpu_load_fp(vcpu);
409
	kvm_vcpu_pmu_restore_guest(vcpu);
410 411
	if (kvm_arm_is_pvtime_enabled(&vcpu->arch))
		kvm_make_request(KVM_REQ_RECORD_STEAL, vcpu);
412 413

	if (single_task_running())
414
		vcpu_clear_wfx_traps(vcpu);
415
	else
416
		vcpu_set_wfx_traps(vcpu);
417

418
	if (vcpu_has_ptrauth(vcpu))
419
		vcpu_ptrauth_disable(vcpu);
420 421 422 423
}

void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
{
424
	kvm_arch_vcpu_put_fp(vcpu);
425 426
	if (has_vhe())
		kvm_vcpu_put_sysregs_vhe(vcpu);
427
	kvm_timer_vcpu_put(vcpu);
428
	kvm_vgic_put(vcpu);
429
	kvm_vcpu_pmu_restore_host(vcpu);
430

431
	vcpu->cpu = -1;
432 433
}

A
Andrew Jones 已提交
434 435 436
static void vcpu_power_off(struct kvm_vcpu *vcpu)
{
	vcpu->arch.power_off = true;
437
	kvm_make_request(KVM_REQ_SLEEP, vcpu);
A
Andrew Jones 已提交
438 439 440
	kvm_vcpu_kick(vcpu);
}

441 442 443
int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
				    struct kvm_mp_state *mp_state)
{
444
	if (vcpu->arch.power_off)
445 446 447 448 449
		mp_state->mp_state = KVM_MP_STATE_STOPPED;
	else
		mp_state->mp_state = KVM_MP_STATE_RUNNABLE;

	return 0;
450 451 452 453 454
}

int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
				    struct kvm_mp_state *mp_state)
{
455 456
	int ret = 0;

457 458
	switch (mp_state->mp_state) {
	case KVM_MP_STATE_RUNNABLE:
459
		vcpu->arch.power_off = false;
460 461
		break;
	case KVM_MP_STATE_STOPPED:
A
Andrew Jones 已提交
462
		vcpu_power_off(vcpu);
463 464
		break;
	default:
465
		ret = -EINVAL;
466 467
	}

468
	return ret;
469 470
}

471 472 473 474 475 476 477
/**
 * kvm_arch_vcpu_runnable - determine if the vcpu can be scheduled
 * @v:		The VCPU pointer
 *
 * If the guest CPU is not waiting for interrupts or an interrupt line is
 * asserted, the CPU is by definition runnable.
 */
478 479
int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
{
480 481
	bool irq_lines = *vcpu_hcr(v) & (HCR_VI | HCR_VF);
	return ((irq_lines || kvm_vgic_vcpu_pending_irq(v))
482
		&& !v->arch.power_off && !v->arch.pause);
483 484
}

485 486
bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
{
487
	return vcpu_mode_priv(vcpu);
488 489
}

490 491 492 493 494 495 496
/* Just ensure a guest exit from a particular CPU */
static void exit_vm_noop(void *info)
{
}

void force_vm_exit(const cpumask_t *mask)
{
497
	preempt_disable();
498
	smp_call_function_many(mask, exit_vm_noop, NULL, true);
499
	preempt_enable();
500 501 502 503
}

/**
 * need_new_vmid_gen - check that the VMID is still valid
504
 * @vmid: The VMID to check
505 506 507
 *
 * return true if there is a new generation of VMIDs being used
 *
508 509
 * The hardware supports a limited set of values with the value zero reserved
 * for the host, so we check if an assigned value belongs to a previous
F
Fuad Tabba 已提交
510 511 512
 * generation, which requires us to assign a new value. If we're the first to
 * use a VMID for the new generation, we must flush necessary caches and TLBs
 * on all CPUs.
513
 */
514
static bool need_new_vmid_gen(struct kvm_vmid *vmid)
515
{
516 517
	u64 current_vmid_gen = atomic64_read(&kvm_vmid_gen);
	smp_rmb(); /* Orders read of kvm_vmid_gen and kvm->arch.vmid */
518
	return unlikely(READ_ONCE(vmid->vmid_gen) != current_vmid_gen);
519 520 521
}

/**
522 523
 * update_vmid - Update the vmid with a valid VMID for the current generation
 * @vmid: The stage-2 VMID information struct
524
 */
525
static void update_vmid(struct kvm_vmid *vmid)
526
{
527
	if (!need_new_vmid_gen(vmid))
528 529
		return;

530
	spin_lock(&kvm_vmid_lock);
531 532 533 534 535 536

	/*
	 * We need to re-check the vmid_gen here to ensure that if another vcpu
	 * already allocated a valid vmid for this vm, then this vcpu should
	 * use the same vmid.
	 */
537
	if (!need_new_vmid_gen(vmid)) {
538
		spin_unlock(&kvm_vmid_lock);
539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560
		return;
	}

	/* First user of a new VMID generation? */
	if (unlikely(kvm_next_vmid == 0)) {
		atomic64_inc(&kvm_vmid_gen);
		kvm_next_vmid = 1;

		/*
		 * On SMP we know no other CPUs can use this CPU's or each
		 * other's VMID after force_vm_exit returns since the
		 * kvm_vmid_lock blocks them from reentry to the guest.
		 */
		force_vm_exit(cpu_all_mask);
		/*
		 * Now broadcast TLB + ICACHE invalidation over the inner
		 * shareable domain to make sure all data structures are
		 * clean.
		 */
		kvm_call_hyp(__kvm_flush_vm_context);
	}

561
	vmid->vmid = kvm_next_vmid;
562
	kvm_next_vmid++;
563
	kvm_next_vmid &= (1 << kvm_get_vmid_bits()) - 1;
564

565
	smp_wmb();
566
	WRITE_ONCE(vmid->vmid_gen, atomic64_read(&kvm_vmid_gen));
567 568

	spin_unlock(&kvm_vmid_lock);
569 570 571 572
}

static int kvm_vcpu_first_run_init(struct kvm_vcpu *vcpu)
{
573
	struct kvm *kvm = vcpu->kvm;
574
	int ret = 0;
575

576 577 578
	if (likely(vcpu->arch.has_run_once))
		return 0;

579 580 581
	if (!kvm_arm_vcpu_is_finalized(vcpu))
		return -EPERM;

582
	vcpu->arch.has_run_once = true;
583

584 585 586 587 588
	if (likely(irqchip_in_kernel(kvm))) {
		/*
		 * Map the VGIC hardware resources before running a vcpu the
		 * first time on this VM.
		 */
589 590 591
		ret = kvm_vgic_map_resources(kvm);
		if (ret)
			return ret;
592 593 594 595 596 597
	} else {
		/*
		 * Tell the rest of the code that there are userspace irqchip
		 * VMs in the wild.
		 */
		static_branch_inc(&userspace_irqchip_in_use);
598 599
	}

600
	ret = kvm_timer_enable(vcpu);
601 602 603 604
	if (ret)
		return ret;

	ret = kvm_arm_pmu_v3_enable(vcpu);
605

606
	return ret;
607 608
}

609 610 611 612 613
bool kvm_arch_intc_initialized(struct kvm *kvm)
{
	return vgic_initialized(kvm);
}

614
void kvm_arm_halt_guest(struct kvm *kvm)
615 616 617 618 619 620
{
	int i;
	struct kvm_vcpu *vcpu;

	kvm_for_each_vcpu(i, vcpu, kvm)
		vcpu->arch.pause = true;
621
	kvm_make_all_cpus_request(kvm, KVM_REQ_SLEEP);
622 623
}

624
void kvm_arm_resume_guest(struct kvm *kvm)
625 626 627 628
{
	int i;
	struct kvm_vcpu *vcpu;

629 630
	kvm_for_each_vcpu(i, vcpu, kvm) {
		vcpu->arch.pause = false;
631
		rcuwait_wake_up(kvm_arch_vcpu_get_wait(vcpu));
632
	}
633 634
}

635
static void vcpu_req_sleep(struct kvm_vcpu *vcpu)
636
{
637
	struct rcuwait *wait = kvm_arch_vcpu_get_wait(vcpu);
638

639 640 641
	rcuwait_wait_event(wait,
			   (!vcpu->arch.power_off) &&(!vcpu->arch.pause),
			   TASK_INTERRUPTIBLE);
642

A
Andrew Jones 已提交
643
	if (vcpu->arch.power_off || vcpu->arch.pause) {
644
		/* Awaken to handle a signal, request we sleep again later. */
645
		kvm_make_request(KVM_REQ_SLEEP, vcpu);
646
	}
647 648 649 650 651 652 653

	/*
	 * Make sure we will observe a potential reset request if we've
	 * observed a change to the power state. Pairs with the smp_wmb() in
	 * kvm_psci_vcpu_on().
	 */
	smp_rmb();
654 655
}

656 657 658 659 660
static int kvm_vcpu_initialized(struct kvm_vcpu *vcpu)
{
	return vcpu->arch.target >= 0;
}

661 662 663
static void check_vcpu_requests(struct kvm_vcpu *vcpu)
{
	if (kvm_request_pending(vcpu)) {
664 665
		if (kvm_check_request(KVM_REQ_SLEEP, vcpu))
			vcpu_req_sleep(vcpu);
666

667 668 669
		if (kvm_check_request(KVM_REQ_VCPU_RESET, vcpu))
			kvm_reset_vcpu(vcpu);

670 671 672 673 674
		/*
		 * Clear IRQ_PENDING requests that were made to guarantee
		 * that a VCPU sees new virtual interrupts.
		 */
		kvm_check_request(KVM_REQ_IRQ_PENDING, vcpu);
675 676 677

		if (kvm_check_request(KVM_REQ_RECORD_STEAL, vcpu))
			kvm_update_stolen_time(vcpu);
678 679 680 681 682 683 684 685

		if (kvm_check_request(KVM_REQ_RELOAD_GICv4, vcpu)) {
			/* The distributor enable bits were changed */
			preempt_disable();
			vgic_v4_put(vcpu, false);
			vgic_v4_load(vcpu);
			preempt_enable();
		}
686 687 688
	}
}

689 690 691 692 693 694 695 696 697 698
/**
 * kvm_arch_vcpu_ioctl_run - the main VCPU run function to execute guest code
 * @vcpu:	The VCPU pointer
 *
 * This function is called through the VCPU_RUN ioctl called from user space. It
 * will execute VM code in a loop until the time slice for the process is used
 * or some emulation is needed from user space in which case the function will
 * return with return value 0 and with the kvm_run structure filled in with the
 * required data for the requested emulation.
 */
699
int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu)
700
{
701
	struct kvm_run *run = vcpu->run;
702 703
	int ret;

704
	if (unlikely(!kvm_vcpu_initialized(vcpu)))
705 706 707 708
		return -ENOEXEC;

	ret = kvm_vcpu_first_run_init(vcpu);
	if (ret)
709
		return ret;
710

C
Christoffer Dall 已提交
711
	if (run->exit_reason == KVM_EXIT_MMIO) {
712
		ret = kvm_handle_mmio_return(vcpu);
C
Christoffer Dall 已提交
713
		if (ret)
714
			return ret;
C
Christoffer Dall 已提交
715 716
	}

717 718 719 720
	if (run->immediate_exit)
		return -EINTR;

	vcpu_load(vcpu);
721

722
	kvm_sigset_activate(vcpu);
723 724 725 726 727 728 729 730 731

	ret = 1;
	run->exit_reason = KVM_EXIT_UNKNOWN;
	while (ret > 0) {
		/*
		 * Check conditions before entering the guest
		 */
		cond_resched();

732
		update_vmid(&vcpu->arch.hw_mmu->vmid);
733

734 735
		check_vcpu_requests(vcpu);

736 737 738 739 740
		/*
		 * Preparing the interrupts to be injected also
		 * involves poking the GIC, which must be done in a
		 * non-preemptible context.
		 */
741
		preempt_disable();
742

743
		kvm_pmu_flush_hwstate(vcpu);
744

745 746
		local_irq_disable();

747 748
		kvm_vgic_flush_hwstate(vcpu);

749
		/*
750 751
		 * Exit if we have a signal pending so that we can deliver the
		 * signal to user space.
752
		 */
753
		if (signal_pending(current)) {
754 755 756 757
			ret = -EINTR;
			run->exit_reason = KVM_EXIT_INTR;
		}

758 759 760 761 762 763 764 765 766 767 768 769 770 771 772
		/*
		 * If we're using a userspace irqchip, then check if we need
		 * to tell a userspace irqchip about timer or PMU level
		 * changes and if so, exit to userspace (the actual level
		 * state gets updated in kvm_timer_update_run and
		 * kvm_pmu_update_run below).
		 */
		if (static_branch_unlikely(&userspace_irqchip_in_use)) {
			if (kvm_timer_should_notify_user(vcpu) ||
			    kvm_pmu_should_notify_user(vcpu)) {
				ret = -EINTR;
				run->exit_reason = KVM_EXIT_INTR;
			}
		}

773 774 775 776
		/*
		 * Ensure we set mode to IN_GUEST_MODE after we disable
		 * interrupts and before the final VCPU requests check.
		 * See the comment in kvm_vcpu_exiting_guest_mode() and
777
		 * Documentation/virt/kvm/vcpu-requests.rst
778 779 780
		 */
		smp_store_mb(vcpu->mode, IN_GUEST_MODE);

781
		if (ret <= 0 || need_new_vmid_gen(&vcpu->arch.hw_mmu->vmid) ||
A
Andrew Jones 已提交
782
		    kvm_request_pending(vcpu)) {
783
			vcpu->mode = OUTSIDE_GUEST_MODE;
784
			isb(); /* Ensure work in x_flush_hwstate is committed */
785
			kvm_pmu_sync_hwstate(vcpu);
786
			if (static_branch_unlikely(&userspace_irqchip_in_use))
787
				kvm_timer_sync_user(vcpu);
788
			kvm_vgic_sync_hwstate(vcpu);
789
			local_irq_enable();
790
			preempt_enable();
791 792 793
			continue;
		}

794 795
		kvm_arm_setup_debug(vcpu);

796 797 798 799
		/**************************************************************
		 * Enter the guest
		 */
		trace_kvm_entry(*vcpu_pc(vcpu));
800
		guest_enter_irqoff();
801

802
		ret = kvm_call_hyp_ret(__kvm_vcpu_run, vcpu);
803

804
		vcpu->mode = OUTSIDE_GUEST_MODE;
805
		vcpu->stat.exits++;
806 807 808 809
		/*
		 * Back from guest
		 *************************************************************/

810 811
		kvm_arm_clear_debug(vcpu);

812
		/*
813
		 * We must sync the PMU state before the vgic state so
814 815 816 817 818
		 * that the vgic can properly sample the updated state of the
		 * interrupt line.
		 */
		kvm_pmu_sync_hwstate(vcpu);

819 820 821 822 823
		/*
		 * Sync the vgic state before syncing the timer state because
		 * the timer code needs to know if the virtual timer
		 * interrupts are active.
		 */
824 825
		kvm_vgic_sync_hwstate(vcpu);

826 827 828 829 830
		/*
		 * Sync the timer hardware state before enabling interrupts as
		 * we don't want vtimer interrupts to race with syncing the
		 * timer virtual interrupt state.
		 */
831
		if (static_branch_unlikely(&userspace_irqchip_in_use))
832
			kvm_timer_sync_user(vcpu);
833

834 835
		kvm_arch_vcpu_ctxsync_fp(vcpu);

836 837 838 839 840 841 842 843 844 845 846 847 848
		/*
		 * We may have taken a host interrupt in HYP mode (ie
		 * while executing the guest). This interrupt is still
		 * pending, as we haven't serviced it yet!
		 *
		 * We're now back in SVC mode, with interrupts
		 * disabled.  Enabling the interrupts now will have
		 * the effect of taking the interrupt again, in SVC
		 * mode this time.
		 */
		local_irq_enable();

		/*
849
		 * We do local_irq_enable() before calling guest_exit() so
850 851
		 * that if a timer interrupt hits while running the guest we
		 * account that tick as being spent in the guest.  We enable
852
		 * preemption after calling guest_exit() so that if we get
853 854 855
		 * preempted we make sure ticks after that is not counted as
		 * guest time.
		 */
856
		guest_exit();
857
		trace_kvm_exit(ret, kvm_vcpu_trap_get_class(vcpu), *vcpu_pc(vcpu));
858

859
		/* Exit types that need handling before we can be preempted */
860
		handle_exit_early(vcpu, ret);
861

862 863
		preempt_enable();

864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882
		/*
		 * The ARMv8 architecture doesn't give the hypervisor
		 * a mechanism to prevent a guest from dropping to AArch32 EL0
		 * if implemented by the CPU. If we spot the guest in such
		 * state and that we decided it wasn't supposed to do so (like
		 * with the asymmetric AArch32 case), return to userspace with
		 * a fatal error.
		 */
		if (!system_supports_32bit_el0() && vcpu_mode_is_32bit(vcpu)) {
			/*
			 * As we have caught the guest red-handed, decide that
			 * it isn't fit for purpose anymore by making the vcpu
			 * invalid. The VMM can try and fix it by issuing  a
			 * KVM_ARM_VCPU_INIT if it really wants to.
			 */
			vcpu->arch.target = -1;
			ret = ARM_EXCEPTION_IL;
		}

883
		ret = handle_exit(vcpu, ret);
884 885
	}

886
	/* Tell userspace about in-kernel device output levels */
887 888 889 890
	if (unlikely(!irqchip_in_kernel(vcpu->kvm))) {
		kvm_timer_update_run(vcpu);
		kvm_pmu_update_run(vcpu);
	}
891

892 893
	kvm_sigset_deactivate(vcpu);

894
	vcpu_put(vcpu);
895
	return ret;
896 897
}

898 899 900 901
static int vcpu_interrupt_line(struct kvm_vcpu *vcpu, int number, bool level)
{
	int bit_index;
	bool set;
902
	unsigned long *hcr;
903 904 905 906 907 908

	if (number == KVM_ARM_IRQ_CPU_IRQ)
		bit_index = __ffs(HCR_VI);
	else /* KVM_ARM_IRQ_CPU_FIQ */
		bit_index = __ffs(HCR_VF);

909
	hcr = vcpu_hcr(vcpu);
910
	if (level)
911
		set = test_and_set_bit(bit_index, hcr);
912
	else
913
		set = test_and_clear_bit(bit_index, hcr);
914 915 916 917 918 919 920 921 922 923 924 925

	/*
	 * If we didn't change anything, no need to wake up or kick other CPUs
	 */
	if (set == level)
		return 0;

	/*
	 * The vcpu irq_lines field was updated, wake up sleeping VCPUs and
	 * trigger a world-switch round on the running physical CPU to set the
	 * virtual IRQ/FIQ fields in the HCR appropriately.
	 */
926
	kvm_make_request(KVM_REQ_IRQ_PENDING, vcpu);
927 928 929 930 931
	kvm_vcpu_kick(vcpu);

	return 0;
}

932 933
int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level,
			  bool line_status)
934 935 936 937 938 939 940 941 942
{
	u32 irq = irq_level->irq;
	unsigned int irq_type, vcpu_idx, irq_num;
	int nrcpus = atomic_read(&kvm->online_vcpus);
	struct kvm_vcpu *vcpu = NULL;
	bool level = irq_level->level;

	irq_type = (irq >> KVM_ARM_IRQ_TYPE_SHIFT) & KVM_ARM_IRQ_TYPE_MASK;
	vcpu_idx = (irq >> KVM_ARM_IRQ_VCPU_SHIFT) & KVM_ARM_IRQ_VCPU_MASK;
943
	vcpu_idx += ((irq >> KVM_ARM_IRQ_VCPU2_SHIFT) & KVM_ARM_IRQ_VCPU2_MASK) * (KVM_ARM_IRQ_VCPU_MASK + 1);
944 945 946 947
	irq_num = (irq >> KVM_ARM_IRQ_NUM_SHIFT) & KVM_ARM_IRQ_NUM_MASK;

	trace_kvm_irq_line(irq_type, vcpu_idx, irq_num, irq_level->level);

948 949 950 951
	switch (irq_type) {
	case KVM_ARM_IRQ_TYPE_CPU:
		if (irqchip_in_kernel(kvm))
			return -ENXIO;
952

953 954
		if (vcpu_idx >= nrcpus)
			return -EINVAL;
955

956 957 958
		vcpu = kvm_get_vcpu(kvm, vcpu_idx);
		if (!vcpu)
			return -EINVAL;
959

960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976
		if (irq_num > KVM_ARM_IRQ_CPU_FIQ)
			return -EINVAL;

		return vcpu_interrupt_line(vcpu, irq_num, level);
	case KVM_ARM_IRQ_TYPE_PPI:
		if (!irqchip_in_kernel(kvm))
			return -ENXIO;

		if (vcpu_idx >= nrcpus)
			return -EINVAL;

		vcpu = kvm_get_vcpu(kvm, vcpu_idx);
		if (!vcpu)
			return -EINVAL;

		if (irq_num < VGIC_NR_SGIS || irq_num >= VGIC_NR_PRIVATE_IRQS)
			return -EINVAL;
977

978
		return kvm_vgic_inject_irq(kvm, vcpu->vcpu_id, irq_num, level, NULL);
979 980 981 982
	case KVM_ARM_IRQ_TYPE_SPI:
		if (!irqchip_in_kernel(kvm))
			return -ENXIO;

983
		if (irq_num < VGIC_NR_PRIVATE_IRQS)
984 985
			return -EINVAL;

986
		return kvm_vgic_inject_irq(kvm, 0, irq_num, level, NULL);
987 988 989
	}

	return -EINVAL;
990 991
}

992 993 994
static int kvm_vcpu_set_target(struct kvm_vcpu *vcpu,
			       const struct kvm_vcpu_init *init)
{
995
	unsigned int i, ret;
996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029
	int phys_target = kvm_target_cpu();

	if (init->target != phys_target)
		return -EINVAL;

	/*
	 * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
	 * use the same target.
	 */
	if (vcpu->arch.target != -1 && vcpu->arch.target != init->target)
		return -EINVAL;

	/* -ENOENT for unknown features, -EINVAL for invalid combinations. */
	for (i = 0; i < sizeof(init->features) * 8; i++) {
		bool set = (init->features[i / 32] & (1 << (i % 32)));

		if (set && i >= KVM_VCPU_MAX_FEATURES)
			return -ENOENT;

		/*
		 * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
		 * use the same feature set.
		 */
		if (vcpu->arch.target != -1 && i < KVM_VCPU_MAX_FEATURES &&
		    test_bit(i, vcpu->arch.features) != set)
			return -EINVAL;

		if (set)
			set_bit(i, vcpu->arch.features);
	}

	vcpu->arch.target = phys_target;

	/* Now we know what it is, we can reset it. */
1030 1031 1032 1033 1034
	ret = kvm_reset_vcpu(vcpu);
	if (ret) {
		vcpu->arch.target = -1;
		bitmap_zero(vcpu->arch.features, KVM_VCPU_MAX_FEATURES);
	}
1035

1036 1037
	return ret;
}
1038

1039 1040 1041 1042 1043 1044 1045 1046 1047
static int kvm_arch_vcpu_ioctl_vcpu_init(struct kvm_vcpu *vcpu,
					 struct kvm_vcpu_init *init)
{
	int ret;

	ret = kvm_vcpu_set_target(vcpu, init);
	if (ret)
		return ret;

1048 1049 1050
	/*
	 * Ensure a rebooted VM will fault in RAM pages and detect if the
	 * guest MMU is turned off and flush the caches as needed.
1051
	 *
1052 1053 1054 1055
	 * S2FWB enforces all memory accesses to RAM being cacheable,
	 * ensuring that the data side is always coherent. We still
	 * need to invalidate the I-cache though, as FWB does *not*
	 * imply CTR_EL0.DIC.
1056
	 */
1057 1058 1059 1060 1061 1062
	if (vcpu->arch.has_run_once) {
		if (!cpus_have_final_cap(ARM64_HAS_STAGE2_FWB))
			stage2_unmap_vm(vcpu->kvm);
		else
			__flush_icache_all();
	}
1063

1064 1065
	vcpu_reset_hcr(vcpu);

1066
	/*
1067
	 * Handle the "start in power-off" case.
1068
	 */
1069
	if (test_bit(KVM_ARM_VCPU_POWER_OFF, vcpu->arch.features))
A
Andrew Jones 已提交
1070
		vcpu_power_off(vcpu);
1071
	else
1072
		vcpu->arch.power_off = false;
1073 1074 1075 1076

	return 0;
}

1077 1078 1079 1080 1081 1082 1083
static int kvm_arm_vcpu_set_attr(struct kvm_vcpu *vcpu,
				 struct kvm_device_attr *attr)
{
	int ret = -ENXIO;

	switch (attr->group) {
	default:
1084
		ret = kvm_arm_vcpu_arch_set_attr(vcpu, attr);
1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097
		break;
	}

	return ret;
}

static int kvm_arm_vcpu_get_attr(struct kvm_vcpu *vcpu,
				 struct kvm_device_attr *attr)
{
	int ret = -ENXIO;

	switch (attr->group) {
	default:
1098
		ret = kvm_arm_vcpu_arch_get_attr(vcpu, attr);
1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111
		break;
	}

	return ret;
}

static int kvm_arm_vcpu_has_attr(struct kvm_vcpu *vcpu,
				 struct kvm_device_attr *attr)
{
	int ret = -ENXIO;

	switch (attr->group) {
	default:
1112
		ret = kvm_arm_vcpu_arch_has_attr(vcpu, attr);
1113 1114 1115 1116 1117 1118
		break;
	}

	return ret;
}

1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144
static int kvm_arm_vcpu_get_events(struct kvm_vcpu *vcpu,
				   struct kvm_vcpu_events *events)
{
	memset(events, 0, sizeof(*events));

	return __kvm_arm_vcpu_get_events(vcpu, events);
}

static int kvm_arm_vcpu_set_events(struct kvm_vcpu *vcpu,
				   struct kvm_vcpu_events *events)
{
	int i;

	/* check whether the reserved field is zero */
	for (i = 0; i < ARRAY_SIZE(events->reserved); i++)
		if (events->reserved[i])
			return -EINVAL;

	/* check whether the pad field is zero */
	for (i = 0; i < ARRAY_SIZE(events->exception.pad); i++)
		if (events->exception.pad[i])
			return -EINVAL;

	return __kvm_arm_vcpu_set_events(vcpu, events);
}

1145 1146 1147 1148 1149
long kvm_arch_vcpu_ioctl(struct file *filp,
			 unsigned int ioctl, unsigned long arg)
{
	struct kvm_vcpu *vcpu = filp->private_data;
	void __user *argp = (void __user *)arg;
1150
	struct kvm_device_attr attr;
1151 1152
	long r;

1153 1154 1155 1156
	switch (ioctl) {
	case KVM_ARM_VCPU_INIT: {
		struct kvm_vcpu_init init;

1157
		r = -EFAULT;
1158
		if (copy_from_user(&init, argp, sizeof(init)))
1159
			break;
1160

1161 1162
		r = kvm_arch_vcpu_ioctl_vcpu_init(vcpu, &init);
		break;
1163 1164 1165 1166
	}
	case KVM_SET_ONE_REG:
	case KVM_GET_ONE_REG: {
		struct kvm_one_reg reg;
1167

1168
		r = -ENOEXEC;
1169
		if (unlikely(!kvm_vcpu_initialized(vcpu)))
1170
			break;
1171

1172
		r = -EFAULT;
1173
		if (copy_from_user(&reg, argp, sizeof(reg)))
1174 1175
			break;

1176
		if (ioctl == KVM_SET_ONE_REG)
1177
			r = kvm_arm_set_reg(vcpu, &reg);
1178
		else
1179 1180
			r = kvm_arm_get_reg(vcpu, &reg);
		break;
1181 1182 1183 1184 1185 1186
	}
	case KVM_GET_REG_LIST: {
		struct kvm_reg_list __user *user_list = argp;
		struct kvm_reg_list reg_list;
		unsigned n;

1187
		r = -ENOEXEC;
1188
		if (unlikely(!kvm_vcpu_initialized(vcpu)))
1189
			break;
1190

1191 1192 1193 1194
		r = -EPERM;
		if (!kvm_arm_vcpu_is_finalized(vcpu))
			break;

1195
		r = -EFAULT;
1196
		if (copy_from_user(&reg_list, user_list, sizeof(reg_list)))
1197
			break;
1198 1199 1200
		n = reg_list.n;
		reg_list.n = kvm_arm_num_regs(vcpu);
		if (copy_to_user(user_list, &reg_list, sizeof(reg_list)))
1201 1202
			break;
		r = -E2BIG;
1203
		if (n < reg_list.n)
1204 1205 1206
			break;
		r = kvm_arm_copy_reg_indices(vcpu, user_list->reg);
		break;
1207
	}
1208
	case KVM_SET_DEVICE_ATTR: {
1209
		r = -EFAULT;
1210
		if (copy_from_user(&attr, argp, sizeof(attr)))
1211 1212 1213
			break;
		r = kvm_arm_vcpu_set_attr(vcpu, &attr);
		break;
1214 1215
	}
	case KVM_GET_DEVICE_ATTR: {
1216
		r = -EFAULT;
1217
		if (copy_from_user(&attr, argp, sizeof(attr)))
1218 1219 1220
			break;
		r = kvm_arm_vcpu_get_attr(vcpu, &attr);
		break;
1221 1222
	}
	case KVM_HAS_DEVICE_ATTR: {
1223
		r = -EFAULT;
1224
		if (copy_from_user(&attr, argp, sizeof(attr)))
1225 1226 1227
			break;
		r = kvm_arm_vcpu_has_attr(vcpu, &attr);
		break;
1228
	}
1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247
	case KVM_GET_VCPU_EVENTS: {
		struct kvm_vcpu_events events;

		if (kvm_arm_vcpu_get_events(vcpu, &events))
			return -EINVAL;

		if (copy_to_user(argp, &events, sizeof(events)))
			return -EFAULT;

		return 0;
	}
	case KVM_SET_VCPU_EVENTS: {
		struct kvm_vcpu_events events;

		if (copy_from_user(&events, argp, sizeof(events)))
			return -EFAULT;

		return kvm_arm_vcpu_set_events(vcpu, &events);
	}
1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258
	case KVM_ARM_VCPU_FINALIZE: {
		int what;

		if (!kvm_vcpu_initialized(vcpu))
			return -ENOEXEC;

		if (get_user(what, (const int __user *)argp))
			return -EFAULT;

		return kvm_arm_vcpu_finalize(vcpu, what);
	}
1259
	default:
1260
		r = -EINVAL;
1261
	}
1262 1263

	return r;
1264 1265
}

1266
void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot)
1267
{
1268

1269 1270
}

1271 1272
void kvm_arch_flush_remote_tlbs_memslot(struct kvm *kvm,
					struct kvm_memory_slot *memslot)
1273
{
1274
	kvm_flush_remote_tlbs(kvm);
1275 1276
}

1277 1278 1279
static int kvm_vm_ioctl_set_device_addr(struct kvm *kvm,
					struct kvm_arm_device_addr *dev_addr)
{
1280 1281 1282 1283 1284 1285 1286 1287 1288
	unsigned long dev_id, type;

	dev_id = (dev_addr->id & KVM_ARM_DEVICE_ID_MASK) >>
		KVM_ARM_DEVICE_ID_SHIFT;
	type = (dev_addr->id & KVM_ARM_DEVICE_TYPE_MASK) >>
		KVM_ARM_DEVICE_TYPE_SHIFT;

	switch (dev_id) {
	case KVM_ARM_DEVICE_VGIC_V2:
1289 1290
		if (!vgic_present)
			return -ENXIO;
1291
		return kvm_vgic_addr(kvm, type, &dev_addr->addr, true);
1292 1293 1294
	default:
		return -ENODEV;
	}
1295 1296
}

1297 1298 1299
long kvm_arch_vm_ioctl(struct file *filp,
		       unsigned int ioctl, unsigned long arg)
{
1300 1301 1302 1303
	struct kvm *kvm = filp->private_data;
	void __user *argp = (void __user *)arg;

	switch (ioctl) {
1304
	case KVM_CREATE_IRQCHIP: {
1305
		int ret;
1306 1307
		if (!vgic_present)
			return -ENXIO;
1308 1309 1310 1311
		mutex_lock(&kvm->lock);
		ret = kvm_vgic_create(kvm, KVM_DEV_TYPE_ARM_VGIC_V2);
		mutex_unlock(&kvm->lock);
		return ret;
1312
	}
1313 1314 1315 1316 1317 1318 1319
	case KVM_ARM_SET_DEVICE_ADDR: {
		struct kvm_arm_device_addr dev_addr;

		if (copy_from_user(&dev_addr, argp, sizeof(dev_addr)))
			return -EFAULT;
		return kvm_vm_ioctl_set_device_addr(kvm, &dev_addr);
	}
1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332
	case KVM_ARM_PREFERRED_TARGET: {
		int err;
		struct kvm_vcpu_init init;

		err = kvm_vcpu_preferred_target(&init);
		if (err)
			return err;

		if (copy_to_user(argp, &init, sizeof(init)))
			return -EFAULT;

		return 0;
	}
1333 1334 1335
	default:
		return -EINVAL;
	}
1336 1337
}

1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350
static unsigned long nvhe_percpu_size(void)
{
	return (unsigned long)CHOOSE_NVHE_SYM(__per_cpu_end) -
		(unsigned long)CHOOSE_NVHE_SYM(__per_cpu_start);
}

static unsigned long nvhe_percpu_order(void)
{
	unsigned long size = nvhe_percpu_size();

	return size ? get_order(size) : 0;
}

1351 1352 1353
/* A lookup table holding the hypervisor VA for each vector slot */
static void *hyp_spectre_vector_selector[BP_HARDEN_EL2_SLOTS];

1354
static int __kvm_vector_slot2idx(enum arm64_hyp_spectre_vector slot)
1355
{
1356 1357
	return slot - (slot != HYP_VECTOR_DIRECT);
}
1358

1359
static void kvm_init_vector_slot(void *base, enum arm64_hyp_spectre_vector slot)
1360
{
1361
	int idx = __kvm_vector_slot2idx(slot);
1362

1363
	hyp_spectre_vector_selector[slot] = base + (idx * SZ_2K);
1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375
}

static int kvm_init_vector_slots(void)
{
	int err;
	void *base;

	base = kern_hyp_va(kvm_ksym_ref(__kvm_hyp_vector));
	kvm_init_vector_slot(base, HYP_VECTOR_DIRECT);

	base = kern_hyp_va(kvm_ksym_ref(__bp_harden_hyp_vecs));
	kvm_init_vector_slot(base, HYP_VECTOR_SPECTRE_DIRECT);
W
Will Deacon 已提交
1376

1377
	if (!cpus_have_const_cap(ARM64_SPECTRE_V3A))
W
Will Deacon 已提交
1378
		return 0;
1379

1380 1381 1382 1383 1384
	if (!has_vhe()) {
		err = create_hyp_exec_mappings(__pa_symbol(__bp_harden_hyp_vecs),
					       __BP_HARDEN_HYP_VECS_SZ, &base);
		if (err)
			return err;
1385 1386
	}

1387 1388
	kvm_init_vector_slot(base, HYP_VECTOR_INDIRECT);
	kvm_init_vector_slot(base, HYP_VECTOR_SPECTRE_INDIRECT);
1389 1390 1391
	return 0;
}

1392
static void cpu_init_hyp_mode(void)
1393
{
1394
	struct kvm_nvhe_init_params *params = this_cpu_ptr_nvhe_sym(kvm_init_params);
1395
	struct arm_smccc_res res;
1396
	unsigned long tcr;
1397 1398

	/* Switch from the HYP stub to our own HYP init vector */
1399
	__hyp_set_vectors(kvm_get_idmap_vector());
1400

1401 1402 1403 1404
	/*
	 * Calculate the raw per-cpu offset without a translation from the
	 * kernel's mapping to the linear mapping, and store it in tpidr_el2
	 * so that we can use adr_l to access per-cpu variables in EL2.
1405
	 * Also drop the KASAN tag which gets in the way...
1406
	 */
1407
	params->tpidr_el2 = (unsigned long)kasan_reset_tag(this_cpu_ptr_nvhe_sym(__per_cpu_start)) -
1408
			    (unsigned long)kvm_ksym_ref(CHOOSE_NVHE_SYM(__per_cpu_start));
1409

1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430
	params->mair_el2 = read_sysreg(mair_el1);

	/*
	 * The ID map may be configured to use an extended virtual address
	 * range. This is only the case if system RAM is out of range for the
	 * currently configured page size and VA_BITS, in which case we will
	 * also need the extended virtual range for the HYP ID map, or we won't
	 * be able to enable the EL2 MMU.
	 *
	 * However, at EL2, there is only one TTBR register, and we can't switch
	 * between translation tables *and* update TCR_EL2.T0SZ at the same
	 * time. Bottom line: we need to use the extended range with *both* our
	 * translation tables.
	 *
	 * So use the same T0SZ value we use for the ID map.
	 */
	tcr = (read_sysreg(tcr_el1) & TCR_EL2_MASK) | TCR_EL2_RES1;
	tcr &= ~TCR_T0SZ_MASK;
	tcr |= (idmap_t0sz & GENMASK(TCR_TxSZ_WIDTH - 1, 0)) << TCR_T0SZ_OFFSET;
	params->tcr_el2 = tcr;

1431 1432
	params->stack_hyp_va = kern_hyp_va(__this_cpu_read(kvm_arm_hyp_stack_page) + PAGE_SIZE);
	params->pgd_pa = kvm_mmu_get_httbr();
1433

1434 1435 1436 1437 1438
	/*
	 * Flush the init params from the data cache because the struct will
	 * be read while the MMU is off.
	 */
	kvm_flush_dcache_to_poc(params, sizeof(*params));
1439

1440 1441 1442 1443 1444 1445 1446
	/*
	 * Call initialization code, and switch to the full blown HYP code.
	 * If the cpucaps haven't been finalized yet, something has gone very
	 * wrong, and hyp will crash and burn when it uses any
	 * cpus_have_const_cap() wrapper.
	 */
	BUG_ON(!system_capabilities_finalized());
1447
	arm_smccc_1_1_hvc(KVM_HOST_SMCCC_FUNC(__kvm_hyp_init), virt_to_phys(params), &res);
1448
	WARN_ON(res.a0 != SMCCC_RET_SUCCESS);
1449 1450 1451 1452 1453 1454

	/*
	 * Disabling SSBD on a non-VHE system requires us to enable SSBS
	 * at EL2.
	 */
	if (this_cpu_has_cap(ARM64_SSBS) &&
1455
	    arm64_get_spectre_v4_state() == SPECTRE_VULNERABLE) {
1456
		kvm_call_hyp_nvhe(__kvm_enable_ssbs);
1457
	}
1458 1459
}

1460 1461 1462 1463 1464 1465
static void cpu_hyp_reset(void)
{
	if (!is_kernel_in_hyp_mode())
		__hyp_reset_vectors();
}

1466 1467 1468 1469 1470 1471 1472 1473
/*
 * EL2 vectors can be mapped and rerouted in a number of ways,
 * depending on the kernel configuration and CPU present:
 *
 * - If the CPU is affected by Spectre-v2, the hardening sequence is
 *   placed in one of the vector slots, which is executed before jumping
 *   to the real vectors.
 *
1474
 * - If the CPU also has the ARM64_SPECTRE_V3A cap, the slot
1475 1476 1477
 *   containing the hardening sequence is mapped next to the idmap page,
 *   and executed before jumping to the real vectors.
 *
1478
 * - If the CPU only has the ARM64_SPECTRE_V3A cap, then an
1479 1480 1481
 *   empty slot is selected, mapped next to the idmap page, and
 *   executed before jumping to the real vectors.
 *
1482
 * Note that ARM64_SPECTRE_V3A is somewhat incompatible with
1483 1484 1485 1486 1487
 * VHE, as we don't have hypervisor-specific mappings. If the system
 * is VHE and yet selects this capability, it will be ignored.
 */
static void cpu_set_hyp_vector(void)
{
1488
	struct bp_hardening_data *data = this_cpu_ptr(&bp_hardening_data);
1489
	void *vector = hyp_spectre_vector_selector[data->slot];
1490

1491
	*this_cpu_ptr_hyp_sym(kvm_hyp_vector) = (unsigned long)vector;
1492 1493
}

1494 1495
static void cpu_hyp_reinit(void)
{
1496
	kvm_init_host_cpu_context(&this_cpu_ptr_hyp_sym(kvm_host_data)->host_ctxt);
1497

1498
	cpu_hyp_reset();
1499
	cpu_set_hyp_vector();
1500

1501
	if (is_kernel_in_hyp_mode())
1502
		kvm_timer_init_vhe();
1503
	else
1504
		cpu_init_hyp_mode();
1505

1506
	kvm_arm_init_debug();
1507 1508 1509

	if (vgic_present)
		kvm_vgic_init_cpu_hardware();
1510 1511
}

1512 1513 1514
static void _kvm_arch_hardware_enable(void *discard)
{
	if (!__this_cpu_read(kvm_arm_hardware_enabled)) {
1515
		cpu_hyp_reinit();
1516
		__this_cpu_write(kvm_arm_hardware_enabled, 1);
1517
	}
1518
}
1519

1520 1521 1522 1523
int kvm_arch_hardware_enable(void)
{
	_kvm_arch_hardware_enable(NULL);
	return 0;
1524 1525
}

1526 1527 1528 1529 1530 1531 1532 1533 1534 1535
static void _kvm_arch_hardware_disable(void *discard)
{
	if (__this_cpu_read(kvm_arm_hardware_enabled)) {
		cpu_hyp_reset();
		__this_cpu_write(kvm_arm_hardware_enabled, 0);
	}
}

void kvm_arch_hardware_disable(void)
{
1536 1537
	if (!is_protected_kvm_enabled())
		_kvm_arch_hardware_disable(NULL);
1538
}
1539

1540 1541 1542 1543 1544
#ifdef CONFIG_CPU_PM
static int hyp_init_cpu_pm_notifier(struct notifier_block *self,
				    unsigned long cmd,
				    void *v)
{
1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559
	/*
	 * kvm_arm_hardware_enabled is left with its old value over
	 * PM_ENTER->PM_EXIT. It is used to indicate PM_EXIT should
	 * re-enable hyp.
	 */
	switch (cmd) {
	case CPU_PM_ENTER:
		if (__this_cpu_read(kvm_arm_hardware_enabled))
			/*
			 * don't update kvm_arm_hardware_enabled here
			 * so that the hardware will be re-enabled
			 * when we resume. See below.
			 */
			cpu_hyp_reset();

1560
		return NOTIFY_OK;
1561
	case CPU_PM_ENTER_FAILED:
1562 1563 1564 1565
	case CPU_PM_EXIT:
		if (__this_cpu_read(kvm_arm_hardware_enabled))
			/* The hardware was enabled before suspend. */
			cpu_hyp_reinit();
1566

1567 1568 1569 1570 1571
		return NOTIFY_OK;

	default:
		return NOTIFY_DONE;
	}
1572 1573 1574 1575 1576 1577
}

static struct notifier_block hyp_init_cpu_pm_nb = {
	.notifier_call = hyp_init_cpu_pm_notifier,
};

1578
static void hyp_cpu_pm_init(void)
1579
{
1580 1581
	if (!is_protected_kvm_enabled())
		cpu_pm_register_notifier(&hyp_init_cpu_pm_nb);
1582
}
1583
static void hyp_cpu_pm_exit(void)
1584
{
1585 1586
	if (!is_protected_kvm_enabled())
		cpu_pm_unregister_notifier(&hyp_init_cpu_pm_nb);
1587
}
1588 1589 1590 1591
#else
static inline void hyp_cpu_pm_init(void)
{
}
1592 1593 1594
static inline void hyp_cpu_pm_exit(void)
{
}
1595 1596
#endif

1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607
static void init_cpu_logical_map(void)
{
	unsigned int cpu;

	/*
	 * Copy the MPIDR <-> logical CPU ID mapping to hyp.
	 * Only copy the set of online CPUs whose features have been chacked
	 * against the finalized system capabilities. The hypervisor will not
	 * allow any other CPUs from the `possible` set to boot.
	 */
	for_each_online_cpu(cpu)
1608
		hyp_cpu_logical_map[cpu] = cpu_logical_map(cpu);
1609 1610
}

1611 1612 1613
#define init_psci_0_1_impl_state(config, what)	\
	config.psci_0_1_ ## what ## _implemented = psci_ops.what

1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624
static bool init_psci_relay(void)
{
	/*
	 * If PSCI has not been initialized, protected KVM cannot install
	 * itself on newly booted CPUs.
	 */
	if (!psci_ops.get_version) {
		kvm_err("Cannot initialize protected mode without PSCI\n");
		return false;
	}

1625 1626 1627 1628
	kvm_host_psci_config.version = psci_ops.get_version();

	if (kvm_host_psci_config.version == PSCI_VERSION(0, 1)) {
		kvm_host_psci_config.function_ids_0_1 = get_psci_0_1_function_ids();
1629 1630 1631 1632
		init_psci_0_1_impl_state(kvm_host_psci_config, cpu_suspend);
		init_psci_0_1_impl_state(kvm_host_psci_config, cpu_on);
		init_psci_0_1_impl_state(kvm_host_psci_config, cpu_off);
		init_psci_0_1_impl_state(kvm_host_psci_config, migrate);
1633
	}
1634 1635 1636
	return true;
}

1637 1638
static int init_common_resources(void)
{
1639
	return kvm_set_ipa_limit();
1640 1641 1642 1643
}

static int init_subsystems(void)
{
1644
	int err = 0;
1645

1646
	/*
1647
	 * Enable hardware so that subsystem initialisation can access EL2.
1648
	 */
1649
	on_each_cpu(_kvm_arch_hardware_enable, NULL, 1);
1650 1651 1652 1653 1654 1655

	/*
	 * Register CPU lower-power notifier
	 */
	hyp_cpu_pm_init();

1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666
	/*
	 * Init HYP view of VGIC
	 */
	err = kvm_vgic_hyp_init();
	switch (err) {
	case 0:
		vgic_present = true;
		break;
	case -ENODEV:
	case -ENXIO:
		vgic_present = false;
1667
		err = 0;
1668 1669
		break;
	default:
1670
		goto out;
1671 1672 1673 1674 1675
	}

	/*
	 * Init HYP architected timer support
	 */
1676
	err = kvm_timer_hyp_init(vgic_present);
1677
	if (err)
1678
		goto out;
1679 1680

	kvm_perf_init();
M
Marc Zyngier 已提交
1681
	kvm_sys_reg_table_init();
1682

1683
out:
1684 1685
	if (err || !is_protected_kvm_enabled())
		on_each_cpu(_kvm_arch_hardware_disable, NULL, 1);
1686 1687

	return err;
1688 1689 1690 1691 1692 1693 1694
}

static void teardown_hyp_mode(void)
{
	int cpu;

	free_hyp_pgds();
1695
	for_each_possible_cpu(cpu) {
1696
		free_page(per_cpu(kvm_arm_hyp_stack_page, cpu));
1697 1698
		free_pages(kvm_arm_hyp_percpu_base[cpu], nvhe_percpu_order());
	}
1699 1700
}

1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724
/**
 * Inits Hyp-mode on all online CPUs
 */
static int init_hyp_mode(void)
{
	int cpu;
	int err = 0;

	/*
	 * Allocate Hyp PGD and setup Hyp identity mapping
	 */
	err = kvm_mmu_init();
	if (err)
		goto out_err;

	/*
	 * Allocate stack pages for Hypervisor-mode
	 */
	for_each_possible_cpu(cpu) {
		unsigned long stack_page;

		stack_page = __get_free_page(GFP_KERNEL);
		if (!stack_page) {
			err = -ENOMEM;
1725
			goto out_err;
1726 1727 1728 1729 1730
		}

		per_cpu(kvm_arm_hyp_stack_page, cpu) = stack_page;
	}

1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748
	/*
	 * Allocate and initialize pages for Hypervisor-mode percpu regions.
	 */
	for_each_possible_cpu(cpu) {
		struct page *page;
		void *page_addr;

		page = alloc_pages(GFP_KERNEL, nvhe_percpu_order());
		if (!page) {
			err = -ENOMEM;
			goto out_err;
		}

		page_addr = page_address(page);
		memcpy(page_addr, CHOOSE_NVHE_SYM(__per_cpu_start), nvhe_percpu_size());
		kvm_arm_hyp_percpu_base[cpu] = (unsigned long)page_addr;
	}

1749 1750 1751
	/*
	 * Map the Hyp-code called directly from the host
	 */
1752
	err = create_hyp_mappings(kvm_ksym_ref(__hyp_text_start),
1753
				  kvm_ksym_ref(__hyp_text_end), PAGE_HYP_EXEC);
1754 1755
	if (err) {
		kvm_err("Cannot map world-switch code\n");
1756
		goto out_err;
1757 1758
	}

1759 1760
	err = create_hyp_mappings(kvm_ksym_ref(__hyp_rodata_start),
				  kvm_ksym_ref(__hyp_rodata_end), PAGE_HYP_RO);
1761
	if (err) {
1762
		kvm_err("Cannot map .hyp.rodata section\n");
1763 1764 1765
		goto out_err;
	}

1766
	err = create_hyp_mappings(kvm_ksym_ref(__start_rodata),
1767
				  kvm_ksym_ref(__end_rodata), PAGE_HYP_RO);
1768 1769
	if (err) {
		kvm_err("Cannot map rodata section\n");
M
Marc Zyngier 已提交
1770 1771 1772 1773 1774 1775 1776
		goto out_err;
	}

	err = create_hyp_mappings(kvm_ksym_ref(__bss_start),
				  kvm_ksym_ref(__bss_stop), PAGE_HYP_RO);
	if (err) {
		kvm_err("Cannot map bss section\n");
1777
		goto out_err;
1778 1779
	}

1780 1781 1782 1783 1784
	/*
	 * Map the Hyp stack pages
	 */
	for_each_possible_cpu(cpu) {
		char *stack_page = (char *)per_cpu(kvm_arm_hyp_stack_page, cpu);
1785 1786
		err = create_hyp_mappings(stack_page, stack_page + PAGE_SIZE,
					  PAGE_HYP);
1787 1788 1789

		if (err) {
			kvm_err("Cannot map hyp stack\n");
1790
			goto out_err;
1791 1792 1793
		}
	}

1794 1795 1796
	/*
	 * Map Hyp percpu pages
	 */
1797
	for_each_possible_cpu(cpu) {
1798 1799
		char *percpu_begin = (char *)kvm_arm_hyp_percpu_base[cpu];
		char *percpu_end = percpu_begin + nvhe_percpu_size();
1800

1801
		err = create_hyp_mappings(percpu_begin, percpu_end, PAGE_HYP);
1802 1803

		if (err) {
1804
			kvm_err("Cannot map hyp percpu region\n");
1805 1806
			goto out_err;
		}
1807 1808
	}

1809
	if (is_protected_kvm_enabled()) {
1810 1811
		init_cpu_logical_map();

1812 1813 1814 1815
		if (!init_psci_relay())
			goto out_err;
	}

1816
	return 0;
1817

1818
out_err:
1819
	teardown_hyp_mode();
1820 1821 1822 1823
	kvm_err("error initializing Hyp mode: %d\n", err);
	return err;
}

1824 1825 1826 1827 1828
static void check_kvm_target_cpu(void *ret)
{
	*(int *)ret = kvm_target_cpu();
}

1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841
struct kvm_vcpu *kvm_mpidr_to_vcpu(struct kvm *kvm, unsigned long mpidr)
{
	struct kvm_vcpu *vcpu;
	int i;

	mpidr &= MPIDR_HWID_BITMASK;
	kvm_for_each_vcpu(i, vcpu, kvm) {
		if (mpidr == kvm_vcpu_get_mpidr_aff(vcpu))
			return vcpu;
	}
	return NULL;
}

1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852
bool kvm_arch_has_irq_bypass(void)
{
	return true;
}

int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
				      struct irq_bypass_producer *prod)
{
	struct kvm_kernel_irqfd *irqfd =
		container_of(cons, struct kvm_kernel_irqfd, consumer);

1853 1854
	return kvm_vgic_v4_set_forwarding(irqfd->kvm, prod->irq,
					  &irqfd->irq_entry);
1855 1856 1857 1858 1859 1860 1861
}
void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
				      struct irq_bypass_producer *prod)
{
	struct kvm_kernel_irqfd *irqfd =
		container_of(cons, struct kvm_kernel_irqfd, consumer);

1862 1863
	kvm_vgic_v4_unset_forwarding(irqfd->kvm, prod->irq,
				     &irqfd->irq_entry);
1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881
}

void kvm_arch_irq_bypass_stop(struct irq_bypass_consumer *cons)
{
	struct kvm_kernel_irqfd *irqfd =
		container_of(cons, struct kvm_kernel_irqfd, consumer);

	kvm_arm_halt_guest(irqfd->kvm);
}

void kvm_arch_irq_bypass_start(struct irq_bypass_consumer *cons)
{
	struct kvm_kernel_irqfd *irqfd =
		container_of(cons, struct kvm_kernel_irqfd, consumer);

	kvm_arm_resume_guest(irqfd->kvm);
}

1882 1883 1884
/**
 * Initialize Hyp-mode and memory mappings on all CPUs.
 */
1885 1886
int kvm_arch_init(void *opaque)
{
1887
	int err;
1888
	int ret, cpu;
1889
	bool in_hyp_mode;
1890 1891

	if (!is_hyp_mode_available()) {
1892
		kvm_info("HYP mode not available\n");
1893 1894 1895
		return -ENODEV;
	}

1896 1897 1898 1899
	in_hyp_mode = is_kernel_in_hyp_mode();

	if (!in_hyp_mode && kvm_arch_requires_vhe()) {
		kvm_pr_unimpl("CPU unsupported in non-VHE mode, not initializing\n");
1900 1901 1902
		return -ENODEV;
	}

1903 1904
	if (cpus_have_final_cap(ARM64_WORKAROUND_DEVICE_LOAD_ACQUIRE) ||
	    cpus_have_final_cap(ARM64_WORKAROUND_1508412))
1905 1906 1907
		kvm_info("Guests without required CPU erratum workarounds can deadlock system!\n" \
			 "Only trusted guests should be used on this system.\n");

1908 1909 1910 1911 1912 1913
	for_each_online_cpu(cpu) {
		smp_call_function_single(cpu, check_kvm_target_cpu, &ret, 1);
		if (ret < 0) {
			kvm_err("Error, CPU %d not supported!\n", cpu);
			return -ENODEV;
		}
1914 1915
	}

1916
	err = init_common_resources();
1917
	if (err)
1918
		return err;
1919

1920
	err = kvm_arm_init_sve();
1921 1922 1923
	if (err)
		return err;

1924
	if (!in_hyp_mode) {
1925
		err = init_hyp_mode();
1926 1927 1928
		if (err)
			goto out_err;
	}
1929

1930 1931 1932 1933 1934 1935
	err = kvm_init_vector_slots();
	if (err) {
		kvm_err("Cannot initialise vector slots\n");
		goto out_err;
	}

1936 1937 1938
	err = init_subsystems();
	if (err)
		goto out_hyp;
1939

1940 1941
	if (is_protected_kvm_enabled()) {
		static_branch_enable(&kvm_protected_mode_initialized);
1942
		kvm_info("Protected nVHE mode initialized successfully\n");
1943
	} else if (in_hyp_mode) {
1944
		kvm_info("VHE mode initialized successfully\n");
1945
	} else {
1946
		kvm_info("Hyp mode initialized successfully\n");
1947
	}
1948

1949
	return 0;
1950 1951

out_hyp:
1952
	hyp_cpu_pm_exit();
1953 1954
	if (!in_hyp_mode)
		teardown_hyp_mode();
1955 1956
out_err:
	return err;
1957 1958 1959 1960 1961
}

/* NOP: Compiling as a module not supported */
void kvm_arch_exit(void)
{
1962
	kvm_perf_teardown();
1963 1964
}

1965 1966 1967 1968 1969 1970 1971 1972 1973 1974
static int __init early_kvm_mode_cfg(char *arg)
{
	if (!arg)
		return -EINVAL;

	if (strcmp(arg, "protected") == 0) {
		kvm_mode = KVM_MODE_PROTECTED;
		return 0;
	}

1975 1976 1977
	if (strcmp(arg, "nvhe") == 0 && !WARN_ON(is_kernel_in_hyp_mode()))
		return 0;

1978 1979 1980 1981
	return -EINVAL;
}
early_param("kvm-arm.mode", early_kvm_mode_cfg);

1982 1983 1984 1985 1986
enum kvm_mode kvm_get_mode(void)
{
	return kvm_mode;
}

1987 1988 1989 1990 1991 1992 1993
static int arm_init(void)
{
	int rc = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
	return rc;
}

module_init(arm_init);